TW201025982A - Chaotic security communication system - Google Patents

Chaotic security communication system Download PDF

Info

Publication number
TW201025982A
TW201025982A TW97151751A TW97151751A TW201025982A TW 201025982 A TW201025982 A TW 201025982A TW 97151751 A TW97151751 A TW 97151751A TW 97151751 A TW97151751 A TW 97151751A TW 201025982 A TW201025982 A TW 201025982A
Authority
TW
Taiwan
Prior art keywords
chaotic
communication system
master
servant
signal
Prior art date
Application number
TW97151751A
Other languages
Chinese (zh)
Other versions
TWI376924B (en
Inventor
Jun-Juh Yan
Original Assignee
Univ Shu Te
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Shu Te filed Critical Univ Shu Te
Priority to TW97151751A priority Critical patent/TW201025982A/en
Publication of TW201025982A publication Critical patent/TW201025982A/en
Application granted granted Critical
Publication of TWI376924B publication Critical patent/TWI376924B/zh

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A chaotic security communication system is disclosed, comprising: a chaotic master-control end, a synchronous controller, and a chaotic slave end. The chaotic master-control end is designed to transmit encrypted digital signal. The chaotic slave end is designed to receive the encrypted digital signal and then decrypt it. The synchronous controller is designed to synchronize the chaotic master-control end with the chaotic slave end.

Description

201025982 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種混沌安全通訊系統,特別是 有關於一種同步化控制之混池安全通訊系統。 【先前技術】201025982 VI. Description of the Invention: [Technical Field] The present invention relates to a chaotic safety communication system, and more particularly to a hybrid communication safety communication system for synchronization control. [Prior Art]

混沌訊號是一種看似混亂但卻又隱藏規則的現 象,於1963年勞倫茲(Lorenz)利用大氣的模擬方程式 首次看到了混沌的面貌,到 1978年費根堡 (Feigenbaum)提出了混死系統一般性理論,從此,混 沌在各種領域中開始被廣泛提出來研究,其中包括通 訊、生物、數學、物理、化學’甚至經濟方面都能看 到混洗現象的身影,而之後,如何控制混屯現象就成 為此領域的研究重點。 混洗為長時間的非週期性行為’並且其有兩個明 顯的特徵:決定性(Deterministic)與盤^ &认 τ初始值敏咸 (Sensitive to initial condition),決定性代表日 ★ 化過程看似混亂的非線性反應但它卻是依^先的演 規則(即方程式)在進行,至於對初始值的敏=疋的 在混沌系統中的軌道,就算很接近也會以护=,使得 快速分離,基於此特徵,混沌系統時常應曰=形式的 全上。主要先前技術處理為類比訊號,然^通訊安 具有易受雜訊干擾影響,且其訊號直接^潭=比訊號 合後送入公共通道,易受到濾波器攻擊 訊說輕 辉之缺點。 201025982 【發明内容】 有鑑於上述習知技藝之問題,本發明之目的就是 在提供一種混沌安全通訊系統,以解決習知之缺點。 根據本發明之目的,提出一種混沌安全通訊系 統,其包含一混沌主控端、一同步控制器及一混沌僕 從端。混沌主控端係傳輸一數位加密訊號,混沌僕從 端係接收數位加密訊號並解密數位加密訊號以產生 一數位訊號,同步控制器係用以令混沌主控端及混沌 僕從端達到同步。其中,加密數位訊號係以嵌入 (embedded)之方式欲入混屯主控端,同步控制器係以 滑動模式控制理論建構,混沌僕從端係利用等效控制 器之概念以解密加密數位訊號。 根據本發明之再一目的,提出一種混沌安全通訊 系統,其係結合混沌系統隨機和不可預測特性及滑動 模式控制理論,藉以設計混沌系統同步控制電路,再 進一步完成混沌安全通訊系統之實現。在此混沌安全 通訊系統中,滑動模式控制理論係用以進行兩混沌系 統(即混沌主控端及混沌僕從端)之同步化控制,因滑 動模式控制理論產生之訊號具有較佳之強健特性 (Robustness),亦即對系統參數所產生之不確定性具有 較佳控制性能。本發明所設計之電路可將嵌入在混沌 主控端之加密數位訊號於混沌僕從端還原成原數位 訊號。 值的一提的是,嵌入於混沌主控端之加密數位訊 4 201025982 號,其並未出現在公共通道中,因此竊密者在公共領 域中,無法取得傳遞的相關資訊内容。有效提昇保密 的效果。本發明有別於以往混沌保密通訊系統利用遮 罩(Masking)之方法,本發明係利用嵌入(Embedded) 之方法,可有效防範以濾波器等方式的攻擊,提高混 - 沌保密通訊之安全性。 【實施方式】 ❿ 一般而言,混沌系統是一個極為複雜的動態非線 性系統,具有相當寬廣之傅立葉(Fourier)頻譜,且由 於混沌系統對初始值相當敏感,故具有軌跡不可預測 性。故請參閱第1圖,其係為本發明之混沌安全通訊 系統之實施例方塊圖。圖中,混沌安全通訊系統包含 一混沌主控端11、一同步控制器12及一混沌僕從端 13。混沌主控端11係傳輸一數位加密訊號111,混沌 僕從端13係接收數位加密訊號111並解密數位加密 ❿ 訊號111以產生一數位訊號131,同步控制器12係用 以令混沌主控端11及混沌僕從端13達到同步。其 中,加密數位訊號111係以喪入(embedded)之方式喪 入混沌主控端11,同步控制器12係以滑動模式控制 理論建構,混沌僕從端13係係透過同步控制器12, 並利用一等效控制之方式以解密加密數位訊號111。 將欲傳遞之數位加密訊號111嵌入混沌主控端11 中,而在混沌僕從端13中,加入具滑動模式理論之同 步控制器12,使混沌主控端11及混沌僕從端13同步, 5 201025982 並進一步利用等效控制器之概念,在混沌僕從端13中 將嵌入混沌主控端11之數位加密訊號111解出以產生 數位訊號131,以達保密通訊的要求。其中Xm為混 沌主控端11之狀態變數向量,Xs為混沌僕從端13之 狀態變數向量,Xm-Xs為誤差向量,並將此誤差向量 定義為e,即e=Xm-Xs,u則為同步控制器輸出。 本發明以斯伯特(Sprott)混沌系統為例,但實際應 用不限於此系統,Sprott混沌系統主要是以一個三階 微分方程式為基底的一系列動態非線性系統,其原始 微分方程式如下: X + 0.6.Ϋ+ X = G(x) (1) 其中G(x)為片段不連續的函數,現分別令混沌主 控端11及混沌僕從端13之狀態變數如下:The chaotic signal is a seemingly chaotic but hidden rule. In 1963, Lorenz used the atmospheric simulation equation to see the chaos for the first time. By 1978, Feigenbaum proposed a mixed death system. General theory, since then, chaos has been widely proposed in various fields, including communication, biology, mathematics, physics, chemistry, and even economic aspects can see the phenomenon of shuffling, and then, how to control the chaos The phenomenon has become the focus of research in this field. Shuffle is a long-term non-periodic behavior' and it has two distinct characteristics: Deterministic and Sensitive to initial condition, and the decisive representation of the day is seemingly chaotic. The nonlinear response, but it is carried out according to the rules of the first (ie, the equation), as for the sensitivity of the initial value = 疋 of the orbit in the chaotic system, even if it is close, it will protect the fast, so that the separation, Based on this feature, the chaotic system should always be 曰 = all forms. The main prior art processing is analogous to the signal, but the communication security is susceptible to noise interference, and its signal is directly connected to the public channel after the signal is combined with the signal, which is vulnerable to the filter attack. SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, it is an object of the present invention to provide a chaotic secure communication system that addresses the shortcomings of the prior art. In accordance with the purpose of the present invention, a chaotic secure communication system is provided that includes a chaotic master, a synchronization controller, and a chaotic servant. The chaotic master transmits a digitally encrypted signal, and the chaotic servant receives the digital encrypted signal and decrypts the digital encrypted signal to generate a digital signal. The synchronous controller is used to synchronize the chaotic master and the chaotic servant. Among them, the encrypted digital signal is embedded in the mixed control mode, and the synchronous controller is constructed by the sliding mode control theory. The chaotic servant uses the concept of the equivalent controller to decrypt the encrypted digital signal. According to still another object of the present invention, a chaotic safety communication system is proposed, which combines the random and unpredictable characteristics of the chaotic system and the sliding mode control theory, thereby designing a synchronous control circuit of the chaotic system, and further implementing the chaotic safety communication system. In this chaotic safety communication system, the sliding mode control theory is used to synchronize the two chaotic systems (ie, the chaotic master and the chaotic servant), and the signal generated by the sliding mode control theory has better robustness ( Robustness), which has better control of the uncertainty caused by system parameters. The circuit designed by the invention can restore the encrypted digital signal embedded in the chaotic master terminal to the original digital signal at the chaotic servant end. It is worth mentioning that the encrypted digital signal 4 201025982 embedded in the chaotic master does not appear in the public channel, so the thief cannot obtain the relevant information content in the public domain. Effectively improve the effectiveness of confidentiality. The invention is different from the previous method of using the masking by the chaotic secure communication system, and the invention utilizes the embedded method to effectively prevent attacks by means of filters and the like, and improve the security of the mixed-chaotic secure communication. . [Embodiment] ❿ In general, a chaotic system is an extremely complex dynamic nonlinear system with a fairly broad Fourier spectrum, and because the chaotic system is quite sensitive to initial values, it has unpredictable trajectories. Therefore, please refer to Fig. 1, which is a block diagram of an embodiment of the chaotic secure communication system of the present invention. In the figure, the chaotic safety communication system comprises a chaotic master terminal 11, a synchronization controller 12 and a chaotic servant terminal 13. The chaotic master 11 transmits a digital encryption signal 111, and the chaotic servant 13 receives the digital encrypted signal 111 and decrypts the digital encrypted signal 111 to generate a digital signal 131. The synchronous controller 12 is used to make the chaotic master 11 and the chaotic servant 13 reach synchronization. The encrypted digital signal 111 is immersed in the chaotic host 11 in an embedded manner, the synchronous controller 12 is constructed by a sliding mode control theory, and the chaotic servant 13 is transmitted through the synchronous controller 12 and utilized. An equivalent control means to decrypt the encrypted digital signal 111. The digital encrypted signal 111 to be transmitted is embedded in the chaotic master 11 , and in the chaotic servant 13 , the synchronous controller 12 with the sliding mode theory is added to synchronize the chaotic master 11 and the chaotic servant 13 . 5 201025982 And further utilizing the concept of the equivalent controller, the digital encryption signal 111 embedded in the chaotic master 11 is solved in the chaotic servant 13 to generate the digital signal 131 to meet the requirements of secure communication. Where Xm is the state variable vector of the chaotic master 11 , Xs is the state variable vector of the chaotic servant 13 , Xm-Xs is the error vector, and the error vector is defined as e, ie e=Xm-Xs, u Output for the sync controller. The invention takes the Sprott chaotic system as an example, but the practical application is not limited to this system. The Sprott chaotic system is mainly a series of dynamic nonlinear systems based on a third-order differential equation. The original differential equation is as follows: X + 0.6. Ϋ + X = G(x) (1) where G(x) is a function of discontinuous segments. The state variables of chaotic master 11 and chaotic servant 13 are as follows:

.Tj = X , x2 = X t X3 = X G(x) = -l.2x+ 2sigti{x) 經過整理後可得到下列微分方程組: χχ ~ χ2 (2) x2 = X3 (3) x3 = -1.2.Tj - x2 - 0.6x3 + ) (4) 此混沌安全通訊系統,可分為混沌主控端 ll(master)及混、;屯僕從端13 (slave)兩個部份,而在此 系統設計中,所採用之混沌系統為Sportt系統,其 Master-Slave混先系統表示如下: (5) 201025982 xmi = xm2.Tj = X , x2 = X t X3 = XG(x) = -l.2x+ 2sigti{x) After finishing, the following differential equations are obtained: χχ ~ χ2 (2) x2 = X3 (3) x3 = -1.2 .Tj - x2 - 0.6x3 + ) (4) This chaotic safety communication system can be divided into chaotic master ll (master) and mixed; 屯 servant 13 (slave) two parts, and in this system In the design, the chaotic system used is the Sportt system, and its Master-Slave hybrid system is expressed as follows: (5) 201025982 xmi = xm2

Cm2= xm3 X, «3 wl、2 + 2 岭、)+ 吨)Cm2= xm3 X, «3 wl, 2 + 2 ridge,) + tons)

Slave之方程式 s2 魯 (6) o 〜〇广〜~ 0,6〜+2·(〜)+_ x 、 Xnl、Xm2&Xm3為混沌主控端11之狀態變數, tiXS2及&為混沌僕從端13之狀態變數,是m(t) '、為混洗主控端U欲傳送之數位加密訊號111,而 係為本發明主要設計之具滑動模式理論之同步控 制器12。 再者,誤差函數e之定義如下所述: ht : / = 1,23 第(7)式展開即得: ⑺ si 52 (8) == 由方程式(5)至方程式(7)可推知下列動態誤差方 程式: 201025982 — _ 1·2这i - _ Ο-όβ〗+ w(?)_ m{f} (9) 由(9)式可推知,若使同步控制器12u(t)之運作方 程式如下所述: liin|^(/)|| = liin||[^(/) ^2(/) ^W]|=0 t—^c〇 則可推知下式:Slave's equation s2 Lu (6) o ~ 〇广~~ 0,6~+2·(~)+_ x , Xnl, Xm2&Xm3 are the state variables of the chaotic master 11 , tiXS2 and & The state variable from the terminal 13 is m(t) ', which is the digital encryption signal 111 to be transmitted by the shuffling master U, and is the synchronous controller 12 with the sliding mode theory which is mainly designed in the invention. Furthermore, the definition of the error function e is as follows: ht : / = 1,23 Equation (7) expands to obtain: (7) si 52 (8) == The following dynamics can be inferred from equation (5) to equation (7) The error equation: 201025982 — _ 1·2 This i - _ Ο - ό β 〗 + w (?) _ m{f} (9) From (9) can be inferred, if the operating equation of the synchronous controller 12u (t) As follows: liin|^(/)|| = liin||[^(/) ^2(/) ^W]|=0 t—^c〇 can infer the following formula:

=0 =0 ^3(/) = = 0 如此,即可進一步推論"(0 = 7吨)(10)。 由(10)式中,表示具滑動模式理論之同步控制器 u(t)將會逐漸近似m(t)。為使Master-Slave混、;屯系統 之狀態響應而達到同步狀態,亦即el,e2,e3趨近於 零*其設計方式係利用滑動模式控制以設計同步控制 器12使得Master-Slave混、;屯系統達到同步。 e3 = -1.2^ -e2- 0.0^3 + w(〇_ 。 值得一提的是,欲使Master-Slave混、;屯系統達到 同步,需對動態誤差方程式(9),設計出適當之轉換 面,使系統在轉換面上之動態行為,具備系統需求之 特性。其次係設計具滑動模式之同步控制器12,使系 統能順利進入設計之轉換面並停留在轉換面上。 其中,轉換面之定義如下: 8 201025982 S(t) = αλβχ + aze2 + e3 (11) 其中SWei?,而al及a2為設計之參數。當系統 進入滑動模式後,其動態滿足以下方程式: _ = 0 (12) 1_ = 〇 因此,系統在滑動模式下’可推知如下之結果·· *=0 =0 ^3(/) = = 0 So, you can further infer "(0 = 7 tons) (10). From equation (10), the synchronous controller u(t) with sliding mode theory will gradually approximate m(t). In order to synchronize the state of the Master-Slave system, the state of the system is synchronized, that is, el, e2, and e3 are close to zero. * The design method uses sliding mode control to design the synchronous controller 12 to make the Master-Slave mix. ; The system is synchronized. E3 = -1.2^ -e2- 0.0^3 + w(〇_ . It is worth mentioning that to make Master-Slave mix; 屯 system synchronization, you need to design the appropriate conversion for dynamic error equation (9) In this way, the dynamic behavior of the system on the conversion surface is characterized by the system requirements. Secondly, the synchronous controller 12 with the sliding mode is designed to enable the system to smoothly enter the conversion surface of the design and stay on the conversion surface. The definition is as follows: 8 201025982 S(t) = αλβχ + aze2 + e3 (11) where SWei?, and al and a2 are the parameters of the design. When the system enters the sliding mode, its dynamics satisfy the following equation: _ = 0 (12 ) 1_ = 〇 Therefore, the system can infer the following results in the sliding mode.

❹ S(t) = axex + α2έ2 + e3 = 0 (13) => ez= ~αλΘχ ~a2e2 (⑷ 由(14)式可知若適當選擇ai及a2之參數,滿足 al > 0及a2> 0 ’則在滑動模式下’ ei + 〇且e2+〇,同 時由(11)式’可推得e3+ 0 ’如此即表示Master-Slave 混屯系統達到同步且已建立適當的轉換面(丨丨)。接 著’設計一具滑動模式之同步控制器12以驅使 Master-Slave混沌系統之軌道進入滑動模式s=〇,其 設計方式如下: ιι(ύ — lh ~ ?sign(S) ; 7 > 7\ > |»j(0| (15) nx = \.2ex + {αχ ~\)e2 + {α2 -0.6)e3 (16) 而後將(15)代入下式可得❹ S(t) = axex + α2έ2 + e3 = 0 (13) => ez= ~αλΘχ ~a2e2 ((4) From equation (14), if the parameters of ai and a2 are properly selected, al > 0 and a2> 0 'In the sliding mode, 'ei + 〇 and e2+〇, and (11) can be used to derive e3+ 0 '. This means that the Master-Slave hybrid system is synchronized and the appropriate conversion surface has been established (丨丨) Then, 'design a sliding mode synchronous controller 12 to drive the track of the Master-Slave chaotic system into the sliding mode s=〇, which is designed as follows: ιι(ύ — lh ~ ?sign(S) ; 7 > 7 \ > |»j(0| (15) nx = \.2ex + {αχ ~\)e2 + {α2 -0.6)e3 (16) Then substituting (15) into the following formula

S(t)S(t) = S(t)(e3 + + a2e2Y =5(0(-1.2^ - e2 - 0.6^3 + U(t) ~ m(t) + a,e2 + a2e3) =- pign(S)) < ^||Μ(ί) - <〇 (17) 201025982 由(17)式可知同步控制器12選擇如(15)式,即可 使系統進入滑動模式。〇5)式亦可以一連續函數取 代’以得到下列結果: (18) 其中,因σ是一個極小正數,故(18)將近似(15), 且混沌主控端11内嵌之數位加密訊號111將可藉由 具滑動模式之同步控制器12還原。 • 凊參閱第2Α圖,其係為本發明之混沌安全通訊 系統之混沌主控端電路圖。圖中,混沌主控端電路係 可以下列方程式表示: ^«1 = -^2 太《2 = — 0,6¾ + 2吻(〜)+ 肌⑺。 清續參閱第2B圖’其係為本發明之混沌安全通 參 訊系統之混沌僕從端電路圖。圖中混沌僕從端電路係 可以下列方程式表示: =¾ ^2 = ^3 矣3 1.2¾ _ '2 - 〇 .6¾ +之丨細卜㈣)+ M⑴。 其中’混沌主控端電路及混沌僕從端電路之轉換 面設計係為Φ) = + 3e2 + 。 °月參閱第2C圖’其係為本發明之混池安全通訊 糸統之轉換面電路圖。如第1圖所述,欲使 201025982S(t)S(t) = S(t)(e3 + + a2e2Y = 5(0(-1.2^ - e2 - 0.6^3 + U(t) ~ m(t) + a,e2 + a2e3) = - pign(S)) < ^||Μ(ί) - <〇(17) 201025982 From equation (17), it can be seen that the synchronous controller 12 selects the equation (15) to put the system into the sliding mode. The equation can also be replaced by a continuous function to obtain the following results: (18) where σ is a very small positive number, so (18) will approximate (15), and the digitally encrypted signal 111 embedded in the chaotic master 11 will It can be restored by the synchronous controller 12 with a sliding mode. • 第 Refer to Figure 2, which is the circuit diagram of the chaotic master terminal of the chaotic safety communication system of the present invention. In the figure, the chaotic master circuit can be expressed by the following equation: ^«1 = -^2 too "2 = - 0, 63⁄4 + 2 kiss (~) + muscle (7). Referring to Figure 2B, it is a chaotic servant circuit diagram of the chaotic security communication system of the present invention. The chaotic servant circuit in the figure can be expressed by the following equation: =3⁄4 ^2 = ^3 矣3 1.23⁄4 _ '2 - 〇 .63⁄4 + 丨 丨 (4)) + M(1). The conversion plane design of the 'chaotic master terminal circuit and the chaotic servant circuit is Φ) = + 3e2 + . ° ° Figure 2C is a circuit diagram of the conversion plane of the hybrid safety communication system of the present invention. As shown in Figure 1, to make 201025982

Master-Slave混沌系統達到同步,需對動態誤差方程 式(9),設計出適當之轉換面,使系統在轉換面上之動 態行為,具備系統需求之特性。其次係設計具滑動模 式之同步控制器12,使系統能順利進入設計之轉換面 並停留在轉換面上。其中,轉換面之電路設計係如第 2C圖所示,其係使系統能進入此轉換面電路產生之 轉換面並令系統停留在轉換面上。The master-Slave chaotic system is synchronized, and the dynamic error equation (9) is required to design an appropriate conversion surface to make the dynamic behavior of the system on the conversion surface possess the characteristics of the system requirements. Secondly, a synchronous controller 12 with a sliding mode is designed to enable the system to smoothly enter the transition surface of the design and stay on the conversion surface. The circuit design of the conversion surface is as shown in Fig. 2C, which enables the system to enter the conversion surface generated by the conversion surface circuit and cause the system to stay on the conversion surface.

而同步控制器之電路設計係如第2D圖所示,第 2D圖係為本發明之混沌安全通訊系統之同步控制器 電路圖。同步控制器電路係可以下列方程式描述: ▲eq (t) = Ui (ί) - r s{t) 5, σ = 0.09The circuit design of the synchronous controller is shown in Fig. 2D, and the 2D diagram is a circuit diagram of the synchronous controller of the chaotic secure communication system of the present invention. The synchronous controller circuit can be described by the following equation: ▲eq (t) = Ui (ί) - r s{t) 5, σ = 0.09

值得一提的是,為使解密後之數位訊號更接近原 始之數位訊號,本發明係增設一比較器電路以使重建 後之訊號更接近原始訊號。此比較器電路係如第2E 圖所示,第2E圖係為本發明之混沌安全通訊系統之 比較器電路圖。此比較器電路係可使解密後之數位訊 號更接近原始未加密前之數位訊號。 請參閱第3A圖至第3C圖,其係為本發明之混沌 安全通訊系統之主僕系統訊號同步示意圖。圖中,其 係為混沌主控端及混沌僕從端形成之主僕系統之訊 號同步示意圖,其中,混沌主控端之訊號xmi、xm2 及Xm3與混洗僕從端之訊號Xsl、XS2及Xs3在加入具滑 動模式之同步控制器時之樣態。Xml及XS1係由同步控 制器利用等效控制之方式使兩者處於同步之狀態, 11 201025982It is worth mentioning that in order to make the decrypted digital signal closer to the original digital signal, the present invention adds a comparator circuit to make the reconstructed signal closer to the original signal. This comparator circuit is shown in Fig. 2E, and Fig. 2E is a comparator circuit diagram of the chaotic secure communication system of the present invention. The comparator circuit enables the decrypted digital signal to be closer to the original unencrypted digital signal. Please refer to FIG. 3A to FIG. 3C, which are schematic diagrams of signal synchronization of the main servant system of the chaotic safety communication system of the present invention. In the figure, it is a signal synchronization diagram of the main servant system formed by the chaotic master and the chaotic servant. The signals xmi, xm2 and Xm3 of the chaotic master and the signals Xsl and XS2 of the shuffling servant are Xs3 is when it is added to the synchronous controller with sliding mode. Xml and XS1 are synchronized by the synchronous controller using equivalent control, 11 201025982

Xm2及XS2係由同步控制器利用等效控制之方式使兩者 處於同步之狀態,最後Xm3及Xs3亦由同步控制器利 用等效控制之方式使兩者處於同步之狀態。 請續參閱第3D圖,其係為本發明之混沌安全通 訊系統之加解密數位訊號示意圖。圖中,m(t)係為混 沌主控端中原始未加密之數位訊號,Ueq⑴係為同步控 制器解密,於混沌僕從端顯示之已解密之數位訊號, 其兩者波形相同,故得知本發明可完整解密經混沌主 控端之加密數位訊號。 以上所述僅為舉例性,而非為限制性者。任何未 脫離本發明之精神與範疇,而對其進行之等效修改或 變更,均應包含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係為本發明之混沌安全通訊系統之實施例 方塊圖; 第2A圖係為本發明之混沌安全通訊系統之混沌主 控端電路圖; 第2B圖係為本發明之混沌安全通訊系統之混沌僕 從端電路圖; 第2C圖係為本發明之混沌安全通訊系統之轉換面 電路圖; 第2D圖係為本發明之混沌安全通訊系統之同步控 制器電路圖; 12 201025982 第2E圖係為本發明之混沌安全通訊系統之比較器 電路圖; 第3A圖至第3C圖係為本發明之混沌安全通訊系 統之主僕系統訊號同步示意圖;以及 第3D圖係為本發明之混沌安全通訊系統之加解密 數位訊號示意圖。Xm2 and XS2 are synchronized by the synchronous controller by means of equivalent control. Finally, Xm3 and Xs3 are synchronized by the synchronous controller by equivalent control. Please refer to FIG. 3D, which is a schematic diagram of the encryption and decryption digital signal of the chaotic secure communication system of the present invention. In the figure, m(t) is the original unencrypted digital signal in the chaotic master, Ueq(1) is the decrypted digital signal displayed by the synchronous controller, and the waveforms of the two are the same. It is known that the present invention can completely decrypt the encrypted digital signal via the chaotic master. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of a chaotic secure communication system of the present invention; FIG. 2A is a circuit diagram of a chaotic master terminal of the chaotic secure communication system of the present invention; FIG. 2B is a view of the present invention The chaotic servant circuit diagram of the chaotic safety communication system; the 2C diagram is the conversion plane circuit diagram of the chaotic safety communication system of the invention; the 2D diagram is the synchronization controller circuit diagram of the chaotic safety communication system of the invention; 12 201025982 2E is a comparator circuit diagram of the chaotic safety communication system of the present invention; 3A to 3C are schematic diagrams of signal synchronization of the main servant system of the chaotic safety communication system of the present invention; and 3D is a chaos of the present invention Schematic diagram of the encryption and decryption digital signal of the secure communication system.

【主要元件符號說明】 11 :混沌主控端; 111 :數位加密訊號; 12 :同步控制器; 13 :混沌僕從端; 131 :數位訊號; e :誤差向量;[Main component symbol description] 11: chaotic master; 111: digital encryption signal; 12: synchronous controller; 13: chaotic servant; 131: digital signal; e: error vector;

Xm :狀態變數向量;Xm : state variable vector;

Xs :狀態變數向量;以及 u :同步控制器輸出。 13Xs : state variable vector; and u : synchronous controller output. 13

Claims (1)

201025982 七、申請專利範圍: 1. 一種混沌安全通訊系統,其包含: 一混沌主控端,係傳輸一數位加密訊號; 一混沌僕從端,係接收該數位加密訊號並解密該數 位加锥訊號以產生一數位訊號;以及 同步控制器,係用以令該混沌主控端及該混沌僕 從端達到同步。 ' ❹ 2·如申請專利範圍第丨項所述之具混沌安全通訊系 統,其中該數位加密訊號係以嵌入(embedded)之方 式嵌入該混先主控端。 3. 如申請專利範圍第i項所述之混沌安全通訊系 統,其中該同步控制器係以滑動模式控制理論建 構。 4. 如申請專利範圍第丨項所述之混沌安全通訊系 ❹ 統,其中該混洗僕從端係透過該同步控制器,利用 一等效控制之方式以解密該加密數位訊號。 如申請專利範圍第1項所述之混沌安全通訊系 統,其中該混沌主控端及混沌僕從端之間係包含一 轉換面。 6.如申請專利範圍第1項所述之混沌安全通訊系 統,其中該混沌僕從端更包含一比較器以使解密後 之該數位訊號之誤差減少。201025982 VII. Patent application scope: 1. A chaotic safety communication system, comprising: a chaotic master end, transmitting a digital encryption signal; a chaotic servant receiving the digital encryption signal and decrypting the digital cone signal To generate a digital signal; and a synchronization controller for synchronizing the chaotic master and the chaotic servant. ' ❹ 2 · The chaotic secure communication system as described in the scope of claim 2, wherein the digitally encrypted signal is embedded in the hybrid master in an embedded manner. 3. The chaotic secure communication system as claimed in claim i, wherein the synchronous controller is constructed in a sliding mode control theory. 4. The chaotic secure communication system of claim 2, wherein the shuffling servant uses an equivalent control to decrypt the encrypted digital signal through the synchronization controller. For example, the chaotic secure communication system described in claim 1 is characterized in that the chaotic master and the chaotic servant comprise a transition plane. 6. The chaotic secure communication system of claim 1, wherein the chaotic servant further comprises a comparator to reduce the error of the digitized signal after decryption.
TW97151751A 2008-12-31 2008-12-31 Chaotic security communication system TW201025982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97151751A TW201025982A (en) 2008-12-31 2008-12-31 Chaotic security communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97151751A TW201025982A (en) 2008-12-31 2008-12-31 Chaotic security communication system

Publications (2)

Publication Number Publication Date
TW201025982A true TW201025982A (en) 2010-07-01
TWI376924B TWI376924B (en) 2012-11-11

Family

ID=44852773

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97151751A TW201025982A (en) 2008-12-31 2008-12-31 Chaotic security communication system

Country Status (1)

Country Link
TW (1) TW201025982A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552563B (en) * 2014-01-13 2016-10-01 林文偉 Encryption and decryption system and method using chaotic mapping with spatial-temporal perturbation
TWI825708B (en) * 2022-05-10 2023-12-11 國立勤益科技大學 Embedded type information security transmission system based on chaos synchronization and transmission method thereof

Also Published As

Publication number Publication date
TWI376924B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
Alvarez et al. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization
GB2538052B (en) Encoder, decoder, encryption system, encryption key wallet and method
CN113259329B (en) Method and device for data careless transmission, electronic equipment and storage medium
TW200701722A (en) Context limited shared secret
Kapoor et al. A hybrid cryptography technique for improving network security
Gambhir et al. Integrating RSA cryptography & audio steganography
CN106209916A (en) Industrial automation produces business data transmission encryption and decryption method and system
WO2017164696A3 (en) Method for transmitting message and user equipment
JP2007274688A (en) Verifiable generation of weak symmetric keys for strong algorithms
Dubey et al. Steganography Cryptography and Watermarking: A Review
TW201025982A (en) Chaotic security communication system
Xiang et al. On the security of a novel key agreement protocol based on chaotic maps
KR101760376B1 (en) Terminal and method for providing secure messenger service
US20140115322A1 (en) Method, apparatus and system for performing proxy transformation
Orue et al. Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems
CN104504795A (en) Encryption, decryption and authentication method for intelligent door lock under open system
TW201711418A (en) Encryption system for safe transmission of network data with adaptive synchronization of hyperchaotic signals free from external interference and parameter disturbance, and method for the same
CN112149166B (en) Unconventional password protection method and intelligent bank machine
CN104320248A (en) Method and system for inter-system secret key synchronization
CN103795549A (en) Communication content encryption and decryption method and encryption management method based on CS mode
TW200637321A (en) Communication system and communication method
CN109347862A (en) A kind of personal information data encryption processing system and method
US8369518B2 (en) Electronic data encryption and encrypted data decryption system, and its method
CN107995210A (en) The voice encryption communication means that key and ciphertext are transmitted by different domain transmissions
Yin et al. A color image encryption algorithm based generalized chaos synchronization for bidirectional discrete systems for audio signal communication