TW202346976A - 眼鏡用鏡片 - Google Patents

眼鏡用鏡片 Download PDF

Info

Publication number
TW202346976A
TW202346976A TW112102988A TW112102988A TW202346976A TW 202346976 A TW202346976 A TW 202346976A TW 112102988 A TW112102988 A TW 112102988A TW 112102988 A TW112102988 A TW 112102988A TW 202346976 A TW202346976 A TW 202346976A
Authority
TW
Taiwan
Prior art keywords
base material
transmittance
resin
region
coating layer
Prior art date
Application number
TW112102988A
Other languages
English (en)
Other versions
TWI836881B (zh
Inventor
二見賢吾
金田大輔
今田隆一
Original Assignee
日商睛姿控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商睛姿控股公司 filed Critical 日商睛姿控股公司
Publication of TW202346976A publication Critical patent/TW202346976A/zh
Application granted granted Critical
Publication of TWI836881B publication Critical patent/TWI836881B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明之眼鏡用鏡片具備:基材層;及塗膜層,其塗佈於基材層之至少一面;且於360 nm以上未達380 nm之波長區域中,基材層及塗膜層之總平均透過率為60%以上。

Description

眼鏡用鏡片
本發明關於一種眼鏡用鏡片。
於既有之眼鏡用鏡片中,使用阻斷紫外線之材料(例如參照專利文獻1),幾乎均為不透過紫外線之鏡片(例如參照專利文獻2)。另一方面,尤其是對於兒童而言,太陽光係對身心發育賦予良好影響者,亦有指出於未充分沐浴太陽光之情形時,兒童之近視進展之風險提高(例如參照非專利文獻1)。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利特開2009-209120號公報 專利文獻2:國際公開第2019/188447號 [非專利文獻]
非專利文獻1:日本眼科學會,其他5個學會,“對兒童佩戴防藍光眼鏡之慎重意見”令和3年4月14日,[令和4年1月27日檢索],網址<https://www.gankaikai.or.jp/info/20210414_bluelight.pdf>
[發明所欲解決之問題]
此處,對於佩戴眼鏡之使用者而言,為了使包含紫外線之自然光到達眼睛,必須取下眼鏡,無法獲得眼鏡之視力矯正之效果。
為了解決上述問題,可考慮使用能透過紫外線之化合物形成眼鏡用鏡片之基材,但為了滿足作為眼鏡用鏡片之耐性要件等,通常將塗膜塗佈於基材。於此種一般性構成之眼鏡鏡片中,為了使自然光儘可能到達眼睛,考慮基材與塗膜之總特性,新要求使迄今被阻斷之紫外線透過。
因此,本發明之目的在於提供一種儘可能使例如紫外線透過,實現更接近於裸眼沐浴自然光時之狀態之眼鏡用鏡片。 [解決問題之技術手段]
本發明之一態樣之眼鏡用鏡片具備:基材層;與塗膜層,其塗佈於上述基材層之至少一面;且於360 nm以上未達380 nm之波長區域中,上述基材層及上述塗膜層之總平均透過率為60%以上。 [發明之效果]
根據本發明,可提供一種儘可能使紫外線透過之眼鏡用鏡片。
以下,參照圖式詳細地說明本發明之實施形態。但,於以下說明之實施形態僅為例示,並未意欲排除未於以下明示之各種變化或技術之應用。即,本發明可於未脫離其主旨之範圍內進行各種變化而實施。又,於以下圖式之記載中,對同一或類似部分附註同一或類似之符號並表示。圖式為模式性者,未必與實際尺寸或比例等一致。圖式彼此間亦包含有彼此尺寸之關係或比例不同之部分。
[第1實施形態] <既有之眼鏡用鏡片> 圖1係顯示先前技術之各眼鏡用鏡片(統稱先前技術之眼鏡用鏡片並表現為「既有鏡片」)之光線透過率之圖。於圖1所示之例中,使用以下之4個鏡片測量光線透過率。 鏡片A:PPG公司(PPG Industries, Inc.)製之將CR-39(註冊商標)(烯丙基二甘醇碳酸酯)設為基材之鏡片(折射率1.50) 鏡片B:硫代胺基甲酸酯系鏡片(折射率1.60) 鏡片C:硫代胺基甲酸酯系鏡片(折射率1.67) 鏡片D:硫代胺基甲酸酯系鏡片(折射率1.74)
鏡片A~D均於基材之兩面形成有硬塗層及抗反射塗層。又,如圖1所示,鏡片A~D均針對短於380 nm之波長予以阻斷。藉此,可知鏡片A~D均為對應於基材包含紫外線吸收劑、於硬塗層包含紫外線吸收劑、及於抗反射塗層包含紫外線吸收劑中至少1者之鏡片。
因此,並不限定於視力矯正用,於多數既有之鏡片中,因鏡片製造商或材料之不同,鏡片之吸收波長稍有不同,但任一鏡片均阻斷短於380 nm之波長。
因此,發明人等鑑於近年明確之紫外線對眼睛之效果等,提出以眼鏡用之鏡片透過紫外線之想法。然而,如圖1所記載,於既有之眼鏡用鏡片中,幾乎均為阻斷紫外線者,不存在發明人等所需之鏡片。
<本申請案發明之眼鏡用鏡片之基材> 首先,就本申請案發明之第1實施形態之眼鏡用鏡片之基材進行說明。第1實施形態之眼鏡用鏡片,不使用以吸收紫外線之材料為主材料之基材。例如,因作為吸收紫外線之材料,已知有芳香族化合物或具有共軛構造之脂肪族化合物等,故以該等化合物為主材料之基材於第1實施形態中不使用為眼鏡用鏡片。
於第1實施形態之眼鏡用鏡片中,例如具備將吸收特定%以上之紫外線之化合物以外之第1化合物設為主材料之基材層。吸收特定%以上之紫外線之材料,包含上述芳香族化合物作為一例。又,基材層可於不妨礙第1實施形態之目的等之範圍內包含芳香族化合物。
藉此,因使用吸收特定%以上之紫外線之化合物以外之第1化合物構成基材層,故至少可防止因眼鏡用鏡片之基材層而較大妨礙紫外線之透過。因此,紫外線透過眼鏡用鏡片,接近包含紫外線之自然光之光到達眼睛。
另,於第1實施形態中,紫外線例如為落於280~400 nm之波長區域之波長。其中,320~400 nm稱為UVA(第1波長區域),280~320 nm稱為UVB(第2波長區域)。UVA與UVB之邊界可設為315 nm,UVA之上限可設為380 nm。於第1實施形態之眼鏡用鏡片中,以不阻斷280~400 nm之波長,而使其透過之方式構成鏡片。
作為用於形成基材層之第1化合物,例如為芳香族化合物以外之化合物,包含脂肪族聚碳酸酯、脂肪族烯烴聚合物、脂肪族丙烯酸樹脂、及脂肪族尼龍樹脂之至少1者。
由脂族聚碳酸酯形成之基材,例如包含市售之PPG公司製之CR-39(註冊商標)、及三菱化學公司製之DURABIO(註冊商標)等之至少1者。CR-39(註冊商標)因係無芳香環之直鏈脂肪族聚碳酸酯,故紫外線之吸收功能較小。又,DURABIO(註冊商標)係使用生物材料即異山梨酯之部分生物材料之聚碳酸酯。該化合物係與異山梨酯共聚之二醇亦為脂環性,因不具有芳香環,故認為紫外線之吸收功能較小。
脂肪族烯烴聚合物包含例如環烯烴聚合物(脂環式烯烴聚合物)及不具有環狀構造之脂肪族烯烴聚合物等之至少1者。使用環烯烴聚合物形成之基材,例如包含市售之三井化學公司製之APEL(註冊商標)(折射率1.544、阿貝數56)、日本瑞翁公司製之ZEONEX(註冊商標)(折射率1.509~1.535)、JSR公司製之ARTON(註冊商標)(折射率1.513~1.516、阿貝數56或57)之任一者。
由不具有環狀構造之脂肪族烯烴聚合物形成之基材,例如包含市售之三井化學公司製之TPX(註冊商標)(化合物名為聚甲基萜烯)(折射率1.46)。
由脂肪族丙烯酸樹脂形成之基材,作為一例,可採用日本特殊光學樹脂公司製之「紫外線透過PMMA鏡片」(折射率約1.49,阿貝數55)等。PMMA(polymethyl methacrylate)係聚甲基丙烯酸甲酯之簡稱。紫外線透過PMMA係紫外線能透過之丙烯酸樹脂。
此處,使用圖2~圖4,就基材A~C之光線透過率進行說明。首先,如上所述,於第1實施形態之眼鏡用鏡片中,儘可能使280~400 nm之波長區域之光線透過。
圖2係顯示第1實施形態之基材A之光線透過率之一例之圖。基材A由使用環烯烴聚合物之樹脂形成,折射率為1.544。基材A於300~400 nm之波長區域中,與圖1所示之既有眼鏡鏡片相比,能使紫外線區域之波長透過。於圖2所示之例中,基材A於300 nm波長附近具有約15%之透過率。又,於第1波長區域(320~400 nm)中,平均具有約60%之透過率。
圖3係顯示第1實施形態之基材B之光線透過率之一例之圖。基材B由使用環烯烴聚合物之樹脂形成,折射率為1.51。基材B於280~400 nm之波長區域中,與圖1所示之既有眼鏡鏡片相比,能使紫外線區域之波長透過。於圖3所示之例中,基材B之透過率自280 nm波長附近起突然上升,於第2波長區域(280~320 nm)中,平均具有約35%之透過率。又,於第1波長區域(320~400 nm)中,平均具有約85%之透過率。
圖4係顯示第1實施形態之基材C之光線透過率之一例之圖。基材C由使用紫外線能透過之PMMA之樹脂形成,折射率為1.49,阿貝數為55。基材C於280~400 nm之波長區域中,與圖1所示之既有眼鏡鏡片相比,能使紫外線區域之波長透過。於圖4所示之例中,基材C於第2波長區域(280~320 nm)中,平均具有約55%之透過率。又,於第1波長區域(320~400 nm)中,平均具有約90%之透過率。
於圖2至圖4所示之例中,因基材C可較佳地使紫外線區域280~400 nm之波長透過,故基材C可適當應用為眼鏡用鏡片之基材層。另,即使為基材A及B,因較既有眼鏡用鏡片之基材層更使紫外線區域之波長透過,故亦可應用為眼鏡用鏡片之基材。
<塗佈> 眼鏡用鏡片可於基材層之至少一面形成硬塗膜層(亦可表述為「硬塗層」、「硬塗膜」或「硬塗佈層」)。第1實施形態中之眼鏡用鏡片亦可具備硬塗膜層,該硬塗膜層係塗佈於基材層之至少一面之由不含紫外線吸收劑之材料形成。硬塗膜層例如宜藉由於基材層之表面均勻施加硬塗層液而形成,使用不含芳香族化合物之樹脂。
例如,眼鏡用鏡片中作為硬塗膜層,較佳亦可使用包含無機氧化物微粒子之有機矽氧烷系樹脂。有機矽氧烷系樹脂較佳為藉由使烷氧基矽烷加水分解縮合而獲得者。又,作為有機矽氧烷系樹脂之具體例,包含γ-縮水甘油氧基丙基三甲氧基矽烷、γ-縮水甘油氧基丙基三乙氧基矽烷、甲基三甲氧基矽烷、矽酸乙酯、或該等之組合。烷氧基矽烷之水解縮合物係藉由以鹽酸等之酸性水溶液將該烷氧基矽烷化合物或該等之組合水解而製造。
又,無機氧化物微粒子之材質,例如包含氧化鋅、二氧化矽(二氧化矽微粒子)、氧化鋁、氧化鈦(氧化鈦微粒子)、氧化鋯(氧化鋯微粒子)、氧化錫、氧化鈹、氧化銻、氧化鎢、氧化鈰之各溶膠單獨或將任意2種以上混晶化而成者。
無機氧化物微粒子之直徑,基於確保硬塗膜層之透明性之觀點而言,較佳為1 nm以上100 nm以下,更佳為1 nm以上50 nm以下。又,無機氧化物微粒子之調配量(濃度),基於確保硬塗膜層之硬度或強韌性之恰當程度之觀點而言,較佳為佔硬塗膜層之全部成分中之40重量%(重量百分比)以上60重量%以下。
又,硬塗層液係附加作為硬化觸媒之乙醯丙酮金屬鹽及乙二胺四乙酸金屬鹽之至少一者等,進而根據確保對基材之密著性或形成之容易化、所需之(半)透明色之賦予等需求,而添加界面活性劑、著色劑、溶劑等。
無機氧化物微粒子中之無機氧化物(金屬氧化物)係選擇於可見光區域儘可能不進行吸收者。其係基於確保遍及可見光區域全域之高透過率、確保裸眼時視認色與鏡片佩戴時視認色之差極少之狀態之觀點而言。於該觀點中,無機氧化物較佳為除Ti(鈦)、Ce(鈰)以外之1種以上之金屬之氧化物。因Ti(鈦)之氧化物及Ce(鈰)之氧化物於可見光區域(尤其是短波長側)會進行吸收,故該等自較佳之金屬氧化物排除。
作為較佳之金屬氧化物之例,可舉出Sb(銻)、Sn(錫)、Si(矽)、Al(鋁)、Ta(鉭)、La(鑭)、Fe(鐵)、Zn(鋅)、W(鎢)、Zr(鋯)、In(銦)之氧化物中之任一者、或該等之組合。
硬塗膜層之物理膜厚較佳為0.5 μm(微米)以上4.0 μm以下。關於該膜厚範圍之下限,若較其薄,則難以獲得充分之硬度。另一方面,關於上限,若較其厚,則龜裂或脆性之產生等之與物性相關之問題產生之可能性急遽提高,或基於因無機氧化物微粒子對向可見光區域之吸收(透過率減少)之影響提高而決定。另,於硬塗膜層使用之硬塗層劑,除該等熱硬化系塗層劑外,亦可使用周知之光硬化系塗層劑。
又,第1實施形態中之眼鏡用鏡片可具備抗反射膜層(亦可表述為「抗反射膜」或「抗反射層」),該抗反射膜層係塗佈於基材層之至少一面之由不含紫外線吸收劑之材料形成。抗反射膜層亦可對於基材層形成,但較佳亦可形成於硬塗膜層上。又,抗反射膜層由光學多層膜形成,宜使用不含芳香族化合物之成分。
光學多層膜,基於確保抗反射功能之觀點,較佳以遍及紫外線區域與可見光之全域具有平坦且高透過率分佈之方式形成。
光學多層膜可交替積層低折射率層與高折射率層而形成,或較佳為全體具有奇數層(全部5層、全部7層等)之構造。進而更佳為若將最靠基材側之層(最接近基材之層)設為第1層,則第奇數層為低折射率層,第偶數層為高折射率層。低折射率層或高折射率層係藉由真空蒸鍍法或離子輔助蒸鍍法、離子鍍層法、濺鍍法等形成。
另,根據本申請案發明人之實驗,有數據顯示藉由於基材層或硬塗膜層上形成抗反射膜層,可見光之透過率提高約5%。因此,藉由設置抗反射膜層,即使於紫外線之波長區域中亦可實現透過率之提高。
<眼鏡用鏡片> 第1實施形態之眼鏡用鏡片具備上述之基材層及塗膜層。例如,關於基材,使用圖2~4所記載之化合物形成為眼鏡用鏡片之基材層,於該基材層之至少一面形成作為上述塗膜層之硬塗膜層及/或抗反射膜層。又,於第1實施形態之眼鏡用鏡片中,可使紫外線區域透過,於紫外線區域中,將基材及塗膜兩者之平均透過率設為至少為10%以上。藉此,於既有眼鏡用鏡片中,如圖1所示,雖於紫外線區域中平均透過率未達10%,但依據第1實施形態之眼鏡用鏡片,藉由基材層及塗膜層之總透過率特性,可使紫外線區域之平均透過率為10%以上,可較既有眼鏡用鏡片更使紫外線透過,可使更自然光到達眼睛。又,第1實施形態之眼鏡用鏡片亦可應用於帶度數之眼鏡用鏡片,使用者可一邊矯正視力,一邊使接近自然光之光到達眼睛。
又,第1實施形態之眼鏡用鏡片較佳為,於280 nm以上未達320 nm之UVB(第2波長區域)中,基材層及塗膜層之總平均透過率(或透過率)為5%以上,於320 nm以上400 nm以下之UVA(第1波長區域)中,基材層及塗膜層之總平均透過率(或透過率)可為15%以上。尤其是,因藉由使包含380 nm~495 nm之藍光之一部分及其周邊之波長區域之第1波長區域較更短波長之第2波長區域更能透過,與具備紫外線阻斷功能之既有眼鏡鏡片相比,更自然之太陽光到達眼睛,故可期待對兒童之身心發育之良好影響或近視進行風險之減輕等。又,使第1波長區域之紫外線更透過對第1實施形態之眼鏡用鏡片之任一者均可謂如此。
又,第1實施形態之眼鏡用鏡片更佳為,於280 nm以上且未達320 nm之UVB(第2波長區域)中,基材層及塗膜層之總平均透過率(或透過率)為10%以上,於320 nm以上400 nm以下之UVA(第1波長區域)中,基材層及塗膜層之總平均透過率(或透過率)可為55%以上。此處,即使僅為圖2~3所示之化合物之基材,第2波長區域之平均透過率亦約為15%~35%,第1波長區域之平均透過率亦約為60~85%。因此,即使於圖2~3所示之基材形成特定塗膜層,至少亦可確保第2波長區域之平均透過率(或透過率)約為10%以上,第1波長區域之平均透過率(或透過率)約為55%以上。
又,第1實施形態之眼鏡用鏡片進而更佳為,於280 nm以上且未達320 nm之UVB(第2波長區域)中,基材層及塗膜層之總平均透過率(或透過率)為50%以上,於320 nm以上400 nm以下之UVA(第1波長區域)中,基材層及塗膜層之總平均透過率(或透過率)可為85%以上。此處,即使僅為由圖4所示之化合物所得之基材,第2波長區域之平均透過率亦約為55%,第1波長區域之平均透過率亦約為90%。因此,即使將由圖4所示之化合物所得之基材設為基材層、並形成特定塗膜層,至少亦可確保第2波長區域之平均透過率(或透過率)約為50%以上,第1波長區域之平均透過率(或透過率)約為85%以上。
另,於紫外線區域中,亦可對平均透過率設置上限而構成眼鏡用鏡片。例如,第1實施形態之眼鏡用鏡片於280 nm~400 nm之紫外線區域中,可將基材層及塗膜層之總平均透過率之上限設為65%。
又,透過率之上限亦可分別對第1波長區域、第2波長區域設定。例如,第1波長區域之基材層及塗膜層之總透過率之上限可設為80%,第2波長區域之基材層及塗膜層之總透過率之上限可設為50%。為了對紫外線區域之透過率設定上限,可於基材或塗膜之主材料混合特定量之紫外線吸收劑。藉此,第1實施形態之眼鏡用鏡片可考慮紫外線照射至眼睛之優點及缺點,使恰當波長區域或恰當量之紫外線透過。
此外,第1實形態中之基材層之折射率較佳為高於短波長區域之玻璃之折射率。又,對第1實施形態中之眼鏡用鏡片,為了確保對於紫外線劣化、磨耗等之鏡片耐性之一般性要求性能,而實施各種處理。於該情形時,較佳為不進行使用如會吸收紫外線之材料之處理。
[第2實施形態] 接著,於第2實施形態中,與第1實施形態同樣,針對儘可能使紫外線透過之眼鏡用鏡片進行說明。此處,發明人等對成為本揭示技術之眼鏡用鏡片之成為基材層之候補之各種樹脂,調查了紫外線區域及可見光區域之透過率。
圖5係顯示第2實施形態之基材候補之光線透過率之一例之圖。圖5所示之基材候補之樹脂如下。 樹脂1:ACRYPET(註冊商標)VH000 樹脂2:ACRYPET(註冊商標)L000 樹脂3:ZEONEX(註冊商標)K22R 樹脂4:ZEONEX(註冊商標)K26R 樹脂5:TPX(註冊商標)RT18 樹脂6:ARTON(註冊商標)F3500 樹脂7:APEL(註冊商標)5014XH 樹脂8:CR-39(註冊商標) 樹脂9:MR-8(註冊商標) 樹脂10:MR-10(註冊商標) 樹脂1~6、8~10均為2 mm厚之試驗片,僅樹脂7為3 mm厚之試驗片。
圖5所示之各樹脂與圖1所示之既有眼鏡用鏡片相比,於更低之波長區域之透過率急遽上升。例如,既有眼鏡用鏡片自380 nm附近起透過率突然上升,而圖5所示之各樹脂於330 nm以下之波長區域之透過率急遽上升。
藉此,可知圖5所示之各樹脂能使紫外線區域(280~400 nm或280~380 nm)之波長透過。尤其是,基於透過率曲線之傾向,為了儘可能使紫外線透過,重要的是與既有鏡片相比,於360~380 nm之波長區域之透過率較高。例如,於所有樹脂1~10中,僅樹脂於360~380 nm之平均透過率超過80%,透過率本身於該區域亦超過80%。又,於本揭示技術較佳之樹脂1~4中,360~380 nm之平均透過率超過90%。
要求該360~380 nm之波長區域之透過率較高之理由在於,若於該區域之透過率為高水準(例如閾值為60%、80%以上等),則即使於360 nm以下之波長區域假設透過率有下降之傾向,亦因自360~380 nm之波長區域之高透過率開始下降,故於280~360 nm之波長區域中平均可將透過率維持於恆定水準。例如,即使於最長波長(360 nm附近)中透過率減少之樹脂6,於280~360 nm之波長區域中,平均亦具有25~30%之透過率。
於圖5所示之例中,樹脂1於280 nm中具有60%以上之透過率,可使紫外線區域之光線充分透過。又,UVA區域(315~400 nm)中之各樹脂之平均透過率如下。 樹脂1:90.7%、樹脂2:91.2%、樹脂3:83.5%、樹脂4:87.4%、樹脂5:83.4%、樹脂6:64.7%、樹脂7:68.7%、樹脂8:85.2%、樹脂9:82.7%、樹脂10:76.3% 按照以上,於UVA區域中,樹脂1~5及8~10具有75%以上之平均透過率,於本揭示技術較佳之樹脂1~2、4及8具有85%以上之平均透過率,尤其是對於本揭示技術更佳之樹脂1~2具有90%以上之平均透過率。
圖6係顯示於圖5所示之樹脂1~10之兩面,塗佈防止紫外線及可見光之反射之紫外可見光AR(Anti Reflection)塗膜層之情形時之光線透過率之一例之圖。將圖6所示之光線透過率與圖5所示之光線透過率進行比較,首先,於紫外線區域(380 nm以下)中,形成有紫外可見光AR塗膜層之各樹脂之透過率提高。例如關於樹脂4,於315 nm附近僅樹脂之透過率為約75%,而相對於此,有紫外可見光AR塗膜層之樹脂之透過率為約80%,透過率提高約5%。
又,即使於可見光區域(下限為380~400 nm、上限為760~780 nm)中,有紫外可見光AR塗膜層之各樹脂之平均透過率亦超過約95%,但僅有樹脂之情形時之平均透過率為約85~約90%。藉此,藉由於基材形成紫外可見光AR塗膜層,可使可見光區域更能透過、且亦可使紫外線區域更能透過。
圖7係顯示比較對第2實施形態之樹脂1、3及6施加各塗膜層之情形時之平均透過率之圖。於圖7所示之例中,可見光AR塗層品表示於兩面(一面及該一面之相反面)塗佈有防止可見光反射之膜層之樹脂,紫外可見光AR塗層品表示於兩面塗佈有防止紫外線及可見光反射之膜層之樹脂。
圖7A係顯示UVA及UVB區域之各樹脂之平均透過率之表之圖。於圖7A所示之例中,僅以基材,於UVA及UVB區域中,樹脂1及樹脂3之平均透過率亦有36.2%以上。尤其是,於UVA區域中,樹脂1及樹脂3於僅基材之平均透過率亦有80%以上,可成為本揭示技術中合適之鏡片。
又,僅樹脂6之基材,UVB區域為不足10%之平均透過率,但UVA區域使57.4%之光線透過,與既有鏡片相比,於紫外線區域中具有充分之透過率。
於將通常使用之可見光AR塗膜層塗佈於兩面之情形時,各樹脂之UVA及UVB區域兩者之透過率均減少數%~十數%。可認為係如下原因:因可見光AR塗膜層防止可見光之反射,但並不防止紫外線區域之波長之反射,故反射紫外線區域之波長,使透過經塗佈之樹脂(基材)之紫外線量減少。
為了本揭示技術,於將防止紫外線及可見光之反射之紫外可見光AR塗膜層塗佈於兩面之情形時,各樹脂之UVA及UVB區域兩者之透過率均上升數%。例如,樹脂1至樹脂6於UVA區域中之透過率均上升3%以上,與僅有基材之情形相比,可提供使紫外線區域更充分透過、接近裸眼之鏡片。尤其是樹脂6藉由形成紫外可見光AR塗膜層,UVA區域之透過率超過60%。
圖7B係顯示稱為紫外線區域之280~380 nm(區域1)、與280~400 nm(區域2)各者之平均透過率之表之圖。如圖7B所示,僅樹脂1之基材之平均透過率於任一區域均具有超過86%之平均透過率,可成為使紫外線良好地透過之鏡片。又,僅樹脂3之基材亦具有超過65%之平均透過率,僅樹脂6之基材亦具有超過40%之平均透過率。
若比較區域1與區域2之平均透過率,則區域2之平均透過率僅高出數%。其顯示,因各樹脂之透過率均隨波長自較短區域變為較長區域而上升,故380~400 nm之透過率使平均透過率上升了數%。
於兩面塗佈有樹脂1之紫外可見光AR塗膜層之情形時,於區域2中平均透過率超過90%,於區域1亦具有約89%之平均透過率,顯示可提供接近裸眼之鏡片。另,於樹脂3及6中,與既有鏡片相比,於兩面塗佈有紫外可見光AR塗膜層之情形時,於區域2超過50%,於區域1亦超過42%,顯示充分透過紫外線區域。
基於以上,不僅基材,亦藉由塗佈紫外可見光AR塗膜層,確認到平均透過率上升(圖5~7)。因此,於圖5所示之各樹脂之基材候補,藉由至少於基材層之一面塗佈紫外可見光AR塗膜層,亦可提高平均透過率。因此,於圖5所示之樹脂1~10之各樹脂,於至少一面塗佈紫外可見光AR塗膜層之情形時,可使360~380 nm之平均透過率為80%以上。
接著,因發明人等選擇樹脂1、3及6該3者作為本揭示技術之眼鏡用鏡片之候補材料進行了各實驗,故就各實驗結果進行說明。
圖8係樹脂1、3及6與既有鏡片之透過率之比較圖。於圖8所示之例中,既有鏡片1係HOYA公司製之HILUX(註冊商標)硬塗層S0.00,既有鏡片2係HILUX(註冊商標)VP_S0.00。於圖8所示之例中,各樹脂係於包含各樹脂之2 mm厚之基材層之試驗片之兩面形成紫外可見光AR塗膜層者。以下,關於圖9~11中之各樹脂,亦與圖8同樣為對2 mm厚之基材層進行特定處理者。
如圖8所示,既有鏡片1及2係紫外線區域之透過率較圖1所示之既有鏡片高之眼鏡用鏡片,但即便如此,自400 nm附近至低波長區域,透過率亦急遽下降。另一方面,樹脂1、3及6於360~380 nm之區域,平均透過率為約90%以上,樹脂1及3於360~380 nm之區域之透過率超過90%。
根據圖8所示之圖表,可知因於紫外線區域(280~400 nm或280~380 nm)中,樹脂1、3及6之透過率高於既有鏡片1及2,故樹脂1、3及6使更多之紫外線透過。
圖9係顯示將樹脂1、3及6與既有鏡片於各區域之透過率進行比較之表之圖。亦比較於圖9所示之各樹脂之基材層添加自由基捕捉劑之情形時之透過率。自由基捕捉劑使用ADEKA公司之ADEKASTAB (LA-63P、LA-52或LA-57),於各樹脂之基材層添加0.2wt%。自由基捕捉劑由於防止鏡片之劣化,故可提高鏡片之耐久性。
於圖9(A)所示之結果中,於樹脂1中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於360~380 nm之區域之平均透過率為95.1%,於360~400 nm之區域之平均透過率為95.6%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-63P)之樹脂1中,360~380 nm之區域之平均透過率為91.5%,360~400nm之區域之平均透過率為92.7%。於樹脂1中,即使於基材層添加自由基捕捉劑,於各區域之平均透過率亦超過90%。
於圖9(B)所示之結果中,於樹脂3中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於360~380 nm之區域之平均透過率為95.0%,於360~400 nm之區域之平均透過率為95.5%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52或LA-57)之樹脂3中,於360~380 nm之區域之平均透過率為約88~90%,於360~400nm之區域之平均透過率為約90~91%。於樹脂3中,即使於基材層添加自由基捕捉劑,於各區域之平均透過率亦為約90%。
於圖9(C)所示之結果中,於樹脂6中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於360~380 nm之區域之平均透過率為89.8%,於360~400 nm之區域之平均透過率為91.5%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52)之樹脂6中,於360~380 nm之區域之平均透過率為81.9%,於360~400nm之區域中之平均透過率為84.8%。
另,於樹脂6中,作為比較例,進一步添加0.001wt%之通常基於防止鏡片劣化等之目的而添加之紫外線吸收劑(ADEKA公司之ADEKASTAB(註冊商標)LA-46)。儘管如此,於360~380 nm之區域之平均透過率為77.8%,於360~400nm之區域之平均透過率為82.6%。可知於任一區域之平均透過率均超過75%,可良好地透過紫外線。可推測與僅有自由基捕捉劑之情形相比,於追加添加紫外線吸收劑之情形時,雖於360~380 nm及360~400 nm之區域之平均透過率稍下降,但即使於代替自由基捕捉劑而基於其下降率之程度僅將適當添加量經調整之紫外線吸收劑添加至基材層之情形時,亦可同樣地將該區域之平均透過率維持於高水準。
又,於圖9(A)~9(C)所示之例中,相較於鏡片形成一般可見光AR塗膜層,於鏡片形成紫外可見光AR塗膜層者之紫外線區域之透過率更高。藉此,確認紫外可見光AR塗膜層之效果。
於圖9(D)所示之結果中,於既有鏡片1中,於360~380 nm之區域之平均透過率為46.0%,於360~400nm之區域之平均透過率為64.5%。又,於既有鏡片2中,於360~380 nm之區域之平均透過率為39.6%,於360~400nm之區域之平均透過率為60.4%。於既有鏡片1及2中,於360~380 nm之區域之平均透過率無法超過60%。藉此,於360 nm以上且未達380 nm之波長區域中,藉由形成基材層及塗膜層之總平均透過率為60%以上之眼鏡用鏡片,可構成與既有鏡片之顯著差。
圖10係顯示將樹脂1、3及6於各區域之透過率進行比較之表A之圖。於圖10所示之表中,比較於UVA(315~380 nm)區域、UVB(280~315 nm)區域之透過率。
於圖10(A)所示之結果中,於樹脂1中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於UVA區域之平均透過率為93.8%,於UVB區域之平均透過率為79.8%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-63P)之樹脂1中,於UVA區域之平均透過率為89.0%,於UVB區域之平均透過率為60.5%。
於圖10(B)所示之結果中,於樹脂3中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於UVA區域之平均透過率為85.0%,於UVB區域之平均透過率為37.3%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52)之樹脂3中,於UVA區域中之平均透過率為67.1%,於UVB區域之平均透過率為14.2%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-57)之樹脂3中,於UVA區域之平均透過率為60.5%,於UVB區域之平均透過率為7.8%。於樹脂3之情形時,作為自由基捕捉劑,LA-52於各區域之平均透過率高於LA-57。
於圖10(C)所示之結果中,於樹脂6中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,於UVA區域之平均透過率為60.5%,於UVB區域之平均透過率為9.2%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52)之樹脂6中,於UVA區域之平均透過率為49.2%,於UVB區域之平均透過率為3.2%。
又,於樹脂6中,與圖9(C)同樣,作為比較例進一步添加0.001wt%之紫外線吸收劑(LA-46)。於該情形時,於有紫外可見光AR塗膜層之樹脂6中,於UVA區域之平均透過率為43.8%,於UVB區域之平均透過率為2.3%。又同樣地可推測,即使代替自由基捕捉劑而僅將適當添加量經調整之紫外線吸收劑添加至基材層之情形時,亦可同樣地將該區域之平均透過率維持於高水準。
根據圖10(A)~(C)所示之結果,雖樹脂1即使添加自由基捕捉劑平均透過率亦較高,但樹脂3及6藉由將自由基捕捉劑添加至基材層,而使UVB區域之平均透過率減少,但因UVA區域之透過率較高,故可說是於紫外線區域中透過一定水準以上之紫外線。
圖11係顯示將樹脂1、3及6於各區域之透過率進行比較之表B之圖。於圖11所示之表中,比較紫外線區域之280~380 nm(區域1)、280~400 nm(區域2)之透過率。
於圖11(A)所示之結果中,於樹脂1中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,區域1之平均透過率為88.9%,區域2之平均透過率為90.1%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-63P)之樹脂1中,區域1之平均透過率為84.5%,區域2之平均透過率為86.2%。
於圖11(B)所示之結果中,於樹脂3中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,區域1之平均透過率為68.3%,區域2之平均透過率為72.9%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52)之樹脂3中,區域1之平均透過率為48.6%,區域2之平均透過率為55.9%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-57)之樹脂3中,區域1之平均透過率為42.9%,區域2之平均透過率為50.3%。
於圖11(C)所示之結果中,於樹脂6中有紫外可見光AR塗膜層、無自由基捕捉劑之情形時,區域1之平均透過率為42.5%,區域2之平均透過率為51.0%。於有紫外可見光AR塗膜層、有自由基捕捉劑(LA-52)之樹脂6中,區域1之平均透過率為33.1%,區域2之平均透過率為42.2%。
又,於樹脂6中,與圖9(C)同樣,作為比較例進一步添加0.001wt%之紫外線吸收劑(LA-46)。於該情形時,於有紫外可見光AR塗膜層之樹脂6中,區域1之平均透過率為29.3%,區域2之平均透過率為39.0%。又同樣地可推測,即使於代替自由基捕捉劑而僅將適當添加量經調整之紫外線吸收劑添加至基材層之情形時,亦可同樣地將該區域之平均透過率維持於高水準。
根據圖11(A)~(C)所示之結果,即使添加自由基捕捉劑,樹脂1於紫外線區域整體中之平均透過率亦較高。樹脂3及6中藉由添加自由基捕捉劑,紫外線區域整體之平均透過亦減少,但如圖10所示,因UVA區域之透過率較高,故可說是於紫外線區域整體中透過一定水準以上之紫外線。
其次,對各抗反射膜之反射率進行說明。圖12係顯示對包含將2 mm之厚度設為基材層之樹脂6之試驗片施加之各抗反射膜之反射率之圖。於圖12所示之例中,於無抗反射膜之樹脂6中,於超過330 nm時反射率自約5%左右上升至約8%。
於形成有可見光AR之塗膜層之樹脂6中,於可見光(例如780~380 nm)以下,反射率大致超過10%而較高,於可見光區域,反射率為8%以下。又於形成有紫外可見光AR之塗膜層之樹脂6中,自紫外線區域280 nm至可見光區域730 nm,反射率為約4%以下,可知不僅是可見光可透過,紫外線亦可良好地透過。
根據圖12所示之圖表,於形成有紫外可見光AR塗膜層之樹脂6中,280 nm以上780 nm以下之波長區域之反射率為5%以下,於本揭示技術中,可作為使紫外線良好地透過之塗膜層使用。又,相較於無塗膜層,形成有紫外可見光AR塗膜層者可使反射率下降,顯示塗膜層之有用性。
圖13係顯示對於樹脂3之各面之因AR塗膜層差異之透過率之圖。於圖13所示之例中,對於包含樹脂3之1 mm厚之基材層之試驗片,顯示以下各例中之透過率。 僅有基材 於兩面有可見光AR塗膜層 於兩面有紫外可見光AR塗膜層 於表面(凸面)有可見光AR塗膜層,於背面(凹面)有紫外可見光AR塗膜層 於表面有紫外可見光AR塗膜層,於背面有可見光AR塗膜層
於圖13所示之例中,因均形成有防止可見光反射之AR塗膜層,故於可見光區域(例如780~380 nm)中,相較於僅有基材層之樹脂3,形成有AR塗膜層之樹脂3之透過率更高。
另一方面,於紫外線區域(380 nm以下),尤其是於360~380 nm之區域內,相較於僅有基材層之樹脂3,至少於單面形成有紫外可見光AR塗膜層之樹脂3之透過率更高。另,於表面形成有可見光AR塗膜層、於背面形成有紫外可見光AR塗膜層之樹脂3、與於表面形成有紫外可見光AR塗膜層、於背面形成有可見光AR塗膜層之樹脂3,成為大致同樣之透過率。
又,於約340 nm以下之區域中,即使於單面形成紫外可見光AR塗膜層,透過率亦低於僅有基材層之情形,可認為原因在於,於另一面形成有容易反射紫外線之可見光AR塗膜層(參照圖12)。然而,至少於一面形成有紫外可見光AR塗膜層之樹脂3,與僅有基材層之情形相比,於可見光區域之透過率更高,呈現所謂鏡片表面之眩光受抑制之外觀,更適合作為最終製品之眼鏡用鏡片。再者至少於一面形成有紫外可見光AR塗膜層之樹脂3,相較於一般性眼鏡鏡片所見之於兩面形成有可見光AR塗膜層之樹脂3,於紫外線區域之透過率更高,可成為更接近裸眼之狀態之實用性眼鏡用鏡片。
又,於兩面形成有紫外可見光AR塗膜層之樹脂3,於約315 nm以上之區域,透過率高於僅有基材層之樹脂3。
以上,根據第2實施形態,使用各種樹脂進行實驗之結果,可特定出作為本揭示技術中之眼鏡用鏡片之基材。例如,可將至少圖5所示之樹脂1~10之任一者作為基材層形成眼鏡用鏡片。於第2實施形態中,為了使紫外線透過,著眼於360~380 nm之區域之平均透過率。於該360~380 nm之區域中,藉由設定相對於塗膜層與基材層之總平均透過率之閾值(60%、80%等),可滿足該條件,形成接近裸眼之狀態之實用性眼鏡用鏡片。
又,於第2實施形態之基材層或塗膜層中,只要適當應用於第1實施形態說明之素材、材料等可應用者即可。又,例如透過率較高之氟化合物之樹脂,作為具體例,亦可使用大金工業公司之HMX10等作為基材。
又,本揭示技術中之眼鏡用鏡片,作為一例,可作為非視力矯正鏡片而實用化。
以上,雖使用各實施形態說明了本發明,但本發明之技術性範圍並非限定於上述實施形態所記載之範圍。本領域技術人員可明瞭於上述實施形態中可施加多種變更或改良。自申請專利範圍之記載可明白經施加此種變更或改良之形態亦包含於本發明之技術範圍內。
又,關於本揭示技術,揭示以下附記之技術。 [附記1] 一種眼鏡用鏡片,其具備: 基材層;及 塗膜層,其塗佈於上述基材層之至少一面;且 於280 nm以上400 nm以下之波長區域中,上述基材層及上述塗膜層之總平均透過率為10%以上。 [附記2] 如附記1所記載之眼鏡用鏡片,其中 於320 nm以上400 nm以下之第1波長區域中,上述基材層及上述塗膜層之總平均透過率為15%以上;且 於280 nm以上且未達320 nm之第2波長區域中,上述基材層及上述塗膜層之總平均透過率為5%以上。 [附記3] 如附記2所記載之眼鏡用鏡片,其中 於上述第1波長區域中,上述基材層及上述塗膜層之總平均透過率為55%以上;且 於上述第2波長區域中,上述基材層及上述塗膜層之總平均透過率為10%以上。 [附記4] 如附記3所記載之眼鏡用鏡片,其中 於上述第1波長區域中,上述基材層及上述塗膜層之總平均透過率為85%以上;且 於上述第2波長區域中,上述基材層及上述塗膜層之總平均透過率為50%以上。 [附記5] 如附記1至4中任一項所記載之眼鏡用鏡片,其中上述基材層係由脂肪族聚碳酸酯、脂肪族烯烴聚合物、脂肪族丙烯酸樹脂、及脂肪族尼龍樹脂之至少1者形成。 [附記6] 如附記5所記載之眼鏡用鏡片,其中上述脂肪族丙烯酸樹脂包含紫外線能透過之丙烯酸樹脂。 [附記7] 如附記5所記載之眼鏡用鏡片,其中上述脂肪族烯烴聚合物包含環烯烴聚合物及不具有環狀構造之脂肪族烯烴聚合物之至少1者。 [附記8] 如附記1至7中任一項所記載之眼鏡用鏡片,其中上述塗膜層具備由不含紫外線吸收劑之材料形成之硬塗膜層、及/或由不含紫外線吸收劑之材料形成之抗反射膜層。
圖1係顯示先前技術之各眼鏡用鏡片之光線透過率之圖。 圖2係顯示第1實施形態之基材A之光線透過率之一例之圖。 圖3係顯示第1實施形態之基材B之光線透過率之一例之圖。 圖4係顯示第1實施形態之基材C之光線透過率之一例之圖。 圖5係顯示第2實施形態之基材候補之光線透過率之一例之圖。 圖6係顯示於第2實施形態之樹脂1~10之兩面,塗佈防止紫外線及可見光之反射之紫外可見光AR(Anti Reflection:抗反射)塗膜層之情形時之光線透過率之一例之圖。 圖7(A)、(B)係顯示比較對第2實施形態之樹脂1、3及6施加各塗膜層之情形時之平均透過率之圖。 圖8係樹脂1、3及6與既有鏡片之透過率之比較圖。 圖9(A)~(D)係顯示將樹脂1、3及6與既有鏡片於各區域之透過率進行比較之表之圖。 圖10(A)~(C)係顯示將樹脂1、3及6於各區域之透過率進行比較之表A之圖。 圖11(A)~(C)係顯示將樹脂1、3及6於各區域之透過率進行比較之表B之圖。 圖12係顯示對於樹脂6之各抗反射膜之反射率之圖。 圖13係顯示對於樹脂3之各面之因AR塗膜層差異之透過率之圖。

Claims (7)

  1. 一種眼鏡用鏡片,其包含: 基材層;及 塗膜層,其塗佈於上述基材層之至少一面;且 於360 nm以上未達380 nm之波長區域中,上述基材層及上述塗膜層之總平均透過率為60%以上。
  2. 如請求項1之眼鏡用鏡片,其中於360 nm以上未達380 nm之波長區域中,上述基材層及上述塗膜層之總平均透過率為80%以上。
  3. 如請求項1之眼鏡用鏡片,其中上述塗膜層於280 nm以上未達780 nm之波長區域之反射率為10%以下。
  4. 如請求項3之眼鏡用鏡片,其中上述塗膜層設置於上述基材層之上述一面及該一面之相反面。
  5. 如請求項1之眼鏡用鏡片,其中上述塗膜層包含紫外光及可見光之抗反射膜。
  6. 如請求項1之眼鏡用鏡片,其中上述基材層於360 nm以上未達380 nm之波長區域中,上述基材層之平均透過率為80%以上。
  7. 如請求項1之眼鏡用鏡片,其中上述基材層包含自由基捕捉劑及/或紫外線吸收劑。
TW112102988A 2022-01-28 2023-01-30 眼鏡用鏡片 TWI836881B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-012008 2022-01-28
JP2022012008 2022-01-28

Publications (2)

Publication Number Publication Date
TW202346976A true TW202346976A (zh) 2023-12-01
TWI836881B TWI836881B (zh) 2024-03-21

Family

ID=87471509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112102988A TWI836881B (zh) 2022-01-28 2023-01-30 眼鏡用鏡片

Country Status (4)

Country Link
JP (1) JPWO2023145836A1 (zh)
CN (1) CN118613754A (zh)
TW (1) TWI836881B (zh)
WO (1) WO2023145836A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190919A (ja) * 2009-02-13 2010-09-02 Mitsubishi Gas Chemical Co Inc 光学レンズ及びその製造方法
EP3327488B1 (en) * 2016-11-23 2021-01-06 Essilor International Optical article comprising a dye resistant to photo-degradation
EP3859437A4 (en) * 2018-09-28 2022-06-29 Hoya Lens Thailand Ltd. Spectacle lens
WO2020138127A1 (ja) * 2018-12-28 2020-07-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
JP2023182008A (ja) * 2019-09-30 2023-12-26 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Also Published As

Publication number Publication date
WO2023145836A1 (ja) 2023-08-03
TWI836881B (zh) 2024-03-21
JPWO2023145836A1 (zh) 2023-08-03
CN118613754A (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
US10031349B2 (en) Optical product, and spectacle lens and spectacles
EP3118658B1 (en) Mirror-coated lens
CN107003545B (zh) 眼镜镜片及眼镜
US11668957B2 (en) Optical product, plastic spectacle lens, and spectacles
CN110140079B (zh) 眼镜镜片及眼镜
KR102189655B1 (ko) 안경 렌즈 및 안경
US11709292B2 (en) Optical plastic product, and plastic spectacle lens and spectacles
EP2881763B1 (en) Optical product and plastic eyeglass lens
KR102582202B1 (ko) 안경 렌즈
JP6473281B1 (ja) 眼鏡レンズおよび眼鏡
TWI836881B (zh) 眼鏡用鏡片
KR102685727B1 (ko) 안경 렌즈
JP2024143079A (ja) 眼鏡用レンズ
JP2023182008A (ja) 眼鏡レンズ
WO2021240805A1 (ja) 眼鏡レンズ及び眼鏡
WO2024204706A1 (ja) 眼鏡レンズおよび眼鏡
JP6473282B1 (ja) 眼鏡レンズおよび眼鏡
WO2020066532A1 (ja) 眼鏡レンズ及び眼鏡
JP2020052275A (ja) プラスチック眼鏡レンズ及び眼鏡
JP2023182009A (ja) 眼鏡レンズ
KR20210032314A (ko) 안경 렌즈 및 안경
JP2023182010A (ja) 眼鏡レンズ