TW202345562A - Embedded type information security transmission system based on chaos synchronization and transmission method thereof - Google Patents

Embedded type information security transmission system based on chaos synchronization and transmission method thereof Download PDF

Info

Publication number
TW202345562A
TW202345562A TW111117410A TW111117410A TW202345562A TW 202345562 A TW202345562 A TW 202345562A TW 111117410 A TW111117410 A TW 111117410A TW 111117410 A TW111117410 A TW 111117410A TW 202345562 A TW202345562 A TW 202345562A
Authority
TW
Taiwan
Prior art keywords
module
synchronization
embedded
chaos
error
Prior art date
Application number
TW111117410A
Other languages
Chinese (zh)
Other versions
TWI825708B (en
Inventor
顏錦柱
王譽翔
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW111117410A priority Critical patent/TWI825708B/en
Publication of TW202345562A publication Critical patent/TW202345562A/en
Application granted granted Critical
Publication of TWI825708B publication Critical patent/TWI825708B/en

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

An Embedded type information security transmission system based on chaos synchronization, which is applied for data transmission between a transmission end and a receive end, includes a chaotic module, an embedding module, and a synchronization module. The chaotic module establishes a master dynamic formula at the transmission end and establishes a slave dynamic formula at the receive end, and also applied for entering control signal. The embedding module is applied for inputting a to-be-transmitted embedding signal to the master dynamic formula. The synchronization module defines an error vector to obtain an error dynamic. The synchronization module synchronizes the chaotic module to make the error dynamic be zero. The embedding signal is equal to the control signal. The chaotic module allows the embedding signal to be promptly reestablished at the receive end, assuring data transmission security.

Description

基於混沌同步之內嵌式資訊安全傳輸系統及其傳輸方法Embedded information security transmission system and transmission method based on chaos synchronization

本發明係關於一種資訊傳輸領域,特別係一種基於混沌同步之內嵌式資訊安全傳輸系統及其傳輸方法。The invention relates to the field of information transmission, in particular to an embedded information secure transmission system and its transmission method based on chaotic synchronization.

物聯網(IoT ,Internet of Thing)隨著5G網路頻寬速度的提昇以及連網裝置設備的多元化,而具擴充性和多樣性,然而,物聯網連結的機台或其他的感測節點模組,若缺乏安全性或弱化的安全機制,將導致傳輸的重要資料外洩,因此,資安問題成為物聯網傳輸的首要議題。The Internet of Things (IoT, Internet of Thing) has become scalable and diverse with the increase in 5G network bandwidth speed and the diversification of connected devices. However, the machines or other sensing nodes connected to the IoT If the module lacks security or has a weakened security mechanism, important transmitted data will be leaked. Therefore, information security issues have become the primary issue in IoT transmission.

混沌系統是一種高複雜度的非線性系統,其動態行為呈現類隨機和非週期性,且對起始值有極大的敏感性(蝴蝶效應)以及奇異吸子(strange attractor)等特徵,基於混沌理論所設計的亂數產生器,能夠應用於對稱式加密當中,透過在發送及接收兩端分別建立主僕混沌系統,即可設計出隨用即丟的高品質金鑰,解決金鑰保管及分派等問題,而解決傳統對稱式加密的缺點。Chaotic system is a highly complex nonlinear system. Its dynamic behavior is quasi-random and non-periodic, and it has characteristics such as great sensitivity to the starting value (butterfly effect) and strange attractor. Based on chaos, The random number generator designed in theory can be used in symmetric encryption. By establishing a master-server chaos system at both the sending and receiving ends, high-quality keys can be designed and thrown away to solve the problem of key storage and Distribution and other problems to solve the shortcomings of traditional symmetric encryption.

考慮到加解密系統存在著初始值必須是相同的限制的問題,需對混沌系統進行同步控制,然而,若系統在運作的過程中,突然受到干擾而產生極小的狀態差異時,由於混沌系統的蝴蝶效應,傳送接收兩端的金鑰將變的截然不同,而導致同步控制失效,進而影響資料的傳輸。Considering that the initial value of the encryption and decryption system must be the same, the chaotic system needs to be synchronously controlled. However, if the system is suddenly disturbed during operation and produces a very small state difference, due to the chaos of the chaotic system, Due to the butterfly effect, the keys at the transmitting and receiving ends will become completely different, causing synchronization control to fail, thereby affecting data transmission.

為解決上述課題,本發明提供一種基於混沌同步之內嵌式資訊安全傳輸系統及其傳輸方法,其能透過同步控制器的設計,而達到傳送端與接收端間安全的資料傳輸。In order to solve the above problems, the present invention provides an embedded information secure transmission system and its transmission method based on chaotic synchronization, which can achieve secure data transmission between the transmitting end and the receiving end through the design of the synchronization controller.

為達上述目的,本發明之一項實施例提供一種基於混沌同步之內嵌式資訊安全傳輸系統,其用以在一發送端以及一接收端之間進行資料傳輸,資訊安全傳輸系統包括:一混沌模組、一內嵌模組以及一同步模組;混沌模組於發送端建立一主動態方程式,並於接收端建立一僕動態方程式,混沌模組提供輸入一控制訊號;內嵌模組耦接混沌模組,內嵌模組用以將欲傳送之一嵌入訊號輸入至主動態方程式;同步模組耦接混沌模組,同步模組定義一誤差向量而取得一誤差動態,同步模組對混沌模組進行同步處理以使誤差動態為0,且嵌入訊號等於控制訊號,混沌模組能夠使嵌入訊號於接收端即時重建。To achieve the above object, one embodiment of the present invention provides an embedded information secure transmission system based on chaos synchronization, which is used for data transmission between a sending end and a receiving end. The information secure transmission system includes: a Chaos module, an embedded module and a synchronization module; the chaos module establishes a master dynamic equation at the sending end and a slave dynamic equation at the receiving end; the chaos module provides an input control signal; the embedded module Coupled to the chaos module, the embedded module is used to input an embedded signal to be transmitted into the main dynamic equation; the synchronization module is coupled to the chaos module, and the synchronization module defines an error vector to obtain an error dynamics. The synchronization module The chaos module is synchronized so that the error dynamic is 0 and the embedded signal is equal to the control signal. The chaos module can enable the embedded signal to be reconstructed in real time at the receiving end.

本發明之一項實施例提供一種基於混沌同步之內嵌式資訊安全傳輸方法,其包含一混沌方程建立步驟、一嵌入步驟、一同步步驟以及一重建步驟;於混沌方程建立步驟中,於一發送端建立一主動態方程式,並於一接收端建立一僕動態方程式,且提供輸入一控制訊號;於嵌入步驟中,將欲傳送之一嵌入訊號輸入至該主動態方程式;於同步步驟中,定義一誤差向量而取得一誤差動態,並對主動態方程式及僕動態方程式進行同步處理,使誤差動態收斂為0,且嵌入訊號等於控制訊號;於重建步驟中,於接收端即時重建嵌入訊號。One embodiment of the present invention provides an embedded information secure transmission method based on chaos synchronization, which includes a chaos equation establishment step, an embedding step, a synchronization step and a reconstruction step; in the chaos equation establishment step, in a The transmitting end establishes a main dynamic equation, and a receiving end establishes a slave dynamic equation, and provides an input control signal; in the embedding step, an embedded signal to be transmitted is input to the main dynamic equation; in the synchronization step, An error vector is defined to obtain an error dynamic, and the main dynamic equation and the slave dynamic equation are processed synchronously so that the error dynamic converges to 0 and the embedded signal is equal to the control signal; in the reconstruction step, the embedded signal is reconstructed in real time at the receiving end.

藉此,本發明基於混沌同步之內嵌式資訊安全傳輸系統及其傳輸方法,藉由內嵌模組將欲傳送之一嵌入訊號輸入至混沌模組,能夠確保混沌模組的混沌行為不被破壞,維持原混沌模組之亂數品質,具更彈性的運用設計。In this way, the present invention is based on the embedded information security transmission system and its transmission method based on chaos synchronization. By inputting an embedded signal to be transmitted to the chaos module through the embedded module, it can ensure that the chaotic behavior of the chaotic module is not compromised. Destruction, maintaining the random quality of the original chaos module, with a more flexible application design.

此外,透過同步模組進行混沌模組的同步處理,能夠使嵌入訊號於接收端即時重建,而確保傳送端及接收端之間的資料安全通訊。In addition, the synchronization processing of the chaos module through the synchronization module allows the embedded signal to be reconstructed in real time at the receiving end, ensuring secure data communication between the transmitting end and the receiving end.

為便於說明本發明於上述發明內容一欄中所表示的中心思想,茲以具體實施例表達。實施例中各種不同物件係按適於說明之比例、尺寸、變形量或位移量而描繪,而非按實際元件的比例予以繪製,合先敘明。In order to facilitate the explanation of the central idea of the present invention expressed in the above summary column, specific embodiments are hereby expressed. Various objects in the embodiments are drawn according to proportions, sizes, deformations or displacements suitable for illustration, rather than according to the proportions of actual components, and are explained first.

請參閱圖1至圖8所示,本發明提供一種基於混沌同步之內嵌式資訊安全傳輸系統及其傳輸方法,其用以在一發送端1以及一接收端2之間進行資料傳輸;於本實施例中,發送端1以及接收端2能夠係各種個人電腦、筆記型電腦、智慧型行動裝置或微控制器。Referring to Figures 1 to 8, the present invention provides an embedded information security transmission system and transmission method based on chaotic synchronization, which is used for data transmission between a sending end 1 and a receiving end 2; in In this embodiment, the sending end 1 and the receiving end 2 can be various personal computers, notebook computers, smart mobile devices or microcontrollers.

資訊安全傳輸系統100包括:一混沌模組10、一內嵌模組20、一同步模組30、一調變模組40、一驗證模組50以及一離散模組60;其中,內嵌模組20以及同步模組30耦接混沌模組10,調變模組40耦接同步模組30,驗證模組50以及離散模組60耦接同步模組30以及調變模組40。The information security transmission system 100 includes: a chaos module 10, an embedded module 20, a synchronization module 30, a modulation module 40, a verification module 50 and a discrete module 60; wherein, the embedded module The group 20 and the synchronization module 30 are coupled to the chaos module 10 , the modulation module 40 is coupled to the synchronization module 30 , and the verification module 50 and the discrete module 60 are coupled to the synchronization module 30 and the modulation module 40 .

混沌模組10於發送端1建立一主動態方程式,並於接收端2建立一僕動態方程式,混沌模組10提供輸入一控制訊號。The chaos module 10 establishes a master dynamic equation at the transmitter 1 and a slave dynamic equation at the receiver 2. The chaos module 10 provides an input control signal.

於本實施例中,主動態方程式為: ; 僕動態方程式為: In this embodiment, the main dynamic equation is: ; The servant dynamic equation is: ;

其中, 為系統矩陣, 為控制訊號, 為非線性項, 為嵌入訊號。 in, and is the system matrix, To control the signal, and is a nonlinear term, for embedded signals.

內嵌模組20用以將欲傳送之一嵌入訊號輸入至主動態方程式。The embedded module 20 is used to input an embedded signal to be transmitted into the main dynamic equation.

同步模組30定義一誤差向量而取得一誤差動態,同步模組30對混沌模組10進行同步處理以使誤差動態為0,且嵌入訊號等於控制訊號,藉此,在確保系統同步的情況下,混沌模組10能夠使嵌入訊號於接收端2即時重建,其中,由於嵌入在發送端1的嵌入訊號,並不會在公共通道中出現,對於加解密而言極具優勢。The synchronization module 30 defines an error vector to obtain an error dynamics. The synchronization module 30 performs synchronization processing on the chaos module 10 so that the error dynamics is 0, and the embedded signal is equal to the control signal. Thus, while ensuring system synchronization , the chaos module 10 can enable the embedded signal to be reconstructed in real time at the receiving end 2. Since the embedded signal embedded in the transmitting end 1 will not appear in the public channel, it is extremely advantageous for encryption and decryption.

進一步說明,不同於習知將欲傳送訊號,直接利用其他訊號遮罩的方式,本創作之內嵌模組20將嵌入訊號嵌入至發送端1系統中,經發送端1系統映射後,嵌入訊號並不會出現於傳輸的公共通道上,由於公共通道所傳輸的資訊不包含嵌入訊號,在通訊安全程度上能夠大幅提升。To further explain, unlike the conventional method of directly using other signal masks to transmit signals, the embedded module 20 of this invention embeds the embedded signal into the sending end 1 system. After being mapped by the sending end 1 system, the embedded signal It will not appear on the public channel of transmission. Since the information transmitted by the public channel does not contain embedded signals, the level of communication security can be greatly improved.

於本實施例中,誤差向量定義為 In this embodiment, the error vector is defined as .

調變模組40具有一滑動模式控制單元41以及一誤差收斂單元42,滑動模式控制單元41用以調整同步模組30非線性系統的特性,以確保同步模組30的穩定,誤差收斂單元42用以調整同步模組30的同步誤差,以使同步誤差收斂到最小。The modulation module 40 has a sliding mode control unit 41 and an error convergence unit 42. The sliding mode control unit 41 is used to adjust the characteristics of the nonlinear system of the synchronization module 30 to ensure the stability of the synchronization module 30. The error convergence unit 42 It is used to adjust the synchronization error of the synchronization module 30 so that the synchronization error converges to the minimum.

滑動模式控制單元41能夠建立一轉換面(Switching Surface),以使誤差動態進入一滑動模式,當誤差動態進入所述滑動模式,轉換面為0。誤差收斂單元42以一線性二次規劃法(Linear-quadratic Method)使誤差動態最小化。The sliding mode control unit 41 can establish a switching surface (Switching Surface) so that the error dynamically enters a sliding mode. When the error dynamically enters the sliding mode, the switching surface is 0. The error convergence unit 42 uses a linear-quadratic method to dynamically minimize the error.

驗證模組50用以確認誤差動態進入所述滑動模式,於本實施例中,驗證模組50透過李亞普諾夫函數(Lyapunov function)確認誤差動態進入所述滑動模式。The verification module 50 is used to confirm that the error dynamically enters the sliding mode. In this embodiment, the verification module 50 confirms that the error dynamically enters the sliding mode through a Lyapunov function.

離散模組60用以將轉換面以及誤差動態進行離散化,以利後續在電路上的實現,於本實施例中,利用歐拉方法(Euler Method)對轉換面以及誤差動態進行離散化。The discrete module 60 is used to discretize the conversion surface and error dynamics to facilitate subsequent implementation on the circuit. In this embodiment, the Euler Method is used to discretize the conversion surface and error dynamics.

上述內容,為說明本發明所提供之基於混沌同步之內嵌式資訊安全傳輸系統100之一具體實施例,以下進一步說明資訊安全傳輸系統100之資訊安全傳輸方法200,如圖3所示,資訊安全傳輸方法200包含一混沌方程建立步驟S1、一嵌入步驟S2、一同步步驟S3以及一重建步驟S4。The above content is to illustrate a specific embodiment of the embedded information secure transmission system 100 based on chaos synchronization provided by the present invention. The information secure transmission method 200 of the information secure transmission system 100 is further described below. As shown in Figure 3, the information secure transmission system 100 is further described below. The secure transmission method 200 includes a chaos equation establishing step S1, an embedding step S2, a synchronization step S3 and a reconstruction step S4.

於混沌方程建立步驟S1中,混沌模組10於發送端1建立主動態方程式,並於接收端2建立僕動態方程式,主僕動態方程式表示如下:In the chaos equation creation step S1, the chaos module 10 establishes the master dynamic equation at the sending end 1 and establishes the slave dynamic equation at the receiving end 2. The master and slave dynamic equations are expressed as follows:

主動態方程式為: (1) 僕動態方程式為: (2) The main dynamic equation is: (1) The servant dynamic equation is: (2)

其中, 為系統矩陣, 為控制訊號, 為混沌模組10之非線性項, 為嵌入訊號。 in, is the system matrix, To control the signal, and is the nonlinear term of chaos module 10, for embedded signals.

於嵌入步驟S2中,內嵌模組20將欲傳送的嵌入訊號 輸入至主動態方程式 In the embedding step S2, the embedded module 20 transmits the embedded signal to Input to main dynamic equation .

於同步步驟S3中,同步模組30定義誤差向量 進而取得誤差動態 ,並對主動態方程式 及僕動態方程式 進行同步處理,其中,誤差向量 如下所示: In the synchronization step S3, the synchronization module 30 defines the error vector To obtain the error dynamics , and for the main dynamic equation and dynamic equation Perform synchronization processing, where the error vector As follows: ;

誤差動態 之推導如下: (3) Error dynamics The derivation is as follows: (3)

其中, 。當系統同步時,誤差向量 收斂到0, ,同時因 也收斂到0,藉此可根據(3)式取得等效誤差動態 ,如下所示: (4) in, . When the system is synchronized, the error vector converges to 0, , at the same time due to , also converges to 0, whereby the equivalent error dynamics can be obtained according to equation (3) ,As follows: (4)

於重建步驟S4中:於接收端2即時重建嵌入訊號 ,其中,因矩陣 為非零之系統矩陣,因此可以推論得到 ,嵌入訊號 等於控制訊號 ,因此嵌入訊號 ,在確保系統同步的情況下,將可以在接收端2重建。 In the reconstruction step S4: the embedded signal is reconstructed in real time at the receiving end 2 , where, the cause matrix is a non-zero system matrix, so it can be deduced that , embedded signal equal to control signal , so the embedded signal , it will be possible to reconstruct at the receiving end 2 while ensuring system synchronization.

於本實施例中,資訊安全傳輸方法200更包括一調變步驟P1,於調變步驟P1中,滑動模式控制單元41調整同步模組30非線性系統的特性,以確保同步模組30的穩定,誤差收斂單元42調整同步模組30的同步誤差,以使同步誤差收斂到最小。In this embodiment, the information secure transmission method 200 further includes a modulation step P1. In the modulation step P1, the sliding mode control unit 41 adjusts the characteristics of the nonlinear system of the synchronization module 30 to ensure the stability of the synchronization module 30. , the error convergence unit 42 adjusts the synchronization error of the synchronization module 30 so that the synchronization error converges to a minimum.

滑動模式控制單元41能夠建立一轉換面 ,以使誤差動態 進入滑動模式,轉換面設計如下: (5) The sliding mode control unit 41 is capable of establishing a switching surface , so that the error is dynamic Enter sliding mode, and the conversion surface is designed as follows: (5)

其中, ,所以 ,而 為待設計之控制增益矩陣。 in, ,so ,and is the control gain matrix to be designed.

對(5)式進行微分處理可以得到 (6) By differentiating equation (5), we can get (6)

當受控主僕誤差動態進入滑動模式時, ,轉換面 為0,因此由(6)式可以得到等效控制訊號 ,如下所示: (7) When the controlled master-server error dynamically enters sliding mode, , conversion surface is 0, so the equivalent control signal can be obtained from equation (6) ,As follows: (7)

又在同步的情況下,誤差收斂到0,同時 也收斂到0,所以亦可以如同(4)式所推論,得 In the case of synchronization, the error converges to 0, and at the same time also converges to 0, so it can also be deduced as in equation (4), we get .

此外,誤差收斂單元42採用線性二次規劃方法,以求得(5)式中的控制增益矩陣 ,以使誤差動態 最小化,考慮成本函數如下: (8) In addition, the error convergence unit 42 adopts a linear quadratic programming method to obtain the control gain matrix in equation (5) , so that the error is dynamic To minimize, consider the cost function as follows: (8)

其中, 為正定矩陣(positive define matrix)。 in, , is a positive define matrix.

根據上述的性能函數可以得到代數Riccati方程如下: (9) According to the above performance function, the algebraic Riccati equation can be obtained as follows: (9)

其中, 為正定對稱矩陣,如此,可以得到控制增益矩陣 ,如下所示: (10) in, is a positive definite symmetric matrix. In this way, the control gain matrix can be obtained ,As follows: (10)

於本實施例中,資訊安全傳輸方法200更包括一驗證步驟P2,於驗證步驟P2中,驗證模組50確認誤差動態 進入所述滑動模式。 In this embodiment, the information secure transmission method 200 further includes a verification step P2. In the verification step P2, the verification module 50 confirms the error dynamics. Enter said sliding mode.

為確保誤差動態 進入所述滑動模式,控制訊號 設計如下: (11) To ensure error dynamics Enter the sliding mode and control the signal The design is as follows: (11)

將(11)式帶入(6)式可以得到: (12) Putting equation (11) into equation (6) we can get: (12)

其中, 為正數, 選擇為 ,其中 in, , is a positive number, Select as ,in .

驗證模組50為了證明控制訊號 能夠確保誤差動態 進入所述滑動模式,以透過李亞普諾夫函數(Lyapunov function)進行驗證,李亞普諾夫函數(Lyapunov function)如下: (13) The verification module 50 is used to prove the control signal able to ensure error dynamics Enter the sliding mode to verify through the Lyapunov function. The Lyapunov function is as follows: (13)

對(13)式微分可得 (14) Differentiating equation (13), we can get (14)

由(14)式,可知當選擇 時, 。因此可以保證控制訊號 如(11)式所示,而確保轉換面 可以收斂到0,亦即可順利進入滑動模式。 From equation (14), it can be seen that when choosing Hour, . Therefore, it is guaranteed that the control signal As shown in equation (11), ensuring that the conversion surface It can converge to 0, which means it can smoothly enter the sliding mode.

於本實施例中,資訊安全傳輸方法200更包括一離散步驟P3,於離散步驟P3中,離散模組60將轉換面 以及誤差動態 進行離散化,以利後續在電路上的實現。 In this embodiment, the information secure transmission method 200 further includes a discrete step P3. In the discrete step P3, the discrete module 60 converts the plane and error dynamics Discretize to facilitate subsequent implementation on the circuit.

習知的滑動模式控制,由於使用符號函數 ,因此會存在抖動(Chattering Phenomenon)的問題,為了解決此一問題,本發明將先採用飽合函數 取代符號函數 ,能夠確認在參數 很小的情況下,對系統控制性能的影響程度很小。飽合函數 定義如下: (15) Known sliding mode control, due to the use of symbolic functions , so there will be a problem of chattering (Chattering Phenomenon). In order to solve this problem, the present invention will first use the saturation function replace sign function , can be confirmed in the parameter In small cases, the impact on system control performance is very small. saturation function The definition is as follows: (15)

其中,參數 是任意小的正數,因此可以得到連續滑動模式控制訊號 如下所示: (16) Among them, parameters is an arbitrarily small positive number, so a continuous sliding mode control signal can be obtained As follows: (16)

在取得出連續滑動模式控制訊號 之後,為了採用微控制器實現此控制器,進一步採用數位重新設計技術,將連續型的輸入轉換成離散型的控制器,同時保有原控制性能。 After obtaining the continuous sliding mode control signal Later, in order to implement this controller using a microcontroller, digital redesign technology was further used to convert the continuous input into a discrete controller while maintaining the original control performance.

首先,利用歐拉方法(Euler Method)將(6)式進行離散化,以得到 (17) First, use the Euler Method to discretize equation (6) to get (17)

其中, 為取樣時間。 in, is the sampling time.

為了保證在離散時間下,依然可以進入滑動模式,以Lemma 1說明如下: 考慮以下抵達條件, In order to ensure that sliding mode can still be entered in discrete time, Lemma 1 is used as follows: Consider the following arrival conditions, ; ;

其中, 。若上述的抵達條件滿足,則系統軌跡將可收斂到 ,亦即可進入滑動模式。 in, , . If the above arrival conditions are met, the system trajectory will converge to , that is, you can enter sliding mode.

由Lemma 1可計算得: (18) (19) It can be calculated from Lemma 1: , (18) , (19)

因此,根據Lemma 1,可知 將可收斂到 ,亦即可進入滑動模式。 Therefore, according to Lemma 1, we know will converge to , that is, you can enter sliding mode.

當進入滑動模式,如(7)式所示, ,因此誤差動態 可以被離散化如下: )                                                          (20) When entering the sliding mode, as shown in equation (7), , so the error dynamics can be discretized as follows: ) (20)

其中 in , .

由於零階保持(Zero-Order-Hold, Z.O.H),控制訊號 )可表示如下: Due to Zero-Order-Hold (ZOH), the control signal ) can be expressed as follows:

因此, )滿足 (21) therefore, )satisfy (twenty one)

根據(20)式,(21)式可重新改寫如下: (22) According to equation (20), equation (21) can be rewritten as follows: (twenty two)

其中, in, .

同理,(5)式也離散化如下所示: (23) (24) In the same way, equation (5) is also discretized as follows: (twenty three) (twenty four)

利用數位重新設計的方法,並引用如(15)式的飽和函數,則離散型的滑動模式可設計如下所示: (25) Using the digital redesign method and citing the saturation function such as (15), the discrete sliding mode can be designed as follows: (25)

藉此,即可利用數位化的微控制器實現滑動控制,對電路的實現上有很大的便利性。In this way, the digital microcontroller can be used to realize sliding control, which is very convenient for circuit implementation.

如圖2至圖8所示,本發明實施例進一步透過模擬來驗證系統同步控制及通訊安全傳輸的效果,於本實施例中,混沌模組10選用Lorenz混沌系統進行模擬分析。首先Lorenz混沌系統改寫如(1)及(2)式所表示之主僕動態方程式如下: ,以及 As shown in Figures 2 to 8, the embodiment of the present invention further verifies the effect of system synchronization control and communication security transmission through simulation. In this embodiment, the chaos module 10 uses the Lorenz chaos system for simulation analysis. First, the Lorenz chaotic system rewrites the master-servant dynamic equations expressed by equations (1) and (2) as follows: ,as well as ;

其中, in, , , , .

而嵌入於發送端1之嵌入訊號 為: The embedded signal embedded in the transmitter 1 for: .

在(25)式中的控制參數 The control parameters in (25) , , .

在(8)式中的權值矩陣 ,及 The weight matrix in equation (8) ,and .

增益矩陣 可計算後得到如下: gain matrix It can be calculated as follows: ;

再使用上述數位重新設計的方法,可以得到 以及 為: Using the above digital redesign method, we can get , as well as for: ; ; .

其中,Lorenz混沌系統,起始值選擇為 以及 Among them, Lorenz chaotic system, the starting value is selected as as well as .

由圖2、圖4及圖5所示,可以觀察到混沌模組10的同步誤差很快就收斂為0,同步模組30的確可以使混沌模組10很快達到同步。As shown in Figures 2, 4 and 5, it can be observed that the synchronization error of the chaos module 10 quickly converges to 0, and the synchronization module 30 can indeed make the chaos module 10 achieve synchronization quickly.

由圖6至圖7所示,可以觀察控制訊號 (此訊號為 經zero-order-hold後之連續訊號)以及嵌入的嵌入訊號 之間的誤差,如前所述,誤差能夠很快地收斂到0。 As shown in Figure 6 to Figure 7, you can observe the control signal (This signal is Continuous signal after zero-order-hold) and embedded embedded signal The error between, as mentioned before, the error can quickly converge to 0.

如圖8所示,本發明經數位重新設計後的滑動模式控制的作用下,亦能夠收斂到0。As shown in Figure 8, the present invention can also converge to 0 under the action of digitally redesigned sliding mode control.

綜合上述,本發明基於混沌同步之內嵌式資訊安全傳輸系統100及其資訊安全傳輸方法200,能夠藉由內嵌模組20將欲傳送之嵌入訊號輸入至混沌模組10,能夠確保混沌模組10的混沌行為不被破壞,維持原混沌模組10之亂數品質,具更彈性的運用設計。Based on the above, the embedded information secure transmission system 100 and its information secure transmission method 200 based on chaos synchronization of the present invention can input the embedded signal to be transmitted to the chaos module 10 through the embedded module 20, and can ensure that the chaotic mode The chaotic behavior of Group 10 is not destroyed, and the random quality of the original Chaos Module 10 is maintained, with a more flexible application design.

此外,透過同步模組30進行混沌模組10的同步處理,搭配調變模組40對同步處理的調變,能夠有效控制混沌模組10達到同步,使嵌入訊號於接收端2即時重建,而確保發送端1及接收端2之間的資料安全通訊,進而廣泛提供未來通訊安全系統設計中所需的秘密資料通訊。In addition, the synchronization module 30 performs synchronization processing of the chaos module 10, and the modulation module 40 modulates the synchronization processing, which can effectively control the chaos module 10 to achieve synchronization, so that the embedded signal can be reconstructed in real time at the receiving end 2, and Ensure data security communication between the sender 1 and the receiver 2, thereby widely providing the secret data communication required in the design of future communication security systems.

以上所舉實施例僅用以說明本發明而已,非用以限制本發明之範圍。舉凡不違本發明精神所從事的種種修改或變化,俱屬本發明意欲保護之範疇。The above embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention. All modifications or changes that do not violate the spirit of the present invention fall within the scope of the invention.

1:發送端 2:接收端 100:資訊安全傳輸系統 10:混沌模組 20:內嵌模組 30:同步模組 40:調變模組 41:滑動模式控制單元 42:誤差收斂單元 50:驗證模組 60:離散模組 200:資訊安全傳輸方法 S1:混沌方程建立步驟 S2:嵌入步驟 S3:同步步驟 S4:重建步驟 P1:調變步驟 P2:驗證步驟 P3:離散步驟 1: Sender 2: Receiver 100:Information security transmission system 10: Chaos Module 20: Embedded module 30: Synchronization module 40: Modulation module 41: Sliding mode control unit 42: Error convergence unit 50: Verification module 60: Discrete module 200: Information security transmission method S1: Steps to establish chaos equation S2: Embedding step S3: Synchronization steps S4: Reconstruction steps P1: Modulation steps P2: Verification steps P3: discrete steps

圖1係本發明系統連結示意圖。 圖2係本發明系統架構方塊示意圖。 圖3係本發明步驟流程圖。 圖4係本發明混沌模組之狀態響應示意圖。 圖5係本發明同步誤差示意圖。 圖6係本發明嵌入訊號及數位重新設計滑動式控制訊號示意圖。 圖7係本發明嵌入訊號及控制訊號間誤差示意圖。 圖8係本發明轉換函數響應示意圖。 Figure 1 is a schematic diagram of the system connection of the present invention. Figure 2 is a block diagram of the system architecture of the present invention. Figure 3 is a step flow chart of the present invention. Figure 4 is a schematic diagram of the state response of the chaos module of the present invention. Figure 5 is a schematic diagram of the synchronization error of the present invention. Figure 6 is a schematic diagram of embedded signals and digitally redesigned sliding control signals of the present invention. Figure 7 is a schematic diagram of the error between the embedded signal and the control signal of the present invention. Figure 8 is a schematic diagram of the conversion function response of the present invention.

100:資訊安全傳輸系統 100:Information security transmission system

10:混沌模組 10: Chaos Module

20:內嵌模組 20: Embedded module

30:同步模組 30: Synchronization module

40:調變模組 40: Modulation module

41:滑動模式控制單元 41: Sliding mode control unit

42:誤差收斂單元 42: Error convergence unit

50:驗證模組 50: Verification module

60:離散模組 60: Discrete module

Claims (10)

一種基於混沌同步之內嵌式資訊安全傳輸系統,其用以在一發送端以及一接收端之間進行資料傳輸,該資訊安全傳輸系統包括: 一混沌模組,其於該發送端建立一主動態方程式,並於該接收端建立一僕動態方程式,該混沌模組提供輸入一控制訊號; 一內嵌模組,其耦接該混沌模組,該內嵌模組用以將欲傳送之一嵌入訊號輸入至該主動態方程式;以及 一同步模組,其耦接該混沌模組,該同步模組定義一誤差向量而取得一誤差動態,該同步模組對該混沌模組進行同步處理以使該誤差動態為0,且該嵌入訊號等於該控制訊號,該混沌模組能夠使該嵌入訊號於該接收端即時重建。 An embedded secure information transmission system based on chaos synchronization, which is used to transmit data between a sending end and a receiving end. The secure information transmission system includes: A chaos module that establishes a master dynamic equation at the sending end and a slave dynamic equation at the receiving end, and the chaos module provides an input control signal; An embedded module coupled to the chaos module, the embedded module is used to input an embedded signal to be transmitted into the main dynamic equation; and A synchronization module coupled to the chaos module, the synchronization module defines an error vector to obtain an error dynamics, the synchronization module performs synchronization processing on the chaos module so that the error dynamics is 0, and the embedded The signal is equal to the control signal, and the chaos module enables the embedded signal to be reconstructed in real time at the receiving end. 如請求項1所述之基於混沌同步之內嵌式資訊安全傳輸系統,其中,該主動態方程式為 ,該僕動態方程式為 ,其中, 為系統矩陣, 為該控制訊號, 為非線性項, 為該嵌入訊號。 An embedded information secure transmission system based on chaos synchronization as described in claim 1, wherein the main dynamic equation is , the servant dynamic equation is ,in, and is the system matrix, For this control signal, and is a nonlinear term, for the embedded signal. 如請求項1所述之基於混沌同步之內嵌式資訊安全傳輸系統,更包括一調變模組,其耦接該同步模組,該調變模組具有一滑動模式控制單元,該滑動模式控制單元建立一轉換面,以使該誤差動態進入一滑動模式,當該誤差動態進入該滑動模式,該轉換面為0。The embedded information security transmission system based on chaotic synchronization as described in claim 1 further includes a modulation module coupled to the synchronization module, the modulation module has a sliding mode control unit, the sliding mode The control unit establishes a conversion surface so that the error dynamically enters a sliding mode. When the error dynamically enters the sliding mode, the conversion surface is 0. 如請求項3所述之基於混沌同步之內嵌式資訊安全傳輸系統,其中,該調變模組具有一誤差收斂單元,該誤差收斂單元以一線性二次規劃法使該誤差動態最小化。The embedded information secure transmission system based on chaotic synchronization as described in claim 3, wherein the modulation module has an error convergence unit that dynamically minimizes the error using a linear quadratic programming method. 如請求項3所述之基於混沌同步之內嵌式資訊安全傳輸系統,更包括一驗證模組,其耦接該同步模組以及該調變模組,該驗證模組用以確認該誤差動態進入該滑動模式。The embedded information security transmission system based on chaos synchronization as described in claim 3 further includes a verification module coupled to the synchronization module and the modulation module, and the verification module is used to confirm the error dynamics Enter this sliding mode. 一種基於混沌同步之內嵌式資訊安全傳輸方法,其包含以下步驟: 一混沌方程建立步驟:於一發送端建立一主動態方程式,並於一接收端建立一僕動態方程式,且提供輸入一控制訊號; 一嵌入步驟:將欲傳送之一嵌入訊號輸入至該主動態方程式; 一同步步驟:定義一誤差向量而取得一誤差動態,並對該主動態方程式及該僕動態方程式進行同步處理,使該誤差動態收斂為0,且該嵌入訊號等於該控制訊號;以及 一重建步驟:於該接收端即時重建該嵌入訊號。 An embedded information secure transmission method based on chaos synchronization, which includes the following steps: A chaos equation establishment step: establish a master dynamic equation at a transmitting end, establish a slave dynamic equation at a receiving end, and provide an input control signal; An embedding step: input an embedding signal to be transmitted into the main dynamic equation; A synchronization step: define an error vector to obtain an error dynamics, and synchronize the main dynamic equation and the slave dynamic equation so that the error dynamics converges to 0, and the embedded signal is equal to the control signal; and A reconstruction step: reconstruct the embedded signal in real time at the receiving end. 如請求項6所述之基於混沌同步之內嵌式資訊安全傳輸方法,其中,該主動態方程式為 ,該僕動態方程式為 ,其中, 為系統矩陣, 為該控制訊號, 為非線性項, 為該嵌入訊號。 The embedded information secure transmission method based on chaos synchronization as described in claim 6, wherein the main dynamic equation is , the servant dynamic equation is ,in, and is the system matrix, For this control signal, and is a nonlinear term, for the embedded signal. 如請求項6所述之基於混沌同步之內嵌式資訊安全傳輸方法,更包括一調變步驟:建立一轉換面,並使該誤差動態進入一滑動模式,且該轉換面為0。The embedded information secure transmission method based on chaotic synchronization as described in claim 6 further includes a modulation step: establishing a conversion surface, and dynamically making the error enter a sliding mode, and the conversion surface is 0. 如請求項8所述之基於混沌同步之內嵌式資訊安全傳輸方法,其中,於該調變步驟中,進一步以一線性二次規劃法使該誤差動態最小化。The embedded information secure transmission method based on chaotic synchronization as described in claim 8, wherein in the modulation step, a linear quadratic programming method is further used to dynamically minimize the error. 如請求項8所述之基於混沌同步之內嵌式資訊安全傳輸方法,更包括一驗證步驟,其用以確認該誤差動態進入該滑動模式。The embedded information secure transmission method based on chaos synchronization as described in claim 8 further includes a verification step for confirming that the error dynamically enters the sliding mode.
TW111117410A 2022-05-10 2022-05-10 Embedded type information security transmission system based on chaos synchronization and transmission method thereof TWI825708B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111117410A TWI825708B (en) 2022-05-10 2022-05-10 Embedded type information security transmission system based on chaos synchronization and transmission method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111117410A TWI825708B (en) 2022-05-10 2022-05-10 Embedded type information security transmission system based on chaos synchronization and transmission method thereof

Publications (2)

Publication Number Publication Date
TW202345562A true TW202345562A (en) 2023-11-16
TWI825708B TWI825708B (en) 2023-12-11

Family

ID=89720451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111117410A TWI825708B (en) 2022-05-10 2022-05-10 Embedded type information security transmission system based on chaos synchronization and transmission method thereof

Country Status (1)

Country Link
TW (1) TWI825708B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201025982A (en) * 2008-12-31 2010-07-01 Univ Shu Te Chaotic security communication system

Also Published As

Publication number Publication date
TWI825708B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
Zhou et al. A robust synchronization-based chaotic secure communication scheme with double-layered and multiple hybrid networks
Zhou et al. A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks
KR100543101B1 (en) Apparatus for converting and transmitting a code using chaos system and the method therefor
Tlelo-Cuautle et al. FPGA realization of a chaotic communication system applied to image processing
US9853809B2 (en) Method and apparatus for hybrid encryption
Wang et al. A new six‐dimensional hyperchaotic system and its secure communication circuit implementation
TWI825708B (en) Embedded type information security transmission system based on chaos synchronization and transmission method thereof
Bonny et al. Highly-secured chaos-based communication system using cascaded masking technique and adaptive synchronization
US10574439B2 (en) System and method for secure communication using random blocks or random numbers
TWM631201U (en) Embedded Information Transmission System
Gularte et al. Scheme for chaos-based encryption and lyapunov analysis
Aguilar-Bustos et al. Synchronization of different hyperchaotic maps for encryption
CN108964871B (en) Three-channel safe communication method based on double-Chen chaotic system and terminal sliding mode
TWI571092B (en) Encryption system for safe transmission of network data with adaptive synchronization of hyperchaotic signals free from external interference and parameter disturbance, and method for the same
Yan et al. A new matrix projective synchronization of fractional-order discrete-time systems and its application in secure communication
Al-Musawi et al. Field-programmable gate array design of image encryption and decryption using Chua’s chaotic masking
WO2021139374A1 (en) Event trigger control method and device, and chaotic secure communication system
Li et al. Discrete synchronization method for continuous chaotic systems and its application in secure communication
EP3506551A1 (en) Method and system for providing a pre-determined key to a classical computer of a public hybrid quantum and classical network
Hamiche et al. A new synchronization result for fractional-order discrete-time chaotic systems via bandlimited channels
KR100674561B1 (en) The communication apparatus and method using the chaos system having delay times feedback
Zheng et al. A Systematic Methodology for Multi‐Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation
Sadoudi et al. First experimental solution for channel noise sensibility in digital chaotic communications
Rodrigues et al. Chaos synchronization applied to secure communication via sliding mode control and norm state observers
Boutat-Baddas et al. Implementation of the Chua’s Circuit and its Application in the Data Transmission