TW202347011A - Phase shift mask blank, phase shift mask, and methods for manufacturing same - Google Patents

Phase shift mask blank, phase shift mask, and methods for manufacturing same Download PDF

Info

Publication number
TW202347011A
TW202347011A TW112108496A TW112108496A TW202347011A TW 202347011 A TW202347011 A TW 202347011A TW 112108496 A TW112108496 A TW 112108496A TW 112108496 A TW112108496 A TW 112108496A TW 202347011 A TW202347011 A TW 202347011A
Authority
TW
Taiwan
Prior art keywords
phase shift
layer
shift mask
substrate
etching
Prior art date
Application number
TW112108496A
Other languages
Chinese (zh)
Inventor
林賢利
宮城茂彦
八神高史
小澤隆仁
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW202347011A publication Critical patent/TW202347011A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching

Abstract

This phase shift mask blank has: a substrate; and a first layer that is deposited on the substrate. The first layer contains zirconium (Zr), silicon (Si), and nitrogen (N). The transmittance of the first layer at a thickness at which a 180 DEG phase shift is imparted to light having a wavelength of 365 nm is 4-40%.

Description

相位移遮罩底板、相位移遮罩、及其等之製造方法Phase shift mask base plate, phase shift mask, and manufacturing methods thereof

本發明係關於一種相位移遮罩底板、相位移遮罩、及其等之製造方法。The present invention relates to a phase shift mask base plate, a phase shift mask, and manufacturing methods thereof.

已知有於透明基板上形成相位移層之相位移遮罩,該相位移層由氮氧化鉻所構成(專利文獻1)。一直以來,期望提昇相位移遮罩之品質。A phase shift mask is known in which a phase shift layer composed of chromium nitride oxide is formed on a transparent substrate (Patent Document 1). There has always been a desire to improve the quality of phase shift masks.

目前,矽化物系相位移膜使用i-光線(365 nm)穿透率5%之MoSi膜。又,為提昇相位移效果,亦提出了穿透性更高之膜,藉由增加氮含量可達成10%左右之穿透率。然而,MoSi膜之問題在於濕式之蝕刻時間長。由於蝕刻時間之延長使玻璃之蝕刻持續進行,故而相位移量之控制變難。進而,亦導致蝕刻劑之消耗量增加及產能下降。 [先前技術文獻] [專利文獻] Currently, silicone-based phase shift films use MoSi films with i-ray (365 nm) transmittance of 5%. In addition, in order to improve the phase shift effect, films with higher penetration have also been proposed. By increasing the nitrogen content, a penetration rate of about 10% can be achieved. However, the problem with the MoSi film is that the wet etching time is long. As the etching time is extended, the etching of the glass continues, so it becomes difficult to control the amount of phase shift. Furthermore, it also leads to an increase in the consumption of etchants and a decrease in production capacity. [Prior technical literature] [Patent Document]

[專利文獻1]日本特開2011-013283號公報[Patent Document 1] Japanese Patent Application Publication No. 2011-013283

第1態樣提供了一種相位移遮罩底板,其具有基板、及成膜於上述基板上之第1層,上述第1層含有鋯(Zr)、矽(Si)及氮(N),且上述第1層之使波長365 nm之光發生180°相位移之膜厚下之穿透率為4%以上40%以下。The first aspect provides a phase shift mask substrate, which has a substrate and a first layer formed on the substrate, where the first layer contains zirconium (Zr), silicon (Si) and nitrogen (N), and The above-mentioned first layer has a transmittance of 4% to 40% at a film thickness that causes a 180° phase shift of light with a wavelength of 365 nm.

第2態樣提供一種相位移遮罩底板,其具有基板、及成膜於上述基板上之第1層,上述第1層係具有4層以上含有鋯(Zr)及矽(Si)之金屬矽化物之氮化物之積層,且上述第1層之使波長365 nm之光發生180°相位移之膜厚下之穿透率為4%以上40%以下。The second aspect provides a phase shift mask substrate, which has a substrate and a first layer formed on the substrate, and the first layer has four or more layers of metal silicide containing zirconium (Zr) and silicon (Si). It is a laminate of nitrides, and the transmittance of the first layer above is 4% to 40% at a film thickness that causes a 180° phase shift of light with a wavelength of 365 nm.

第3態樣提供一種相位移遮罩底板,其具有基板、及成膜於上述基板上之第1層,上述第1層係具有4層以上之含有鋯(Zr)及矽(Si)之金屬矽化物之氮化物之積層,且上述第1層之傾斜角度為55°以上90°以下。A third aspect provides a phase shift mask substrate, which has a substrate and a first layer formed on the substrate. The first layer has four or more layers of metal containing zirconium (Zr) and silicon (Si). It is a lamination of silicon nitride, and the inclination angle of the first layer is 55° or more and 90° or less.

第4態樣提供一種相位移遮罩,其於第1~第3中任一態樣之相位移遮罩底板中形成有所需圖案。A fourth aspect provides a phase shift mask, which has a required pattern formed in the phase shift mask substrate of any one of the first to third aspects.

第5態樣提供一種相位移遮罩底板之製造方法,其具有於基板上成膜第1層之成膜步驟,於上述成膜步驟中,於基板上進行4次以上含有鋯及矽之金屬矽化物之氮化物層之成膜,形成第1層。The fifth aspect provides a method for manufacturing a phase shift mask substrate, which has a film forming step of forming a first layer on a substrate. In the above film forming step, a metal containing zirconium and silicon is applied to the substrate four or more times. The nitride layer of silicon compound is formed into a film to form the first layer.

第6態樣提供一種相位移遮罩之製造方法,其係第5態樣之相位移遮罩底板之製造方法進而具有形成所需圖案之圖案形成步驟者。A sixth aspect provides a method for manufacturing a phase shift mask, which is the manufacturing method of a phase shift mask substrate of the fifth aspect and further includes a pattern forming step for forming a desired pattern.

以下,對本發明之實施方式(以下稱為「本實施方式」)進行說明。以下之本實施方式係用於說明本發明之例示,並非旨在將本發明限定於以下內容。本發明可於其主旨之範圍內適當變形地實施。Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist of the invention.

[相位移遮罩底板100] 對圖1所示之本實施方式之相位移遮罩底板100進行說明。相位移遮罩底板100具備基板10、及形成於基板10之表面(基板表面)10a上之相位移層20。根據相位移遮罩底板100,藉由於相位移層20中形成特定之圖案50,可製造相位移遮罩300(參照圖3)。相位移遮罩300於製造FPD(Flat Panel Display,平板顯示器)等顯示用裝置或LSI(Large Scale Integration,大型積體電路)等半導體裝置時使用。 [Phase Shift Mask Base 100] The phase shift mask base plate 100 of this embodiment shown in FIG. 1 will be described. The phase shift mask base 100 includes a substrate 10 and a phase shift layer 20 formed on the surface 10 a of the substrate 10 (substrate surface). According to the phase shift mask substrate 100, the phase shift mask 300 can be manufactured by forming a specific pattern 50 in the phase shift layer 20 (see FIG. 3). The phase shift mask 300 is used when manufacturing display devices such as FPD (Flat Panel Display) or semiconductor devices such as LSI (Large Scale Integration).

作為基板10之材料,例如使用合成石英玻璃。再者,基板10之材料並不限定於合成石英玻璃。基板10只要使使用相位移遮罩300之曝光裝置之曝光之光充分穿透即可。As a material of the substrate 10, for example, synthetic quartz glass is used. Furthermore, the material of the substrate 10 is not limited to synthetic quartz glass. The substrate 10 only needs to fully transmit the exposure light of the exposure device using the phase shift mask 300 .

相位移層20含有鋯(Zr)、矽(Si)及氮(N)。如圖3所示,於相位移遮罩300中,相位移層20之一部分藉由濕式蝕刻自基板表面10a去除,其去除部分於相位移層20之表面形成特定之圖案50。圖案50(去除部分、凹部)由藉由濕式蝕刻而露出之相位移層20之側面21、及露出之基板表面10a劃分。圖3表示相位移層20之與基板表面10a正交之剖面。於圖3所示之剖面中,劃分圖案50之相位移層20之側面21之自基板表面10a之傾斜角度θ愈接近90°,則可判斷相位移遮罩300中所形成之圖案50之精度愈高。傾斜角度θ係於相位移層20之與基板表面10a正交之剖面中,相位移層20之劃分圖案50(凹部)之側面21與基板表面10a所成之角度中包含相位移層20之角度。因此,傾斜角度θ愈接近90°愈佳。具體而言,傾斜角度θ較佳為45°~90°,下限值更佳為60°,進而較佳為70°。上限值可為85°、或75°。圖3示出θ=90°之狀態。本發明人等發現,藉由形成多層相位移層20,於由相位移遮罩底板100製造而得之相位移遮罩300中,傾斜角度θ變大(接近90°),相位移遮罩300之圖案精度提昇。因此,本實施方式之相位移層20較佳為由多層構成,例如可設為4~10層之積層。下限為5層,更佳為6層。藉由以此方式將相位移層20設為積層,可不斷提高傾斜角度θ,進而可藉由側蝕量之減少而提昇圖案精度。再者,雖圖1~5之相位移層20描繪為單層(一層),但係以多層積層之狀態描繪。The phase shift layer 20 contains zirconium (Zr), silicon (Si) and nitrogen (N). As shown in FIG. 3 , in the phase shift mask 300 , a portion of the phase shift layer 20 is removed from the substrate surface 10 a by wet etching, and the removed portion forms a specific pattern 50 on the surface of the phase shift layer 20 . The pattern 50 (removed portion, recessed portion) is divided by the side surface 21 of the phase shift layer 20 exposed by wet etching, and the exposed substrate surface 10a. FIG. 3 shows a cross section of the phase shift layer 20 perpendicular to the substrate surface 10a. In the cross-section shown in FIG. 3 , the closer the inclination angle θ of the side surface 21 of the phase shift layer 20 dividing the pattern 50 from the substrate surface 10 a is to 90°, the accuracy of the pattern 50 formed in the phase shift mask 300 can be judged. The higher. The tilt angle θ is in the cross section of the phase shift layer 20 that is orthogonal to the substrate surface 10 a. The angle between the side surface 21 of the dividing pattern 50 (concave portion) of the phase shift layer 20 and the substrate surface 10 a includes the angle of the phase shift layer 20 . Therefore, the closer the tilt angle θ is to 90°, the better. Specifically, the inclination angle θ is preferably 45° to 90°, and the lower limit is more preferably 60°, and still more preferably 70°. The upper limit value can be 85° or 75°. Fig. 3 shows the state of θ=90°. The inventors of the present invention found that by forming multiple phase shift layers 20 , in the phase shift mask 300 manufactured from the phase shift mask base plate 100 , the tilt angle θ becomes larger (close to 90°), and the phase shift mask 300 The pattern accuracy is improved. Therefore, the phase shift layer 20 of this embodiment is preferably composed of multiple layers, for example, it can be a stack of 4 to 10 layers. The lower limit is 5 layers, and a better limit is 6 layers. By forming the phase shift layer 20 as a stacked layer in this manner, the tilt angle θ can be continuously increased, thereby improving the pattern accuracy by reducing the amount of undercutting. Furthermore, although the phase shift layer 20 in FIGS. 1 to 5 is illustrated as a single layer (one layer), it is illustrated in a state in which multiple layers are laminated.

相位移層20可不含Zr、Si及N以外之元素,或以不影響效果程度之少量雜質之形式含有。The phase shift layer 20 may not contain elements other than Zr, Si and N, or may contain a small amount of impurities that do not affect the degree of effect.

又,本實施方式之相位移遮罩底板之相位移層20之折射率具有較高值。藉由折射率變高,可使得由後述之式:d=λ/(2(n-1))(d:相位移層20之厚度,λ:曝光之光之波長,n:波長λ時之相位移層20之折射率)導出之相位移層20之厚度變薄。藉由使成膜所需之厚度變薄,可於基板10上更均勻地成膜。又,若可使相位移層20之厚度變薄,則可減少後述之側蝕量,可形成更接近設計尺寸之圖案50(圖案精度提昇)。In addition, the refractive index of the phase shift layer 20 of the phase shift mask base plate of this embodiment has a relatively high value. By increasing the refractive index, the following formula can be obtained: d=λ/(2(n-1)) (d: thickness of the phase shift layer 20, λ: wavelength of the exposure light, n: wavelength λ The thickness of the phase shift layer 20 derived from the refractive index of the phase shift layer 20 becomes thinner. By reducing the thickness required for film formation, a film can be formed more uniformly on the substrate 10 . Furthermore, if the thickness of the phase shift layer 20 can be made thinner, the amount of undercutting described below can be reduced, and the pattern 50 closer to the design size can be formed (pattern accuracy is improved).

本實施方式之相位移層20對於波長365 nm之光之折射率例如可為2.70~2.90,更佳之折射率之下限值為2.75,進而較佳為2.80。藉由設為此種較高之折射率,可實現相位移量180°時之膜厚之薄膜化。The refractive index of the phase shift layer 20 in this embodiment for light with a wavelength of 365 nm can be, for example, 2.70-2.90, and a more preferable lower limit of the refractive index is 2.75, and even more preferably 2.80. By setting the refractive index to such a high level, the film thickness can be reduced to a phase shift amount of 180°.

本實施方式之相位移層20對於波長365 nm之光之消光係數例如可為0.13~0.80,又,更佳之消光係數之上限值為0.70,更佳為0.60,進而較佳為0.50。The phase shift layer 20 of this embodiment has an extinction coefficient of 0.13 to 0.80 for light with a wavelength of 365 nm, for example, and a more preferable upper limit of the extinction coefficient is 0.70, more preferably 0.60, and even more preferably 0.50.

相位移層20係作為使曝光之光之相位局部變化之相位偏移器而發揮功能,該曝光之光係於使用相位移遮罩300之曝光步驟中所照射者。因此,相位移層20需要某種程度地使曝光之光穿透。相位移層20對於曝光之光(例如波長330 nm~470 nm之光)之穿透率較佳為3%以上85%以下。作為使用相位移遮罩300之曝光步驟中所使用之代表性曝光之光,例如可例舉:深紫外線(DUV,波長:302 nm、313 nm、334 nm)、i-光線(波長:365 nm)、h光線(波長:405 nm)、g光線(波長:436 nm)。該等可以單色光之形式使用,或可以複合光之形式使用。The phase shift layer 20 functions as a phase shifter that locally changes the phase of the exposure light irradiated in the exposure step using the phase shift mask 300 . Therefore, the phase shift layer 20 needs to allow exposure light to penetrate to some extent. The transmittance of the phase shift layer 20 for exposure light (for example, light with a wavelength of 330 nm to 470 nm) is preferably 3% or more and 85% or less. Representative exposure lights used in the exposure step using the phase shift mask 300 include, for example, deep ultraviolet light (DUV, wavelength: 302 nm, 313 nm, 334 nm), i-light (wavelength: 365 nm) ), h light (wavelength: 405 nm), g light (wavelength: 436 nm). These can be used in the form of monochromatic light, or they can be used in the form of composite light.

此處,相位移層20其於波長365 nm之光發生180°相位移之膜厚下之波長365 nm之光之穿透率可為4%以上、40%以下,下限值較佳為5%,更佳為8%。又,上限值較佳為38%,更佳為37%。又,相位移層20其於波長405 nm之光發生180°相位移之膜厚下之波長405 nm之光之穿透率可為5%~50%,下限值較佳為7%,更佳為8%。進而,上限值較佳為49%,更佳為48%。又,相位移層20其於波長436 nm之光發生180°相位移之膜厚下之波長436 nm之光之穿透率可為8%~65%,下限值較佳為9%,更佳為10%。又,上限值較佳為63%,更佳為60%。Here, the phase shift layer 20 can have a transmittance of light with a wavelength of 365 nm between 4% and 40% at a film thickness at which the light with a wavelength of 365 nm undergoes a phase shift of 180°, and the lower limit is preferably 5 %, preferably 8%. Moreover, the upper limit value is preferably 38%, more preferably 37%. In addition, the transmittance of the phase shift layer 20 for light with a wavelength of 405 nm can be 5% to 50% at a film thickness at which the light of a wavelength of 405 nm undergoes a phase shift of 180°, and the lower limit is preferably 7%. The best is 8%. Furthermore, the upper limit value is preferably 49%, more preferably 48%. In addition, the transmittance of the phase shift layer 20 for light with a wavelength of 436 nm can be 8% to 65% at a film thickness at which the light of a wavelength of 436 nm undergoes a phase shift of 180°, and the lower limit is preferably 9%. The best is 10%. Moreover, the upper limit value is preferably 63%, more preferably 60%.

相位移層20較佳為將使用相位移遮罩300之曝光步驟中所照射之曝光之光之相位變更(偏移)約180°(相位移量:約180°)。即,相位移層20較佳為使穿透其之曝光之光(例如波長330 nm~470 nm之光)之相位變化為160°~200°(180°±20°)、170°~190°(180°±10°)、或175°~185°(180°±5°)。The phase shift layer 20 preferably changes (shifts) the phase of the exposure light irradiated in the exposure step using the phase shift mask 300 by approximately 180° (phase shift amount: approximately 180°). That is, the phase shift layer 20 is preferably such that the phase change of the exposure light (for example, light with a wavelength of 330 nm to 470 nm) passing through it is 160° to 200° (180°±20°), 170° to 190°. (180°±10°), or 175°~185° (180°±5°).

依據穿透相位移遮罩300之光(曝光之光)之波長來變更相位移層20之折射率、厚度(膜厚)等,藉此可調整相位移量。相位移層20之厚度可考慮到相位移層20之折射率等特性、所穿透之光(曝光之光)之波長,設計成相位移量為約180°。即,相位移層20之厚度d可基於式:d=λ/(2(n-1))而設計(d:相位移層20之厚度,λ:曝光之光之波長,n:波長λ下之相位移層20之折射率)。相位移層20之厚度例如較佳為90 nm~125 nm,更佳之相位移層20之厚度之下限值為94 nm,進而較佳為96 nm。更佳之相位移層20之厚度之上限值為116 nm,進而較佳為110 nm。藉由設為此種膜厚,發生180°相位移為止之蝕刻時間變短,對玻璃之損傷減輕。The amount of phase shift can be adjusted by changing the refractive index, thickness (film thickness), etc. of the phase shift layer 20 according to the wavelength of the light (exposure light) that penetrates the phase shift mask 300 . The thickness of the phase shift layer 20 can be designed so that the phase shift amount is about 180°, taking into account the refractive index and other characteristics of the phase shift layer 20 and the wavelength of the light that is transmitted (exposed light). That is, the thickness d of the phase shift layer 20 can be designed based on the formula: d=λ/(2(n-1)) (d: thickness of the phase shift layer 20, λ: wavelength of the exposure light, n: wavelength λ the refractive index of the phase shift layer 20). The thickness of the phase shift layer 20 is, for example, preferably 90 nm to 125 nm. The lower limit of the thickness of the phase shift layer 20 is more preferably 94 nm, and more preferably 96 nm. A more preferable upper limit of the thickness of the phase shift layer 20 is 116 nm, and more preferably, it is 110 nm. By setting this film thickness, the etching time until the 180° phase shift occurs is shortened, and damage to the glass is reduced.

相位移遮罩底板100之製造方法係使用後述方法而製造。例如,相位移遮罩底板100可使用後述實施例中說明之反應性濺射,於基板10上成膜相位移層20而製造。The phase shift mask base plate 100 is manufactured using a method described below. For example, the phase shift mask base plate 100 can be manufactured by depositing the phase shift layer 20 on the substrate 10 using reactive sputtering as described in the embodiments described later.

[相位移遮罩底板200] 對圖2所示之相位移遮罩底板200進行說明。相位移遮罩底板200具備:基板10;相位移層20,其形成於基板表面10a上;及蝕刻遮罩層(鉻化合物層)30,其形成於相位移層20上且含有鉻化合物。除了具有蝕刻遮罩層30以外,相位移遮罩底板200之其他構成與圖1所示之相位移遮罩底板100同樣。圖2所示之相位移遮罩底板200發揮與相位移遮罩底板100同樣之效果,進而,藉由具有蝕刻遮罩層30而發揮以下說明之效果。 [Phase Shift Mask Base 200] The phase shift mask base plate 200 shown in FIG. 2 will be described. The phase shift mask base 200 includes a substrate 10 , a phase shift layer 20 formed on the substrate surface 10 a , and an etching mask layer (chromium compound layer) 30 formed on the phase shift layer 20 and containing a chromium compound. Except for the etching mask layer 30 , the other components of the phase shift mask substrate 200 are the same as the phase shift mask substrate 100 shown in FIG. 1 . The phase shift mask substrate 200 shown in FIG. 2 exhibits the same effects as the phase shift mask substrate 100 , and further exhibits the effects described below by having the etching mask layer 30 .

與相位移遮罩底板100同樣,藉由於相位移層20中形成特定之圖案50,可由相位移遮罩底板200製造相位移遮罩300(參照圖3)。於利用濕式蝕刻於相位移層20中形成特定之圖案50之情形時,於相位移遮罩底板200之上形成光阻層40(參照圖4(A))。此處之相位移層(ZrSiN系層)20對於光阻層40之密接性較低。因此,若於相位移層20上直接形成光阻層40,則有濕式蝕刻中光阻層40剝離之虞。因此,於相位移遮罩底板200中,藉由設置與光阻層40及相位移層20之兩者具有密接性之蝕刻遮罩層30,可抑制濕式蝕刻中之光阻層40之剝離。Similar to the phase shift mask substrate 100 , the phase shift mask 300 can be manufactured from the phase shift mask substrate 200 by forming a specific pattern 50 in the phase shift layer 20 (see FIG. 3 ). When a specific pattern 50 is formed in the phase shift layer 20 by wet etching, a photoresist layer 40 is formed on the phase shift mask substrate 200 (refer to FIG. 4(A) ). The phase shift layer (ZrSiN based layer) 20 here has low adhesion to the photoresist layer 40 . Therefore, if the photoresist layer 40 is directly formed on the phase shift layer 20, there is a risk that the photoresist layer 40 may be peeled off during wet etching. Therefore, in the phase shift mask substrate 200, by providing the etching mask layer 30 that is in close contact with both the photoresist layer 40 and the phase shift layer 20, the peeling of the photoresist layer 40 during wet etching can be suppressed. .

蝕刻遮罩層30之材料並無特別限定,只要為提高與光阻層40及相位移層20之密接性之材料即可,例如,可使用氮化鉻、氧化鉻等鉻化合物。又,於相位移遮罩300之製造中,光阻層40以波長350 nm~450 nm之光進行曝光。因此,設於光阻層40之下之蝕刻遮罩層30較佳為波長350 nm~450 nm之光之反射率低者,亦作為抗反射層發揮功能,氧化鉻作為抗反射層更佳。藉由抑制曝光之光之反射,可抑制光阻層40內之曝光之光之多重反射,相位移遮罩300之圖案精度提昇。例如,蝕刻遮罩層30對於波長413 nm之光之反射率較佳為15%以下。蝕刻遮罩層30可為單層,亦可由多層形成。於蝕刻遮罩層30由多層形成之情形時,較佳為光阻層40正下方之層對於曝光之光之反射率低。例如,蝕刻遮罩層30可由形成於相位移層20之上之氮化鉻層31、及形成於氮化鉻層31上之氧化鉻層32構成。氧化鉻層32例如可將波長413 nm之光之反射率抑制為11%左右。The material of the etching mask layer 30 is not particularly limited as long as it is a material that improves the adhesion with the photoresist layer 40 and the phase shift layer 20. For example, chromium compounds such as chromium nitride and chromium oxide can be used. In addition, during the manufacture of the phase shift mask 300, the photoresist layer 40 is exposed with light having a wavelength of 350 nm to 450 nm. Therefore, the etching mask layer 30 provided under the photoresist layer 40 is preferably one with low reflectivity for light with a wavelength of 350 nm to 450 nm, and also functions as an anti-reflective layer. Chromium oxide is preferably used as an anti-reflective layer. By suppressing the reflection of the exposure light, multiple reflections of the exposure light in the photoresist layer 40 can be suppressed, and the pattern accuracy of the phase shift mask 300 is improved. For example, the reflectivity of the etching mask layer 30 for light with a wavelength of 413 nm is preferably less than 15%. The etching mask layer 30 may be a single layer or may be formed of multiple layers. When the etching mask layer 30 is formed of multiple layers, it is preferable that the layer directly below the photoresist layer 40 has a low reflectivity for exposure light. For example, the etching mask layer 30 may be composed of a chromium nitride layer 31 formed on the phase shift layer 20 and a chromium oxide layer 32 formed on the chromium nitride layer 31 . The chromium oxide layer 32 can suppress the reflectivity of light with a wavelength of 413 nm to about 11%, for example.

蝕刻遮罩層30之厚度並無特別限定,可適當調整,例如,可設為10 nm~120 nm。於蝕刻遮罩層30由氮化鉻層31及氧化鉻層32構成之情形時,例如,蝕刻遮罩層30之厚度較佳為80~120 nm,較佳為以氮化鉻層31之厚度與氧化鉻層32之厚度之比為6:4(3:2)~8:2(4:1)之比率成膜。若蝕刻遮罩層30過薄,則蝕刻時間變短,相位移層面內之CD(Critical dimension,臨界尺寸)控制(即圖案50之線寬控制)變難。又,若蝕刻遮罩層30過厚,則側蝕量變大,難以獲得如設計之圖案尺寸。基於蝕刻遮罩層30對相位移層20進行濕式蝕刻時(參照圖4(D)),相位移層20被蝕刻液各向同性地蝕刻。因此,除了沿垂直於基板10之方向蝕刻相位移層20以外,亦沿與垂直方向正交之橫向蝕刻相位移層20。將這一沿橫向進行蝕刻之現象稱為側蝕。因此,於蝕刻遮罩層30過厚之情形、或如上所述相位移層20過厚之情形時,有以寬於所需之圖案寬度之寬度進行蝕刻之虞。The thickness of the etching mask layer 30 is not particularly limited and can be adjusted appropriately. For example, it can be set to 10 nm to 120 nm. When the etching mask layer 30 is composed of a chromium nitride layer 31 and a chromium oxide layer 32, for example, the thickness of the etching mask layer 30 is preferably 80-120 nm, and is preferably the thickness of the chromium nitride layer 31. The film is formed at a ratio of 6:4 (3:2) to 8:2 (4:1) to the thickness of the chromium oxide layer 32 . If the etching mask layer 30 is too thin, the etching time will be shortened, and CD (critical dimension) control in the phase shift layer (ie, line width control of the pattern 50) will become difficult. In addition, if the etching mask layer 30 is too thick, the amount of side etching will increase, making it difficult to obtain the designed pattern size. When the phase shift layer 20 is wet-etched based on the etching mask layer 30 (see FIG. 4(D) ), the phase shift layer 20 is isotropically etched by the etching liquid. Therefore, in addition to etching the phase shift layer 20 in a direction perpendicular to the substrate 10 , the phase shift layer 20 is also etched in a transverse direction orthogonal to the vertical direction. This phenomenon of etching in the lateral direction is called side etching. Therefore, when the etching mask layer 30 is too thick, or when the phase shift layer 20 is too thick as described above, there is a risk of etching with a width wider than the required pattern width.

相位移遮罩底板200之製造方法並無特別限定,可使用通用方法。例如,相位移遮罩底板200可使用後述之圖6或實施例中說明之反應性濺射,於基板10上成膜相位移層20及蝕刻遮罩層30而製造。The manufacturing method of the phase shift mask base plate 200 is not particularly limited, and general methods can be used. For example, the phase shift mask base plate 200 can be manufactured by forming the phase shift layer 20 and etching the mask layer 30 on the substrate 10 using reactive sputtering as described in FIG. 6 or in the embodiment described below.

圖6係表示本實施方式之相位移遮罩底板100、200之製造裝置600之示意圖,係自上方觀察製造裝置600之內部所得之圖。圖6所示之成膜裝置600係連續型濺射(in-line sputter)裝置,其具備供搬入用於製造相位移遮罩底板100、200之基板10之搬入腔室601、第1濺射腔室602、緩衝腔室603、第2濺射腔室604、及用於將所製造之相位移層20搬出之搬出腔室605。FIG. 6 is a schematic diagram showing the manufacturing device 600 of the phase shift mask substrates 100 and 200 according to this embodiment, and is a view of the inside of the manufacturing device 600 viewed from above. The film forming apparatus 600 shown in FIG. 6 is an in-line sputtering apparatus, and is provided with a loading chamber 601 for loading the substrate 10 for manufacturing the phase shift mask substrates 100 and 200, and a first sputtering device. The chamber 602, the buffer chamber 603, the second sputtering chamber 604, and the unloading chamber 605 for unloading the manufactured phase shift layer 20.

基板托盤P係可載置用於形成相位移層20之基板10之框狀之托盤(tray),支持並載置基板10之外緣部分。基板10以使「表面形成作為相位移層20(ZrSiN系層)、蝕刻遮罩層30(鉻化合物層)之遮光膜、抗反射膜之表面」為下側(朝下)之方式載置於基板托盤P上。於成膜裝置600中,如後所述,一面維持使基板10之表面與靶材對向之狀態,一面沿著圖6之實線箭頭Q所示之方向,將載置有基板10之基板托盤P搬送至緩衝腔室603之位置,藉此於基板10之表面上形成第1相位移層20(ZrSiN系層),製造具有單層之相位移層20之相位移遮罩底板100。The substrate tray P is a frame-shaped tray that can place the substrate 10 for forming the phase shift layer 20, and supports and places the outer edge portion of the substrate 10. The substrate 10 is placed on the lower side (the surface on which the light-shielding film and the anti-reflection film are formed as the phase shift layer 20 (ZrSiN-based layer) and the etching mask layer 30 (chromium compound layer)) is placed on the lower side (facing downward). On the substrate tray P. In the film forming apparatus 600 , as will be described later, the substrate 10 on which the substrate 10 is placed is moved along the direction indicated by the solid arrow Q in FIG. 6 while maintaining the state in which the surface of the substrate 10 faces the target. The tray P is transported to the position of the buffer chamber 603, whereby the first phase shift layer 20 (ZrSiN-based layer) is formed on the surface of the substrate 10, and the phase shift mask base plate 100 having a single layer of the phase shift layer 20 is manufactured.

如實線箭頭Q所示,形成第1相位移層20後,進而於搬入腔室601與緩衝腔室603之間反覆搬送基板托盤P,藉此製造具有相位移層20之相位移遮罩底板100,該相位移層20由與搬送次數相應之層構成。再者,自搬入腔室601搬送至緩衝腔室603之情形與自緩衝腔室603搬送至搬入腔室601之情形均可同樣地形成ZrSiN系層。As shown by the solid arrow Q, after the first phase shift layer 20 is formed, the substrate tray P is repeatedly transported between the loading chamber 601 and the buffer chamber 603, thereby manufacturing the phase shift mask base 100 having the phase shift layer 20. , the phase shift layer 20 is composed of layers corresponding to the number of transfers. In addition, the ZrSiN-based layer can be formed in the same manner both in the case of transferring from the loading chamber 601 to the buffer chamber 603 and in the case of transferring from the buffer chamber 603 to the loading chamber 601 .

製造相位移遮罩底板100後,進而如點線箭頭R所示,將基板托盤P自緩衝腔室603搬送至搬出腔室605之位置,藉此於相位移層20之上形成蝕刻遮罩層30(鉻化合物層),製造相位移遮罩底板200。After the phase shift mask bottom plate 100 is manufactured, the substrate tray P is transported from the buffer chamber 603 to the position of the unloading chamber 605 as indicated by the dotted arrow R, thereby forming an etching mask layer on the phase shift layer 20 30 (chromium compound layer) to manufacture the phase shift mask base plate 200.

搬入腔室601、第1濺射腔室602、緩衝腔室603、第2濺射腔室604、搬出腔室605之各者之間由未圖示之擋板分別間隔。搬入腔室601、第1濺射腔室602、緩衝腔室603、第2濺射腔室604、搬出腔室605分別與未圖示之排氣裝置連接,將各腔室內部排氣。The carry-in chamber 601, the first sputtering chamber 602, the buffer chamber 603, the second sputtering chamber 604, and the carry-out chamber 605 are separated by baffles (not shown). The carry-in chamber 601, the first sputtering chamber 602, the buffer chamber 603, the second sputtering chamber 604, and the carry-out chamber 605 are respectively connected to an exhaust device (not shown) to exhaust the inside of each chamber.

第1濺射腔室602之內部設有第1靶材606(ZrSi),第2濺射腔室604之內部設有第2靶材607(Cr)。第1濺射腔室602及第2濺射腔室604中分別設有未圖示之DC電源,分別向第1靶材606(ZrSi)、第2靶材607(Cr)供給電力。The first target 606 (ZrSi) is provided inside the first sputtering chamber 602, and the second target 607 (Cr) is provided inside the second sputtering chamber 604. DC power supplies (not shown) are respectively provided in the first sputtering chamber 602 and the second sputtering chamber 604 to supply power to the first target 606 (ZrSi) and the second target 607 (Cr) respectively.

第1濺射腔室602中設有向第1濺射腔室602內導入濺射用氣體之第1氣體流入口608。第1靶材606係用於形成ZrSiN系層之濺射靶材,由含有鋯(Zr)、矽(Si)之材料形成。具體而言,第1靶材606係由選自鋯、鋯之氧化物、鋯之氮化物、鋯之碳化物、矽、矽之氧化物、矽之氮化物、矽之碳化物等中之材料形成。例如,為形成ZrSiN膜,經由第1氣體流入口608,導入含氮氣體與非活性氣體(氬氣等)之混合氣體。The first sputtering chamber 602 is provided with a first gas inlet 608 for introducing a sputtering gas into the first sputtering chamber 602 . The first target 606 is a sputtering target used to form a ZrSiN-based layer, and is made of a material containing zirconium (Zr) and silicon (Si). Specifically, the first target 606 is made of a material selected from zirconium, zirconium oxide, zirconium nitride, zirconium carbide, silicon, silicon oxide, silicon nitride, silicon carbide, etc. form. For example, in order to form a ZrSiN film, a mixed gas of a nitrogen-containing gas and an inert gas (argon gas, etc.) is introduced through the first gas inlet 608 .

第2濺射腔室604中設有向第2濺射腔室604內導入濺射用氣體之第2氣體流入口609。第2靶材607係用於形成鉻化合物層之濺射靶材,由含有鉻之材料形成。具體而言,第2靶材607係由選自鉻、鉻之氧化物、鉻之氮化物、鉻之碳化物等中之材料形成。例如,為形成CrCN膜作為遮光膜,而經由第2氣體流入口609,導入含氮或氧之氣體與非活性氣體(氬氣等)之混合氣體。The second sputtering chamber 604 is provided with a second gas inlet 609 for introducing a sputtering gas into the second sputtering chamber 604 . The second target 607 is a sputtering target for forming a chromium compound layer, and is made of a material containing chromium. Specifically, the second target 607 is formed of a material selected from chromium, chromium oxides, chromium nitrides, chromium carbides, and the like. For example, in order to form a CrCN film as a light-shielding film, a mixed gas of a nitrogen- or oxygen-containing gas and an inert gas (argon gas, etc.) is introduced through the second gas inlet 609 .

當基板10被搬送至第1濺射腔室602時,於第1濺射腔室602中,藉由濺射而於基板10之表面形成第1相位移層20(ZrSiN系層)。進而,亦可藉由於緩衝腔室603與搬入腔室601之間多次搬送形成有第1相位移層20之基板10,並於第1濺射腔室602中進行多次濺射,從而使相位移層20為積層。其後,基板10被搬送至第2濺射腔室604。於第2濺射腔室604中,藉由濺射於相位移層20之表面形成蝕刻層30(鉻化合物層)。與ZrSiN層同樣地,亦可藉由於緩衝腔室603與搬出腔室605之間多次搬送鉻化合物層,並於第2濺射腔室604中進行多次濺射,從而使蝕刻層30為積層。如此,於基板10之表面依序形成ZrSiN層及鉻化合物層,製造相位移遮罩底板200。When the substrate 10 is transported to the first sputtering chamber 602, the first phase shift layer 20 (ZrSiN-based layer) is formed on the surface of the substrate 10 by sputtering in the first sputtering chamber 602. Furthermore, the substrate 10 on which the first phase shift layer 20 is formed can also be transported multiple times between the buffer chamber 603 and the loading chamber 601 and sputtered multiple times in the first sputtering chamber 602. The phase shift layer 20 is a built-up layer. Thereafter, the substrate 10 is transported to the second sputtering chamber 604 . In the second sputtering chamber 604, the etching layer 30 (chromium compound layer) is formed on the surface of the phase shift layer 20 by sputtering. Similar to the ZrSiN layer, the chromium compound layer can also be transported multiple times between the buffer chamber 603 and the carry-out chamber 605 and sputtered multiple times in the second sputtering chamber 604, so that the etching layer 30 can be Lamination. In this way, a ZrSiN layer and a chromium compound layer are sequentially formed on the surface of the substrate 10 to manufacture the phase shift mask base plate 200 .

再者,第1及第2靶材606、607之材料,以及自第1及第2氣體流入口608、609導入之氣體之種類可根據構成鉻化合物層及ZrSiN層之材料或組成而適當選擇。又,濺射之方式可使用DC濺射、RF濺射、離子束濺射等中之任一方式。Furthermore, the materials of the first and second targets 606 and 607 and the types of gases introduced from the first and second gas inlets 608 and 609 can be appropriately selected according to the materials or compositions constituting the chromium compound layer and the ZrSiN layer. . In addition, any method among DC sputtering, RF sputtering, ion beam sputtering, etc. can be used as a sputtering method.

[相位移遮罩] 對圖3所示之相位移遮罩300進行說明。相位移遮罩300具有基板10、及形成於基板10之表面10a上之相位移層20,相位移層20中形成有特定之圖案50。除了相位移層20中形成有特定之圖案50以外,位移遮罩300之其他構成與圖1所示之相位移遮罩底板100同樣。於相位移層20之與基板表面10a正交之剖面中,劃分圖案50之相位移層20之側面21之自基板表面10a之傾斜角度θ較佳為45°~90°。又,藉由使相位移層20為積層,可使傾斜角度θ為更接近直角之狀態,進而可藉由側蝕量之減少而提昇圖案精度。 [Phase Shift Mask] The phase shift mask 300 shown in FIG. 3 will be described. The phase shift mask 300 has a substrate 10 and a phase shift layer 20 formed on the surface 10 a of the substrate 10 . A specific pattern 50 is formed in the phase shift layer 20 . Except for the specific pattern 50 formed in the phase shift layer 20, other structures of the displacement mask 300 are the same as the phase shift mask base plate 100 shown in FIG. 1. In the cross section of the phase shift layer 20 that is orthogonal to the substrate surface 10a, the inclination angle θ of the side surface 21 of the phase shift layer 20 dividing the pattern 50 from the substrate surface 10a is preferably 45° to 90°. In addition, by forming the phase shift layer 20 as a stacked layer, the inclination angle θ can be brought closer to a right angle, thereby improving the pattern accuracy by reducing the amount of undercutting.

相位移遮罩300之製造方法並無特別限定,可使用通用方法。例如,相位移遮罩300可使用後述之實施例中說明之反應性濺射及濕式蝕刻(參照圖4)來製造。The manufacturing method of the phase shift mask 300 is not particularly limited, and general methods can be used. For example, the phase shift mask 300 can be manufactured using reactive sputtering and wet etching (refer to FIG. 4 ) described in the embodiments described below.

[曝光方法] 繼而,對使用相位移遮罩300之曝光方法進行說明,該相位移遮罩300係由相位移遮罩底板100、200製造而得者。使用相位移遮罩300之曝光方法可於半導體或液晶面板等之裝置製造中,作為使用曝光裝置之光微影(photolithography)步驟而實施。 [Exposure method] Next, an exposure method using the phase shift mask 300 produced from the phase shift mask base plates 100 and 200 will be described. The exposure method using the phase shift mask 300 can be implemented as a photolithography step using an exposure device in device manufacturing of semiconductors or liquid crystal panels.

如圖5所示,曝光方法中使用之曝光裝置500具備:光源LS;照明光學系統502;遮罩台503,其保持相位移遮罩300;投影光學系統504;基板台505,其保持作為曝光對象物之感光性基板515;及驅動機構506,其使基板台505於水平面內移動。As shown in FIG. 5 , the exposure device 500 used in the exposure method includes: a light source LS; an illumination optical system 502; a mask stage 503 that holds the phase shift mask 300; a projection optical system 504; and a substrate stage 505 that holds the exposure The photosensitive substrate 515 of the object; and the driving mechanism 506 that moves the substrate stage 505 in the horizontal plane.

首先,於曝光裝置500之遮罩台503上配置相位移遮罩300。又,於基板台505上配置塗佈有光阻劑之感光性基板515。並且,自光源LS出射曝光之光。出射之曝光之光入射至照明光學系統502並被調整為特定光束,照射至保持於遮罩台503上之相位移遮罩300。通過相位移遮罩300之光具有與相位移遮罩300上所描繪之裝置之圖案50相同之圖案,該圖案經由投影光學系統504照射至保持於基板台505上之感光性基板515之特定位置。藉此,感光性基板515藉由相位移遮罩300之裝置圖案以特定倍率被曝光。First, the phase shift mask 300 is placed on the mask stage 503 of the exposure device 500 . Furthermore, the photosensitive substrate 515 coated with photoresist is placed on the substrate stage 505 . Furthermore, exposure light is emitted from the light source LS. The emitted exposure light enters the illumination optical system 502 and is adjusted into a specific light beam, and is irradiated to the phase shift mask 300 held on the mask stage 503 . The light passing through the phase shift mask 300 has the same pattern as the pattern 50 of the device depicted on the phase shift mask 300, and the pattern is illuminated through the projection optical system 504 to a specific position of the photosensitive substrate 515 held on the substrate stage 505 . Thereby, the photosensitive substrate 515 is exposed at a specific magnification through the device pattern of the phase shift mask 300 .

由相位移遮罩底板100、200製造而得之相位移遮罩300之圖案精度高。因此,藉由使用相位移遮罩300進行曝光,可減少曝光步驟中之電路圖案不良,可高效率地製造積體度高之裝置。 [實施例] The phase shift mask 300 manufactured from the phase shift mask base plates 100 and 200 has high pattern accuracy. Therefore, by using the phase shift mask 300 for exposure, circuit pattern defects during the exposure step can be reduced, and devices with a high integration density can be manufactured efficiently. [Example]

以下,利用實施例及比較例對相位移遮罩底板、及相位移遮罩進行具體說明,但本發明並不限定於該等實施例及比較例。Hereinafter, the phase shift mask base plate and the phase shift mask will be described in detail using Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.

作為實施例1~5,製造了具有氮氣導入比率不同之5種ZrSiN相位移層20之相位移遮罩底板。又,作為比較例,製造了具有氮氣導入比率不同之2種MoSiN相位移層20之相位移遮罩底板。As Examples 1 to 5, phase shift mask substrates having five types of ZrSiN phase shift layers 20 with different nitrogen introduction ratios were manufactured. Furthermore, as a comparative example, a phase shift mask substrate having two types of MoSiN phase shift layers 20 with different nitrogen introduction ratios was manufactured.

[相位移遮罩底板100之製造] 作為基板10,準備有石英玻璃之圓形平行平板(尺寸:直徑3英吋、厚度0.5毫米)。使用DC磁控濺射裝置,使用ZrSi合金作為濺射靶材,一面以表2所示之導入比率導入Ar-N 2混合氣體一面進行反應性濺射,於基板10上成膜ZrSiN膜。其後,將使用與上述相同之ZrSi合金靶材之反應性濺射反覆進行5次,形成共含有6層之ZrSiN系相位移層20,製造相位移遮罩底板100(實施例1~5)。ZrSi合金靶材之組成(原子比)為Zr:Si=1:2。關於各成膜條件,混合氣體全壓0.32 Pa,混合氣體(濺射氣體)中之N 2導入比率如下:實施例1中為24%,實施例2中為26%,實施例3中為28%,實施例4中為30%,實施例5中為60%,實施例1~5之DC輸出均為1.5 kw。 [Production of Phase Shift Mask Base Plate 100] As the substrate 10, a circular parallel flat plate of quartz glass (size: 3 inches in diameter, 0.5 mm in thickness) was prepared. A DC magnetron sputtering device was used, a ZrSi alloy was used as a sputtering target, and Ar-N 2 mixed gas was introduced at the introduction ratio shown in Table 2 while performing reactive sputtering to form a ZrSiN film on the substrate 10 . Thereafter, reactive sputtering using the same ZrSi alloy target as described above was repeated five times to form a ZrSiN phase shift layer 20 containing a total of six layers, and the phase shift mask base plate 100 was manufactured (Examples 1 to 5). . The composition (atomic ratio) of ZrSi alloy target is Zr:Si=1:2. Regarding each film formation condition, the total pressure of the mixed gas is 0.32 Pa, and the N 2 introduction ratio in the mixed gas (sputtering gas) is as follows: 24% in Example 1, 26% in Example 2, and 28 in Example 3 %, 30% in Example 4, 60% in Example 5, and the DC outputs of Examples 1 to 5 are all 1.5 kw.

比較例:使用MoSi合金靶材(原子比:Mo:Si=1:4)作為濺射靶材,一面以表2所示之導入比率導入Ar-N 2混合氣體一面進行1次(單層)反應性濺射。混合氣體(濺射氣體)中之N 2導入比率如下:比較例1中為30%、比較例2中為36%,以此方式進行成膜。於以上條件下形成MoSiN系相位移層20,製造相位移遮罩底板。 Comparative example: Using a MoSi alloy target (atomic ratio: Mo:Si = 1:4) as a sputtering target, one pass of Ar-N 2 mixed gas was introduced at the introduction ratio shown in Table 2 (single layer) Reactive sputtering. The N 2 introduction ratio in the mixed gas (sputtering gas) was as follows: 30% in Comparative Example 1 and 36% in Comparative Example 2, and the film was formed in this way. Under the above conditions, the MoSiN phase shift layer 20 is formed, and a phase shift mask base plate is manufactured.

[相位移遮罩底板200之製造] 於各實施例及各比較例之相位移遮罩底板100之上使用DC磁控濺射裝置,使用Cr靶材作為濺射靶材,一面導入Ar-N 2混合氣體一面進行反應性濺射,繼而,一面導入Ar-O 2混合氣體一面進行反應性濺射。藉此,於相位移遮罩底板100之上形成由氮化鉻層31及氧化鉻層32構成之蝕刻遮罩層30,製造相位移遮罩底板200(圖2)。以蝕刻遮罩層30之厚度處於90±7nm(氮化鉻層31之厚度:氧化鉻層32之厚度=7:3)之範圍內之方式進行成膜。其次,於相位移遮罩底板200上,藉由旋轉塗佈而塗佈正型紫外線光阻劑(長瀨化成製造、GRX-M237),形成光阻層40(圖4(A))。光阻層40之厚度為660 nm。 [Manufacture of the phase shift mask base plate 200] A DC magnetron sputtering device was used on the phase shift mask base plate 100 of each embodiment and each comparative example, a Cr target was used as the sputtering target, and Ar-N was introduced on one side. 2 mixed gas while performing reactive sputtering, and then introducing Ar-O 2 mixed gas while performing reactive sputtering. Thereby, the etching mask layer 30 composed of the chromium nitride layer 31 and the chromium oxide layer 32 is formed on the phase shift mask base plate 100, and the phase shift mask base plate 200 is manufactured (FIG. 2). The film is formed so that the thickness of the etching mask layer 30 is within the range of 90±7nm (thickness of the chromium nitride layer 31:thickness of the chromium oxide layer 32=7:3). Next, a positive ultraviolet photoresist (GRX-M237 manufactured by Nagase Chemical Industry) is coated on the phase shift mask base plate 200 by spin coating to form the photoresist layer 40 ( FIG. 4(A) ). The thickness of the photoresist layer 40 is 660 nm.

[相位移層20之物性評價] 折射率及消光係數之測定、以及穿透率之模擬 關於各實施例及各比較例之相位移層20,係利用橢圓偏光(ellipsometry)法,對折射率及消光係數進行測定。將結果示於表1、及圖10、12中。又,關於各實施例及各比較例之相位移層20,根據折射率之測定結果,求出3種(365 nm、405 nm、436 nm)波長之各波長下發生180°相位移之膜厚,藉由模擬算出該膜厚下之相位移層20之穿透率。將結果示於表1及圖7、8中。模擬係使用模擬軟體「TFCalc」進行,根據由橢圓偏光法所獲得之對於i-光線(365 nm)之折射率及消光係數之測定結果,使用3種(365 nm、405 nm、436 nm)波長之各波長下發生180°相位移之膜厚,算出該膜厚下之相位移層20之穿透率。此處,穿透率係亦考慮到反射之外部穿透率。 [Evaluation of physical properties of phase shift layer 20] Determination of refractive index and extinction coefficient, and simulation of transmittance Regarding the phase shift layer 20 of each example and each comparative example, the refractive index and extinction coefficient were measured using the ellipsometry method. The results are shown in Table 1 and Figures 10 and 12. In addition, regarding the phase shift layer 20 of each example and each comparative example, based on the measurement results of the refractive index, the film thickness that causes a 180° phase shift at each of three wavelengths (365 nm, 405 nm, 436 nm) was calculated. , the transmittance of the phase shift layer 20 under this film thickness is calculated through simulation. The results are shown in Table 1 and Figures 7 and 8. The simulation was performed using the simulation software "TFCalc". Based on the measurement results of the refractive index and extinction coefficient of i-ray (365 nm) obtained by ellipsometry, three wavelengths (365 nm, 405 nm, 436 nm) were used. The film thickness at which 180° phase shift occurs at each wavelength is calculated, and the transmittance of the phase shift layer 20 at this film thickness is calculated. Here, the transmittance also takes into account the external transmittance of reflection.

[相位移遮罩300之製造] 於各實施例及各比較例之相位移層20中形成圖案50,製造圖3所示之相位移遮罩300。首先,使用DC磁控濺射裝置,使用Cr靶材作為濺射靶材,一面導入Ar-N 2混合氣體一面進行反應性濺射,繼而,一面導入Ar-O 2混合氣體一面進行反應性濺射。藉此,於相位移遮罩底板100之上形成由氮化鉻層31及氧化鉻層32構成之蝕刻遮罩層30,製造相位移遮罩底板200(圖2)。以蝕刻遮罩層30之厚度處於90±7 nm(氮化鉻層31之厚度:氧化鉻層32之厚度=7:3)之範圍內之方式進行成膜。其次,於相位移遮罩底板200上,藉由旋轉塗佈而塗佈正型紫外線光阻劑(長瀨化成製造、GRX-M237),形成光阻層40(圖4(A))。光阻層40之厚度為660 nm。 [Manufacture of phase shift mask 300] The pattern 50 was formed in the phase shift layer 20 of each embodiment and each comparative example, and the phase shift mask 300 shown in FIG. 3 was produced. First, a DC magnetron sputtering device was used, and a Cr target was used as the sputtering target. Reactive sputtering was performed while introducing Ar-N 2 mixed gas. Then, reactive sputtering was performed while introducing Ar-O 2 mixed gas. shoot. Thereby, the etching mask layer 30 composed of the chromium nitride layer 31 and the chromium oxide layer 32 is formed on the phase shift mask base plate 100, and the phase shift mask base plate 200 is manufactured (FIG. 2). The film is formed so that the thickness of the etching mask layer 30 is within the range of 90±7 nm (thickness of the chromium nitride layer 31:thickness of the chromium oxide layer 32=7:3). Next, a positive ultraviolet photoresist (GRX-M237 manufactured by Nagase Chemical Industry) is coated on the phase shift mask base plate 200 by spin coating to form the photoresist layer 40 ( FIG. 4(A) ). The thickness of the photoresist layer 40 is 660 nm.

使用利用高壓水銀燈之遮罩對準機(CANON製造、PLA-501),並使用形成有與圖案50對應之開口之遮光遮罩對光阻層40進行曝光。藉此,光阻層40之與圖案50對應之部分被曝光。其次,將曝光後之相位移遮罩底板200浸漬於有機鹼性系顯影液(多摩化學工業製造、1.83%氫氧化四甲銨)中。藉此,溶解、去除光阻層40之感光部,形成與圖案50對應之開口(圖4(B))。The photoresist layer 40 is exposed using a mask aligner using a high-pressure mercury lamp (PLA-501 manufactured by CANON) and using a light-shielding mask formed with openings corresponding to the pattern 50 . Thereby, the portion of the photoresist layer 40 corresponding to the pattern 50 is exposed. Next, the exposed phase shift mask plate 200 is immersed in an organic alkaline developer (1.83% tetramethylammonium hydroxide manufactured by Tama Chemical Industry). Thereby, the photosensitive portion of the photoresist layer 40 is dissolved and removed, and an opening corresponding to the pattern 50 is formed ( FIG. 4(B) ).

其次,將形成有與圖案50對應之開口之光阻層40作為遮罩,使用含有硝酸鈰銨及硝酸之蝕刻液(林純藥工業製造、PureEtchCR101)對蝕刻遮罩層30進行濕式蝕刻。蝕刻液溫度為23±3℃、蝕刻時間為80 sec.。藉此,去除蝕刻遮罩層30之未被光阻層40覆蓋之露出部分(圖4(C))。Next, the photoresist layer 40 formed with the opening corresponding to the pattern 50 is used as a mask, and the etching mask layer 30 is wet-etched using an etching solution containing cerium ammonium nitrate and nitric acid (PureEtchCR101 manufactured by Hayashi Junyaku Co., Ltd.). The etching solution temperature is 23±3°C and the etching time is 80 sec. Thereby, the exposed portion of the etching mask layer 30 that is not covered by the photoresist layer 40 is removed ( FIG. 4(C) ).

其次,將形成有與圖案50對應之開口之光阻層40及蝕刻遮罩層30作為遮罩,使用含有氟化銨之蝕刻液(ADEKA製造、ADEKA CHELUMICA WGM-155)對相位移層20進行濕式蝕刻。蝕刻液溫度為23±3℃,進行20%過蝕刻(over etching)以均勻無殘留地去除所露出之相位移層20。此處,20%過蝕刻係指,以可穿透相位移膜20為止之時間作為基準時間,以相對於基準時間為120%之時間進行蝕刻。藉此,於相位移層20中形成圖案50(圖4(D))。Next, using the photoresist layer 40 and the etching mask layer 30 formed with the openings corresponding to the pattern 50 as masks, the phase shift layer 20 is etched using an etching solution containing ammonium fluoride (ADEKA CHELUMICA WGM-155). Wet etching. The temperature of the etching solution is 23±3°C, and 20% over etching is performed to remove the exposed phase shift layer 20 evenly without leaving any residue. Here, 20% over-etching means that etching is performed at a time of 120% with respect to the reference time, using the time until the phase shift film 20 can be penetrated as the reference time. Thereby, the pattern 50 is formed in the phase shift layer 20 (FIG. 4(D)).

最後,進行光阻層40及蝕刻遮罩層30之剝離處理。藉由以上步驟,由相位移遮罩底板獲得圖4(E)所示之相位移遮罩300。Finally, the photoresist layer 40 and the etching mask layer 30 are peeled off. Through the above steps, the phase shift mask 300 shown in Figure 4(E) is obtained from the phase shift mask base plate.

[表1]    實施例1 實施例2 實施例3 實施例4 實施例5 比較例1 比較例2 相位移層 ZrSi ZrSi ZrSi ZrSi ZrSi MoSi MoSi 穿透率(波長365 nm) 5.24% 10.37% 16.37% 24.55% 35.65% 4.76% 10.35% 穿透率(波長405 nm) 8.00% 15.74% 24.55% 36.55% 48.79% 7.09% 14.19% 穿透率(波長436 nm) 10.48% 20.31% 31.71% 47.76% 62.46% 9.03% 17.23% 濺射氣體之氮氣導入比率:N 2/(Ar+N 2 24% 26% 28% 30% 60% 30% 36% 20%過蝕刻為止之時間(秒) 113 188 377 819 466 1388 3265 蝕刻速度(nm/秒) 0.86 0.52 0.26 0.12 0.23 0.08 0.04 相位180°下之膜厚(nm) 98.1 97.2 98.4 100.0 107.2 111.6 121.0 折射率:n 2.86021 2.87767 2.85378 2.82498 2.70217 2.63603 2.50809 消光係數:k 0.77098 0.56037 0.36058 0.23134 0.16707 0.76845 0.52258 傾斜角度(°) 60.1 66.2 69.0 67.2 60.4 66.0 61.4 [Table 1] Example 1 Example 2 Example 3 Example 4 Example 5 Comparative example 1 Comparative example 2 phase shift layer htK htK htK htK htK MoSi MoSi Transmittance (wavelength 365 nm) 5.24% 10.37% 16.37% 24.55% 35.65% 4.76% 10.35% Transmittance (wavelength 405 nm) 8.00% 15.74% 24.55% 36.55% 48.79% 7.09% 14.19% Transmittance (wavelength 436 nm) 10.48% 20.31% 31.71% 47.76% 62.46% 9.03% 17.23% Nitrogen introduction ratio of sputtering gas: N 2 / (Ar+N 2 ) twenty four% 26% 28% 30% 60% 30% 36% Time to 20% over etching (seconds) 113 188 377 819 466 1388 3265 Etching speed (nm/second) 0.86 0.52 0.26 0.12 0.23 0.08 0.04 Film thickness at 180° phase (nm) 98.1 97.2 98.4 100.0 107.2 111.6 121.0 Refractive index: n 2.86021 2.87767 2.85378 2.82498 2.70217 2.63603 2.50809 Extinction coefficient: k 0.77098 0.56037 0.36058 0.23134 0.16707 0.76845 0.52258 Tilt angle (°) 60.1 66.2 69.0 67.2 60.4 66.0 61.4

如表1、圖12所示,即便氮氣導入比率相同,實施例1~5中之ZrSi層之消光係數亦低於比較例1、2中之MoSi層之消光係數。存在消光係數之值愈大則穿透率愈小之關係。因此,如表1、圖7、圖8所示,若增加實施例1~5中之ZrSi相位移層、比較例1、2中之MoSi相位移層之氮氣導入比率,則全部之相位移層之穿透率(365 nm)變大。又,即便氮氣導入比率相同,實施例4中之ZrSi相位移層之穿透率(365 nm)亦大於比較例1中之MoSi相位移層。As shown in Table 1 and Figure 12, even if the nitrogen introduction ratio is the same, the extinction coefficients of the ZrSi layers in Examples 1 to 5 are lower than the extinction coefficients of the MoSi layers in Comparative Examples 1 and 2. There is a relationship that the larger the value of the extinction coefficient, the smaller the transmittance. Therefore, as shown in Table 1, Figure 7, and Figure 8, if the nitrogen introduction ratio of the ZrSi phase shift layers in Examples 1 to 5 and the MoSi phase shift layer in Comparative Examples 1 and 2 is increased, all phase shift layers The penetration rate (365 nm) becomes larger. In addition, even if the nitrogen introduction ratio is the same, the transmittance (365 nm) of the ZrSi phase shift layer in Example 4 is greater than that of the MoSi phase shift layer in Comparative Example 1.

如表1、圖9所示,實施例1~5中之ZrSi相位移層之蝕刻速度快於比較例1、2中之MoSi相位移層之蝕刻速度。又,由於實施例1~5中之ZrSi相位移層之折射率高於比較例1、2中之MoSi之相位移層之折射率,故而實施例1~5中之ZrSi相位移層於相位180°之膜厚會薄於比較例1、2中之MoSi相位移層之膜厚。As shown in Table 1 and Figure 9, the etching speed of the ZrSi phase shift layer in Examples 1 to 5 is faster than the etching speed of the MoSi phase shift layer in Comparative Examples 1 and 2. In addition, since the refractive index of the ZrSi phase shift layer in Examples 1 to 5 is higher than the refractive index of the MoSi phase shift layer in Comparative Examples 1 and 2, the ZrSi phase shift layer in Examples 1 to 5 is at phase 180 ° will be thinner than the film thickness of the MoSi phase shift layer in Comparative Examples 1 and 2.

於相位移遮罩300之製造過程中,觀察各實施例及各比較例中所形成之圖案50之剖面。剖面觀察係於去除蝕刻遮罩層30及光阻層40之前之狀態(圖4(D)所示之狀態)下進行。圖13中示出各實施例及各比較例之與基板表面10a正交之剖面之SEM圖像。根據圖13,針對各實施例及各比較例,對相位移層20之側面21之自基板表面10a之傾斜角度θ進行計測。將結果示於表1及圖13中。During the manufacturing process of the phase shift mask 300, the cross-sections of the patterns 50 formed in each embodiment and each comparative example were observed. The cross-sectional observation was performed in the state before removing the etching mask layer 30 and the photoresist layer 40 (the state shown in FIG. 4(D) ). 13 shows SEM images of cross-sections orthogonal to the substrate surface 10a of each embodiment and each comparative example. According to FIG. 13 , for each embodiment and each comparative example, the inclination angle θ of the side surface 21 of the phase shift layer 20 from the substrate surface 10 a was measured. The results are shown in Table 1 and Figure 13.

於表1、圖13之SEM圖像中可知,實施例1~5中之ZrSi層之傾斜角度大於比較例1、2中之MoSi層之傾斜角度。又,可知於比較例2中,由於蝕刻時間長,故基板10亦被蝕刻。又,如表1、圖11所示,即便氮氣導入比率相同,實施例4中之ZrSi層之傾斜角度亦大於比較例1中之MoSi層之傾斜角度。It can be seen from the SEM images in Table 1 and Figure 13 that the tilt angle of the ZrSi layer in Examples 1 to 5 is larger than the tilt angle of the MoSi layer in Comparative Examples 1 and 2. Furthermore, it can be seen that in Comparative Example 2, the substrate 10 was also etched due to the long etching time. Furthermore, as shown in Table 1 and Figure 11, even if the nitrogen introduction ratio is the same, the inclination angle of the ZrSi layer in Example 4 is larger than the inclination angle of the MoSi layer in Comparative Example 1.

又,於含有氟化銨之蝕刻液(ADEKA製造、ADEKA CHELUMICA WGM-155、蝕刻液之溫度23±3℃)之條件下進行20%過蝕刻後之本實施方式之相位移層20之傾斜角度較佳為55°以上90°以下。較佳之下限值為58°,更佳為60°,進而較佳為65°。In addition, the tilt angle of the phase shift layer 20 of this embodiment after 20% over-etching is performed under the conditions of an etching solution containing ammonium fluoride (ADEKA CHELUMICA WGM-155 manufactured by ADEKA, the temperature of the etching solution is 23±3°C) Preferably, it is above 55° and below 90°. A preferable lower limit is 58°, more preferably 60°, and still more preferably 65°.

於相位移遮罩300之製造過程中,觀察分別成膜為4層、6層、8層之ZrSiN相位移層20中所形成之圖案50之剖面。再者,ZrSiN膜之成膜時之氮氣導入比率與實施例3同樣,為28%。剖面觀察係於去除蝕刻遮罩層30及光阻層40之前之狀態(圖4(D)所示之狀態)下進行。圖14係針對具有(A)4層、(B)6層、(C)8層之相位移層20之相位移遮罩,示出與基板表面10a正交之剖面之SEM圖像、及基於SEM圖像描繪之sketch。又,圖14(B)於與實施例3相同之條件下成膜,但蝕刻時間長於實施例3之蝕刻時間。從圖14之(A)~(C)之相位移層20之側面21可確認相位移層20為積層。 [產業上之可利用性] During the manufacturing process of the phase shift mask 300, the cross-sections of the patterns 50 formed in the ZrSiN phase shift layer 20 formed into 4, 6, and 8 layers were observed. In addition, the nitrogen introduction ratio during film formation of the ZrSiN film was the same as in Example 3, which was 28%. The cross-sectional observation was performed in the state before removing the etching mask layer 30 and the photoresist layer 40 (the state shown in FIG. 4(D) ). FIG. 14 shows an SEM image of a cross-section orthogonal to the substrate surface 10 a and a phase shift mask based on the phase shift layer 20 having (A) 4 layers, (B) 6 layers, and (C) 8 layers. SEM image depiction sketch. In addition, in FIG. 14(B) , the film was formed under the same conditions as Example 3, but the etching time was longer than that of Example 3. It can be confirmed from the side surface 21 of the phase shift layer 20 in FIGS. 14(A) to 14(C) that the phase shift layer 20 is a built-up layer. [Industrial availability]

本實施方式之相位移遮罩底板相較於MoSi相位移遮罩底板,由於其蝕刻時間更短、折射率更高,故可實現相位移量180°時之膜厚之薄膜化,可藉由側蝕量之減少而提昇圖案精度。Compared with the MoSi phase shift mask substrate, the phase shift mask substrate of this embodiment has a shorter etching time and a higher refractive index, so it can achieve a thinner film thickness when the phase shift amount is 180°. This can be achieved by The amount of side etching is reduced and pattern accuracy is improved.

10:基板 20:相位移層 30:蝕刻遮罩層 31:氮化鉻層 32:氧化鉻層 40:光阻層 50:圖案 100,200:相位移遮罩底板 300:相位移遮罩 500:曝光裝置 LS:光源 502:照明光學系統 504:投影光學系統 503:遮罩台 505:基板台 600:成膜裝置 P:基板托盤 Q:實線箭頭 R:點線箭頭 601:搬入腔室 602:第1濺射腔室 603:緩衝腔室 604:第2濺射腔室 605:搬出腔室 606:第1靶材(ZrSi) 607:第2靶材(Cr) 608:第1氣體流入口 609:第2氣體流入口 10:Substrate 20: Phase shift layer 30: Etch mask layer 31:Chromium nitride layer 32:Chromium oxide layer 40: Photoresist layer 50: Pattern 100,200: Phase shift mask base plate 300: Phase shift mask 500: Exposure device LS: light source 502: Illumination optical system 504: Projection optical system 503: Masking table 505:Substrate table 600: Film forming device P:Substrate tray Q: solid arrow R: dotted arrow 601: Move into chamber 602: 1st sputtering chamber 603: Buffer chamber 604: 2nd sputtering chamber 605: Move out of chamber 606: The first target material (ZrSi) 607: 2nd target (Cr) 608: 1st gas inlet 609: Second gas inlet

[圖1]係表示實施方式之相位移遮罩底板之一例之概略剖視圖。 [圖2]係表示實施方式之相位移遮罩底板之另一例之概略剖視圖。 [圖3]係實施方式之相位移遮罩之概略剖視圖。 [圖4](A)~(E)係對實施方式之相位移遮罩之製造方法進行說明之圖。 [圖5]係實施方式之曝光方法中使用之曝光裝置之概略圖。 [圖6]係表示實施方式之相位移遮罩底板之製造裝置之一例之示意圖。 [圖7]係表示實施例中之ZrSi相位移遮罩底板之使波長300~600 nm之光發生180°相位移之膜厚下之穿透率的曲線圖。 [圖8]係表示比較例中之MoSi相位移遮罩底板之使波長300~600 nm之光發生180°相位移之膜厚下之穿透率的曲線圖。 [圖9]係表示實施例中之ZrSi相位移遮罩底板、及比較例中之MoSi相位移遮罩底板之濺射氣體導入率(Sputter gas ratio:N 2/(Ar+N 2))與蝕刻速度(Etching Rate)之關係的曲線圖。 [圖10]係表示實施例中之ZrSi相位移遮罩底板、及比較例中之MoSi相位移遮罩底板之濺射氣體導入率(Sputter gas ratio:N 2/(Ar+N 2))與折射率(Refractive index:n)之關係的曲線圖。 [圖11]係表示實施例中之ZrSi相位移遮罩底板、及比較例中之MoSi相位移遮罩底板之濺射氣體導入率(Sputter gas ratio:N 2/(Ar+N 2))與傾斜角度(Cross-Section Tilt Angle)之關係的曲線圖。 [圖12]係表示實施例中之ZrSi相位移遮罩底板、及比較例中之MoSi相位移遮罩底板之濺射氣體導入率(Sputter gas ratio:N 2/(Ar+N 2))與消光係數(Extinction coefficient:k)之關係的曲線圖。 [圖13]係實施例中之ZrSi相位移遮罩底板之SEM圖像、及比較例中之MoSi相位移遮罩底板之SEM圖像。 [圖14]係由(A)4層、(B)6層、(C)8層所構成之ZrSi相位移遮罩底板之SEM圖像、及基於SEM圖像描繪之sketch圖。 [Fig. 1] is a schematic cross-sectional view showing an example of a phase shift mask chassis according to the embodiment. [Fig. 2] is a schematic cross-sectional view showing another example of the phase shift mask chassis according to the embodiment. [Fig. 3] is a schematic cross-sectional view of the phase shift mask according to the embodiment. [Fig. 4] (A) to (E) are diagrams illustrating the manufacturing method of the phase shift mask according to the embodiment. [Fig. 5] is a schematic diagram of an exposure device used in the exposure method of the embodiment. FIG. 6 is a schematic diagram showing an example of a manufacturing apparatus of a phase shift mask substrate according to the embodiment. [Fig. 7] is a graph showing the transmittance of the ZrSi phase shift mask base plate in the Example at a film thickness that causes a 180° phase shift of light with a wavelength of 300 to 600 nm. [Fig. 8] is a graph showing the transmittance of the MoSi phase shift mask base plate in the comparative example at a film thickness that causes a 180° phase shift of light with a wavelength of 300 to 600 nm. [Figure 9] shows the sputter gas introduction rate (Sputter gas ratio: N 2 / (Ar + N 2 )) and etching rate of the ZrSi phase shift mask substrate in the example and the MoSi phase shift mask substrate in the comparative example. (Etching Rate) relationship curve graph. [Figure 10] shows the sputter gas introduction rate (Sputter gas ratio: N 2 / (Ar + N 2 )) and the refractive index of the ZrSi phase shift mask base plate in the example and the MoSi phase shift mask base plate in the comparative example. (Refractive index: n). [Figure 11] shows the sputter gas introduction rate (Sputter gas ratio: N 2 / (Ar + N 2 )) and the tilt angle of the ZrSi phase shift mask base plate in the example and the MoSi phase shift mask base plate in the comparative example. (Cross-Section Tilt Angle) relationship graph. [Figure 12] shows the sputter gas introduction rate (Sputter gas ratio: N 2 / (Ar + N 2 )) and extinction coefficient of the ZrSi phase shift mask base plate in the example and the MoSi phase shift mask base plate in the comparative example. (Extinction coefficient: k) relationship curve graph. [Fig. 13] It is an SEM image of the ZrSi phase shift mask substrate in the Example and the SEM image of the MoSi phase shift mask substrate in the Comparative Example. [Figure 14] It is an SEM image of a ZrSi phase shift mask substrate composed of (A) 4 layers, (B) 6 layers, and (C) 8 layers, and a sketch based on the SEM image.

Claims (10)

一種相位移遮罩底板,其具有: 基板;及 第1層,其成膜於上述基板上; 上述第1層含有鋯(Zr)、矽(Si)及氮(N),且 上述第1層之使波長365 nm之光發生180°相位移之膜厚下之穿透率為4%以上40%以下。 A phase shift mask base plate having: substrate; and The first layer is formed on the above-mentioned substrate; The above-mentioned first layer contains zirconium (Zr), silicon (Si) and nitrogen (N), and The above-mentioned first layer has a transmittance of 4% to 40% at a film thickness that causes a 180° phase shift of light with a wavelength of 365 nm. 一種相位移遮罩底板,其具有: 基板;及 第1層,其成膜於上述基板上; 上述第1層係具有4層以上之含有鋯(Zr)及矽(Si)之金屬矽化物之氮化物之積層,且 上述第1層之使波長365 nm之光發生180°相位移之膜厚下之穿透率為4%以上40%以下。 A phase shift mask base plate having: substrate; and The first layer is formed on the above-mentioned substrate; The above-mentioned first layer is a laminate of four or more layers of metal silicide nitride containing zirconium (Zr) and silicon (Si), and The above-mentioned first layer has a transmittance of 4% to 40% at a film thickness that causes a 180° phase shift of light with a wavelength of 365 nm. 一種相位移遮罩底板,其具有: 基板;及 第1層,其成膜於上述基板上; 上述第1層係具有4層以上之含有鋯(Zr)及矽(Si)之金屬矽化物之氮化物之積層,且 上述第1層之傾斜角度為55°以上90°以下。 A phase shift mask base plate having: substrate; and The first layer is formed on the above-mentioned substrate; The above-mentioned first layer is a laminate of four or more layers of metal silicide nitride containing zirconium (Zr) and silicon (Si), and The inclination angle of the above-mentioned first layer is not less than 55° and not more than 90°. 如請求項1至3中任一項之相位移遮罩底板,其中,上述第1層之使波長365 nm之光發生180°相位移之膜厚下之穿透率為4%以上40%以下。The phase shift mask substrate according to any one of claims 1 to 3, wherein the transmittance of the first layer at a film thickness that causes a 180° phase shift of light with a wavelength of 365 nm is 4% or more and 40% or less. . 如請求項1至4中任一項之相位移遮罩底板,其中,上述傾斜角度係蝕刻液為ADEKA CHELUMICA WGM-155且於上述蝕刻液之溫度23±3℃之條件下對上述第1層進行20%過蝕刻時之角度。The phase shift mask substrate according to any one of claims 1 to 4, wherein the above-mentioned tilt angle is that the etching liquid is ADEKA CHELUMICA WGM-155 and the first layer is treated under the condition that the temperature of the etching liquid is 23±3°C. Angle when performing 20% over-etching. 如請求項1或2之相位移遮罩底板,其中,上述第1層之使波長365 nm之光發生180°相位移之膜厚係由下述式(1)算出之膜厚: d=365/(2(n-1)) (d:膜厚,n:折射率)。 For example, the phase shift mask substrate of claim 1 or 2, wherein the film thickness of the above-mentioned first layer that causes a 180° phase shift of light with a wavelength of 365 nm is the film thickness calculated from the following formula (1): d=365/(2(n-1)) (d: film thickness, n: refractive index). 一種相位移遮罩,其於請求項1至6中任一項之相位移遮罩底板中形成有所需圖案。A phase shift mask, which has a required pattern formed in the phase shift mask base plate of any one of claims 1 to 6. 一種相位移遮罩底板之製造方法, 其具有於基板上成膜第1層之成膜步驟, 於上述成膜步驟中,於上述基板上進行4次以上含有鋯及矽之金屬矽化物之氮化物層之成膜,形成第1層。 A method of manufacturing a phase shift mask base plate, It has a film forming step of forming a first layer on a substrate, In the above film forming step, a nitride layer of a metal silicide containing zirconium and silicon is formed on the above substrate four or more times to form the first layer. 如請求項8之相位移遮罩底板之製造方法,其於上述成膜步驟中,於上述基板上進行6次以上上述金屬矽化物之氮化物層之成膜。As claimed in claim 8, the method for manufacturing a phase shift mask substrate is characterized in that, in the film forming step, the nitride layer of the metal silicon compound is formed on the substrate more than six times. 一種相位移遮罩之製造方法,其係請求項8或9之相位移遮罩底板之製造方法進而具有形成所需圖案之圖案形成步驟者。A method for manufacturing a phase shift mask, which is the method for manufacturing a phase shift mask substrate according to claim 8 or 9 and further includes a pattern forming step for forming a desired pattern.
TW112108496A 2022-04-15 2023-03-08 Phase shift mask blank, phase shift mask, and methods for manufacturing same TW202347011A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-067715 2022-04-15
JP2022067715 2022-04-15

Publications (1)

Publication Number Publication Date
TW202347011A true TW202347011A (en) 2023-12-01

Family

ID=88329397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112108496A TW202347011A (en) 2022-04-15 2023-03-08 Phase shift mask blank, phase shift mask, and methods for manufacturing same

Country Status (2)

Country Link
TW (1) TW202347011A (en)
WO (1) WO2023199668A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359254A (en) * 1991-06-05 1992-12-11 Toppan Printing Co Ltd Photomask blank and phase shift mask
JP6396118B2 (en) * 2014-08-20 2018-09-26 Hoya株式会社 Phase shift mask blank, method for manufacturing the same, and method for manufacturing the phase shift mask
JP7204496B2 (en) * 2018-03-28 2023-01-16 Hoya株式会社 Phase shift mask blank, phase shift mask manufacturing method, and display device manufacturing method
JP2021149092A (en) * 2020-03-17 2021-09-27 Hoya株式会社 Photomask blank, photomask production method, and display device production method
JP2022023453A (en) * 2020-07-27 2022-02-08 Hoya株式会社 Photomask blank, photomask producing method and display device producing method

Also Published As

Publication number Publication date
WO2023199668A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
KR102297223B1 (en) Phase shift mask blank and manufacturing method therefor, phase shift mask and manufacturing method therefor, and display device manufacturing method
US7901842B2 (en) Photomask blank and method of producing the same, method of producing photomask, and method of producing semiconductor device
TWI676078B (en) Photomask blank, method of manufacturing photomask using same, and method of manufacturing display device
JP6396118B2 (en) Phase shift mask blank, method for manufacturing the same, and method for manufacturing the phase shift mask
TWI711876B (en) Photomask blank, method of manufacturing photomask blank, method of manufacturing photomask using them, and method of manufacturing display device
KR101071471B1 (en) Photomask blank and photomask, and their manufacturing method
JP3956103B2 (en) Photomask blank, photomask and photomask blank evaluation method
TWI828864B (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
TW202141168A (en) Photomask blank, method for manufacturing photomask blank, method for manufacturing photomask, and method for manufacturing display device
TW202347011A (en) Phase shift mask blank, phase shift mask, and methods for manufacturing same
CN110456608B (en) Phase shift blank mask and photomask
TWI774840B (en) Mask blank and its manufacturing method, mask and its manufacturing method, exposure method, and device manufacturing method
JP7151774B2 (en) Phase shift mask blanks, phase shift mask, exposure method, device manufacturing method, phase shift mask blank manufacturing method, phase shift mask manufacturing method, exposure method, and device manufacturing method
JP7371198B2 (en) Photomask blank, photomask manufacturing method, and display device manufacturing method
WO2022230694A1 (en) Phase shift mask blank, phase shift mask, light exposure method, and device manufacturing method
JP2022083394A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
TW202235996A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
TW202344919A (en) Mask blank, transfer mask, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing display device
TW202141169A (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
KR20170073232A (en) Multi-tone Photomask