TW202314306A - Selective deposition/patterning for layered waveguide fabrication - Google Patents

Selective deposition/patterning for layered waveguide fabrication Download PDF

Info

Publication number
TW202314306A
TW202314306A TW111129584A TW111129584A TW202314306A TW 202314306 A TW202314306 A TW 202314306A TW 111129584 A TW111129584 A TW 111129584A TW 111129584 A TW111129584 A TW 111129584A TW 202314306 A TW202314306 A TW 202314306A
Authority
TW
Taiwan
Prior art keywords
waveguide
layer
waveguide layer
display
bonding
Prior art date
Application number
TW111129584A
Other languages
Chinese (zh)
Inventor
理查 法雷爾
安吉特 沃拉
奧斯丁 蘭恩
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/815,944 external-priority patent/US20230037929A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202314306A publication Critical patent/TW202314306A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Layered waveguides, multi-layer waveguide displays with layered waveguides, and methods of fabricating layered waveguides with selective bonding material deposition and/or patterning.

Description

用於層狀波導製造的選擇沉積或圖案化Selective deposition or patterning for layered waveguide fabrication

本發明關於一種用於層狀波導製造的選擇沉積或圖案化。 相關申請案 The present invention relates to a selective deposition or patterning for the fabrication of layered waveguides. Related applications

本申請案主張2021年8月6日申請的且名稱為「用於層狀波導製造之選擇光學黏著劑沉積或圖案化(SELECTIVE OPTICAL ADHESIVE DEPOSITION/PATTERNING FOR LAYERED WAVEGUIDE FABRICATION)」之美國臨時申請案第63/230,532號,及2022年7月29申請的美國非臨時專利申請案第17/815944號的權益及優先權,該等申請案出於所有目的特此以全文引用之方式併入本文中。This application asserts U.S. Provisional Application No. 1 filed on August 6, 2021 and entitled "SELECTIVE OPTICAL ADHESIVE DEPOSITION/PATTERNING FOR LAYERED WAVEGUIDE FABRICATION" 63/230,532, and U.S. Nonprovisional Patent Application No. 17/815,944, filed July 29, 2022, which are hereby incorporated by reference in their entirety for all purposes.

諸如頭戴式顯示器(head-mounted display;HMD)或抬頭顯示器(heads-up display;HUD)系統之人工實境系統大體上包括經組態以經由電子或光學顯示器在使用者的眼睛前方向使用者呈現內容之近眼顯示器(例如,呈耳機或一副眼鏡的形式)。近眼顯示器可呈現虛擬物件或將真實物件之影像與虛擬物件組合,如在虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)或混合實境(mixed reality;MR)應用中。舉例而言,在AR系統中,使用者可藉由例如透視透明顯示玻璃或透鏡(通常稱為光學透視)來觀看虛擬物件(例如,電腦產生之影像(computer-generated images;CGI))及周圍環境兩者之影像。Artificial reality systems such as head-mounted display (HMD) or heads-up display (HUD) systems generally include devices configured to be used in front of a user's eyes via an electronic or optical display. or near-eye displays (for example, in the form of headphones or a pair of glasses) that present content. Near-eye displays can present virtual objects or combine images of real objects with virtual objects, such as in virtual reality (VR), augmented reality (augmented reality, AR) or mixed reality (mixed reality, MR) applications middle. For example, in an AR system, a user can see virtual objects (such as computer-generated images (CGI)) and their surroundings through, for example, see-through transparent display glass or lenses (commonly referred to as optical see-through). The image of both the environment.

光學透視AR系統之一個實例可使用基於波導之光學顯示器,其中所投影影像之光可耦合至波導(例如,透明基板)中,在波導內傳播,且接著在不同位置處耦合至波導之外。在一些光學透視AR系統中,所投影影像之光可使用繞射光學元件來耦合至波導中或至波導之外,諸如表面起伏光柵或全像光柵。來自周圍環境之光亦可穿過波導之透視區中之繞射光學元件且到達使用者之眼睛。One example of an optical see-through AR system may use a waveguide-based optical display, where light of a projected image may be coupled into a waveguide (eg, a transparent substrate), propagate within the waveguide, and then be coupled out of the waveguide at various locations. In some optical see-through AR systems, the light of the projected image may be coupled into or out of the waveguide using a diffractive optical element, such as a surface relief grating or a holographic grating. Light from the surrounding environment can also pass through the diffractive optical element in the see-through region of the waveguide and reach the user's eyes.

本發明大體上關於多層波導、多層波導顯示器及製造多層波導及其顯示器之方法。本文描述各種發明性具體實例,包括裝置、系統、方法、材料及其類似者。The present invention generally relates to multilayer waveguides, multilayer waveguide displays, and methods of making multilayer waveguides and displays thereof. Various inventive embodiments are described herein, including devices, systems, methods, materials, and the like.

某些態樣係針對一種製造一或多個多層波導之方法。方法包括接收或形成第一波導層及在第一波導層上形成具有一或多個切割通道之接合層(例如,光學透明黏著劑材料層)。方法亦包括藉由以下來形成接合波導堆疊:將第二波導層接合至第一波導層;及沿著一或多個切割通道切穿接合波導堆疊以形成一或多個多層波導。另外,方法包括使用一或多個多層波導形成一或多個多層波導顯示器。Certain aspects are directed to a method of making one or more multilayer waveguides. The method includes receiving or forming a first waveguide layer and forming a bonding layer (eg, a layer of optically clear adhesive material) having one or more cut channels on the first waveguide layer. The method also includes forming a bonded waveguide stack by: bonding the second waveguide layer to the first waveguide layer; and cutting through the bonded waveguide stack along one or more cutting channels to form one or more multilayer waveguides. Additionally, the method includes forming one or more multilayer waveguide displays using the one or more multilayer waveguides.

某些態樣係針對一種製造一或多個多層波導顯示器之方法。方法包括接收或形成具有一或多個光柵(例如,輸入及/或輸出光柵)之第一波導層。該方法亦包括在第一波導層上形成具有一或多個切割通道之光學透明黏著劑材料層。該方法亦包括藉由以下來形成接合波導堆疊:將第二波導層接合至第一波導層;及沿著一或多個切割通道切穿接合波導堆疊以形成一或多個多層波導顯示器。該方法亦包括使用一或多個多層波導形成一或多個多層波導顯示器。Certain aspects are directed to a method of fabricating one or more multilayer waveguide displays. The method includes receiving or forming a first waveguide layer having one or more gratings (eg, input and/or output gratings). The method also includes forming a layer of optically clear adhesive material having one or more cut channels on the first waveguide layer. The method also includes forming a bonded waveguide stack by: bonding the second waveguide layer to the first waveguide layer; and cutting through the bonded waveguide stack along one or more cutting channels to form one or more multilayer waveguide displays. The method also includes forming one or more multilayer waveguide displays using the one or more multilayer waveguides.

某些態樣係針對一種製造一或多個多層波導之方法。該方法包括接收或形成第一波導層及沿著一或多個切割通道在第一波導層上沉積犧牲材料。該方法亦包括在藉由一或多個切割通道所形成之內部周邊內的區域中沉積光學透明黏著劑材料,藉由將第二波導層接合至第一波導層來形成接合波導堆疊,及沿著穿過犧牲材料之一或多個切割通道切穿該接合波導堆疊以形成一或多個多層波導。Certain aspects are directed to a method of making one or more multilayer waveguides. The method includes receiving or forming a first waveguide layer and depositing a sacrificial material on the first waveguide layer along one or more dicing channels. The method also includes depositing an optically clear adhesive material in a region within the interior perimeter formed by the one or more dicing channels, forming a bonded waveguide stack by bonding the second waveguide layer to the first waveguide layer, and One or more dicing channels are cut through the bonded waveguide stack through the sacrificial material to form one or more multilayer waveguides.

某些態樣係針對多層波導,其藉由以下來製造:接收或形成第一波導層;沿著一或多個切割通道在第一波導層上沉積犧牲材料;在藉由一或多個切割通道所形成之內部周邊內的區域中沉積光學透明黏著劑材料;藉由將第二波導層接合至第一波導層來形成接合波導;及沿著穿過犧牲材料之一或多個切割通道切穿接合波導堆疊以形成一或多個多層波導。Certain aspects are directed to multilayer waveguides fabricated by: receiving or forming a first waveguide layer; depositing sacrificial material on the first waveguide layer along one or more dicing channels; Depositing an optically clear adhesive material in a region within the inner perimeter formed by the channel; forming a bonded waveguide by bonding the second waveguide layer to the first waveguide layer; and cutting along one or more dicing channels through the sacrificial material The bonded waveguides are stacked to form one or more multilayer waveguides.

某些態樣係針對一種多層波導顯示器,其之製造是藉由接收或形成具有一或多個光柵之第一波導層,及在該第一波導層上形成具有一或多個切割通道之光學透明黏著劑材料層。第二波導層接合至第一波導層以形成波導堆疊,且該接合波導堆疊沿著一或多個切割通道切斷以形成一或多個多層波導。使用一或多個多層波導形成多層波導顯示器。Certain aspects are directed to a multilayer waveguide display fabricated by receiving or forming a first waveguide layer with one or more gratings, and forming an optical waveguide layer with one or more dicing channels on the first waveguide layer. Layer of transparent adhesive material. A second waveguide layer is bonded to the first waveguide layer to form a waveguide stack, and the bonded waveguide stack is cut along one or more dicing channels to form one or more multilayer waveguides. A multilayer waveguide display is formed using one or more multilayer waveguides.

某些態樣係針對一種多層波導顯示器,其包含層狀波導及一或多個光柵耦合器,該光柵耦合器經配置以將顯示光繞射耦合至層狀波導中或至層狀波導之外及/或通過層狀波導折射透射周圍光。藉由沿著該接合波導堆疊之複數個波導層中之至少一者中之一或多個切割通道切穿該接合波導堆疊來製造層狀波導,其中一或多個切割通道不含接合材料(例如黏著材料)。Certain aspects are directed to a multilayer waveguide display comprising a layered waveguide and one or more grating couplers configured to diffractively couple display light into or out of the layered waveguide And/or refract and transmit ambient light through the layered waveguide. A layered waveguide is fabricated by cutting through the bonded waveguide stack along one or more dicing channels in at least one of the plurality of waveguide layers of the bonded waveguide stack, wherein one or more dicing channels are free of bonding material ( such as adhesive materials).

某些態樣係針對一或多個多層波導,其藉由接收或形成第一波導層,及在第一波導層上形成光學透明黏著劑材料層來製造。光學透明黏著劑材料層具有不含光學透明黏著劑材料之一或多個切割通道。一或多個多層波導進一步藉由將第二波導層接合至第一波導層以形成波導堆疊,及沿著一或多個切割通道切穿經接合波導堆疊以形成一或多個多層波導來製造。Certain aspects are directed to one or more multilayer waveguides fabricated by receiving or forming a first waveguide layer, and forming a layer of optically clear adhesive material on the first waveguide layer. The layer of optically clear adhesive material has one or more cut channels free of optically clear adhesive material. The one or more multilayer waveguides are further fabricated by bonding the second waveguide layer to the first waveguide layer to form a waveguide stack, and cutting through the bonded waveguide stack along one or more dicing channels to form the one or more multilayer waveguides .

某些態樣係針對一種製造一或多個多層波導之方法。方法包括接收或形成第一波導層及在第一波導層上沿著一或多個切割通道在一或多個區中沉積犧牲材料。方法亦包括用犧牲材料至少部分在一或多個區之內部周邊內沉積接合材料,及用接合材料將第二波導層接合至第一波導層以形成接合波導堆疊。另外,方法包括沿著一或多個切割通道切穿該接合波導堆疊以形成一或多個多層波導。Certain aspects are directed to a method of making one or more multilayer waveguides. The method includes receiving or forming a first waveguide layer and depositing a sacrificial material in one or more regions on the first waveguide layer along one or more dicing channels. The method also includes depositing a bonding material at least partially within an interior perimeter of the one or more regions with a sacrificial material, and bonding the second waveguide layer to the first waveguide layer with the bonding material to form a bonded waveguide stack. Additionally, the method includes cutting through the bonded waveguide stack along one or more cutting channels to form one or more multilayer waveguides.

此發明內容並不意欲識別所主張主題的關鍵或基本特徵,亦不意欲單獨用於判定所主張主題之範圍。應參考本揭示之整篇說明書之適當部分、任何或所有圖式及各申請專利範圍來理解該主題。下文將在以下說明書、申請專利範圍及隨附圖式中更詳細地描述前述內容連同其他特徵及實例。This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in isolation to determine the scope of the claimed subject matter. The subject matter should be understood by reference to this disclosure, in appropriate portions, of the entire specification, any or all drawings and respective claims. The foregoing, along with other features and examples, will be described in more detail below in the following specification, claims, and accompanying drawings.

在以下描述中,出於解釋之目的,闡述特定細節以提供對某些發明性具體實例之透徹理解。然而,顯然是各種具體實例可在無此等特定細節之情況下實踐。圖式及描述不意欲為限定性的。In the following description, for purposes of explanation, specific details are set forth in order to provide a thorough understanding of certain inventive embodiments. It is evident, however, that various embodiments may be practiced without these specific details. The drawings and descriptions are not intended to be limiting.

本文中所揭示之技術大體上關於人工實境顯示系統。更特定言之,且不限於,本文中揭示用於擴增實境或混合實境之層狀波導及其顯示器,利用選擇光學黏著劑沉積及/或圖案化來製造層狀波導之系統及方法。The techniques disclosed herein relate generally to artificial reality display systems. More particularly, and without limitation, disclosed herein are layered waveguides for augmented or mixed reality and displays thereof, systems and methods for fabricating layered waveguides using selective optical adhesive deposition and/or patterning .

在光學透視波導顯示器系統中,顯示光可由輸入耦合器耦合至波導中,且接著由輸出耦合器(例如,光柵耦合器)朝向使用者之眼睛耦合在波導之外。波導及耦合器對於可見光可為透明的,使得使用者可通過波導顯示器觀察周圍環境。歸因於來自不同視場或不同色彩之顯示光的不同繞射角,來自不同視場或不同色彩之顯示光可不朝向使用者之眼睛均一地耦合在波導之外。In an optical see-through waveguide display system, display light may be coupled into the waveguide by an input coupler, and then coupled out of the waveguide by an output coupler (eg, a grating coupler) towards the user's eye. The waveguide and coupler can be transparent to visible light, allowing a user to observe the surrounding environment through the waveguide display. Due to the different angles of diffraction of display light from different fields of view or colors, display light from different fields of view or colors may not be uniformly coupled out of the waveguide towards the user's eyes.

根據某些具體實例,層狀波導可用於改良來自不同視場或不同色彩之顯示光的均一性。層狀波導可包括具有選擇折射率及厚度之多個波導層。According to some embodiments, layered waveguides can be used to improve the uniformity of display light from different fields of view or different colors. A layered waveguide may include multiple waveguide layers with selected refractive indices and thicknesses.

在某些實例中,製造層狀波導之方法使用實施雷射剝蝕之切割製程或類似製程以切穿經接合層狀波導堆疊以單體化個別波導。雷射剝蝕操作可包括使用高功率雷射以反覆地移除區域中之材料以劃穿層狀波導堆疊。若在切割操作期間光學透明黏著劑(optically-clear adhesive;OCA)或其他接合材料存在於波導晶粒之邊緣處,則雷射剝蝕或其他類似破壞性製程可降低個別波導之邊緣處之黏著材料的接合強度。某些接合製程可在黏著材料層中產生殘餘應力,歸因於例如自紫外線(ultraviolet;UV)固化或自具有失配熱膨脹係數(coefficients of thermal expansion;CTE)之熱接合層的聚合收縮。在某些個例中,為了緩解接合層中之殘餘應力,在波導之邊緣處開始之分層前(其中在切割製程期間黏著材料之接合強度可能已降低)可隨著時間推移朝內傳播致使波導層分層。In some examples, methods of fabricating layered waveguides use a dicing process that performs laser ablation, or the like, to cut through the bonded layered waveguide stack to singulate individual waveguides. Laser ablation operations may include using a high powered laser to iteratively remove material in areas to scratch through the layered waveguide stack. If optically-clear adhesive (OCA) or other bonding material is present at the edge of the waveguide die during the dicing operation, laser ablation or other similarly destructive process can reduce the adhesive material at the edge of individual waveguides of joint strength. Certain bonding processes can generate residual stress in the adhesive material layer due to, for example, polymerization shrinkage from ultraviolet (UV) curing or from thermal bonding layers with mismatched coefficients of thermal expansion (CTE). In some cases, to relieve residual stress in the bonding layer, delamination beginning at the edge of the waveguide (where the bonding strength of the adhesive material may have been reduced during the dicing process) may propagate inwards over time such that The waveguide layer is layered.

在某些實施中,製造層狀波導之方法移除或避免在待發生切割之經接合波導堆疊中之一或多個切割通道中形成黏著材料或其他接合材料。以此方式,接合層之性質可不受切割製程影響,且可避免歸因於由雷射剝蝕或類似製程產生之降低接合強度導致的分層。In certain implementations, methods of fabricating layered waveguides remove or avoid the formation of adhesive or other bonding material in one or more dicing channels in a bonded waveguide stack where dicing occurs. In this way, the properties of the bonding layer may not be affected by the dicing process, and delamination due to reduced bonding strength due to laser ablation or similar processes may be avoided.

在某些實施中,製造層狀波導之方法在一或多個切割線中形成犧牲材料。犧牲材料可在沉積黏著材料之前形成以形成障壁,在該障壁內黏著材料可由例如滴鑄製程或噴墨製程來沉積。替代地,犧牲材料可形成於形成於接合材料中之一或多個切割通道中。In certain implementations, the method of fabricating a layered waveguide forms sacrificial material in one or more dicing lines. The sacrificial material may be formed prior to depositing the adhesive material to form barriers within which the adhesive material may be deposited by, for example, a drop casting process or an inkjet process. Alternatively, the sacrificial material may be formed in one or more cut channels formed in the bonding material.

在以下描述中,出於解釋之目的,闡述特定細節以提供對本揭示之實例之透徹理解。然而,顯然是各種實例可在無此等特定細節之情況下實踐。舉例而言,裝置、系統、結構、總成、方法及其他組件可以方塊圖形式展示為組件,以免以不必要的細節混淆實例。在其他個例下,可在無必要細節之情況下展示眾所周知的裝置、製程、系統、結構及技術,以免混淆實例。圖式及描述不意欲為限定性的。已用於本揭示中之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述時不欲排除所展示及描述之特徵的任何等效者或其部分。字語「實例」在本文中用以意謂「充當實例、個例或說明」。不必將本文中描述為「實例」之任何具體實例或設計解釋為比其他具體實例或設計較佳或優於其他具體實例或設計。In the following description, for purposes of explanation, specific details are set forth in order to provide a thorough understanding of examples of the present disclosure. It may be evident, however, that various examples may be practiced without these specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form in order not to obscure the examples with unnecessary detail. In other instances, well-known devices, processes, systems, structures and techniques may be shown without unnecessary detail in order not to obscure the examples. The drawings and descriptions are not intended to be limiting. The terms and expressions that have been used in this disclosure are terms of description and not of limitation, and in the use of such terms and expressions it is not intended to exclude any equivalents or parts of the features shown and described. The word "example" is used herein to mean "serving as an instance, instance, or illustration." Any particular example or design described herein as an "example" is not necessarily to be construed as being better than or superior to other particular examples or designs.

1為根據某些具體實例之包括近眼顯示器 120之人工實境系統環境 100之實例的簡化方塊圖。 1中所示之人工實境系統環境 100可包括近眼顯示器 120、視情況選用之外部成像裝置 150及視情況選用之輸入/輸出介面 140,其中之各者可耦合至視情況選用之控制台 110。雖然 1展示包括一個近眼顯示器 120、一個外部成像裝置 150及一個輸入/輸出介面 140之人工實境系統環境 100的實例,但可在人工實境系統環境 100中包括任何數目個此等組件,或可省略該等組件中之任一者。舉例而言,可存在多個近眼顯示器 120,其可由與控制台 110通信之一或多個外部成像裝置 150監測。在一些組態中,人工實境系統環境 100可不包括外部成像裝置 150、視情況選用之輸入/輸出介面 140及視情況選用之控制台 110。在替代組態中,不同組件或額外組件可包括於人工實境系統環境 100中。 1 is a simplified block diagram of an example of an artificial reality system environment 100 including a near- eye display 120 according to certain embodiments. The artificial reality system environment 100 shown in FIG. 1 may include a near-eye display 120 , an optional external imaging device 150 , and an optional input/output interface 140 , each of which may be coupled to an optional console 110 . Although FIG. 1 shows an example of an AR system environment 100 including a near-eye display 120 , an external imaging device 150 , and an input/output interface 140 , any number of these components may be included in the AR system environment 100 , Or any of these components may be omitted. For example, there may be multiple near-eye displays 120 that may be monitored by one or more external imaging devices 150 in communication with console 110 . In some configurations, the augmented reality environment 100 may not include the external imaging device 150 , the optional input/output interface 140 , and the optional console 110 . In alternative configurations, different or additional components may be included in the augmented reality system environment 100 .

近眼顯示器 120可為向使用者呈現內容之頭戴式顯示器。由近眼顯示器 120呈現之內容的實例包括影像、視訊、音訊或其任何組合中之一或多者。在一些具體實例中,音訊經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現,該外部裝置自近眼顯示器 120、控制台 110或此兩者接收音訊資訊,且基於音訊資訊而呈現音訊資料。近眼顯示器 120可包括一或多個剛性主體,該一或多個剛性主體可剛性地或非剛性地彼此耦合。剛性主體之間的剛性耦合可使得經耦合剛性主體充當單一剛性實體。剛性主體之間的非剛性耦合可允許剛性主體相對於彼此移動。在各種具體實例中,近眼顯示器 120可以任何合適的形狀因數實施,包括一副眼鏡。近眼顯示器 120之一些具體實例下文關於 2 3進一步所描述。另外,在各種具體實例中,本文中所描述之功能性可用於將在近眼顯示器 120外部之環境之影像與人工實境內容(例如,電腦產生之影像)組合的耳機中。因此,近眼顯示器 120可藉由所產生之內容(例如,影像、視訊、聲音等)來擴增在近眼顯示器 120外部的實體真實世界環境之影像,以向使用者呈現擴增實境。 The near-eye display 120 may be a head-mounted display that presents content to the user. Examples of content presented by the near-eye display 120 include one or more of images, video, audio, or any combination thereof. In some embodiments, the audio is presented via an external device (e.g., speakers and/or headphones) that receives audio information from near-eye display 120 , console 110 , or both, and presents the audio based on the audio information material. The near-eye display 120 may include one or more rigid bodies that may be rigidly or non-rigidly coupled to each other. Rigid couplings between rigid bodies may cause the coupled rigid bodies to act as a single rigid entity. A non-rigid coupling between rigid bodies allows the rigid bodies to move relative to each other. In various embodiments, near-eye display 120 may be implemented in any suitable form factor, including a pair of eyeglasses. Some specific examples of near-eye display 120 are described further below with respect to FIGS. 2 and 3 . Additionally, in various embodiments, the functionality described herein may be used in headsets that combine images of the environment external to near-eye display 120 with artificial reality content (eg, computer-generated images). Therefore, the near-eye display 120 can amplify the image of the physical real-world environment outside the near-eye display 120 through the generated content (eg, image, video, sound, etc.), so as to present the augmented reality to the user.

在各種具體實例中,近眼顯示器 120可包括顯示電子件 122、顯示光學件 124及眼動追蹤單元 130中之一或多者。在一些具體實例中,近眼顯示器 120亦可包括一或多個定位器 126、一或多個位置感測器 128及慣性量測單元(inertial measurement unit;IMU) 132。在各種具體實例中,近眼顯示器 120可省略眼動追蹤單元 130、定位器 126、位置感測器 128及IMU 132中之任一者,或包括額外元件。另外,在一些具體實例中,近眼顯示器 120可包括組合接合圖1所描述之各種元件之功能的元件。 In various embodiments, the near-eye display 120 may include one or more of the display electronics 122 , the display optics 124 , and the eye-tracking unit 130 . In some specific examples, the near-eye display 120 may also include one or more positioners 126 , one or more position sensors 128 and an inertial measurement unit (IMU) 132 . In various embodiments, the near-eye display 120 may omit any of the eye-tracking unit 130 , the locator 126 , the position sensor 128 , and the IMU 132 , or include additional elements. Additionally, in some embodiments, near-eye display 120 may include elements that combine the functionality of the various elements described in FIG. 1 .

顯示電子件 122可根據自例如控制台 110接收到之資料而向使用者顯示影像或促進向使用者顯示影像。在各種具體實例中,顯示電子件 122可包括一或多個顯示面板,諸如液晶顯示器(liquid crystal display;LCD)、有機發光二極體(organic light emitting diode;OLED)顯示器、無機發光二極體(inorganic light emitting diode;ILED)顯示器、微型發光二極體(micro light emitting diode;μLED)顯示器、主動矩陣OLED顯示器(active-matrix OLED display;AMOLED)、透明OLED顯示器(transparent OLED display;TOLED)或某一其他顯示器。舉例而言,在近眼顯示器 120之一個實施中,顯示電子件 122可包括前TOLED面板、後顯示面板及在前顯示面板與後顯示面板之間的光學組件(例如,衰減器、偏振器,或繞射或頻譜膜)。顯示電子件 122可包括像素以發射諸如紅色、綠色、藍色、白色或黃色之主要色彩的光。在一些實施中,顯示電子件 122可通過由二維面板產生之立體效應來顯示三維(three-dimensional;3D)影像以產生影像深度之主觀感知。舉例而言,顯示電子件 122可包括分別位於使用者之左眼及右眼前方的左側顯示器及右側顯示器。左側顯示器及右側顯示器可呈現相對於彼此水平地移位之影像的複本,以產生立體效應(亦即,觀看影像之使用者對影像深度的感知)。 Display electronics 122 may display images to a user or facilitate displaying images to a user based on data received from, for example, console 110 . In various specific examples, the display electronics 122 may include one or more display panels, such as a liquid crystal display (liquid crystal display; LCD), an organic light emitting diode (organic light emitting diode; OLED) display, an inorganic light emitting diode (inorganic light emitting diode; ILED) display, micro light emitting diode (micro light emitting diode; μLED) display, active-matrix OLED display (active-matrix OLED display; AMOLED), transparent OLED display (transparent OLED display; TOLED) or some other display. For example, in one implementation of near-eye display 120 , display electronics 122 may include a front TOLED panel, a rear display panel, and optical components between the front and rear display panels (e.g., attenuators, polarizers, or diffraction or spectral film). Display electronics 122 may include pixels to emit light of a primary color such as red, green, blue, white or yellow. In some implementations, the display electronics 122 can display a three-dimensional (3-dimensional; 3D) image through the stereoscopic effect generated by the two-dimensional panel to generate a subjective perception of image depth. For example, the display electronics 122 may include left and right displays located in front of the user's left and right eyes, respectively. The left and right displays may present copies of the image that are shifted horizontally relative to each other to create a stereoscopic effect (ie, the user viewing the image's perception of depth).

在某些具體實例中,顯示光學件 124可以光學方式(例如,使用光波導及耦合器)顯示影像內容,或放大自顯示電子件 122接收到之影像光,校正與影像光相關聯之光學誤差,且向近眼顯示器 120之使用者呈現經校正之影像光。在各種具體實例中,顯示光學件 124可包括一或多個光學元件,諸如基板、光波導、孔徑、菲涅爾透鏡(Fresnel lens)、凸透鏡、凹透鏡、濾光片、輸入/輸出耦合器,或可能影響自顯示電子件 122發射之影像光的任何其他合適的光學元件。顯示光學件 124可包括不同光學元件之組合,以及用以維持組合中之光學元件之相對間隔及位向的機械耦合器。顯示光學件 124中之一或多個光學元件可具有光學塗層,諸如抗反射塗層、反射塗層、濾光塗層或不同光學塗層之組合。 In some embodiments, display optics 124 may display image content optically (e.g., using optical waveguides and couplers), or amplify image light received from display electronics 122 , correcting optical errors associated with image light , and present the corrected image light to the user of the near-eye display 120 . In various embodiments, display optics 124 may include one or more optical elements, such as substrates, optical waveguides, apertures, Fresnel lenses, convex lenses, concave lenses, filters, input/output couplers, Or any other suitable optical element that may affect the image light emitted from the display electronics 122 . Display optics 124 may include a combination of different optical elements, and mechanical couplers to maintain the relative spacing and orientation of the optical elements in the combination. One or more optical elements in display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filter coating, or a combination of different optical coatings.

影像光由顯示光學件 124之放大可允許相比較大顯示器,顯示電子件 122在實體上較小,重量較輕且消耗較少功率。另外,放大可增加所顯示內容之視場。顯示光學件 124對影像光之放大的量可藉由調整、添加光學件 124或自顯示光學件 124移除光學元件來改變。在一些具體實例中,顯示光學件 124可將經顯示影像投影至可比近眼顯示器 120更遠離使用者之眼睛之一或多個影像平面。 Amplification of image light by display optics 124 may allow display electronics 122 to be physically smaller, weigh less and consume less power than larger displays. Additionally, zooming in increases the field of view of the displayed content. The amount of magnification of image light by display optics 124 can be varied by adjusting, adding optics 124 , or removing optical elements from display optics 124 . In some embodiments, display optics 124 may project the displayed image to one or more image planes that may be farther away from the user's eyes than near-eye display 120 .

顯示光學件 124亦可經設計以校正一或多種類型之光學誤差,諸如二維光學誤差、三維光學誤差或其任何組合。二維誤差可包括在兩個維度中發生之光學像差。二維誤差之實例類型可包括桶形失真、枕形失真、縱向色像差及橫向色像差。三維誤差可包括以三維形式發生之光學誤差。三維誤差之實例類型可包括球面像差、慧形像差、場曲率及像散。 Display optics 124 may also be designed to correct for one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Two-dimensional errors may include optical aberrations that occur in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and lateral chromatic aberration. Three-dimensional errors may include optical errors that occur in three dimensions. Example types of three-dimensional errors may include spherical aberration, coma, field curvature, and astigmatism.

定位器 126可為相對於彼此且相對於近眼顯示器 120上之參考點而定位於近眼顯示器 120上之特定位置中的物件。在一些實施方式中,控制台 110可在由外部成像裝置 150擷取之影像中識別定位器 126,以判定人工實境耳機之位置、位向或兩者。定位器 126可為發光二極體(light emitting diode;LED)、直角反射器、反射標誌、與近眼顯示器 120操作所在之環境形成對比的一種類型的光源,或其任何組合。在定位器 126為主動組件(例如,LED或其他類型之光發射裝置)之具體實例中,定位器 126可發射在可見光頻帶(例如,約380 nm至750 nm)中、紅外線(infrared;IR)頻帶(例如,約750 nm至1 mm)中、紫外線頻帶(例如,約10 nm至約380 nm)中、電磁波譜之另一部分中或電磁波譜之部分之任何組合中的光。 Locators 126 may be objects positioned in particular locations on near-eye display 120 relative to each other and relative to a reference point on near-eye display 120 . In some implementations, the console 110 can identify the locator 126 in images captured by the external imaging device 150 to determine the location, orientation, or both of the artificial reality headset. Locators 126 may be light emitting diodes (LEDs), right angle reflectors, reflective markers, a type of light source that contrasts with the environment in which near-eye display 120 operates, or any combination thereof. In embodiments where the locator 126 is an active component such as an LED or other type of light emitting device, the locator 126 may emit infrared (IR) light in the visible light band (eg, approximately 380 nm to 750 nm). Light in the frequency band (eg, about 750 nm to 1 mm), in the ultraviolet band (eg, about 10 nm to about 380 nm), in another part of the electromagnetic spectrum, or any combination of parts of the electromagnetic spectrum.

外部成像裝置 150可包括一或多個攝影機、一或多個視訊攝影機、能夠捕獲包括定位器 126中之一或多者之影像的任何其他裝置,或其任何組合。另外,外部成像裝置 150可包括一或多個濾波器(例如,以增大信雜比)。外部成像裝置 150可經組配以偵測外部成像裝置 150之視場中自定位器 126發射或反射之光。在定位器 126包括被動元件(例如,回反射器(retroreflector))之具體實例中,外部成像裝置 150可包括照明定位器 126中之一些或全部的光源,該等定位器可將光回反射至外部成像裝置 150中之光源。慢速校準資料可自外部成像裝置 150傳達至控制台 110,且外部成像裝置 150可自控制台 110接收一或多個校準參數以調整一或多個成像參數(例如,焦距、焦點、框率、感測器溫度、快門速度、孔徑等)。 External imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more of locators 126 , or any combination thereof. Additionally, external imaging device 150 may include one or more filters (eg, to increase the signal-to-noise ratio). External imaging device 150 may be configured to detect light emitted or reflected from locator 126 in the field of view of external imaging device 150 . In embodiments where locators 126 include passive elements (e.g., retroreflectors), external imaging device 150 may include a light source that illuminates some or all of locators 126 that reflect light back into The light source in the external imaging device 150 . Slow calibration data can be communicated from the external imaging device 150 to the console 110 , and the external imaging device 150 can receive one or more calibration parameters from the console 110 to adjust one or more imaging parameters (e.g., focal length, focus, frame rate , sensor temperature, shutter speed, aperture, etc.).

位置感測器 128可回應於近眼顯示器 120之運動而產生一或多個量測信號。位置感測器 128之實例可包括加速計、陀螺儀、磁力計、其他運動偵測或誤差校正感測器,或其任何組合。舉例而言,在一些具體實例中,位置感測器 128可包括用以量測平動(例如,向前/後、上/下或左/右)之多個加速計及用以量測旋轉運動(例如,俯仰、橫偏或橫搖)之多個陀螺儀。在一些具體實例中,各種位置感測器可彼此正交地定向。 The position sensor 128 can generate one or more measurement signals in response to the movement of the near-eye display 120 . Examples of position sensors 128 may include accelerometers, gyroscopes, magnetometers, other motion detection or error correction sensors, or any combination thereof. For example, in some embodiments, position sensor 128 may include multiple accelerometers to measure translation (eg, forward/backward, up/down, or left/right) and to measure rotation Multiple gyroscopes for motion such as pitch, yaw or roll. In some specific examples, the various position sensors may be oriented orthogonally to one another.

IMU 132可為基於自位置感測器 128中之一或多者接收到之量測信號而產生快速校準資料的電子裝置。位置感測器 128可定位於IMU 132外部、IMU 132內部或其任何組合。基於來自一或多個位置感測器 128之一或多個量測信號,IMU 132可產生快速校準資料,該快速校準資料指示相對於近眼顯示器 120之初始位置的近眼顯示器 120之估計位置。舉例而言,IMU 132可隨著時間推移整合自加速度計接收到之量測信號以估計速度向量,且隨著時間推移整合速度向量以判定近眼顯示器 120上之參考點之估計位置。替代地,IMU 132可將經取樣之量測信號提供至控制台 110,該控制台 110可判定快速校準資料。雖然參考點可通常可界定為空間中之點,但在各種具體實例中,參考點亦可界定為近眼顯示器 120內之點(例如,IMU 132之中心)。 IMU 132 may be an electronic device that generates rapid calibration data based on measurement signals received from one or more of position sensors 128 . Position sensor 128 may be positioned external to IMU 132 , internal to IMU 132 , or any combination thereof. Based on one or more measurement signals from one or more position sensors 128 , IMU 132 may generate quick calibration data indicating an estimated position of near-eye display 120 relative to an initial position of near-eye display 120 . For example, IMU 132 may integrate measurements received from accelerometers over time to estimate a velocity vector, and integrate the velocity vector over time to determine an estimated location of a reference point on near-eye display 120 . Alternatively , IMU 132 may provide sampled measurement signals to console 110 , which may determine quick calibration data. While a reference point can generally be defined as a point in space, in various embodiments, a reference point can also be defined as a point within near-eye display 120 (eg, the center of IMU 132 ).

眼動追蹤單元 130可包括一或多個眼動追蹤系統。眼動追蹤可指判定眼睛相對於近眼顯示器 120之位置,包括眼睛之位向及位置。眼動追蹤系統可包括成像系統以對一或多個眼睛進行成像,且可視情況包括光發射器,該光發射器可產生經導向至眼睛之光,使得由眼睛反射之光可由成像系統擷取。舉例而言,眼動追蹤單元 130可包括發射在可見頻譜或紅外線頻譜中之光的非相干或相干光源(例如,雷射二極體),及擷取由使用者之眼睛反射之光的攝影機。作為另一實例,眼動追蹤單元 130可捕獲由微型雷達單元發射之經反射無線電波。眼動追蹤單元 130可使用低功率光發射器,該等低功率光發射器在將不會損傷眼睛或造成身體不適之頻率及強度下發射光。眼動追蹤單元 130可經配置以增加由眼動追蹤單元 130擷取之眼睛影像的對比度,同時降低由眼動追蹤單元 130消耗之總功率(例如,降低由包括於眼動追蹤單元 130中之光發射器及成像系統消耗的功率)。舉例而言,在一些實施中,眼動追蹤單元 130可消耗小於 100毫瓦之功率。 The eye tracking unit 130 may include one or more eye tracking systems. Eye tracking may refer to determining the position of the eye relative to the near-eye display 120 , including the orientation and position of the eye. An eye tracking system may include an imaging system to image one or more eyes, and optionally include a light emitter that generates light that is directed to the eye so that light reflected by the eye can be picked up by the imaging system . For example, the eye tracking unit 130 may include an incoherent or coherent light source (eg, a laser diode) that emits light in the visible or infrared spectrum, and a camera that captures the light reflected by the user's eyes . As another example, eye tracking unit 130 may capture reflected radio waves emitted by a miniature radar unit. The eye tracking unit 130 may use low power light emitters that emit light at frequencies and intensities that will not damage the eyes or cause physical discomfort. Eye-tracking unit 130 may be configured to increase the contrast of eye images captured by eye-tracking unit 130 while reducing the overall power consumed by eye-tracking unit 130 (e.g., reducing power consumed by the optical transmitter and imaging system). For example, in some implementations, eye tracking unit 130 may consume less than 100 milliwatts of power.

近眼顯示器 120可使用眼睛之位向以例如判定使用者之瞳孔間距離(inter-pupillary distance;IPD),判定凝視方向,引入深度提示(例如,在使用者之主視線外之模糊影像),收集關於VR媒體中之使用者互動的啟發資訊(例如,花費在任何特定個體、物件或圖框上之時間,其依據所暴露刺激而變化),部分地基於使用者之眼睛中之至少一者之位向的一些其他功能,或其任何組合。由於可判定使用者之兩隻眼睛的位向,因此眼睛追蹤單元 130可能夠判定使用者看向何處。舉例而言,判定使用者之凝視方向可包括基於所判定之使用者之左眼及右眼的位向來判定會聚點。會聚點可為使用者之眼睛之兩個視窩軸線(foveal axis)相交的點。使用者之凝視方向可為穿過會聚點及在使用者之眼睛之瞳孔之間的中點之線及之方向。 The near-eye display 120 may use the orientation of the eyes to, for example, determine the user's inter-pupillary distance (IPD), determine gaze direction, introduce depth cues (e.g., blurry images outside the user's primary line of sight), collect Heuristic information about user interactions in VR media (e.g., time spent on any particular entity, object, or frame, which varies depending on the stimulus to which it is exposed) is based in part on at least one of the user's eyes. some other function of orientation, or any combination thereof. Since the orientation of the user's two eyes can be determined, the eye tracking unit 130 may be able to determine where the user is looking. For example, determining the gaze direction of the user may include determining a point of convergence based on the determined orientations of the user's left and right eyes. The point of convergence may be the point where two foveal axes of the user's eyes intersect. The user's gaze direction may be a line and direction passing through the point of convergence and the midpoint between the pupils of the user's eyes.

輸入/輸出介面 140可為允許使用者將動作請求發送至控制台 110之裝置。動作請求可為進行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或進行應用程式內之特定動作。輸入/輸出介面 140可包括一或多個輸入裝置。實例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或用於接收動作請求且將接收到之動作請求傳達至控制台 110的任何其他合適的裝置。可將由輸入/輸出介面 140接收之動作請求傳達至可進行對應於所請求動作之動作的控制台 110。在一些具體實例中,輸入/輸出介面140可根據自控制台110接收到之指令將觸覺反饋提供至使用者。舉例而言,輸入/輸出介面 140可在接收到動作請求時或在控制台 110已進行所請求動作且將指令傳達至輸入/輸出介面 140時提供觸覺反饋。在一些具體實例中,外部成像裝置 150可用以追蹤輸入/輸出介面 140,諸如追蹤控制器(其可包括例如IR光源)或使用者之手部之部位或位置以判定使用者之運動。在一些具體實例中,近眼顯示器 120可包括一或多個成像裝置以追蹤輸入/輸出介面 140,諸如追蹤控制器或使用者之手部的部位或位置以判定使用者之運動。 The input/output interface 140 may be a device that allows a user to send action requests to the console 110 . An action request may be a request to perform a specific action. For example, an action request may start or end an application or perform a specific action within an application. The input/output interface 140 may include one or more input devices. Example input devices may include a keyboard, mouse, game controller, glove, buttons, touch screen, or any other suitable device for receiving motion requests and communicating the received motion requests to console 110 . Action requests received by input/output interface 140 may be communicated to console 110 where actions corresponding to the requested actions may be performed. In some embodiments, the input/output interface 140 can provide tactile feedback to the user according to commands received from the console 110 . For example, the input/output interface 140 may provide haptic feedback when an action request is received or when the console 110 has performed the requested action and communicated the instruction to the input/output interface 140 . In some embodiments, the external imaging device 150 can be used to track the input/output interface 140 , such as tracking the position or position of the controller (which may include, for example, an IR light source) or the user's hand to determine the user's motion. In some embodiments, the near-eye display 120 may include one or more imaging devices to track the input/output interface 140 , such as tracking the position or position of a controller or a user's hand to determine the user's motion.

控制台 110可根據自外部成像裝置 150、近眼顯示器 120及輸入/輸出介面 140中之一或多者接收到的資訊而將內容提供至近眼顯示器 120以供呈現給使用者。在 1中所示之實例中,控制台 110可包括應用程式商店 112、耳機追蹤模組 114、人工實境引擎 116及眼動追蹤模組 118。控制台 110之一些具體實例可包括與接合 1所描述之彼等模組不同的模組或額外模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈於控制台 110之組件當中。 The console 110 may provide content to the near-eye display 120 for presentation to the user based on information received from one or more of the external imaging device 150 , the near-eye display 120 , and the input/output interface 140 . In the example shown in FIG. 1 , the console 110 may include an app store 112 , a headset tracking module 114 , an artificial reality engine 116 , and an eye tracking module 118 . Some embodiments of the console 110 may include different or additional modules than those described in conjunction with FIG. 1 . The functionality described further below may be distributed among the components of console 110 in different ways than described here.

在一些具體實例中,控制台 110可包括處理器及儲存可由該處理器執行之指令的非暫時性電腦可讀取儲存媒體。處理器可包括並行地執行指令之多個處理單元。非暫時性電腦可讀取儲存媒體可為諸如硬碟驅動機、抽取式記憶體或固態驅動器(例如,快閃記憶體或動態隨機存取記憶體(dynamic random access memory;DRAM))之任何記憶體。在各種具體實例中,接合 1所描述之控制台 110之模組可經編碼為非暫時性電腦可讀取儲存媒體中之指令,該等指令在由處理器執行時使得處理器進行下文進一步所描述之功能。 In some embodiments, console 110 may include a processor and a non-transitory computer-readable storage medium storing instructions executable by the processor. A processor may include multiple processing units that execute instructions in parallel. A non-transitory computer-readable storage medium can be any memory such as a hard drive, removable memory, or solid-state drive (eg, flash memory or dynamic random access memory (DRAM)) body. In various embodiments, the modules that interface with the console 110 described in FIG. 1 can be encoded as instructions in a non-transitory computer-readable storage medium that, when executed by the processor, cause the processor to proceed further below. function described.

應用程式商店 112可儲存一或多個應用程式以供控制台 110執行。應用程式可包括在由處理器執行時產生用於呈現給使用者之內容的一組指令。由應用程式產生之內容可為回應於經由使用者的眼睛之移動而自使用者接收到之輸入,或自輸入/輸出介面 140接收到之輸入。應用程式之實例可包括:遊戲應用程式、會議應用程式、視訊回放應用程式或其他合適之應用程式。 The application store 112 can store one or more application programs for the console 110 to execute. An application may include a set of instructions that, when executed by a processor, generate content for presentation to a user. The content generated by the application may be input received from the user in response to movement of the user's eyes, or input received from the input/output interface 140 . Examples of applications may include: gaming applications, conferencing applications, video playback applications, or other suitable applications.

耳機追蹤模組 114可使用來自外部成像裝置 150之慢速校準資訊來追蹤近眼顯示器 120之移動。舉例而言,耳機追蹤模組 114可使用來自慢速校準資訊之觀測到之定位器及近眼顯示器 120的模型來判定近眼顯示器 120之參考點的位置。耳機追蹤模組 114亦可使用來自快速校準資訊之位置資訊來判定近眼顯示器 120之參考點的位置。另外,在一些具體實例中,耳機追蹤模組 114可使用快速校準資訊、慢速校準資訊或其任何組合之部分來預測近眼顯示器 120之未來部位。耳機追蹤模組 114可將近眼顯示器 120之所估計位置或所預測未來位置提供至人工實境引擎 116The headphone tracking module 114 can use the slow calibration information from the external imaging device 150 to track the movement of the near-eye display 120 . For example, the headset tracking module 114 may use observed locators from the slow calibration information and a model of the near-eye display 120 to determine the location of a reference point for the near-eye display 120 . The headset tracking module 114 can also use the location information from the quick calibration information to determine the location of the reference point of the near-eye display 120 . Additionally, in some embodiments, the headset tracking module 114 may use portions of the fast calibration information, the slow calibration information, or any combination thereof to predict the future location of the near-eye display 120 . The headset tracking module 114 may provide the estimated location or the predicted future location of the near-eye display 120 to the artificial reality engine 116 .

人工實境引擎 116可執行人工實境系統環境 100內之應用程式,且自耳機追蹤模組 114接收近眼顯示器 120之位置資訊、近眼顯示器 120之加速度資訊、近眼顯示器 120之速度資訊、近眼顯示器 120之經預測未來位置,或其任何組合。人工實境引擎 116亦可自眼睛追蹤模組 118接收所估計之眼睛位置及位向資訊。基於接收到之資訊,人工實境引擎 116可判定用以提供至近眼顯示器 120以呈現給使用者的內容。舉例而言,若接收到之資訊指示使用者已向左看,則人工實境引擎 116可產生用於近眼顯示器 120之內容,該內容反映使用者之眼睛在虛擬環境中之移動。另外,人工實境引擎 116可回應於自輸入/輸出介面 140接收到之動作請求而進行在控制台 110上執行之應用程式內的動作,且將指示該動作已進行之反饋提供至使用者。反饋可為經由近眼顯示器 120之視覺或聽覺反饋,或經由輸入/輸出介面 140之觸覺反饋。 The artificial reality engine 116 can execute the application program in the artificial reality system environment 100 , and receive the position information of the near-eye display 120 , the acceleration information of the near-eye display 120 , the speed information of the near-eye display 120 , and the near-eye display 120 from the headset tracking module 114. its predicted future location, or any combination thereof. The artificial reality engine 116 may also receive estimated eye position and orientation information from the eye tracking module 118 . Based on the received information, the artificial reality engine 116 may determine content to provide to the near-eye display 120 for presentation to the user. For example, if the received information indicates that the user has looked to the left, the artificial reality engine 116 may generate content for the near-eye display 120 that reflects the movement of the user's eyes in the virtual environment. In addition, the augmented reality engine 116 may take an action within an application executing on the console 110 in response to an action request received from the input/output interface 140 and provide feedback to the user indicating that the action has been taken. The feedback can be visual or auditory feedback via the near-eye display 120 , or tactile feedback via the input/output interface 140 .

眼動追蹤模組 118可自眼動追蹤單元130接收眼動追蹤資料,且基於該眼動追蹤資料來判定使用者之眼睛之位置。眼睛之位置可包括眼睛相對於近眼顯示器 120或其任何元件之位向、部位或此兩者。由於眼睛之旋轉軸線依據眼睛在其眼窩中之部位而改變,因此判定眼睛在其眼窩中之部位可允許眼動追蹤模組 118更準確地判定眼睛之位向。 The eye-tracking module 118 can receive eye-tracking data from the eye-tracking unit 130 and determine the position of the user's eyes based on the eye-tracking data. The location of the eye may include the orientation, location, or both of the eye relative to the near-eye display 120 or any element thereof. Since the rotational axis of the eye changes depending on the position of the eye in its socket, determining the position of the eye in its socket may allow the eye tracking module 118 to more accurately determine the orientation of the eye.

2為呈用於實施本文中所揭示之實例中之一些的HMD裝置 200之形式的近眼顯示器之實例的透視圖。HMD裝置 200可為例如VR系統、AR系統、MR系統或其任何組合之一部分。HMD裝置 200可包括主體 220及頭部綁帶230。圖2在透視圖中展示主體 220之底側223、前側 225及左側 227。頭部綁帶230可具有可調整或可延伸的長度。在HMD裝置 200之主體 220與頭部綁帶 230之間可存在足夠的空間,以允許使用者將HMD裝置 200安裝至使用者之頭部上。在各種具體實例中,HMD裝置 200可包括額外組件、較少組件或不同組件。舉例而言,在一些具體實例中,HMD裝置 200可包括如例如下 3中所示之眼鏡鏡腿及鏡腿尖端,而非頭部綁帶230。 2 is a perspective view of an example of a near - eye display in the form of an HMD device 200 for implementing some of the examples disclosed herein. The HMD device 200 may be part of, for example, a VR system, an AR system, an MR system, or any combination thereof. The HMD device 200 may include a main body 220 and a head strap 230 . FIG. 2 shows the bottom side 223, the front side 225 , and the left side 227 of the main body 220 in perspective view. The head strap 230 may have an adjustable or extendable length. There may be sufficient space between the main body 220 of the HMD device 200 and the head strap 230 to allow the user to mount the HMD device 200 on the user's head. In various embodiments, HMD device 200 may include additional components, fewer components, or different components. For example, instead of head strap 230, in some embodiments, HMD device 200 may include eyeglass temples and temple tips, as shown, for example, in FIG. 3 below.

HMD裝置 200可將包括具有電腦生成元素之實體真實世界環境之虛擬及/或擴增視圖的媒體呈現給使用者。由HMD裝置 200呈現之媒體的實例可包括影像(例如,二維(2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊,或其任何組合。該等影像及視訊可由圍封於HMD裝置 200之主體 220中的一或多個顯示器總成(圖2中未示)呈現給使用者之各眼睛。在各種具體實例中,一或多個顯示器總成可包括單一電子顯示面板或多個電子顯示面板(例如,使用者之各眼睛一個顯示面板)。電子顯示面板之實例可包括例如LCD、OLED顯示器、ILED顯示器、μLED顯示器、AMOLED、TOLED、某其他顯示器,或其任何組合。HMD裝置 200可包括兩個眼框區域。 HMD device 200 may present media to a user that includes virtual and/or augmented views of a physical real-world environment with computer-generated elements. Examples of media presented by HMD device 200 may include images (eg, two-dimensional (2D) or three-dimensional (3D) images), video (eg, 2D or 3D video), audio, or any combination thereof. These images and videos can be presented to the user's eyes by one or more display assemblies (not shown in FIG. 2 ) enclosed in the main body 220 of the HMD device 200 . In various embodiments, one or more display assemblies may include a single electronic display panel or multiple electronic display panels (eg, one display panel for each eye of a user). Examples of electronic display panels may include, for example, LCDs, OLED displays, ILED displays, μLED displays, AMOLEDs, TOLEDs, some other display, or any combination thereof. The HMD device 200 may include two eye frame regions.

在一些實施中,HMD裝置 200可包括各種感測器(圖中未示),諸如深度感測器、運動感測器、位置感測器及眼動追蹤感測器。此等感測器中之一些可使用結構化光圖案以進行感測。在一些實施中,HMD裝置 200可包括用於與控制台進行通信之輸入/輸出介面。在一些實施中,HMD裝置 200可包括虛擬實境引擎(圖中未示),該虛擬實境引擎可執行HMD裝置 200內之應用程式,且自各種感測器接收HMD裝置 200之深度資訊、位置資訊、加速度資訊、速度資訊、預測未來位置或其任何組合。在一些實施中,由虛擬實境引擎接收到之資訊可用於為一或多個顯示器總成產生信號(例如,顯示指令)。在一些實施中,HMD裝置 200可包括相對於彼此且相對於參考點定位於主體 220上之固定位置中的定位器(圖中未示,諸如定位器 126)。定位器中之各者可發射可由外部成像裝置偵測到之光。 In some implementations, the HMD device 200 may include various sensors (not shown in the figure), such as a depth sensor, a motion sensor, a position sensor, and an eye tracking sensor. Some of these sensors can use structured light patterns for sensing. In some implementations, the HMD device 200 can include an input/output interface for communicating with a console. In some implementations, the HMD device 200 may include a virtual reality engine (not shown in the figure), the virtual reality engine may execute the application program in the HMD device 200 , and receive depth information of the HMD device 200 from various sensors, Location information, acceleration information, velocity information, predicted future location, or any combination thereof. In some implementations, information received by the virtual reality engine may be used to generate signals (eg, display commands) for one or more display assemblies. In some implementations, the HMD device 200 may include locators (not shown, such as locators 126 ) positioned in fixed positions on the body 220 relative to each other and relative to a reference point. Each of the locators can emit light that can be detected by an external imaging device.

3為呈用於實施本文中所揭示之實例中之一些的一副眼鏡之形式的近眼顯示器 300之實例的透視圖。近眼顯示器 300可為 1之近眼顯示器 120的特定實施,且可經組態以作為虛擬實境顯示器、擴增實境顯示器及/或混合實境顯示器來操作。近眼顯示器 300包括框架 305及顯示器 310。顯示器 310可經組態以將內容呈現給使用者。在一些具體實例中,顯示器 310可包括顯示電子件及/或顯示光學件。舉例而言,如上文關於 1之近眼顯示器 120所描述,顯示器 310可包括LCD顯示面板、LED顯示面板或光學顯示面板(例如,波導顯示器總成)。 3 is a perspective view of an example of a near - eye display 300 in the form of a pair of glasses for implementing some of the examples disclosed herein. Near-eye display 300 may be a particular implementation of near-eye display 120 of FIG. 1 and may be configured to operate as a virtual reality display, an augmented reality display, and/or a mixed reality display. The near-eye display 300 includes a frame 305 and a display 310 . Display 310 can be configured to present content to a user. In some embodiments, display 310 may include display electronics and/or display optics. For example, as described above with respect to near-eye display 120 of FIG. 1 , display 310 may include an LCD display panel, an LED display panel, or an optical display panel (eg, a waveguide display assembly).

近眼顯示器 300可進一步包括在框架 305上或內之各種感測器 350a350b350c 350d350e。在一些具體實例中,感測器 350a350e可包括一或多個深度感測器、運動感測器、位置感測器、慣性感測器或周圍光感測器。在一些具體實例中,感測器 350a 350e可包括一或多個影像感測器,該一或多個影像感測器經組態以產生表示不同方向上之不同視場的影像資料。在一些具體實例中,感測器 350a 350e可用作輸入裝置以控制或影響近眼顯示器 300之所顯示內容,及/或向近眼顯示器 300之使用者提供互動式VR/AR/MR體驗。在一些具體實例中,感測器 350a 350e亦可用於立體成像。 The near-eye display 300 may further include various sensors 350a , 350b , 350c , 350d , and 350e on or within the frame 305 . In some embodiments, the sensors 350a - 350e may include one or more depth sensors, motion sensors, position sensors, inertial sensors, or ambient light sensors. In some embodiments, the sensors 350a - 350e may include one or more image sensors configured to generate image data representing different fields of view in different directions. In some embodiments, the sensors 350a - 350e can be used as input devices to control or affect the displayed content of the near-eye display 300 , and/or provide an interactive VR/AR/MR experience to the user of the near-eye display 300 . In some embodiments, the sensors 350a - 350e can also be used for stereoscopic imaging.

在一些具體實例中,近眼顯示器 300可進一步包括一或多個照明器 330以將光投影至實體環境中。所投影光可與不同頻帶(例如,可見光、紅外光、紫外光等)相關聯,且可用於各種目的。舉例而言,照明器 330可將光投影於黑暗環境中(或具有低強度之紅外光、紫外光等的環境中),以輔助感測器 350a 350e擷取黑暗環境內之不同物件的影像。在一些具體實例中,照明器 330可用於將某些光圖案投影至環境內之物件上。在一些具體實例中,照明器 330可用作定位器,諸如上文關於 1所描述之定位器 126In some embodiments, the near-eye display 300 may further include one or more illuminators 330 to project light into the physical environment. The projected light can be associated with different frequency bands (eg, visible, infrared, ultraviolet, etc.) and can be used for various purposes. For example, the illuminator 330 can project light into a dark environment (or an environment with low intensity infrared light, ultraviolet light, etc.) to assist the sensors 350a to 350e in capturing images of different objects in the dark environment . In some embodiments, illuminators 330 may be used to project certain light patterns onto objects within the environment. In some embodiments, illuminator 330 may be used as a locator, such as locator 126 described above with respect to FIG. 1 .

在一些具體實例中,近眼顯示器 300亦可包括高解析度攝影機 340。攝影機 340可擷取視場中之實體環境的影像。所擷取影像可例如由虛擬實境引擎(例如, 1之人工實境引擎 116)處理,以將虛擬物件添加至所擷取影像或修改所擷取影像中之實體物件,且經處理影像可由顯示器 310顯示給使用者以用於AR或MR應用。 In some specific examples, the near-eye display 300 may also include a high-resolution camera 340 . The camera 340 can capture images of the physical environment in the field of view. The captured image can be processed, for example, by a virtual reality engine (e.g., artificial reality engine 116 of FIG. 1 ) to add virtual objects to the captured image or to modify physical objects in the captured image, and the processed image Can be displayed to the user by the display 310 for AR or MR applications.

4說明根據某些具體實例的包括波導顯示器之光學透視擴增實境系統 400之實例。擴增實境系統 400可包括投影儀 410及組合器 415。投影儀 410可包括光源或影像源 412及投影儀光學件 414。在一些具體實例中,光源或影像源 412可包括上文所描述之一或多個微型LED裝置。在一些具體實例中,影像源 412可包括顯示虛擬物件之複數個像素,諸如LCD顯示面板或LED顯示面板。在一些具體實例中,影像源 412可包括產生相干或部分相干光之光源。舉例而言,影像源 412可包括雷射二極體、垂直共振腔面射型雷射、LED及/或上文所描述之微型LED。在一些具體實例中,影像源 412可包括各自發射對應於原色(例如,紅色、綠色或藍色)之單色影像光的複數個光源(例如,上文所描述之微型LED陣列)。在一些具體實例中,影像源 412可包括微型LED之三個二維陣列,其中微型LED之各二維陣列可包括經組態以發射具有原色(例如,紅色、綠色或藍色)之光的微型LED。在一些具體實例中,影像源 412可包括光學圖案產生器,諸如空間光調變器。投影儀光學件 414可包括可調節來自像源 412之光,諸如擴展、準直、掃描或將光自像源 412投影至組合器 415的一或多個光學組件。一或多個光學組件可包括例如一或多個透鏡、液體透鏡、鏡面、孔徑及/或光柵。舉例而言,在一些具體實例中,影像源 412可包括一或多個一維微型LED陣列或細長二維微型LED陣列,且投影儀光學件 414可包括經組態以掃描一維微型LED陣列或細長二維微型LED陣列以產生影像框之一或多個一維掃描器(例如,微鏡或稜鏡)。在一些具體實例中,投影儀光學件 414可包括具有複數個電極之液體透鏡(例如,液晶透鏡),該液體透鏡允許掃描來自影像源 412之光。 4 illustrates an example of an optical see-through augmented reality system 400 including a waveguide display , according to certain embodiments. The augmented reality system 400 may include a projector 410 and a combiner 415 . Projector 410 may include a light source or image source 412 and projector optics 414 . In some embodiments, the light source or image source 412 may include one or more micro LED devices described above. In some embodiments, the image source 412 may include a plurality of pixels for displaying virtual objects, such as an LCD display panel or an LED display panel. In some embodiments, image source 412 may include a light source that produces coherent or partially coherent light. For example, the image source 412 may include a laser diode, a vertical cavity surface-emitting laser, an LED, and/or a micro-LED as described above. In some embodiments, image source 412 may include a plurality of light sources (eg, the micro LED arrays described above) each emitting monochromatic image light corresponding to a primary color (eg, red, green, or blue). In some embodiments, image source 412 can include three two-dimensional arrays of micro-LEDs, where each two-dimensional array of micro-LEDs can include LEDs configured to emit light having a primary color (eg, red, green, or blue). Micro LEDs. In some embodiments, image source 412 may include an optical pattern generator, such as a spatial light modulator. Projector optics 414 may include one or more optical components that can condition light from image source 412 , such as expand, collimate, scan, or project light from image source 412 to combiner 415 . The one or more optical components may include, for example, one or more lenses, liquid lenses, mirrors, apertures and/or gratings. For example, in some embodiments, image source 412 can include one or more one-dimensional arrays of micro-LEDs or an array of elongated two-dimensional micro-LEDs, and projector optics 414 can include arrays of micro-LEDs configured to scan one-dimensional arrays of micro-LEDs. Or elongated two-dimensional micro-LED arrays to produce one or more one-dimensional scanners (eg, micromirrors or micromirrors) for image frames. In some embodiments, projector optics 414 may include a liquid lens (eg, a liquid crystal lens) having a plurality of electrodes that allows light from image source 412 to be scanned.

組合器 415可包括用於將來自投影儀 410之光耦合至組合器 415之基板 420中的輸入耦合器430。組合器 415可透射第一波長範圍內之光的至少50%且反射第二波長範圍內之光的至少25%。舉例而言,第一波長範圍可為自約400 nm至約650 nm之可見光,且第二波長範圍可在例如自約800 nm至約 1000nm之紅外線頻帶內。輸入耦合器 430可包括體積全像光柵、繞射光學元件(diffractive optical element;DOE)(例如,表面起伏光柵)、基板 420之傾斜表面或折射耦合器(例如,楔狀物或稜鏡)。舉例而言,輸入耦合器 430可包括反射體積布拉格全像光柵或透射體積布拉格全像光柵。對於可見光,輸入耦合器 430可具有大於30%、50%、75%、90%或更高之耦合效率。耦合至基板 420中之光可通過例如全內反射(total internal reflection;TIR)在基板420內傳播。基板 420可呈一副眼鏡之透鏡的形式。基板 420可具有平坦或彎曲表面,且可包括一或多種類型之介電材料,諸如玻璃、石英、塑膠、聚合物、聚(甲基丙烯酸甲酯)(poly(methyl methacrylate);PMMA)、晶體或陶瓷。基板之厚度可在例如低於約1 mm至約10 mm或更大之範圍內。基板 420可對可見光為透明的。 The combiner 415 may include an input coupler 430 for coupling light from the projector 410 into the substrate 420 of the combiner 415 . The combiner 415 can transmit at least 50% of the light in the first wavelength range and reflect at least 25% of the light in the second wavelength range. For example, the first wavelength range may be visible light from about 400 nm to about 650 nm, and the second wavelength range may be in the infrared band, eg, from about 800 nm to about 1000 nm. The input coupler 430 may include a volume holographic grating, a diffractive optical element (DOE) (eg, a surface relief grating), a sloped surface of the substrate 420 , or a refractive coupler (eg, a wedge or a dimple). For example, the input coupler 430 may comprise a reflective volume Bragg hologram or a transmissive volume Bragg hologram. For visible light, the input coupler 430 can have a coupling efficiency greater than 30%, 50%, 75%, 90%, or higher. The light coupled into the substrate 420 may propagate within the substrate 420 through, for example, total internal reflection (TIR). Substrate 420 may be in the form of a lens of a pair of eyeglasses. Substrate 420 may have a flat or curved surface, and may include one or more types of dielectric materials, such as glass, quartz, plastic, polymer, poly(methyl methacrylate) (PMMA), crystal or ceramic. The thickness of the substrate can range, for example, from less than about 1 mm to about 10 mm or more. The substrate 420 may be transparent to visible light.

基板 420可包括或可耦合至複數個輸出耦合器 440,該複數個輸出耦合器各自經組態以自基板 420提取由基板 420導引且在其內傳播的光之至少一部分,且將所提取光 460導引至擴增實境系統 400之使用者的眼睛 490在擴增實境系統 400在使用中時可定位於的人眼窗口 495。複數個輸出耦合器 440可複製出射光瞳以增大人眼窗口 495之大小,使得所顯示影像在較大區域中可見。與輸入耦合器 430一樣,輸出耦合器 440可包括光柵耦合器(例如,體積全像光柵或表面起伏光柵)、其他繞射光學元件、稜鏡等。舉例而言,輸出耦合器 440可包括反射式體積布拉格全像光柵或透射式體積布拉格全像光柵。輸出耦合器 440可在不同部位處具有不同的耦合(例如,繞射)效率。基板 420亦可允許來自組合器 415前方之環境的光 450在損耗極少或無損耗之情況下穿過。輸出耦合器 440亦可允許光 450在損耗極少之情況下穿過。舉例而言,在一些實施中,輸出耦合器 440可對於光 450具有極低繞射效率,使得光 450可在損耗極少之情況下折射或以其他方式穿過輸出耦合器 440,且因此可具有高於所提取光 460之強度。在一些實施中,輸出耦合器 440可對於光 450具有高繞射效率,且可在損耗極少之情況下在某些所需方向(亦即繞射角)上繞射光 450。因此,使用者可能夠檢視組合器 415前方之環境之經組合影像及由投影儀 410投影之虛擬物件之影像。 Substrate 420 may include or be coupled to a plurality of output couplers 440 each configured to extract from substrate 420 at least a portion of the light guided by and propagating within substrate 420 and to extract the extracted The light 460 is directed to an eye window 495 where an eye 490 of a user of the augmented reality system 400 may be positioned when the augmented reality system 400 is in use. Multiple output couplers 440 can duplicate the exit pupil to increase the size of the human eye window 495 so that the displayed image is visible over a larger area. Like the input coupler 430 , the output coupler 440 may include a grating coupler (eg, a volume hologram or a surface relief grating), other diffractive optical elements, gratings, or the like. For example, the output coupler 440 may comprise a reflective volume Bragg hologram or a transmissive volume Bragg hologram. Output coupler 440 may have different coupling (eg, diffraction) efficiencies at different locations. Substrate 420 may also allow light 450 from the environment in front of combiner 415 to pass through with little or no loss. Output coupler 440 may also allow light 450 to pass through with very little loss. For example, in some implementations, output coupler 440 may have very low diffraction efficiency for light 450 such that light 450 may be refracted or otherwise pass through output coupler 440 with very little loss, and thus may have Higher than the intensity of the extracted light 460 . In some implementations, output coupler 440 can have high diffraction efficiency for light 450 and can diffract light 450 in certain desired directions (ie, diffraction angles) with very little loss. Thus, the user may be able to view the combined image of the environment in front of the combiner 415 and the image of the virtual object projected by the projector 410 .

圖5A說明根據某些具體實例之包括波導顯示器 530的近眼顯示器(near-eye display;NED)裝置 500之實例。NED裝置 510可為近眼顯示器 120、擴增實境系統 400或另一類型之顯示裝置的實例。NED裝置 500可包括光源 510、投影光學件 520及波導顯示器 530。光源 510可包括用於不同色彩之光發射器之多個面板,諸如紅光發射器 512之面板、綠光發射器 514之面板及藍光發射器 516之面板。紅光發射器 512經組織成陣列;綠光發射器 514經組織成陣列;且藍光發射器 516經組織成陣列。光源 510中之光發射器之尺寸及間距可能較小。舉例而言,各光發射器可具有小於2 µm(例如,約1.2µm)之直徑,且間距可小於2µm(例如,約1.5µm)。因而,各紅光發射器 512、綠光發射器 514及藍光發射器 516中之光發射器之數目可等於或大於顯示影像中之像素之數目,諸如960× 720、1280× 720、1440×1080、1920×1080、2160×1080或2560×1080像素。因此,顯示影像可由光源 510同時產生。掃描元件可不用於NED裝置 500中。 5A illustrates an example of a near-eye display (NED) device 500 including a waveguide display 530 according to certain embodiments. NED device 510 may be an example of near-eye display 120 , augmented reality system 400 , or another type of display device. NED device 500 may include light source 510 , projection optics 520 and waveguide display 530 . Light source 510 may include multiple panels for light emitters of different colors, such as a panel of red light emitters 512 , a panel of green light emitters 514 , and a panel of blue light emitters 516 . Red emitters 512 are organized in an array; green emitters 514 are organized in an array; and blue emitters 516 are organized in an array. The size and spacing of the light emitters in light source 510 may be small. For example, each light emitter can have a diameter of less than 2 µm (eg, about 1.2 µm) and a pitch of less than 2 µm (eg, about 1.5 µm). Therefore, the number of light emitters in each of the red light emitter 512 , green light emitter 514 , and blue light emitter 516 can be equal to or greater than the number of pixels in the displayed image, such as 960× 720 , 1280× 720 , 1440×1080 , 1920×1080, 2160×1080, or 2560×1080 pixels. Therefore, display images can be generated by the light sources 510 simultaneously. Scanning elements may not be used in NED device 500 .

在到達波導顯示器 530之前,由光源510發射之光可由可包括透鏡陣列之投影光學件 520進行調節。投影光學件 520可準直由光源 510發射之光或將該光聚焦於波導顯示器 530,該波導顯示器可包括用於將由光源 510發射之光耦合至波導顯示 530中的耦合器 532。耦合至波導顯示器 530中之光可通過例如如上文關於圖4所描述之全內反射在波導顯示器 530內傳播。耦合器 532亦可將在波導顯示器 530內傳播之光的部分耦合出波導顯示器 530且朝向使用者之眼睛 590Before reaching waveguide display 530 , light emitted by light source 510 may be conditioned by projection optics 520 , which may include an array of lenses. Projection optics 520 may collimate or focus light emitted by light source 510 into waveguide display 530 , which may include coupler 532 for coupling light emitted by light source 510 into waveguide display 530 . Light coupled into waveguide display 530 may propagate within waveguide display 530 by, for example, total internal reflection as described above with respect to FIG. 4 . The coupler 532 may also couple a portion of the light propagating within the waveguide display 530 out of the waveguide display 530 and toward the user's eye 590 .

5B說明根據某些具體實例之包括波導顯示器 580的近眼顯示器(NED)裝置 550之實例。在一些具體實例中,NED裝置 550可使用掃描鏡面 570將光自光源 540投影至使用者之眼睛 590可定位於其中的影像場。NED裝置 550可為近眼顯示器 120、擴增實境系統 400或另一類型之顯示裝置的實例。光源 540可包括不同色彩之一或多列或一或多行光發射器,諸如多列紅光發射器 542、多列綠光發射器 544及多列藍光發射器 546。舉例而言,紅光發射器 542、綠光發射器 544及藍光發射器 546可各自包括N個列,各列包括例如2560個光發射器(像素)。紅光發射器 542組織成陣列;綠光發射器 544組織成陣列;且藍光發射器 546組織成陣列。在一些具體實例中,光源 540可針對各色彩包括單行光發射器。在一些具體實例中,光源 540可包括用於紅色、綠色及藍色中之各者的多行光發射器,其中各行可包括例如1080個光發射器。在一些具體實例中,光源 540中之光發射器之尺寸及/或間距可相對較大(例如,約3至5µm),且因此光源 540可不包括用於同時產生完整顯示影像之足夠光發射器。舉例而言,用於單一色彩之光發射器之數目可少於顯示影像中之像素之數目(例如,2560×1080個像素)。由光源 540發射之光可為準直或發散光束之集合。 5B illustrates an example of a near - eye display (NED) device 550 including a waveguide display 580 according to certain embodiments. In some embodiments, NED device 550 may use scanning mirror 570 to project light from light source 540 to an image field in which user's eyes 590 may be positioned. NED device 550 may be an example of near-eye display 120 , augmented reality system 400 , or another type of display device. Light source 540 may include one or more columns or rows of light emitters of different colors, such as columns of red light emitters 542 , columns of green light emitters 544 , and columns of blue light emitters 546 . For example, red light emitter 542 , green light emitter 544 , and blue light emitter 546 may each include N columns, each column including, for example, 2560 light emitters (pixels). Red emitters 542 are organized in an array; green emitters 544 are organized in an array; and blue emitters 546 are organized in an array. In some embodiments, light source 540 may include a single row of light emitters for each color. In some embodiments, light source 540 can include multiple rows of light emitters for each of red, green, and blue, where each row can include, for example, 1080 light emitters. In some embodiments, the size and/or pitch of light emitters in light source 540 may be relatively large (e.g., about 3 to 5 μm), and thus light source 540 may not include enough light emitters to simultaneously generate a full display image . For example, the number of light emitters for a single color may be less than the number of pixels in a displayed image (eg, 2560x1080 pixels). The light emitted by light source 540 may be a collection of collimated or diverging beams.

在到達掃描鏡面 570之前,由光源 540發射之光可由諸如準直透鏡或自由形式光學元件 560之各種光學裝置來調節。自由形式光學元件 560可包括例如多琢面稜鏡或另一光摺疊元件,該多琢面稜鏡或另一光摺疊元件可將由光源 540發射之光導向掃描鏡面 570,諸如使由光源 540發射之光之傳播方向改變例如約90°或更大。在一些具體實例中,自由形式光學元件 560可為可旋轉的以使光進行掃描。掃描鏡面 570及/或自由形式光學元件 560可將由光源 540發射之光反射並投影至波導顯示器 580,該波導顯示器 580可包括用於將由光源 540發射之光耦合至波導顯示器 580中之耦合器 582。耦合至波導顯示器 580中之光可通過例如如上文關於 4所描述之全內反射在波導顯示器 580內傳播。耦合器 582亦可將在波導顯示器 580內傳播之光的部分耦合出波導顯示器 580且朝向使用者之眼睛 590Light emitted by light source 540 may be conditioned by various optical devices such as collimating lenses or freeform optics 560 before reaching scan mirror 570 . Free-form optical element 560 may comprise, for example, a faceted facet or another light-folding element that can direct light emitted by light source 540 to scanning mirror 570 , such as to direct light emitted by light source 540 The direction of propagation of the light changes, for example, by about 90° or more. In some embodiments, freeform optics 560 can be rotatable to allow light to scan. Scanning mirror 570 and/or freeform optics 560 may reflect and project light emitted by light source 540 onto waveguide display 580 , which may include coupler 582 for coupling light emitted by light source 540 into waveguide display 580 . Light coupled into waveguide display 580 may propagate within waveguide display 580 by, for example, total internal reflection as described above with respect to FIG. 4 . The coupler 582 may also couple a portion of the light propagating within the waveguide display 580 out of the waveguide display 580 and toward the user's eye 590 .

掃描鏡面 570可包括微機電系統(microelectromechanical system;MEMS)鏡面或任何其他合適鏡面。掃描鏡面 570可旋轉以在一個或兩個維度上進行掃描。在掃描鏡面 570旋轉時,由光源 540發射之光可經導引至波導顯示器 580之不同區域,使得完整顯示影像可在各掃描循環中投影至波導顯示器 580上且由波導顯示器 580導引至使用者之眼睛 590。舉例而言,在光源 540包括一或多列或行中之所有像素之光發射器的具體實例中,掃描鏡面 570可在行或列方向(例如,x或y方向)上旋轉以掃描影像。在光源 540包括一或多列或行中之一些但非所有像素之光發射器的具體實例中,掃描鏡面 570可在列及行方向兩者(例如,x及y方向兩者)上旋轉以投影顯示影像(例如,使用光柵型掃描圖案)。 The scanning mirror 570 may include a microelectromechanical system (MEMS) mirror or any other suitable mirror. Scanning mirror 570 is rotatable to scan in one or two dimensions. As the scanning mirror 570 rotates, the light emitted by the light source 540 can be directed to different areas of the waveguide display 580 , so that the complete display image can be projected onto the waveguide display 580 and guided by the waveguide display 580 to use in each scanning cycle. The eyes of the hunter 590 . For example, in embodiments where light source 540 includes light emitters for all pixels in one or more columns or rows, scanning mirror 570 may be rotated in a row or column direction (eg, x or y direction) to scan an image. In embodiments where light source 540 includes light emitters for some but not all pixels in one or more columns or rows, scanning mirror 570 may be rotated in both column and row directions (e.g., both x and y directions) to Projecting a display image (for example, using a raster-type scan pattern).

NED裝置 550可在預定義顯示週期中操作。顯示週期(例如,顯示循環)可指掃描或投影全影像之持續時間。舉例而言,顯示週期可為所要框率之倒數。在包括掃描鏡面 570之NED裝置 550中,顯示週期亦可稱為掃描週期或掃描循環。由光源 540產生之光產生可與掃描鏡面 570之旋轉同步。舉例而言,各掃描循環可包括多個掃描步驟,其中光源 540可在各各別掃描步驟中產生不同光圖案。 The NED device 550 can operate in a predefined display period. A display period (eg, a display cycle) may refer to the duration for which a full image is scanned or projected. For example, the display period may be the inverse of the desired frame rate. In the NED device 550 including the scanning mirror 570 , the display period may also be referred to as a scanning period or a scanning cycle. The light generation by light source 540 may be synchronized with the rotation of scanning mirror 570 . For example, each scan cycle may include multiple scan steps, wherein the light source 540 may generate a different light pattern in each respective scan step.

在各掃描循環中,在掃描鏡面 570旋轉時,顯示影像可投影至波導顯示器 580及使用者之眼睛 590上。顯示影像之給定像素部位之實際色彩值及光強度(例如,亮度)可為在掃描週期期間照明該像素部位之三個色彩(例如,紅色、綠色及藍色)之光束的平均值。在完成掃描週期之後,掃描鏡面 570可回復至初始位置以投影下一顯示影像之前幾列的光,或可在反方向上或以掃描圖案旋轉以投影下一顯示影像之光,其中新的一組驅動信號可被饋送至光源 540。在掃描鏡面 570在各掃描循環中旋轉時,可重複相同製程。因而,可在不同掃描循環中將不同影像投影至使用者之眼睛 590During each scanning cycle, as the scanning mirror 570 rotates, a displayed image may be projected onto the waveguide display 580 and the user's eyes 590 . The actual color value and light intensity (eg, brightness) of a given pixel site displaying an image may be the average of the three colored (eg, red, green, and blue) light beams illuminating that pixel site during a scan period. After a scan cycle is complete, the scan mirror 570 may return to its original position to project the previous columns of light for the next displayed image, or may rotate in the reverse direction or in a scanning pattern to project the light of the next displayed image, with a new set of A driving signal may be fed to the light source 540 . The same process may be repeated as the scan mirror 570 rotates through each scan cycle. Thus, different images can be projected to the user's eye 590 in different scan cycles.

6A說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器 600及表面起伏光柵的光學透視擴增實境系統之實例。波導顯示器 600可包括基板 610(例如,波導),其可類似於基板 420。基板 610可對可見光為透明的,且可包括例如玻璃、石英、塑膠、聚合物、PMMA、陶瓷、Si 3N 4或晶體基板。基板 610可為平坦基板或彎曲基板。基板 610可包括第一表面 612及第二表面 614。顯示光可由輸入耦合器 620耦合至基板 610中,且可通過全內反射由第一表面 612及第二表面 614反射,使得顯示光可在基板 610內傳播。輸入耦合器 620可包括光柵、折射耦合器(例如,楔狀物或稜鏡)或反射耦合器(例如,相對於基板 610具有傾斜角之反射表面)。舉例而言,在一個具體實例中,輸入耦合器 620可包括可以相同折射角將具有不同色彩之顯示光耦合至基板 610中的稜鏡。在另一實例中,輸入耦合器 620可包括可在不同方向上將不同色彩之光繞射至基板610中的光柵耦合器。對於可見光,輸入耦合器 620可具有大於10%、20%、30%、50%、75%、90%或更大的耦合效率。 6A illustrates an example of an optical see-through augmented reality system including a waveguide display 600 for exit pupil expansion and a surface relief grating , according to certain embodiments. Waveguide display 600 may include substrate 610 (eg, a waveguide), which may be similar to substrate 420 . Substrate 610 may be transparent to visible light and may include, for example, glass, quartz, plastic, polymer, PMMA, ceramic, Si3N4 , or crystalline substrates. The substrate 610 may be a flat substrate or a curved substrate. The substrate 610 may include a first surface 612 and a second surface 614 . The display light can be coupled into the substrate 610 by the input coupler 620 and can be reflected by the first surface 612 and the second surface 614 by total internal reflection, so that the display light can propagate within the substrate 610 . The input coupler 620 may include a grating, a refractive coupler (eg, a wedge or a wedge), or a reflective coupler (eg, a reflective surface with an oblique angle relative to the substrate 610 ). For example, in one embodiment, the input coupler 620 may include a plenum that can couple display lights having different colors into the substrate 610 at the same refraction angle. In another example, the input coupler 620 can include a grating coupler that can diffract different colors of light into the substrate 610 in different directions. For visible light, the input coupler 620 may have a coupling efficiency greater than 10%, 20%, 30%, 50%, 75%, 90%, or greater.

波導顯示器 600亦可包括定位於基板 610之一個或兩個表面(例如,第一表面 612及第二表面 614)上的第一輸出光柵 630及第二輸出光柵 640以用於以二維形式擴展入射顯示光光束以便利用顯示光填充人眼窗口。第一輸出光柵 630可經組態以沿著一個方向,諸如大致在x方向上擴展顯示光光束之至少一部分。耦合至基板 610中之顯示光可在由線 632所展示之方向上傳播。雖然顯示光在基板 610內沿著由線 632所展示之方向傳播,但每當在基板 610內傳播之顯示光達到第一輸出光柵 630時,顯示光之一部分可由第一輸出光柵 630之區朝向第二輸出光柵 640繞射,如由線 634所展示。每當在基板 610內傳播之顯示光達到第二輸出光柵 640時,第二輸出光柵 640可接著藉由將來自出射區650之顯示光之一部分繞射至人眼窗口來在不同方向上(例如,大致在y方向上)擴展來自第一輸出光柵 630之顯示光。 The waveguide display 600 may also include a first output grating 630 and a second output grating 640 positioned on one or both surfaces of the substrate 610 (e.g., the first surface 612 and the second surface 614 ) for expanding in two dimensions The display light beam is incident to fill the human eye window with the display light. The first output grating 630 may be configured to expand at least a portion of the display light beam along one direction, such as generally in the x-direction. Display light coupled into substrate 610 may propagate in the direction shown by line 632 . Although the display light propagates within the substrate 610 in the direction shown by the line 632 , whenever the display light propagating within the substrate 610 reaches the first output grating 630 , a portion of the display light may be directed by the region of the first output grating 630 . The second output grating 640 diffracts, as shown by line 634 . Whenever the display light propagating within the substrate 610 reaches the second output grating 640 , the second output grating 640 can then distort the display light in different directions (e.g. , substantially in the y direction) to expand the display light from the first output grating 630 .

6B說明包括二維複製出射光瞳之眼框之實例。 6B展示單個輸入光瞳 605可由第一輸出光柵 630及第二輸出光柵 640複製以形成包括個別出射光瞳 662之二維陣列的聚集式出射光瞳 660。舉例而言,出射光瞳可在大致x方向上由第一輸出光柵 630複製且在大致y方向上由第二輸出光柵 640複製。如上文所描述,來自個別出射光瞳 662且在同一方向上傳播之輸出光可聚焦至使用者的眼睛之視網膜中之同一部位上。因此,單個影像可在個別出射光瞳 662之二維陣列中由使用者的眼睛自輸出光形成。 Figure 6B illustrates an example of an eye frame including a two-dimensionally replicated exit pupil. FIG. 6B shows that a single input pupil 605 can be replicated by a first output grating 630 and a second output grating 640 to form a converging exit pupil 660 comprising a two-dimensional array of individual exit pupils 662 . For example, the exit pupil may be replicated in the approximate x direction by the first output grating 630 and in the approximate y direction by the second output grating 640 . As described above, output light from individual exit pupils 662 traveling in the same direction can be focused onto the same location in the retina of the user's eye. Thus, a single image may be formed in the two-dimensional array of individual exit pupils 662 from the output light by the user's eye.

7說明根據某些具體實例之波導顯示器 700中之傾斜光柵 720之實例。傾斜光柵 720可為輸入耦合器 430、輸出耦合器 440或光柵耦合器 620 630640之實例。波導顯示器 700可包括波導 710上之傾斜光柵 720,諸如基板 420或基板 610。傾斜光柵 720可充當用於將光耦合至波導 710中或之外的光柵耦合器。在一些具體實例中,傾斜光柵 720可包括具有週期 p之一維週期性結構。舉例而言,傾斜光柵 720可包括複數個脊 722及脊 722之間的凹槽 724。傾斜光柵 720之各週期可包括脊 722及凹槽 724,該凹槽 724可為氣隙或填充有具有折射率n g2之材料的區。脊 722之寬度 d與光柵週期 p之間的比率可稱為占空比。傾斜光柵 720可具有在例如約10%至約90%或更大之範圍內的占空比。在一些具體實例中,占空比可在週期間變化。在一些具體實例中,傾斜光柵之週期 p可在傾斜光柵 720上在區域間變化,或可在傾斜光柵 720上在週期間(亦即,啾聲(chirped))變化。 FIG. 7 illustrates an example of a tilted grating 720 in a waveguide display 700 according to certain embodiments. Slanted grating 720 may be an example of input coupler 430 , output coupler 440 or grating couplers 620 , 630 and 640 . The waveguide display 700 may include a tilted grating 720 on a waveguide 710 , such as the substrate 420 or the substrate 610 . Slanted grating 720 may act as a grating coupler for coupling light into or out of waveguide 710 . In some specific examples, the tilted grating 720 may include a one-dimensional periodic structure with a period p . For example, the tilted grating 720 may include a plurality of ridges 722 and grooves 724 between the ridges 722 . Each period of the tilted grating 720 may include ridges 722 and grooves 724 , which may be air gaps or regions filled with a material having a refractive index ng2 . The ratio between the width d of the ridge 722 and the grating period p may be referred to as the duty cycle. Slanted grating 720 may have a duty cycle in the range of, for example, about 10% to about 90% or greater. In some specific examples, the duty cycle can vary between cycles. In some embodiments, the period p of the tilted grating can vary from region to region on the tilted grating 720 , or can vary from period to period (ie, chirped) across the tilted grating 720 .

722可由具有折射率n g1之材料製成,諸如含矽材料(例如,SiO 2、Si 3N 4、SiC、SiO xN y或非晶矽)、有機材料(例如,旋轉塗佈式碳(spin on carbon;SOC)或非晶碳層(amorphous carbon layer;ACL)或磚石類碳(diamond like carbon;DLC))或無機金屬氧化物層(例如,TiO x、AlO x、TaO x、HfO x等)。各脊 722可包括具有傾斜角α之前邊緣 726及具有傾斜角β之後邊緣 728。在一些具體實例中,各脊722之前邊緣726及後邊緣728可彼此平行。換言之,傾斜角α大致等於傾斜角β。在一些具體實例中,傾斜角α可不同於傾斜角β。在一些具體實例中,傾斜角α可大致等於傾斜角β。舉例而言,傾斜角度α與傾斜角度β之間的差可小於20%、10%、5%、1%或更小。在一些具體實例中,傾斜角α及傾斜角β可在例如約30°或更小至約70°或更大之範圍內。 Ridge 722 may be made of a material having a refractive index n g1 , such as a silicon- containing material (e.g., SiO2 , Si3N4 , SiC, SiOxNy , or amorphous silicon), an organic material (e.g., spin-on carbon (spin on carbon; SOC) or amorphous carbon layer (amorphous carbon layer; ACL) or masonry-like carbon (diamond like carbon; DLC)) or inorganic metal oxide layer (for example, TiO x , AlO x , TaO x , HfO x etc.). Each ridge 722 can include a leading edge 726 having an inclination angle α and a trailing edge 728 having an inclination angle β. In some embodiments, the leading edge 726 and the trailing edge 728 of each ridge 722 can be parallel to each other. In other words, the inclination angle α is substantially equal to the inclination angle β. In some embodiments, tilt angle α may be different than tilt angle β. In some embodiments, tilt angle α may be substantially equal to tilt angle β. For example, the difference between the tilt angle α and the tilt angle β may be less than 20%, 10%, 5%, 1% or less. In some embodiments, the tilt angle α and the tilt angle β may range, for example, from about 30° or less to about 70° or more.

在一些實施中,脊 722之間的凹槽 724可外塗佈或填充有外塗層 730。外塗層 730可包括具有折射率n g2高於或低於脊 722之材料之折射率的材料。舉例而言,在一些具體實例中,可使用諸如氧化鉿、二氧化鈦、氧化鉭、氧化鎢、氧化鋯、硫化鎵、氮化鎵、磷化鎵、矽之高折射率材料及高折射率聚合物來填充凹槽 724。在一些具體實例中,可使用諸如氧化矽、氧化鋁、多孔二氧化矽或氟化低折射率單體(或聚合物)之低折射率材料來填充凹槽 724。因此,脊之折射率與槽之折射率之間的差可大於0.1、0.2、0.3、0.5、1.0或更高。 In some implementations, the grooves 724 between the ridges 722 can be overcoated or filled with an overcoat 730 . Overcoat 730 may include a material having a refractive index ng2 that is higher or lower than that of the material of ridge 722 . For example, in some embodiments, high-index materials such as hafnium oxide, titanium dioxide, tantalum oxide, tungsten oxide, zirconium oxide, gallium sulfide, gallium nitride, gallium phosphide, silicon, and high-index polymers can be used to fill the groove 724 . In some embodiments, the recess 724 may be filled with a low-index material such as silicon oxide, aluminum oxide, porous silicon dioxide, or a fluorinated low-index monomer (or polymer). Therefore, the difference between the refractive index of the ridge and the refractive index of the groove may be greater than 0.1, 0.2, 0.3, 0.5, 1.0 or more.

作為繞射光學元件之傾斜光柵 720可為波長相依的。舉例而言,歸因於不同波長λ,以相同入射角入射之不同色彩的光可針對同一繞射階在繞射角下繞射以滿足光柵方程式。來自不同視場之相同色彩之光亦可以不同角度繞射以滿足光柵方程式。 The tilted grating 720 as a diffractive optical element may be wavelength dependent. For example, due to the different wavelengths λ, light of different colors incident at the same angle of incidence may diffract for the same diffraction order at diffraction angles to satisfy the grating equations. Light of the same color from different fields of view can also be diffracted at different angles to satisfy the grating equation.

8說明包括波導 810及光柵耦合器 820之例示性波導顯示器 800中之顯示光 840及外部光 830的傳播。波導 810可為具有大於自由空間折射率n 1(例如1.0)之折射率n 2的扁平或彎曲透明基板。光柵耦合器 820可為例如布拉格光柵或表面起伏光柵。 8 illustrates the propagation of display light 840 and external light 830 in an exemplary waveguide display 800 including waveguide 810 and grating coupler 820 . The waveguide 810 may be a flat or curved transparent substrate having a refractive index n2 greater than the free space refractive index n1 (eg, 1.0). The grating coupler 820 may be, for example, a Bragg grating or a surface relief grating.

顯示光 840可由例如 4之輸入耦合器 430或上文所描述之其他耦合器(例如,稜鏡或傾斜表面)耦合至波導810中。顯示光 840可通過例如全內反射在波導 810內傳播。當顯示光 840到達光柵耦合器 820時,顯示光 840可藉由光柵耦合器 820繞射成例如0階繞射(亦即,反射)光 842及-1階繞射光 844。0階繞射可在波導 810內傳播,且可在不同部位處由波導 810之底面朝向光柵耦合器 820反射。-1階繞射光 844可朝向使用者之眼睛耦合(例如,折射)至波導810之外,此係由於在波導 810之底面處可能由於繞射角而無法滿足全內反射條件。 Display light 840 may be coupled into waveguide 810 by, for example, input coupler 430 of FIG. 4 , or other couplers described above (eg, slanted surfaces or angled surfaces). Display light 840 may propagate within waveguide 810 by, for example, total internal reflection. When the display light 840 reaches the grating coupler 820 , the display light 840 can be diffracted by the grating coupler 820 into, for example, 0-order diffracted (ie, reflected) light 842 and −1-order diffracted light 844 . The 0th order diffraction may propagate within the waveguide 810 and may be reflected at various locations from the bottom surface of the waveguide 810 towards the grating coupler 820 . The −1st order diffracted light 844 may be coupled (eg, refracted) out of the waveguide 810 towards the user's eye because the total internal reflection condition may not be satisfied at the bottom surface of the waveguide 810 due to the angle of diffraction.

外部光 830亦可由光柵耦合器 820繞射至例如0階繞射光 832及-1階繞射光 834中。0階繞射光 832及-1階繞射光 834兩者均可朝向使用者之眼睛折射至波導 810之外。因此,光柵耦合器 820可充當用於將外部光 830耦合至波導 810中之輸入耦合器,且亦可充當用於將顯示光 840耦合至波導 810之外之輸出耦合器。因此,光柵耦合器 820可充當用於組合外部光 830與顯示光 840之組合器。大體而言,用於外部光 830之光柵耦合器 820(例如,表面起伏光柵耦合器)之繞射效率(亦即,透射繞射)與用於顯示光 840之光柵耦合器 820之繞射效率(亦即,反射繞射)可類似或相當。 The external light 830 can also be diffracted by the grating coupler 820 into, for example, the 0th order diffracted light 832 and the −1st order diffracted light 834 . Both the 0th order diffracted light 832 and the -1st order diffracted light 834 can be refracted out of the waveguide 810 toward the user's eyes. Thus, the grating coupler 820 can act as an input coupler for coupling the external light 830 into the waveguide 810 and can also act as an output coupler for coupling the display light 840 out of the waveguide 810 . Accordingly, the grating coupler 820 may act as a combiner for combining the external light 830 and the display light 840 . In general, the diffraction efficiency (i.e., transmission diffraction) of grating coupler 820 (e.g., surface relief grating coupler) for external light 830 is the same as the diffraction efficiency of grating coupler 820 for display light 840 (ie, reflection diffraction) can be similar or equivalent.

為了以所要方向朝向使用者之眼睛繞射光且為了達成某些繞射階之所要繞射效率,光柵耦合器 820可包括炫耀或傾斜光柵,諸如傾斜布拉格光柵或表面浮雕光柵,其中光柵脊及凹槽可相對於光柵耦合器 820或波導 810之表面法線斜置。 層狀波導 To diffract light in a desired direction toward the user's eye and to achieve a desired diffraction efficiency for certain diffraction orders, the grating coupler 820 may comprise a blazed or sloped grating, such as a sloped Bragg grating or a surface relief grating in which the grating ridges and grooves The grooves may be inclined relative to the surface normal of the grating coupler 820 or waveguide 810 . layered waveguide

層狀波導(在本文中亦稱為「多層波導」)可包括接合在一起之不同折射率及/或厚度的多個波導層。在一個實例中,厚光學基板接合至基底層以形成雙層波導堆疊。具有多個波導層可允許通過層狀波導之不同層選擇耦合某些光波長及/或光之角度。舉例而言,較低折射率材料之波導層可接合至基礎波導層以通過較低折射率材料之波導層耦合藍光以增加層狀波導的亮度,諸如 9B中所示之實例中所描繪。 Layered waveguides (also referred to herein as "multilayer waveguides") may include multiple waveguide layers of different refractive indices and/or thicknesses bonded together. In one example, a thick optical substrate is bonded to a base layer to form a two-layer waveguide stack. Having multiple waveguide layers may allow selective coupling of certain wavelengths of light and/or angles of light through different layers of the layered waveguide. For example, a waveguide layer of lower index material can be bonded to the base waveguide layer to couple blue light through the waveguide layer of lower index material to increase the brightness of the layered waveguide, such as depicted in the example shown in Figure 9B .

具有多個經接合波導層亦可在單層波導之上增加效率。舉例而言,如藉由將單層波導 910 9A9B中所示之層狀波導 911相比所說明,藉由允許在單層波導中稀疏複製將已更稠密之視場(field-of-view;FOV),與單層波導相比層狀波導可改良亮度。 Having multiple bonded waveguide layers can also increase efficiency over a single layer waveguide. For example, as illustrated by comparing the single layer waveguide 910 with the layered waveguide 911 shown in FIGS. 9A and 9B , an already denser field of view (field- of-view; FOV), layered waveguides can improve brightness compared to single-layer waveguides.

諸如 9B中所描繪之層狀波導 911之層狀波導中的均一性可在射線在低折射率波導中以接近-90°角傳播時受視場中之暗線限制,其可藉由使用各向異性媒體減輕。舉例而言,具有厚度為850µm厚之層狀波導在6:1均一性下具有537尼特之亮度,該層狀波導具有500µm厚之SiC之第一層、350µm厚之玻璃之第二層及5µm厚之LC層(n e= 1.65且n 0= 1.5)。 Uniformity in a layered waveguide such as the layered waveguide 911 depicted in FIG . Relief towards heterosexual media. For example, a layered waveguide having a thickness of 850 µm thick with a first layer of 500 µm thick SiC, a second layer of 350 µm thick glass and 5 µm thick LC layer (n e = 1.65 and n 0 = 1.5).

9A說明具有單層波導 910及光柵耦合器 920之波導顯示器 900之實例中之外部光 930的傳播。單層波導 910可為平坦或彎曲的。單層波導 910包括具有大於自由空間折射率n 1(例如,1.0)之折射率n 2(例如,2.7)之透明波導層 940。光柵耦合器 920可為例如布拉格光柵或表面起伏光柵。為簡單起見,所說明實例展示在透明波導層 940與周圍自由空間 915之間的界面處光的單次反彈。將理解,光可在與自由空間之界面處反彈多次及/或傳輸至自由空間 915 FIG. 9A illustrates the propagation of external light 930 in an example of a waveguide display 900 with a single layer waveguide 910 and a grating coupler 920 . Single layer waveguide 910 may be flat or curved. The single layer waveguide 910 includes a transparent waveguide layer 940 having a refractive index n 2 (eg, 2.7) greater than a free space refractive index n 1 (eg, 1.0). The grating coupler 920 may be, for example, a Bragg grating or a surface relief grating. For simplicity, the illustrated example shows a single bounce of light at the interface between the transparent waveguide layer 940 and the surrounding free space 915 . It will be appreciated that light may bounce multiple times at the interface with free space and/or be transmitted to free space 915 .

儘管圖中未示,但在另一實施中,顯示光亦可例如藉由一或多個輸入耦合器(諸如, 4之輸入耦合器 430或本文所描述之其他耦合器(例如,稜鏡或傾斜表面))耦合至單層波導 910中。顯示光可通過例如全內反射在單層波導 910內傳播。當顯示光到達光柵耦合器 920時,顯示光可藉由光柵耦合器 920繞射成例如0階繞射(亦即,反射)光及-1階繞射光。0階繞射可在單層波導 910內傳播,且可在不同部位處由單層波導 910之底面朝向光柵耦合器 920反射。-1階繞射光可朝向使用者之眼睛耦合(例如,折射)至波導 910之外,此係由於在單層波導 910之底面處可能由於繞射角而無法滿足全內反射條件。 Although not shown, in another implementation, display light may also pass through, for example , one or more input couplers, such as input coupler 430 of FIG . or inclined surface)) coupled into the single-layer waveguide 910 . Display light may propagate within the single layer waveguide 910 by, for example, total internal reflection. When the display light reaches the grating coupler 920 , the display light can be diffracted by the grating coupler 920 into, for example, 0-order diffracted (ie, reflected) light and −1-order diffracted light. The 0th order diffraction can propagate in the single-layer waveguide 910 and can be reflected from the bottom surface of the single-layer waveguide 910 toward the grating coupler 920 at different locations. -1st order diffracted light may be coupled (eg, refracted) out of the waveguide 910 towards the user's eye since the total internal reflection condition may not be satisfied at the bottom surface of the single layer waveguide 910 due to the angle of diffraction.

外部光 930亦可由光柵耦合器 920繞射至例如0階繞射光及-1階繞射光中。0階繞射光及-1階繞射光兩者均可朝向使用者之眼睛折射至單層波導 910之外。因此,光柵耦合器 920可充當用於將外部光 930耦合至波導 910中之輸入耦合器,且亦可充當用於將顯示光耦合至波導 910之外之輸出耦合器。因此,光柵耦合器 920可充當用於組合外部光 930與顯示光之組合器。大體而言,用於外部光 930之光柵耦合器 920(例如,表面起伏光柵耦合器)之繞射效率(亦即,透射繞射)與用於顯示光之光柵耦合器 920之繞射效率(亦即,反射繞射)可類似或相當。 The external light 930 can also be diffracted by the grating coupler 920 into, for example, 0-order diffracted light and −1-order diffracted light. Both the 0th order diffracted light and the -1st order diffracted light can be refracted out of the single layer waveguide 910 toward the user's eyes. Thus, the grating coupler 920 may act as an input coupler for coupling external light 930 into the waveguide 910 and may also act as an output coupler for coupling display light out of the waveguide 910 . Therefore, the grating coupler 920 can act as a combiner for combining the external light 930 and the display light. In general, the diffraction efficiency (i.e., transmission diffraction) of a grating coupler 920 (eg, a surface relief grating coupler) for external light 930 is different from that of a grating coupler 920 for display light ( That is, reflection-diffraction) may be similar or equivalent.

為了以所要方向朝向使用者之眼睛繞射光且為了達成某些繞射階之所要繞射效率,光柵耦合器 920可包括炫耀或傾斜光柵,諸如傾斜布拉格光柵或表面浮雕光柵,其中光柵脊及凹槽可相對於光柵耦合器 920或波導 910之表面法線斜置。 To diffract light in a desired direction toward the user's eye and to achieve a desired diffraction efficiency for certain diffraction orders, the grating coupler 920 may comprise a blazed or sloped grating, such as a sloped Bragg grating or a surface relief grating, in which the grating ridges and grooves The slots may be inclined relative to the surface normal of the grating coupler 920 or waveguide 910 .

9B說明包括層狀波導 911及光柵耦合器 920之例示性波導顯示器 901中之外部光 930的傳播。層狀波導911可為平坦或彎曲的。層狀波導 911包括具有大於自由空間折射率n 1(例如,1.0)之折射率n 2(例如,2.7)之第一透明波導層 950及具有折射率n 3之第二透明波導層 960。在此實例中,第二透明波導層 960具有小於折射率n 2(諸如,例如1.7)以通過第二透明波導層 960選擇性地耦合例如藍光之折射率n 3。光柵耦合器 920可為例如布拉格光柵或表面起伏光柵。為簡單起見,所說明實例展示在第一波導層 950與第二波導層 960之間及第二波導層 960與周圍自由空間 915之間的界面處光之單次反彈。將理解,光可在界面處反彈多次。 FIG. 9B illustrates the propagation of external light 930 in an exemplary waveguide display 901 including a layered waveguide 911 and a grating coupler 920 . The layered waveguide 911 can be flat or curved. The layered waveguide 911 comprises a first transparent waveguide layer 950 having a refractive index n 2 (eg, 2.7) greater than a free space refractive index n 1 (eg, 1.0) and a second transparent waveguide layer 960 having a refractive index n 3 . In this example, the second transparent waveguide layer 960 has a refractive index n 3 smaller than the refractive index n 2 , such as, for example, 1.7 to selectively couple eg blue light through the second transparent waveguide layer 960 . The grating coupler 920 may be, for example, a Bragg grating or a surface relief grating. For simplicity, the illustrated example shows a single bounce of light at the interface between the first waveguide layer 950 and the second waveguide layer 960 and between the second waveguide layer 960 and the surrounding free space 915 . It will be appreciated that light may bounce multiple times at the interface.

儘管圖中未示,但在另一實施中,顯示光亦可例如藉由一或多個輸入耦合器(諸如, 4之輸入耦合器 430或本文所描述之其他耦合器(例如,稜鏡或傾斜表面))耦合至層狀波導 911中。顯示光可通過例如全內反射在層狀波導911內傳播。當顯示光到達光柵耦合器 920時,顯示光可藉由光柵耦合器 920繞射成例如0階繞射(亦即,反射)光及-1階繞射光。0階繞射可在層狀波導911內傳播,且可在不同部位處由層狀波導911之底面朝向光柵耦合器920反射。-1階繞射光可朝向使用者之眼睛耦合(例如,折射)至層狀波導 911之外,此係由於在層狀波導911之底面處可能由於繞射角而無法滿足全內反射條件。 Although not shown, in another implementation, display light may also pass through, for example, one or more input couplers, such as input coupler 430 of FIG . Or inclined surface)) coupled into the layered waveguide 911 . Display light may propagate within the layered waveguide 911 by, for example, total internal reflection. When the display light reaches the grating coupler 920 , the display light can be diffracted by the grating coupler 920 into, for example, 0-order diffracted (ie, reflected) light and −1-order diffracted light. The 0th order diffraction can propagate in the layered waveguide 911 and can be reflected from the bottom surface of the layered waveguide 911 toward the grating coupler 920 at different locations. The −1st order diffracted light may be coupled (eg, refracted) out of the layered waveguide 911 towards the user's eye because the total internal reflection condition may not be satisfied at the bottom surface of the layered waveguide 911 due to the diffraction angle.

外部光 930亦可由光柵耦合器 920繞射至例如0階繞射光及-1階繞射光中。0階繞射光及-1階繞射光兩者均可朝向使用者之眼睛折射至層狀波導 911之外。因此,光柵耦合器 920可充當用於將外部光 930耦合至層狀波導 911中之輸入耦合器,且亦可充當用於將顯示光耦合至層狀波導 911之外之輸出耦合器。因此,光柵耦合器 920可充當用於組合外部光 930與顯示光之組合器。大體而言,用於外部光 930之光柵耦合器 920(例如,表面起伏光柵耦合器)之繞射效率(亦即,透射繞射)與用於顯示光之光柵耦合器 920之繞射效率(亦即,反射繞射)可類似或相當。 The external light 930 can also be diffracted by the grating coupler 920 into, for example, 0-order diffracted light and −1-order diffracted light. Both the 0th order diffracted light and the −1st order diffracted light can be refracted out of the layered waveguide 911 toward the user's eyes. Thus, the grating coupler 920 may act as an input coupler for coupling external light 930 into the layered waveguide 911 and may also act as an output coupler for coupling display light out of the layered waveguide 911 . Therefore, the grating coupler 920 can act as a combiner for combining the external light 930 and the display light. In general, the diffraction efficiency (i.e., transmission diffraction) of a grating coupler 920 (eg, a surface relief grating coupler) for external light 930 is different from that of a grating coupler 920 for display light ( That is, reflection-diffraction) may be similar or equivalent.

為了以所要方向朝向使用者之眼睛繞射光且為了達成某些繞射階之所要繞射效率,光柵耦合器 920可包括炫耀或傾斜光柵,諸如傾斜布拉格光柵或表面浮雕光柵,其中光柵脊及凹槽可相對於光柵耦合器 920或層狀波導 911之表面法線斜置。 To diffract light in a desired direction toward the user's eye and to achieve a desired diffraction efficiency for certain diffraction orders, the grating coupler 920 may comprise a blazed or sloped grating, such as a sloped Bragg grating or a surface relief grating, in which the grating ridges and grooves The slots may be inclined relative to the surface normal of the grating coupler 920 or the layered waveguide 911 .

10A說明具有單層波導 1001之波導顯示器 1000的實例。波導顯示器 1000包括透明材料之基板 1010,其可類似於基板 420、基板 610或波導 710。基板 1010可包括例如玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD磚石、ZnS或任何其他合適之材料。可在基板 1010或形成於基板 1010上之光柵材料層中蝕刻輸入光柵 1020及一或多個輸出光柵 10301040。輸入光柵 1020及輸出光柵 10301040可包括傾斜或垂直表面起伏光柵,且可包括填充如上文所描述之光柵凹槽的外塗層。可基板 1010之相對表面上蝕刻輸出光柵 10301040。在一些具體實例中,可使用僅一個輸出光柵1030或1040。如上文參考例如 4 6A所描述,輸入光柵 1020可將來自不同視角(或不同FOV內)之不同色彩(例如,紅色、綠色及/或藍色)之顯示光耦合至基板1010中,其可通過全內反射導引內耦合顯示光。每當內耦合顯示光到達輸出光柵 10301040時,在基板 1010內傳播之內耦合顯示光中之部分可藉由輸出光柵 10301040朝向波導顯示器 1000之人眼窗口耦合在基板 1010之外。 FIG. 10A illustrates an example of a waveguide display 1000 with a single layer waveguide 1001 . Waveguide display 1000 includes a substrate 1010 of transparent material, which may be similar to substrate 420 , substrate 610 , or waveguide 710 . Substrate 1010 may include, for example, glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO2 , GaN, AlN, SiC, CVD masonry, ZnS, or any other suitable material. An input grating 1020 and one or more output gratings 1030 and 1040 may be etched in the substrate 1010 or a layer of grating material formed on the substrate 1010 . The input grating 1020 and output gratings 1030 and 1040 may comprise inclined or vertical surface relief gratings, and may comprise an overcoat filling the grating grooves as described above. Output gratings 1030 and 1040 may be etched on opposing surfaces of substrate 1010 . In some embodiments, only one output grating 1030 or 1040 may be used. As described above with reference to, for example, FIGS. 4 and 6A , input grating 1020 can couple display light of different colors (e.g., red, green, and/or blue) from different viewing angles (or within different FOVs) into substrate 1010, which The incoupled display light can be guided by total internal reflection. Whenever incoupled display light reaches output grating 1030 or 1040 , a portion of the incoupled display light propagating within substrate 1010 may be coupled out of substrate 1010 by output grating 1030 or 1040 toward the human eye window of waveguide display 1000 .

如上文所描述,為了滿足光柵方程式,不同色彩(波長)及/或來自不同視角之光可具有不同繞射角。舉例而言,在 10A中所說明之實例中,具有不同色彩(例如,紅色及藍色)及相同入射角(例如,約0°)之兩個光束可由輸入光柵 1020繞射至基板 1010內之不同方向。更具體言之,具有較短波長之光束(例如,藍光)可具有較小繞射角。具有相同色彩但不同入射角之兩個光束亦可由輸入光柵 1020繞射至基板 1010內之兩個不同方向。歸因於不同傳播方向,兩個內耦合光束可在x方向上傳播不同距離之後到達基板1010之表面。因此,相對於基板 1010之表面法線方向具有較小角度之光束可比相對於基板 1010之表面法線方向具有較大角度之光束到達輸出光柵 10301040之次數更多。因此,不同色彩或來自不同FOV之顯示光可以不同密度導引至人眼窗口,且因此不同色彩或來自不同FOV之顯示光可不均一地導引至使用者之眼睛。 As described above, in order to satisfy the grating equation, light of different colors (wavelengths) and/or from different viewing angles may have different diffraction angles. For example, in the example illustrated in FIG. 10A , two beams of different colors (e.g., red and blue) and the same angle of incidence (e.g., about 0°) can be diffracted by the input grating 1020 into the substrate 1010 different directions. More specifically, light beams with shorter wavelengths (eg, blue light) may have smaller diffraction angles. Two light beams with the same color but different incident angles can also be diffracted by the input grating 1020 to two different directions within the substrate 1010 . Due to the different propagation directions, the two incoupled light beams can reach the surface of the substrate 1010 after propagating different distances in the x-direction. Therefore, light beams with smaller angles relative to the surface normal direction of the substrate 1010 may reach the output grating 1030 or 1040 more times than light beams with larger angles relative to the surface normal direction of the substrate 1010 . Therefore, display lights of different colors or from different FOVs may be directed to the human eye window at different densities, and thus display lights of different colors or from different FOVs may be directed to the user's eyes non-uniformly.

根據某些具體實例,為了改良所有色彩及來自所有FOV之光之顯示器的均一性,可實施層狀波導。層狀波導可包括具有不同所要折射率及/或厚度之波導層。在一個實施中,層狀波導堆疊中之多個波導層可具有在層堆疊之中心處具有最高折射率的波導層,且堆疊中之波導層之折射率可自中心朝外朝向層堆疊之兩個相對外側降低在一些具體實例中,波導層之折射率可自層堆疊之一側至相對側降低。According to some embodiments, to improve the uniformity of the display across all colors and light from all FOVs, layered waveguides can be implemented. Layered waveguides may include waveguide layers having different desired refractive indices and/or thicknesses. In one implementation, multiple waveguide layers in a layered waveguide stack may have the waveguide layer with the highest index of refraction at the center of the layer stack, and the index of refraction of the waveguide layers in the stack may be from the center outward toward both sides of the layer stack. Relative Outer Decrease In some embodiments, the refractive index of the waveguide layer may decrease from one side of the layer stack to the opposite side.

10B說明根據某些具體實例之具有層狀波導 1003之層狀波導顯示器 1002的實例。多層波導顯示器 1002包括透明材料之基板(亦稱為「第一波導層」) 1012、輸入光柵 10221024,及輸出光柵 10321042,其可分別類似於基板 1010、輸入光柵 1020及輸出光柵 10301040。輸入光柵 10221024及輸出光柵 10321042可形成於第一波導層 1012中或可為形成於第一波導層 1012上之光柵材料層。在一個實例中,輸入光柵 10221024及/或輸出光柵 10321042可為形成於第一波導層1012中之垂直或傾斜表面起伏光柵或形成於第一波導層 1012上之光柵材料層,及/或可包括填充光柵凹槽之外塗層。多層波導顯示器 1002亦包括第二波導層 1050,其可為例如具有比第一波導層 1012之折射率更低之折射率之透明材料之薄層(例如,幾百微米,諸如在約 100µm與約 600µm之間)。在一些實施中,第一波導層 1012之折射率與第二波導層 1050之折射率之間的差可為約0.1、0.2、0.25、0.3或更大。 Figure 10B illustrates an example of a layered waveguide display 1002 with a layered waveguide 1003 according to certain embodiments. Multilayer waveguide display 1002 includes a substrate of transparent material (also referred to as a "first waveguide layer") 1012 , input gratings 1022 and 1024 , and output gratings 1032 and 1042 , which may be similar to substrate 1010 , input grating 1020 , and output grating 1030, respectively. and 1040 . The input gratings 1022 and 1024 and the output gratings 1032 and 1042 may be formed in the first waveguide layer 1012 or may be a layer of grating material formed on the first waveguide layer 1012 . In one example, the input gratings 1022 and 1024 and/or the output gratings 1032 and 1042 can be vertical or inclined surface relief gratings formed in the first waveguide layer 1012 or a layer of grating material formed on the first waveguide layer 1012 , and and/or may include a coating that fills the outside of the grating grooves. The multilayer waveguide display 1002 also includes a second waveguide layer 1050 , which may be, for example, a thin layer (e.g., a few hundred microns, such as between about 100 μm and between about 600 µm). In some implementations, the difference between the index of refraction of the first waveguide layer 1012 and the index of refraction of the second waveguide layer 1050 can be about 0.1, 0.2, 0.25, 0.3, or greater.

10B中所示之實例中,第一光束 1060(例如,具有較長波長或較大視角)可藉由輸入光柵 1022耦合至第一波導層 1012中,且可以相對於第一波導層 1012之表面法線方向的較大角在第一波導層 1012內傳播。因此,歸因於第一波導層 1012與第二波導層 1050之折射率之間的較大入射角及較大差,第一光束 1060可經由全內反射在第一波導層 1012及第二波導層 1050之間的界面反射。第二光束 1062(例如,具有較短波長及/或較小視角)可藉由輸入光柵 1022耦合至第一波導層 1012中,且可以相對於第一波導層 1012之表面法線方向的較大角在第一波導層 1012內傳播。因此,歸因於較小入射角,第二光束 1062可通過全內反射不在第一波導層 1012與第二波導層 1050之間的界面處反射。因此,第二光束 1062可替代地以較大折射角在界面處折射至第二波導層 1050中,且可接著歸因於增加之入射角及第二波導層 1050之折射率與空氣之間的較大差(例如,約0.5)而通過全內反射在第二波導層 1050之底面處反映。因此,即使第二光束 1062可相對於第一波導層 1012之表面法線方向具有比第一光束 1060更小之傳播角,第二光束 1062亦可在通過全內反射反映之前在z方向上行進較長距離,且因此可在通過全內反射反映之前在x方向上行進與第一光束 1060相似之距離。以此方式,第一光束 1060及第二光束 1062可以約相同間隔藉由輸出光柵 10321042繞射約相同次數以改良均一性。第一波導層 1012及第二波導層 1050之厚度及折射率可選擇為達成所需效能。 In the example shown in FIG. 10B , a first light beam 1060 (e.g., having a longer wavelength or larger viewing angle) can be coupled into the first waveguide layer 1012 by the input grating 1022 and can be coupled with respect to the first waveguide layer 1012. The larger angle of the surface normal direction propagates in the first waveguide layer 1012 . Therefore, due to the larger incident angle and larger difference between the refractive indices of the first waveguide layer 1012 and the second waveguide layer 1050 , the first light beam 1060 can pass through the first waveguide layer 1012 and the second waveguide layer through total internal reflection. Interface reflection between 1050 . A second light beam 1062 (e.g., having a shorter wavelength and/or a smaller viewing angle) can be coupled into the first waveguide layer 1012 by the input grating 1022 , and can be at a larger angle relative to the surface normal direction of the first waveguide layer 1012. propagates within the first waveguide layer 1012 . Therefore, due to the smaller angle of incidence, the second light beam 1062 may not be reflected at the interface between the first waveguide layer 1012 and the second waveguide layer 1050 by total internal reflection. Thus, the second light beam 1062 can instead be refracted at the interface into the second waveguide layer 1050 at a larger refraction angle, and can then be attributed to the increased angle of incidence and the difference between the refractive index of the second waveguide layer 1050 and air. Larger differences (eg, about 0.5) are reflected at the bottom surface of the second waveguide layer 1050 by total internal reflection. Thus, even though the second beam 1062 may have a smaller propagation angle than the first beam 1060 relative to the surface normal direction of the first waveguide layer 1012 , the second beam 1062 may travel in the z direction before being reflected by total internal reflection A longer distance, and thus can travel a similar distance in the x-direction as the first beam 1060 before being reflected by total internal reflection. In this way, the first beam 1060 and the second beam 1062 may be diffracted by the output grating 1032 or 1042 about the same number of times at about the same interval to improve uniformity. The thickness and refractive index of the first waveguide layer 1012 and the second waveguide layer 1050 can be selected to achieve the desired performance.

11A說明根據某些具體實例之包括層狀波導 1101之多層波導顯示器 1100的實例。多層波導顯示器 1100可包括具有一或多個輸入光柵及/或一或多個輸出光柵之第一波導層。在圖 11A中,多層波導顯示器 1100包括第一波導層 1110,其具有形成於第一波導層 1012中之輸入光柵 11201122及輸出光柵 11301140或類似於上文所描述的波導顯示器 1000及多層波導顯示器 1002形成於第一波導層 1012上之光柵材料層。第一波導層 1110可包括例如玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS及類似者。輸入光柵 11201122及/或輸出光柵 11301140可傾斜或垂直表面起伏光柵且可包括填充光柵凹槽之外塗層。多層波導顯示器 1100亦包括第一波導層 1110之相對側上之第二波導層 1150及第三波導層 1160。第二波導層 1150及第三波導層 1160可各自為具有比第一波導層 1110之折射率更低之折射率之透明材料的薄層(例如,幾百微米,諸如在約100µm與約600µm之間)。舉例而言,第一波導層 1110之折射率與第二波導層 1150或第三波導層 1160之折射率之間的差可為約0.1、0.2、0.25、0.3或更大。多層波導顯示器 1100可達成具有如上文關於 10B 描述之不同色彩及/或來自不同FOV之光的更均一複製。可選擇第一波導層 1110、第二波導層 1150及第三波導層 1160之厚度及折射率以達成所需效能。 FIG. 11A illustrates an example of a multilayer waveguide display 1100 including a layered waveguide 1101 according to certain embodiments. Multilayer waveguide display 1100 may include a first waveguide layer having one or more input gratings and/or one or more output gratings. In FIG. 11A , a multilayer waveguide display 1100 includes a first waveguide layer 1110 having input gratings 1120 and 1122 and output gratings 1130 and 1140 formed in a first waveguide layer 1012 or similar to the waveguide display 1000 and described above. The multilayer waveguide display 1002 is formed on a layer of grating material on the first waveguide layer 1012 . The first waveguide layer 1110 may include, for example, glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO2 , GaN, AlN, SiC, CVD diamond, ZnS, and the like. The input gratings 1120 and 1122 and/or the output gratings 1130 and 1140 may be inclined or vertical surface relief gratings and may include coatings that fill the grooves of the gratings. The multilayer waveguide display 1100 also includes a second waveguide layer 1150 and a third waveguide layer 1160 on opposite sides of the first waveguide layer 1110 . The second waveguide layer 1150 and the third waveguide layer 1160 may each be a thin layer (e.g., a few hundred micrometers, such as between about 100 μm and about 600 μm) of a transparent material having a lower refractive index than the first waveguide layer 1110 . between). For example, the difference between the refractive index of the first waveguide layer 1110 and the refractive index of the second waveguide layer 1150 or the third waveguide layer 1160 can be about 0.1, 0.2, 0.25, 0.3 or more. The multilayer waveguide display 1100 can achieve a more uniform reproduction of light with different colors and/or from different FOVs as described above with respect to Figure 10B . The thickness and refractive index of the first waveguide layer 1110 , the second waveguide layer 1150 , and the third waveguide layer 1160 can be selected to achieve the desired performance.

11B說明根據某些具體實例之包括層狀波導 1103之多層波導顯示器 1102的實例。多層波導顯示器 1102可包括具有一或多個輸入光柵及一或多個輸出光柵之第一波導層。在 11B中,多層波導顯示器 1102包括第一波導層 1112,其具有如上文所描述之波導顯示器 1000及多層波導顯示器 10021100中形成於其上之輸入光柵 11241126及輸出光柵 11321142。第一波導層 1112可包括例如玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS及類似者。輸入光柵 11241126及輸出光柵 11321142可傾斜或垂直表面起伏光柵且可包括填充如上文關於例如圖7所描述之光柵凹槽之外塗層。多層波導顯示器 1102亦包括第一波導層 1112之相對側上之第二波導層 1152及第三波導層 1162。第二波導層1152及第三波導層1162可各自為例如具有比第一波導層1112之折射率更低之折射率之透明材料的薄層(例如,幾百微米,諸如在約100 µm與約600 µm之間)。在一個實例中,第一波導層 1112之折射率與第二波導層 1152或第三波導層 1162之折射率之間的差可為約0.1、0.2、0.25、0.3或更大。第二波導層 1152及第三波導層 1162可具有相同折射率或不同折射率及/或可具有相同厚度或不同厚度。 FIG. 11B illustrates an example of a multilayer waveguide display 1102 including a layered waveguide 1103 according to certain embodiments. The multilayer waveguide display 1102 may include a first waveguide layer having one or more input gratings and one or more output gratings. In FIG. 11B , multilayer waveguide display 1102 includes a first waveguide layer 1112 having input gratings 1124 and 1126 and output gratings 1132 and 1142 formed thereon in waveguide display 1000 and multilayer waveguide display 1002 or 1100 as described above. . The first waveguide layer 1112 may include, for example, glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO2 , GaN, AlN, SiC, CVD diamond, ZnS, and the like. The input gratings 1124 and 1126 and the output gratings 1132 and 1142 may be inclined or vertical surface relief gratings and may include overcoatings that fill the grating grooves as described above with respect to eg FIG. 7 . The multilayer waveguide display 1102 also includes a second waveguide layer 1152 and a third waveguide layer 1162 on opposite sides of the first waveguide layer 1112 . The second waveguide layer 1152 and the third waveguide layer 1162 may each be a thin layer (e.g., a few hundred microns, such as between about 100 μm and about 600 µm). In one example, the difference between the refractive index of the first waveguide layer 1112 and the refractive index of the second waveguide layer 1152 or the third waveguide layer 1162 may be about 0.1, 0.2, 0.25, 0.3 or greater. The second waveguide layer 1152 and the third waveguide layer 1162 may have the same or different refractive indices and/or may have the same or different thicknesses.

另外,第四波導層可形成於第二波導層 1152上且第五波導層可形成於第三波導層 1162上。在 11B中,多層波導顯示器 1102包括鄰近第二波導層 1152安置之第四波導層 1170及鄰近第三波導層 1162安置之第五波導層 1180。第四波導層 1170及第五波導層 1180可各自為例如具有分別比第二波導層 1152及第三波導層 1162之折射率更低之折射率之透明材料的薄層(例如,幾百微米,諸如在約 100µm與約 600µm之間)。在一個實例中,第二波導層 1152之折射率與第四波導層 1170之折射率之間的差及第三波導層 1162之折射率與第五波導層 1180之折射率之間的差可為約0.1、0.2、0.25、0.3或更大。第四波導層1170及第五波導層1180可具有相同折射率或不同折射率及/或可具有相同厚度或不同厚度。多層波導顯示器 1102可達成具有如上文關於 8B所描述之不同色彩及/或來自不同FOV之光的更均一複製。可選擇第一波導層 1112、第二波導層 1152、第三波導層 1162、第四波導層 1170及第五波導層 1180之厚度及/或折射率以達成所需效能。 Additionally, a fourth waveguide layer may be formed on the second waveguide layer 1152 and a fifth waveguide layer may be formed on the third waveguide layer 1162 . In FIG. 11B , multilayer waveguide display 1102 includes fourth waveguide layer 1170 disposed adjacent to second waveguide layer 1152 and fifth waveguide layer 1180 disposed adjacent to third waveguide layer 1162 . Fourth waveguide layer 1170 and fifth waveguide layer 1180 may each be a thin layer ( e.g., a few hundred microns, such as between about 100 µm and about 600 µm). In one example, the difference between the index of refraction of the second waveguide layer 1152 and the index of refraction of the fourth waveguide layer 1170 and the difference between the index of refraction of the third waveguide layer 1162 and the index of refraction of the fifth waveguide layer 1180 may be About 0.1, 0.2, 0.25, 0.3 or more. The fourth waveguide layer 1170 and the fifth waveguide layer 1180 may have the same or different refractive indices and/or may have the same or different thicknesses. The multilayer waveguide display 1102 can achieve a more uniform reproduction of light with different colors and/or from different FOVs as described above with respect to Figure 8B . The thickness and/or refractive index of the first waveguide layer 1112 , the second waveguide layer 1152 , the third waveguide layer 1162 , the fourth waveguide layer 1170 , and the fifth waveguide layer 1180 can be selected to achieve the desired performance.

雖然 11A11B中之波導堆疊 11001102之所說明實例展示具有三個波導層 1110 1150 1160之層狀波導 1101,及具有五個波導層 1112 1152 1162 1170 1180之層狀波導 1102,但在其他實施中可包括較少或額外波導層。舉例而言,在一個實施中, 11A中之多層波導顯示器 1100可不包括第二波導層 1150或第三波導層 1160。作為另一實例,在一個實施中,多層波導顯示器 1102可不包括波導層 11621180或波導層 11521170While the illustrated examples of waveguide stacks 1100 and 1102 in FIGS. 11A and 11B show a layered waveguide 1101 with three waveguide layers 1110 , 1150 , 1160 , and a layer with five waveguide layers 1112 , 1152 , 1162 , 1170 , 1180 shaped waveguide 1102 , but may include fewer or additional waveguide layers in other implementations. For example, in one implementation, the multilayer waveguide display 1100 in FIG. 11A may not include the second waveguide layer 1150 or the third waveguide layer 1160 . As another example, in one implementation, multilayer waveguide display 1102 may not include waveguide layers 1162 and 1180 or waveguide layers 1152 and 1170 .

在各種具體實例中,本文所揭示之多層波導顯示器可包括具有兩個或更多個波導層之層狀波導,諸如三個、四個、五個或更多層。在一些具體實例中,具有最低折射率之波導層(亦稱為低折射率波導層)可與輸入及輸出光柵定位於同一側,且具有最高折射率之波導層(亦稱為高折射率波導層)可定位於層堆疊之相對側上。舉例而言,波導層可配置於波導堆疊中以降低自層堆疊之一側至相對側的折射率,例如其中具有最低折射率之波導層定位於具有輸入及輸出光柵之側上。在另一實例中,具有最低折射率之波導層可定位於層堆疊之相對側上。舉例而言,波導層可配置於波導堆疊中,其中波導層在堆疊之中心處具有最高折射率,且接著配置其他波導層以朝向層堆疊之相對側降低(例如,逐漸降低)折射率。在一些情況下,波導層堆疊之折射率分佈圖可為對稱的且諸如在層堆疊之中心處具有最高值。舉例而言,參考 11B中所示之堆疊,第一波導層 1112在堆疊之中心處可在堆疊中具有最高折射率,第三波導層 1162可具有低於第一波導層 1112之折射率,第五波導層 1180可具有低於第三波導層 1162之折射率,第二波導層 1152可具有低於第一波導層 1112之折射率及/或第四波導層 1170可具有低於第二波導層 1152之折射率。在其他情況下,波導層堆疊之折射率分佈圖可不相對於波導層堆疊之中心對稱。 In various embodiments, the multilayer waveguide displays disclosed herein can include layered waveguides having two or more waveguide layers, such as three, four, five or more layers. In some embodiments, the waveguide layer with the lowest index of refraction (also known as the low-index waveguide layer) can be positioned on the same side as the input and output gratings, and the waveguide layer with the highest index of refraction (also known as the high-index waveguide layers) may be positioned on opposite sides of the layer stack. For example, waveguide layers may be configured in a waveguide stack to lower the index of refraction from one side of the layer stack to the opposite side, for example where the waveguide layer with the lowest index of refraction is positioned on the side with the input and output gratings. In another example, the waveguide layer with the lowest index of refraction can be positioned on the opposite side of the layer stack. For example, waveguide layers may be configured in a waveguide stack where the waveguide layer has the highest index of refraction at the center of the stack, and then other waveguide layers are configured to decrease (eg, gradually decrease) the index of refraction towards opposite sides of the layer stack. In some cases, the refractive index profile of the waveguide layer stack may be symmetric and have the highest value, such as at the center of the layer stack. For example, referring to the stack shown in FIG. 11B , the first waveguide layer 1112 may have the highest index of refraction in the stack at the center of the stack, the third waveguide layer 1162 may have a lower index of refraction than the first waveguide layer 1112 , The fifth waveguide layer 1180 can have a lower refractive index than the third waveguide layer 1162 , the second waveguide layer 1152 can have a lower refractive index than the first waveguide layer 1112 and/or the fourth waveguide layer 1170 can have a lower refractive index than the second waveguide layer 1170. The refractive index of layer 1152 . In other cases, the refractive index profile of the waveguide layer stack may not be symmetrical about the center of the waveguide layer stack.

具有不同折射率及厚度(例如,100或200µm)之多個波導層可需要為平坦且具有低總厚度變化(例如,< 1µm)或表面粗糙度(例如,具有低於約1 nm之均方根面積粗糙度)。多個波導層可需要具有低透射混濁度,且將不需要進行拋光。亦可期望在低溫下,諸如在室溫下製造多個波導層。因此,在其上蝕刻光柵耦合器之基板上製造多個波導層可具有挑戰性。多層波導可藉由將多個低折射率基板或層接合至基板(例如,SiC基板)、藉由層壓、藉由狹縫型塗佈、化學氣相沉積(例如,PECVD)或類似者來製成。然而,此等技術可不能夠達成多個波導層之所要特性。 噴墨 3-D 印刷 Multiple waveguide layers with different refractive indices and thicknesses (e.g., 100 or 200 µm) may need to be flat with low total thickness variation (e.g., <1 µm) or surface roughness (e.g., with a mean square root area roughness). Multiple waveguide layers may need to have low transmitted haze and will not require polishing. It may also be desirable to fabricate multiple waveguide layers at low temperatures, such as room temperature. Therefore, it can be challenging to fabricate multiple waveguide layers on a substrate on which grating couplers are etched. Multilayer waveguides can be formed by bonding multiple low index substrates or layers to a substrate (eg, SiC substrate), by lamination, by slot coating, chemical vapor deposition (eg, PECVD), or the like. production. However, these techniques may not be able to achieve the desired properties of multiple waveguide layers. Inkjet 3-D printing

根據某些具體實例,多層(層狀)波導可使用一或多個噴墨3-D印刷技術製造。在噴墨3-D印刷期間,樹脂材料之小液滴之數目(有時在本文中稱為油墨)可沉積於其上形成有具有輸入及輸出光柵之基板上。樹脂材料之小液滴之數目(例如,呈二維陣列之形式)可形成均一薄層(例如,約10µm),其可例如通過紫外線(UV)固化或熱處理來交聯。樹脂材料之一或多個額外薄層可沉積於第一交聯薄層上且交聯,直至達成波導層之所要總厚度。例如具有不同(例如,較低)折射率之另一波導層可印刷於已經印刷波導層上(例如,具有比其他波導層更高之折射率)或可印刷於與已經印刷波導層相對之波導層堆疊的一側上。According to some embodiments, multilayer (lamellar) waveguides can be fabricated using one or more inkjet 3-D printing techniques. During inkjet 3-D printing, a number of small droplets of resin material (sometimes referred to herein as ink) can be deposited on a substrate with input and output gratings formed thereon. The number of small droplets of resin material (eg, in the form of a two-dimensional array) can form a uniform thin layer (eg, about 10 µm), which can be crosslinked, eg, by ultraviolet (UV) curing or heat treatment. One or more additional thin layers of resin material may be deposited on the first cross-linked thin layer and cross-linked until the desired total thickness of the waveguide layer is achieved. For example another waveguide layer with a different (e.g. lower) refractive index can be printed on the already printed waveguide layer (e.g. with a higher refractive index than the other waveguide layer) or can be printed on the waveguide opposite the already printed waveguide layer on one side of the layer stack.

使用本文所揭示之3-D印刷技術,材料可僅沉積於所關注的選擇區域上,諸如僅沉積於功能裝置(例如,輸出光柵)之頂部上。可需要僅一個切割操作以自基底晶圓形成個別裝置,其中該基底晶圓上沉積有一或多個波導層。不需要切割基底晶圓及其他基板兩者且接著將其接合在一起。用於3-D印刷技術之材料可具有比例如SiC基板(例如,約3.21 g/cm 3)、熔融二氧化矽(例如,約2.17 g/cm 3)或其他基板材料更低的密度(例如,約1.25 g/cm 3)。因此,使用3-D印刷製造之波導顯示器可具有比藉由其他沉積技術製成之波導顯示器更輕的重量。另外,用於3-D印刷之材料可經調諧以具有所要折射率。舉例而言,高折射率奈米粒子可添加至樹脂材料以調諧樹脂材料之折射率。在一個實施中,例如高折射率奈米粒子可添加至樹脂材料以將樹脂材料之折射率自約1.45或更低增加至約2.0或更高。在另一實施中,高折射率奈米粒子可添加至樹脂材料以將樹脂材料之折射率自約1.45或更低增加至約1.5與約1.8之間。 Using the 3-D printing techniques disclosed herein, material can be deposited only on selected areas of interest, such as only on top of a functional device (eg, an output grating). Only one dicing operation may be required to form individual devices from a base wafer on which one or more waveguide layers are deposited. Both the base wafer and other substrates need not be diced and then bonded together. Materials used in 3-D printing techniques may have lower densities than, for example, SiC substrates (eg, about 3.21 g/cm 3 ), fused silica (eg, about 2.17 g/cm 3 ), or other substrate materials (eg, , about 1.25 g/cm 3 ). Therefore, waveguide displays fabricated using 3-D printing can have a lighter weight than waveguide displays fabricated by other deposition techniques. Additionally, materials for 3-D printing can be tuned to have a desired index of refraction. For example, high refractive index nanoparticles can be added to the resin material to tune the refractive index of the resin material. In one implementation, for example, high refractive index nanoparticles may be added to the resin material to increase the refractive index of the resin material from about 1.45 or lower to about 2.0 or higher. In another implementation, high refractive index nanoparticles may be added to the resin material to increase the refractive index of the resin material from about 1.45 or lower to between about 1.5 and about 1.8.

在一些具體實例中,用於噴墨3-D印刷技術之材料可包括具有至少一個選自包含以下之群的光化光可固化部分之基本樹脂:丙烯酸酯、環氧化物、乙烯基、硫醇、烯丙基、乙烯醚、烯丙醚、環氧丙烯酸酯、胺基甲酸丙烯酸酯及丙烯酸聚酯。用於噴墨3-D印刷之材料亦可包括光起始劑,諸如光自由基生成劑(photo radical generator;PRG)或光酸生成劑。用以調諧樹脂材料之折射率的奈米粒子可包括金屬氧化物,諸如氧化鈦、氧化鋯、氧化鉿、氧化鎢、碲鋅、磷化鎵、前述材料中之任一者的衍生物或此等材料之任何組合。 製造層狀(多層)波導之方法 In some embodiments, materials for inkjet 3-D printing technology may include a base resin having at least one actinic light curable moiety selected from the group comprising: acrylate, epoxy, vinyl, sulfur Alcohols, allyls, vinyl ethers, allyl ethers, epoxy acrylates, urethane acrylates, and acrylic polyesters. Materials for inkjet 3-D printing may also include photoinitiators, such as photo radical generators (PRG) or photoacid generators. The nanoparticles used to tune the refractive index of the resin material may include metal oxides, such as titanium oxide, zirconium oxide, hafnium oxide, tungsten oxide, zinc telluride, gallium phosphide, derivatives of any of the foregoing materials, or the like. Any combination of materials. Method for manufacturing layered (multilayer) waveguides

一般言之,多層波導藉由將多個波導層接合在一起來製造。舉例而言,光學透明黏著劑(OCA)或其他接合材料可用於將一或多個波導層接合至具有其上安置有一或多個波導晶粒之基礎波導層以形成經接合波導堆疊。一或多個個別波導可在切割製程中自經接合波導堆疊切斷。In general, multilayer waveguides are fabricated by bonding multiple waveguide layers together. For example, an optically clear adhesive (OCA) or other bonding material may be used to bond one or more waveguide layers to a base waveguide layer having one or more waveguide die disposed thereon to form a bonded waveguide stack. One or more individual waveguides may be severed from the bonded waveguide stack in a dicing process.

製造多層波導之方法可使用實施雷射剝蝕之切割製程或類似製程以切穿經接合波導堆疊以單體化個別波導。雷射剝蝕可實施高功率雷射以反覆地移除區中之材料以劃穿波導堆疊之多個層。若在切割操作期間接合材料(例如,光學透明黏著劑)存在於波導晶粒之邊緣處,則雷射剝蝕或其他類似破壞性製程可降低個別波導之邊緣處之接合材料的接合強度。某些接合製程可在接合材料層中歸因於例如在紫外線(UV)固化製程期間聚合收縮或歸因於在熱接合製程期間熱膨脹係數(CTE)不匹配而產生殘餘應力。在某些個例中,為緩解接合材料層中之殘餘應力,分層前可在波導之邊緣處開始,其中接合層之接合強度可已在切割製程期間降低。此分層前接著可隨著時間推移朝內傳播,從而在波導層之間產生分層。 21A描繪在切割操作之前波導堆疊 2101之實例。 21B描繪在切割操作之後在其邊緣處具有分層之多層波導 2102。在圖21B中所示之實例中,對具有一或多個波導晶粒之經接合波導堆疊進行切割操作,其中在切割操作期間接合材料存在於一或多個波導晶粒之邊緣處。 A method of fabricating multilayer waveguides may use a dicing process that performs laser ablation, or the like, to cut through the bonded waveguide stack to singulate individual waveguides. Laser ablation may employ a high power laser to repeatedly remove material in regions to scratch through multiple layers of the waveguide stack. If bonding material (eg, optically clear adhesive) is present at the edges of waveguide die during the dicing operation, laser ablation or other similarly destructive processes can reduce the bond strength of the bonding material at the edges of individual waveguides. Certain bonding processes may generate residual stress in the bonding material layer due to, for example, polymerization shrinkage during an ultraviolet (UV) curing process or due to a coefficient of thermal expansion (CTE) mismatch during a thermal bonding process. In some instances, delamination may begin at the edge of the waveguide prior to relieving residual stress in the bonding material layer, where the bonding strength of the bonding layer may have been reduced during the dicing process. This delamination front can then propagate inwards over time, creating delamination between the waveguide layers. Figure 21A depicts an example of a waveguide stack 2101 prior to a cutting operation. FIG. 21B depicts a multilayer waveguide 2102 with delamination at its edges after a cutting operation. In the example shown in FIG. 21B, a sawing operation is performed on a bonded waveguide stack having one or more waveguide dies, wherein bonding material is present at the edges of the one or more waveguide dies during the sawing operation.

本文所描述之製造層狀波導之方法的一些實例形成可在定位於各別波導晶粒周圍(例如,圍繞)或上方之一或多個切割線中不含(或實質上不含,諸如超過90%不含空閒或超過99%不含)接合材料之經接合波導堆疊。下文參考 14 19描述此等實例中之一些。 Some example formations of the methods of making layered waveguides described herein may be free (or substantially free, such as more than A bonded waveguide stack that is 90% free or more than 99% free of bonding material. Some of these examples are described below with reference to Figures 14-19 .

在某些實施中,層狀波導部分地藉由選擇性地分配(例如,藉由噴墨沉積)光學透明黏著劑(OCA)材料或其他接合材料中,且在接合波導層之後藉由將接合材料曝光於紫外線(UV)光及/或熱製程來固化接合材料而形成。OCA材料或其他接合材料可為可在接合之後曝光於UV光之相對低分子量單體的摻合物。OCA材料或其他接合材料可具有包括以下性質中之一或多者:(i)可作為純淨材料流動以用於在接合期間良好接觸件;(ii)可在之後與適當光起始劑(例如,陽離子、陰離子、自由基)接合交聯;(iii)包括混濁度及吸收之低光損耗;(iv)高折射率(例如,大於1.5或大於1.6);(v)良好黏著力/潤濕特性(含有氫接合/極性基團);及(VI)交聯狀態中之良好接合強度。在此等實施中,第一(基礎)波導層可具有包括以下中之一或多者的基材:矽氧烷、倍半矽氧烷、(硫代)胺甲酸乙酯、醯胺、(硫代)脲、(硫代)碳酸鹽、(硫代)磷酸鹽、芳香族(茀、聯苯、笨并二噻吩及類似者)。在一些情況下,單體官能基可添加至包括以下中之一或多者的基材:(i)自由基(甲基)丙烯酸酯、丙烯醯胺、苯乙烯、乙烯基羰基、乙烯基環丙烷及類似者;或(ii)開環材料,諸如環醚(例如,環氧化物、環氧丙烷及類似者)環狀羰基(例如,碳酸鹽、內酯及類似者)。在一個實例中,基材為67%芴二丙烯酸酯、30%縮水甘油基POSS、3%PAG(365 nm)。在另一實例中,基材為含20-60 wt%固體之溶劑(PGMEA)。In certain implementations, the layered waveguide is formed in part by selectively dispensing (e.g., by inkjet deposition) an optically clear adhesive (OCA) material or other bonding material, and after bonding the waveguide layers by bonding the bonded The material is formed by exposing the material to ultraviolet (UV) light and/or thermal processes to cure the bonding material. The OCA material or other bonding material can be a blend of relatively low molecular weight monomers that can be exposed to UV light after bonding. OCA materials or other bonding materials may have properties including one or more of the following: (i) may flow as a neat material for good contact during bonding; (ii) may be subsequently mixed with a suitable photoinitiator such as , cationic, anionic, free radical) conjugative cross-linking; (iii) low light loss including turbidity and absorption; (iv) high refractive index (eg, greater than 1.5 or greater than 1.6); (v) good adhesion/wetting properties (containing hydrogen bonding/polar groups); and (VI) good bonding strength in the cross-linked state. In such implementations, the first (base) waveguide layer may have a substrate comprising one or more of: siloxane, silsesquioxane, (thio)urethane, amide, ( Thio)urea, (thio)carbonate, (thio)phosphate, aromatic (terrene, biphenyl, benzodithiophene and similar). In some cases, monomeric functional groups may be added to substrates including one or more of: (i) free radical (meth)acrylate, acrylamide, styrene, vinyl carbonyl, vinyl ring propane and the like; or (ii) ring-opening materials such as cyclic ethers (eg, epoxides, propylene oxide, and the like) cyclic carbonyls (eg, carbonates, lactones, and the like). In one example, the substrate is 67% fluorene diacrylate, 30% glycidyl POSS, 3% PAG (365 nm). In another example, the substrate is a solvent (PGMEA) containing 20-60 wt% solids.

在某些實施中,光學透明黏著劑材料或其他接合材料可具有低於波導堆疊之一或多個層之折射率的折射率。舉例而言,光學透明黏著劑材料或其他接合材料可具有低於波導堆疊中具有最低折射率之波導層(亦有時稱為最低折射率層)之折射率的折射率。在一個實例中,最低折射率層之折射率為1.7且OCA材料或其他接合材料之折射率為1.6。在另一實例中,最低折射率層之折射率為1.7且OCA材料或其他接合材料之折射率為1.5。In certain implementations, the optically clear adhesive material or other bonding material can have a lower index of refraction than that of one or more layers of the waveguide stack. For example, the optically clear adhesive material or other bonding material may have a lower index of refraction than that of the waveguide layer having the lowest index of refraction (also sometimes referred to as the lowest index layer) in the waveguide stack. In one example, the lowest index layer has a refractive index of 1.7 and the OCA material or other bonding material has a refractive index of 1.6. In another example, the lowest index layer has a refractive index of 1.7 and the OCA material or other bonding material has a refractive index of 1.5.

在某些實施中,部分地藉由熱接合光學透明黏著劑材料或其他接合材料及選擇性地圖案化接合材料層以移除材料,例如移除一或多個切割通道處之材料來形成層狀波導。在一些情況下,光學透明黏著劑材料或其他接合材料可包括高分子量熱塑性聚合物,其可熔融用於熱接合且然後冷卻以增加接合強度。光學透明黏著劑材料或其他接合材料可具有包括以下性質中之一或多個:(i)用於熱接合之低Tg(例如,<150 C或較佳地小於100 C);(ii)可在正型或負型顯影製程中光圖案化;(iii)可在與適當化學製程(例如,陽離子、陰離子、自由基、熱)接合之後交聯;(iv)包括混濁度及吸收之低光損耗;(v)高折射率(例如,大於1.5或大於1.6);及(vi)交聯狀態中之良好接合強度(例如,可調諧MW、可交聯)。在此等實施中,第一波導層(有時稱為基礎波導層)可具有包括以下中之一或多者的基材:矽氧烷、倍半矽氧烷、(硫代)胺甲酸乙酯、醯胺、(硫代)脲、(硫代)碳酸鹽、(硫代)磷酸鹽、芳香族(茀、聯苯、笨并二噻吩及類似者)。單體官能基可添加至包括以下中之一或多者之基材:(i)自由基(甲基)丙烯酸酯、丙烯醯胺、苯乙烯、乙烯基羰基、乙烯基環丙烷;或(ii)開環材料,諸如環醚(環氧化物、環氧丙烷等)、環狀羰基(碳酸鹽、內酯等)。在一個實例中,基材為含有30%甲基丙烯酸三級丁脂、50%甲基丙烯酸聯苯脂及20%甲基丙烯酸縮水甘油酯之30 kDa共聚物。在另一實例中,基材為含20%固體(97%聚合物:3%PAG)之PGMEA溶劑。In certain implementations, the layer is formed in part by thermally bonding an optically clear adhesive material or other bonding material and selectively patterning the layer of bonding material to remove material, such as removing material at one or more dicing channels shaped waveguide. In some cases, an optically clear adhesive material or other bonding material can include a high molecular weight thermoplastic polymer that can be melted for thermal bonding and then cooled to increase bond strength. Optically clear adhesive materials or other bonding materials may have properties including one or more of the following: (i) low Tg (eg, <150 C or preferably less than 100 C) for thermal bonding; (ii) may Photopatternable in positive or negative tone development processes; (iii) can be crosslinked after bonding with appropriate chemistry (e.g., cationic, anionic, radical, thermal); (iv) low light including haze and absorption Loss; (v) high refractive index (eg, greater than 1.5 or greater than 1.6); and (vi) good bond strength in the crosslinked state (eg, tunable MW, crosslinkable). In such implementations, the first waveguide layer (sometimes referred to as the base waveguide layer) may have a substrate comprising one or more of: siloxane, silsesquioxane, (thio)urethane Esters, amides, (thio)ureas, (thio)carbonates, (thio)phosphates, aromatics (tribene, biphenyl, benzodithiophene and similar). Monomer functional groups may be added to substrates comprising one or more of: (i) free radical (meth)acrylate, acrylamide, styrene, vinylcarbonyl, vinylcyclopropane; or (ii) ) ring-opening materials, such as cyclic ethers (epoxides, propylene oxide, etc.), cyclic carbonyls (carbonates, lactones, etc.). In one example, the substrate is a 30 kDa copolymer containing 30% tert-butyl methacrylate, 50% biphenyl methacrylate, and 20% glycidyl methacrylate. In another example, the substrate was PGMEA solvent at 20% solids (97% polymer: 3% PAG).

12為說明根據某些具體實例之描繪製造層狀波導之方法的操作之處理流程之實例的圖 1200。圖 1200中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1200進行修改以添加額外操作、省略一些操作或改變操作次序。圖1200中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(chemical vapor deposition;CVD)系統、物理氣相沉積(physical vapor deposition;PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(ion beam etching;IBE)、電漿蝕刻(plasma etching;PE)或反應性離子蝕刻(reactive ion etching;RIE))系統及類似者。 12 is a diagram 1200 illustrating an example of a process flow depicting operations of a method of fabricating a layered waveguide, according to certain embodiments. The operations depicted in diagram 1200 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1200 may be modified to add additional operations, omit some operations, or change the order of operations. One or more of the operations described in diagram 1200 may be performed using, for example, one or more semiconductor manufacturing systems, such as ink jet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (physical vapor deposition; PVD) systems, ion or plasma etching (for example, ion beam etching (IBE), plasma etching (PE) or reactive ion etching (RIE)) systems and the like.

12描繪具有一或多個波導晶粒 1212之第一(基礎)波導層 1210(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在操作 1260處,光學透明黏著劑(OCA)材料層或其他接合材料層 1220沉積於第一波導層 1210上。 12 depicts a first (base) waveguide layer 1210 (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN , AlN, SiC, CVD diamond, ZnS wafer, etc.). At operation 1260 , a layer 1220 of optically clear adhesive (OCA) material or other bonding material is deposited on the first waveguide layer 1210 .

在操作 1270處,諸如低折射率基板或其他層之第二波導層 1230在接合製程中接合至第一波導層 1210,光學透明黏著劑(OCA)材料層或其他接合材料層 1220上以形成波導堆疊 1235。接合製程可包括紫外線(UV)固化及/或熱接合製程。 At operation 1270 , second waveguide layer 1230 , such as a low index substrate or other layer, is bonded to first waveguide layer 1210 , optically clear adhesive (OCA) material layer or other bonding material layer 1220 in a bonding process to form a waveguide Stack 1235 . The bonding process may include ultraviolet (UV) curing and/or thermal bonding processes.

在操作 1280處,進行切割製程以自波導堆疊 1235形成一或多個個別波導裝置 1240(例如,一個、兩個、三個、四個、五個或更多個波導器件)。在所說明之實例中,四個波導裝置 1240自波導堆疊 1235形成。切割製程可包括用於切穿波導堆疊1235之雷射剝蝕或其他類似技術。在某些情況下,第一波導層 1210可具有比第二波導層 1230更高之折射率以產生折射率調變。 At operation 1280 , a dicing process is performed to form one or more individual waveguide devices 1240 (eg, one, two, three, four, five or more waveguide devices) from the waveguide stack 1235 . In the illustrated example, four waveguide devices 1240 are formed from waveguide stack 1235 . The dicing process may include laser ablation or other similar techniques for cutting through the waveguide stack 1235 . In some cases, the first waveguide layer 1210 may have a higher index of refraction than the second waveguide layer 1230 to produce index modulation.

儘管圖中未示,但製造 12中所示之多層波導之方法亦可包括用於在第一波導層 1210形成一或多個輸入光柵及/或輸出光柵的一或多個操作(例如,藉由蝕刻)。輸入光柵及輸出光柵可包括例如傾斜或垂直表面起伏光柵。 Although not shown, the method of fabricating the multilayer waveguide shown in FIG. 12 may also include one or more operations for forming one or more input and/or output gratings in the first waveguide layer 1210 (e.g., by etching). The input and output gratings may comprise, for example, inclined or vertical surface relief gratings.

13包括描繪根據某些具體實例之製造多層波導之方法中之操作的實例之流程圖 1300。某些操作可類似於 12中所描繪之彼等。流程圖 1300中所示之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對流程圖 1300進行修改以添加額外操作、省略一些操作或改變操作次序。流程圖 1300中所描述之操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 FIG. 13 includes a flowchart 1300 depicting an example of operations in a method of fabricating a multilayer waveguide according to certain embodiments. Certain operations may be similar to those depicted in FIG. 12 . The operations shown in flowchart 1300 are for purposes of illustration only and are not intended to be limiting. In various implementations, flowchart 1300 may be modified to add additional operations, omit some operations, or change the order of operations. The operations described in flowchart 1300 may be performed using, for example, one or more semiconductor manufacturing systems, such as ink jet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems, ion or Plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems and the like.

在操作 1310處,接收或形成具有一或多個波導晶粒之第一波導層(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。第一波導層可具有形成於其上之一或多個輸入光柵及/或輸出光柵。 At operation 1310 , a first waveguide layer (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO2 , GaN, AlN, SiC, CVD diamond, ZnS wafer, etc.). The first waveguide layer may have one or more input and/or output gratings formed thereon.

在操作 1320處,光學透明黏著劑(OCA)材料層或其他接合層沉積於第一波導層上。 At operation 1320 , a layer of optically clear adhesive (OCA) material or other bonding layer is deposited on the first waveguide layer.

在操作 1330處,在接合製程中利用諸如OCA材料之接合層將第二波導層接合至第一波導層上。接合製程可包括紫外線固化及/或熱接合製程。 At operation 1330 , the second waveguide layer is bonded to the first waveguide layer in a bonding process using a bonding layer, such as an OCA material. The bonding process may include UV curing and/or thermal bonding processes.

在視情況選用之(由虛線描繪之)操作 1335處,一或多個額外波導層接合至第二波導層以補充波導堆疊。舉例而言,各額外波導層可藉由沉積額外接合層及在接合步驟中接合各別額外波導層來形成於波導堆疊上。在某些態樣中,第一波導層可具有比第二波導層及/或堆疊中之其他額外波導層更高之折射率以在各界面處產生折射率調變。舉例而言,多個波導層之折射率可通過後續經接合波導層自第一波導層減小。在某些個例中,堆疊中之波導層之材料及厚度可選擇性地耦合穿過波導中之層的光波長。 At an optional (depicted by dashed lines) operation 1335 , one or more additional waveguide layers are bonded to the second waveguide layer to supplement the waveguide stack. For example, each additional waveguide layer may be formed on the waveguide stack by depositing an additional bonding layer and bonding the respective additional waveguide layer in a bonding step. In certain aspects, the first waveguide layer can have a higher index of refraction than the second waveguide layer and/or other additional waveguide layers in the stack to produce index modulation at interfaces. For example, the refractive index of multiple waveguide layers may be reduced from a first waveguide layer by subsequent bonded waveguide layers. In some instances, the materials and thicknesses of the waveguide layers in the stack can selectively couple wavelengths of light passing through the layers in the waveguide.

在操作 1340處,進行切割製程以切穿經接合波導堆疊以形成一或多個個別波導裝置。裝置。切割製程可包括用於切穿波導堆疊之雷射剝蝕或其他類似技術。 利用選擇沉積 / 移除製造層狀波導之方法 At operation 1340 , a dicing process is performed to cut through the bonded waveguide stack to form one or more individual waveguide devices. device. The dicing process may include laser ablation or other similar techniques for cutting through the waveguide stack. Method for Fabricating Layered Waveguides Using Selective Deposition / Removal

在某些實施中,製造層狀波導之方法可移除或避免在待發生切割之經接合波導堆疊中之一或多個切割通道中形成黏著材料或其他接合材料。以此方式,接合材料層之性質可不受切割製程影響,且可避免歸因於由雷射剝蝕產生之降低接合強度或在切割製程期間發生之其他相似操作而導致的分層。製造層狀波導之此等方法可形成可在各別波導晶粒周圍之一或多個切割線中不含(或實質上不含,諸如超過90%不含或超過99%不含)接合材料的經接合波導堆疊。In certain implementations, the method of fabricating a layered waveguide removes or avoids the formation of adhesive or other bonding material in one or more dicing channels in a bonded waveguide stack to be diced. In this way, the properties of the bonding material layer may not be affected by the dicing process, and delamination due to reduced bonding strength by laser ablation or other similar operations occurring during the dicing process may be avoided. Such methods of fabricating layered waveguides may result in one or more cut lines that may be free (or substantially free, such as more than 90% free or more than 99% free) of bonding material around respective waveguide dies bonded waveguide stack.

14包括說明根據具體實例之描繪製造層狀波導之方法的操作之處理流程之實例的圖 1400。圖 1400中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1400進行修改以添加額外操作、省略一些操作或改變操作次序。圖 1400中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 14 includes a diagram 1400 illustrating an example of a process flow depicting operations of a method of fabricating a layered waveguide according to an embodiment. The operations depicted in diagram 1400 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1400 may be modified to add additional operations, omit some operations, or change the order of operations. One or more operations described in diagram 1400 may be performed using, for example, one or more semiconductor manufacturing systems, such as inkjet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

14描繪具有一或多個波導晶粒 1412之第一波導層 1410(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在操作 1460處,例如透明接合材料之光學透明黏著劑材料層或其他接合材料層 1420沉積於第一波導層 1410上且一或多個切割通道 1422形成於接合層 1420中。在某些實施中,一或多個切割通道 1422可使用本文所描述之技術沉積形成為在一或多個切割通道 1422外部之第一波導層 1410的區域中沉積接合材料之添加製程的部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料(例如,OCA材料)選擇性地沉積於一或多個切割通道 1422外部之第一波導層 1410的區域上。在此實例中,一或多個切割通道 1422可保持不含或實質上不含接合材料。在其他實施中,消去製程可用於移除一或多個切割通道 1422處之材料,從而曝光第一波導層 1410。舉例而言,接合層 1420可諸如藉由旋塗來沉積,且諸如微影製程之蝕刻製程可用以自一或多個切割通道 1422移除材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層 1410上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通道 1422中之接合層 1420移除接合材料。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。 14 depicts a first waveguide layer 1410 (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN, AlN, SiC, CVD diamond, ZnS wafer ) with one or more waveguide dies 1412 wait). At operation 1460 , a layer 1420 of an optically clear adhesive material such as a transparent bonding material or other bonding material is deposited on the first waveguide layer 1410 and one or more dicing channels 1422 are formed in the bonding layer 1420 . In certain implementations, the one or more cut channels 1422 may be deposited using techniques described herein as part of an additive process of depositing bonding material in the region of the first waveguide layer 1410 outside the one or more cut channels 1422 . For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material (eg, OCA material) on regions of the first waveguide layer 1410 outside of the one or more dicing channels 1422 . In this example, one or more cutting channels 1422 can remain free or substantially free of bonding material. In other implementations, an ablation process may be used to remove material at one or more dicing channels 1422 to expose the first waveguide layer 1410 . For example, bonding layer 1420 may be deposited, such as by spin coating, and an etching process, such as a lithography process, may be used to remove material from one or more dicing channels 1422 . Before the etching process, the mask layer can be patterned on the first waveguide layer 1410 using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove bonding material from bonding layer 1420 in one or more dicing channels 1422 . In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed.

在操作 1470處,在接合製程中使用接合層 1420將第二波導層 1430接合至第一波導層 1410上以形成經接合波導堆疊 1435。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層 1430可具有比第一波導層 1410更低之折射率,以便例如產生折射率調變。 At operation 1470 , the second waveguide layer 1430 is bonded to the first waveguide layer 1410 using the bonding layer 1420 in a bonding process to form a bonded waveguide stack 1435 . The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer 1430 may have a lower index of refraction than the first waveguide layer 1410 , for example, to produce index modulation.

在操作 1480處,進行切割製程以自經接合波導堆疊 1435形成一或多個個別層狀波導 1440(亦稱為層狀波導裝置)。切割製程可包括用於在一或多個切割通道 1422 切穿經接合波導堆疊 1435之雷射剝蝕或其他類似技術。儘管圖中未示,但在另一實施中, 14中所描繪之製成亦可包括在第一波導層 1410及/或第二波導層 1430之外部表面中或上形成(例如,藉由蝕刻)一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。 At operation 1480 , a dicing process is performed to form one or more individual layered waveguides 1440 (also referred to as layered waveguide devices) from the bonded waveguide stack 1435 . The dicing process may include laser ablation or other similar techniques for cutting through bonded waveguide stack 1435 in one or more dicing channels 1422 . Although not shown, in another implementation, the fabrication depicted in FIG. 14 may also include forming in or on the exterior surfaces of the first waveguide layer 1410 and/or the second waveguide layer 1430 (e.g., by etch) one or more input gratings and/or output gratings. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings.

14中,接合材料層 1420安置於除一或多個切割通道 1422中之外的整個第一波導層 1410之上。在其他實施中,接合材料層 1420可安置於一或多個波導晶粒 1412之上的區域中且不安置於一或多個切割通道 1422外部之區域的至少一部分中。在另一實施中,波導晶粒 1412可處於一或多個切割通道 1422內。 In FIG. 14 , a layer of bonding material 1420 is disposed over the entire first waveguide layer 1410 except in one or more cut channels 1422 . In other implementations, the bonding material layer 1420 may be disposed in a region above the one or more waveguide dies 1412 and not be disposed in at least a portion of the region outside of the one or more dicing channels 1422 . In another implementation, the waveguide die 1412 may be within one or more dicing channels 1422 .

15包括描繪根據具體實例之製造層狀波導之方法之實例的操作之流程圖 1500。操作中之一些可類似於 14中所描繪之彼等。圖1500中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1500進行修改以添加額外操作、省略一些操作或改變操作次序。舉例而言,儘管圖中未示,但製程亦可包括在第一波導層及/或第二波導層之外部表面中或上形成一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。圖 1500中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 FIG. 15 includes a flowchart 1500 depicting the operations of an example of a method of fabricating a layered waveguide according to embodiments. Some of the operations may be similar to those depicted in FIG. 14 . The operations depicted in diagram 1500 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1500 may be modified to add additional operations, omit some operations, or change the order of operations. For example, although not shown, the process may also include forming one or more input and/or output gratings in or on the outer surface of the first waveguide layer and/or the second waveguide layer. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings. One or more of the operations described in diagram 1500 may be performed using, for example, one or more semiconductor manufacturing systems, such as ink jet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

在操作 1510處,接收到或形成(例如,使用本文所描述之沉積技術)具有一或多個波導晶粒之第一波導層(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在一個實施中,第一波導層可具有形成於第一波導層之表面中或形成於第一波導層之表面上的一或多個輸入光柵及/或輸出光柵。 At operation 1510 , a first waveguide layer (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO 2 , GaN, AlN, SiC, CVD diamond, ZnS wafer, etc.). In one implementation, the first waveguide layer may have one or more input and/or output gratings formed in or on the surface of the first waveguide layer.

在操作 1520處,將光學透明黏著劑(OCA)材料或其他接合材料沉積於第一波導層上,且一或多個切割通道形成於接合材料層中。在某些實施中,一或多個切割通道可使用本文所描述之技術沉積形成為在切割通道外部之第一波導層的區域中沉積接合材料之添加製程的部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料(例如,OCA材料)選擇性地沉積於一或多個切割通道外部之第一波導層的區域上。在此實例中,一或多個切割通道可保持不含或實質上不含接合材料。在其他實施中,消去製程可用於移除一或多個切割通道處之材料,從而曝光第一波導層。舉例而言,接合層可諸如藉由旋塗來沉積,且諸如微影製程之蝕刻製程可用以自一或多個切割通道移除材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通道中之接合層移除接合材料。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。 At operation 1520 , an optically clear adhesive (OCA) material or other bonding material is deposited on the first waveguide layer, and one or more cut channels are formed in the bonding material layer. In certain implementations, one or more dicing channels may be deposited using techniques described herein as part of an additive process of depositing bonding material in regions of the first waveguide layer outside of the dicing channels. For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material (eg, OCA material) on regions of the first waveguide layer outside the one or more cut channels. In this example, one or more cutting channels may remain free or substantially free of bonding material. In other implementations, an ablation process may be used to remove material at one or more dicing channels, thereby exposing the first waveguide layer. For example, a bonding layer can be deposited, such as by spin coating, and an etching process, such as a lithography process, can be used to remove material from one or more dicing channels. Before the etching process, the mask layer can be patterned on the first waveguide layer using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove bonding material from the bonding layer in the one or more dicing channels. In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed.

在操作 1530處,在接合製程中利用在操作 1520中沉積之接合材料將第二波導層接合至第一波導層上以形成經接合波導堆疊。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層可具有比第一波導層更低之折射率。可選擇第一及第二波導層之各別折射率以用於所要折射率調變。經接合波導堆疊可具有不含或實質上不含接合材料之一或多個切割通道。在一個實施中,接合材料安置於除一或多個切割通道中之外的整個第一波導層之上。在另一實施中,接合材料可僅安置於一或多個切割通道之內部周邊內。在一些情況下,一或多個切割通道圍繞一或多個波導晶粒且並不重疊或包括一或多個波導晶粒之部分。在其他情況下,一或多個波導晶粒處於各別一或多個切割通道內。 At operation 1530 , the second waveguide layer is bonded onto the first waveguide layer using the bonding material deposited in operation 1520 in a bonding process to form a bonded waveguide stack. The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer may have a lower refractive index than the first waveguide layer. The respective indices of refraction of the first and second waveguide layers can be selected for the desired index modulation. A bonded waveguide stack may have one or more cut channels free or substantially free of bonding material. In one implementation, the bonding material is disposed over the entire first waveguide layer except in the one or more cut channels. In another implementation, the bonding material may only be disposed within the inner perimeter of one or more cutting channels. In some cases, one or more dicing channels surround one or more waveguide dies and do not overlap or include portions of one or more waveguide dies. In other cases, one or more waveguide dies are in respective one or more dicing channels.

在視情況選用之(由虛線描繪之)操作 1535處,一或多個額外波導層接合至第二波導層及/或第一波導層以補充經接合波導堆疊。舉例而言,各額外波導層可藉由沉積額外接合層及在接合步驟中接合各別額外波導層來形成於波導堆疊上。在某些態樣中,第一波導層可具有比第二波導層及/或堆疊中之其他額外波導層更高之折射率以在各界面處產生折射率調變。舉例而言,波導層之折射率可通過後續經接合波導層自第一波導層減小。在某些個例中,堆疊中之波導層之材料及厚度可選擇性地耦合穿過波導中之層的光波長。 At an optional operation 1535 (depicted by dashed lines), one or more additional waveguide layers are bonded to the second waveguide layer and/or the first waveguide layer to supplement the bonded waveguide stack. For example, each additional waveguide layer can be formed on the waveguide stack by depositing an additional bonding layer and bonding the respective additional waveguide layer in a bonding step. In certain aspects, the first waveguide layer can have a higher index of refraction than the second waveguide layer and/or other additional waveguide layers in the stack to produce index modulation at interfaces. For example, the refractive index of the waveguide layer can be reduced from the first waveguide layer by subsequent bonded waveguide layers. In some instances, the materials and thicknesses of the waveguide layers in the stack can selectively couple wavelengths of light passing through the layers in the waveguide.

在操作 1540處,進行切割製程以在一或多個切割通道處切穿接合波導堆疊以形成一或多個個別層狀波導。切割製程可包括用於切穿波導堆疊之雷射剝蝕或其他類似技術。 利用選擇沉積 / 移除及切割通道中之犧牲材料製造層狀波導之方法 At operation 1540 , a dicing process is performed to cut through the bonded waveguide stack at one or more dicing channels to form one or more individual layered waveguides. The dicing process may include laser ablation or other similar techniques for cutting through the waveguide stack. Method for fabricating layered waveguides using selective deposition / removal and cutting of sacrificial materials in vias

在某些實施中,製造層狀波導之方法在波導層之間的接合層中之一或多個切割通道中形成犧牲材料。犧牲材料可為通常不接合至接合層之材料。在一個態樣中,犧牲材料為惰性聚合物材料。在另一態樣中,犧牲材料與接合層之材料具有正交反應性。In certain implementations, the method of making a layered waveguide forms a sacrificial material in one or more cut channels in a bonding layer between waveguide layers. The sacrificial material can be a material that is not normally bonded to the bonding layer. In one aspect, the sacrificial material is an inert polymeric material. In another aspect, the sacrificial material has orthogonal reactivity with the material of the bonding layer.

16包括說明根據具體實例之描繪製造層狀波導之方法的操作之處理流程之實例的圖 1600。圖 1600中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1600進行修改以添加額外操作、省略一些操作或改變操作次序。圖 1600中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 16 includes a diagram 1600 illustrating an example of a process flow depicting operations of a method of fabricating a layered waveguide according to an embodiment. The operations depicted in diagram 1600 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1600 may be modified to add additional operations, omit some operations, or change the order of operations. One or more operations described in diagram 1600 may be performed using, for example, one or more semiconductor manufacturing systems, such as inkjet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

16描繪具有一或多個波導晶粒 1612之第一波導層 1610(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在操作 1660處,例如透明材料之光學透明黏著劑材料層或其他接合材料層 1620沉積於第一波導層 1610上且一或多個切割通道 1622形成於接合層 1620中。在某些實施中,一或多個切割通道 1622可使用本文所描述之技術沉積形成為在一或多個切割通道 1622外部之第一波導層 1610的區域中沉積接合材料之添加製程的部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料(例如,OCA材料)選擇性地沉積於一或多個切割通道 1622外部之第一波導層 1610的區域上。在其他實施中,消去製程可用於移除一或多個切割通道 1622處之材料,從而曝光第一波導層 1610。舉例而言,接合層 1620可諸如藉由旋塗來沉積,且諸如微影製程之蝕刻製程可用以自一或多個切割通道 1622移除材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層1610上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通道 1622中之接合層 1620移除接合材料。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。 16 depicts a first waveguide layer 1610 (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN, AlN, SiC, CVD diamond, ZnS wafer ) with one or more waveguide die 1612 wait). At operation 1660 , a layer 1620 of an optically clear adhesive material such as a transparent material or other bonding material is deposited on the first waveguide layer 1610 and one or more dicing channels 1622 are formed in the bonding layer 1620 . In certain implementations, the one or more dicing channels 1622 may be deposited using techniques described herein as part of an additive process of depositing bonding material in regions of the first waveguide layer 1610 outside of the one or more dicing channels 1622 . For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material (eg, OCA material) on regions of the first waveguide layer 1610 outside of the one or more dicing channels 1622 . In other implementations, an ablation process may be used to remove material at one or more dicing channels 1622 to expose the first waveguide layer 1610 . For example, bonding layer 1620 may be deposited, such as by spin coating, and an etching process, such as a lithography process, may be used to remove material from one or more dicing channels 1622 . Before the etching process, the mask layer can be patterned on the first waveguide layer 1610 using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove bonding material from bonding layer 1620 in one or more dicing channels 1622 . In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed.

在操作 1665處,犧牲材料 1624沉積至一或多個切割通道 1622中。舉例而言,噴墨沉積製程或滴鑄製程可用於將犧牲材料 1624選擇性地沉積至接合層 1620之一或多個切割通道 1622中。犧牲材料可為通常不接合至接合層之材料。在一個態樣中,犧牲材料為惰性聚合物材料。在另一態樣中,犧牲材料與接合層之材料具有正交反應性。 At operation 1665 , sacrificial material 1624 is deposited into one or more dicing channels 1622 . For example, an inkjet deposition process or a drop casting process may be used to selectively deposit sacrificial material 1624 into one or more dicing channels 1622 of bonding layer 1620 . The sacrificial material can be a material that is not normally bonded to the bonding layer. In one aspect, the sacrificial material is an inert polymeric material. In another aspect, the sacrificial material has orthogonal reactivity with the material of the bonding layer.

在操作 1670處,在接合製程中使用接合層 1620將第二波導層 1630接合至第一波導層 1610上以形成經接合波導堆疊 1635。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層 1630可具有比第一波導層 1610更低之折射率,以便例如產生折射率調變。 At operation 1670 , the second waveguide layer 1630 is bonded to the first waveguide layer 1610 using the bonding layer 1620 in a bonding process to form a bonded waveguide stack 1635 . The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer 1630 may have a lower index of refraction than the first waveguide layer 1610 , for example, to produce index modulation.

在操作 1680處,進行切割製程以自經接合波導堆疊 1635形成一或多個個別層狀波導 1640(亦稱為層狀波導裝置)。切割製程可包括用於在一或多個切割通道 1622切穿經接合波導堆疊 1635之雷射剝蝕或其他類似技術。儘管圖中未示,但在另一實施中, 16中所描繪之製程亦可包括在第一波導層 1610及/或第二波導層 1630之外部表面中或上形成(例如,藉由蝕刻)一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。 At operation 1680 , a dicing process is performed to form one or more individual layered waveguides 1640 (also referred to as layered waveguide devices) from the bonded waveguide stack 1635 . The dicing process may include laser ablation or other similar techniques for cutting through bonded waveguide stack 1635 at one or more dicing channels 1622 . Although not shown, in another implementation, the process depicted in FIG. 16 may also include forming (e.g. , by etching ) one or more input gratings and/or output gratings. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings.

16中,接合材料層 1620安置於除一或多個切割通道 1622中之外的整個第一波導層 1610之上。在其他實施中,接合材料層 1620可安置於一或多個波導晶粒 1612之上的區域中且並不安置於一或多個切割通道 1622外部之區域的至少一部分中。在另一實施中,波導晶粒 1612可處於一或多個切割通道 1622內。 In FIG. 16 , a layer of bonding material 1620 is disposed over the entire first waveguide layer 1610 except in one or more cut channels 1622 . In other implementations, the bonding material layer 1620 may be disposed in a region above the one or more waveguide die 1612 and not disposed in at least a portion of the region outside the one or more dicing channels 1622 . In another implementation, the waveguide die 1612 may be within one or more dicing channels 1622 .

17包括描繪根據具體實例之製造層狀波導之方法之實例的操作之流程圖 1700。操作中之一些可類似於 14 16中所描繪之彼等。圖 1700中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1700進行修改以添加額外操作、省略一些操作或改變操作次序。舉例而言,儘管圖中未示,但製程亦可包括在第一波導層及/或第二波導層之外部表面中或上形成一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。圖 1700中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 FIG. 17 includes a flowchart 1700 depicting the operations of an example of a method of fabricating a layered waveguide according to embodiments. Some of the operations may be similar to those depicted in Figures 14 and 16 . The operations depicted in diagram 1700 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1700 may be modified to add additional operations, omit some operations, or change the order of operations. For example, although not shown, the process may also include forming one or more input and/or output gratings in or on the outer surface of the first waveguide layer and/or the second waveguide layer. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings. One or more operations described in diagram 1700 may be performed using, for example, one or more semiconductor manufacturing systems, such as inkjet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

在操作 1710處,接收或形成(例如,使用本文所描述之沉積技術)具有一或多個波導晶粒之第一波導層(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在一個實施中,第一波導層可具有形成於第一波導層之表面中或形成於第一波導層之表面上的一或多個輸入光柵及/或輸出光柵。 At operation 1710 , a first waveguide layer (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO 2. GaN, AlN, SiC, CVD diamond, ZnS wafer, etc.). In one implementation, the first waveguide layer may have one or more input and/or output gratings formed in or on the surface of the first waveguide layer.

在操作 1720處,將光學透明黏著劑(OCA)材料或其他接合材料沉積於第一波導層上,且一或多個切割通道形成於接合材料層中。在某些實施中,一或多個切割通道可使用本文所描述之技術沉積形成為在切割通道外部之第一波導層的區域中沉積接合材料之添加製程的部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料(例如,OCA材料)選擇性地沉積於一或多個切割通道外部之第一波導層的區域上。在其他實施中,消去製程可用於移除一或多個切割通道處之材料,從而曝光第一波導層。舉例而言,接合層可諸如藉由旋塗來沉積,且諸如微影製程之蝕刻製程可用以自一或多個切割通道移除材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通道中之接合層移除接合材料。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。 At operation 1720 , an optically clear adhesive (OCA) material or other bonding material is deposited on the first waveguide layer, and one or more cut channels are formed in the bonding material layer. In certain implementations, one or more dicing channels may be deposited using the techniques described herein as part of an additive process of depositing bonding material in the region of the first waveguide layer outside the dicing channels. For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material (eg, OCA material) on regions of the first waveguide layer outside the one or more cut channels. In other implementations, an ablation process may be used to remove material at one or more dicing channels, thereby exposing the first waveguide layer. For example, a bonding layer can be deposited, such as by spin coating, and an etching process, such as a lithography process, can be used to remove material from one or more dicing channels. Before the etching process, the mask layer can be patterned on the first waveguide layer using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove bonding material from the bonding layer in the one or more dicing channels. In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed.

在操作 1725處,犧牲材料沉積至一或多個切割通道中。舉例而言,噴墨製程或滴鑄製程可用於將犧牲材料選擇性地沉積至一或多個切割通道中。 At operation 1725 , sacrificial material is deposited into the one or more cutting channels. For example, an inkjet process or a drop casting process may be used to selectively deposit sacrificial material into one or more dicing channels.

在操作 1730處,在接合製程中利用諸如OCA材料之接合層將第二波導層接合至第一波導層上。接合製程可包括紫外線固化及/或熱接合製程。 At operation 1730 , the second waveguide layer is bonded to the first waveguide layer using a bonding layer, such as an OCA material, in a bonding process. The bonding process may include UV curing and/or thermal bonding processes.

在操作 1730處,在接合製程中利用具有犧牲材料之一或多個切割通道之接合材料將第二波導層接合至第一波導層上以形成經接合波導堆疊。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層可具有比第一波導層更低之折射率。可選擇第一及第二波導層之各別折射率以用於所要折射率調變。經接合波導堆疊可具有不含或實質上不含接合材料之一或多個切割通道。在一個實施中,接合材料安置於除一或多個切割通道中之外的整個第一波導層之上。在另一實施中,接合材料可僅安置於一或多個切割通道之內部周邊內。在一些情況下,一或多個切割通道圍繞一或多個波導晶粒且並不重疊或包括一或多個波導晶粒之部分。在其他情況下,一或多個波導晶粒處於各別一或多個切割通道內。 At operation 1730 , the second waveguide layer is bonded to the first waveguide layer in a bonding process using a bonding material having one or more cut channels of sacrificial material to form a bonded waveguide stack. The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer may have a lower refractive index than the first waveguide layer. The respective indices of refraction of the first and second waveguide layers can be selected for the desired index modulation. A bonded waveguide stack may have one or more cut channels free or substantially free of bonding material. In one implementation, the bonding material is disposed over the entire first waveguide layer except in the one or more cut channels. In another implementation, the bonding material may only be disposed within the inner perimeter of one or more cutting channels. In some cases, one or more dicing channels surround one or more waveguide dies and do not overlap or include portions of one or more waveguide dies. In other cases, one or more waveguide dies are in respective one or more dicing channels.

在視情況選用之(由虛線描繪之)操作 1735處,一或多個額外波導層接合至第二波導層及/或第一波導層以補充經接合波導堆疊。舉例而言,各額外波導層可藉由沉積額外接合層及在接合步驟中接合各別額外波導層來形成於波導堆疊上。在某些態樣中,第一波導層可具有比第二波導層及/或堆疊中之其他額外波導層更高之折射率以在各界面處產生折射率調變。舉例而言,波導層之折射率可通過後續經接合波導層自第一波導層減小。在某些個例中,堆疊中之波導層之材料及厚度可選擇性地耦合穿過波導中之層的光波長。 At an optional operation 1735 (depicted by dashed lines), one or more additional waveguide layers are bonded to the second waveguide layer and/or the first waveguide layer to supplement the bonded waveguide stack. For example, each additional waveguide layer may be formed on the waveguide stack by depositing an additional bonding layer and bonding the respective additional waveguide layer in a bonding step. In certain aspects, the first waveguide layer can have a higher index of refraction than the second waveguide layer and/or other additional waveguide layers in the stack to produce index modulation at interfaces. For example, the refractive index of the waveguide layer can be reduced from the first waveguide layer by subsequent bonded waveguide layers. In some instances, the materials and thicknesses of the waveguide layers in the stack can selectively couple wavelengths of light passing through the layers in the waveguide.

在操作 1740處,進行切割製程以在一或多個切割通道中切穿接合波導堆疊且切穿犧牲材料以形成一或多個個別層狀波導。切割製程可包括用於切穿波導堆疊之雷射剝蝕或其他類似技術。 At operation 1740 , a dicing process is performed to cut through the bonded waveguide stack and through the sacrificial material in one or more dicing lanes to form one or more individual layered waveguides. The dicing process may include laser ablation or other similar techniques for cutting through the waveguide stack.

在替代實施中,可在操作 1720處沉積接合材料之前沉積犧牲材料。在此實施中,犧牲材料可在接合層材料之沉積期間充當障壁,例如在滴鑄製程或類似製程中。在接合材料之沉積期間,犧牲材料充當將接合材料維持於波導晶粒周圍之區內及一或多個切割通道內部之區中的障壁。 In an alternate implementation, the sacrificial material may be deposited prior to depositing the bonding material at operation 1720 . In this implementation, the sacrificial material may act as a barrier during deposition of the bonding layer material, such as in a drop casting process or the like. During deposition of the bonding material, the sacrificial material acts as a barrier maintaining the bonding material in the region around the waveguide die and in the region inside the one or more dicing channels.

18包括說明根據具體實例之描繪製造層狀波導之方法的操作之處理流程之實例的圖 1800。圖1800中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1800進行修改以添加額外操作、省略一些操作或改變操作次序。圖 1800中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 18 includes a diagram 1800 illustrating an example of a process flow depicting operations of a method of fabricating a layered waveguide according to an embodiment. The operations depicted in diagram 1800 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1800 may be modified to add additional operations, omit some operations, or change the order of operations. One or more operations described in diagram 1800 may be performed using, for example, one or more semiconductor manufacturing systems, such as ink jet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

18描繪具有一或多個波導晶粒 1812之第一波導層 1810(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。 18 depicts a first waveguide layer 1810 (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO 3 , TiO 2 , GaN, AlN, SiC, CVD diamond, ZnS wafer) with one or more waveguide dies 1812 wait).

在操作 1855處,犧牲材料 1824形成於一或多個切割通道 1822中之第一波導層 1810上。在一個實施中,噴墨製程或滴鑄製程或其他添加製程可用於將犧牲材料 1824選擇性地沉積於一或多個切割通道 1822中。在另一實施中,消去製程可用於在一或多個切割通道 1822中形成犧牲材料 1824。舉例而言,犧牲材料 1824可沉積於第一波導層 1810上,且蝕刻製程可用以根據例如切割通道圖案移除一或多個切割通道 1822外部之犧牲材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層 1810上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通 1822外部之第一波導層 1810移除犧牲材料且在一或多個切割通道 1822中留下犧牲材料 1824。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。犧牲材料可為通常不接合至接合層之材料。在一個態樣中,犧牲材料為惰性聚合物材料。在另一態樣中,犧牲材料與接合層之材料具有正交反應性。 At operation 1855 , sacrificial material 1824 is formed on first waveguide layer 1810 in one or more dicing channels 1822 . In one implementation, an inkjet process or drop casting process or other additive process may be used to selectively deposit sacrificial material 1824 in one or more dicing channels 1822 . In another implementation, an ablation process may be used to form sacrificial material 1824 in one or more dicing channels 1822 . For example, a sacrificial material 1824 may be deposited on the first waveguide layer 1810 , and an etch process may be used to remove the sacrificial material outside of one or more dicing channels 1822 according to, for example, a dicing channel pattern. Before the etching process, the mask layer can be patterned on the first waveguide layer 1810 using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove the sacrificial material from the first waveguide layer 1810 outside the one or more dicing channels 1822 and leave the sacrificial material 1824 in the one or more dicing channels 1822 . In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed. The sacrificial material can be a material that is not normally bonded to the bonding layer. In one aspect, the sacrificial material is an inert polymeric material. In another aspect, the sacrificial material has orthogonal reactivity with the material of the bonding layer.

在操作 1860處,光學透明黏著劑材料層或其他接合材料層 1820在由一或多個切割通道 1824內之犧牲材料 1824之內部周邊接合之一或多個區中沉積於第一波導層 1810上。舉例而言,滴鑄製程或類似製程可用於將接合材料(例如,OCA)沉積於一或多個區內,且接合材料可展開直至到達犧牲材料 1824。犧牲材料 1824可充當將接合材料 1820維持於犧牲材料 1824之內部周邊內及切割通道 1822內之一或多個區內的障壁。在所說明之實例中,一或多個區圍繞波導晶粒 1812且為波導晶粒 1812上方之外部區域。在另一實例中,一或多個區在波導晶粒 1812上方。接合材料 1820可使用本文所描述之沉積技術形成為添加製程之部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料選擇性地沉積於一或多個切割通道 1822內。 At operation 1860 , a layer 1820 of optically clear adhesive material or other bonding material is deposited on first waveguide layer 1810 in one or more regions bonded by the inner perimeter of sacrificial material 1824 within one or more dicing channels 1824 . For example, a drop casting process or similar process may be used to deposit bonding material (eg, OCA) in one or more regions, and the bonding material may be spread out until it reaches sacrificial material 1824 . The sacrificial material 1824 may act as a barrier to maintain the bonding material 1820 within the inner perimeter of the sacrificial material 1824 and within one or more regions within the cut channel 1822 . In the illustrated example, one or more regions surround waveguide die 1812 and are the outer regions above waveguide die 1812 . In another example, one or more regions are above the waveguide die 1812 . Bonding material 1820 may be formed as part of an additive process using the deposition techniques described herein. For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material within one or more dicing channels 1822 .

在操作 1870處,在接合製程中使用接合層 1820將第二波導層 1830接合至第一波導層 1810上以形成經接合波導堆疊 1835。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層 1830可具有比第一波導層 1810更低之折射率,以便例如產生折射率調變。 At operation 1870 , the second waveguide layer 1830 is bonded to the first waveguide layer 1810 using the bonding layer 1820 in a bonding process to form a bonded waveguide stack 1835 . The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer 1830 may have a lower index of refraction than the first waveguide layer 1810 , for example, to produce index modulation.

在操作 1880處,進行切割製程以自經接合波導堆疊 1835形成一或多個個別層狀波導 1840(亦稱為層狀波導裝置)。切割製程可包括用於在一或多個切割通道 1822中切穿經接合波導堆疊 1835之雷射剝蝕或其他類似技術。儘管圖中未示,但在另一實施中, 18中所描繪之製成亦可包括在第一波導層 1810及/或第二波導層 1830之外部表面中或上形成(例如,藉由蝕刻)一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。 At operation 1880 , a dicing process is performed to form one or more individual layered waveguides 1840 (also referred to as layered waveguide devices) from the bonded waveguide stack 1835 . The dicing process may include laser ablation or other similar techniques for cutting through bonded waveguide stack 1835 in one or more dicing channels 1822 . Although not shown, in another implementation, the fabrication depicted in FIG. 18 may also include forming in or on the exterior surfaces of the first waveguide layer 1810 and/or the second waveguide layer 1830 (e.g., by etch) one or more input gratings and/or output gratings. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings.

18中,接合材料 1820安置於一或多個切割通道 1822之內部周邊內。在其他實施中,接合材料 1820可安置於一或多個波導晶粒 1812之上的一或多個區域中。在一個態樣中,接合材料 1820可以不安置於一或多個切割通道 1822外部之任何區域中。 In FIG. 18 , bonding material 1820 is disposed within the inner perimeter of one or more cut channels 1822 . In other implementations, bonding material 1820 may be disposed in one or more regions over one or more waveguide die 1812 . In one aspect, bonding material 1820 may not be disposed in any area outside of one or more cutting channels 1822 .

19包括描繪根據某些具體實例之製造多層波導之方法之操作的實例之流程圖 1900。操作中之一些可類似於 18中所描繪之彼等。圖 1900中所描述之操作僅出於說明之目的且不意欲為限制性的。在各種實施中,可對圖 1900進行修改以添加額外操作、省略一些操作或改變操作次序。舉例而言,儘管圖中未示,但製程亦可包括在第一波導層及/或第二波導層之外部表面中或上形成一或多個輸入光柵及/或輸出光柵。輸入光柵及/或輸出光柵可包括例如傾斜或垂直表面起伏光柵。圖 1900中所描述之一或多個操作可使用例如一或多個半導體製造系統來進行,諸如噴墨系統、旋塗系統、化學氣相沉積(CVD)系統、物理氣相沉積(PVD)系統、離子或電漿蝕刻(例如,離子束蝕刻(IBE)、電漿蝕刻(PE)或反應性離子蝕刻(RIE))系統及類似者。 FIG. 19 includes a flowchart 1900 depicting an example of the operations of a method of fabricating a multilayer waveguide according to certain embodiments. Some of the operations may be similar to those depicted in FIG. 18 . The operations depicted in diagram 1900 are for purposes of illustration only and are not intended to be limiting. In various implementations, diagram 1900 may be modified to add additional operations, omit some operations, or change the order of operations. For example, although not shown, the process may also include forming one or more input and/or output gratings in or on the outer surface of the first waveguide layer and/or the second waveguide layer. The input grating and/or the output grating may comprise, for example, inclined or vertical surface relief gratings. One or more of the operations described in diagram 1900 may be performed using, for example, one or more semiconductor manufacturing systems, such as inkjet systems, spin coating systems, chemical vapor deposition (CVD) systems, physical vapor deposition (PVD) systems , ion or plasma etching (eg, ion beam etching (IBE), plasma etching (PE), or reactive ion etching (RIE)) systems, and the like.

在操作 1910處,接收或形成(例如,一本文所描述之沉積技術)具有一或多個波導晶粒之第一波導層(例如,玻璃、矽、氮化矽、碳化矽、LiNbO 3、TiO 2、GaN、AlN、SiC、CVD鑽石、ZnS晶圓等)。在一個實施中,第一波導層可具有形成於第一波導層之表面中或形成於第一波導層之表面上的一或多個輸入光柵及/或輸出光柵。 At operation 1910 , a first waveguide layer (e.g., glass, silicon, silicon nitride, silicon carbide, LiNbO3 , TiO 2. GaN, AlN, SiC, CVD diamond, ZnS wafer, etc.). In one implementation, the first waveguide layer may have one or more input and/or output gratings formed in or on the surface of the first waveguide layer.

在操作 1915處,犧牲材料根據(例如,根據切割通道圖案)一或多個切割通道形成於第一波導件層上。在一個實施中,噴墨製程、滴鑄製程或其他選擇添加製程可用於將犧牲材料選擇性地沉積於一或多個切割通道中,諸如 18中所示之切割通道 1822。在另一實施中,消去製程可用於在一或多個切割通道中形成犧牲材料。舉例而言,犧牲材料可沉積於第一波導層上,且蝕刻製程可用以根據圖案化於第一波導層上之切割通道圖案移除一或多個切割通道外部之犧牲材料。在蝕刻製程之前,遮罩層可利用切割通道圖案圖案化於第一波導層上。遮罩層可包括例如金屬或金屬合金材料,諸如鉻或氧化鉻。遮罩層可具有用於乾式蝕刻之高電阻,諸如電漿蝕刻。接著可進行蝕刻製程以自一或多個切割通道外部之第一波導層移除犧牲材料。在一個態樣中,可實施包括正型顯影或負型顯影之微影圖案化製程。犧牲材料可為通常不接合至接合層之材料。在一個態樣中,犧牲材料為惰性聚合物材料。在另一態樣中,犧牲材料與接合層之材料具有正交反應性。 At operation 1915 , a sacrificial material is formed on the first waveguide layer according to (eg, according to a cut-channel pattern) one or more cut channels. In one implementation, an inkjet process, drop casting process, or other selective additive process may be used to selectively deposit sacrificial material in one or more dicing channels, such as dicing channel 1822 shown in FIG. 18 . In another implementation, an ablation process may be used to form sacrificial material in one or more dicing channels. For example, a sacrificial material may be deposited on the first waveguide layer, and an etch process may be used to remove the sacrificial material outside one or more dicing channels according to the dicing channel pattern patterned on the first waveguide layer. Before the etching process, the mask layer can be patterned on the first waveguide layer using a dicing channel pattern. The mask layer may comprise, for example, a metal or metal alloy material such as chromium or chromium oxide. The mask layer may have high resistance for dry etching, such as plasma etching. An etch process may then be performed to remove sacrificial material from the first waveguide layer outside of the one or more scribed channels. In one aspect, a photolithographic patterning process including positive tone development or negative tone development may be performed. The sacrificial material can be a material that is not normally bonded to the bonding layer. In one aspect, the sacrificial material is an inert polymeric material. In another aspect, the sacrificial material has orthogonal reactivity with the material of the bonding layer.

在操作 1920處,光學透明黏著劑材料層或其他接合材料層在由一或多個切割通道內之犧牲材料之內部周邊接合之一或多個區中沉積於第一波導層上。舉例而言,滴鑄製程或類似製程可用於將接合材料(例如,OCA)沉積於一或多個區內,且接合材料可展開直至到達犧牲材料。犧牲材料可充當將接合材料維持於犧牲材料之周邊內及切割通道內之一或多個區內。在所說明之實例中,一或多個區圍繞波導晶粒且為波導晶粒上方之外部區域。在另一實例中,一或多個區在波導晶粒上方。接合材料可使用本文所描述之沉積技術形成為添加製程之部分。舉例而言,噴墨製程或滴鑄製程可用於將接合材料選擇性地沉積於一或多個切割通道內。 At operation 1920 , a layer of optically clear adhesive material or other bonding material is deposited on the first waveguide layer in one or more regions bonded by the interior perimeter of the sacrificial material within the one or more cut channels. For example, a drop casting process or similar process can be used to deposit bonding material (eg, OCA) in one or more regions, and the bonding material can be spread out until reaching the sacrificial material. The sacrificial material can serve to maintain the bonding material within one or more regions of the perimeter of the sacrificial material and within the cut channel. In the illustrated example, the one or more regions surround the waveguide die and are the outer regions above the waveguide die. In another example, one or more regions are above the waveguide die. The bonding material can be formed as part of an additive process using the deposition techniques described herein. For example, an inkjet process or a drop casting process may be used to selectively deposit bonding material within one or more dicing channels.

在操作 1930處,在接合製程中利用具有犧牲材料之一或多個切割通道之接合材料將第二波導層接合至第一波導層上以形成經接合波導堆疊。接合製程可包括紫外線固化及/或熱接合製程。在一個實施中,第二波導層可具有比第一波導層更低之折射率。可選擇第一及第二波導層之各別折射率以用於所要折射率調變。經接合波導堆疊可具有不含或實質上不含接合材料之一或多個切割通道。在此實施中,接合材料僅安置於一或多個切割通道之內部周邊內。在一些情況下,一或多個切割通道圍繞一或多個波導晶粒且並不重疊或包括一或多個波導晶粒之部分。在其他情況下,一或多個波導晶粒處於各別一或多個切割通道內。 At operation 1930 , the second waveguide layer is bonded to the first waveguide layer in a bonding process using a bonding material having one or more cut channels of sacrificial material to form a bonded waveguide stack. The bonding process may include UV curing and/or thermal bonding processes. In one implementation, the second waveguide layer may have a lower refractive index than the first waveguide layer. The respective indices of refraction of the first and second waveguide layers can be selected for the desired index modulation. A bonded waveguide stack may have one or more cut channels free or substantially free of bonding material. In this implementation, the bonding material is only disposed within the inner perimeter of the one or more cutting channels. In some cases, one or more dicing channels surround one or more waveguide dies and do not overlap or include portions of one or more waveguide dies. In other cases, one or more waveguide dies are in respective one or more dicing channels.

在視情況選用之(由虛線描繪之)操作 1935處,一或多個額外波導層接合至第二波導層及/或第一波導層以補充經接合波導堆疊。舉例而言,各額外波導層可藉由沉積額外接合層及在接合步驟中接合各別額外波導層來形成於波導堆疊上。在某些態樣中,第一波導層可具有比第二波導層及/或堆疊中之其他額外波導層更高之折射率以在各界面處產生折射率調變。舉例而言,波導層之折射率可通過後續經接合波導層自第一波導層減小。在某些個例中,堆疊中之波導層之材料及厚度可選擇性地耦合穿過波導中之層的光波長。 At an optional operation 1935 (depicted by dashed lines), one or more additional waveguide layers are bonded to the second waveguide layer and/or the first waveguide layer to supplement the bonded waveguide stack. For example, each additional waveguide layer can be formed on the waveguide stack by depositing an additional bonding layer and bonding the respective additional waveguide layer in a bonding step. In certain aspects, the first waveguide layer can have a higher index of refraction than the second waveguide layer and/or other additional waveguide layers in the stack to produce index modulation at interfaces. For example, the refractive index of the waveguide layer can be reduced from the first waveguide layer by subsequent bonded waveguide layers. In some instances, the materials and thicknesses of the waveguide layers in the stack can selectively couple wavelengths of light passing through the layers in the waveguide.

在操作 1940處,進行切割製程以在一或多個切割通道中切穿接合波導堆疊且切穿犧牲材料以形成一或多個個別層狀波導。切割製程可包括用於切穿波導堆疊之雷射剝蝕或其他類似技術。 At operation 1940 , a dicing process is performed to cut through the bonded waveguide stack and through the sacrificial material in one or more dicing lanes to form one or more individual layered waveguides. The dicing process may include laser ablation or other similar techniques for cutting through the waveguide stack.

儘管 14 1618中之層狀波導的所說明之實例具有切割通道,該切割通道定位於一或多個切割通道(例如, 14中所示之切割通道 1422及波導晶粒 1412 16中所示之切割通道 1622及波導晶粒 1612 18中所示之切割通道 1822及波導晶粒 1812)之內部周邊內、距一或多個切割通道之內部周邊一距離處,但本揭示不如此限制。在其他實施中,一或多個波導晶粒可定位於一或多個切割通道內。 Although the illustrated examples of layered waveguides in FIGS. 14 , 16 , and 18 have dicing channels, the dicing channels are positioned in one or more dicing channels (eg, dicing channel 1422 and waveguide die 1412 , shown in FIG. Within the inner perimeter of dicing channel 1622 and waveguide die 1612 shown in FIG. 16 and dicing channel 1822 and waveguide die 1812 shown in FIG . 18 ), at a distance from the inner perimeter of one or more dicing channels, but The disclosure is not so limited. In other implementations, one or more waveguide dies may be positioned within one or more dicing channels.

在某些態樣中,關於 12 13 14 15 16 17 1819所描述之製造多層波導之方法亦可包括形成一或多個光柵耦合器以形成多層波導顯示器之操作。 In some aspects, the method of fabricating a multilayer waveguide described with respect to FIGS . 12 , 13 , 14 , 15 , 16 , 17 , 18 and 19 may also include the operation of forming one or more grating couplers to form a multilayer waveguide display .

20為用於實施本文所揭示之實例中之一些之例示性近眼顯示器(例如,HMD裝置)之例示性電子系統 2000的簡化方塊圖。電子系統2000可用作上文所描述之HMD裝置或其他近眼顯示器的電子系統。在此實例中,電子系統2000可包括一或多個處理器2010及記憶體2020。處理器 2010可經組配以執行用於在數個組件處進行操作之指令,且可為例如適合於在攜帶型電子裝置內實施的通用處理器或微處理器。處理器 2010可以通信方式與電子系統 2000內之複數個組件耦接。為了實現此通信耦接,處理器 2010可跨越匯流排 2040與其他所說明之組件通信。匯流排2040可為經調適以在電子系統2000內傳遞資料之任何子系統。匯流排2040可包括複數個電腦匯流排及額外電路系統以傳遞資料。 20 is a simplified block diagram of an example electronic system 2000 for implementing an example near-eye display (eg, an HMD device) of some of the examples disclosed herein. Electronic system 2000 may be used as the electronic system of the HMD device described above or other near-eye display. In this example, the electronic system 2000 may include one or more processors 2010 and a memory 2020 . Processor 2010 may be configured to execute instructions for operating at several components, and may be, for example, a general purpose processor or microprocessor suitable for implementation within a portable electronic device. The processor 2010 can be communicatively coupled with a plurality of components within the electronic system 2000 . To achieve this communicative coupling, processor 2010 may communicate across bus 2040 with the other illustrated components. Bus 2040 may be any subsystem adapted to communicate data within electronic system 2000 . The bus 2040 may include a plurality of computer buses and additional circuitry to transfer data.

記憶體 2020可耦接至處理器 2010。在一些具體實例中,記憶體 2020可提供短期儲存及長期儲存兩者,且可劃分成若干單元。記憶體 2020可為:揮發性的,諸如靜態隨機存取記憶體(static random access memory;SRAM)及/或DRAM;及/或非揮發性的,諸如唯讀記憶體(read-only memory;ROM)、快閃記憶體及其類似物。此外,記憶體 2020可包括可移式儲存裝置,諸如安全數位(secure digital;SD)卡。記憶體 2020可提供電腦可讀取指令、資料結構、程式模組及用於電子系統 2000之其他資料的儲存。在一些具體實例中,記憶體2020可分佈至不同硬體模組中。指令集及/或程式碼可儲存於記憶體 2020上。該等指令可採取可藉由電子系統 2000執行之可執行碼之形式,及/或可採取原始碼及/或可安裝碼之形式,該原始碼及/或可安裝碼在電子系統 2000上編譯及/或安裝(例如,使用多種大體上可用的編譯器、安裝程式、壓縮/解壓公用程式等中之任一者)後,可採取可執行碼之形式。 The memory 2020 can be coupled to the processor 2010 . In some embodiments, memory 2020 can provide both short-term and long-term storage, and can be divided into units. Memory 2020 may be: volatile, such as static random access memory (static random access memory; SRAM) and/or DRAM; and/or non-volatile, such as read-only memory (read-only memory; ROM) ), flash memory and the like. In addition, the memory 2020 may include a removable storage device, such as a secure digital (SD) card. The memory 2020 may provide storage of computer readable instructions, data structures, program modules, and other data for the electronic system 2000 . In some specific examples, the memory 2020 can be distributed into different hardware modules. A set of instructions and/or code may be stored on memory 2020 . The instructions may take the form of executable code executable by the electronic system 2000 , and/or may take the form of source code and/or installable code compiled on the electronic system 2000 and/or upon installation (eg, using any of a number of generally available compilers, installers, compression/decompression utilities, etc.), may take the form of executable code.

在一些具體實例中,記憶體 2020可儲存複數個應用程式模組2022至 2024,該等應用程式模組可包括任何數目之應用程式。應用程式之實例包括:遊戲應用程式、會議應用程式、視訊回放應用程式或其他合適之應用程式。應用程式可包括深度感測功能或眼動追蹤功能。應用程式模組 2022 2024可包括待由處理器 2010執行之特定指令。在一些具體實例中,應用程式模組 2022 2024之某些應用程式或部分可由其他硬體模組 2080執行。在某些具體實例中,記憶體 2020可另外包括安全記憶體,其可包括額外安全控制以防止對安全資訊之複製或其他未授權存取。 In some embodiments, the memory 2020 can store a plurality of application program modules 2022 to 2024 , and these application program modules can include any number of application programs. Examples of applications include: game applications, conference applications, video playback applications, or other suitable applications. Apps may include depth-sensing capabilities or eye-tracking capabilities. Application modules 2022 to 2024 may include specific instructions to be executed by processor 2010 . In some embodiments, some applications or parts of the application modules 2022 to 2024 can be executed by other hardware modules 2080 . In some embodiments, memory 2020 may additionally include secure memory, which may include additional security controls to prevent copying or other unauthorized access to secure information.

在一些具體實例中,記憶體 2020可包括加載在其中之作業系統 2025。作業系統 2025可操作以起始執行由應用模組 2022 2024提供之指令及/或管理其他硬體模組 2080,以及與可包括一或多個無線收發器之無線通信子系統 2030介接。作業系統 2025可經調適以橫越電子系統 2000之組件進行其他操作,包括進行緒處理、資源管理、資料儲存控制及其他類似功能性。 In some embodiments, the memory 2020 may include an operating system 2025 loaded therein. Operating system 2025 is operable to initiate execution of instructions provided by application modules 2022-2024 and /or manage other hardware modules 2080 , and interface with wireless communication subsystem 2030 , which may include one or more wireless transceivers. Operating system 2025 may be adapted to perform other operations across components of electronic system 2000 , including thread processing, resource management, data storage control, and other similar functionality.

無線通信子系統 2030可包括例如紅外線通信裝置、無線通信裝置及/或晶片組(諸如,Bluetooth®裝置、IEEE 802.11裝置、Wi-Fi裝置、WiMax裝置、蜂巢式通信設施等)及/或類似通信介面。電子系統 2000可包括作為無線通信子系統 2030之部分或作為耦接至該系統之任何部分的單獨組件的用於無線通信之一或多個天線 2034。取決於所要功能性,無線通信子系統 2030可包括單獨收發器以與基地收發器台及其他無線裝置及存取點通信,其可包括與諸如無線廣域網路(wireless wide-area network;WWAN)、無線區域網路(wireless local area network;WLAN)或無線個域網路(wireless personal area network;WPAN)之不同資料網路及/或網路類型通信。WWAN可為例如WiMax(IEEE 802.16)網路。WLAN可為例如IEEE 802.11x網路。WPAN可為例如藍芽網路、IEEE 802.17x或一些其他類型之網路。本文中所描述之技術亦可用於WWAN、WLAN及/或WPAN之任何組合。無線通信子系統 2030可准許與網路、其他電腦系統及/或本文中所描述之任何其他裝置交換資料。無線通信子系統 2030可包括用於使用天線 2034及無線鏈路 2032傳輸或接收諸如HMD裝置之識別符、位置資料、地理地圖、熱圖、相片或視訊之資料的構件。無線通信子系統 2030、處理器 2010及記憶體 2020可一起包含用於進行本文所揭示之一些功能的構件中之一或多者之至少一部分。 Wireless communication subsystem 2030 may include, for example, infrared communication devices, wireless communication devices and/or chipsets (such as Bluetooth® devices, IEEE 802.11 devices, Wi-Fi devices, WiMax devices, cellular communication facilities, etc.) and/or similar communication interface. Electronic system 2000 may include one or more antennas 2034 for wireless communication as part of wireless communication subsystem 2030 or as a separate component coupled to any part of the system. Depending on desired functionality, the wireless communication subsystem 2030 may include separate transceivers to communicate with base transceiver stations and other wireless devices and access points, which may include communication with wireless wide-area networks (WWAN), Communication of different data networks and/or network types over a wireless local area network (WLAN) or a wireless personal area network (WPAN). A WWAN may be, for example, a WiMax (IEEE 802.16) network. The WLAN can be, for example, an IEEE 802.11x network. A WPAN can be, for example, a Bluetooth network, IEEE 802.17x, or some other type of network. The techniques described herein may also be used for any combination of WWAN, WLAN, and/or WPAN. Wireless communication subsystem 2030 may permit the exchange of data with a network, other computer systems, and/or any other devices described herein. Wireless communication subsystem 2030 may include components for using antenna 2034 and wireless link 2032 to transmit or receive data such as an identifier of the HMD device, location data, geographic maps, heat maps, photos or videos. The wireless communication subsystem 2030 , the processor 2010 , and the memory 2020 may together comprise at least a portion of one or more of the means for performing some of the functions disclosed herein.

電子系統 2000之具體實例亦可包括一或多個感測器 2090。感測器 2090可包括例如影像感測器、加速度計、壓力感測器、溫度感測器、近接感測器、磁力計、陀螺儀、慣性感測器(例如,組合加速度計與陀螺儀之模組)、周圍光測器、或可操作以提供感測輸出及/或接收感測輸入之任何其他類似的模組,諸如深度感測器或位置感測器。舉例而言,在一些實施方式中,感測器 2090可包括一或多個慣性量測單元(inertial measurement unit;IMU)及/或一或多個位置感測器。IMU可基於自位置感測器中之一或多者接收到之量測信號而產生校準資料,該校準資料指示相對於HMD裝置之初始位置的HMD裝置之估計位置。位置感測器可回應於HMD裝置之運動而產生一或多個量測信號。位置感測器之實例可包括但不限於一或多個加速度計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU之誤差校正的一種類型之感測器,或其某一組合。位置感測器可定位於IMU外部、IMU內部或其某一組合。至少一些感測器可使用結構化光圖案以進行感測。 Embodiments of the electronic system 2000 may also include one or more sensors 2090 . Sensors 2090 may include, for example, image sensors, accelerometers, pressure sensors, temperature sensors, proximity sensors, magnetometers, gyroscopes, inertial sensors (eg, a combination accelerometer and gyroscope) module), an ambient light detector, or any other similar module operable to provide a sensory output and/or receive a sensory input, such as a depth sensor or a position sensor. For example, in some embodiments, the sensor 2090 may include one or more inertial measurement units (IMU) and/or one or more position sensors. The IMU may generate calibration data indicating an estimated position of the HMD device relative to an initial position of the HMD device based on measurement signals received from one or more of the position sensors. The position sensor may generate one or more measurement signals in response to motion of the HMD device. Examples of position sensors may include, but are not limited to, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor to detect motion, error for an IMU Calibration of a type of sensor, or some combination thereof. The position sensors may be located external to the IMU, internal to the IMU, or some combination thereof. At least some sensors may use structured light patterns for sensing.

電子系統 2000可包括顯示模組 2060。顯示模組 2060可為近眼顯示器,且可按圖形方式將諸如影像、視訊及各種指令之資訊自電子系統 2000呈現給使用者。此資訊可源自一或多個應用程式模組 2022 2024、虛擬實境引擎 2026、一或多個其他硬體模組 2080、其組合,或用於為使用者解析圖形內容(例如,藉由作業系統 2025)之任何其他合適的構件。顯示模組 2060可使用液晶顯示器(liquid crystal display;LCD)技術、LED技術(包括,例如OLED、ILED、mLED、AMOLED、TOLED等)、發光聚合物顯示器(light emitting polymer display;LPD)技術,或一些其他顯示器技術。 The electronic system 2000 can include a display module 2060 . The display module 2060 can be a near-eye display, and can present information such as images, videos, and various instructions from the electronic system 2000 to the user in a graphical manner. This information may originate from one or more application modules 2022-2024 , virtual reality engine 2026 , one or more other hardware modules 2080 , combinations thereof, or be used to interpret graphical content for the user (eg, by by any other suitable component of Operating System 2025 ). The display module 2060 may use liquid crystal display (liquid crystal display; LCD) technology, LED technology (including, for example, OLED, ILED, mLED, AMOLED, TOLED, etc.), light emitting polymer display (light emitting polymer display; LPD) technology, or some other display technologies.

電子系統 2000可包括使用者輸入/輸出模組 2070。使用者輸入/輸出模組 2070可允許使用者將動作請求發送至電子系統 2000。動作請求可為進行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或進行該應用程式內之特定動作。使用者輸入/輸出模組2070可包括一或多個輸入裝置。實例輸入裝置可包括觸控螢幕、觸控板、麥克風、按鈕、撥號盤、開關、鍵盤、滑鼠、遊戲控制器,或用於接收動作請求及將接收到之動作請求傳達至電子系統 2000之任何其他合適裝置。在一些具體實例中,使用者輸入/輸出模組 2070可根據自電子系統 2000接收到之指令將觸覺反饋提供至使用者。舉例而言,可在接收到動作請求或已進行動作請求時提供觸覺反饋。 The electronic system 2000 can include a user input/output module 2070 . The user input/output module 2070 can allow the user to send action requests to the electronic system 2000 . An action request may be a request to perform a specific action. For example, an action request may start or end an application or perform a specific action within the application. The user input/output module 2070 may include one or more input devices. Example input devices may include touch screens, trackpads, microphones, buttons, dials, switches, keyboards, mice, game controllers, or devices for receiving action requests and communicating received action requests to the electronic system 2000 . any other suitable device. In some embodiments, the user input/output module 2070 can provide tactile feedback to the user according to commands received from the electronic system 2000 . For example, haptic feedback may be provided when an action request is received or has been performed.

電子系統2000可包括攝影機 2050,該攝影機 2050可用以拍攝使用者之相片或視訊,例如用於追蹤使用者之眼睛位置。攝影機 2050亦可用以拍攝環境之相片或視訊,例如用於VR、AR或MR應用程式。攝影機 2050可包括例如具有數百萬或數千萬個像素之互補金屬氧化物半導體(complementary metal-oxide-semiconductor;CMOS)影像感測器。在一些實施中,攝影機2050可包括可用以擷取3D影像之兩個或更多個攝影機。 The electronic system 2000 may include a camera 2050 , and the camera 2050 may be used to take pictures or videos of the user, for example, to track the position of the user's eyes. The camera 2050 can also be used to take pictures or videos of the environment, such as for VR, AR or MR applications. The camera 2050 may include, for example, a complementary metal-oxide-semiconductor (CMOS) image sensor with millions or tens of millions of pixels. In some implementations, camera 2050 may include two or more cameras that may be used to capture 3D images.

在一些具體實例中,電子系統2000可包括複數個其他硬體模組2080。其他硬體模組2080中之各者可為電子系統 2000內之實體模組。雖然其他硬體模組 2080中之各者可永久地經組態為結構,但其他硬體模組 2080中之一些可暫時經組態以進行特定功能或暫時被啟動。其他硬體模組 2080之實例可包括例如音訊輸出及/或輸入模組(例如,麥克風或揚聲器)、近場通信(near field communication;NFC)模組、可再充電電池、電池管理系統、有線/無線電池充電系統等。在一些具體實例中,其他硬體模組 2080之一或多個功能可實施於軟體中。 In some specific examples, the electronic system 2000 may include a plurality of other hardware modules 2080 . Each of the other hardware modules 2080 may be a physical module within the electronic system 2000 . While each of the other hardware modules 2080 may be permanently configured as a configuration, some of the other hardware modules 2080 may be temporarily configured to perform specific functions or be temporarily enabled. Examples of other hardware modules 2080 may include, for example, audio output and/or input modules (eg, microphones or speakers), near field communication (NFC) modules, rechargeable batteries, battery management systems, wired / wireless battery charging system, etc. In some embodiments, one or more functions of other hardware modules 2080 can be implemented in software.

在一些具體實例中,電子系統 2000之記憶體 2020亦可儲存虛擬實境引擎 2026。虛擬實境引擎2026可執行電子系統2000內之應用程式,且自各種感測器接收HMD裝置之位置資訊、加速度資訊、速度資訊、經預測未來位置,或其某一組合。在一些具體實例中,由虛擬實境引擎 2026接收到之資訊可用於為顯示模組2060產生信號(例如,顯示指令)。舉例而言,若接收到之資訊指示使用者已向左看,則虛擬實境引擎2026可產生用於HMD裝置之內容,該內容反映在虛擬環境中使用者之移動。另外,虛擬實境引擎 2026可回應於自使用者輸入/輸出模組 2070接收到之動作請求而進行應用程式內之動作,並將反饋提供至使用者。所提供反饋可為視覺、聽覺或觸覺反饋。在一些實施中,處理器 2010可包括可執行虛擬實境引擎 2026之一或多個圖形處理單元(graphic processing units;GPU)。 In some specific examples, the memory 2020 of the electronic system 2000 can also store the virtual reality engine 2026 . The virtual reality engine 2026 can execute applications in the electronic system 2000 and receive position information, acceleration information, velocity information, predicted future position, or some combination thereof of the HMD device from various sensors. In some embodiments, information received by the virtual reality engine 2026 may be used to generate signals (eg, display commands) for the display module 2060 . For example, if the received information indicates that the user has looked to the left, the virtual reality engine 2026 can generate content for the HMD device that reflects the user's movement in the virtual environment. Additionally, the virtual reality engine 2026 can perform in-application actions in response to action requests received from the user input/output module 2070 and provide feedback to the user. The feedback provided may be visual, auditory or tactile feedback. In some implementations, the processor 2010 may include one or more graphics processing units (graphic processing units; GPUs) of the executable virtual reality engine 2026 .

在各種實施中,上文所描述之硬體及模組可於可使用有線或無線連接彼此通信之單個裝置或多個裝置上實施。舉例而言,在一些實施中,諸如GPU、虛擬實境引擎 2026及應用程式(例如,追蹤應用程式)之一些組件或模組可實施於與頭戴式顯示裝置分離的控制台上。在一些實施中,一個控制台可連接至或支援超過一個HMD。 In various implementations, the hardware and modules described above can be implemented on a single device or multiple devices that can communicate with each other using wired or wireless connections. For example, in some implementations, some components or modules such as the GPU, virtual reality engine 2026 , and applications (eg, tracking applications) may be implemented on a console separate from the head mounted display device. In some implementations, a console can connect to or support more than one HMD.

在替代組態中,不同及/或額外組件可包括於電子系統 2000中。類似地,組件中之一或多者的功能性可按不同於上文所描述之方式的方式分佈在組件當中。舉例而言,在一些具體實例中,電子系統 2000可經修改以包括其他系統環境,諸如AR系統環境及/或MR環境。 In alternative configurations, different and/or additional components may be included in electronic system 2000 . Similarly, the functionality of one or more of the components may be distributed among the components in a different manner than that described above. For example, in some embodiments the electronic system 2000 may be modified to include other system environments, such as an AR system environment and/or a MR environment.

上文所論述之方法、系統及裝置為實例。在適當時各種具體實例可省略、取代或添加各種程序或組件。舉例而言,在替代組態中,可按不同於所描述次序之次序來進行所描述之方法,及/或可添加、省略及/或組合各種階段。此外,可在各種其他具體實例中組合關於某些具體實例所描述之特徵。可以類似方式組合具體實例之不同態樣及元件。此外,技術發展,且因此許多元件為實例,該等實例並不將本揭示之範疇限制於彼等特定實例。The methods, systems, and devices discussed above are examples. Various embodiments may omit, substitute, or add various procedures or components as appropriate. For example, in alternative configurations, the methods described may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Furthermore, features described with respect to certain embodiments may be combined in various other embodiments. Different aspects and elements of the embodiments can be combined in a similar manner. Furthermore, technology evolves, and thus many of the elements are examples that do not limit the scope of the disclosure to those particular examples.

在本說明中給出特定細節以提供具體實例之徹底理解。然而,具體實例可在無此等特定細節之情況下實踐。舉例而言,已在無不必要細節的情況下展示熟知之電路、製程、系統、結構及技術,以便避免混淆具體實例。本說明書僅提供實例具體實例,且並不意欲限制本發明之範疇、適用性或組態。實際上,具體實例之前述描述將為所屬領域中具通常知識者提供能夠實施各種具體實例之描述。可在不脫離本揭示之精神及範疇之情況下對元件之功能及配置作出各種改變。Specific details are given in the description to provide a thorough understanding of specific examples. However, specific examples may be practiced without such specific details. For example, well-known circuits, processes, systems, structures and techniques have been shown without unnecessary detail in order not to obscure the particular example. This description provides example specifics only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the foregoing descriptions of the specific examples will provide those of ordinary skill in the art with a description that can enable various specific examples to be practiced. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the disclosure.

此外,將一些具體實例描述為描繪為流程圖或方塊圖之製程。儘管各者可將操作描述為依序製程,但許多操作可並行地或同時進行。另外,可重新配置操作之次序。製程可具有未包括於圖式中之額外步驟。此外,可由硬體、軟體、韌體、中間軟體、微碼、硬體描述語言或其任何組合實施方法之具體實例。當實施於軟體、韌體、中間軟體或微碼中時,用以進行相關聯任務之程式碼或寫碼區段可儲存於諸如儲存媒體之電腦可讀取媒體中。處理器可進行相關聯任務。Additionally, some embodiments are described as processes depicted as flowcharts or block diagrams. Although each may describe operations as sequential processes, many operations may be performed in parallel or simultaneously. Additionally, the order of operations can be reconfigured. Processes may have additional steps not included in the figures. Furthermore, embodiments of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware or microcode, the code or segments of written code to perform associated tasks may be stored in a computer-readable medium such as a storage medium. A processor can perform associated tasks.

所屬技術領域中具有通常知識者將顯而易見,可根據特定要求作出實質變化。舉例而言,亦可使用定製或專用硬體,及/或可用硬體、軟體(包括攜帶型軟體,諸如小程式等)或兩者來實施特定元件。此外,可採用至其他計算裝置(諸如,網路輸入/輸出裝置)之連接。It will be apparent to those skilled in the art that substantial changes may be made according to particular requirements. For example, custom or special purpose hardware may also be used, and/or particular elements may be implemented in hardware, software (including portable software, such as applets, etc.), or both. Additionally, connections to other computing devices, such as network input/output devices, may be employed.

參考附圖,可包括記憶體之組件可包括非暫時性機器可讀取媒體。如本文中所使用,術語「機器可讀取媒體」及「電腦可讀取媒體」指參與提供使機器以特定方式操作之資料之任何儲存媒體。在上文所提供之具體實例中,各種機器可讀取媒體可涉及將指令/程式碼提供至處理單元及/或(多個)其他裝置以供執行。另外或替代地,機器可讀取媒體可用以儲存及/或攜載此類指令/程式碼。在許多實施中,電腦可讀取媒體為實體及/或有形儲存媒體。此類媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。電腦可讀取媒體之常見形式包括例如磁性及/或光學媒體,諸如緊密光碟(compact disk;CD)或數位化通用光碟(digital versatile disk;DVD);打孔卡;紙帶;具有孔圖案之任何其他實體媒體;RAM;可程式化唯讀記憶體(programmable read-only memory;PROM);可抹除可程式化唯讀記憶體(erasable programmable read-only memory;EPROM);FLASH-EPROM;任何其他記憶體晶片或卡匣;如下文中所描述之載波;可供電腦自其讀取指令及/或程式碼之任何其他媒體。電腦程式產品可包括程式碼及/或機器可執行指令,該等程式碼及/或機器可執行指令可表示程序、功能、子程式、程式、常式、應用程式(application;App)、次常式、模組、軟體套件、類別,或指令、資料結構或程式陳述式之任何組合。Referring to the figures, a component that may include memory may include a non-transitory machine-readable medium. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any storage medium that participates in providing data that causes a machine to operate in a specific manner. In the specific examples provided above, various machine-readable media can be involved in providing instructions/code to a processing unit and/or other device(s) for execution. Additionally or alternatively, a machine-readable medium may be used to store and/or carry such instructions/code. In many implementations, the computer-readable medium is a physical and/or tangible storage medium. Such media may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Common forms of computer readable media include, for example, magnetic and/or optical media, such as compact disks (CDs) or digital versatile disks (digital versatile disks (DVDs); punched cards; paper tape; Any other physical media; RAM; programmable read-only memory (PROM); erasable programmable read-only memory (EPROM); FLASH-EPROM; any Other memory chips or cartridges; carrier waves as described below; any other medium from which a computer can read instructions and/or code. A computer program product may include code and/or machine-executable instructions which may represent a program, function, subroutine, program, routine, application (App), subroutine formula, module, package, class, or any combination of instructions, data structures, or program statements.

所屬技術領域中具有通常知識者將瞭解,用以傳達本文中所描述之訊息的資訊及信號可使用多種不同技術及技藝中的任一者來表示。舉例而言,可貫穿以上描述提及之資料、指令、命令、資訊、信號、位元、符號及晶片可由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子或其任何組合表示。Those of ordinary skill in the art will appreciate that information and signals used to convey the messages described herein can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or optical particles, or any combination thereof.

如本文中所使用,術語「及」及「或」可包括多種含義,該等含義亦預期至少部分地取決於使用此類術語之上下文。典型地,「或」若用以關聯清單,諸如A、B或C,則意欲意謂A、B及C(此處以包括性意義使用),以及A、B或C(此處以排他性意義使用)。另外,如本文中所使用,術語「一或多個」可用於以單數形式描述任何特徵、結構或特性,或可用以描述特徵、結構或特性之某一組合。然而,應注意,此僅為說明性實例且所主張之主題不限於此實例。此外,術語「中之至少一者」若用以關聯清單(諸如,A、B或C),則可解譯為意謂A、B及/或C之任何組合,諸如A、AB、AC、BC、AA、ABC、AAB、AABBCCC等。As used herein, the terms "and" and "or" may include a variety of meanings which are also expected to depend, at least in part, on the context in which such terms are used. Typically, "or" when used in relation to a list, such as A, B, or C, is intended to mean A, B, and C (here used in an inclusive sense), and A, B, or C (here used in an exclusive sense) . In addition, as used herein, the term "one or more" may be used to describe any feature, structure or characteristic in the singular or may be used to describe some combination of features, structures or characteristics. It should be noted, however, that this is merely an illustrative example and that claimed subject matter is not limited to this example. Furthermore, the term "at least one of" if used in relation to a list (such as A, B or C) may be interpreted to mean any combination of A, B and/or C, such as A, AB, AC, BC, AA, ABC, AAB, AABBCCC, etc.

此外,雖然已使用硬體與軟體之特定組合描述某些具體實例,但應認識到,硬體與軟體之其他組合亦為可能的。可僅在硬體中或僅在軟體中或使用其組合來實施某些具體實例。在一個實例中,可藉由電腦程式產品來實施軟體,該電腦程式產品含有電腦程式碼或指令,該等電腦程式碼或指令可由一或多個處理器執行以用於進行本揭示中所描述之步驟、操作或製程中之任一者或全部,其中電腦程式可儲存於非暫時性電腦可讀取媒體上。本文中所描述之各種製程可以任何組合實施於相同處理器或不同處理器上。Furthermore, while certain specific examples have been described using specific combinations of hardware and software, it should be recognized that other combinations of hardware and software are possible. Certain embodiments may be implemented in hardware only or in software only, or using a combination thereof. In one example, the software can be implemented by a computer program product containing computer code or instructions executable by one or more processors for performing the tasks described in this disclosure. Any or all of the steps, operations or processes, wherein the computer program can be stored on a non-transitory computer readable medium. The various processes described herein may be implemented in any combination on the same processor or on different processors.

在裝置、系統、組件或模組經描述為經組態以進行某些操作或功能之情況下,可例如藉由設計電子電路以進行操作、藉由程式化可程式化電子電路(諸如,微處理器)以進行操作(諸如,藉由執行電腦指令或程式碼,或經程式化以執行儲存於非暫時性記憶體媒體上之程式碼或指令的處理器或核心)或其任何組合來實現此組態。製程可使用多種技術進行通信,包括但不限於用於製程間通信之習知技術,且不同對製程可使用不同技術,或同一對製程可在不同時間使用不同技術。Where a device, system, component, or module is described as being configured to perform certain operations or functions, it may be possible, for example, by designing electronic circuits to perform the operations, by programming programmable electronic circuits (such as micro processor) to perform operations (such as by executing computer instructions or code, or a processor or core programmed to execute code or instructions stored on a non-transitory memory medium), or any combination thereof this configuration. Processes may communicate using a variety of techniques, including but not limited to known techniques for inter-process communication, and different pairs of processes may use different technologies, or the same pair of processes may use different technologies at different times.

因此,本說明書及圖式應在說明性意義上而非在限制性意義上加以看待。然而,將顯而易見,可在不脫離如申請專利範圍中所闡述的更廣泛精神及範疇之情況下對說明書及圖式進行添加、減去、刪除及其他修改及改變。因此,儘管已描述了特定具體實例,但此等具體實例並不意欲為限制性的。各種修改及等效物在以下申請專利範圍之範疇內。Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense. It will be apparent, however, that additions, subtractions, deletions, and other modifications and changes may be made to the specification and drawings without departing from the broader spirit and scope as set forth in the claims. Thus, while certain embodiments have been described, such embodiments are not intended to be limiting. Various modifications and equivalents are within the scope of the following patent applications.

100:人工實境系統環境 110:控制台 112:應用程式商店 114:耳機追蹤模組 116:人工實境引擎 118:眼動追蹤模組 120:近眼顯示器 122:顯示電子件 124:顯示光學件 126:定位器 128:位置感測器 130:眼動追蹤單元 132:慣性量測單元 140:輸入/輸出介面 150:外部成像裝置 200:HMD裝置 220:主體 223:底側 225:前側 227:左側 230:頭部綁帶 300:近眼顯示器 305:框架 310:顯示器 330:照明器 340:高解析度攝影機 350a:感測器 350b:感測器 350c:感測器 350d:感測器 350e:感測器 400:光學透視擴增實境系統 410:投影儀 412:影像源 414:投影儀光學件 415:組合器 420:基板 430:輸入耦合器 440:輸出耦合器 450:光 460:所提取光 490:眼睛 495:人眼窗口 500:近眼顯示器裝置 510:光源 512:紅光發射器 514:綠光發射器 516:藍光發射器 520:投影光學件 530:波導顯示器 532:耦合器 540:光源 542:紅光發射器 544:綠光發射器 546:藍光發射器 550:近眼顯示器 560:自由形式光學元件 570:掃描鏡面 580:波導顯示器 582:耦合器 590:眼睛 600:波導顯示器 605:單個輸入光瞳 610:基板 612:第一表面 614:第二表面 620:輸入耦合器 630:第一輸出光柵 632:線 634:線 640:第二輸出光柵 650:出射區 660:聚集式出射光瞳 662:個別出射光瞳 700:波導顯示器 710:波導 720:傾斜光柵 722:脊 724:凹槽 726:前邊緣 728:後邊緣 730:外塗層 800:波導顯示器 810:波導 820:光柵耦合器 830:外部光 832:0階繞射光 834:-1階繞射光 840:顯示光 842:0階繞射光 844:-1階繞射光 900:波導顯示器 901:例示性波導顯示器 910:單層波導 911:層狀波導 915:自由空間 920:光柵耦合器 930:外部光 940:透明波導層 950:第一透明波導層 960:第二波導層 1000:波導顯示器 1001:單層波導 1002:層狀波導顯示器 1003:層狀波導 1010:基板 1012:第一波導層 1020:光柵 1022:輸入光柵 1024:輸入光柵 1030:輸出光柵 1032:輸出光柵 1040:輸出光柵 1042:輸出光柵 1050:第二波導層 1060:第一光束 1062:第二光束 1100:多次波導顯示器 1101:層狀波導 1102:多層波導顯示器 1103:層狀波導 1110:第一波導層 1112:第一波導層 1120:輸入光柵 1122:輸入光柵 1124:輸入光柵 1126:輸入光柵 1130:輸出光柵 1132:輸出光柵 1140:輸出光柵 1142:輸出光柵 1150:第二波導層 1152:第二波導層 1160:第三波導層 1162:第三波導層 1170:第四波導層 1180:第五波導層 1200:圖 1210:第一波導層 1212:波導晶粒 1220:接合材料層 1230:第二波導層 1235:波導堆疊 1240:個別波導裝置 1260:操作 1270:操作 1280:操作 1300:流程圖 1310:操作 1320:操作 1330:操作 1335:操作 1340:操作 1400:圖 1410:第一波導層 1412:波導晶粒 1420:接合材料層 1422:切割通道 1430:第二波導層 1435:波導堆疊 1440:個別層狀波導 1460:操作 1470:操作 1480:操作 1500:流程圖 1510:操作 1520:操作 1530:操作 1535:操作 1540:操作 1600:圖 1610:第一波導層 1612:波導晶粒 1620:接合材料層 1622:切割通道 1624:犧牲材料 1630:第二波導層 1635:波導堆疊 1640:個別層狀波導 1660:操作 1665:操作 1670:操作 1680:操作 1700:流程圖 1710:操作 1720:操作 1725:操作 1730:操作 1735:操作 1740:操作 1800:圖 1810:第一波導層 1812:波導晶粒 1820:接合材料層 1822:切割通道 1824:犧牲材料 1830:第二波導層 1835:波導堆疊 1840:個別層狀波導 1855:操作 1860:操作 1870:操作 1880:操作 1900:流程圖 1910:操作 1915:操作 1920:操作 1930:操作 1935:操作 1940:操作 2000:電子系統 2010:處理器 2020:記憶體 2022:應用程式模組 2024:應用程式模組 2025:作業系統 2026:虛擬實境引擎 2030:子系統 2032:無線鏈路 2034:天線 2040:匯流排 2050:攝影機 2060:顯示模組 2070:使用者輸入/輸出模組 2080:硬體模組 2090:感測器 2101:波導堆疊 2102:多層波導 d:寬度 p:光柵週期 α:傾斜角 β:傾斜角 λ:波長 100: Artificial Reality System Environment 110: Console 112: App store 114:Headphone Tracking Module 116: Artificial Reality Engine 118:Eye Tracking Module 120: near-eye display 122: display electronics 124: Display optics 126: Locator 128: Position sensor 130:Eye Tracking Unit 132: Inertial measurement unit 140: input/output interface 150: external imaging device 200: HMD device 220: subject 223: bottom side 225: front side 227: left side 230: head strap 300: near-eye display 305: frame 310: Display 330: illuminator 340: high resolution camera 350a: sensor 350b: sensor 350c: sensor 350d: sensor 350e: sensor 400: Optical see-through augmented reality system 410:Projector 412: image source 414:Projector optics 415: Combiner 420: Substrate 430: Input coupler 440: output coupler 450: light 460: extracted light 490: eyes 495: Human eye window 500: near-eye display device 510: light source 512: red light emitter 514: Green emitter 516:Blue light emitter 520: Projection optics 530: waveguide display 532:Coupler 540: light source 542: red light emitter 544: Green emitter 546:Blue light emitter 550: near-eye display 560: Freeform Optics 570: Scan mirror 580:Waveguide display 582:Coupler 590: eyes 600: waveguide display 605: Single input pupil 610: Substrate 612: first surface 614: second surface 620: Input coupler 630: the first output raster 632: line 634: line 640: second output raster 650: Exit area 660: Gathered exit pupil 662: individual exit pupil 700:Waveguide display 710: waveguide 720: tilted grating 722: Ridge 724: Groove 726: front edge 728: rear edge 730: Outer coating 800:Waveguide display 810: waveguide 820: grating coupler 830: external light 832:0 order diffracted light 834:-1st order diffracted light 840: display light 842:0 order diffracted light 844:-1st order diffracted light 900:Waveguide display 901: Exemplary Waveguide Display 910: single layer waveguide 911: Layered waveguide 915: free space 920: grating coupler 930: external light 940: transparent waveguide layer 950: the first transparent waveguide layer 960: the second waveguide layer 1000: waveguide display 1001: single layer waveguide 1002:Layered waveguide display 1003: layered waveguide 1010: Substrate 1012: The first waveguide layer 1020: grating 1022: input raster 1024: input raster 1030: output raster 1032: output raster 1040: output raster 1042: output raster 1050: the second waveguide layer 1060: first beam 1062: Second beam 1100: Multiple Waveguide Display 1101: layered waveguide 1102: Multilayer waveguide display 1103: layered waveguide 1110: the first waveguide layer 1112: The first waveguide layer 1120: input raster 1122: input raster 1124: input raster 1126: input raster 1130: output raster 1132: output raster 1140: output raster 1142: output raster 1150: the second waveguide layer 1152: the second waveguide layer 1160: The third waveguide layer 1162: The third waveguide layer 1170: The fourth waveguide layer 1180: The fifth waveguide layer 1200: Figure 1210: the first waveguide layer 1212:Waveguide grain 1220: bonding material layer 1230: the second waveguide layer 1235: waveguide stack 1240: individual waveguide device 1260: Operation 1270: Operation 1280: Operation 1300: flow chart 1310: Operation 1320: Operation 1330: Operation 1335: Operation 1340: Operation 1400: Figure 1410: The first waveguide layer 1412: waveguide grain 1420: Bonding material layers 1422: cutting channel 1430: Second waveguide layer 1435: waveguide stack 1440: Individual layered waveguides 1460: Operation 1470: Operation 1480: Operation 1500: Flowchart 1510: Operation 1520: Operation 1530: Operation 1535: Operation 1540: Operation 1600: Figure 1610: The first waveguide layer 1612: waveguide grain 1620: Bonding material layers 1622: cutting channel 1624: sacrificial material 1630: Second waveguide layer 1635: Waveguide Stacking 1640: Individual layered waveguides 1660: Operation 1665: Operation 1670: Operation 1680: Operation 1700: Flowchart 1710: Operation 1720: Operation 1725: operation 1730: Operation 1735: operation 1740: Operation 1800: Figure 1810: First waveguide layer 1812:Waveguide Die 1820: Layers of bonding material 1822: Cutting Channel 1824: Sacrificial material 1830: Second waveguide layer 1835: Waveguide stacking 1840: Individual layered waveguides 1855: Operation 1860: Operation 1870: Operation 1880: Operation 1900: Flowchart 1910: Operation 1915: Operation 1920: Operation 1930: Operation 1935: Operation 1940: Operation 2000: Electronic systems 2010: Processor 2020: Memory 2022: App Mods 2024: App Mods 2025: Operating system 2026: Virtual reality engine 2030: Subsystems 2032: Wireless link 2034: Antenna 2040: busbar 2050: Camera 2060: display module 2070: User Input/Output Module 2080: hardware module 2090: sensor 2101: waveguide stack 2102: Multilayer waveguide d: width p: grating period α: tilt angle β: tilt angle λ:wavelength

下文參考以下諸圖詳細描述說明性具體實例。 [ 1]為根據某些具體實例的包括近眼顯示器之人工實境系統環境之實例的簡化方塊圖。 [ 2]為呈用於實施本文中所揭示之實例中之一些的頭戴式顯示器裝置之形式的近眼顯示器之實例的透視圖。 [ 3]為呈用於實施本文中所揭示之實例中之一些的一副眼鏡之形式的近眼顯示器之實例的透視圖。 [ 4]說明根據某些具體實例之包括波導顯示器之光學透視擴增實境系統之實例。 [ 5A]說明根據某些具體實例之包括波導顯示器的近眼顯示器裝置之實例。 [ 5B]說明根據某些具體實例之包括波導顯示器之近眼顯示裝置的實例。 [ 6A]說明根據某些具體實例之包括用於出射光瞳擴展之波導顯示器及表面起伏光柵的光學透視擴增實境系統之實例。 [ 6B]說明根據某些具體實例之包括二維複製出射光瞳之人眼窗口的實例。 [ 7]說明根據某些具體實例之波導顯示器中之傾斜光柵之實例。 [ 8]說明根據某些具體實例之波導顯示器之實例中的顯示光及外部光之傳播。 [ 9A]說明根據某些具體實例之波導顯示器之實例中的顯示光之傳播。 [ 9B]說明根據某些具體實例之具有多層波導之波導顯示器的實例中之顯示光之傳播。 [ 10A]說明根據某些具體實例之具有多層波導之波導顯示器的實例中之顯示光之傳播。 [ 10B]說明根據某些具體實例之具有多層波導之波導顯示器的實例中之顯示光之傳播。 [ 11A]說明根據某些具體實例之具有多層波導之波導顯示器的實例中之顯示光之傳播。 [ 11B]說明根據某些具體實例之具有多層波導之波導顯示器的實例中之顯示光之傳播。 [ 12]為說明根據某些具體實例之描繪製造多層波導之方法的操作之處理流程的實例之圖。 [ 13]為描繪根據某些具體實例之製造多層波導之方法之實例的操作之流程圖。 [ 14]為說明根據某些具體實例之描繪製造層狀波導之方法的操作之處理流程的實例之圖。 [ 15]為描繪根據某些具體實例之製造層狀波導之方法之實例的操作之流程圖。 [ 16]為說明根據某些具體實例之描繪製造層狀波導之方法的操作之處理流程的實例之圖。 [ 17]為描繪根據某些具體實例之製造層狀波導之方法之實例的操作之流程圖。 [ 18]為說明根據某些具體實例之描繪製造層狀波導之方法的操作之處理流程之實例的圖。 [ 19]為描繪根據某些具體實例之製造層狀波導之方法之實例的操作之流程圖。 [ 20]為用於實施本文所揭示之實例中之一些之例示性近眼顯示器之例示性電子系統的簡化方塊圖。 [ 21A]為根據實例製造之接合波導堆疊之照片。 [ 21B]為根據實例製造之波導堆疊之照片。 該等圖僅出於說明之目的描繪本揭示之具體實例。所屬技術領域中具有知識者將易於自以下描述認識到,在不脫離本揭示之原理或稱讚之益處的情況下,可使用所說明結構及方法的替代性具體實例。 在附圖中,類似組件及/或特徵可具有相同參考標記。另外,可藉由在參考標記之後使用短劃線及在類似組件當中進行區分之第二標記來區分相同類型之各種組件。若在說明書中僅使用第一參考標記,則描述適用於具有相同第一參考標記而與第二參考標記無關的類似組件中之任一者。 Illustrative specific examples are described in detail below with reference to the following figures. [ FIG. 1 ] is a simplified block diagram of an example of an artificial reality system environment including a near-eye display, according to certain embodiments. [ FIG. 2 ] Is a perspective view of an example of a near-eye display in the form of a head mounted display device for implementing some of the examples disclosed herein. [ FIG. 3 ] Is a perspective view of an example of a near-eye display in the form of a pair of glasses for implementing some of the examples disclosed herein. [ FIG. 4 ] illustrates an example of an optical see-through augmented reality system including a waveguide display according to certain embodiments. [ FIG. 5A ] illustrates an example of a near-eye display device including a waveguide display according to certain embodiments. [ FIG. 5B ] illustrates an example of a near-eye display device including a waveguide display according to some embodiments. [ FIG. 6A ] Illustrates an example of an optical see-through augmented reality system including a waveguide display and a surface relief grating for exit pupil expansion, according to certain embodiments. [ FIG. 6B ] illustrates an example of a human eye window including a two-dimensionally replicated exit pupil, according to certain embodiments. [ FIG. 7 ] illustrates an example of a slanted grating in a waveguide display according to some embodiments. [ FIG. 8 ] Illustrates propagation of display light and external light in an example of a waveguide display according to some embodiments. [ FIG. 9A ] illustrates propagation of display light in an example of a waveguide display according to certain embodiments. [ FIG. 9B ] Illustrates the propagation of display light in an example of a waveguide display with multilayer waveguides according to certain embodiments. [ FIG. 10A ] Illustrates the propagation of display light in an example of a waveguide display with multilayer waveguides according to certain embodiments. [ FIG. 10B ] Illustrates the propagation of display light in an example of a waveguide display with multilayer waveguides according to certain embodiments. [ FIG. 11A ] Illustrates the propagation of display light in an example of a waveguide display with multilayer waveguides according to certain embodiments. [ FIG. 11B ] Illustrates the propagation of display light in an example of a waveguide display with multilayer waveguides according to certain embodiments. [ FIG. 12 ] is a diagram illustrating an example of a process flow depicting operations of a method of manufacturing a multilayer waveguide according to certain embodiments. [ FIG. 13 ] is a flowchart depicting the operation of an example of a method of fabricating a multilayer waveguide according to certain embodiments. [ FIG. 14 ] is a diagram illustrating an example of a process flow depicting operations of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 15 ] is a flowchart depicting the operation of an example of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 16 ] is a diagram illustrating an example of a process flow depicting operations of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 17 ] is a flowchart depicting the operation of an example of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 18 ] is a diagram illustrating an example of a process flow depicting operations of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 19 ] is a flowchart depicting the operation of an example of a method of manufacturing a layered waveguide according to certain embodiments. [ FIG. 20 ] Is a simplified block diagram of an exemplary electronic system for implementing an exemplary near-eye display of some of the examples disclosed herein. [ FIG. 21A ] is a photograph of a bonded waveguide stack fabricated according to an example. [ FIG. 21B ] is a photograph of a waveguide stack fabricated according to an example. The figures depict specific examples of the disclosure for purposes of illustration only. Those skilled in the art will readily recognize from the following description that alternative embodiments of the illustrated structures and methods may be used without departing from the principles or laudable benefits of the present disclosure. In the figures, similar components and/or features may have the same reference label. In addition, various components of the same type may be distinguished by the use of a dash after the reference label and a second label to distinguish among similar components. If only a first reference label is used in the specification, the description applies to any of similar components having the same first reference label independently of the second reference label.

1300:流程圖 1300: flow chart

1310:操作 1310: Operation

1320:操作 1320: Operation

1330:操作 1330: Operation

1335:操作 1335: Operation

1340:操作 1340: Operation

Claims (29)

一種製造一或多個多層波導之方法,該方法包含: 接收或形成第一波導層; 在該第一波導層上形成具有一或多個切割通道之接合層; 將第二波導層接合至該第一波導層以形成接合波導堆疊;及 沿著該一或多個切割通道切穿該接合波導堆疊以形成一或多個多層波導。 A method of fabricating one or more multilayer waveguides, the method comprising: receiving or forming a first waveguide layer; forming a bonding layer with one or more dicing channels on the first waveguide layer; bonding a second waveguide layer to the first waveguide layer to form a bonded waveguide stack; and The bonded waveguide stack is cut through the bonded waveguide stack along the one or more cutting channels to form one or more multilayer waveguides. 如請求項1之方法,其中該接合層藉由沉積光學透明黏著劑材料來形成。The method of claim 1, wherein the bonding layer is formed by depositing an optically transparent adhesive material. 如請求項2之方法,其中該一或多個切割通道不含該光學透明黏著劑材料。The method of claim 2, wherein the one or more cutting channels do not contain the optically clear adhesive material. 如請求項1之方法,其中形成該接合層包含在該第一波導層上噴墨沉積光學透明黏著劑材料之液滴的二維陣列。The method of claim 1, wherein forming the bonding layer comprises inkjet depositing a two-dimensional array of droplets of an optically clear adhesive material on the first waveguide layer. 如請求項4之方法,其中形成該光學透明黏著劑材料包含基本樹脂,該基本樹脂包含從下列所組成的群組中選擇的材料:丙烯酸酯、環氧化物、乙烯基、硫醇、烯丙基、乙烯醚、烯丙醚、環氧丙烯酸酯、胺基甲酸丙烯酸酯及丙烯酸聚酯。The method of claim 4, wherein the material forming the optically clear adhesive comprises a base resin, and the base resin comprises a material selected from the group consisting of: acrylate, epoxy, vinyl, mercaptan, allyl base, vinyl ether, allyl ether, epoxy acrylate, urethane acrylate, and acrylic polyester. 如請求項5之方法,其中該光學透明黏著劑材料進一步包含含有金屬氧化物之奈米粒子。The method according to claim 5, wherein the optically transparent adhesive material further comprises nanoparticles containing metal oxides. 如請求項1之方法,其進一步包含在該一或多個切割通道中沉積犧牲材料。The method of claim 1, further comprising depositing a sacrificial material in the one or more dicing channels. 如請求項7之方法,其中切穿該接合波導堆疊包含切穿該犧牲材料。The method of claim 7, wherein cutting through the bonded waveguide stack includes cutting through the sacrificial material. 如請求項1之方法,其中該一或多個切割通道圍繞在該第一波導層中之一或多個波導晶粒周圍。The method of claim 1, wherein the one or more dicing channels surround one or more waveguide dies in the first waveguide layer. 如請求項1之方法,其中該一或多個切割通道藉由以下來形成:(i)使用光微影製程圖案化該接合層或(ii)藉由在該一或多個切割通道外部選擇性地沉積光學透明黏著劑材料來形成該接合層。The method of claim 1, wherein the one or more dicing channels are formed by: (i) patterning the bonding layer using photolithography or (ii) by selecting outside the one or more dicing channels An optically clear adhesive material is selectively deposited to form the bonding layer. 如請求項1之方法,其中該第二波導層及該接合層中之一者或兩者具有折射率,該折射率相同或低於該第一波導層之折射率。The method according to claim 1, wherein one or both of the second waveguide layer and the bonding layer has a refractive index which is the same as or lower than that of the first waveguide layer. 如請求項1之方法,其進一步包含在該第一波導層中形成一或多個輸入光柵及/或輸出光柵。The method according to claim 1, further comprising forming one or more input gratings and/or output gratings in the first waveguide layer. 如請求項1之方法,其進一步包含在該接合波導堆疊上形成一或多個額外波導層,每個額外波導層藉由以下形成: 沉積光學透明黏著劑材料;及 接合該額外波導層。 The method of claim 1, further comprising forming one or more additional waveguide layers on the bonded waveguide stack, each additional waveguide layer being formed by: depositing an optically clear adhesive material; and The additional waveguide layer is bonded. 如請求項1之方法,其中切穿該接合波導堆疊包含沿著該一或多個切割通道施加雷射剝蝕。The method of claim 1, wherein cutting through the bonded waveguide stack comprises applying laser ablation along the one or more cutting channels. 一種製造一或多個多層波導顯示器之方法,該方法包含: 接收或形成具有一或多個光柵之第一波導層; 在該第一波導層上形成具有一或多個切割通道之光學透明黏著劑材料層; 將第二波導層接合至該第一波導層以形成接合波導堆疊; 沿著該一或多個切割通道切穿該接合波導堆疊以形成一或多個多層波導;及 使用該一或多個多層波導形成該一或多個多層波導顯示器。 A method of making one or more multilayer waveguide displays, the method comprising: receiving or forming a first waveguide layer having one or more gratings; forming a layer of optically clear adhesive material having one or more cut channels on the first waveguide layer; bonding a second waveguide layer to the first waveguide layer to form a bonded waveguide stack; cutting through the bonded waveguide stack along the one or more cutting channels to form one or more multilayer waveguides; and The one or more multilayer waveguide displays are formed using the one or more multilayer waveguides. 如請求項15之方法,其進一步包含在該一或多個切割通道中之至少一部分中沉積犧牲材料。The method of claim 15, further comprising depositing a sacrificial material in at least a portion of the one or more dicing channels. 如請求項15之方法,其中該一或多個切割通道不含光學透明黏著劑材料。The method of claim 15, wherein the one or more cutting channels do not contain an optically clear adhesive material. 一種一或多個多層波導,其藉由以下製造: 接收或形成第一波導層; 在該第一波導層上形成光學透明黏著劑材料層,該光學透明黏著劑材料層具有不含光學透明黏著劑材料之一或多個切割通道; 將第二波導層接合至該第一波導層以形成接合波導堆疊;及 沿著該一或多個切割通道切穿該接合波導堆疊以形成該一或多個多層波導。 One or more multilayer waveguides manufactured by: receiving or forming a first waveguide layer; forming a layer of optically clear adhesive material on the first waveguide layer, the layer of optically clear adhesive material having one or more cut channels free of optically clear adhesive material; bonding a second waveguide layer to the first waveguide layer to form a bonded waveguide stack; and The bonded waveguide stack is cut through the bonded waveguide stack along the one or more cutting channels to form the one or more multilayer waveguides. 如請求項18之一或多個多層波導,其中該多層波導進一步藉由在該一或多個切割通道處沉積犧牲材料來製造。One or more multilayer waveguides as claimed in claim 18, wherein the multilayer waveguides are further fabricated by depositing sacrificial material at the one or more dicing channels. 如請求項18之一或多個多層波導,其中形成該光學透明黏著劑材料層包含在該第一波導層上噴墨沉積光學透明黏著劑材料之液滴。The one or more multilayer waveguides of claim 18, wherein forming the layer of optically clear adhesive material comprises inkjet depositing droplets of optically clear adhesive material on the first waveguide layer. 如請求項18之一或多個多層波導,其中該第二波導層及該光學透明黏著劑材料層中之一者或兩者具有折射率,該折射率相同或低於該第一波導層之折射率。One or more multilayer waveguides as claimed in claim 18, wherein one or both of the second waveguide layer and the optically transparent adhesive material layer have a refractive index that is the same as or lower than that of the first waveguide layer refractive index. 一種多層波導顯示器,其包含: 層狀波導,其藉由沿著接合波導堆疊之複數個波導層中之至少一者中之一或多個切割通道切穿該接合波導堆疊來製造,其中該一或多個切割通道不含接合材料;及 一或多個光柵耦合器,其經配置以將顯示光繞射地耦合至該層狀波導中或該層狀波導之外及/或經由該層狀波導折射地透射周圍光。 A multilayer waveguide display comprising: A layered waveguide fabricated by cutting through a bonded waveguide stack along one or more dicing channels in at least one of a plurality of waveguide layers of the bonded waveguide stack, wherein the one or more dicing channels do not contain bonded waveguides materials; and One or more grating couplers configured to diffractively couple display light into or out of the layered waveguide and/or to refractively transmit ambient light through the layered waveguide. 如請求項22之多層波導顯示器,其中該一或多個切割線包含犧牲材料。The multilayer waveguide display of claim 22, wherein the one or more cut lines comprise sacrificial material. 如請求項23之多層波導顯示器,其中在該接合波導堆疊之該複數個波導層之第一波導層上沉積接合層之前沉積該犧牲材料。The multilayer waveguide display of claim 23, wherein the sacrificial material is deposited prior to depositing the bonding layer on the first waveguide layer of the plurality of waveguide layers of the bonded waveguide stack. 一種製造一或多個多層波導之方法,該方法包含: 接收或形成一第一波導層; 在該第一波導層上沿著一或多個切割通道在一或多個區中沉積犧牲材料; 用該犧牲材料至少部分在該一或多個區之內部周邊內沉積接合材料; 用該接合材料將第二波導層接合至該第一波導層以形成接合波導堆疊;及 沿著該一或多個切割通道切穿該接合波導堆疊以形成一或多個多層波導。 A method of fabricating one or more multilayer waveguides, the method comprising: receiving or forming a first waveguide layer; depositing sacrificial material in one or more regions along one or more dicing channels on the first waveguide layer; depositing a bonding material at least partially within an interior perimeter of the one or more regions with the sacrificial material; bonding a second waveguide layer to the first waveguide layer with the bonding material to form a bonded waveguide stack; and The bonded waveguide stack is cut through the bonded waveguide stack along the one or more cutting channels to form one or more multilayer waveguides. 如請求項25之方法,其中該接合材料為光學透明黏著劑材料且該一或多個切割通道不含該光學透明黏著劑材料。The method of claim 25, wherein the bonding material is an optically clear adhesive material and the one or more cutting channels do not contain the optically clear adhesive material. 如請求項25之方法,其中沉積該接合材料包含在該第一波導層上噴墨沉積光學透明黏著劑材料之液滴的二維陣列。The method of claim 25, wherein depositing the bonding material comprises inkjet depositing a two-dimensional array of droplets of an optically clear adhesive material on the first waveguide layer. 如請求項25之方法,其中該第二波導層及該接合材料中之一者或兩者具有折射率,該折射率相同或低於該第一波導層之折射率。The method according to claim 25, wherein one or both of the second waveguide layer and the bonding material has a refractive index which is the same as or lower than that of the first waveguide layer. 如請求項25之方法,其進一步包含在該第一波導層及第二波導層中之至少一者的外部表面處形成一或多個光柵。The method of claim 25, further comprising forming one or more gratings at an outer surface of at least one of the first waveguide layer and the second waveguide layer.
TW111129584A 2021-08-06 2022-08-05 Selective deposition/patterning for layered waveguide fabrication TW202314306A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163230532P 2021-08-06 2021-08-06
US63/230,532 2021-08-06
US17/815,944 US20230037929A1 (en) 2021-08-06 2022-07-29 Selective deposition/patterning for layered waveguide fabrication
US17/815,944 2022-07-29

Publications (1)

Publication Number Publication Date
TW202314306A true TW202314306A (en) 2023-04-01

Family

ID=83193479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129584A TW202314306A (en) 2021-08-06 2022-08-05 Selective deposition/patterning for layered waveguide fabrication

Country Status (2)

Country Link
TW (1) TW202314306A (en)
WO (1) WO2023015025A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6646354B2 (en) * 1997-08-22 2003-11-11 Micron Technology, Inc. Adhesive composition and methods for use in packaging applications
EP3987329A4 (en) * 2019-06-24 2023-10-11 Magic Leap, Inc. Waveguides having integral spacers and related systems and methods
EP3938819A1 (en) * 2019-09-19 2022-01-19 Apple Inc. Optical systems with flare-mitigating angular filters
US11676821B2 (en) * 2019-10-29 2023-06-13 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned double patterning

Also Published As

Publication number Publication date
WO2023015025A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US20220206232A1 (en) Layered waveguide fabrication by additive manufacturing
US11662584B2 (en) Gradient refractive index grating for display leakage reduction
US11307357B2 (en) Overcoating slanted surface-relief structures using atomic layer deposition
US11249230B2 (en) Duty cycle, depth, and surface energy control in nano fabrication
US20220082739A1 (en) Techniques for manufacturing variable etch depth gratings using gray-tone lithography
CN111505901A (en) Method for reducing surface adhesion during demolding in nanoimprint lithography
EP3877800A1 (en) Angular selective grating coupler for waveguide display
US11474395B2 (en) Birefringent polymer based surface relief grating
CN113302431A (en) Volume Bragg grating for near-eye waveguide displays
US11709422B2 (en) Gray-tone lithography for precise control of grating etch depth
WO2022182773A1 (en) Waveguide display with multiple monochromatic projectors
WO2022182784A1 (en) Staircase in-coupling for waveguide display
US20230037929A1 (en) Selective deposition/patterning for layered waveguide fabrication
TW202349064A (en) Multilayer flat lens for ultra-high resolution phase delay and wavefront reshaping
US20220291437A1 (en) Light redirection feature in waveguide display
TW202314306A (en) Selective deposition/patterning for layered waveguide fabrication
WO2022146904A1 (en) Layered waveguide fabrication by additive manufacturing
US20230340309A1 (en) Low stress loca additive and loca processing for bonding optical substrates
US20240151971A1 (en) Techniques for controlling overburden planarization
US20240168299A1 (en) Kaleidoscopic waveguide as small-form-factor pupil expander
TW202235961A (en) Light redirection feature in waveguide display
CN116964507A (en) Light redirection features in waveguide displays
WO2023205123A1 (en) Low stress loca additive and loca processing for bonding optical substrates