TW202344657A - Low stress loca additive and loca processing for bonding optical substrates - Google Patents

Low stress loca additive and loca processing for bonding optical substrates Download PDF

Info

Publication number
TW202344657A
TW202344657A TW112112873A TW112112873A TW202344657A TW 202344657 A TW202344657 A TW 202344657A TW 112112873 A TW112112873 A TW 112112873A TW 112112873 A TW112112873 A TW 112112873A TW 202344657 A TW202344657 A TW 202344657A
Authority
TW
Taiwan
Prior art keywords
loca
substrate
layer
display
light
Prior art date
Application number
TW112112873A
Other languages
Chinese (zh)
Inventor
阿里比歐 阿列禾 里夫斯切茲
安東尼 凡
奧斯丁 蘭恩
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/125,618 external-priority patent/US20230340309A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202344657A publication Critical patent/TW202344657A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/223Di-epoxy compounds together with monoepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A liquid optically clear adhesive (LOCA) for bonding optical substrates includes siloxane and epoxy-containing oligomers, a UV-activated photo-acid generator, a cross-linker additive, a solvent; and a reactive plasticizer, such as an additive of Structure 1. In one example, the additive of Structure 1 constitutes about 1-7% of a total mass of the LOCA excluding the solvent. R1, R2, and R3 of Structure 1 include methoxide, ethoxide, propoxide, or a combination thereof. R4 of Structure 1 includes an alkyl chain that is linear or branched and includes 2-8 carbons. The LOCA material is characterized by a refractive index equal to or greater than about 1.6 at 450 nm and an optical absorption below about 0.1% per micrometer of a thickness of the LOCA material.

Description

用於連結光學基材的低應力LOCA添加物及LOCA處理Low-stress LOCA additives and LOCA treatments for joining optical substrates

本發明係關於用於連結光學基材的低應力LOCA添加物及LOCA處理。 相關申請案 This invention relates to low stress LOCA additives and LOCA treatments for joining optical substrates. Related applications

本申請案主張2022年4月21日申請的標題為「用於連結光學基材之低應力LOCA添加物及LOCA處理(LOW LOCA ADDITIVE AND LOCA PROCESSING FOR BONDING OPTICAL SUBSTRATES)」之美國臨時申請案第63/333,243號之權益及優先權。This application refers to U.S. Provisional Application No. 63 titled "LOW LOCA ADDITIVE AND LOCA PROCESSING FOR BONDING OPTICAL SUBSTRATES" filed on April 21, 2022. /The interests and priorities of No. 333,243.

諸如頭戴式顯示器(head-mounted display;HMD)或抬頭顯示器(heads-up display;HUD)系統之人工實境系統通常包括近眼顯示器(例如,呈頭戴式裝置或一副眼鏡之形式),其經組態以經由電子或光學顯示器在使用者眼睛前方例如約10至20 mm內向使用者呈現內容。近眼顯示器可顯示虛擬物件或組合真實物件與虛擬物件之影像,如在虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)或混合實境(mixed reality;MR)應用中。舉例而言,在AR系統中,使用者可藉由例如透視透明顯示玻璃或透鏡(通常稱為光學透視)來觀看虛擬物件(例如,電腦產生之影像(computer-generated images;CGI))及周圍環境兩者之影像。Artificial reality systems, such as head-mounted display (HMD) or heads-up display (HUD) systems, often include near-eye displays (e.g., in the form of a head-mounted device or a pair of glasses), It is configured to present content to a user via an electronic or optical display, for example within about 10 to 20 mm in front of the user's eyes. Near-eye displays can display virtual objects or images that combine real objects and virtual objects, such as in virtual reality (VR), augmented reality (AR) or mixed reality (MR) applications. . For example, in an AR system, users can view virtual objects (e.g., computer-generated images (CGI)) and their surroundings through, for example, see-through transparent display glass or lenses (commonly referred to as optical see-through). The image of both environment.

光學透視AR系統之一個實例可使用基於波導之光學顯示器,其中所投射影像之光可耦合至波導(例如,透明基材)中,在波導內傳播,且在不同位置處耦合至波導之外。在一些實施方案中,所投射影像之光可使用繞射光學元件(諸如表面起伏光柵(surface-relief grating;SRG)或體積布拉格光柵(volume Bragg grating;VBG))耦合至波導中或波導之外。來自周圍環境之光可穿過波導之透視區且亦到達使用者的眼睛。One example of an optical see-through AR system may use a waveguide-based optical display, where the light of the projected image may be coupled into the waveguide (eg, a transparent substrate), propagate within the waveguide, and couple out of the waveguide at various locations. In some embodiments, the light of the projected image may be coupled into or out of the waveguide using diffractive optical elements such as surface-relief gratings (SRG) or volume Bragg gratings (VBG). . Light from the surrounding environment can pass through the see-through area of the waveguide and also reach the user's eyes.

在基於波導之光學顯示器系統中,一些光學組件(例如,上面形成有光學元件,諸如光源、光柵、微透鏡或液晶結構之基材)可連結在一起以形成波導顯示器。為實現所需性能,連結層及連結結構之平坦度可能需要精確受控。舉例而言,包括連結在一起之兩個或更多個平面基材之層堆疊的兩個相對外表面可能需要維持高程度之平行度,且層堆疊可能需要具有極小的總厚度變化(total thickness variation;TTV)及低彎曲。In a waveguide-based optical display system, several optical components (eg, a substrate on which optical elements such as light sources, gratings, microlenses, or liquid crystal structures are formed) can be linked together to form a waveguide display. To achieve the desired performance, the flatness of the tie layers and tie structures may need to be precisely controlled. For example, two opposing outer surfaces of a layer stack including two or more planar substrates joined together may need to maintain a high degree of parallelism, and the layer stack may need to have minimal total thickness variation. variation; TTV) and low curvature.

本發明大體上係關於用於連結光學組件之技術。更特定言之,本文揭示使用液體光學澄清黏著劑(LOCA)連結光學基材(上面形成有或未形成有光學組件)以達成所連結裝置之受控厚度及低彎曲的技術。本文中描述各種發明性具體實例,包括裝置、系統、方法、程序、材料、混合物、組成物及其類似者。The present invention generally relates to techniques for joining optical components. More specifically, this article discloses techniques for using liquid optically clear adhesives (LOCA) to join optical substrates (with or without optical components formed thereon) to achieve controlled thickness and low bending of the joined devices. Various inventive embodiments are described herein, including devices, systems, methods, procedures, materials, mixtures, compositions, and the like.

本發明係關於如技術方案1之液體光學澄清黏著劑、如技術方案7之方法及如技術方案12之裝置。有利的具體實例可包括附屬申請專利範圍之特徵。The present invention relates to a liquid optically clear adhesive as in technical claim 1, a method as in technical claim 7, and a device as in technical claim 12. Advantageous embodiments may include features of the patent claims of the appended claims.

因此,根據本發明之第一態樣,提供一種用於連結光學基材之液體光學澄清黏著劑(LOCA),其中LOCA包含:含矽氧烷及環氧基之寡聚物、UV活化光酸產生劑、交聯劑添加物、溶劑及結構1之添加物: 其中結構1之添加物構成不包括溶劑之LOCA之總質量的1%至7%。 Therefore, according to a first aspect of the present invention, a liquid optically clear adhesive (LOCA) for connecting optical substrates is provided, wherein LOCA includes: oligomers containing siloxane and epoxy groups, UV-activated photoacid Generating agent, cross-linking agent additives, solvents and additives of structure 1: The additives of structure 1 constitute 1% to 7% of the total mass of LOCA excluding solvent.

在一些具體實例中,R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或其組合。 In some specific examples, R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or combinations thereof.

在一些具體實例中,R 4可包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。 In some specific examples, R 4 may include an alkyl chain that is straight or branched and includes 2 to 8 carbons.

在一些具體實例中,R 4可包括直鏈C 6H 12In some specific examples, R 4 may include linear C 6 H 12 .

在一些具體實例中,當固化時,LOCA可具有在450 nm下等於或大於1.6之折射率及LOCA之每微米厚度低於0.1%之光吸收。In some embodiments, when cured, the LOCA can have a refractive index equal to or greater than 1.6 at 450 nm and a light absorption of less than 0.1% per micron of thickness of the LOCA.

在一些具體實例中,LOCA可藉由紫外光、熱或紫外光及熱兩者固化。In some embodiments, LOCA can be cured by UV light, heat, or both.

在一些具體實例中,LOCA施加於兩個4至8吋基材上且固化時可產生彎曲度低於20微米之所連結堆疊。In some embodiments, LOCA is applied to two 4- to 8-inch substrates and cured to produce a joined stack with a curvature of less than 20 microns.

在一些具體實例中,LOCA施加於兩個玻璃基材上且固化時,可產生搭接剪切強度大於1.5 MPa之經連結基材堆疊。In some embodiments, LOCA is applied to two glass substrates and when cured, can produce a stack of joined substrates with a lap shear strength greater than 1.5 MPa.

此外,根據本發明之第二態樣,提供一種一種方法,其中該方法包含:在第一透明基材上塗佈一層包括溶劑及如上文所描述之結構1之添加物的液體光學澄清黏著劑(LOCA)材料;將第二透明基材連結至該LOCA材料層(例如,較佳地藉由壓縮)以形成基材堆疊;使用紫外(UV)光固化基材堆疊以交聯LOCA材料;及熱固化基材堆疊以將LOCA材料轉化成熱固性狀態。In addition, according to a second aspect of the present invention, a method is provided, wherein the method includes: coating a layer of liquid optically clear adhesive including a solvent and additives of the structure 1 as described above on the first transparent substrate. (LOCA) material; bonding a second transparent substrate to the LOCA material layer (e.g., preferably by compression) to form a substrate stack; curing the substrate stack using ultraviolet (UV) light to cross-link the LOCA material; and The substrate stack is thermally cured to convert the LOCA material into a thermoset state.

在一些具體實例中,LOCA材料可包括含矽氧烷之環氧黏著劑。In some embodiments, the LOCA material may include a siloxane-containing epoxy adhesive.

在一些具體實例中,結構1之添加物可構成LOCA材料之總質量之1%至7%;及/或R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或其組合;及/或R 4可包括為直鏈或分支鏈且包括2至8個碳之烷基鏈。 In some specific examples, the additives of structure 1 may constitute 1% to 7% of the total mass of the LOCA material; and/or R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or combinations thereof ; and/or R 4 may include an alkyl chain that is straight or branched and includes 2 to 8 carbons.

在一些具體實例中,LOCA材料層之厚度可在1與100微米之間。In some embodiments, the thickness of the LOCA material layer can be between 1 and 100 microns.

在一些具體實例中,在熱固化基材堆疊之後,LOCA材料層之特徵可為在450 nm下等於或大於1.6之折射率及該LOCA材料層之每微米厚度低於0.1%之光吸收,及/或基材堆疊之特徵可為大於1.5 MPa之搭接剪切強度。In some embodiments, after thermally curing the substrate stack, the LOCA material layer can be characterized by a refractive index equal to or greater than 1.6 at 450 nm and a light absorption of less than 0.1% per micron of thickness of the LOCA material layer, and /Or the substrate stack may be characterized by a lap shear strength greater than 1.5 MPa.

在一些具體實例中,第一透明基材及第二透明基板可為直徑在4與8吋之間的基材,且在熱固化基材堆疊之後,基材堆疊之彎曲度可小於20 μm。In some specific examples, the first transparent substrate and the second transparent substrate may be substrates with a diameter between 4 and 8 inches, and after the substrate stack is thermally cured, the curvature of the substrate stack may be less than 20 μm.

此外,根據本發明之第三態樣,提供一種裝置,其中該裝置包含:層堆疊,其包含兩個由含矽氧烷之環氧黏著劑層連結在一起之透明基材,其中含矽氧烷之環氧黏著劑層包括如上文所描述之結構1之添加物,其中結構1之添加物構成含矽氧烷之環氧黏著劑層之總質量的1%至7%。Furthermore, according to a third aspect of the present invention, there is provided a device, wherein the device includes: a layer stack including two transparent substrates joined together by a siloxane-containing epoxy adhesive layer, wherein the siloxane-containing epoxy adhesive layer contains siloxane. The alkane epoxy adhesive layer includes additives of structure 1 as described above, wherein the additives of structure 1 constitute 1% to 7% of the total mass of the siloxane-containing epoxy adhesive layer.

在一些具體實例中,R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或其組合。 In some specific examples, R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or combinations thereof.

在一些具體實例中,R 4可包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。 In some specific examples, R 4 may include an alkyl chain that is straight or branched and includes 2 to 8 carbons.

在一些具體實例中,含矽氧烷之環氧黏著劑層之特徵可為在450 nm下等於或大於1.6之折射率及含矽氧烷之環氧黏著劑層的每微米厚度低於0.1%之光吸收。In some embodiments, the siloxane-containing epoxy adhesive layer may be characterized by a refractive index at 450 nm equal to or greater than 1.6 and a thickness of less than 0.1% per micron of the siloxane-containing epoxy adhesive layer. of light absorption.

在一些具體實例中,含矽氧烷之環氧黏著劑層之厚度可在1與100微米之間,及/或層堆疊之特徵可為大於1.5 MPa之搭接剪切強度。In some embodiments, the thickness of the silicone-containing epoxy adhesive layer can be between 1 and 100 microns, and/or the layer stack can be characterized by a lap shear strength greater than 1.5 MPa.

在一些具體實例中,兩個透明基材可為直徑在4與8吋之間的基材;且層堆疊之彎曲度小於20 μm。In some embodiments, the two transparent substrates can be substrates with a diameter between 4 and 8 inches; and the curvature of the layer stack is less than 20 μm.

在一些具體實例中,兩個透明基材中之至少一者可為具有任意形狀且長度為1至4吋之透鏡,且層堆疊之彎曲度可小於10 μm。In some embodiments, at least one of the two transparent substrates can be a lens of any shape with a length of 1 to 4 inches, and the curvature of the layer stack can be less than 10 μm.

將瞭解,本文中描述為適合於併入至本發明之一或多個態樣或具體實例中的任何特徵意欲對整個本發明之任何及所有態樣及具體實例普遍適用。本發明之其他態樣可由所屬技術領域中具有通常知識者依據本發明之描述、申請專利範圍及圖式而理解。前文之一般描述及下文之詳細描述僅為例示性及解釋性的,且並不限制申請專利範圍。It will be understood that any feature described herein as suitable for incorporation into one or more aspects or embodiments of the invention is intended to be generally applicable throughout any and all aspects and embodiments of the invention. Other aspects of the present invention can be understood by those with ordinary skill in the art based on the description, patent scope and drawings of the present invention. The foregoing general description and the following detailed description are only illustrative and explanatory, and do not limit the scope of the patent application.

此概述既不意欲識別所主張主題之關鍵或基本特徵,亦不意欲單獨使用以判定所主張主題之範圍。應參考本發明之整篇說明書之適當部分、任何或所有圖式及各申請專利範圍來理解該主題。下文將在以下說明書、申請專利範圍及隨附圖式中更詳細地描述前述內容連同其他特徵及範例。在一些具體實例中,無論是否如此明確說明,尺寸、大小、調配物、參數、形狀或其他數量或特徵可皆為「約」或「大致」的。This summary is neither intended to identify key or essential features of the claimed subject matter, nor is it intended to be used alone to determine the scope of the claimed subject matter. The subject matter should be understood by reference to the appropriate portions of the entire specification of the invention, any or all of the drawings, and the patent claims of each claim. The foregoing, along with other features and examples, are described in greater detail below in the following specification, claims, and accompanying drawings. In some embodiments, dimensions, sizes, configurations, parameters, shapes or other quantities or characteristics may be "about" or "approximately" whether or not so expressly stated.

本發明大體上係關於用於連結光學組件之技術。更特定言之,本文揭示使用液體光學澄清黏著劑(LOCA)連結光學基材(上面形成有或未形成有光學組件)以達成所連結裝置之受控厚度及低彎曲的技術。本文中描述各種發明性具體實例,包括裝置、系統、方法、程序、材料、混合物、組成物及其類似者。The present invention generally relates to techniques for joining optical components. More specifically, this article discloses techniques for using liquid optically clear adhesives (LOCA) to join optical substrates (with or without optical components formed thereon) to achieve controlled thickness and low bending of the joined devices. Various inventive embodiments are described herein, including devices, systems, methods, procedures, materials, mixtures, compositions, and the like.

在基於波導之近眼顯示器系統中,所投射影像之光可使用輸入耦合器(例如,波導上形成有光柵耦合器)耦合至波導(例如,基材)中,經由全內反射(total internal reflection)在波導內傳播,且使用輸出耦合器(例如,光柵耦合器)在不同位置耦合至波導之外以複製出射光瞳且擴展眼眶。兩個或更多個光柵可用於以二維形式擴展眼眶。來自周圍環境之光可穿過波導之至少一個透視區且到達使用者的眼睛。在一些基於波導之近眼顯示器系統中,光學組件(例如,其上形成有光學元件,諸如光源、光柵、微透鏡或液晶結構之基材)可連結在一起以形成波導顯示器。舉例而言,使用繞射光學元件(例如,體積布拉格光柵或偏光體積全像光柵)實施之一些輸入/輸出耦合器可僅在狹窄的波長範圍(例如,具有某一顏色之光)及/或小視場(例如,某一入射角範圍內之光)內繞射光,且可具有有限的耦合效率。因此,在一些波導顯示器系統中,多個光柵耦合器(例如,用於繞射不同顏色之光及來自不同視場之光)可形成於多個基材上之多個光柵層中,且隨後包括多個光柵耦合器之多個基材可連結在一起以形成包括多個光柵耦合器之波導。In a waveguide-based near-eye display system, the light of the projected image can be coupled into the waveguide (e.g., a substrate) using an input coupler (e.g., a grating coupler formed on the waveguide) via total internal reflection. Propagate within the waveguide and couple out of the waveguide at various locations using an output coupler (e.g., grating coupler) to replicate the exit pupil and expand the orbit. Two or more gratings can be used to expand the orbit in two dimensions. Light from the surrounding environment can pass through at least one see-through zone of the waveguide and reach the user's eyes. In some waveguide-based near-eye display systems, optical components (eg, substrates on which optical elements such as light sources, gratings, microlenses, or liquid crystal structures are formed) may be linked together to form a waveguide display. For example, some input/output couplers implemented using diffractive optical elements (e.g., volume Bragg gratings or polarized volume holograms) may operate only within a narrow range of wavelengths (e.g., light of a certain color) and/or Diffracted light within a small field of view (e.g., light within a certain range of incident angles) and may have limited coupling efficiency. Therefore, in some waveguide display systems, multiple grating couplers (eg, for diffracting light of different colors and from different fields of view) can be formed in multiple grating layers on multiple substrates, and then Multiple substrates including multiple grating couplers can be joined together to form a waveguide including multiple grating couplers.

在一些基於反射/折射/偏光光學元件之近眼顯示器系統中,諸如一些摺疊光學件(例如,餅狀透鏡)或基於自由光學件之AR/VR系統、多層波導、平面基材、部分反射鏡、自由透鏡、波片、液晶裝置及/或其他組件可需要連結或以其他方式整合以形成近眼顯示器系統,其中所連結裝置之厚度及彎曲可能需要精確地受控以達成所需系統性能。In some near-eye display systems based on reflective/refractive/polarizing optical elements, such as some folded optics (e.g., pie lenses) or AR/VR systems based on free optics, multilayer waveguides, planar substrates, partially reflective mirrors, Free lenses, wave plates, liquid crystal devices, and/or other components may need to be connected or otherwise integrated to form a near-eye display system, where the thickness and curvature of the connected devices may need to be precisely controlled to achieve desired system performance.

在一些顯示面板(例如,液晶顯示器(liquid crystal display;LCD)、發光二極體(light emitting diode;LED)顯示器、有機發光二極體(organic light emitting diode;OLED)顯示器或可撓性顯示器)中,其上形成有或未形成有其他結構(例如,背燈、具有電容式觸控感測器之觸控面板、透明導電氧化物層、偏光片、擴散器、抗反射塗層、用於光準直之微透鏡,及保護蓋)之光學基材亦可需要連結以形成顯示面板。In some display panels (for example, liquid crystal display (LCD), light emitting diode (LED) display, organic light emitting diode (OLED) display or flexible display) , with or without other structures formed thereon (e.g., backlight, touch panel with capacitive touch sensor, transparent conductive oxide layer, polarizer, diffuser, anti-reflective coating, for Optical substrates (microlenses for light collimation, and protective covers) may also need to be connected to form a display panel.

連結兩個光學基材(例如,包括一或多個光波導層或其他基材)可藉由使用液體光學澄清黏著劑(LOCA)實現。一般而言,LOCA塗層可施加於至少一個第一基材上,第二基材可置放於LOCA塗層上方,基材堆疊可經歷溶劑之熱乾燥、任何部分固化或催化劑活化(例如,UV活化)及/或壓縮連結,且隨後LOCA塗層可經由UV固化、熱固化或組合來進行固化。固化步驟中之任一者或全部可在壓縮下進行。固化過程可將LOCA自其初始液態轉化成中間熱塑性狀態,且隨後轉化成最終熱固性狀態,其中所連結堆疊之黏著強度可最大化且LOCA機械特性針對其他熱處理可為穩定的。在分子層面上,固化過程可導致LOCA之聚合及交聯。為使LOCA與用於波導顯示器應用之光學基材相容,LOCA需要對可見光為可穿透的(例如,具有小於約0.1%/µm之吸收),具有高折射率(例如,在450 nm下大於約1.6),且可經由固化完全交聯,而不誘導較大內應力。高透明度及高折射率可藉由利用例如含矽氧烷之環氧基LOCA來達成。此等材料可具有在450 nm下約1.6或更高之折射率,其吸收率可為低於約0.1%/µm LOCA材料,且其對玻璃之黏著強度可典型地高於1.5 Mpa。因此,此等LOCA材料可用以在兩個光學基材之間形成永久性連結,且連結可能夠經受裝置處理及可靠性測試。Joining two optical substrates (for example, including one or more optical waveguide layers or other substrates) can be accomplished by using a liquid optically clear adhesive (LOCA). Generally speaking, a LOCA coating can be applied to at least one first substrate, a second substrate can be placed over the LOCA coating, and the substrate stack can undergo thermal drying of the solvent, any partial curing, or catalyst activation (e.g., UV activation) and/or compression bonding, and the LOCA coating can then be cured via UV cure, thermal cure, or a combination. Any or all of the curing steps can be performed under compression. The curing process can transform LOCA from its initial liquid state to an intermediate thermoplastic state, and subsequently to a final thermoset state, where the adhesive strength of the joined stacks can be maximized and the LOCA mechanical properties can be stable against other heat treatments. At the molecular level, the curing process can lead to polymerization and cross-linking of LOCA. In order for LOCA to be compatible with optical substrates for waveguide display applications, LOCA needs to be transparent to visible light (e.g., have an absorption of less than about 0.1%/µm), have a high refractive index (e.g., at 450 nm greater than about 1.6) and can be fully cross-linked upon curing without inducing large internal stresses. High transparency and high refractive index can be achieved by using, for example, siloxane-containing epoxy LOCA. These materials may have a refractive index of about 1.6 or higher at 450 nm, their absorptivity may be less than about 0.1%/µm LOCA materials, and their adhesion strength to glass may typically be greater than 1.5 MPa. Therefore, these LOCA materials can be used to form a permanent connection between two optical substrates, and the connection can withstand device handling and reliability testing.

為實現所需性能,所連結基材堆疊之厚度變化及彎曲可能需要精確受控。舉例而言,包括連結在一起之兩個平面基材之基材堆疊的兩個相對外表面可能需要維持高程度之平行度,且基材堆疊可能需要具有極小的總厚度變化(TTV)及低彎曲(例如,具有極小楔角)。現有連結過程及材料可能無法實現對於一些應用(諸如高端AV/VR應用)足夠低之TTV及/或彎曲。舉例而言,具有高透明度及高折射率之矽氧烷環氧基LOCA之交聯方法可通常導致顯著的收縮,該收縮可在LOCA層內積聚內應力。若內應力過高,則內應力之積聚可導致在正常處理及/或可靠性測試期間所連結基材堆疊之變形(例如,彎曲)或甚至分層。在可進行LOCA之熱固化及兩個光學基材可具有不同的熱膨脹係數(thermal expansion coefficient;CTE)之情況下,所連結基材堆疊可由於所連結基材堆疊之CTE錯配及加熱/冷卻而經歷進一步變形,其可增加所連結基材堆疊之彎曲且甚至使得所連結基材堆疊之滲透變形。當所連結光學基材中之至少一者用作光學波導時,基材堆疊歸因於LOCA內應力之變形可導致畸變及其他光學假影,諸如主射線角移位、調變傳遞函數降級、橫向色像差、光瞳遊動(pupil swim)、文字斷裂及雙重影像,藉此使波導顯示器之光學性能降級。當使用6-吋晶圓作為基材且所連結基材堆疊之彎曲大於約20 µm時,波導顯示器之光學性能可能為不可接受的。因此,期望用於連結兩個用於波導顯示器之光學基材之方法中的LOCA材料(例如,具有高折射率及低光吸收之矽氧烷環氧基LOCA)在固化及交聯期間及在熱處理後不生成大量可經由彎曲使所連結基材堆疊變形之內應力。To achieve the desired performance, thickness variations and bending of the joined substrate stacks may need to be precisely controlled. For example, a substrate stack including two planar substrates joined together may need to maintain a high degree of parallelism between two opposing outer surfaces, and the substrate stack may need to have minimal total thickness variation (TTV) and low Curved (e.g., with minimal wedge angle). Existing joining processes and materials may not allow TTV and/or flex to be low enough for some applications, such as high-end AV/VR applications. For example, cross-linking methods for siloxane epoxy LOCA, which has high transparency and high refractive index, can often result in significant shrinkage that can build up internal stress within the LOCA layer. If the internal stress is too high, the accumulation of internal stress can lead to deformation (eg, bending) or even delamination of the joined substrate stack during normal handling and/or reliability testing. In situations where LOCA can be thermally cured and the two optical substrates can have different thermal expansion coefficients (CTE), the connected substrate stack can be mismatched and heated/cooled due to the CTE of the connected substrate stack. Upon further deformation, it can increase the bending of the connected substrate stack and even cause penetrating deformation of the connected substrate stack. When at least one of the joined optical substrates is used as an optical waveguide, deformation of the substrate stack due to internal stresses in LOCA can lead to distortion and other optical artifacts, such as chief ray angular shifts, modulation transfer function degradation, Lateral chromatic aberration, pupil swim, text breakage, and double images degrade the optical performance of waveguide displays. When a 6-inch wafer is used as the substrate and the curvature of the connected substrate stack is greater than about 20 µm, the optical performance of the waveguide display may be unacceptable. Therefore, it is expected that LOCA materials (e.g., siloxane epoxy LOCA with high refractive index and low light absorption) used in methods of joining two optical substrates for waveguide displays will react during curing and cross-linking and during After heat treatment, no large amount of internal stress is generated that can deform the connected substrate stack through bending.

根據某些具體實例,兩個光學基材(其中之至少一者可用作光波導層)可使用亦包括反應性塑化劑(諸如結構1之矽氧烷添加物)的矽氧烷環氧基LOCA連結: 其中R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或此等材料之混合物,且R 4可為直鏈或分支鏈且由2至8個碳構成之烷基鏈,諸如直鏈C 6H 12。R 1、R 2及R 3可改良LOCA之黏著強度,而R 4可有助於減少LOCA在固化及熱處理期間之應力。因此,結構1之矽氧烷添加物可允許LOCA減少內應力,使得所連結基材堆疊之彎曲可最小化及波導顯示器之光學性能可不受損。舉例而言,當光學基材包括6-吋晶圓時,所連結基材堆疊之彎曲度可低於約20 µm,且波導顯示器之性能可不降級或可僅最低限度地降級。在固化後,LOCA及結構1之矽氧烷添加物的混合物可產生具有穩定機械特性、在450 nm下約1.6或更高之折射率、低於約0.1%/µm之吸收率及大於約1.5 MPa的對玻璃之黏著強度的永久性連結層。 According to certain embodiments, two optical substrates, at least one of which may serve as an optical waveguide layer, may use a siloxane epoxy that also includes a reactive plasticizer, such as the siloxane additive of Structure 1. Base LOCA link: wherein R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or a mixture of these materials, and R 4 may be a straight or branched alkyl chain composed of 2 to 8 carbons, Such as linear C 6 H 12 . R 1 , R 2 and R 3 can improve the adhesive strength of LOCA, while R 4 can help reduce the stress of LOCA during curing and heat treatment. Therefore, the siloxane addition of Structure 1 may allow LOCA to reduce internal stresses so that bending of the connected substrate stack may be minimized and the optical performance of the waveguide display may not be compromised. For example, when the optical substrate includes a 6-inch wafer, the curvature of the joined substrate stack may be less than about 20 µm, and the performance of the waveguide display may not be degraded or may be only minimally degraded. After curing, mixtures of LOCA and the siloxane additive of Structure 1 can produce stable mechanical properties, a refractive index at 450 nm of about 1.6 or higher, an absorbance of less than about 0.1%/µm and greater than about 1.5 MPa permanent bonding layer with adhesive strength to glass.

根據某些具體實例,用於連結兩個光學基材之光學透明的含矽氧烷之環氧黏著劑混合物可經由UV、熱或UV及熱處理兩者固化以產生高折射率、高透明度及低彎曲連結層,該連結層可提供所連結基材堆疊之高黏著力。黏著劑混合物可包括例如含矽氧烷及環氧基之寡聚物、UV活化光酸產生劑、交聯劑添加物、溶劑及結構1之添加物,其中結構1之添加物可構成黏著劑混合物(不包括溶劑)之總質量的約1%至7%。在結構1之添加物中,R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或此等材料之混合物,且R 4可包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。黏著劑混合物固化時可具有在450 nm下在約1.6與約1.7之間的折射率,及每微米黏著劑混合物低於0.1%之光吸收率。黏著劑混合物在施加於4至8吋晶圓上且固化時,可產生具有低於約20微米之彎曲度的所連結晶圓堆疊。 According to certain embodiments, an optically clear siloxane-containing epoxy adhesive mixture used to join two optical substrates can be cured via UV, heat, or both UV and heat treatment to produce high refractive index, high transparency and low A curved tie layer that provides high adhesion to the stack of joined substrates. The adhesive mixture may include, for example, siloxane- and epoxy-containing oligomers, UV-activated photoacid generators, cross-linker additives, solvents, and additives of structure 1, wherein the additives of structure 1 may constitute the adhesive. Approximately 1% to 7% of the total mass of the mixture (excluding solvent). In the additives of structure 1, R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or mixtures of these materials, and R 4 may be linear or branched and include 2 to 8 carbon alkyl chain. The adhesive mixture, when cured, may have a refractive index between about 1.6 and about 1.7 at 450 nm and a light absorbance of less than 0.1% per micron of the adhesive mixture. The adhesive mixture, when applied to a 4- to 8-inch wafer and cured, produces a stack of connected wafers with a curvature of less than about 20 microns.

根據某些具體實例,連結兩個光學基材之方法可包括將包括含矽氧烷之環氧黏著劑混合物的黏著劑層旋塗、噴灑、噴墨印刷、網版印刷、針式滴塗或以其他方式滴塗於第一基材上,且藉由經由UV固化及熱固化之組合固化黏著劑混合物而將黏著劑層連結至第二基材。黏著劑混合物可包括結構1之添加物,其中結構1之添加物可構成混合物(不包括溶劑)之總質量之約1%至7%。黏著劑混合物可施加於第一基材上以形成具有約1至100微米厚度之黏著劑層。黏著劑混合物可固化以產生具有在450 nm下在約1.6與約1.7之間的折射率及每微米黏著劑混合物低於約0.1%之光吸收的機械穩定性黏著劑層。所連結基材堆疊可具有至少2.0 MPa之搭接剪切強度及較低程度之彎曲。在一些具體實例中,第一基材及第二基材可為具有直徑約4至8吋之透明基材,且所連結基材堆疊可具有低於20微米之彎曲度。在一些具體實例中,第一基材或第二基材中之至少一者可為具有任意形狀及長度約1至4吋之透鏡,且所連結基材堆疊之彎曲度可低於約10微米。According to some specific examples, the method of joining two optical substrates may include spin coating, spraying, inkjet printing, screen printing, dot drop coating or The adhesive layer is otherwise dispensed onto the first substrate, and the adhesive layer is bonded to the second substrate by curing the adhesive mixture through a combination of UV curing and thermal curing. The adhesive mixture may include additives of structure 1, wherein the additives of structure 1 may constitute about 1% to 7% of the total mass of the mixture (excluding solvent). The adhesive mixture can be applied to the first substrate to form an adhesive layer having a thickness of about 1 to 100 microns. The adhesive mixture can be cured to produce a mechanically stable adhesive layer having a refractive index between about 1.6 and about 1.7 at 450 nm and a light absorption of less than about 0.1% per micron of the adhesive mixture. The joined substrate stack may have a lap shear strength of at least 2.0 MPa and a relatively low degree of bending. In some embodiments, the first substrate and the second substrate can be transparent substrates having a diameter of about 4 to 8 inches, and the connected substrate stack can have a curvature of less than 20 microns. In some embodiments, at least one of the first substrate or the second substrate can be a lens of any shape and a length of about 1 to 4 inches, and the joined substrate stack can have a curvature of less than about 10 microns. .

根據某些具體實例,兩個透明基材可藉由由包括結構1之添加物的混合物形成的含矽氧烷之環氧黏著劑層連結在一起,其中結構1之添加物可構成不包括溶劑之混合物之總質量之約1%至7%。黏著劑層可為機械穩定的,且可具有在450 nm下在約1.6與約1.7之間的折射率,及每微米黏著劑層低於約0.1%之光吸收。藉由黏著劑層連結之基材堆疊可具有至少2.0 MPa之搭接剪切強度,且可具有較低程度之彎曲。在一個實例中,兩個透明基材可為直徑約4至8吋之晶圓,且所連結基材堆疊可具有低於20微米之彎曲度。在一些具體實例中,兩個透明基材中之至少一者為具有任意形狀及約1至4吋長度之透鏡,且所連結基材堆疊之彎曲度低於10微米。According to some embodiments, two transparent substrates may be joined together by a siloxane-containing epoxy adhesive layer formed from a mixture of additives of Structure 1, wherein the additives of Structure 1 may constitute a solvent-free About 1% to 7% of the total mass of the mixture. The adhesive layer can be mechanically stable and can have a refractive index between about 1.6 and about 1.7 at 450 nm and a light absorption of less than about 0.1% per micron of the adhesive layer. The stack of substrates connected by the adhesive layer can have a lap shear strength of at least 2.0 MPa and can have a low degree of bending. In one example, the two transparent substrates can be wafers approximately 4 to 8 inches in diameter, and the connected substrate stack can have a curvature of less than 20 microns. In some embodiments, at least one of the two transparent substrates is a lens having a random shape and a length of about 1 to 4 inches, and the joined substrate stack has a curvature of less than 10 microns.

除非另有定義,否則本文所用之所有技術及科學術語具有與一般熟習本發明所屬技術者通常所理解相同之含義。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

如本文中所使用之術語「約」意謂尺寸、大小、調配物、參數、形狀及其他數量及特徵不精確且不需要精確,但可視需要為近似的及/或較大或較小的,從而反映出公差、轉換因數、四捨五入、量測誤差及其類似者,以及所屬技術領域中具通常知識者已知之其他因素。一般而言,無論是否如此明確說明,尺寸、大小、調配物、參數、形狀或其他數量或特徵皆為「約」或「大約」的。應注意,大小、形狀及尺寸非常不同之具體實例可採用所描述之佈置。As used herein, the term "about" means that dimensions, sizes, configurations, parameters, shapes and other quantities and characteristics are not precise and need not be precise, but may be approximate and/or greater or smaller as appropriate, This reflects tolerances, conversion factors, rounding, measurement errors and the like, as well as other factors known to those of ordinary skill in the art. Generally speaking, dimensions, sizes, configurations, parameters, shapes or other quantities or characteristics are "about" or "approximately" whether or not so expressly stated. It should be noted that embodiments of widely varying sizes, shapes, and dimensions may employ the described arrangements.

在以下描述中,出於解釋之目的,闡述特定細節以便提供對本發明之實例的透徹理解。然而,顯然是各種實例可在無此等特定細節之情況下實踐。舉例而言,裝置、系統、結構、總成、方法及其他組件可以方塊圖形式展示為組件,以免以不必要的細節混淆實例。在其他情況下,可在無必要細節之情況下展示熟知的裝置、製程、系統、結構及技術,以免混淆實例。圖式及描述並不意欲為限定性的。已在本發明中使用之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述中,不欲排除所展示及描述之特徵的任何等效物或其部分。字詞「實例」在本文中用以意謂「充當實例、例項或說明」。本文中被描述為「實例」之任何具體實例或設計未必被解釋為比其他具體實例或設計較佳或有利。In the following description, for purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the invention. However, it is understood that various examples may be practiced without such specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form so as not to obscure the examples with unnecessary detail. In other cases, well-known devices, processes, systems, structures, and techniques may be shown without necessary detail to avoid obscuring the examples. The drawings and descriptions are not intended to be limiting. The terms and expressions which have been used in this invention are terms of description and not of limitation, and in the use of such terms and expressions there is no intention to exclude any equivalents of the features shown and described, or parts thereof. The word "example" is used in this article to mean "to serve as an example, instance, or illustration." Any specific example or design described herein as an "example" is not necessarily to be construed as better or advantageous over other specific examples or designs.

1為根據某些具體實例的包括近眼顯示器120之人工實境系統環境100之實例的簡化方塊圖。圖1中所展示之人工實境系統環境100可包括近眼顯示器120、視情況選用之外部成像裝置150及視情況選用之輸入/輸出介面140,其中之各者可耦合至視情況選用之控制台110。雖然圖1展示包括一個近眼顯示器120、一個外部成像裝置150及一個輸入/輸出介面140之人工實境系統環境100的實例,但可在人工實境系統環境100中包括任何數目個此等組件,或可省略該等組件中之任一者。舉例而言,可能存在由與控制台110通信之一或多個外部成像裝置150監測的多個近眼顯示器120。在一些組態中,人工實境系統環境100可不包括外部成像裝置150、視情況選用之輸入/輸出介面140及視情況選用之控制台110。在替代組態中,不同組件或額外組件可包括於人工實境系統環境100中。 1 is a simplified block diagram of an example of an artificial reality system environment 100 including a near-eye display 120 , according to certain embodiments. The artificial reality system environment 100 shown in Figure 1 may include a near-eye display 120, an optional external imaging device 150, and an optional input/output interface 140, each of which may be coupled to an optional console. 110. Although FIG. 1 shows an example of an artificial reality system environment 100 that includes a near-eye display 120, an external imaging device 150, and an input/output interface 140, any number of these components may be included in the artificial reality system environment 100. Either of these components may be omitted. For example, there may be multiple near-eye displays 120 monitored by one or more external imaging devices 150 in communication with console 110 . In some configurations, the artificial reality system environment 100 may not include the external imaging device 150, the optional input/output interface 140, and the optional console 110. In alternative configurations, different components or additional components may be included in artificial reality system environment 100 .

近眼顯示器120可為將內容呈現給使用者之頭戴式顯示器。由近眼顯示器120呈現之內容的實例包括影像、視訊、音訊或其任何組合中之一或多者。在一些具體實例中,音訊可經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現,該外部裝置自近眼顯示器120、控制台110或此兩者接收音訊資訊,且基於該音訊資訊呈現音訊資料。近眼顯示器120可包括一或多個剛體,其可剛性地或非剛性地彼此耦合。剛體之間的剛性耦接可使得耦接的剛體充當單個剛性實體。剛性本體之間的非剛性耦接可允許剛性本體相對於彼此移動。在各種具體實例中,近眼顯示器120可以包括一副眼鏡之任何合適之外觀尺寸來實施。下文關於圖2及圖3進一步描述近眼顯示器120之一些具體實例。另外,在各種具體實例中,本文中所描述之功能性可用於組合近眼顯示器120外部之環境之影像與人工實境內容(例如,電腦產生之影像)的頭戴式裝置。因此,近眼顯示器120可藉由所產生內容(例如,影像、視訊、聲音等)來擴增在近眼顯示器120外部的實體真實世界環境之影像,以向使用者呈現擴增實境。The near-eye display 120 may be a head-mounted display that presents content to the user. Examples of content presented by the near-eye display 120 include one or more of images, video, audio, or any combination thereof. In some embodiments, audio may be presented via an external device (eg, speakers and/or headphones) that receives audio information from near-eye display 120 , console 110 , or both, and is presented based on the audio information. Audio data. Near-eye display 120 may include one or more rigid bodies, which may be rigidly or non-rigidly coupled to each other. Rigid couplings between rigid bodies cause the coupled rigid bodies to act as a single rigid entity. Non-rigid couplings between rigid bodies may allow the rigid bodies to move relative to each other. In various embodiments, the near-eye display 120 may be implemented in any suitable appearance size including a pair of glasses. Some specific examples of near-eye display 120 are further described below with respect to FIGS. 2 and 3 . Additionally, in various embodiments, the functionality described herein may be used in head-mounted devices that combine images of the environment external to near-eye display 120 with artificial reality content (eg, computer-generated images). Therefore, the near-eye display 120 can amplify the image of the physical real-world environment outside the near-eye display 120 by generating content (eg, images, videos, sounds, etc.) to present an augmented reality to the user.

在各種具體實例中,近眼顯示器120可包括顯示電子件122、顯示光學件124及眼睛追蹤單元130中之一或多者。在一些具體實例中,近眼顯示器120亦可包括一或多個定位器126、一或多個位置感測器128及慣性量測單元(inertial measurement unit;IMU)132。近眼顯示器120可省略眼睛追蹤單元130、定位器126、位置感測器128及IMU 132中之任一者,或包括各種具體實例中之額外元件。另外,在一些具體實例中,近眼顯示器120可包括組合結合圖1所描述之各種元件之功能的元件。In various embodiments, near-eye display 120 may include one or more of display electronics 122 , display optics 124 , and eye tracking unit 130 . In some specific examples, the near-eye display 120 may also include one or more locators 126 , one or more position sensors 128 and an inertial measurement unit (IMU) 132 . Near-eye display 120 may omit any of eye tracking unit 130, locator 126, position sensor 128, and IMU 132, or include additional components in various embodiments. Additionally, in some embodiments, near-eye display 120 may include elements that combine the functionality of the various elements described in conjunction with FIG. 1 .

顯示電子件122可根據自例如控制台110接收到之資料而向使用者顯示影像或促進向使用者顯示影像。在各種具體實例中,顯示電子件122可包括一或多個顯示面板,諸如液晶顯示器(LCD)、有機發光二極體(OLED)顯示器、無機發光二極體(ILED)顯示器、微型發光二極體(μLED)顯示器、主動矩陣OLED顯示器(AMOLED)、透明OLED顯示器(TOLED)或一些其他顯示器。舉例而言,在近眼顯示器120之一個實施中,顯示電子件122可包括前TOLED面板、後顯示面板,及在前顯示面板與後顯示面板之間的光學組件(例如,衰減器、偏光器,或繞射或光譜膜)。顯示電子件122可包括像素以發射諸如紅色、綠色、藍色、白色或黃色之主要顏色的光。在一些實施方式中,顯示電子件122可經由由二維面板產生之立體效果來顯示三維(3D)影像以產生影像深度之主觀感知。例如,顯示電子件122可包括分別定位於使用者之左眼及右眼前方的左側顯示器及右側顯示器。左方顯示器及右方顯示器可呈現相對於彼此水平地移位之影像的複本,以產生立體效果(亦即,檢視影像之使用者對影像深度的感知)。Display electronics 122 may display or facilitate the display of images to the user based on data received from, for example, console 110 . In various embodiments, display electronics 122 may include one or more display panels, such as a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an inorganic light emitting diode (ILED) display, a micro light emitting diode volume (μLED) display, active matrix OLED display (AMOLED), transparent OLED display (TOLED) or some other display. For example, in one implementation of near-eye display 120 , display electronics 122 may include a front TOLED panel, a rear display panel, and optical components (e.g., attenuators, polarizers, or diffractive or spectral films). Display electronics 122 may include pixels to emit light in a primary color such as red, green, blue, white, or yellow. In some embodiments, the display electronics 122 can display a three-dimensional (3D) image through a stereoscopic effect produced by a two-dimensional panel to create a subjective perception of image depth. For example, display electronics 122 may include left and right displays positioned in front of the user's left and right eyes, respectively. The left and right monitors may present copies of the image that are displaced horizontally relative to each other to create a stereoscopic effect (ie, the perception of depth of the image by the user viewing the image).

在某些具體實例中,顯示光學件124可以光學方式顯示影像內容(例如,使用光波導及耦合器),或放大自顯示電子件122接收到之影像光,校正與影像光相關聯之光學誤差,且向近眼顯示器120之使用者呈現經校正之影像光。在各種具體實例中,顯示光學件124可包括一或多個光學元件,諸如基材、光波導、光圈、菲涅爾透鏡(Fresnel len)、凸透鏡、凹透鏡、濾光片、輸入/輸出耦合器,或可能影響自顯示電子件122發射之影像光的任何其他合適的光學元件。顯示光學件124可包括不同光學元件之組合,以及用以維持組合中之光學元件之相對間隔及位向的機械耦合器。顯示光學件124中之一或多個光學元件可具有諸如抗反射塗層、反射塗層、濾波塗層或不同光學塗層之組合的光學塗層。In some embodiments, display optics 124 can optically display image content (for example, using optical waveguides and couplers), or amplify image light received from display electronics 122 to correct optical errors associated with the image light. , and present the corrected image light to the user of the near-eye display 120 . In various embodiments, display optics 124 may include one or more optical elements, such as a substrate, an optical waveguide, an aperture, a Fresnel lens, a convex lens, a concave lens, a filter, an input/output coupler , or any other suitable optical element that may affect the image light emitted from the display electronics 122 . Display optics 124 may include a combination of different optical elements and mechanical couplers to maintain the relative spacing and orientation of the optical elements in the combination. One or more optical elements in display optics 124 may have an optical coating such as an anti-reflective coating, a reflective coating, a filter coating, or a combination of different optical coatings.

影像光由顯示光學件124之放大可允許顯示電子件122相比較大顯示器而言在實體上較小、重量較輕且消耗較少功率。另外,放大可增大所顯示內容之視場。顯示光學件124對影像光之放大的量可藉由調整、添加光學元件或自顯示光學件124移除光學元件來改變。在一些具體實例中,顯示光學件124可將經顯示影像投射至可比近眼顯示器120更遠離使用者眼睛之一或多個影像平面。Amplification of image light by display optics 124 may allow display electronics 122 to be physically smaller, lighter weight, and consume less power than larger displays. Additionally, zooming in increases the field of view of the displayed content. The amount that display optics 124 amplifies image light can be changed by adjusting, adding optical elements, or removing optical elements from display optics 124 . In some embodiments, display optics 124 may project the displayed image to one or more image planes that may be farther from the user's eyes than near-eye display 120 .

顯示光學件124亦可經設計以校正諸如二維光學誤差、三維光學誤差或其任何組合之一或多種類型之光學誤差。二維誤差可包括在兩個維度中發生之光學像差。二維誤差之實例類型可包括桶形失真、枕形失真、縱向色像差及橫向色像差。三維誤差可包括以三維形式出現之光學誤差。三維誤差之實例類型可包括球面像差、慧形像差、場曲率及像散。Display optics 124 may also be designed to correct for one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Two-dimensional errors may include optical aberrations occurring in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and lateral chromatic aberration. Three-dimensional errors may include optical errors that appear in three dimensions. Example types of three-dimensional errors may include spherical aberration, coma aberration, field curvature, and astigmatism.

定位器126可為相對於彼此且相對於近眼顯示器120上之參考點而位於近眼顯示器120上之特定位置中的物件。在一些實施方式中,控制台110可在由外部成像裝置150擷取之影像中識別定位器126,以判定人工實境頭戴式裝置之位置、位向或兩者。定位器126可為發光二極體(light-emitting diode;LED)、隅角稜鏡反射器(corner cube reflector)、反射標誌、與近眼顯示器120操作所在環境形成對比之一種類型之光源或其任何組合。在定位器126為主動組件(例如,LED或其他類型之發光裝置)之具體實例中,定位器126可發射在可見光頻帶(例如,約380 nm至750 nm)、紅外線(infrared;IR)頻帶(例如,約750 nm至1 mm)、紫外線頻帶(例如,約10 nm至約380 nm)、電磁波譜之另一部分或電磁波譜之部分之任何組合中的光。Locator 126 may be an object located in a specific location on near-eye display 120 relative to each other and relative to a reference point on near-eye display 120 . In some implementations, console 110 may identify locator 126 in images captured by external imaging device 150 to determine the location, orientation, or both of the artificial reality headset. The locator 126 may be a light-emitting diode (LED), a corner cube reflector, a reflective sign, a type of light source that contrasts with the environment in which the near-eye display 120 operates, or any of them. combination. In specific examples where the locator 126 is an active component (eg, an LED or other type of light-emitting device), the locator 126 may emit in a visible light band (eg, approximately 380 nm to 750 nm), an infrared (IR) band ( For example, light in the ultraviolet band (eg, from about 750 nm to about 1 mm), in the ultraviolet band (eg, from about 10 nm to about 380 nm), another portion of the electromagnetic spectrum, or any combination of portions of the electromagnetic spectrum.

外部成像裝置150可包括一或多個攝影機、一或多個視訊攝影機、能夠捕捉包括定位器126中之一或多者之影像的任何其他裝置,或其任何組合。另外,外部成像裝置150可包括一或多個濾光片(例如,以增加信雜比)。外部成像裝置150可經組態以在外部成像裝置150之視場中偵測自定位器126發射或反射之光。在定位器126包括被動元件(例如,回反射器)之具體實例中,外部成像裝置150可包括照明定位器126中之一些或全部的光源,該等定位器可將光逆向反射至外部成像裝置150中之光源。慢速校準資料可自外部成像裝置150傳達至控制台110,且外部成像裝置150可自控制台110接收一或多個校準參數以調整一或多個成像參數(例如,焦距、焦點、框率、感測器溫度、快門速度、光圈等)。External imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more of locators 126 , or any combination thereof. Additionally, external imaging device 150 may include one or more optical filters (eg, to increase signal-to-noise ratio). External imaging device 150 may be configured to detect light emitted or reflected from locator 126 in the field of view of external imaging device 150 . In embodiments in which positioners 126 include passive elements (eg, retroreflectors), external imaging device 150 may include light sources illuminating some or all of positioners 126 that may retroreflect light to the external imaging device 150 light sources. Slow calibration data may be communicated from the external imaging device 150 to the console 110, and the external imaging device 150 may receive one or more calibration parameters from the console 110 to adjust one or more imaging parameters (eg, focal length, focal point, frame rate , sensor temperature, shutter speed, aperture, etc.).

位置感測器128可回應於近眼顯示器120之運動而產生一或多個量測信號。位置感測器128之實例可包括加速度計、陀螺儀、磁力計、其他運動偵測或誤差校正感測器,或其任何組合。舉例而言,在一些具體實例中,位置感測器128可包括用以量測平移運動(例如,向前/向後、向上/向下或向左/向右)之多個加速計及用以量測旋轉運動(例如,俯仰、偏航或橫搖)之多個陀螺儀。在一些具體實例中,各個位置感測器可彼此正交地定向。Position sensor 128 may generate one or more measurement signals in response to movement of near-eye display 120 . Examples of position sensors 128 may include accelerometers, gyroscopes, magnetometers, other motion detection or error correction sensors, or any combination thereof. For example, in some embodiments, position sensor 128 may include a plurality of accelerometers to measure translational motion (eg, forward/backward, up/down, or left/right) and to Multiple gyroscopes that measure rotational motion (such as pitch, yaw, or roll). In some embodiments, individual position sensors may be oriented orthogonally to each other.

IMU 132可為基於自位置感測器128中之一或多者接收到之量測信號而產生快速校準資料的電子裝置。位置感測器128可位於IMU 132外部、IMU 132內部或或其任何組合。基於來自一或多個位置感測器128之一或多個量測信號,IMU 132可生成快速校準資料,該快速校準資料指示相對於近眼顯示器120之初始位置的近眼顯示器120之估計位置。舉例而言,IMU 132可隨時間推移對自加速計接收到之量測信號進行整合以估計速度向量,且隨時間推移對該速度向量進行整合以判定近眼顯示器120上之參考點的估計位置。替代地,IMU 132可將經取樣之量測信號提供至控制台110,該控制台可判定快速校準資料。雖然參考點通常可被定義為空間中之點,但在各種具體實例中,參考點亦可被定義為近眼顯示器120內之點(例如,IMU 132之中心)。IMU 132 may be an electronic device that generates fast calibration data based on measurement signals received from one or more of position sensors 128 . Position sensor 128 may be located external to IMU 132, internal to IMU 132, or any combination thereof. Based on one or more measurement signals from one or more position sensors 128 , the IMU 132 may generate fast calibration data indicating an estimated position of the near-eye display 120 relative to an initial position of the near-eye display 120 . For example, IMU 132 may integrate measurement signals received from accelerometers over time to estimate a velocity vector, and integrate the velocity vector over time to determine an estimated position of a reference point on near-eye display 120 . Alternatively, IMU 132 can provide sampled measurement signals to console 110, which can determine fast calibration data. Although the reference point may generally be defined as a point in space, in various embodiments, the reference point may also be defined as a point within the near-eye display 120 (eg, the center of the IMU 132).

眼睛追蹤單元130可包括一或多個眼睛追蹤系統。眼睛追蹤可指判定眼睛相對於近眼顯示器120之位置,包括眼睛之定向及位置。眼睛追蹤系統可包括成像系統以對一或多個眼睛進行成像,且可視情況包括光發射器,該光發射器可產生經導向至眼睛之光,使得由眼睛反射之光可由成像系統俘獲。舉例而言,眼睛追蹤單元130可包括發射可見光譜或紅外線光譜中之光的非同調或同調光源(例如,雷射二極體),及俘獲由使用者眼睛反射之光的攝影機。作為另一實例,眼睛追蹤單元130可捕獲由小型雷達單元發射之經反射無線電波。眼睛追蹤單元130可使用低功率光發射器,該等低功率光發射器在將不會損傷眼睛或引起身體不適之頻率及強度下發射光。眼睛追蹤單元130可經配置以增加由眼睛追蹤單元130擷取之眼睛影像的對比度,同時減少由眼睛追蹤單元130消耗之總功率(例如,減少由包括於眼睛追蹤單元130中之光發射器及成像系統消耗的功率)。舉例而言,在一些實施方式中,眼睛追蹤單元130可消耗小於100毫瓦之功率。Eye tracking unit 130 may include one or more eye tracking systems. Eye tracking may refer to determining the position of the eyes relative to the near-eye display 120, including the orientation and position of the eyes. An eye tracking system may include an imaging system to image one or more eyes, and optionally include a light emitter that may generate light directed to the eye such that light reflected by the eye may be captured by the imaging system. For example, the eye tracking unit 130 may include a non-coherent or coherent light source (eg, a laser diode) that emits light in the visible or infrared spectrum, and a camera that captures the light reflected by the user's eyes. As another example, eye tracking unit 130 may capture reflected radio waves emitted by a small radar unit. Eye tracking unit 130 may use low-power light emitters that emit light at frequencies and intensities that will not damage the eyes or cause physical discomfort. Eye tracking unit 130 may be configured to increase the contrast of eye images captured by eye tracking unit 130 while reducing the total power consumed by eye tracking unit 130 (e.g., by reducing the amount of power consumed by the light emitters included in eye tracking unit 130 and power consumed by the imaging system). For example, in some implementations, eye tracking unit 130 may consume less than 100 milliwatts of power.

近眼顯示器120可使用眼睛之定向以例如判定使用者之瞳孔間距離(inter-pupillary distance;IPD),判定凝視方向,引入深度提示(例如,在使用者之主視線外部的模糊影像),收集關於VR媒體中之使用者互動的啟發資訊(例如,花費在任何特定個體、物件或圖框上之時間,其依據所曝露之刺激而變化),部分地基於使用者眼睛中之至少一者之定向的一些其他功能,或其任何組合。因為可判定使用者之兩隻眼睛的位向,所以眼睛追蹤單元130可能夠判定使用者看向何處。舉例而言,判定使用者之凝視方向可包括基於使用者左眼及右眼之經判定定向來判定會聚點。會聚點可為使用者眼睛之兩個中央窩軸線相交的點。使用者之凝視方向可為穿過會聚點及使用者眼睛之瞳孔之間的中點的線之方向。Near-eye display 120 may use eye orientation to, for example, determine the user's inter-pupillary distance (IPD), determine gaze direction, introduce depth cues (e.g., blurred images outside the user's primary line of sight), collect information about Heuristic information about user interaction in VR media (e.g., time spent with any particular individual, object, or frame, which varies depending on the stimulus to which it is exposed), based in part on the orientation of at least one of the user's eyes some other functionality, or any combination thereof. Because the position of the user's two eyes can be determined, the eye tracking unit 130 may be able to determine where the user is looking. For example, determining the user's gaze direction may include determining the convergence point based on the determined orientations of the user's left and right eyes. The convergence point may be the point where the two foveal axes of the user's eyes intersect. The user's gaze direction may be the direction of a line passing through the midpoint between the convergence point and the pupil of the user's eye.

輸入/輸出介面140可為允許使用者將動作請求發送至控制台110之裝置。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或進行該應用程式內之特定動作。輸入/輸出介面140可包括一或多個輸入裝置。實例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或用於接收動作請求且將所接收動作請求傳達至控制台110的任何其他合適裝置。可將由輸入/輸出介面140接收之動作請求傳達至可執行對應於所請求動作之動作的控制台110。在一些具體實例中,輸入/輸出介面140可根據自控制台110接收到之指令將觸覺回饋提供至使用者。舉例而言,輸入/輸出介面140可在接收到動作請求時或在控制台110已執行所請求動作且將指令傳達至輸入/輸出介面140時提供觸覺回饋。在一些具體實例中,外部成像裝置150可用以追蹤輸入/輸出介面140,諸如追蹤控制器(其可包括例如IR光源)或使用者之手部之部位或位置以判定使用者之運動。在一些具體實例中,近眼顯示器120可包括一或多個成像裝置以追蹤輸入/輸出介面140,諸如追蹤控制器或使用者之手的部位或位置以判定使用者之運動。The input/output interface 140 may be a device that allows the user to send action requests to the console 110 . An action request may be a request to perform a specific action. For example, an action request may be to start or end an application or to perform a specific action within the application. Input/output interface 140 may include one or more input devices. Example input devices may include keyboards, mice, game controllers, gloves, buttons, touch screens, or any other suitable device for receiving action requests and communicating the received action requests to console 110 . Action requests received by input/output interface 140 may be communicated to console 110 which may perform an action corresponding to the requested action. In some examples, the input/output interface 140 may provide tactile feedback to the user according to instructions received from the console 110 . For example, the input/output interface 140 may provide tactile feedback when an action request is received or when the console 110 has performed the requested action and communicated instructions to the input/output interface 140 . In some embodiments, the external imaging device 150 may be used to track the input/output interface 140, such as a tracking controller (which may include, for example, an IR light source) or the location or position of the user's hand to determine the user's movement. In some embodiments, the near-eye display 120 may include one or more imaging devices to track the input/output interface 140, such as tracking the location or position of a controller or a user's hand to determine the user's movements.

控制台110可根據自外部成像裝置150、近眼顯示器120及輸入/輸出介面140中之一或多者接收到之資訊而將內容提供至近眼顯示器120以供呈現給使用者。在圖1中所展示之範例中,控制台110可包括應用程式商店112、頭戴式裝置追蹤模組114、人工實境引擎116及眼睛追蹤模組118。控制台110之一些具體實例可包括與結合圖1所描述之彼等模組不同的模組或額外模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈在控制台110之組件當中。The console 110 may provide content to the near-eye display 120 for presentation to the user based on information received from one or more of the external imaging device 150 , the near-eye display 120 , and the input/output interface 140 . In the example shown in FIG. 1 , console 110 may include an app store 112 , a headset tracking module 114 , an artificial reality engine 116 , and an eye tracking module 118 . Some embodiments of console 110 may include different modules or additional modules than those described in conjunction with FIG. 1 . Functionality, described further below, may be distributed among the components of console 110 in different ways than described herein.

在一些具體實例中,控制台110可包括處理器及儲存可由處理器執行之指令的非暫時性電腦可讀儲存媒體。處理器可包括多個同時執行指令之處理單元。非暫時性電腦可讀儲存媒體可為任何記憶體,諸如硬碟機、抽取式記憶體或固態硬碟(例如,快閃記憶體或動態隨機存取記憶體(DRAM))。在各種具體實例中,結合圖1描述之控制台110的模組可編碼為非暫時性電腦可讀儲存媒體中之指令,該等指令在由處理器執行時使得處理器執行下文進一步描述之功能。In some embodiments, console 110 may include a processor and a non-transitory computer-readable storage medium that stores instructions executable by the processor. A processor may include multiple processing units that execute instructions simultaneously. The non-transitory computer-readable storage medium can be any memory, such as a hard drive, removable memory, or a solid-state drive (eg, flash memory or dynamic random access memory (DRAM)). In various embodiments, the modules of the console 110 described in conjunction with FIG. 1 may be encoded as instructions in a non-transitory computer-readable storage medium that, when executed by a processor, cause the processor to perform the functions described further below. .

應用程式商店112可儲存一或多個應用程式以供控制台110執行。應用程式可包括在由處理器執行時生成內容以呈現給使用者之一組指令。由應用程式產生之內容可回應於經由使用者眼睛之移動而自使用者接收到之輸入,或自輸入/輸出介面140接收到之輸入。應用程式之實例包括:遊戲應用程式、會議應用程式、視訊回放應用程式或其他合適之應用程式。Application store 112 may store one or more applications for execution by console 110 . An application may include a set of instructions that, when executed by a processor, generate content for presentation to a user. Content generated by the application may respond to input received from the user through movement of the user's eyes, or input received from the input/output interface 140 . Examples of applications include: gaming applications, conferencing applications, video playback applications, or other suitable applications.

頭戴式裝置追蹤模組114可使用來自外部成像器件150之慢速校準資訊來追蹤近眼顯示器120之移動。舉例而言,頭戴式裝置追蹤模組114可使用自慢速校準資訊觀測到之定位器及近眼顯示器120之模型來判定近眼顯示器120之參考點的位置。頭戴式裝置追蹤模組114亦可使用來自快速校準資訊之位置資訊來判定近眼顯示器120之參考點的位置。另外,在一些具體實例中,頭戴式裝置追蹤模組114可使用快速校準資訊、慢速校準資訊或其任何組合之部分來預測近眼顯示器120之未來部位。頭戴式裝置追蹤模組114可將近眼顯示器120之所估計或經預測未來位置提供至人工實境引擎116。The headset tracking module 114 may use slow calibration information from the external imaging device 150 to track the movement of the near-eye display 120 . For example, the headset tracking module 114 may use the localizer and the model of the near-eye display 120 observed from the slow calibration information to determine the location of the reference point of the near-eye display 120 . The head mounted device tracking module 114 may also use position information from the fast calibration information to determine the position of the reference point of the near-eye display 120 . Additionally, in some embodiments, headset tracking module 114 may use portions of fast calibration information, slow calibration information, or any combination thereof to predict future locations of near-eye display 120 . The head mounted device tracking module 114 may provide the estimated or predicted future position of the near-eye display 120 to the artificial reality engine 116 .

人工實境引擎116可執行人工實境系統環境100內之應用程式,且自頭戴式裝置追蹤模組114接收近眼顯示器120之位置資訊、近眼顯示器120之加速資訊、近眼顯示器120之速度資訊、近眼顯示器120之預測未來位置或其任何組合。人工實境引擎116亦可自眼睛追蹤模組118接收所估計眼睛位置及位向資訊。基於所接收資訊,人工實境引擎116可判定用以提供至近眼顯示器120以供呈現給使用者的內容。舉例而言,若所接收資訊指示使用者已看向左側,則人工實境引擎116可為近眼顯示器120產生反映使用者在虛擬環境中之眼球移動的內容。另外,人工實境引擎116可回應於自輸入/輸出介面140接收到之動作請求而執行在控制台110上執行之應用程式內的動作,且將指示該動作已執行之回饋提供至使用者。該回饋可為經由近眼顯示器120之視覺或聽覺回饋,或經由輸入/輸出介面140之觸覺回饋。The artificial reality engine 116 can execute applications in the artificial reality system environment 100 and receive the position information of the near-eye display 120, the acceleration information of the near-eye display 120, and the speed information of the near-eye display 120 from the head-mounted device tracking module 114. Predicted future position of near-eye display 120 or any combination thereof. Artificial reality engine 116 may also receive estimated eye position and orientation information from eye tracking module 118 . Based on the received information, the artificial reality engine 116 may determine content to provide to the near-eye display 120 for presentation to the user. For example, if the received information indicates that the user has looked to the left, the artificial reality engine 116 may generate content for the near-eye display 120 that reflects the user's eye movements in the virtual environment. Additionally, the artificial reality engine 116 may perform actions within the application executing on the console 110 in response to action requests received from the input/output interface 140 and provide feedback to the user indicating that the action has been performed. The feedback may be visual or auditory feedback via the near-eye display 120 , or tactile feedback via the input/output interface 140 .

眼睛追蹤模組118可自眼睛追蹤單元130接收眼睛追蹤資料,且基於該眼睛追蹤資料判定使用者眼睛之位置。眼睛之位置可包括眼睛相對於近眼顯示器120或其任何元件之定向、方位或此兩者。因為眼睛之旋轉軸線依據眼睛在其眼窩中之方位而變化,所以判定眼睛在其眼窩中之方位可允許眼睛追蹤模組118更準確地判定眼睛之位向。The eye tracking module 118 may receive eye tracking data from the eye tracking unit 130 and determine the position of the user's eyes based on the eye tracking data. The position of the eye may include the orientation, orientation, or both of the eye relative to the near-eye display 120 or any element thereof. Because the eye's axis of rotation changes depending on the eye's orientation in its eye socket, determining the eye's orientation in its eye socket may allow the eye tracking module 118 to more accurately determine the eye's orientation.

2為呈用於實施本文中所揭示之實例中之一些的HMD裝置200之形式的近眼顯示器之實例之透視圖。HMD裝置200可為例如VR系統、AR系統、MR系統或其任何組合之一部分。HMD裝置200可包括本體220及頭部綁帶230。圖2在透視圖中展示本體220之底側223、前側225及左側227。頭部綁帶230可具有可調整或可延伸之長度。在HMD裝置200之本體220與頭部綁帶230之間可存在足夠的空間,以允許使用者將HMD裝置200安裝至使用者之頭部上。在各種具體實例中,HMD裝置200可包括額外組件、更少組件或不同組件。舉例而言,在一些具體實例中,HMD裝置200可包括如例如以下圖3中所展示之眼鏡鏡腿及鏡腿尖端,而非頭部綁帶230。 2 is a perspective view of an example of a near - eye display in the form of an HMD device 200 for implementing some of the examples disclosed herein. HMD device 200 may be, for example, part of a VR system, AR system, MR system, or any combination thereof. The HMD device 200 may include a body 220 and a head strap 230. Figure 2 shows the bottom side 223, the front side 225 and the left side 227 of the body 220 in a perspective view. The head strap 230 may have an adjustable or extendable length. There may be enough space between the body 220 of the HMD device 200 and the head strap 230 to allow the user to install the HMD device 200 on the user's head. In various embodiments, HMD device 200 may include additional components, fewer components, or different components. For example, in some embodiments, the HMD device 200 may include eyeglass temples and temple tips, as shown, for example, in FIG. 3 below, instead of the headband 230 .

HMD裝置200可將包括具有電腦產生元素之實體真實世界環境之虛擬及/或擴增視圖的媒體呈現給使用者。由HMD裝置200呈現之媒體的實例可包括影像(例如,二維(2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊或其任何組合。影像及視訊可由封圍於HMD裝置200之主體220中之一或多個顯示器總成(圖2中未顯示)呈現給使用者之各眼睛。在各種具體實例中,該一或多個顯示器總成可包括單個電子顯示面板或多個電子顯示面板(例如,使用者之每隻眼睛一個顯示面板)。電子顯示面板之實例可包括例如LCD、OLED顯示器、ILED顯示器、μLED顯示器、AMOLED、TOLED、一些其他顯示器,或其任何組合。HMD裝置200可包括兩個眼框區域。HMD device 200 may present media to a user that includes virtual and/or augmented views of a physical real-world environment with computer-generated elements. Examples of media presented by HMD device 200 may include images (eg, two-dimensional (2D) or three-dimensional (3D) images), video (eg, 2D or 3D video), audio, or any combination thereof. Images and videos may be presented to each eye of the user by one or more display assemblies (not shown in FIG. 2 ) enclosed in the main body 220 of the HMD device 200 . In various embodiments, the one or more display assemblies may include a single electronic display panel or multiple electronic display panels (eg, one display panel for each eye of the user). Examples of electronic display panels may include, for example, LCDs, OLED displays, ILED displays, μLED displays, AMOLEDs, TOLEDs, some other displays, or any combination thereof. The HMD device 200 may include two eye frame areas.

在一些實施方式中,HMD裝置200可包括各種感測器(圖中未示),諸如深度感測器、運動感測器、位置感測器及眼睛追蹤感測器。此等感測器中之一些可使用結構化光圖案以進行感測。在一些實施方式中,HMD裝置200可包括用於與控制台進行通信之輸入/輸出介面。在一些實施方式中,HMD裝置200可包括虛擬實境引擎(圖中未示),該虛擬實境引擎可執行HMD裝置200內之應用程式,且自各種感測器接收HMD裝置200之深度資訊、位置資訊、加速度資訊、速度資訊、經預測未來位置或其任何組合。在一些實施方式中,由虛擬實境引擎接收之資訊可用於為一或多個顯示器總成產生信號(例如,顯示指令)。在一些實施方式中,HMD裝置200可包括相對於彼此且相對於參考點而位於主體220上之固定位置中的定位器(未圖示,諸如定位器126)。該等定位器中之各者可發射光,該光可由外部成像裝置偵測。In some implementations, the HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and eye tracking sensors. Some of these sensors may use structured light patterns for sensing. In some implementations, HMD device 200 may include an input/output interface for communicating with a console. In some embodiments, the HMD device 200 may include a virtual reality engine (not shown in the figure). The virtual reality engine may execute applications in the HMD device 200 and receive depth information of the HMD device 200 from various sensors. , position information, acceleration information, velocity information, predicted future position, or any combination thereof. In some implementations, information received by the virtual reality engine may be used to generate signals (eg, display commands) for one or more display assemblies. In some embodiments, HMD device 200 may include positioners (not shown, such as positioner 126 ) in fixed positions on body 220 relative to each other and relative to a reference point. Each of the locators can emit light that can be detected by an external imaging device.

3為呈用於實施本文中所揭示之實例中之一些的一副眼鏡之形式的近眼顯示器300之實例之透視圖。近眼顯示器300可為圖1之近眼顯示器120的特定實現方式,且可經組態以作為虛擬實境顯示器、擴增實境顯示器及/或混合實境顯示器來操作。近眼顯示器300包括框架305及顯示器310。顯示器310可經組態以將內容呈現給使用者。在一些具體實例中,顯示器310可包括顯示電子件及/或顯示光學件。舉例而言,如上文關於圖1之近眼顯示器120所描述,顯示器310可包括LCD顯示面板、LED顯示面板或光學顯示面板(例如,波導顯示器總成)。 3 is a perspective view of an example of a near-eye display 300 in the form of a pair of glasses for implementing some of the examples disclosed herein. Near-eye display 300 may be a particular implementation of near-eye display 120 of FIG. 1 and may be configured to operate as a virtual reality display, an augmented reality display, and/or a mixed reality display. The near-eye display 300 includes a frame 305 and a display 310. Display 310 may be configured to present content to a user. In some examples, display 310 may include display electronics and/or display optics. For example, as described above with respect to near-eye display 120 of FIG. 1 , display 310 may include an LCD display panel, an LED display panel, or an optical display panel (eg, a waveguide display assembly).

近眼顯示器300可進一步包括在框架305上或內之各種感測器350a、350b、350c、350d及350e。在一些具體實例中,感測器350a至350e可包括一或多個深度感測器、運動感測器、位置感測器、慣性感測器或環境光感測器。在一些具體實例中,感測器350a至350e可包括一或多個影像感測器,其經組態以產生表示不同方向上之不同視場的影像資料。在一些具體實例中,感測器350a至350e可用作輸入裝置以控制或影響近眼顯示器300之所顯示內容,及/或向近眼顯示器300之使用者提供互動式VR/AR/MR體驗。在一些具體實例中,感測器350a至350e亦可用於立體成像。Near-eye display 300 may further include various sensors 350a, 350b, 350c, 350d, and 350e on or within frame 305. In some embodiments, sensors 350a to 350e may include one or more depth sensors, motion sensors, position sensors, inertial sensors, or ambient light sensors. In some embodiments, sensors 350a-350e may include one or more image sensors configured to generate image data representing different fields of view in different directions. In some embodiments, the sensors 350a to 350e may be used as input devices to control or influence the displayed content of the near-eye display 300 and/or provide an interactive VR/AR/MR experience to the user of the near-eye display 300. In some specific examples, sensors 350a to 350e may also be used for stereoscopic imaging.

在一些具體實例中,近眼顯示器300可進一步包括一或多個照明器330以將光投射至實體環境中。所投射光可與不同頻帶(例如,可見光、紅外光、紫外光等)相關聯,且可用於各種目的。舉例而言,一或多個照明器330可將光投射於黑暗環境中(或具有低強度之紅外光、紫外光等的環境中),以輔助感測器350a至350e捕獲黑暗環境內之不同物件的影像。在一些具體實例中,一或多個照明器330可用以將某些光圖案投影至環境內之物件上。在一些具體實例中,一或多個照明器330可用作定位器,諸如上文關於圖1所描述之定位器126。In some embodiments, the near-eye display 300 may further include one or more illuminators 330 to project light into the physical environment. The projected light can be associated with different frequency bands (eg, visible light, infrared light, ultraviolet light, etc.) and can be used for various purposes. For example, one or more illuminators 330 can project light into a dark environment (or an environment with low intensity infrared light, ultraviolet light, etc.) to assist the sensors 350a to 350e in capturing the differences in the dark environment. Image of the object. In some embodiments, one or more illuminators 330 may be used to project certain light patterns onto objects within the environment. In some embodiments, one or more illuminators 330 may serve as locators, such as locator 126 described above with respect to FIG. 1 .

在一些具體實例中,近眼顯示器300亦可包括高解析度攝影機340。高解析度攝影機340可捕獲視場中之實體環境之影像。經捕獲影像可例如由虛擬實境引擎(例如,圖1之人工實境引擎116)處理,以將虛擬物件添加至經捕獲影像或修改經捕獲影像中之實體物件,且經處理影像可由顯示器310顯示給使用者以用於AR或MR應用。In some specific examples, the near-eye display 300 may also include a high-resolution camera 340. The high-resolution camera 340 can capture images of the physical environment in the field of view. The captured image may be processed, for example, by a virtual reality engine (eg, artificial reality engine 116 of FIG. 1 ) to add virtual objects to the captured image or modify physical objects in the captured image, and the processed image may be displayed by display 310 Displayed to the user for use in AR or MR applications.

4說明根據某些具體實例的包括波導顯示器之光學透視擴增實境系統400之實例。擴增實境系統400可包括投影機410及組合器415。投影機410可包括光源或影像源412及投影機光學件414。在一些具體實例中,光源或影像源412可包括上文所描述的一或多個微LED裝置。在一些具體實例中,影像源412可包括顯示虛擬物件之複數個像素,諸如LCD顯示面板或LED顯示面板。在一些具體實例中,影像源412可包括產生相干或部分相干光之光源。舉例而言,影像源412可包括雷射二極體、垂直空腔表面發射雷射、LED及/或上文所描述之微型LED。在一些具體實例中,影像源412可包括各自發射對應於原色(例如,紅色、綠色或藍色)之單色影像光的複數個光源(例如,上文所描述之微型LED陣列)。在一些具體實例中,影像源412可包括微型LED之三個二維陣列,其中微型LED之各二維陣列可包括經組態以發射具有原色(例如,紅色、綠色或藍色)之光的微型LED。在一些具體實例中,影像源412可包括光學圖案產生器,諸如空間光調變器。投影機光學件414可包括可調節來自影像源412之光,諸如擴展、準直、掃描或將光自影像源412投影至組合器415的一或多個光學組件。該一或多個光學組件可包括例如一或多個透鏡、液體透鏡、鏡子、光圈及/或光柵。舉例而言,在一些具體實例中,影像源412可包括微型LED之一或多個一維陣列或細長二維陣列,且投影機光學件414可包括經組態以掃描微型LED之一維陣列或細長二維陣列以產生影像圖框的一或多個一維掃描器(例如,微鏡或稜鏡)。在一些具體實例中,投影機光學件414可包括具有複數個電極之液體透鏡(例如,液晶透鏡),該液體透鏡允許掃描來自影像源412之光。 4 illustrates an example of an optical see-through augmented reality system 400 including a waveguide display , according to certain embodiments. Augmented reality system 400 may include projector 410 and combiner 415 . Projector 410 may include a light or image source 412 and projector optics 414. In some embodiments, light or image source 412 may include one or more micro-LED devices as described above. In some specific examples, the image source 412 may include a plurality of pixels that display virtual objects, such as an LCD display panel or an LED display panel. In some embodiments, image source 412 may include a light source that generates coherent or partially coherent light. For example, the image source 412 may include a laser diode, a vertical cavity surface emitting laser, an LED, and/or a micro-LED as described above. In some embodiments, image source 412 may include a plurality of light sources (eg, the micro-LED arrays described above) that each emit monochromatic image light corresponding to a primary color (eg, red, green, or blue). In some embodiments, image source 412 may include three two-dimensional arrays of micro-LEDs, where each two-dimensional array of micro-LEDs may include an array of micro-LEDs configured to emit light having a primary color (eg, red, green, or blue). Micro LED. In some embodiments, image source 412 may include an optical pattern generator, such as a spatial light modulator. Projector optics 414 may include one or more optical components that can modulate light from image source 412 , such as expanding, collimating, scanning, or projecting light from image source 412 to combiner 415 . The one or more optical components may include, for example, one or more lenses, liquid lenses, mirrors, apertures, and/or gratings. For example, in some embodiments, image source 412 may include one or more one-dimensional arrays or elongated two-dimensional arrays of micro-LEDs, and projector optics 414 may include a one-dimensional array configured to scan the micro-LEDs. or an elongated two-dimensional array of one or more one-dimensional scanners (e.g., micromirrors or scanners) that produce image frames. In some examples, projector optics 414 may include a liquid lens (eg, a liquid crystal lens) with a plurality of electrodes that allows scanning of light from image source 412 .

組合器415可包括用於將來自投影機410之光耦合至組合器415之基材420中的輸入耦合器430。輸入耦合器430可包括體積布拉格光柵(VBG)、繞射光學元件(DOE)(例如,表面起伏光柵(SRG))、基材420之傾斜表面或折射耦合器(例如,楔形件或稜鏡)。舉例而言,輸入耦合器430可包括反射式體積布拉格光柵或透射式體積布拉格光柵。對於可見光,輸入耦合器430可具有大於30%、50%、75%、90%或更高之耦合效率。耦合至基材420中之光可經由例如全內反射(TIR)在基材420內傳播。基材420可呈一副眼鏡之透鏡的形式。基材420可具有平坦或彎曲表面,且可包括一或多種類型之介電材料,諸如玻璃、石英、塑膠、聚合物、聚(甲基丙烯酸甲酯)(PMMA)、晶體或陶瓷。基材之厚度可在例如小於約1 mm至約10 mm或更大之範圍內。基材420對於可見光可為可穿透的。The combiner 415 may include an input coupler 430 for coupling light from the projector 410 into the substrate 420 of the combiner 415 . The input coupler 430 may include a volume Bragg grating (VBG), a diffractive optical element (DOE) (eg, a surface relief grating (SRG)), a sloped surface of the substrate 420, or a refractive coupler (eg, a wedge or beam). . For example, input coupler 430 may include a reflective volume Bragg grating or a transmissive volume Bragg grating. For visible light, the input coupler 430 may have a coupling efficiency greater than 30%, 50%, 75%, 90%, or higher. Light coupled into substrate 420 may propagate within substrate 420 via, for example, total internal reflection (TIR). Substrate 420 may be in the form of a lens of a pair of glasses. Substrate 420 may have a flat or curved surface, and may include one or more types of dielectric materials, such as glass, quartz, plastic, polymer, poly(methyl methacrylate) (PMMA), crystal, or ceramic. The thickness of the substrate may range, for example, from less than about 1 mm to about 10 mm or more. Substrate 420 may be transparent to visible light.

基材420可包括或可耦合至複數個輸出耦合器440,該複數個輸出耦合器各自經組態以自基材420提取由基材420導引且在其內傳播的光之至少一部分,且將所提取光460引導至擴增實境系統400之使用者的眼睛490在擴增實境系統400在使用中時可位於的眼眶495。複數個輸出耦合器440可複製出射光瞳以增大眼眶495之大小,使得經顯示影像在較大區域中可見。與輸入耦合器430一樣,輸出耦合器440可包括光柵耦合器(例如體積全像光柵或表面起伏光柵)、其他繞射光學元件、稜鏡等。舉例而言,輸出耦合器440可包括反射體積布拉格光柵或透射體積布拉格光柵。輸出耦合器440可在不同部位處具有不同耦合(例如,繞射)效率。基材420亦可允許來自組合器415前方之環境的光450在損失極少或無損失之情況下穿過。輸出耦合器440亦可允許光450在損耗極少之情況下穿過。舉例而言,在一些實施方式中,輸出耦合器440可對於光450具有極低繞射效率,使得光450可在損耗極少之情況下折射或以其他方式穿過輸出耦合器440,且因此可具有高於所提取光460之強度。在一些實施方式中,輸出耦合器440可對於光450有高繞射效率,且可在損失極少之情況下在某些所要方向(亦即,繞射角)上繞射光450。因而,使用者可能夠檢視組合器415前方之環境與由投影機410投影之虛擬物件之影像的經組合影像。Substrate 420 may include or may be coupled to a plurality of output couplers 440 each configured to extract from substrate 420 at least a portion of the light directed by and propagating within substrate 420 , and The extracted light 460 is directed to the orbit 495 where the user's eyes 490 of the augmented reality system 400 may be located when the augmented reality system 400 is in use. Multiple output couplers 440 can replicate the exit pupil to increase the size of the orbit 495 so that the displayed image is visible over a larger area. Like input coupler 430, output coupler 440 may include a grating coupler (eg, a volume holographic grating or a surface relief grating), other diffractive optical elements, mirrors, and the like. For example, output coupler 440 may include a reflective volume Bragg grating or a transmissive volume Bragg grating. Output coupler 440 may have different coupling (eg, diffraction) efficiencies at different locations. The substrate 420 may also allow light 450 from the environment in front of the combiner 415 to pass through with little or no loss. Output coupler 440 may also allow light 450 to pass through with minimal loss. For example, in some implementations, output coupler 440 may have extremely low diffraction efficiency for light 450 such that light 450 may refract or otherwise pass through output coupler 440 with minimal loss, and thus may Has an intensity higher than the extracted light 460. In some implementations, output coupler 440 can have high diffraction efficiency for light 450 and can diffract light 450 in certain desired directions (ie, diffraction angles) with minimal losses. Thus, the user may be able to view a combined image of the environment in front of the combiner 415 and the image of the virtual object projected by the projector 410 .

在一些具體實例中,投影機410、輸入耦合器430及輸出耦合器440可在基材420之任一側面上。輸入耦合器430及輸出耦合器440可為反射光柵(亦稱為反射光柵)或透射光柵(亦稱為透射光柵)以將顯示光耦合至基材420中或基材420之外。In some embodiments, projector 410, input coupler 430, and output coupler 440 may be on either side of substrate 420. The input coupler 430 and the output coupler 440 may be a reflective grating (also known as a reflection grating) or a transmission grating (also known as a transmission grating) to couple the display light into or out of the substrate 420 .

5說明根據某些具體實例的包括用於出射光瞳擴展之波導顯示器之光學透視擴增實境系統500的實例。擴增實境系統500可類似於擴增實境系統500,且可包括波導顯示器及投影機,該投影機可包括光源或影像源510及投影機光學件520。波導顯示器可包括如上文關於擴增實境系統500所描述之基材530、輸入耦合器540及複數個輸出耦合器550。雖然圖5僅展示來自單個視場之光的傳播,但圖5展示來自多個視場之光的傳播。 Figure 5 illustrates an example of an optical see-through augmented reality system 500 including a waveguide display for exit pupil expansion, according to certain embodiments. Augmented reality system 500 may be similar to augmented reality system 500 and may include a waveguide display and a projector, which may include a light or image source 510 and projector optics 520 . The waveguide display may include a substrate 530, an input coupler 540, and a plurality of output couplers 550 as described above with respect to the augmented reality system 500. Although Figure 5 only shows the propagation of light from a single field of view, Figure 5 shows the propagation of light from multiple fields of view.

圖5展示出射光瞳由輸出耦合器550複製以形成聚集式出射光瞳或眼眶,其中視場中之不同區域(例如,影像源510上之不同像素)可與朝向眼眶之不同個別傳播方向相關聯,且來自同一視場之光(例如,影像源510上之同一像素)可具有用於不同各別出射光瞳之同一傳播方向。因此,影像源510之單個影像可由定位於眼眶中之任何位置之使用者眼睛形成,其中來自不同個別出射光瞳且在同一方向上傳播之光可來自影像源510上之同一像素且可聚焦至使用者眼睛之視網膜上之同一位置上。圖5展示即使使用者眼睛移動至眼眶中之不同部位,影像源之影像亦由使用者眼睛可見。Figure 5 shows that the exit pupil is replicated by output coupler 550 to form a focused exit pupil or orbit, where different regions in the field of view (e.g., different pixels on image source 510) can be associated with different individual propagation directions toward the orbit. are coupled, and light from the same field of view (eg, the same pixel on image source 510) can have the same propagation direction for different respective exit pupils. Thus, a single image of image source 510 can be formed by the user's eye positioned anywhere in the orbit, where light from different individual exit pupils traveling in the same direction can come from the same pixel on image source 510 and can be focused to at the same location on the retina of the user's eye. Figure 5 shows that even if the user's eyes move to different parts of the eye socket, the image of the image source is still visible to the user's eyes.

6A說明包括體積布拉格光柵耦合器之波導顯示器600之實例。波導顯示器600可包括在基材610內或連結在一起之兩個基材之間的VBG層620。舉例而言,VBG層620可形成於一個基材上且具有VBG層620之基材可連結至另一基材,使得VBG層620可由該兩個基材包夾以形成波導顯示器,其中顯示光可由頂表面612及底表面614反射。VBG層620可包括輸入VBG 622及輸出VBG 624。在所說明實例中,輸入VBG 622可反射地繞射入射光,且因此可充當反射式VBG。輸出VBG 624可部分地將來自輸入VBG 622之光反射地繞射至基材610之外朝向波導顯示器600之眼眶。輸入VBG 622及輸出VBG 624可充當多個反射器,其強有力地反射具有特定波長且及/或來自滿足布拉格條件之特定角度的光。在各種具體實例中,視VBG中之多個反射器之傾斜角度而定,輸入VBG 622及輸出VBG 624可為透射VBG或反射VBG,其中反射光可或可不穿過VBG使得VBG可透射地或反射地繞射入射光。多個反射器中之各者之反射性可視入射光之偏光狀態、波長及入射角,及VBG之時段、基礎折射率及折射率調變(Δn)而定。 Figure 6A illustrates an example of a waveguide display 600 including a volume Bragg grating coupler. Waveguide display 600 may include a VBG layer 620 within substrate 610 or between two substrates joined together. For example, VBG layer 620 can be formed on one substrate and the substrate with VBG layer 620 can be bonded to another substrate such that VBG layer 620 can be sandwiched by the two substrates to form a waveguide display in which light is displayed. Can be reflected from top surface 612 and bottom surface 614. VBG layer 620 may include input VBG 622 and output VBG 624. In the illustrated example, input VBG 622 can reflectively diffract incident light, and thus can function as a reflective VBG. Output VBG 624 may partially reflectively diffract light from input VBG 622 out of substrate 610 toward the orbit of waveguide display 600 . Input VBG 622 and output VBG 624 may act as multiple reflectors that strongly reflect light with specific wavelengths and/or from specific angles that satisfy the Bragg condition. In various embodiments, depending on the tilt angle of the plurality of reflectors in the VBG, the input VBG 622 and the output VBG 624 may be a transmissive VBG or a reflective VBG, where the reflected light may or may not pass through the VBG such that the VBG is transmissive or Reflectively diffracts incident light. The reflectivity of each of the plurality of reflectors can be determined by the polarization state, wavelength, and angle of incidence of the incident light, as well as the period of VBG, the base refractive index, and the refractive index modulation (Δn).

6B說明根據某些具體實例的包括用於不同視場之多個光柵層的基於光柵之波導顯示器602之實例。在波導顯示器602中,光柵可沿著Z方向在空間上經多工。舉例而言,波導顯示器602可包括多個基材,諸如基材630、632、634及類似者。基材可包括具有相同材料或具有類似折射率之材料。一或多個光柵640、642、644及類似者(例如,VBG或SRG)可形成在各基材上,諸如記錄在基材上形成之全像材料層中或蝕刻於基材中。光柵可為反射式光柵或透射式光柵。具有該等光柵之基材可沿著z方向配置於基材堆疊中以用於空間多工。在一些具體實例中,各光柵640、642或644可為多工VBG,其包括針對不同布拉格條件經設計以將不同波長範圍及/或不同FOV之顯示光耦合至波導顯示器602中或波導顯示器602之外的多個光柵。在圖6B中所示之實例中,光柵640可將來自正視場之光654耦合至波導中,如由波導內之光線664所示。光柵642可將來自約0°視場之光650耦合至波導中,如由波導內之光線660所展示。光柵644可將來自負視場之光652耦合至波導中,如由波導內之光線662所展示。 Figure 6B illustrates an example of a grating-based waveguide display 602 including multiple grating layers for different fields of view, according to certain embodiments. In waveguide display 602, gratings may be spatially multiplexed along the Z direction. For example, waveguide display 602 may include multiple substrates, such as substrates 630, 632, 634, and the like. The substrate may include materials of the same material or of similar refractive index. One or more gratings 640, 642, 644, and the like (eg, VBG or SRG) may be formed on each substrate, such as recorded in a layer of holographic material formed on the substrate or etched into the substrate. The grating can be a reflective grating or a transmissive grating. Substrates with these gratings can be arranged in a substrate stack along the z-direction for spatial multiplexing. In some embodiments, each grating 640, 642, or 644 may be a multiplexed VBG that is designed for different Bragg conditions to couple display light of different wavelength ranges and/or different FOVs into or into the waveguide display 602. multiple rasters. In the example shown in Figure 6B, grating 640 can couple light 654 from the front field of view into the waveguide, as shown by ray 664 within the waveguide. Grating 642 can couple light 650 from an approximately 0° field of view into the waveguide, as illustrated by ray 660 within the waveguide. Grating 644 can couple light 652 from the negative field of view into the waveguide, as illustrated by light 662 within the waveguide.

在許多基於波導之近眼顯示系統中,為了以二維形式擴展基於波導之近眼顯示器的眼眶,兩個或更多個輸出光柵可用於以二維形式或沿著兩個軸線擴展顯示光(其可稱作雙軸瞳孔擴展)。兩個光柵可具有不同光柵參數,使得一個光柵可用於複製一個方向上之出射瞳孔,且另一個光柵可用於複製另一方向上之出射瞳孔。In many waveguide-based near-eye display systems, to expand the orbit of the waveguide-based near-eye display in two dimensions, two or more output gratings can be used to expand the display light in two dimensions or along two axes (which can called biaxial pupillary dilation). Two gratings can have different grating parameters, such that one grating can be used to replicate the exit pupil in one direction and another grating can be used to replicate the exit pupil in another direction.

7A為根據某些具體實例的具有出射光瞳擴展及色散降低之基於光柵(例如,基於體積布拉格光柵或表面起伏光柵)之波導顯示器700之實例的俯視圖。波導顯示器700可為擴增實境系統400或500之實例,且可包括波導705、輸入光柵710、第一中間光柵720、第二中間光柵730及形成於波導705上或中的輸出光柵740。輸入光柵710、第一中間光柵720、第二中間光柵730及輸出光柵740中之各者可為透射式光柵或反射式光柵。來自光源(例如,一或多個微LED陣列)之顯示光可由輸入光柵710耦合至波導705中。內耦合顯示光可經由如圖4中所示之全內反射由波導705之表面反射,使得顯示光可在波導705內傳播。輸入光柵710可包括VBG或SRGS。在一個實例中,輸入光柵710可包括經多工VBG且可以對應繞射角將具有不同顏色且來自不同視場之顯示光耦合至波導705中。 7A is a top view of an example of a grating - based (eg, volume Bragg grating or surface relief grating)-based waveguide display 700 with exit pupil expansion and reduced dispersion according to certain embodiments. Waveguide display 700 may be an example of augmented reality system 400 or 500 and may include waveguide 705 , input grating 710 , first intermediate grating 720 , second intermediate grating 730 , and output grating 740 formed on or in waveguide 705 . Each of the input grating 710, the first intermediate grating 720, the second intermediate grating 730, and the output grating 740 may be a transmissive grating or a reflective grating. Display light from a light source (eg, one or more micro-LED arrays) may be coupled into waveguide 705 by input grating 710 . The incoupled display light may be reflected from the surface of the waveguide 705 via total internal reflection as shown in FIG. 4 so that the display light may propagate within the waveguide 705 . Input raster 710 may include VBG or SRGS. In one example, the input grating 710 may include multiplexed VBGs and may couple display light with different colors and from different fields of view into the waveguide 705 corresponding to the diffraction angle.

第一中間光柵720及第二中間光柵730可在相同全像材料層之不同區中或可在不同全像材料層上。在一些具體實例中,第一中間光柵720可空間上與第二中間光柵730分離。第一中間光柵720及第二中間光柵730可各自包括經多工VBG或SRG。在一些具體實例中,第一中間光柵720及第二中間光柵730可在相同次數曝光中及在類似記錄條件下經記錄,使得第一中間光柵720中之各VBG可匹配第二中間光柵730中之相應VBG(例如,在x-y平面中具有相同光柵向量且在z方向上具有相同及/或相對光柵向量)。舉例而言,在一些具體實例中,第一中間光柵720中之VBG及第二中間光柵730中之對應VBG可具有相同光柵週期及相同光柵傾斜角度(且因此相同光柵向量),及相同厚度。在一個實例中,第一中間光柵720及第二中間光柵730可具有約20 μm之厚度且可各自包括經由約20次或更多次曝光記錄之約20個或更多個VBG。 The first intermediate grating 720 and the second intermediate grating 730 may be in different regions of the same holographic material layer or may be on different holographic material layers. In some embodiments, first intermediate grating 720 may be spatially separated from second intermediate grating 730. The first intermediate grating 720 and the second intermediate grating 730 may each include multiplexed VBG or SRG. In some embodiments, the first intermediate grating 720 and the second intermediate grating 730 can be recorded in the same number of exposures and under similar recording conditions, such that each VBG in the first intermediate grating 720 can match that in the second intermediate grating 730 corresponding VBG (e.g., have the same grating vector in the x-y plane and have the same and/or opposite grating vector in the z direction). For example, in some specific examples, the VBG in the first intermediate grating 720 and the corresponding VBG in the second intermediate grating 730 may have the same grating period and the same grating tilt angle (and therefore the same grating vector), and the same thickness. In one example, first intermediate grating 720 and second intermediate grating 730 may have a thickness of about 20 μm and may each include about 20 or more VBGs recorded over about 20 or more exposures.

輸出光柵740可形成於波導顯示器700之透視區中且可包括出射區750,當在z方向上查看(例如,在+z或-z方向上在距輸出光柵740約18 mm之距離處)時,該出射區與波導顯示器700之眼眶重疊。輸出光柵740可包括包括許多VBG之SRG或經多工VBG光柵。在一些具體實例中,輸出光柵740及第二中間光柵730可至少部分地在x-y平面中重疊,藉此減小波導顯示器700之外觀尺寸。輸出光柵740與第一中間光柵720及第二中間光柵730組合可執行上文所描述之雙軸光瞳擴展,從而以二維形式擴展入射顯示光束以用顯示光填充眼眶。Output grating 740 may be formed in a see-through region of waveguide display 700 and may include an exit region 750 when viewed in the z-direction (e.g., at a distance of approximately 18 mm from output grating 740 in the +z or -z direction) , the exit area overlaps with the orbit of the waveguide display 700 . Output grating 740 may include an SRG including many VBGs or a multiplexed VBG grating. In some embodiments, the output grating 740 and the second intermediate grating 730 may at least partially overlap in the x-y plane, thereby reducing the appearance size of the waveguide display 700. The output grating 740 in combination with the first intermediate grating 720 and the second intermediate grating 730 can perform the biaxial pupil expansion described above, thereby expanding the incident display beam in two dimensions to fill the eye socket with display light.

輸入光柵710可將來自光源之顯示光耦合至波導705中。顯示光可直接達到第一中間光柵720或可由波導705之表面反射至第一中間光柵720,其中顯示光束之大小可略微大於輸入光柵710處的顯示光束之大小。第一中間光柵720中之各VBG可在FOV範圍及大致滿足VBG之布拉格條件的波長範圍內將顯示光之一部分繞射至第二中間光柵730。雖然由第一中間光柵720中之VBG繞射之顯示光經由全內反射在波導705內(例如,沿著由線722展示之方向)傳播,但每當在波導705內傳播之顯示光到達第二中間光柵730時,顯示光之一部分可由第二中間光柵730中之對應VBG朝向輸出光柵740繞射,如由線732所示。每當在波導705內傳播之顯示光達到輸出光柵740之出射區750時,輸出光柵740可隨後藉由將顯示光之一部分繞射至眼眶來在不同方向上擴展來自第二中間光柵730之顯示光。Input grating 710 couples display light from the light source into waveguide 705 . The display light may directly reach the first intermediate grating 720 or may be reflected from the surface of the waveguide 705 to the first intermediate grating 720 , where the size of the display light beam may be slightly larger than the size of the display light beam at the input grating 710 . Each VBG in the first intermediate grating 720 can diffract a part of the display light to the second intermediate grating 730 within the FOV range and the wavelength range that substantially satisfies the Bragg condition of the VBG. Although the display light diffracted by the VBG in the first intermediate grating 720 propagates within the waveguide 705 via total internal reflection (eg, along the direction shown by line 722), whenever the display light propagating within the waveguide 705 reaches the With two intermediate gratings 730 , a portion of the display light may be diffracted by the corresponding VBG in the second intermediate grating 730 toward the output grating 740 , as shown by line 732 . Whenever the display light propagating within the waveguide 705 reaches the exit region 750 of the output grating 740, the output grating 740 can then expand the display from the second intermediate grating 730 in different directions by diffracting a portion of the display light into the orbit. Light.

如上文所描述,第一中間光柵720中之各VBG可匹配第二中間光柵730中之相應VBG(例如,在x-y平面中具有相同光柵向量,且在z方向上具有相同及/或相對光柵向量)。由於兩個匹配VBG處之顯示光之相反傳播方向,故兩個匹配VBG可在相反布拉格條件下工作(例如,+1階繞射與-1階繞射)。舉例而言,如圖7A中所展示,第一中間光柵720中之VBG可將顯示光之傳播方向自向下方向變為向右方向,而第二中間光柵730中之匹配VBG可將顯示光之傳播方向自向右方向變為向下方向。因此,由第二中間光柵730引起之色散可與由第一中間光柵720引起之色散相反,藉此減少或最小化總體色散。As described above, each VBG in first intermediate grating 720 may match a corresponding VBG in second intermediate grating 730 (e.g., have the same grating vector in the x-y plane, and have the same and/or opposing grating vector in the z direction ). Due to the opposite propagation directions of the display light at the two matched VBGs, the two matched VBGs can operate under opposite Bragg conditions (for example, +1st order diffraction and -1st order diffraction). For example, as shown in FIG. 7A , the VBG in the first intermediate grating 720 can change the propagation direction of the display light from the downward direction to the right direction, and the matching VBG in the second intermediate grating 730 can change the propagation direction of the display light. The propagation direction changes from rightward to downward. Therefore, the dispersion caused by the second intermediate grating 730 may be opposite to the dispersion caused by the first intermediate grating 720, thereby reducing or minimizing the overall dispersion.

類似地,輸入光柵710中之各VBG可匹配輸出光柵740中之相應VBG(例如,在x-y平面中具有相同光柵向量,且在z方向上具有相同及/或相對光柵向量)。歸因於兩個匹配VBG處之顯示光(例如,至波導705中及至波導705之外)之相反傳播方向,兩個匹配VBG亦可在相反布拉格條件下工作(例如,+1階繞射與-1階繞射)。因此,由輸入光柵710引起之色散可與由輸出光柵740引起之色散相反,藉此減少或最小化總體色散。Similarly, each VBG in input grating 710 may match a corresponding VBG in output grating 740 (eg, have the same grating vector in the x-y plane, and have the same and/or opposing grating vector in the z direction). Due to the opposite propagation directions of the displayed light at the two matched VBGs (e.g., into waveguide 705 and out of waveguide 705 ), the two matched VBGs can also operate under opposite Bragg conditions (e.g., +1 order diffraction vs. -1st order diffraction). Therefore, the dispersion caused by the input grating 710 can be opposite to the dispersion caused by the output grating 740, thereby reducing or minimizing the overall dispersion.

7B為包括光柵耦合器之波導顯示器700之實例的側視圖。如所說明,波導顯示器700可包括可由間隔物780分離的第一總成760及第二總成770。第一總成760可包括第一基材762、第二基材766及第一基材762與第二基材766之間的一或多個光柵層764。第一基材762及第二基材766可各自為薄透明基材,諸如具有約100 μm或幾百微米之厚度的玻璃基材。光柵層764可包括經多工反射式VBG、透射式VBG、SRG或組合。類似地,第二總成770可包括第一基材772、第二基材776及第一基材772與第二基材776之間的一或多個光柵層774。光柵層774可包括經多工反射式VBG、透射式VBG、SRG或組合。在一個實例中,第一總成760可用於將來自某些視場之呈紅色、綠色及藍色之顯示光耦合至使用者眼睛,且第二總成770可用於將來自其他視場之呈紅色、綠色及藍色之顯示光耦合至使用者眼睛。 Figure 7B is a side view of an example of a waveguide display 700 including a grating coupler. As illustrated, waveguide display 700 may include first assembly 760 and second assembly 770 that are separable by spacers 780 . The first assembly 760 may include a first substrate 762 , a second substrate 766 , and one or more grating layers 764 between the first substrate 762 and the second substrate 766 . The first substrate 762 and the second substrate 766 may each be a thin transparent substrate, such as a glass substrate having a thickness of approximately 100 μm or several hundred microns. Grating layer 764 may include multiplexed reflective VBG, transmissive VBG, SRG, or a combination. Similarly, the second assembly 770 may include a first substrate 772 , a second substrate 776 , and one or more grating layers 774 between the first substrate 772 and the second substrate 776 . Grating layer 774 may include multiplexed reflective VBG, transmissive VBG, SRG, or a combination. In one example, a first assembly 760 can be used to couple red, green, and blue display light from certain fields of view to the user's eyes, and a second assembly 770 can be used to couple display light from other fields of view. Red, green and blue display lights are coupled to the user's eyes.

8A說明藉由使用連結層830連結兩個基材810及820所形成之層堆疊800的實例。層堆疊800可用作用於導引顯示光之波導,且可包括一或多個形成於一個或兩個基材上之光學元件,如上文所描述。在所說明之實例中,輸出光柵耦合器840可形成於基材820上。基材810可或可不包括其上形成之光柵。耦合至波導中之光束850可經由全內反射在波導內傳播。每當經導引光束到達輸出光柵耦合器840時,經導引光束之一部分860可藉由輸出光柵耦合器840耦合至波導之外。在層堆疊800中,基材820之頂表面及基材810之底表面可彼此平行。因此,入射於基材820之頂表面上的經導引光束之入射角及入射於基材810之底表面上的經導引光束之入射角可保持恆定,且在不同位置耦合至波導之外的經導引光束之一部分860可具有相同繞射角。 Figure 8A illustrates an example of a layer stack 800 formed by joining two substrates 810 and 820 using a tie layer 830. Layer stack 800 may function as a waveguide for directing display light, and may include one or more optical elements formed on one or two substrates, as described above. In the illustrated example, output grating coupler 840 may be formed on substrate 820 . Substrate 810 may or may not include a grating formed thereon. A light beam 850 coupled into the waveguide may propagate within the waveguide via total internal reflection. Whenever the guided beam reaches the output grating coupler 840, a portion 860 of the guided beam may be coupled out of the waveguide by the output grating coupler 840. In layer stack 800, the top surface of substrate 820 and the bottom surface of substrate 810 may be parallel to each other. Therefore, the angle of incidence of the guided beam incident on the top surface of substrate 820 and the angle of incidence of the guided beam incident on the bottom surface of substrate 810 can be kept constant and coupled out of the waveguide at different locations. A portion 860 of the directed beams may have the same diffraction angle.

8B說明波導顯示器802之另一實例。波導顯示器802可包括基材812,其可類似於基材420或530。基材812可包括例如玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD金剛石、ZnS或任何其他適合材料。輸入光柵822及一或多個輸出光柵832及842可蝕刻在基材812中或蝕刻形成於基材812上之光柵材料層中。在一些具體實例中,輸入光柵822及輸出光柵832及842可為記錄在塗佈於基材812上之全像材料層中的全像光柵。在一些具體實例中,輸入光柵822及輸出光柵832及842可包括蝕刻在基材812中或壓印在沈積於基材812上之奈米壓印材料層中的傾斜或豎直表面起伏光柵,且可包括填充光柵槽之外塗層。輸出光柵832及842可蝕刻在基材812之相對表面上。在一些具體實例中,可使用僅一個輸出光柵832或842。輸入光柵822可將來自不同視角(或不同視場(FOV)內)之具有不同顏色(例如,紅色、綠色及藍色)之顯示光耦合至基材812中,次可經由全內反射導引內耦合顯示光。每當內耦合顯示光到達輸出光柵832或842時,在基材812內傳播之內耦合顯示光之一部分可藉由輸出光柵832或842朝向波導顯示器802之眼眶耦合至基材812之外。 Figure 8B illustrates another example of a waveguide display 802. Waveguide display 802 may include substrate 812, which may be similar to substrate 420 or 530. Substrate 812 may include, for example, glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN, AIN, SiC, CVD diamond, ZnS, or any other suitable material. Input grating 822 and one or more output gratings 832 and 842 may be etched into substrate 812 or etched into a layer of grating material formed on substrate 812 . In some embodiments, input grating 822 and output gratings 832 and 842 may be holographic gratings recorded in a layer of holographic material coated on substrate 812 . In some embodiments, input grating 822 and output gratings 832 and 842 may include tilted or vertical surface relief gratings etched into substrate 812 or imprinted into a layer of nanoimprint material deposited on substrate 812. And may include an overcoat that fills the grating grooves. Output gratings 832 and 842 may be etched on opposing surfaces of substrate 812. In some specific examples, only one output grating 832 or 842 may be used. The input grating 822 can couple display light of different colors (eg, red, green, and blue) from different viewing angles (or within different fields of view (FOV)) into the substrate 812 , which can be directed via total internal reflection. Internally coupled display light. Whenever incoupled display light reaches output grating 832 or 842, a portion of the incoupled display light propagating within substrate 812 may be coupled out of substrate 812 by output grating 832 or 842 toward the orbit of waveguide display 802.

為了滿足光柵方程式,繞射光柵可將具有不同顏色(波長)及/或來自不同視角之入射光繞射至不同繞射角。舉例而言,在圖8B中所示之實例中,具有不同顏色(例如,紅色及藍色)及相同入射角(例如,約0°)之兩個光束可由輸入光柵822繞射至基材812內之不同方向。更特定言之,具有較短波長之光束(例如,藍光)可具有較小繞射角。具有相同顏色但不同入射角之兩個光束亦可由輸入光柵822繞射至基材812內之兩個不同方向。由於不同傳播方向,兩個內耦合光束可到達基材812之表面且在x方向上傳播不同距離之後繞射至基材812之外。相比於相對於基材812之表面法線方向具有較大角度之光束,相對於基材812之表面法線方向具有較小角度之光束可到達輸出光柵832或842較多次數。另外,針對不同顏色或不同入射角之入射光,光柵可不具有平穩繞射效率。出於至少此等原因,具有不同顏色或不同FOV之顯示光可以不同密度導向眼眶,且亦可在使用者眼睛之視網膜上形成重影。In order to satisfy the grating equation, a diffraction grating can diffract incident light with different colors (wavelengths) and/or from different viewing angles to different diffraction angles. For example, in the example shown in FIG. 8B , two light beams with different colors (eg, red and blue) and the same incident angle (eg, approximately 0°) may be diffracted by the input grating 822 to the substrate 812 different directions within. More specifically, light beams with shorter wavelengths (eg, blue light) may have smaller diffraction angles. Two light beams with the same color but different incident angles can also be diffracted by the input grating 822 to two different directions within the substrate 812 . Due to different propagation directions, the two incoupled beams can reach the surface of the substrate 812 and propagate for different distances in the x-direction before being diffracted outside the substrate 812 . A light beam with a smaller angle relative to the surface normal direction of the substrate 812 may reach the output grating 832 or 842 more times than a light beam with a larger angle relative to the surface normal direction of the substrate 812 . In addition, the grating may not have smooth diffraction efficiency for incident light of different colors or different incident angles. For at least these reasons, display lights with different colors or different FOVs can be directed to the eye sockets with different densities and can also form ghost images on the retina of the user's eyes.

8C說明根據某些具體實例的多層波導顯示器804之實例。多層波導顯示器804可包括第一波導層814,其包括形成於其上之一或多個輸入光柵824及826及一個或兩個輸出光柵834及844,如同上文所描述之波導顯示器802。第一波導層814可包括例如玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、CVD金剛石、ZnS及類似者。輸入光柵824及826以及輸出光柵834及844可為傾斜或豎直全像或表面起伏光柵且可包括填充光柵槽之外塗層。在一些具體實例中,輸入光柵824及826以及輸出光柵834及844中之一或多者可各自具有可變的光柵週期、可變的工作週期、可變的傾斜角度及/或可變的蝕刻深度。在一些具體實例中,輸入光柵及輸出光柵中之一或多者可各自包括二維光柵,其沿二維光柵之兩個方向具有可變光柵週期、可變的工作週期、可變的傾斜角度及/或可變的蝕刻深度。 Figure 8C illustrates an example of a multilayer waveguide display 804 according to certain embodiments. Multilayer waveguide display 804 may include a first waveguide layer 814 including one or more input gratings 824 and 826 and one or two output gratings 834 and 844 formed thereon, like waveguide display 802 described above. The first waveguide layer 814 may include, for example, glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN, AIN, CVD diamond, ZnS, and the like. Input gratings 824 and 826 and output gratings 834 and 844 may be tilted or vertical full image or surface relief gratings and may include fill grating trench overcoats. In some embodiments, one or more of input gratings 824 and 826 and output gratings 834 and 844 may each have variable grating period, variable duty cycle, variable tilt angle, and/or variable etching. depth. In some specific examples, one or more of the input grating and the output grating may each include a two-dimensional grating with a variable grating period, a variable duty cycle, and a variable tilt angle along two directions of the two-dimensional grating. and/or variable etch depth.

多層波導顯示器804可包括第一波導層814之相對側上之第二波導層854及第三波導層864。第二波導層854及第三波導層864可各自為具有比第一波導層814之折射率更低之折射率之透明材料的薄層(例如,幾百微米,諸如在約100 μm與約600 μm之間)。舉例而言,第一波導層814之折射率與第二波導層854或第三波導層864之折射率之間的差可為約0.01、0.02、0.05、0.1、0.2、0.25、0.3或更大。第二波導層854及第三波導層864可具有相同折射率或不同折射率。Multilayer waveguide display 804 may include second waveguide layer 854 and third waveguide layer 864 on opposite sides of first waveguide layer 814 . The second waveguide layer 854 and the third waveguide layer 864 may each be a thin layer of a transparent material having a lower refractive index than the first waveguide layer 814 (eg, a few hundred microns, such as between about 100 μm and about 600 μm). μm). For example, the difference between the refractive index of the first waveguide layer 814 and the refractive index of the second waveguide layer 854 or the third waveguide layer 864 may be about 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3, or greater. . The second waveguide layer 854 and the third waveguide layer 864 may have the same refractive index or different refractive indices.

另外,第四波導層870可形成於第二波導層854上,且第五波導層880可形成於第三波導層864上。第四波導層870及第五波導層880可各自為具有比第二波導層854及第三波導層864之各別折射率更低之折射率的透明材料之薄層(例如,幾百微米,諸如在約100 μm與約600 μm之間)。舉例而言,第二波導層854之折射率與第四波導層870之折射率之間的差及第三波導層864之折射率與第五波導層880之折射率之間的差可為約0.01、0.02、0.05、0.1、0.2、0.25、0.3或更大。第四波導層870及第五波導層880可具有相同折射率或不同折射率。In addition, the fourth waveguide layer 870 may be formed on the second waveguide layer 854, and the fifth waveguide layer 880 may be formed on the third waveguide layer 864. The fourth waveguide layer 870 and the fifth waveguide layer 880 may each be a thin layer (e.g., several hundred micrometers) of a transparent material having a lower refractive index than the respective refractive index of the second waveguide layer 854 and the third waveguide layer 864 . such as between about 100 μm and about 600 μm). For example, the difference between the refractive index of the second waveguide layer 854 and the refractive index of the fourth waveguide layer 870 and the difference between the refractive index of the third waveguide layer 864 and the refractive index of the fifth waveguide layer 880 may be about 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3 or greater. The fourth waveguide layer 870 and the fifth waveguide layer 880 may have the same refractive index or different refractive indices.

多層波導顯示器804可實現具有不同顏色及來自不同FOV之光的更均勻複製。舉例而言,第一光束890(例如,具有較長波長或來自較大視角)可藉由輸入光柵824耦合至第一波導層814中,且可以相對於第一波導層814之表面法線方向的較大角在第一波導層814內傳播。因此,歸因於較大入射角及第一波導層814與第二波導層854之折射率差,第一光束890可經由全內反射在第一波導層814與第二波導層854之間的界面處反射。Multilayer waveguide display 804 allows for more uniform reproduction of light with different colors and from different FOVs. For example, a first beam 890 (eg, having a longer wavelength or coming from a larger viewing angle) can be coupled into the first waveguide layer 814 via the input grating 824 and can be oriented relative to a surface normal to the first waveguide layer 814 propagates within the first waveguide layer 814. Therefore, due to the larger incident angle and the refractive index difference between the first waveguide layer 814 and the second waveguide layer 854, the first light beam 890 can be totally internally reflected between the first waveguide layer 814 and the second waveguide layer 854. Reflection at the interface.

第二光束892(例如,具有較短波長及/或來自較小視角)可藉由輸入光柵824耦合至第一波導層814中且可以相對於第一波導層814之表面法線方向的較小角度在第一波導層814內傳播。因此,第二光束892可不在第一波導層814與第二波導層854之間的界面處經由全內反射反射,此係由於入射角可能小於界面處之臨界角。因此,第二光束892可實際上在界面處以較大折射角折射至第二波導層854中,且歸因於入射角增加及第二波導層854與第四波導層870之折射率差,可隨後經由全內反射在第二波導層854之底表面處反射。因此,即使第二光束892可相對於第一波導層814之表面法線方向具有比第一光束890更小之傳播角,第二光束892亦可在經由全內反射進行反射之前在z方向上行進較長距離,且因此可在經由全內反射進行反射之前在x方向上行進與第一光束890相似之距離。以此方式,第一光束890及第二光束892可由輸出光柵834或844在約相同位置處(或相同間隔)繞射及/或繞射約相同次數。The second beam 892 (eg, having a shorter wavelength and/or coming from a smaller viewing angle) may be coupled into the first waveguide layer 814 via the input grating 824 and may be smaller relative to the surface normal direction of the first waveguide layer 814 The angle propagates within the first waveguide layer 814. Therefore, the second beam 892 may not be reflected via total internal reflection at the interface between the first waveguide layer 814 and the second waveguide layer 854 since the incident angle may be less than the critical angle at the interface. Therefore, the second light beam 892 may actually be refracted into the second waveguide layer 854 with a larger refraction angle at the interface, and due to the increase in the incident angle and the difference in refractive index between the second waveguide layer 854 and the fourth waveguide layer 870, It is then reflected at the bottom surface of the second waveguide layer 854 via total internal reflection. Therefore, even though the second beam 892 may have a smaller propagation angle relative to the surface normal direction of the first waveguide layer 814 than the first beam 890 , the second beam 892 may travel in the z direction before being reflected via total internal reflection. travels a longer distance, and therefore may travel a similar distance in the x-direction as the first beam 890 before being reflected via total internal reflection. In this manner, the first beam 890 and the second beam 892 may be diffracted by the output grating 834 or 844 at approximately the same location (or at the same intervals) and/or approximately the same number of times.

類似地,第三光束894(例如,具有甚至更短波長及/或甚至更小視角)可由輸入光柵824耦合至第一波導層814中且可以相對於第一波導層814之表面法線方向較小的角度在第一波導層814內傳播。第三光束894可在第一波導層814與第二波導層854之間的界面及第二波導層854與第四波導層870之間的界面處折射,但歸因於增加之入射角及第四波導層870與空氣之折射率差,可經由全內反射在第四波導層870之底表面處反射。因此,即使第三光束894可相對於第一波導層814之表面法線方向具有比第一光束890更小之傳播角,第三光束894亦可在經由全內反射進行反射之前在z方向上行進較長距離,且因此可在經由全內反射進行反射之前在x方向上行進與第一光束890相似之距離。以此方式,第一光束890及第三光束894可由輸出光柵834或844在約相同位置處(或相同間隔)繞射及/或繞射約相同次數。Similarly, a third beam 894 (eg, having an even shorter wavelength and/or an even smaller viewing angle) may be coupled into the first waveguide layer 814 by the input grating 824 and may be relatively oriented relative to the surface normal of the first waveguide layer 814 . Small angles propagate within the first waveguide layer 814. The third light beam 894 may be refracted at the interface between the first waveguide layer 814 and the second waveguide layer 854 and the interface between the second waveguide layer 854 and the fourth waveguide layer 870, but due to the increased angle of incidence and the The difference in refractive index between the fourth waveguide layer 870 and air can be reflected at the bottom surface of the fourth waveguide layer 870 through total internal reflection. Therefore, even though the third beam 894 may have a smaller propagation angle relative to the surface normal direction of the first waveguide layer 814 than the first beam 890 , the third beam 894 may have a smaller propagation angle in the z direction before being reflected via total internal reflection. travels a longer distance, and therefore may travel a similar distance in the x-direction as the first beam 890 before being reflected via total internal reflection. In this manner, the first beam 890 and the third beam 894 may be diffracted by the output grating 834 or 844 at approximately the same location (or at the same intervals) and/or approximately the same number of times.

第一波導層814、第二波導層854、第三波導層864、第四波導層870及第五波導層880之厚度及折射率可基於所需性能來選擇。在各種具體實例中,本文中之多層波導顯示器可包括兩個或更多個波導層,諸如三、四、五或更多個層。在一些具體實例中,低折射率波導層可在輸入及輸出光柵之同一側面上,且兩個或更多個波導層之折射率可在層堆疊之一側最高,且隨後朝向層堆疊之另一側逐漸減小。在一些具體實例中,低折射率波導層可在輸入及輸出光柵之相對側上,且兩個或更多個波導層之折射率可在層堆疊之中心處最高且可朝向層堆疊之兩個相對側逐漸減小。在一些具體實例中,波導層堆疊之折射率分佈圖可為對稱的且在如圖8C中所示之中心處具有最高值。在一些具體實例中,波導層堆疊之折射率分佈圖可不相對於波導層堆疊之中心對稱。在一些具體實例中,一或多個光柵或其他光學元件可形成於波導層854、864、870或880中或波導層854、864、870或880上。The thickness and refractive index of the first waveguide layer 814, the second waveguide layer 854, the third waveguide layer 864, the fourth waveguide layer 870, and the fifth waveguide layer 880 can be selected based on the desired performance. In various embodiments, multilayer waveguide displays herein may include two or more waveguide layers, such as three, four, five or more layers. In some embodiments, the low refractive index waveguide layers can be on the same side of the input and output gratings, and the refractive index of the two or more waveguide layers can be highest on one side of the layer stack and then toward the other side of the layer stack. Taper off one side. In some embodiments, the low refractive index waveguide layers can be on opposite sides of the input and output gratings, and the refractive index of the two or more waveguide layers can be highest at the center of the layer stack and can be toward both of the layer stacks. It gradually decreases on the opposite side. In some embodiments, the refractive index profile of the waveguide layer stack may be symmetrical and have a highest value at the center as shown in Figure 8C. In some specific examples, the refractive index profile of the waveguide layer stack may not be symmetrical with respect to the center of the waveguide layer stack. In some embodiments, one or more gratings or other optical elements may be formed in or on waveguide layer 854, 864, 870, or 880.

在一些具體實例中,光學基材(例如,包括一或多個光波導層,諸如波導層814、854、864、870或880)可使用液體光學澄清黏著劑(LOCA)連結。為使LOCA與用於波導顯示器應用之光學基材相容,LOCA需要對可見光為可穿透的(例如,具有小於約0.1%/µm之吸收),具有高折射率(例如,大於約1.6),且可經由固化完全交聯,而不誘導較大內應力。高透明度及高折射率可藉由利用例如含矽氧烷之環氧基LOCA來達成。此等材料可具有在450 nm下約1.6或更高之折射率,其吸收率可為低於約0.1%/µm LOCA材料,且其對玻璃之黏著強度可典型地高於1.5 Mpa。因此,此等LOCA材料可用以在兩個光學基材之間形成永久性連結,且連結可能夠經受裝置處理及可靠性測試。In some embodiments, optical substrates (eg, including one or more optical waveguide layers, such as waveguide layers 814, 854, 864, 870, or 880) may be joined using a liquid optically clear adhesive (LOCA). In order for LOCA to be compatible with optical substrates for waveguide display applications, LOCA needs to be transparent to visible light (e.g., have an absorption of less than about 0.1%/µm) and have a high refractive index (e.g., greater than about 1.6) , and can be completely cross-linked through curing without inducing large internal stresses. High transparency and high refractive index can be achieved by using, for example, siloxane-containing epoxy LOCA. These materials may have a refractive index of about 1.6 or higher at 450 nm, their absorptivity may be less than about 0.1%/µm LOCA materials, and their adhesion strength to glass may typically be greater than 1.5 MPa. Therefore, these LOCA materials can be used to form a permanent connection between two optical substrates, and the connection can withstand device handling and reliability testing.

9A說明使用LOCA層連結兩個光學基材之方法900的實例。如所說明,LOCA層920(例如,包括含矽氧烷之環氧基LOCA)可藉由例如旋塗、噴塗、噴墨印刷、網版印刷、或以其他滴塗技術施加於第一光學基材910上。任何殘餘溶劑可例如藉由施加後烘烤(PAB)熱蒸發。LOCA可經由UV處理部分固化。第二光學基材930可隨後置放於LOCA層920及第一光學基材910上方,且基材堆疊可視情況藉由壓縮機進行壓縮連結處理。第一光學基材910與第二光學基材930之間包括LOCA層920的基材堆疊可經由UV固化及/或熱固化(例如,曝光後烘烤(PEB))固化,其可將LOCA材料自其初始液態轉化成中間熱塑性狀態。基材堆疊可隨後經烘烤或以其他方式熱固化以將LOCA材料自熱塑性狀態轉化成最終熱固性狀態,其中所連結堆疊之黏著強度可最大化且LOCA機械特性針對其他熱處理可為穩定的。可在固化步驟之任一者或全部中對光學基材施加壓縮。 Figure 9A illustrates an example of a method 900 of using a LOCA layer to join two optical substrates. As illustrated, LOCA layer 920 (e.g., including siloxane-containing epoxy LOCA) may be applied to the first optical substrate by, for example, spin coating, spray coating, inkjet printing, screen printing, or other dispensing techniques. Material 910. Any residual solvent can be evaporated, for example by applying post bake (PAB) heat. LOCA can be partially cured via UV treatment. The second optical substrate 930 can then be placed over the LOCA layer 920 and the first optical substrate 910, and the substrate stack can optionally be compressed and joined using a compressor. The substrate stack including the LOCA layer 920 between the first optical substrate 910 and the second optical substrate 930 can be cured via UV curing and/or thermal curing (eg, post-exposure bake (PEB)), which can cure the LOCA material Converts from its initial liquid state to an intermediate thermoplastic state. The substrate stack can then be baked or otherwise thermally cured to convert the LOCA material from a thermoplastic state to a final thermoset state, where the adhesive strength of the joined stacks can be maximized and the LOCA mechanical properties can be stable against other heat treatments. Compression can be applied to the optical substrate during any or all of the curing steps.

9B說明LOCA材料在UV固化後之聚合的實例。LOCA材料可包括單體或寡聚物950,諸如含矽氧烷及環氧基之寡聚物,其可為小分子。LOCA材料亦可包括UV活化光酸產生劑、交聯劑添加物及溶劑。在分子層面上,固化過程可導致LOCA材料之聚合及交聯。更特定言之,在曝露於UV光後,UV活化光酸產生劑可產生光酸,其可引起寡聚物950之交聯。任何熱處理可隨後產生黏著劑組分之進一步交聯。交聯之寡聚物950可形成聚合物960。聚合物960可包括寡聚物或聚合物之長鏈且因此可具有大分子量。隨著鏈生長,LOCA層可收縮。如圖9B中所示,聚合物960可包括未完全反應之一些位點970。因此,聚合物960可繼續在位點970處生長,其可使該等鏈交聯且在鏈之間生成橋鍵。矽氧烷環氧基LOCA之交聯過程可導致顯著收縮,其可在LOCA層內積聚內應力,因為大分子難以在LOCA層收縮及緊縮時重排及鬆弛。內應力之積聚可導致所連結基材堆疊之變形(例如,彎曲),如圖9A中所示。若內應力過高,則分層可在正常處理及/或可靠性測試期間出現。 Figure 9B illustrates an example of polymerization of LOCA material after UV curing. LOCA materials may include monomers or oligomers 950, such as siloxane- and epoxy-containing oligomers, which may be small molecules. LOCA materials may also include UV-activated photoacid generators, cross-linker additives and solvents. At a molecular level, the curing process can lead to polymerization and cross-linking of LOCA materials. More specifically, upon exposure to UV light, a UV-activated photoacid generator can generate photoacid, which can cause cross-linking of oligomer 950. Any heat treatment may subsequently produce further cross-linking of the adhesive components. Cross-linked oligomer 950 can form polymer 960. Polymer 960 may include long chains of oligomers or polymers and thus may have a large molecular weight. As the chain grows, the LOCA layer can shrink. As shown in Figure 9B, polymer 960 may include some sites 970 that are not fully reacted. Thus, polymer 960 can continue to grow at site 970, which can cross-link the chains and create bridges between chains. The cross-linking process of siloxane epoxy LOCA can cause significant shrinkage, which can build up internal stress within the LOCA layer because macromolecules have difficulty rearranging and relaxing as the LOCA layer shrinks and contracts. The build-up of internal stresses can lead to deformation (eg, bending) of the joined substrate stack, as shown in Figure 9A. If internal stresses are too high, delamination can occur during normal handling and/or reliability testing.

在熱固化期間,LOCA材料可繼續聚合及交聯以形成具有原子長鏈之較大分子,且因此LOCA層920可在熱固化期間繼續收縮。舉例而言,聚合物960可繼續在位點970處生長,其可使該等鏈交聯且在鏈之間生成橋鍵以形成較大分子,且因此可引起LOCA層之進一步收縮。大分子可需要大量能量以在LOCA層收縮及緊縮時重排及鬆弛。因此,隨著LOCA層繼續交聯及收縮,內應力可繼續積聚。鏈之間的交聯愈多,大分子愈難以重排及完全鬆弛,以便在LOCA層收縮時減少內應力。因此,LOCA層之內應力及所連結基材堆疊之彎曲可在如圖9A中所示之熱固化期間增加。在兩個光學基材可具有不同熱膨脹係數(CTE)之情況下,所連結基材堆疊可由於所連結基材堆疊之CTE錯配及加熱/冷卻而經歷進一步變形,其可增加所連結基材堆疊之彎曲且甚至使得所連結基材堆疊之滲透變形。During thermal curing, the LOCA material may continue to polymerize and cross-link to form larger molecules with atomically long chains, and therefore LOCA layer 920 may continue to shrink during thermal curing. For example, polymer 960 can continue to grow at site 970, which can cross-link the chains and create bridges between chains to form larger molecules, and thus can cause further shrinkage of the LOCA layer. Large molecules can require large amounts of energy to rearrange and relax as the LOCA layer contracts and tightens. Therefore, as the LOCA layer continues to cross-link and shrink, internal stress can continue to accumulate. The more cross-links between chains, the more difficult it is for the macromolecules to rearrange and fully relax, reducing internal stress as the LOCA layer shrinks. Therefore, the internal stress in the LOCA layer and the bending of the attached substrate stack may increase during thermal curing as shown in Figure 9A. In cases where the two optical substrates may have different coefficients of thermal expansion (CTE), the joined substrate stack may undergo further deformation due to CTE mismatch and heating/cooling of the joined substrate stack, which may increase the The stack bends and even causes penetrating deformation of the joined substrate stacks.

當所連結光學基材中之至少一者用作光學波導時,基材堆疊歸因於LOCA內應力之變形可導致畸變及其他光學假影,諸如主射線角移位、調變傳遞函數降級、橫向色像差、光瞳遊動、文字斷裂及雙重影像,藉此使波導顯示器之光學性能降級。當將6-吋晶圓用作基材且所連結基材堆疊之彎曲高於20 µm時,波導顯示器之光學性能可能為不可接受的。When at least one of the joined optical substrates is used as an optical waveguide, deformation of the substrate stack due to internal stresses in LOCA can lead to distortion and other optical artifacts, such as chief ray angular shifts, modulation transfer function degradation, Lateral chromatic aberration, pupil movement, text breakage, and double images degrade the optical performance of waveguide displays. When a 6-inch wafer is used as the substrate and the curvature of the connected substrate stack is higher than 20 µm, the optical performance of the waveguide display may be unacceptable.

10A說明包括波導層1030之波導顯示器1000之實例,該波導層1030具有楔形形狀,歸因於例如藉由使用LOCA材料(圖10A中未展示)將波導層1030連結至波導層1010引起的基材彎曲。波導層1010可包括一或多個輸入光柵1020及1022,以及一或多個輸出光柵1024及1026以形成波導顯示器1000。在圖10A中所示之實例中,第一光束1040(例如,具有較長波長或來自較大視角)可藉由輸入光柵1022以相對於波導層1010之表面法線方向的較大角度耦合至波導層1010中。因此,歸因於較大入射角及波導層1010與波導層1030之折射率差,第一光束1040可經由全內反射在波導層1010與波導層1030之間的界面處反射。第二光束1042(例如,具有較短波長及/或來自較小視角)可藉由輸入光柵1022耦合至波導層1010中且可以相對於波導層1010之表面法線方向的較小角度在波導層1010內傳播。因此,第二光束1042可不在波導層1010與波導層1030之間的界面處經由全內反射進行反射,此係由於入射角可能小於界面處之臨界角。因此,第二光束1042可實際上在界面處以較大折射角折射至波導層1030中,且歸因於增加之入射角及波導層1030與空氣之折射率的較大差(例如,約0.5),可隨後經由全內反射在波導層1030之頂表面處反射。當波導層1030具有低(例如,接近零)TTV或小楔角(例如,具有如平面1034所示之理想平坦頂表面)時,第二光束1042可在平面1034處如由光線1043所示進行反射。即使第二光束1042可相對於波導層1010之表面法線方向具有比第一光束1040更小之傳播角度,第二光束1042可在經由全內反射進行反射之前在z方向上行進較長距離,且因此可在經由全內反射(例如,如光線1043所示)進行反射之前在x方向上行進與第一光束1040相似的距離。以此方式,第一光束1040及第二光束1042可由輸出光柵1024或1026在約相同位置處(或約相同間隔)繞射及/或繞射約相同次數。波導層1010及波導層1030之厚度及折射率可基於所需性能來選擇。 Figure 10A illustrates an example of a waveguide display 1000 that includes a waveguide layer 1030 having a wedge shape due to fundamental stress caused, for example, by bonding the waveguide layer 1030 to the waveguide layer 1010 using a LOCA material (not shown in Figure 10A). The material bends. Waveguide layer 1010 may include one or more input gratings 1020 and 1022, and one or more output gratings 1024 and 1026 to form waveguide display 1000. In the example shown in FIG. 10A , a first beam 1040 (eg, having a longer wavelength or coming from a larger viewing angle) may be coupled to the waveguide layer 1010 at a larger angle relative to the surface normal direction of the waveguide layer 1010 by the input grating 1022 . in the waveguide layer 1010. Therefore, due to the larger incident angle and the refractive index difference between the waveguide layer 1010 and the waveguide layer 1030, the first beam 1040 may be reflected at the interface between the waveguide layer 1010 and the waveguide layer 1030 via total internal reflection. The second light beam 1042 (eg, having a shorter wavelength and/or coming from a smaller viewing angle) may be coupled into the waveguide layer 1010 via the input grating 1022 and may pass through the waveguide layer at a smaller angle relative to the surface normal direction of the waveguide layer 1010 Spread within 1010. Therefore, the second beam 1042 may not be reflected via total internal reflection at the interface between the waveguide layer 1010 and the waveguide layer 1030 because the incident angle may be smaller than the critical angle at the interface. Therefore, the second beam 1042 may actually be refracted into the waveguide layer 1030 at the interface with a larger refraction angle, and due to the increased angle of incidence and the larger difference in refractive index between the waveguide layer 1030 and air (eg, about 0.5), It may then be reflected at the top surface of waveguide layer 1030 via total internal reflection. When waveguide layer 1030 has a low (eg, near zero) TTV or small wedge angle (eg, has a perfectly flat top surface as shown by plane 1034 ), second beam 1042 may proceed at plane 1034 as shown by ray 1043 reflection. Even though the second beam 1042 may have a smaller propagation angle relative to the surface normal direction of the waveguide layer 1010 than the first beam 1040 , the second beam 1042 may travel a longer distance in the z-direction before being reflected via total internal reflection. And thus may travel a similar distance in the x-direction as first beam 1040 before being reflected via total internal reflection (eg, as shown by ray 1043). In this manner, the first beam 1040 and the second beam 1042 may be diffracted by the output grating 1024 or 1026 at approximately the same location (or at approximately the same intervals) and/or diffracted approximately the same number of times. The thickness and refractive index of waveguide layer 1010 and waveguide layer 1030 can be selected based on desired performance.

然而,歸因於藉由使用UV光及/或熱固化LOCA連結層引起的基材彎曲,波導層1030可具有楔形形狀(例如,具有大於1 arcsec之楔角)。由於楔形形狀,第二光束1042(在折射至波導層1030中之後)入射於波導層1030之頂表面1032上之入射角及經導引光束入射於波導層1010之底表面上之入射角可逐漸變化(例如,在所說明之實例中逐漸減小)。舉例而言,歸因於波導層1030之不均勻性,第二光束1042可實際上由波導層1030之頂表面1032反射至如由光線1045所示之方向。因此,第一光束1040及第二光束1042可在不同位置耦合至波導顯示器1000之外(例如,由輸出光柵1024或1026繞射)。另外,頂表面1032處之兩個相鄰反射位置之間的距離可逐漸減小。因此,可不均勻地複製出射光瞳。However, the waveguide layer 1030 may have a wedge shape (eg, with a wedge angle greater than 1 arcsec) due to substrate bending caused by curing the LOCA tie layer using UV light and/or heat. Due to the wedge shape, the angle of incidence of the second beam 1042 (after being refracted into the waveguide layer 1030) on the top surface 1032 of the waveguide layer 1030 and the angle of incidence of the guided beam on the bottom surface of the waveguide layer 1010 can be gradually change (e.g., gradually decrease in the illustrated example). For example, due to the non-uniformity of the waveguide layer 1030, the second beam 1042 may actually be reflected from the top surface 1032 of the waveguide layer 1030 into the direction shown by ray 1045. Accordingly, first beam 1040 and second beam 1042 may be coupled out of waveguide display 1000 at different locations (eg, diffracted by output grating 1024 or 1026). Additionally, the distance between two adjacent reflective locations at top surface 1032 may gradually decrease. Therefore, the exit pupil may be reproduced unevenly.

由於光束入射於輸出光柵1024及1026之不同位置上的入射角可不同,所以光束在輸出光柵1024及1026之不同位置處繞射的繞射角亦可不同。因此,來自相同FOV角度之顯示光可在輸出光柵之不同位置處朝向不同方向繞射。因此,可出現諸如雙重影像之光學假影且顯示影像之品質可能不佳。在一些情況下,由於第二光束1042入射於頂表面1032上之入射角及第二光束1042入射於波導層1010之底表面上的入射角可隨著第二光束1042在波導顯示器1000中傳播而逐漸減小,在一些位置處,第二光束1042入射於頂表面1032上之入射角或第二光束1042入射於波導層1010之底表面上的入射角可小於臨界角,且因此可不再經由全內反射導引在波導顯示器1000中。Since the incident angles of the light beams incident on different positions of the output gratings 1024 and 1026 may be different, the diffraction angles of the light beams diffracted at different positions of the output gratings 1024 and 1026 may also be different. Therefore, display light from the same FOV angle can be diffracted in different directions at different positions of the output grating. As a result, optical artifacts such as double images may occur and the quality of the displayed image may be poor. In some cases, due to the angle of incidence of the second beam 1042 on the top surface 1032 and the angle of incidence of the second beam 1042 on the bottom surface of the waveguide layer 1010 , the second beam 1042 propagates in the waveguide display 1000 . Gradually, at some locations, the angle of incidence of the second beam 1042 on the top surface 1032 or the angle of incidence of the second beam 1042 on the bottom surface of the waveguide layer 1010 may be less than the critical angle, and therefore may no longer pass through the entire Internal reflections are guided in the waveguide display 1000.

10B說明藉由使用液體光學澄清黏著劑連結兩個平面基材1050及1060所形成之層堆疊1005的實例。在所說明之實例中,輸出光柵耦合器1062可形成於基材1060上。LOCA層1070可施配在基材1050與基材1060之間。基材1050及1060可藉由對基材1050之底表面及/或基材1060之頂表面施加壓力(例如,機械壓力或真空壓力)而推動在一起。可允許LOCA層1070中之LOCA材料在無壓力的情況下或回應於壓力而流動。在施加壓力某一時段之後,LOCA材料可使用例如UV光及/或熱(例如,曝露於腔室中之UV光或在烘箱中烘烤)固化,如上文所描述。 Figure 10B illustrates an example of a layer stack 1005 formed by joining two planar substrates 1050 and 1060 using a liquid optically clear adhesive. In the illustrated example, output grating coupler 1062 may be formed on substrate 1060 . LOCA layer 1070 may be disposed between substrate 1050 and substrate 1060. Substrates 1050 and 1060 may be pushed together by applying pressure (eg, mechanical pressure or vacuum pressure) to the bottom surface of substrate 1050 and/or the top surface of substrate 1060. The LOCA material in LOCA layer 1070 may be allowed to flow without pressure or in response to pressure. After applying pressure for a certain period of time, the LOCA material can be cured using, for example, UV light and/or heat (eg, exposure to UV light in a chamber or baking in an oven), as described above.

歸因於藉由使用UV光及/或熱固化LOCA層1070引起的基材彎曲,層堆疊1005可具有楔形形狀。楔形之角度可不精確受控,且可較大,諸如大於約1×10 -4弧度。耦合至藉由連結層堆疊1005形成之波導的光束1080可能需要經由全內反射在波導內傳播。每當經導引光束到達輸出光柵耦合器1062時,經導引光束之一部分1082可藉由輸出光柵耦合器1062耦合至波導之外。由於層堆疊1005可具有楔形形狀,經導引光束入射於基材1060之頂表面上的入射角及經導引光束入射於基材1050之底表面上的入射角可逐漸變化(例如,在所說明之實例中逐漸減小)。舉例而言,若基材1060之頂表面平行於基材1050之底表面,則經導引光束可由基材1060頂表面反射(例如,經由TIR)至如由光線1084所示之方向。歸因於層堆疊1005之楔形形狀,經導引光束可實際上由基材1060之頂表面反射至如由光線1086所示之方向。因此,經導引光束在不同位置耦合至波導之外的部分1082之方向可不同,如圖10B中所示。另外,基材1060之頂表面處的兩個相鄰反射位置之間的距離可逐漸減小。因此,可不均勻地複製出射光瞳。 Due to the bending of the substrate caused by curing the LOCA layer 1070 using UV light and/or heat, the layer stack 1005 may have a wedge shape. The angle of the wedge may not be precisely controlled and may be larger, such as greater than about 1×10 −4 radians. A light beam 1080 coupled into a waveguide formed by connecting layer stack 1005 may need to propagate within the waveguide via total internal reflection. Whenever a guided beam reaches the output grating coupler 1062, a portion 1082 of the guided beam may be coupled out of the waveguide by the output grating coupler 1062. Because the layer stack 1005 may have a wedge shape, the angle of incidence of the directed beam on the top surface of the substrate 1060 and the angle of incidence of the directed beam on the bottom surface of the substrate 1050 may vary gradually (e.g., at gradually decrease in the examples shown). For example, if the top surface of substrate 1060 is parallel to the bottom surface of substrate 1050 , the directed light beam may be reflected (eg, via TIR) from the top surface of substrate 1060 to the direction shown by ray 1084 . Due to the wedge shape of layer stack 1005, the directed beam may actually be reflected from the top surface of substrate 1060 into the direction shown by ray 1086. Accordingly, the direction in which the guided beam is coupled to the portion 1082 outside the waveguide may be different at different locations, as shown in Figure 10B. Additionally, the distance between two adjacent reflective locations at the top surface of the substrate 1060 may gradually decrease. Therefore, the exit pupil may be reproduced unevenly.

此外,由於經導引光束入射於基材1060之頂表面上的入射角及經導引光束入射於基材1050之底表面上的入射角可隨著經導引光束在波導中傳播而逐漸減小,在一些位置處,經導引光束入射於基材1060之頂表面上之入射角或經導引光束入射於基材1050之底表面上的入射角可小於臨界角,且因此可不再經由全內反射導引在波導中。實際上,如由光線1090所示,經導引光束可折射至波導之外。In addition, since the angle of incidence of the guided beam on the top surface of the substrate 1060 and the angle of incidence of the guided beam on the bottom surface of the substrate 1050 may gradually decrease as the guided beam propagates in the waveguide, Small, at some locations, the angle of incidence of the guided beam on the top surface of substrate 1060 or the angle of incidence of the guided beam on the bottom surface of substrate 1050 may be less than the critical angle, and thus may no longer pass through Total internal reflection is guided in the waveguide. In fact, as shown by ray 1090, the guided beam may be refracted out of the waveguide.

因此,波導顯示器之波導之厚度變化可導致畸變及其他光學假影,諸如主射線角移位、調變傳遞函數降級、橫向色像差、光瞳遊動、文字斷裂雙重影像,藉此使波導顯示器之光學性能降級。為達成較佳光學性能,包括連結在一起之兩個或更多個波導層的波導可能需要為平坦的,例如具有低TTV及低表面粗糙度。舉例而言,包括連結在一起之兩個基材之基材堆疊的兩個相對外表面可能需要維持高程度之平行度,且基材堆疊可能需要具有極小的總厚度變化(TTV)及彎曲(例如,具有極小楔角)。因此,期望用於連結兩個用於波導顯示器之光學基材之方法中的LOCA材料(例如,具有高折射率及低光吸收之矽氧烷環氧基LOCA)在固化及交聯期間及在熱處理後不生成大量可經由彎曲使所連結基材堆疊變形之內應力。Therefore, changes in the thickness of the waveguide in a waveguide display can cause distortion and other optical artifacts, such as chief ray angle shift, modulation transfer function degradation, lateral chromatic aberration, pupil movement, and text breakage double images, thereby making the waveguide display The optical performance is degraded. To achieve better optical performance, a waveguide including two or more waveguide layers joined together may need to be flat, such as have low TTV and low surface roughness. For example, the two opposing outer surfaces of a substrate stack including two substrates joined together may need to maintain a high degree of parallelism, and the substrate stack may need to have minimal total thickness variation (TTV) and curvature ( For example, with a very small wedge angle). Therefore, it is expected that LOCA materials (e.g., siloxane epoxy LOCA with high refractive index and low light absorption) used in methods of joining two optical substrates for waveguide displays will react during curing and cross-linking and during After heat treatment, no large amount of internal stress is generated that can deform the connected substrate stack through bending.

根據某些具體實例,兩個光學基材(其中之至少一者可用作光波導層)可使用亦包括反應性塑化劑(諸如結構1之矽氧烷添加物)的矽氧烷環氧基LOCA連結: 其中R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或此等材料之混合物,且R 4可為直鏈或分支鏈且由2至8個碳構成之烷基鏈,諸如直鏈C 6H 12。R 1、R 2及R 3可改良LOCA之黏著強度,而R 4可有助於減少LOCA在固化及熱處理期間的應力。因此,結構1之矽氧烷添加物可允許LOCA減少內應力,使得所連結基材堆疊之彎曲可最小化及波導顯示器之光學性能可不受損。舉例而言,當光學基材包括6-吋晶圓時,所連結基材堆疊之彎曲度可低於約20 µm,且波導顯示器之性能可不降級或可僅最低限度地降級。在固化後,LOCA及結構1之矽氧烷添加物的混合物可產生具有穩定機械特性、在450 nm下約1.6或更高之折射率、低於約0.1%/µm之吸收率及大於約1.5 MPa的對玻璃之黏著強度的永久性連結層。 According to certain embodiments, two optical substrates, at least one of which may serve as an optical waveguide layer, may use a siloxane epoxy that also includes a reactive plasticizer, such as the siloxane additive of Structure 1. Base LOCA link: wherein R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or a mixture of these materials, and R 4 may be a straight or branched alkyl chain consisting of 2 to 8 carbons, Such as linear C 6 H 12 . R 1 , R 2 and R 3 can improve the adhesive strength of LOCA, while R 4 can help reduce the stress of LOCA during curing and heat treatment. Therefore, the siloxane addition of Structure 1 may allow LOCA to reduce internal stresses so that bending of the connected substrate stack may be minimized and the optical performance of the waveguide display may not be compromised. For example, when the optical substrate includes a 6-inch wafer, the curvature of the joined substrate stack may be less than about 20 µm, and the performance of the waveguide display may not be degraded or may be only minimally degraded. After curing, mixtures of LOCA and the siloxane additive of Structure 1 can produce stable mechanical properties, a refractive index at 450 nm of about 1.6 or higher, an absorbance of less than about 0.1%/µm and greater than about 1.5 MPa permanent bonding layer with adhesive strength to glass.

根據某些具體實例,用於連結兩個光學基材之光學透明的含矽氧烷之環氧黏著劑混合物可經由UV、熱或UV及熱處理兩者固化以產生高折射率、高透明度及低彎曲連結層,該連結層可提供所連結基材堆疊之高黏著力。黏著劑混合物可包括例如含矽氧烷及環氧基之寡聚物、UV活化光酸產生劑、交聯劑添加物、溶劑及結構1之添加物,其中結構1之添加物可構成黏著劑混合物(不包括溶劑)之總質量的約1%至7%。在結構1之添加物中,R 1、R 2及R 3可包括甲醇鹽、乙醇鹽、丙醇鹽或此等材料之混合物,且R4可包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。黏著劑混合物固化時可具有在約1.6與約1.7之間的折射率,具有每微米黏著劑混合物低於0.1%之光吸收率。黏著劑混合物在施加於4至8吋晶圓上且固化時,可產生具有低於約20微米之彎曲度的所連結晶圓堆疊。 According to certain embodiments, an optically clear siloxane-containing epoxy adhesive mixture used to join two optical substrates can be cured via UV, heat, or both UV and heat treatment to produce high refractive index, high transparency and low A curved tie layer that provides high adhesion to the stack of joined substrates. The adhesive mixture may include, for example, siloxane- and epoxy-containing oligomers, UV-activated photoacid generators, cross-linker additives, solvents, and additives of structure 1, wherein the additives of structure 1 may constitute the adhesive. Approximately 1% to 7% of the total mass of the mixture (excluding solvent). In the additives of structure 1, R 1 , R 2 and R 3 may include methoxide, ethoxide, propoxide or mixtures of these materials, and R4 may be linear or branched and include 2 to 8 carbon alkyl chain. The adhesive mixture may have a refractive index between about 1.6 and about 1.7 when cured, with a light absorbance of less than 0.1% per micron of the adhesive mixture. The adhesive mixture, when applied to a 4- to 8-inch wafer and cured, produces a stack of connected wafers with a curvature of less than about 20 microns.

根據某些具體實例,連結兩個光學基材之方法可包括將包括含矽氧烷之環氧黏著劑混合物的黏著劑層旋塗、噴灑、噴墨印刷、網版印刷或以其他方式滴塗於第一基材上,及藉由經由UV固化及熱固化之組合固化黏著劑混合物而將黏著劑層連結至第二基材。黏著劑混合物可包括結構1之添加物,其中結構1之添加物可構成混合物(不包括溶劑)之總質量之約1%至7%。黏著劑混合物可施加於第一基材上以形成具有約1至100微米厚度之黏著劑層。黏著劑混合物可固化以產生具有在450 nm下在約1.6與約1.7之間的折射率及每微米黏著劑混合物低於約0.1%之光吸收的機械穩定性黏著劑層。所連結基材堆疊可具有至少2.0 MPa之搭接剪切強度及較低程度之彎曲。第一基材及第二基材可為具有直徑約4至8吋之透明基材,且所連結基材堆疊可具有低於20微米之彎曲度。第一基材或第二基材中之至少一者可為具有任意形狀及長度約1至4吋之透鏡,且所連結基材堆疊之彎曲度可低於約10微米。According to some specific examples, the method of joining two optical substrates may include spin coating, spraying, inkjet printing, screen printing, or otherwise dispensing an adhesive layer including a silicone-containing epoxy adhesive mixture. On the first substrate, the adhesive layer is bonded to the second substrate by curing the adhesive mixture through a combination of UV curing and thermal curing. The adhesive mixture may include additives of structure 1, wherein the additives of structure 1 may constitute about 1% to 7% of the total mass of the mixture (excluding solvent). The adhesive mixture can be applied to the first substrate to form an adhesive layer having a thickness of about 1 to 100 microns. The adhesive mixture can be cured to produce a mechanically stable adhesive layer having a refractive index between about 1.6 and about 1.7 at 450 nm and a light absorption of less than about 0.1% per micron of the adhesive mixture. The joined substrate stack may have a lap shear strength of at least 2.0 MPa and a relatively low degree of bending. The first substrate and the second substrate can be transparent substrates having a diameter of about 4 to 8 inches, and the connected substrate stack can have a curvature of less than 20 microns. At least one of the first substrate or the second substrate can be a lens of any shape and length of about 1 to 4 inches, and the curvature of the joined substrate stack can be less than about 10 microns.

11A說明根據某些具體實例使用LOCA層連結兩個光學基材之方法1100的實例。如所說明,LOCA層1120(例如,包括含矽氧烷之環氧基LOCA及結構1之添加物)可藉由例如旋塗、噴塗、噴墨印刷、網版印刷或以其他滴塗技術施加於第一光學基材1110上。任何殘餘溶劑可隨後例如藉由施加後烘烤(PAB)熱蒸發。LOCA可視情況經由UV處理部分固化。第二光學基材1130可隨後置放於LOCA層1120及第一光學基材1110上方,且基材堆疊可藉由壓縮機進行壓縮連結處理。第一光學基材1110與第二光學基材1130間包括LOCA層1120的基材堆疊可經由UV固化及/或熱固化(例如,PEB)固化,其可將LOCA材料自其初始液態轉化成中間熱塑性狀態。基材堆疊可隨後經烘烤或以其他方式熱固化以將LOCA材料自熱塑性狀態轉化成最終熱固性狀態,其中所連結堆疊之黏著強度可最大化且LOCA機械特性針對其他熱處理可為穩定的。可在固化步驟之任一者或全部中施加壓縮連結。 Figure 11A illustrates an example of a method 1100 of using a LOCA layer to join two optical substrates according to certain embodiments. As illustrated, LOCA layer 1120 (e.g., including siloxane-containing epoxy LOCA and the additives of Structure 1) may be applied by, for example, spin coating, spray coating, inkjet printing, screen printing, or other dispensing techniques. on the first optical substrate 1110. Any residual solvent can then evaporate, for example by applying post bake (PAB) heat. LOCA can optionally be partially cured via UV treatment. The second optical substrate 1130 can then be placed over the LOCA layer 1120 and the first optical substrate 1110, and the substrate stack can be compressed and bonded using a compressor. The substrate stack including the LOCA layer 1120 between the first optical substrate 1110 and the second optical substrate 1130 can be cured via UV curing and/or thermal curing (eg, PEB), which can convert the LOCA material from its initial liquid state to an intermediate thermoplastic state. The substrate stack can then be baked or otherwise thermally cured to convert the LOCA material from a thermoplastic state to a final thermoset state, where the adhesive strength of the joined stacks can be maximized and the LOCA mechanical properties can be stable against other heat treatments. Compression bonds can be applied during any or all of the curing steps.

11B說明包括反應性塑化劑1152之LOCA材料在UV固化後之聚合的實例。LOCA材料可包括單體或寡聚物1150,諸如含矽氧烷及環氧基之寡聚物,其可為小分子。LOCA材料亦可包括UV活化光酸產生劑、交聯劑添加物、溶劑及反應性塑化劑1152。反應性塑化劑1152可具有如由結構1所示之結構。在分子層面上,固化過程可導致LOCA材料之聚合及交聯。更特定言之,在曝露於UV光後,UV活化光酸產生劑可產生光酸,其可引起寡聚物1150之交聯。交聯之寡聚物1150可形成聚合物1160。聚合物1160可包括寡聚物之長鏈且因此可具有大分子量。隨著鏈生長,LOCA層可收縮。如圖11B中所示,聚合物1160可包括未完全反應之位點1170。因此,聚合物1160可繼續在位點1170處生長,其可使該等鏈交聯且在鏈之間生成橋鍵。矽氧烷環氧基LOCA之交聯過程可導致顯著收縮,其可另外在LOCA層內積聚內應力。然而,反應性塑化劑1152可參與聚合及/或交聯過程且經由共價鍵變成與鏈共價連接,且可具有可撓性鏈,該等可撓性鏈可在鬆弛時採用多種穩定構形。換言之,反應性塑化劑1152之可撓性鏈可以許多方式鬆弛,且因此可在其呈不利構形而非保持不利構形時更鬆弛。因此,反應性塑化劑1152可允許LOCA層中之大分子在LOCA層在UV固化期間收縮時重排及鬆弛。因此,LOCA層之內應力可在UV固化期間減少。因此,所連結基材堆疊之彎曲在UV固化期間可為低的,如圖11A中所示。 Figure 11B illustrates an example of polymerization of LOCA material including reactive plasticizer 1152 after UV curing. LOCA materials may include monomers or oligomers 1150, such as siloxane- and epoxy-containing oligomers, which may be small molecules. LOCA materials may also include UV activated photoacid generators, cross-linker additives, solvents and reactive plasticizers 1152. Reactive plasticizer 1152 may have a structure as shown by Structure 1. At a molecular level, the curing process can lead to polymerization and cross-linking of LOCA materials. More specifically, upon exposure to UV light, the UV-activated photoacid generator can generate photoacid, which can cause cross-linking of oligomer 1150. Cross-linked oligomers 1150 can form polymer 1160. Polymer 1160 may comprise long chains of oligomers and therefore may have a large molecular weight. As the chain grows, the LOCA layer can shrink. As shown in Figure 11B, polymer 1160 may include incompletely reacted sites 1170. Thus, polymer 1160 can continue to grow at site 1170, which can cross-link the chains and create bridges between chains. The cross-linking process of siloxane-epoxy LOCA can cause significant shrinkage, which can additionally build up internal stress within the LOCA layer. However, the reactive plasticizer 1152 can participate in the polymerization and/or cross-linking process and become covalently linked to the chain through covalent bonds, and can have flexible chains that can adopt a variety of stabilization methods when relaxed. configuration. In other words, the flexible chains of reactive plasticizer 1152 can relax in many ways, and thus can become more relaxed when they assume an unfavorable configuration rather than remain in an unfavorable configuration. Thus, reactive plasticizer 1152 may allow macromolecules in the LOCA layer to rearrange and relax as the LOCA layer shrinks during UV curing. Therefore, stress within the LOCA layer can be reduced during UV curing. Therefore, the bending of the joined substrate stack can be low during UV curing, as shown in Figure 11A.

類似地,在熱固化期間,隨著LOCA材料持續聚合及交聯(例如,在位點1170處)以形成具有原子長鏈之大分子,LOCA層1120可繼續收縮,且反應性塑化劑1152可允許分子在LOCA層1120收縮時重排及鬆弛。因此,在LOCA層1120中可存在極少或無內應力積聚。因此,所連結基材堆疊之彎曲在熱固化期間可為低的,如圖11A中所示。另外,併入適量反應性塑化劑(例如,適當範圍)將不會改變含矽氧烷之環氧聚合物之折射率及吸收特性。Similarly, during thermal curing, the LOCA layer 1120 may continue to shrink as the LOCA material continues to polymerize and cross-link (e.g., at site 1170 ) to form large molecules with atomically long chains, and the reactive plasticizer 1152 Molecules may be allowed to rearrange and relax as the LOCA layer 1120 contracts. Therefore, there may be little or no internal stress build-up in LOCA layer 1120. Therefore, the bending of the joined substrate stack can be low during thermal curing, as shown in Figure 11A. Additionally, incorporation of an appropriate amount (eg, an appropriate range) of a reactive plasticizer will not alter the refractive index and absorption characteristics of the siloxane-containing epoxy polymer.

根據某些具體實例,兩個透明基材可藉由由包括結構1之添加物的混合物形成的含矽氧烷之環氧黏著劑層連結在一起,其中結構1之添加物可構成不包括溶劑之混合物之總質量之約1%至7%。黏著劑層可為機械穩定的,且可具有在450 nm下在約1.6與約1.7之間的折射率,及每微米黏著劑層低於約0.1%之光吸收。藉由黏著劑層連結之基材堆疊可具有至少2.0 MPa之搭接剪切強度,且可具有較低程度之彎曲。在一個實例中,兩個透明基材可為直徑約4至8吋之晶圓,且所連結基材堆疊可具有低於20微米之彎曲度。在一些具體實例中,兩個透明基材中之至少一者為具有任意形狀及約1至4吋長度之透鏡,且所連結基材堆疊之彎曲度低於10微米。 實施例 According to some embodiments, two transparent substrates may be joined together by a siloxane-containing epoxy adhesive layer formed from a mixture of additives of Structure 1, wherein the additives of Structure 1 may constitute a solvent-free About 1% to 7% of the total mass of the mixture. The adhesive layer can be mechanically stable and can have a refractive index between about 1.6 and about 1.7 at 450 nm and a light absorption of less than about 0.1% per micron of the adhesive layer. The stack of substrates connected by the adhesive layer can have a lap shear strength of at least 2.0 MPa and can have a low degree of bending. In one example, the two transparent substrates can be wafers approximately 4 to 8 inches in diameter, and the connected substrate stack can have a curvature of less than 20 microns. In some embodiments, at least one of the two transparent substrates is a lens having a random shape and a length of about 1 to 4 inches, and the joined substrate stack has a curvature of less than 10 microns. Example

在下文所描述之所有實施例中,使用如上文所描述的含矽氧烷之環氧基黏著劑。黏著劑包括由環氧基官能基封端之甲基及苯基矽氧烷寡聚物的混合物。黏著劑亦包括UV活化光酸產生劑及交聯劑添加物。將含矽氧烷之環氧基LOCA溶解於丙二醇甲醚乙酸酯(PGMEA)溶劑中且將溶液旋塗於6吋光學基材上。實施例1至12中使用之含矽氧烷之環氧基黏著劑可不包括反應性塑化劑,而實施例13至24中使用之含矽氧烷之環氧基黏著劑可包括反應性塑化劑。 A.   比較實施例1至3 In all examples described below, a siloxane-containing epoxy adhesive as described above was used. The adhesive includes a mixture of methyl and phenylsiloxane oligomers terminated with epoxy functional groups. Adhesives also include UV-activated photoacid generators and cross-linker additives. The siloxane-containing epoxy LOCA was dissolved in propylene glycol methyl ether acetate (PGMEA) solvent and the solution was spin-coated on a 6-inch optical substrate. The siloxane-containing epoxy adhesive used in embodiments 1 to 12 may not include a reactive plasticizer, and the siloxane-containing epoxy adhesive used in embodiments 13 to 24 may include a reactive plasticizer. chemical agent. A. Comparative Examples 1 to 3

12A展示使用藉由不同固化方法固化之LOCA連結之基材堆疊之實施例1至3的基材彎曲。在圖12A所示之實施例中,將包括含矽氧烷之環氧基LOCA的溶液旋塗於直徑為約6吋及CTE為約8 ppm之第一光學基材上。藉由在約90℃烘烤第一光學基材約2分鐘自LOCA移除溶劑。將直徑為約6吋及CTE為約8 ppm之第二光學基材置於塗佈於第一光學基材上之LOCA上。在連結之前,待連結之兩個光學基材具有低於5 µm之基材彎曲。基材堆疊如上文關於例如圖9A及圖11A所描述進行壓縮連結。將基材堆疊隨後曝露於功率為30 mW/cm 2之UV激發源,使得LOCA材料可交聯。LOCA層之折射率在450 nm下為1.6(如藉由橢圓偏振技術所量測),且LOCA吸收< 0.1%/µm。 Figure 12A shows the substrate bending of Examples 1-3 using LOCA-joined substrate stacks cured by different curing methods. In the embodiment shown in Figure 12A, a solution including siloxane-containing epoxy LOCA was spin-coated onto a first optical substrate having a diameter of about 6 inches and a CTE of about 8 ppm. The solvent was removed from the LOCA by baking the first optical substrate at about 90°C for about 2 minutes. A second optical substrate with a diameter of about 6 inches and a CTE of about 8 ppm was placed on the LOCA coated on the first optical substrate. Before joining, the two optical substrates to be joined have a substrate bend of less than 5 µm. The substrate stack is compression joined as described above with respect to, for example, Figures 9A and 11A. The substrate stack was subsequently exposed to a UV excitation source with a power of 30 mW/cm, allowing the LOCA material to be cross-linked. The refractive index of the LOCA layer is 1.6 at 450 nm (as measured by ellipsometry techniques), and the LOCA absorption is <0.1%/µm.

在實施例1中,即使在不存在任何熱固化的情況下,所連結基材堆疊之彎曲度在UV固化之後增加至25 µm。此展示LOCA塗佈及經由UV固化之初始交聯可增加所連結基材堆疊之彎曲。由於未進行熱固化,基材彎曲可歸因於由LOCA材料在UV固化期間乾燥及收縮引起之內應力增加。實施例2至3展示經由熱固化(例如,在100℃)之進一步交聯可由於進一步LOCA收縮及內應力積聚而引起基材彎曲明顯增加。由於兩個基材具有相同CTE,在完成連結方法之後,LOCA內應力可為基材彎曲之主要促成因素。 B.   比較實施例4至6 In Example 1, the curvature of the joined substrate stack increased to 25 µm after UV curing, even in the absence of any thermal curing. This demonstrates that LOCA coating and initial cross-linking via UV curing can increase the bending of the joined substrate stack. Since heat curing was not performed, the substrate bending can be attributed to increased internal stress caused by the drying and shrinkage of the LOCA material during UV curing. Examples 2 to 3 demonstrate that further cross-linking via thermal curing (eg, at 100° C.) can cause a significant increase in substrate bowing due to further LOCA shrinkage and internal stress build-up. Since both substrates have the same CTE, LOCA internal stress can be a major contributor to base material buckling after the joining method is completed. B. Comparative Examples 4 to 6

12B展示使用藉由不同固化方法固化之LOCA連結之基材堆疊之實施例4至6的基材彎曲。使用類似於製備上文所描述之實施例1至3之方法的方法,但使用LOCA連結之兩個6吋光學基材具有不同CTE,來製備實施例4至6。如由圖12B所示,UV固化在所連結基材堆疊中導致較高基材彎曲(例如,約116 μm),且進一步熱固化導致基材彎曲進一步增加。當與實施例1至3比較時,第一光學基材之CTE錯配及較低CTE可促成基材彎曲度值之差異。如由實施例4所示,即使在未施加熱固化時,基材彎曲顯著高於20 µm的事實顯示,LOCA內應力對基材彎曲之貢獻為顯著的。 C.   比較實施例7至12 Figure 12B shows the substrate bending of Examples 4-6 using LOCA-joined substrate stacks cured by different curing methods. Examples 4 to 6 were prepared using a method similar to that used to prepare Examples 1 to 3 described above, but using two 6-inch optical substrates with different CTEs joined by LOCA. As shown by Figure 12B, UV curing results in higher substrate bending (eg, approximately 116 μm) in the joined substrate stack, and further thermal curing results in a further increase in substrate bending. When compared to Examples 1 to 3, the CTE mismatch and lower CTE of the first optical substrate may contribute to the difference in base material bow values. As shown by Example 4, the fact that the substrate bends significantly above 20 µm even when no thermal curing is applied shows that the contribution of the LOCA internal stress to the substrate bending is significant. C. Comparative Examples 7 to 12

12C展示具有藉由不同固化方法固化之LOCA塗層之基材之實施例7至12的基材彎曲。在實施例7至12中,將包括含矽氧烷之環氧基LOCA的溶液旋塗於直徑為約6吋及CTE為約4 ppm之第一光學基材上。藉由在約90℃烘烤第一光學基材約2分鐘自LOCA移除溶劑。具有LOCA塗層之第一光學基材隨後曝露於功率為30 mW/cm 2之UV激發源,使得LOCA材料可交聯。具有LOCA塗層之第一光學基材未連結至第二光學基材。在塗佈之前及在LOCA處理之後量測基材彎曲度,且基材彎曲之變化展示於圖12C中。如由實施例7至12所示,基材彎曲在LOCA塗佈及UV固化之後增加。基材彎曲可隨著熱固化溫度及時間增加而進一步增加。此等實施例展示LOCA之完全固化及交聯可導致基材彎曲增加。不存在第二光學基材指示即使在兩個基材之間的CTE錯配不為LOCA固化期間變形之促成因素時亦發生基材彎曲。 D.   工作實施例13至18 Figure 12C shows the substrate bending of Examples 7-12 with substrates having LOCA coatings cured by different curing methods. In Examples 7 to 12, a solution including a siloxane-containing epoxy LOCA was spin-coated onto a first optical substrate having a diameter of about 6 inches and a CTE of about 4 ppm. The solvent was removed from the LOCA by baking the first optical substrate at about 90°C for about 2 minutes. The first optical substrate with the LOCA coating was then exposed to a UV excitation source with a power of 30 mW/cm so that the LOCA material could be cross -linked. The first optical substrate with the LOCA coating is not bonded to the second optical substrate. Substrate curvature was measured before coating and after LOCA treatment, and changes in substrate curvature are shown in Figure 12C. As shown by Examples 7 to 12, substrate bending increased after LOCA coating and UV curing. Substrate bending can further increase with increasing heat curing temperature and time. These examples demonstrate that complete curing and cross-linking of LOCA can result in increased substrate bending. The absence of a second optical substrate indicates that substrate bending occurs even when the CTE mismatch between the two substrates is not a contributor to deformation during LOCA cure. D. Working Examples 13 to 18

12D展示根據某些具體實例的具有包括反應性塑化劑之LOCA塗層之基材之實施例13至18的基材彎曲。在實施例13至18中,將含矽氧烷之環氧基LOCA與結構1之添加物混合且溶解於PGMEA溶劑中以形成溶液。LOCA與添加物之比率按重量計為95:5。在所有情況下,添加物之併入不會改變LOCA光學特性(例如,如藉由橢圓偏振技術所量測,1.6 RI之折射率,及<0.1%/µm LOCA厚度的LOCA吸收)。可將溶液旋塗於直徑為約6吋及CTE為約4 ppm之第一光學基材上。藉由在約90℃烘烤第一光學基材約2分鐘自LOCA移除溶劑。具有LOCA塗層之第一光學基材隨後曝露於功率為30 mW/cm 2之UV激發源,使得LOCA材料可交聯。實施例13至18中之LOCA固化條件與實施例7至12相同。具有LOCA塗層之第一光學基材未連結至第二光學基材。在塗佈之前及在LOCA處理之後量測基材彎曲度,且基材彎曲之變化展示於圖12D中。圖12D展示使用結構1之添加物大幅度降低熱固化期間基材彎曲度之變化。此外,如由實施例18所示,可應用長熱固化方法以經由膜鬆弛減少內應力。此等實施例展示當結構1之添加物用於混合物中時,矽氧烷環氧基LOCA之內應力可在熱固化期間減少而不影響光學特性。 E.   工作實施例19至21 Figure 12D shows substrate bending of Examples 13-18 of substrates having a LOCA coating including a reactive plasticizer, according to certain embodiments. In Examples 13 to 18, the siloxane-containing epoxy LOCA was mixed with the additive of structure 1 and dissolved in the PGMEA solvent to form a solution. The ratio of LOCA to additives is 95:5 by weight. In all cases, the incorporation of additives does not alter the LOCA optical properties (e.g., refractive index of 1.6 RI, and LOCA absorption of <0.1%/µm LOCA thickness, as measured by ellipsometry techniques). The solution can be spin-coated onto a first optical substrate having a diameter of approximately 6 inches and a CTE of approximately 4 ppm. The solvent was removed from the LOCA by baking the first optical substrate at about 90°C for about 2 minutes. The first optical substrate with the LOCA coating was then exposed to a UV excitation source with a power of 30 mW/cm so that the LOCA material could be cross -linked. The LOCA curing conditions in Examples 13 to 18 are the same as those in Examples 7 to 12. The first optical substrate with the LOCA coating is not bonded to the second optical substrate. Substrate curvature was measured before coating and after LOCA treatment, and changes in substrate curvature are shown in Figure 12D. Figure 12D shows that the use of additives in Structure 1 significantly reduces the change in substrate curvature during thermal curing. Additionally, as shown by Example 18, a long thermal cure method can be applied to reduce internal stress via film relaxation. These examples demonstrate that when the additive of Structure 1 is used in the mixture, the internal stress within the siloxane epoxy LOCA can be reduced during thermal cure without affecting the optical properties. E. Working Examples 19 to 21

12E展示根據某些具體實例的使用包括反應性塑化劑之LOCA連結之基材堆疊之實施例19至21的基材彎曲。在實施例19至21中,將含矽氧烷之環氧基LOCA與結構1之添加物混合且溶解於PGMEA溶劑中以形成溶液。LOCA與添加物之比率按重量計為95:5。可將溶液旋塗於直徑為約6吋及CTE為約8 ppm之第一光學基材上。藉由例如在約90℃烘烤第一光學基材約2分鐘可自LOCA移除溶劑。將直徑為約6吋及CTE為約8 ppm之第二光學基材置於塗佈於第一光學基材上之LOCA上。在連結之前,待連結之兩個光學基材具有低於5 µm之基材彎曲。基材堆疊如上文關於例如圖9A及圖11A所描述進行壓縮連結。將基材堆疊隨後曝露於功率為30 mW/cm 2之UV激發源,使得LOCA材料可交聯。基材堆疊亦可熱固化。添加物之併入不會改變LOCA光學特性(例如,如藉由橢圓偏振技術所量測,1.6 RI之折射率,及<0.1%/µm LOCA厚度的LOCA吸收)。圖12E展示添加物引起所連結堆疊之彎曲在熱固化後的極小變化。此外實施例20至21中之兩個基材之間的黏著強度為4.0 Mpa,如藉由搭接剪切所量測。此展示兩個光學基材可用矽氧烷混合物連結,且可進行熱固化過程而不使所連結堆疊彎曲增加至高於20 µm。 F.    工作實施例22至24 Figure 12E shows the substrate bending of Examples 19-21 using a LOCA bonded substrate stack including a reactive plasticizer according to certain embodiments. In Examples 19 to 21, the siloxane-containing epoxy LOCA was mixed with the additive of structure 1 and dissolved in the PGMEA solvent to form a solution. The ratio of LOCA to additives is 95:5 by weight. The solution can be spin-coated onto a first optical substrate having a diameter of about 6 inches and a CTE of about 8 ppm. The solvent can be removed from the LOCA, for example, by baking the first optical substrate at about 90°C for about 2 minutes. A second optical substrate with a diameter of about 6 inches and a CTE of about 8 ppm was placed on the LOCA coated on the first optical substrate. Before joining, the two optical substrates to be joined have a substrate bend of less than 5 µm. The substrate stack is compression joined as described above with respect to, for example, Figures 9A and 11A. The substrate stack was subsequently exposed to a UV excitation source with a power of 30 mW/cm, allowing the LOCA material to be cross-linked. The substrate stack can also be thermally cured. The incorporation of additives does not alter the optical properties of LOCA (e.g., refractive index of 1.6 RI, and LOCA absorption of <0.1%/µm LOCA thickness, as measured by ellipsometry techniques). Figure 12E shows that the additives cause minimal changes in the bending of the joined stack after thermal curing. In addition, the adhesive strength between the two substrates in Examples 20 to 21 was 4.0 MPa, as measured by lap shear. This demonstrates that two optical substrates can be joined with a siloxane mixture and a thermal curing process can be performed without increasing the bending of the joined stack above 20 µm. F. Working Examples 22 to 24

12F展示根據某些具體實例的使用包括反應性塑化劑之LOCA連結之基材堆疊之實施例22至24的基材彎曲。使用類似於製備上文所描述之實施例19至21之方法的方法,但使用LOCA連結之兩個6吋光學基材具有不同CTE,來製備實施例22至24。將含矽氧烷之環氧基LOCA與結構1之添加物混合且溶解於PGMEA溶劑中以形成溶液。LOCA與添加物之比率按重量計為95:5。圖12F展示即使在兩個光學基材之間存在CTE錯配時,添加物亦引起所連結堆疊之彎曲在熱固化後的極小變化。此外,發現LOCA光學特性藉由併入減少應力添加物而不變:LOCA之折射率為1.6,如藉由橢圓偏振技術所量測,且LOCA吸收小於0.1%/µm LOCA厚度。此進一步展示使用具有結構1之添加物的含矽氧烷之環氧基LOCA,兩個光學基材可用矽氧烷混合物連結,且可進行熱固化處理而不使所連結堆疊彎曲度增加高於20 µm。 Figure 12F shows substrate bending of Examples 22-24 using a LOCA-linked substrate stack including a reactive plasticizer, according to certain embodiments. Examples 22 to 24 were prepared using a method similar to that used to prepare Examples 19 to 21 described above, but using two 6-inch optical substrates with different CTEs joined by LOCA. The siloxane-containing epoxy LOCA is mixed with the additive of structure 1 and dissolved in PGMEA solvent to form a solution. The ratio of LOCA to additives is 95:5 by weight. Figure 12F shows that even when there is a CTE mismatch between the two optical substrates, the additives cause minimal changes in the bending of the joined stack after thermal curing. Furthermore, LOCA optical properties were found to be unchanged by the incorporation of stress-reducing additives: LOCA has a refractive index of 1.6, as measured by ellipsometry techniques, and LOCA absorption is less than 0.1%/µm LOCA thickness. This further demonstrates that using a siloxane-containing epoxy LOCA with an additive of Structure 1, two optical substrates can be joined with a siloxane mixture and can be thermally cured without increasing the curvature of the joined stack above 20 µm.

13A包括說明根據某些具體實例的連結對可見光可穿透的光學基材之方法之實例的流程圖1300。應注意,圖13A中所說明之特定操作提供連結光學基材之特定方法。亦可根據替代具體實例執行其他操作序列。此外,圖13A中所說明的個別操作可包括多個子步驟,該等子步驟可按如適於個別操作之各種序列執行。此外,取決於特定應用,可添加額外操作,或可不執行一些操作。所屬技術領域中具有通常知識者將認識到許多變化、修改及替代例。 Figure 13A includes a flowchart 1300 illustrating an example of a method of joining an optical substrate that is transparent to visible light according to certain embodiments. It should be noted that the specific operations illustrated in Figure 13A provide specific methods of joining optical substrates. Other sequences of operations may also be performed according to alternative embodiments. Furthermore, the individual operations illustrated in Figure 13A may include multiple sub-steps, which may be performed in various sequences as appropriate for the individual operations. Additionally, depending on the specific application, additional operations may be added, or some operations may not be performed. Many variations, modifications, and substitutions will be apparent to those of ordinary skill in the art.

方塊1310中之操作可包括將一層LOCA材料塗佈於第一透明基材上,該LOCA材料包含溶劑及結構1之添加物: 其中R 1、R 2及R 3包括甲醇鹽、乙醇鹽、丙醇鹽或其組合,R 4包括為直鏈或分支鏈且包括2至8個碳之烷基鏈(例如,直鏈C 6H 12),且結構1之添加物構成不包括溶劑之LOCA材料之總質量的1%至7%。溶劑可包括PGMEA、二丙二醇甲醚(DPGME)/三丙二醇單甲醚(TPM)或組合。LOCA材料亦可包括含矽氧烷及環氧基之寡聚物、UV活化光酸產生劑及交聯劑添加物。塗佈LOCA材料層可包括旋塗、噴塗、噴墨印刷、網版印刷或滴塗。LOCA材料層之厚度可在1與100微米之間。 Operations in block 1310 may include coating a layer of LOCA material on the first transparent substrate, the LOCA material including the solvent and additives of Structure 1: Wherein R 1 , R 2 and R 3 include methoxide, ethoxide, propoxide or combinations thereof, and R 4 includes an alkyl chain that is linear or branched and includes 2 to 8 carbons (for example, linear C 6 H 12 ), and the additives of structure 1 constitute 1% to 7% of the total mass of the LOCA material excluding solvent. Solvents may include PGMEA, dipropylene glycol methyl ether (DPGME)/tripropylene glycol monomethyl ether (TPM), or combinations. LOCA materials may also include siloxane- and epoxy-containing oligomers, UV-activated photoacid generators, and cross-linker additives. Applying the layer of LOCA material may include spin coating, spray coating, inkjet printing, screen printing, or drop coating. The thickness of the LOCA material layer can be between 1 and 100 microns.

方塊1320中之操作可包括將第二透明基材連結至LOCA材料層(例如,藉由壓縮)以形成基材堆疊。方塊1330中之操作可包括使用紫外(UV)光固化LOCA材料層以交聯LOCA材料。方塊1340中之操作可包括熱固化基材堆疊以將LOCA材料轉化成熱固性狀態。在一些具體實例中,可以任一或所有固化操作對基材堆疊施加壓縮。在熱固化基材堆疊之後,LOCA材料層之特徵可為在450 nm下大於1.6之折射率及LOCA材料層之每微米厚度低於0.1%之光吸收,且基材堆疊之特徵可為大於1.5 MPa或大於約2 MPa,諸如約4 MPa之搭接剪切強度。在一些具體實例中,第一透明基材及第二透明基板為直徑在4與8吋之間的基材,且在熱固化基材堆疊之後,基材堆疊之彎曲度小於20 μm。在一些具體實例中,第一透明基材或第二透明基材中之至少一者為具有任意形狀及1至4吋長度之透鏡,且在熱固化基材堆疊之後,基材堆疊之彎曲度小於10 μm。Operations in block 1320 may include joining the second transparent substrate to the layer of LOCA material (eg, by compression) to form a substrate stack. Operations in block 1330 may include curing the LOCA material layer using ultraviolet (UV) light to cross-link the LOCA material. Operations in block 1340 may include thermosetting the substrate stack to convert the LOCA material to a thermoset state. In some embodiments, compression can be applied to the substrate stack in any or all curing operations. After thermally curing the substrate stack, the LOCA material layer can be characterized by a refractive index greater than 1.6 at 450 nm and a light absorption of less than 0.1% per micron of thickness of the LOCA material layer, and the substrate stack can be characterized by a refractive index greater than 1.5 MPa or greater than about 2 MPa, such as a lap shear strength of about 4 MPa. In some specific examples, the first transparent substrate and the second transparent substrate are substrates with a diameter between 4 and 8 inches, and after the thermal curing of the substrate stack, the curvature of the substrate stack is less than 20 μm. In some embodiments, at least one of the first transparent substrate or the second transparent substrate is a lens having an arbitrary shape and a length of 1 to 4 inches, and after thermally curing the substrate stack, the curvature of the substrate stack Less than 10 μm.

13B包括說明根據某些具體實例的連結對可見光可穿透的光學基材之方法之另一實例的流程圖1305。方塊1315中之操作可包括將一層LOCA材料塗佈於第一透明基材上,LOCA材料包含溶劑及結構1之添加物,其中結構1之添加物可構成不包括溶劑之LOCA材料之總質量的1%至7%。溶劑可包括PGMEA、DPGME/TPM或組合。LOCA材料亦可包括含矽氧烷及環氧基之寡聚物、UV活化光酸產生劑及交聯劑添加物。塗佈LOCA材料層可包括旋塗、噴塗、噴墨印刷、網版印刷或滴塗。LOCA材料層之厚度可在1與100微米之間。 13B includes a flowchart 1305 illustrating another example of a method of joining an optical substrate that is transparent to visible light according to certain embodiments. The operations in block 1315 may include coating a layer of LOCA material on the first transparent substrate, the LOCA material including the solvent and the additives of Structure 1, wherein the additives of Structure 1 may constitute the total mass of the LOCA material excluding the solvent. 1% to 7%. Solvents may include PGMEA, DPGME/TPM, or combinations. LOCA materials may also include siloxane- and epoxy-containing oligomers, UV-activated photoacid generators, and cross-linker additives. Applying the layer of LOCA material may include spin coating, spray coating, inkjet printing, screen printing, or drop coating. The thickness of the LOCA material layer can be between 1 and 100 microns.

方塊1325中之操作可包括使用UV光固化LOCA材料層以交聯LOCA材料。方塊1335中之操作可包括將第二透明基材連結至LOCA材料層(例如,藉由壓縮)以形成基材堆疊。方塊1345中之操作可包括熱固化基材堆疊以將LOCA材料轉化成熱固性狀態。在一些具體實例中,可以任一或所有固化操作施加壓縮。在熱固化基材堆疊之後,LOCA材料層之特徵可為在450 nm下大於1.6之折射率及LOCA材料層之每微米厚度低於0.1%之光吸收,且基材堆疊之特徵可為大於1.5 MPa或大於約2 MPa,諸如約4 MPa之搭接剪切強度。在一些具體實例中,第一透明基材及第二透明基板為直徑在4與8吋之間的基材,且在熱固化基材堆疊之後,基材堆疊之彎曲度小於20 μm。在一些具體實例中,第一透明基材或第二透明基材中之至少一者為具有任意形狀及1至4吋長度之透鏡,且在熱固化基材堆疊之後,基材堆疊之彎曲度小於10 μm。Operations in block 1325 may include curing the LOCA material layer using UV light to cross-link the LOCA material. Operations in block 1335 may include joining the second transparent substrate to the layer of LOCA material (eg, by compression) to form a substrate stack. Operations in block 1345 may include thermosetting the substrate stack to convert the LOCA material to a thermoset state. In some embodiments, compression may be applied for any or all curing operations. After thermally curing the substrate stack, the LOCA material layer can be characterized by a refractive index greater than 1.6 at 450 nm and a light absorption of less than 0.1% per micron of thickness of the LOCA material layer, and the substrate stack can be characterized by a refractive index greater than 1.5 MPa or greater than about 2 MPa, such as a lap shear strength of about 4 MPa. In some specific examples, the first transparent substrate and the second transparent substrate are substrates with a diameter between 4 and 8 inches, and after the thermal curing of the substrate stack, the curvature of the substrate stack is less than 20 μm. In some embodiments, at least one of the first transparent substrate or the second transparent substrate is a lens having an arbitrary shape and a length of 1 to 4 inches, and after thermally curing the substrate stack, the curvature of the substrate stack Less than 10 μm.

本發明之具體實例可包括人工實境系統或結合人工實境系統實施。人工實境為在呈現給使用者之前已以某一方式調整之實境形式,其可包括例如虛擬實境(VR)、擴增實境(AR)、混合實境(MR)、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全產生之內容或與所俘獲之(例如,真實世界)內容組合之所產生內容。人工實境內容可包括視訊、音訊、觸覺反饋或其某一組合,且其中之任一者可在單一通道中或在多個通道中(諸如,對檢視者產生三維效應之立體視訊)呈現。另外,在一些具體實例中,人工實境亦可與用以例如在人工實境中產生內容及/或另外用於人工實境中(例如,在人工實境中執行活動)之應用、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之頭戴式顯示器(head-mounted display;HMD)、獨立式HMD、行動裝置或計算系統,或能夠向一或多個觀看者提供人工實境內容之任何其他硬體平台。Specific examples of the invention may include or be implemented in conjunction with artificial reality systems. Artificial reality is a form of reality that has been adjusted in some way before being presented to the user. It can include, for example, virtual reality (VR), augmented reality (AR), mixed reality (MR), and hybrid reality. or a combination and/or derivative thereof. Artificial reality content may include fully generated content or generated content combined with captured (eg, real-world) content. Artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of these may be presented in a single channel or in multiple channels (such as stereoscopic video that produces a three-dimensional effect on the viewer). In addition, in some specific examples, artificial reality may also be related to applications, products, such as those used to generate content in the artificial reality and/or otherwise used in the artificial reality (e.g., performing activities in the artificial reality). accessories, services, or some combination thereof. Artificial reality systems that provide artificial reality content can be implemented on a variety of platforms, including head-mounted displays (HMDs) connected to host computer systems, stand-alone HMDs, mobile devices or computing systems, or capable of providing Any other hardware platform that provides artificial reality content to one or more viewers.

14為用於實施本文中所揭示之實施例中之一些的近眼顯示器(例如,HMD裝置)之電子系統1400之實例的簡化方塊圖。電子系統1400可用作HMD裝置或上文所描述之其他近眼顯示器的電子系統。在此實施例中,電子系統1400可包括一或多個處理器1410及記憶體1420。處理器1410可經組態以執行用於在數個組件處執行操作之指令,且可為例如適合於在攜帶型電子裝置內實施之通用處理器或微處理器。一或多個處理器1410可以通信方式與電子系統1400內之複數個組件耦合。為了實現此通信耦合,一或多個處理器1410可跨越匯流排1440與其他所說明之組件通信。匯流排1440可為適於在電子系統1400內轉移資料之任何子系統。匯流排1440可包括複數個電腦匯流排及額外電路以轉移資料。 14 is a simplified block diagram of an example of an electronic system 1400 for a near-eye display (eg, an HMD device) implementing some of the embodiments disclosed herein. Electronic system 1400 may be used as an electronic system for an HMD device or other near-eye display as described above. In this embodiment, electronic system 1400 may include one or more processors 1410 and memory 1420. Processor 1410 may be configured to execute instructions for performing operations at several components, and may be, for example, a general purpose processor or a microprocessor suitable for implementation within a portable electronic device. One or more processors 1410 may be communicatively coupled with a plurality of components within electronic system 1400. To achieve this communication coupling, one or more processors 1410 may communicate across bus 1440 with other illustrated components. Bus 1440 may be any subsystem suitable for moving data within electronic system 1400. Bus 1440 may include a plurality of computer buses and additional circuits to move data.

記憶體1420可耦接至處理器1410。在一些具體實例中,記憶體1420可提供短期儲存及長期儲存兩者,且可分成若干單元。記憶體1420可為揮發性的,諸如靜態隨機存取記憶體(static random access memory;SRAM)及/或動態隨機存取記憶體(DRAM),及/或為非揮發性的,諸如唯讀記憶體(read-only memory;ROM)、快閃記憶體及其類似者。此外,記憶體1420可包括抽取式儲存裝置,諸如安全數位(secure digital;SD)卡。記憶體1420可提供電腦可讀指令、資料結構、程式模組及用於電子系統1400之其他資料的儲存。在一些具體實例中,記憶體1420可分佈至不同硬體模組中。一組指令及/或程式碼可儲存於記憶體1420上。該等指令可採用可由電子系統1400執行之可執行程式碼之形式,及/或可採用原始程式碼及/或可安裝程式碼之形式,該原始程式碼及/或可安裝程式碼在電子系統1400上編譯及/或安裝(例如,使用多種常用的編譯器、安裝程式、壓縮/解壓縮公用程式等中之任一者)後,可採用可執行程式碼之形式。Memory 1420 may be coupled to processor 1410. In some embodiments, memory 1420 may provide both short-term storage and long-term storage, and may be divided into units. Memory 1420 may be volatile, such as static random access memory (SRAM) and/or dynamic random access memory (DRAM), and/or non-volatile, such as read-only memory. (read-only memory; ROM), flash memory and the like. Additionally, memory 1420 may include a removable storage device, such as a secure digital (SD) card. Memory 1420 may provide storage of computer-readable instructions, data structures, program modules, and other data for electronic system 1400 . In some embodiments, memory 1420 may be distributed among different hardware modules. A set of instructions and/or program code may be stored in memory 1420. The instructions may be in the form of executable code executable by the electronic system 1400, and/or may be in the form of source code and/or installable code that is stored in the electronic system 1400. It can be in the form of executable code when compiled and/or installed on the 1400 (e.g., using any of a variety of commonly used compilers, installers, compression/decompression utilities, etc.).

在一些具體實例中,記憶體1420可儲存複數個應用程式模組1422至1424,該複數個應用程式模組可包括任何數目個應用程式。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適之應用程式。應用程式可包括深度感測功能或眼睛追蹤功能。應用程式模組1422至1424可包括待藉由一或多個處理器1410執行之特定指令。在一些具體實例中,應用程式模組1422至1424之某些應用或部分可藉由其他硬體模組1480執行。在某些具體實例中,記憶體1420可另外包括安全記憶體,其可包括額外安全控制以防止對安全資訊之複製或其他未授權存取。In some embodiments, memory 1420 may store a plurality of application modules 1422 to 1424, and the plurality of application modules may include any number of applications. Examples of applications may include gaming applications, conferencing applications, video playback applications, or other suitable applications. Apps can include depth-sensing capabilities or eye-tracking capabilities. Application modules 1422 - 1424 may include specific instructions to be executed by one or more processors 1410 . In some embodiments, certain applications or portions of application modules 1422 - 1424 may be executed by other hardware modules 1480 . In some embodiments, memory 1420 may additionally include secure memory, which may include additional security controls to prevent copying or other unauthorized access to secure information.

在一些具體實例中,記憶體1420可包括載入於其中之操作系統1425。操作系統1425可操作以起始執行藉由應用程式模組1422至1424提供之指令及/或管理其他硬體模組1480以及與可包括一或多個無線收發器之無線通信子系統1430之介面。操作系統1425可適用於跨越電子系統1400之組件執行其他操作,包括線程、資源管理、資料儲存控制及其他類似功能性。In some embodiments, memory 1420 may include operating system 1425 loaded therein. Operating system 1425 is operable to initiate execution of instructions provided by application modules 1422 - 1424 and/or manage other hardware modules 1480 and interface with a wireless communications subsystem 1430 that may include one or more wireless transceivers. . Operating system 1425 may be adapted to perform other operations across components of electronic system 1400, including threading, resource management, data storage control, and other similar functionality.

無線通信子系統1430可包括例如紅外線通信裝置、無線通信裝置及/或晶片組(諸如,Bluetooth®裝置、IEEE 802.11裝置、Wi-Fi裝置、WiMax裝置、蜂巢式通信設施等)及/或類似通信介面。電子系統1400可包括用於無線通信之一或多個天線1434,作為無線通信子系統1430之部分或作為耦合至該系統之任何部分的獨立組件。取決於所要功能性,無線通信子系統1430可包括個別收發器以與基地收發器台及其他無線裝置及存取點進行通信,其可包括與諸如無線廣域網路(wireless wide-area network;WWAN)、無線區域網路(wireless local area network;WLAN)或無線個域網路(wireless personal area network;WPAN)之不同資料網路及/或網路類型進行通信。WWAN可為例如WiMax(IEEE 802.16)網路。WLAN可為例如IEEE 802.11x網路。WPAN可為例如藍牙網路、IEEE 802.15x或一些其他類型之網路。本文中所描述之技術亦可用於WWAN、WLAN及/或WPAN之任何組合。無線通信子系統1430可准許與網路、其他電腦系統及/或本文所描述之任何其他裝置交換資料。無線通信子系統1430可包括用於使用天線1434及無線鏈路1432傳輸或接收諸如HMD裝置之識別符、位置資料、地理地圖、熱圖、相片或視訊之資料的構件。Wireless communications subsystem 1430 may include, for example, infrared communications devices, wireless communications devices and/or chipsets (such as Bluetooth® devices, IEEE 802.11 devices, Wi-Fi devices, WiMax devices, cellular communications infrastructure, etc.) and/or similar communications interface. Electronic system 1400 may include one or more antennas 1434 for wireless communications, as part of wireless communications subsystem 1430 or as a separate component coupled to any portion of the system. Depending on the desired functionality, wireless communications subsystem 1430 may include individual transceivers to communicate with base transceiver stations and other wireless devices and access points, which may include communications with, for example, a wireless wide-area network (WWAN). , wireless local area network (WLAN) or wireless personal area network (wireless personal area network; WPAN) different data networks and/or network types for communication. A WWAN may be a WiMax (IEEE 802.16) network, for example. A WLAN may be, for example, an IEEE 802.11x network. A WPAN can be, for example, a Bluetooth network, IEEE 802.15x, or some other type of network. The techniques described herein may also be used with any combination of WWAN, WLAN, and/or WPAN. Wireless communications subsystem 1430 may permit the exchange of data with networks, other computer systems, and/or any other devices described herein. Wireless communications subsystem 1430 may include components for transmitting or receiving data such as identifiers of HMD devices, location data, geographic maps, heat maps, photos, or videos using antennas 1434 and wireless links 1432 .

電子系統1400之具體實例亦可包括一或多個感測器1490。感測器1490可包括例如影像感測器、加速計、壓力感測器、溫度感測器、近接感測器、磁力計、陀螺儀、慣性感測器(例如,組合加速計與陀螺儀之模組)、環境光感測器、或可操作以提供感測輸出及/或接收感測輸入之任何其他類似的模組,諸如深度感測器或位置感測器。舉例而言,在一些實施方式中,一或多個感測器1490可包括一或多個慣性量測單元(IMU)及/或一或多個位置感測器。IMU可基於自位置感測器中之一或多者接收到的量測信號來產生校準資料,該校準資料指示相對於HMD裝置之初始位置的HMD裝置之估計位置。位置感測器可回應於HMD裝置之運動生成一或多個量測信號。位置感測器之實例可包括但不限於一或多個加速計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一適合類型的感測器、用於IMU之誤差校正的一種類型之感測器,或其某一組合。該等位置感測器可位於IMU外部、IMU內部,或其某一組合。至少一些感測器可使用結構化光圖案以進行感測。Examples of electronic system 1400 may also include one or more sensors 1490 . Sensors 1490 may include, for example, image sensors, accelerometers, pressure sensors, temperature sensors, proximity sensors, magnetometers, gyroscopes, inertial sensors (e.g., a combination of accelerometers and gyroscopes). module), an ambient light sensor, or any other similar module operable to provide sensing output and/or receive sensing input, such as a depth sensor or a position sensor. For example, in some implementations, one or more sensors 1490 may include one or more inertial measurement units (IMUs) and/or one or more position sensors. The IMU may generate calibration data based on measurement signals received from one or more of the position sensors, the calibration data indicating an estimated position of the HMD device relative to an initial position of the HMD device. The position sensor may generate one or more measurement signals in response to movement of the HMD device. Examples of position sensors may include, but are not limited to, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor that detects motion, errors for IMUs A type of calibrated sensor, or a combination thereof. The position sensors can be located outside the IMU, inside the IMU, or some combination thereof. At least some sensors may use structured light patterns for sensing.

電子系統1400可包括顯示模組1460。顯示模組1460可為近眼顯示器,且可以圖形方式將來自電子系統1400之資訊(諸如影像、視訊及各種指令)呈現給使用者。此類資訊可源自一或多個應用程式模組1422至1424、虛擬實境引擎1426、一或多個其他硬體模組1480、其組合,或用於為使用者解析圖形內容(例如,藉由操作系統1425)之任何其他合適的部件。顯示模組1460可使用液晶顯示器(LCD)技術、發光二極體(LED)技術(包括,例如OLED、ILED、μLED、AMOLED、TOLED等)、發光聚合物顯示器(LPD)技術,或某一其他顯示器技術。Electronic system 1400 may include display module 1460. The display module 1460 can be a near-eye display, and can graphically present information (such as images, videos, and various instructions) from the electronic system 1400 to the user. Such information may originate from one or more application modules 1422-1424, the virtual reality engine 1426, one or more other hardware modules 1480, combinations thereof, or be used to parse graphical content for the user (e.g., By any other suitable component of the operating system 1425). Display module 1460 may use liquid crystal display (LCD) technology, light emitting diode (LED) technology (including, for example, OLED, ILED, μLED, AMOLED, TOLED, etc.), light emitting polymer display (LPD) technology, or some other Display technology.

電子系統1400可包括使用者輸入/輸出模組1470。使用者輸入/輸出模組1470可允許使用者將動作請求發送至電子系統1400。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行該應用程式內之特定動作。使用者輸入/輸出模組1470可包括一或多個輸入裝置。例示性輸入裝置可包括觸控式螢幕、觸控板、一或多個麥克風、一或多個按鈕、一或多個撥號盤、一或多個開關、鍵盤、滑鼠、遊戲控制器或用於接收動作請求且將所接收動作請求通信至電子系統1400之任何其他合適的裝置。在一些具體實例中,使用者輸入/輸出模組1470可根據自電子系統1400接收到之指令將觸覺回饋提供至使用者。舉例而言,可在接收到動作請求或已執行動作請求時提供觸覺回饋。Electronic system 1400 may include user input/output module 1470. The user input/output module 1470 may allow the user to send action requests to the electronic system 1400 . An action request may be a request to perform a specific action. For example, an action request may be to start or end an application or to perform a specific action within the application. User input/output module 1470 may include one or more input devices. Exemplary input devices may include a touch screen, a trackpad, one or more microphones, one or more buttons, one or more dials, one or more switches, a keyboard, a mouse, a game controller, or a user interface. Any other suitable device for receiving the action request and communicating the received action request to the electronic system 1400 . In some embodiments, the user input/output module 1470 can provide tactile feedback to the user according to instructions received from the electronic system 1400 . For example, tactile feedback can be provided when an action request is received or performed.

電子系統1400可包括可用以拍攝使用者之相片或視訊之攝影機1450,例如用於追蹤使用者之眼睛位置。攝影機1450亦可用以拍攝環境之相片或視訊,例如用於VR、AR或MR應用。攝影機1450可包括例如具有數百萬或數千萬個像素之互補金屬氧化物半導體(CMOS)影像感測器。在一些實施方式中,攝影機1450可包括可用以捕獲3D影像之兩個或更多個攝影機。The electronic system 1400 may include a camera 1450 that may be used to take photos or videos of the user, for example, to track the position of the user's eyes. The camera 1450 can also be used to capture photos or videos of the environment, such as for VR, AR or MR applications. Camera 1450 may include, for example, a complementary metal oxide semiconductor (CMOS) image sensor with millions or tens of millions of pixels. In some implementations, camera 1450 may include two or more cameras that may be used to capture 3D images.

在一些具體實例中,電子系統1400可包括複數個其他硬體模組1480。其他硬體模組1480中之各者可為電子系統1400內之實體模組。儘管其他硬體模組1480中之各者可永久地經組態為結構,但其他硬體模組1480中之一些可臨時經組態以執行特定功能或臨時啟動。其他硬體模組1480之實例可包括例如音訊輸出及/或輸入模組(例如,麥克風或揚聲器)、近場通訊(near field communication;NFC)模組、可再充電電池、電池管理系統、有線/無線電池充電系統等。在一些具體實例中,其他硬體模組1480之一或多個功能可實施於軟體中。In some embodiments, electronic system 1400 may include a plurality of other hardware modules 1480 . Each of the other hardware modules 1480 may be a physical module within the electronic system 1400 . Although each of the other hardware modules 1480 may be permanently configured as an architecture, some of the other hardware modules 1480 may be temporarily configured to perform specific functions or to be activated temporarily. Examples of other hardware modules 1480 may include, for example, audio output and/or input modules (eg, microphones or speakers), near field communication (NFC) modules, rechargeable batteries, battery management systems, wired /Wireless battery charging system, etc. In some embodiments, one or more functions of other hardware modules 1480 may be implemented in software.

在一些具體實例中,電子系統1400之記憶體1420亦可儲存虛擬實境引擎1426。虛擬實境引擎1426可執行電子系統1400內之應用,且自各種感測器接收HMD裝置之位置資訊、加速度資訊、速度資訊、所預測的未來位置,或其某一組合。在一些具體實例中,由虛擬實境引擎1426接收之資訊可用於產生信號(例如,顯示指令)至顯示模組1460。舉例而言,若所接收之資訊指示使用者已向左看,則虛擬實境引擎1426可產生用於HMD裝置之內容,該內容反映使用者在虛擬環境中之移動。另外,虛擬實境引擎1426可回應於自使用者輸入/輸出模組1470所接收到之動作請求而執行應用內之動作,且將回饋提供至使用者。所提供回饋可為視覺回饋、聽覺回饋或觸覺回饋。在一些實施方式中,一或多個處理器1410可包括可執行虛擬實境引擎1426之一或多個GPU。In some specific examples, the memory 1420 of the electronic system 1400 may also store the virtual reality engine 1426. The virtual reality engine 1426 can execute applications within the electronic system 1400 and receive position information, acceleration information, speed information, predicted future position, or some combination thereof of the HMD device from various sensors. In some embodiments, information received by the virtual reality engine 1426 may be used to generate signals (eg, display commands) to the display module 1460 . For example, if the information received indicates that the user has looked to the left, the virtual reality engine 1426 can generate content for the HMD device that reflects the user's movement in the virtual environment. Additionally, the virtual reality engine 1426 may perform actions within the application in response to action requests received from the user input/output module 1470 and provide feedback to the user. The feedback provided may be visual feedback, auditory feedback or tactile feedback. In some implementations, one or more processors 1410 may include one or more GPUs executable by a virtual reality engine 1426 .

在各種實施中,上文所描述之硬體及模組可實施於可使用有線或無線連接彼此通信之單一裝置或多個裝置上。舉例而言,在一些實施方式中,諸如GPU、虛擬實境引擎1426及應用程式(例如,追蹤應用程式)之一些組件或模組可實施於控制台上,該控制台與頭戴式顯示器裝置分開。在一些實施方式中,一個控制台可連接至或支援多於一個HMD。In various implementations, the hardware and modules described above may be implemented on a single device or on multiple devices that may communicate with each other using wired or wireless connections. For example, in some implementations, some components or modules, such as the GPU, virtual reality engine 1426, and applications (e.g., tracking applications) may be implemented on a console that interfaces with the head mounted display device Separate. In some implementations, one console may be connected to or support more than one HMD.

在替代組態中,不同及/或額外組件可包括於電子系統1400中。類似地,該等組件中之一或多者的功能性可以不同於上文所描述之方式的方式分佈於該等組件當中。舉例而言,在一些具體實例中,電子系統1400可經修改以包括其他系統環境,諸如AR系統環境及/或MR環境。In alternative configurations, different and/or additional components may be included in electronic system 1400 . Similarly, the functionality of one or more of the components may be distributed among the components in a manner different from that described above. For example, in some embodiments, electronic system 1400 may be modified to include other system environments, such as AR system environments and/or MR environments.

上文所論述之方法、系統及裝置為實例。在適當時各種具體實例可省略、取代或添加各種程序或組件。舉例而言,在替代組態中,可按不同於所描述次序之次序來執行所描述之方法,及/或可添加、省略及/或組合各種階段。同樣,在各種其他具體實例中可組合關於某些具體實例所描述之特徵。可以相似方式組合具體實例之不同態樣及元件。又並且,技術發展,且因此許多元件為實例,該等實例並不將本發明之範疇限制於彼等特定實例。The methods, systems, and devices discussed above are examples. Various embodiments may omit, substitute, or add various procedures or components as appropriate. For example, in alternative configurations, the described methods may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Likewise, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of specific embodiments may be combined in similar ways. Also, technology evolves, and thus many elements are examples that do not limit the scope of the invention to those specific examples.

在本說明中給出特定細節以提供具體實例之透徹理解。然而,可在沒有此等特定細節之情況下實踐具體實例。舉例而言,已在無不必要細節的情況下展示熟知的電路、製程、系統、結構及技術,以便避免混淆具體實例。本說明書僅提供例示性具體實例,且並不意欲限制本發明之範圍、適用性或組態。實情為,具體實例之先前描述將為所屬技術領域中具有通常知識者提供用於實施各種具體實例之啟發性描述。可在不脫離本發明之範圍之情況下對元件之功能及佈置作出各種改變。Specific details are given in this description to provide a thorough understanding of specific examples. However, specific examples may be practiced without such specific details. For example, well-known circuits, processes, systems, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the specific examples. This description provides illustrative specific examples only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the foregoing description of specific examples will provide those of ordinary skill in the art with an enlightening description for implementing various specific examples. Various changes may be made in the function and arrangement of components without departing from the scope of the invention.

另外,將一些具體實例描述為描繪為流程圖或方塊圖之程序。儘管每一者可將操作描述為依序製程,但操作中之許多者可並行地或同時來執行。另外,可重新配置操作之次序。程序可具有未包括於圖式中之額外步驟。此外,可由硬體、軟體、韌體、中間軟體、微碼、硬體描述語言或其任何組合實施方法之具體實例。當實施於軟體、韌體、中間軟體或微碼中時,用以執行相關聯任務之程式碼或碼段可儲存於諸如儲存媒體之電腦可讀媒體中。處理器可執行相關聯任務。Additionally, some specific examples are described as procedures depicted as flowcharts or block diagrams. Although each may describe operations as a sequential process, many of the operations may be performed in parallel or simultaneously. Additionally, the order of operations can be reconfigured. The procedures may have additional steps not included in the figures. Furthermore, specific examples of methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the code or code segments used to perform the associated tasks may be stored in a computer-readable medium such as a storage medium. The processor can perform associated tasks.

所屬領域中具有通常知識者將顯而易見,可根據特定要求作出實質變化。舉例而言,亦可使用自訂或專用硬體,及/或可在硬體、軟體(包括攜帶型軟體,諸如小程式等)或兩者中實施特定元件。此外,可使用與其他計算裝置(諸如,網路輸入/輸出裝置)之連接。Substantial variations may be made to suit specific requirements as will be apparent to those of ordinary skill in the art. For example, custom or specialized hardware may also be used, and/or specific elements may be implemented in hardware, software (including portable software such as applets, etc.), or both. Additionally, connections to other computing devices, such as network input/output devices, may be used.

參考附圖,可包括記憶體之組件可包括非暫時性機器可讀媒體。如本文中所使用,術語「機器可讀媒體」及「電腦可讀媒體」指代參與提供致使機器以特定方式操作之資料的任何儲存媒體。在上文所提供之具體實例中,各種機器可讀媒體可能涉及將指令/程式碼提供至處理單元及/或其他裝置以供執行。另外或可替代地,機器可讀媒體可用以儲存及/或載運此等指令/程式碼。在許多實施方式中,電腦可讀媒體為實體及/或有形儲存媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。電腦可讀媒體之常見形式包括例如磁性及/或光學媒體,諸如緊密光碟(compact disk;CD)或數位化通用光碟(digital versatile disk;DVD);打孔卡;紙帶;具有孔圖案之任何其他實體媒體;RAM;可程式化唯讀記憶體(programmable read-only memory;PROM);可抹除可程式化唯讀記憶體(erasable programmable read-only memory;EPROM);FLASH-EPROM;任何其他記憶體晶片或卡匣;如下文中所描述之載波;或可供電腦讀取指令及/或程式碼之任何其他媒體。電腦程式產品可包括程式碼及/或機器可執行指令,該等程式碼及/或機器可執行指令可表示程序、函式、子程式、程式、常式、應用程式(App)、子常式、模組、軟體包、類別,或指令、資料結構或程式陳述之任何組合。Referring to the figures, components that may include memory may include non-transitory machine-readable media. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any storage medium that participates in providing data that causes a machine to operate in a particular way. In the specific examples provided above, various machine-readable media may be involved in providing instructions/code to a processing unit and/or other device for execution. Additionally or alternatively, machine-readable media may be used to store and/or carry such instructions/code. In many implementations, computer-readable media are physical and/or tangible storage media. This media can take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. Common forms of computer-readable media include, for example, magnetic and/or optical media such as compact disk (CD) or digital versatile disk (DVD); punched cards; paper tape; anything with a pattern of holes Other physical media; RAM; programmable read-only memory (PROM); erasable programmable read-only memory (EPROM); FLASH-EPROM; any other A memory chip or cartridge; a carrier wave as described below; or any other medium that allows a computer to read instructions and/or program code. A computer program product may include program code and/or machine-executable instructions, which code and/or machine-executable instructions may represent a program, function, subroutine, program, routine, application (App), subroutine , module, package, class, or any combination of instructions, data structures, or program statements.

所屬技術領域中具有通常知識者將瞭解,可使用多種不同技術及技藝中的任一者來表示用以傳達本文中所描述之訊息的資訊及信號。舉例而言,可由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子或其任何組合表示遍及以上描述可能參考的資料、指令、命令、資訊、信號、位元、符號及晶片。Those of ordinary skill in the art will appreciate that the information and signals used to convey the messages described herein may be represented using any of a variety of different techniques and techniques. For example, the data, instructions, commands, information, signals, bits, symbols and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, or any combination thereof.

如本文中所使用,術語「及」及「或」可包括多種含義,該等含義亦預期至少部分地取決於使用此類術語之上下文。典型地,「或」若用以關聯清單,諸如A、B或C,則意欲意謂A、B及C(此處以包括性意義使用),以及A、B或C(此處以排他性意義使用)。此外,如本文中所使用之術語「一或多個」可用於以單數形式描述任何特徵、結構或特性,或可用以描述特徵、結構或特性之某一組合。然而,應注意,此僅為一說明性實例且所主張之標的不限於此實例。此外,術語「中之至少一者」若用於關聯諸如A、B或C之清單,則其可解釋為意謂A、B、C或A、B及/或C之組合,諸如AB、AC、BC、AA、ABC、AAB、ACC、AABBCCC或其類似者。As used herein, the terms "and" and "or" may include a variety of meanings, which meanings are also intended to depend, at least in part, on the context in which such terms are used. Typically, "or" when used in relation to a list, such as A, B, or C, is intended to mean A, B, and C (here used in an inclusive sense), as well as A, B, or C (here used in an exclusive sense) . Furthermore, the term "one or more" as used herein may be used to describe any feature, structure or characteristic in the singular, or may be used to describe some combination of features, structures or characteristics. However, it should be noted that this is merely an illustrative example and claimed subject matter is not limited to this example. Furthermore, the term "at least one of" when used in connection with a list such as A, B or C may be interpreted to mean A, B, C or a combination of A, B and/or C such as AB, AC , BC, AA, ABC, AAB, ACC, AABBCCC or the like.

另外,雖然已使用硬體與軟體之特定組合描述了某些具體實例,但應認識到,硬體與軟體之其他組合亦係可能的。可僅在硬體中或僅在軟體中或使用其組合來實施某些具體實例。在一個實例中,可藉由電腦程式產品來實施軟體,該電腦程式產品含有電腦程式碼或指令,該等電腦程式碼或指令可由一或多個處理器執行以用於執行本發明中所描述之步驟、操作或製程中之任一者或全部,其中電腦程式可儲存於非暫時性電腦可讀媒體上。本文所描述之各種製程可以任何組合實施於相同處理器或不同處理器上。Additionally, although certain specific examples have been described using specific combinations of hardware and software, it should be recognized that other combinations of hardware and software are possible. Certain embodiments may be implemented in hardware only or in software only, or using a combination thereof. In one example, the software may be implemented by a computer program product containing computer code or instructions executable by one or more processors for performing the tasks described in this disclosure. Any or all of the steps, operations or processes, in which the computer program may be stored on a non-transitory computer-readable medium. The various processes described herein may be implemented in any combination on the same processor or on different processors.

在裝置、系統、組件或模組經描述為經組態以執行某些操作或功能之情況下,可例如藉由設計電子電路以執行操作、藉由程式化可程式化電子電路(諸如,微處理器)以執行操作(諸如,藉由執行電腦指令或程式碼,或經程式化以執行儲存於非暫時性記憶體媒體上之程式碼或指令的處理器或核心)或其任何組合而實現此組態。處理程序可使用多種技術進行通信,包括但不限於用於處理程序間通信之習知技術,且不同對處理程序可使用不同技術,或同一對處理程序可在不同時間使用不同技術。Where a device, system, component or module is described as being configured to perform certain operations or functions, the electronic circuit may be programmed, for example, by designing the electronic circuit to perform the operation, by programming the programmable electronic circuit, such as a microprocessor, Processor) to perform operations (such as by executing computer instructions or code, or a processor or core programmed to execute code or instructions stored on non-transitory memory media) or any combination thereof this configuration. Handlers may communicate using a variety of technologies, including but not limited to conventional techniques for inter-handler communication, and different pairs of handlers may use different technologies, or the same pair of handlers may use different technologies at different times.

因此,應在說明性意義上而非限定性意義上看待說明書及圖式。然而,將顯而易見,可在不脫離如申請專利範圍中所闡述之更廣泛範圍之情況下對本揭示內容做出添加、減去、刪除以及其他修改及改變。因此,儘管已描述了特定具體實例,但此等具體實例並不意欲為限制性的。各種修改及等效者係在以下申請專利範圍之範圍內。Therefore, the description and drawings should be viewed in an illustrative rather than a restrictive sense. However, it will be apparent that additions, subtractions, deletions, and other modifications and changes may be made to the present disclosure without departing from the broader scope as set forth in the patent claims. Therefore, although specific examples have been described, these examples are not intended to be limiting. Various modifications and equivalents are within the scope of the following patent applications.

100:人工實境系統環境 110:控制台 112:應用程式商店 114:頭戴式裝置追蹤模組 116:人工實境引擎 118:眼睛追蹤模組 120:近眼顯示器 122:顯示電子件 124:顯示光學件 126:定位器 128:位置感測器 130:眼睛追蹤單元 132:慣性量測單元 140:輸入/輸出介面 150:外部成像裝置 200:HMD裝置 220:本體 223:本體之底側 225:本體之前側 227:本體之左側 230:頭部綁帶 300:近眼顯示器 305:框架 310:顯示器 330:照明器 340:攝影機 350a:感測器 350b:感測器 350c:感測器 350d:感測器 350e:感測器 400:擴增實境系統 410:投影機 412:光源或影像源 414:投影機光學件 415:組合器 420:組合器之基材 430:輸入耦合器 440:輸出耦合器 450:光 460:所提取光 490:眼睛 495:眼眶 500:擴增實境系統 510:光源或影像源 520:投影機光學件 530:基材 540:輸入耦合器 550:輸出耦合器 600:波導顯示器 602:波導顯示器 610:基材 612:頂表面 614:底表面 620:VBG層 622:輸入VBG 624:輸出VBG 630:基材 632:基材 634:基材 640:光柵 642:光柵 644:光柵 650:光 652:光 654:光 660:光線 662:光線 664:光線 700:波導顯示器 705:波導 710:輸入光柵 720:第一中間光柵 722:線 730:第二中間光柵 732:線 740:輸出光柵 750:出射區 760:第一總成 762:第一基材 764:光柵層 766:第二基材 770:第二總成 772:第一基材 774:光柵層 776:第二基材 780:間隔物 800:層堆疊 802:波導顯示器 804:多層波導顯示器 810:基材 812:基材 814:第一波導層 820:基材 822:輸入光柵 824:輸入光柵 826:輸入光柵 830:連結層 832:輸出光柵 834:輸出光柵 840:輸出光柵耦合器 842:輸出光柵 844:輸出光柵 850:光束 854:第二波導層 864:第三波導層 860:光束之一部分 870:第四波導層 880:第五波導層 890:第一光束 892:第二光束 894:第三光束 900:方法 910:第一光學基材 920:LOCA層 930:第二光學基材 950:單體或寡聚物 960:聚合物 970:未完全反應之位點 1000:波導顯示器 1005:層堆疊 1010:波導層 1020:輸入光柵 1022:輸入光柵 1024:輸出光柵 1026:輸出光柵 1030:波導層 1032:頂表面 1034:平面 1040:第一光束 1042:第二光束 1043:光線 1045:平面 1050:基材 1060:基材 1062:輸出光柵耦合器 1070:LOCA層 1080:光束 1082:經導引光束之一部分 1084:光線 1086:光線 1090:光線 1100:方法 1110:第一光學基材 1120:LOCA層 1130:第二光學基材 1150:單體或寡聚物 1152:反應性塑化劑 1160:聚合物 1170:未完全反應之位點 1300:流程圖 1305:流程圖 1310:方塊 1315:方塊 1320:方塊 1325:方塊 1330:方塊 1335:方塊 1340:方塊 1345:方塊 1400:電子系統 1410:一或多個處理器 1420:記憶體 1422:應用程式模組 1424:應用程式模組 1425:操作系統 1426:虛擬實境引擎 1430:無線通信子系統 1432:一或多個鏈路 1434:一或多個天線 1440:匯流排 1450:攝影機 1460:顯示模組 1470:使用者輸入/輸出模組 1480:其他硬體模組 1490:一或多個感測器 100: Artificial reality system environment 110:Console 112: App Store 114:Head mounted device tracking module 116:Artificial Reality Engine 118: Eye tracking module 120: Near-eye display 122: Display electronics 124: Display optics 126:Locator 128: Position sensor 130: Eye tracking unit 132:Inertial measurement unit 140:Input/output interface 150:External imaging device 200:HMD device 220:Ontology 223:The bottom side of the body 225: Front side of body 227:Left side of body 230:Head strap 300: Near-eye display 305:Frame 310:Display 330:Illuminator 340:Camera 350a: Sensor 350b: Sensor 350c: Sensor 350d: Sensor 350e: Sensor 400:Augmented Reality System 410:Projector 412:Light source or image source 414:Projector optical parts 415:Combiner 420: Base material of combiner 430:Input coupler 440:Output coupler 450:Light 460:Extracted light 490:eyes 495:Eye socket 500:Augmented reality system 510:Light source or image source 520:Projector optical parts 530:Substrate 540:Input coupler 550:Output coupler 600:Waveguide display 602:Waveguide Display 610:Substrate 612: Top surface 614: Bottom surface 620:VBG layer 622: Enter VBG 624: Output VBG 630:Substrate 632:Substrate 634:Substrate 640:Grating 642:Grating 644:Grating 650:Light 652:Light 654:Light 660:Light 662:Light 664:Light 700:Waveguide Display 705:Waveguide 710:Input raster 720: First intermediate grating 722: line 730: Second intermediate grating 732: line 740: Output raster 750:Exit area 760:First assembly 762:First base material 764:Grating layer 766: Second base material 770:Second assembly 772:First base material 774:Grating layer 776:Second base material 780: spacer 800: layer stacking 802:Waveguide Display 804:Multilayer waveguide display 810:Substrate 812:Substrate 814: First waveguide layer 820:Substrate 822:Input raster 824:Input raster 826:Input raster 830:Connection layer 832: Output raster 834: Output raster 840: Output grating coupler 842: Output raster 844: Output raster 850:Beam 854: Second waveguide layer 864: The third waveguide layer 860:Part of the beam 870: The fourth waveguide layer 880: The fifth waveguide layer 890:First beam 892:Second Beam 894:The third beam 900:Method 910:The first optical substrate 920:LOCA layer 930: Second optical substrate 950: Monomer or oligomer 960:Polymer 970: Site of incomplete reaction 1000:Waveguide display 1005:Layer stacking 1010: Waveguide layer 1020:Input raster 1022:Input raster 1024: Output raster 1026: Output raster 1030: Waveguide layer 1032:Top surface 1034:Plane 1040:First beam 1042:Second beam 1043:Light 1045:Plane 1050:Substrate 1060:Substrate 1062: Output grating coupler 1070:LOCA layer 1080:Beam 1082: Part of the guided beam 1084:Light 1086:Light 1090:Light 1100:Method 1110:The first optical substrate 1120:LOCA layer 1130: Second optical substrate 1150: Monomer or oligomer 1152:Reactive plasticizer 1160:Polymer 1170: Site of incomplete reaction 1300:Flowchart 1305:Flowchart 1310:block 1315:block 1320:block 1325:block 1330:block 1335:block 1340:block 1345:block 1400: Electronic systems 1410: One or more processors 1420:Memory 1422:Application module 1424:Application module 1425:Operating system 1426:Virtual Reality Engine 1430: Wireless communication subsystem 1432: One or more links 1434: One or more antennas 1440:Bus 1450:Camera 1460:Display module 1470:User input/output module 1480:Other hardware modules 1490: One or more sensors

下文參考以下圖式詳細描述說明性具體實例。 [圖1]為根據某些具體實例之包括近眼顯示器之人工實境系統環境之實例的簡化方塊圖。 [圖2]為呈用於實施本文中所揭示之一些實例的頭戴式顯示器(HMD)裝置之形式的近眼顯示器之實例的透視圖。 [圖3]為呈用於實施本文中所揭示之一些實例的一副眼鏡之形式的近眼顯示器之實例的透視圖。 [圖4]說明根據某些具體實例的包括波導顯示器之光學透視擴增實境系統之實例。 [圖5]說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器的光學透視擴增實境系統之實例。 [圖6A]說明包括光柵耦合器之波導顯示器之實例。 [圖6B]說明包括用於不同視場之多重光柵層的基於光柵之波導顯示器的實例。 [圖7A]為具有出射光瞳擴展及色散降低的基於光柵之波導顯示器的實例之俯視圖。 [圖7B]為圖7A之波導顯示器之實例之側視圖。 [圖8A]說明藉由使用連結層連結兩個基材所形成之層堆疊的實例。 [圖8B]說明波導顯示器之另一實例。 [圖8C]說明多層波導顯示器之實例。 [圖9A]說明使用液體光學澄清黏著劑(LOCA)層連結兩個光學基材之方法的實例。 [圖9B]說明LOCA材料在UV固化後之聚合的實例。 [圖10A]說明包括具有楔形形狀之波導層之波導顯示器的實例。 [圖10B]說明藉由使用液體光學澄清黏著劑連結兩個平面基材所形成之層堆疊的實例。 [圖11A]說明根據某些具體實例使用LOCA層連結兩個光學基材之方法的實例。 [圖11B]說明包括反應性塑化劑之LOCA材料在UV固化後之聚合的實例。 [圖12A]展示使用藉由不同固化方法固化之LOCA連結之基材堆疊之實例的基材彎曲。 [圖12B]展示使用藉由不同固化方法固化之LOCA連結之基材堆疊之實例的基材彎曲。 [圖12C]展示具有藉由不同固化方法固化之LOCA塗層之基材之實例的基材彎曲。 [圖12D]展示根據某些具體實例具有包括反應性塑化劑之LOCA塗層之基材之實例的基材彎曲。 [圖12E]展示根據某些具體實例使用包括反應性塑化劑之LOCA連結之基材堆疊之實例的基材彎曲。 [圖12F]展示根據某些具體實例使用包括反應性塑化劑之LOCA連結之基材堆疊之實例的基材彎曲。 [圖13A]包括說明根據某些具體實例的連結對可見光可穿透的光學基材之方法之實例的流程圖。 [圖13B]包括說明根據某些具體實例的連結對可見光可穿透的光學基材之方法之另一實例的流程圖。 [圖14]為用於實施本文所揭示之實例中之一些的近眼顯示器之實例的電子系統之簡化方塊圖。 該等圖式僅出於說明的目的描述本揭示案之具體實例。熟習此項技術者將易於自以下描述認識到,在不脫離本發明之原理或稱讚之益處之情況下,可採用說明的結構及方法之替代性具體實例。 在附圖中,類似組件及/或特徵可具有相同參考標記。另外,可藉由在參考標記之後使用短劃線及在類似組件當中進行區分之第二標記來區分相同類型之各種組件。若在說明書中僅使用第一參考標記,則描述適用於具有相同第一參考標記而與第二參考標記無關的類似組件中之任一者。 Illustrative specific examples are described in detail below with reference to the following drawings. [FIG. 1] is a simplified block diagram of an example of an artificial reality system environment including a near-eye display, according to certain embodiments. [FIG. 2] is a perspective view of an example of a near-eye display in the form of a head-mounted display (HMD) device for implementing some examples disclosed herein. [FIG. 3] is a perspective view of an example of a near-eye display in the form of a pair of glasses for implementing some of the examples disclosed herein. [FIG. 4] illustrates an example of an optical see-through augmented reality system including a waveguide display according to certain embodiments. [FIG. 5] illustrates an example of an optical see-through augmented reality system including a waveguide display for exit pupil expansion, according to certain embodiments. [Fig. 6A] illustrates an example of a waveguide display including a grating coupler. [Figure 6B] illustrates an example of a grating-based waveguide display including multiple grating layers for different fields of view. [FIG. 7A] is a top view of an example of a grating-based waveguide display with exit pupil expansion and dispersion reduction. [FIG. 7B] is a side view of an example of the waveguide display of FIG. 7A. [Fig. 8A] illustrates an example of a layer stack formed by connecting two substrates using a connecting layer. [Fig. 8B] illustrates another example of the waveguide display. [Fig. 8C] illustrates an example of a multilayer waveguide display. [Figure 9A] illustrates an example of a method of joining two optical substrates using a liquid optically clear adhesive (LOCA) layer. [Fig. 9B] illustrates an example of polymerization of LOCA material after UV curing. [Fig. 10A] illustrates an example of a waveguide display including a waveguide layer having a wedge shape. [Figure 10B] illustrates an example of a layer stack formed by joining two planar substrates using a liquid optically clear adhesive. [FIG. 11A] illustrates an example of a method of joining two optical substrates using a LOCA layer according to certain embodiments. [Fig. 11B] illustrates an example of polymerization of a LOCA material including a reactive plasticizer after UV curing. [Figure 12A] Substrate bending showing an example of a substrate stack using LOCA-joined substrates cured by different curing methods. [Figure 12B] Substrate bending showing an example of a substrate stack using LOCA-joined substrates cured by different curing methods. [Figure 12C] Substrate bending showing examples of substrates with LOCA coatings cured by different curing methods. [Fig. 12D] Shows substrate bending of an example of a substrate having a LOCA coating including a reactive plasticizer according to certain embodiments. [FIG. 12E] Demonstrates substrate bending for an example of a substrate stack using LOCA-linked substrates including a reactive plasticizer according to certain embodiments. [FIG. 12F] Demonstrates substrate bending for an example of a substrate stack using LOCA-linked substrates including a reactive plasticizer according to certain embodiments. [FIG. 13A] Includes a flow chart illustrating an example of a method of joining an optical substrate that is transparent to visible light according to certain embodiments. [FIG. 13B] Includes a flow chart illustrating another example of a method of joining an optical substrate that is transparent to visible light according to certain embodiments. [FIG. 14] is a simplified block diagram of an electronic system for implementing an example of a near-eye display of some of the examples disclosed herein. The drawings depict specific examples of the disclosure for illustrative purposes only. Those skilled in the art will readily recognize from the following description that alternative embodiments of the illustrated structures and methods may be employed without departing from the principles or claimed benefits of the invention. In the drawings, similar components and/or features may have the same reference numbers. Additionally, various components of the same type may be distinguished by using a dash after the reference mark and a second mark that distinguishes among similar components. If only a first reference number is used in the specification, the description applies to any of the similar components having the same first reference number regardless of the second reference number.

100:人工實境系統環境 100: Artificial reality system environment

110:控制台 110:Console

112:應用程式商店 112: App Store

114:頭戴式裝置追蹤模組 114:Head mounted device tracking module

116:人工實境引擎 116:Artificial Reality Engine

118:眼睛追蹤模組 118: Eye tracking module

120:近眼顯示器 120: Near-eye display

122:顯示電子件 122: Display electronics

124:顯示光學件 124: Display optics

126:定位器 126:Locator

128:位置感測器 128: Position sensor

130:眼睛追蹤單元 130: Eye tracking unit

132:慣性量測單元 132:Inertial measurement unit

140:輸入/輸出介面 140:Input/output interface

150:外部成像裝置 150:External imaging device

Claims (15)

一種用於連結光學基材之液體光學澄清黏著劑(liquid optically clear adhesive;LOCA),該LOCA包含: 含矽氧烷及環氧基之寡聚物; UV活化光酸產生劑; 交聯劑添加物; 溶劑;及 結構1之添加物: 其中該結構1之添加物構成不包括該溶劑之該LOCA之總質量的1%至7%。 A liquid optically clear adhesive (LOCA) used to connect optical substrates. The LOCA contains: oligomers containing siloxane and epoxy groups; UV-activated photoacid generator; cross-linking agent addition substance; solvent; and additives of structure 1: The additives of structure 1 constitute 1% to 7% of the total mass of the LOCA excluding the solvent. 如請求項1之LOCA,其中R 1、R 2及R 3包括甲醇鹽、乙醇鹽、丙醇鹽或其組合。 Such as the LOCA of claim 1, wherein R 1 , R 2 and R 3 include methoxide, ethoxide, propoxide or combinations thereof. 如請求項1或請求項2之LOCA,其中R 4包括為直鏈或分支鏈且包括2至8個碳之烷基鏈;及/或其中R 4包括直鏈C 6H 12Such as the LOCA of claim 1 or claim 2, wherein R 4 includes an alkyl chain that is a linear or branched chain and includes 2 to 8 carbons; and/or wherein R 4 includes a linear C 6 H 12 . 如前述請求項中任一項之LOCA,其中當固化時,該LOCA具有在450 nm下等於或大於1.6之折射率及該LOCA之每微米厚度低於0.1%之光吸收;及/或其中該LOCA可藉由紫外光、熱或紫外光及熱兩者固化。The LOCA of any one of the preceding claims, wherein when cured, the LOCA has a refractive index equal to or greater than 1.6 at 450 nm and a light absorption of less than 0.1% per micron thickness of the LOCA; and/or wherein the LOCA LOCA can be cured by UV light, heat, or both. 如前述請求項中任一項之LOCA,其中該LOCA在施加於兩個4至8吋基材上且固化上時得到彎曲度低於20微米之連結堆疊。The LOCA of any one of the preceding claims, wherein the LOCA results in a connected stack with a curvature of less than 20 microns when applied to two 4 to 8 inch substrates and cured. 如前述請求項中任一項之LOCA,其中該LOCA在施加於兩個玻璃基材上且固化時得到搭接剪切強度大於1.5 MPa之連結基材堆疊。The LOCA of any one of the preceding claims, wherein the LOCA, when applied to two glass substrates and cured, results in a stack of connected substrates with a lap shear strength greater than 1.5 MPa. 一種方法,其包含: 將一層液體光學澄清黏著劑(LOCA)材料塗佈於第一透明基材上,該LOCA材料包含溶劑及結構1之添加物: 藉由壓縮將第二透明基材連結至該LOCA材料層以形成基材堆疊; 使用紫外(UV)光固化該基材堆疊以使該LOCA材料交聯;及 使該基材堆疊熱固化以將該LOCA材料轉化成熱固性狀態。 A method, which includes: coating a layer of liquid optically clear adhesive (LOCA) material on a first transparent substrate, the LOCA material including a solvent and an additive of structure 1: attaching a second transparent substrate to the LOCA material layer by compression to form a substrate stack; curing the substrate stack using ultraviolet (UV) light to cross-link the LOCA material; and thermally curing the substrate stack to The LOCA material is converted into a thermoset state. 如請求項7之方法,其中該LOCA材料包括含矽氧烷之環氧黏著劑。The method of claim 7, wherein the LOCA material includes a siloxane-containing epoxy adhesive. 如請求項7或請求項8之方法,其中: 該結構1之添加物構成該LOCA材料之總質量之1%至7%; R 1、R 2及R 3包括甲醇鹽、乙醇鹽、丙醇鹽或其組合;及 R 4包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。 Such as the method of claim 7 or claim 8, wherein: the additive of structure 1 constitutes 1% to 7% of the total mass of the LOCA material; R 1 , R 2 and R 3 include methoxide, ethoxide, and propanol salts or combinations thereof; and R 4 includes an alkyl chain that is straight or branched and includes 2 to 8 carbons. 如請求項7至9中任一項之方法,其中在使該基材堆疊熱固化之後:  該LOCA材料層之特徵在於在450 nm等於或大於1.6之折射率及該LOCA材料層之每微米厚度低於0.1%之光吸收,及 該基材堆疊之特徵在於大於1.5 MPa之搭接剪切強度。 The method of any one of claims 7 to 9, wherein after thermally curing the substrate stack: the LOCA material layer is characterized by a refractive index at 450 nm equal to or greater than 1.6 and a thickness per micron of the LOCA material layer Less than 0.1% light absorption, and The substrate stack is characterized by a lap shear strength greater than 1.5 MPa. 如請求項7至10中任一項之方法,其中: 該第一透明基材及該第二透明基材為直徑在4與8吋之間的基材;及 在熱固化該基材堆疊之後,該基材堆疊之彎曲度小於20 μm。 Such as requesting the method of any one of items 7 to 10, wherein: The first transparent substrate and the second transparent substrate are substrates with a diameter between 4 and 8 inches; and After thermally curing the substrate stack, the curvature of the substrate stack is less than 20 μm. 一種裝置,其包含: 層堆疊,其包含由含矽氧烷之環氧黏著劑層連結在一起之兩個透明基材, 其中該含矽氧烷之環氧黏著劑層包括結構1之添加物: 其中該結構1之添加物構成該含矽氧烷之環氧黏著劑層之總質量的1%至7%。 A device comprising: a layer stack comprising two transparent substrates joined together by a silicone-containing epoxy adhesive layer, wherein the silicone-containing epoxy adhesive layer includes the additive of Structure 1 : The additives of structure 1 constitute 1% to 7% of the total mass of the siloxane-containing epoxy adhesive layer. 如請求項12之裝置,其中R 1、R 2及R 3包括甲醇鹽、乙醇鹽、丙醇鹽或其組合;及/或其中R 4包括為直鏈或分支鏈且包括2至8個碳的烷基鏈。 The device of claim 12, wherein R 1 , R 2 and R 3 include methoxide, ethoxide, propoxide or a combination thereof; and/or wherein R 4 is a linear or branched chain and includes 2 to 8 carbons. alkyl chain. 如請求項12或請求項13之裝置,其中該含矽氧烷之環氧黏著劑層之特徵在於在450 nm下等於或大於1.6之折射率及該含矽氧烷之環氧黏著劑層之每微米厚度低於0.1%之光吸收;及/或其中: 該含矽氧烷之環氧黏著劑層之厚度在1與100微米之間;及 該層堆疊之特徵在於大於1.5 MPa之搭接剪切強度。 The device of claim 12 or claim 13, wherein the siloxane-containing epoxy adhesive layer is characterized by a refractive index equal to or greater than 1.6 at 450 nm and a refractive index of the siloxane-containing epoxy adhesive layer. Less than 0.1% light absorption per micron of thickness; and/or where: The thickness of the silicone-containing epoxy adhesive layer is between 1 and 100 microns; and This layer stack is characterized by a lap shear strength greater than 1.5 MPa. 如請求項12至14中任一項之裝置,其中: 該兩個透明基材為直徑在4與8吋之間的基材;且該層堆疊之彎曲度小於20 μm;及/或其中: 兩個透明基材中之至少一者為具有任意形狀且長度為1至4吋之透鏡;及 該層堆疊之彎曲度小於10 μm。 Such as requesting the device of any one of items 12 to 14, wherein: The two transparent substrates are substrates with a diameter between 4 and 8 inches; and the curvature of the layer stack is less than 20 μm; and/or wherein: At least one of the two transparent substrates is a lens of any shape and a length of 1 to 4 inches; and The curvature of this layer stack is less than 10 μm.
TW112112873A 2022-04-21 2023-04-06 Low stress loca additive and loca processing for bonding optical substrates TW202344657A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263333243P 2022-04-21 2022-04-21
US63/333,243 2022-04-21
US18/125,618 US20230340309A1 (en) 2022-04-21 2023-03-23 Low stress loca additive and loca processing for bonding optical substrates
US18/125,618 2023-03-23

Publications (1)

Publication Number Publication Date
TW202344657A true TW202344657A (en) 2023-11-16

Family

ID=86386787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112112873A TW202344657A (en) 2022-04-21 2023-04-06 Low stress loca additive and loca processing for bonding optical substrates

Country Status (2)

Country Link
TW (1) TW202344657A (en)
WO (1) WO2023205123A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609405B2 (en) * 2014-08-26 2019-11-20 三星エスディアイ株式会社 Adhesive composition, adhesive layer, adhesive optical film, adhesive polarizing plate, and image display device
JP6894909B2 (en) * 2015-10-23 2021-06-30 ディー シャープ、ゲイリー Optical filter with color enhancement
KR101930729B1 (en) * 2018-07-12 2018-12-19 (주)켐텍인터내셔날 Siloxane oligomer having organic metal, process of fabricating siloxane olgomer, hadr coating compostiton containing siloxane oligomer, hard coating flim and display device
KR102147330B1 (en) * 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 Antistatic polyimide film and flexible display panel using same
JPWO2021167053A1 (en) * 2020-02-21 2021-08-26
KR102298174B1 (en) * 2020-04-20 2021-09-08 에스케이이노베이션 주식회사 Optical laminate and flexible display panel including the same

Also Published As

Publication number Publication date
WO2023205123A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US20220206232A1 (en) Layered waveguide fabrication by additive manufacturing
US11667059B2 (en) Techniques for reducing surface adhesion during demolding in nanoimprint lithography
US11947117B2 (en) Spatially multiplexed volume Bragg gratings with varied refractive index modulations for waveguide display
US20220082739A1 (en) Techniques for manufacturing variable etch depth gratings using gray-tone lithography
JP2023507052A (en) Birefringent polymer-based surface relief gratings
US11709422B2 (en) Gray-tone lithography for precise control of grating etch depth
US11774758B2 (en) Waveguide display with multiple monochromatic projectors
TW202303225A (en) Pvh in-band chromatic correction using metasurface
JP2022544733A (en) Refractive index modulation correction in holographic gratings
WO2022182784A1 (en) Staircase in-coupling for waveguide display
US20230037929A1 (en) Selective deposition/patterning for layered waveguide fabrication
US20230340309A1 (en) Low stress loca additive and loca processing for bonding optical substrates
TW202344657A (en) Low stress loca additive and loca processing for bonding optical substrates
US20230408826A1 (en) Near-eye display architectures
US20240151971A1 (en) Techniques for controlling overburden planarization
US20240036316A1 (en) Highly efficient, ultra-fast pbp lens design and fabrication
US20240168299A1 (en) Kaleidoscopic waveguide as small-form-factor pupil expander
US20230333380A1 (en) Pbp micro-lens for micro-oled beam tuning
WO2022146904A1 (en) Layered waveguide fabrication by additive manufacturing
TW202314306A (en) Selective deposition/patterning for layered waveguide fabrication
TW202235961A (en) Light redirection feature in waveguide display