TW202337139A - Delay-locked loop device - Google Patents

Delay-locked loop device Download PDF

Info

Publication number
TW202337139A
TW202337139A TW111107255A TW111107255A TW202337139A TW 202337139 A TW202337139 A TW 202337139A TW 111107255 A TW111107255 A TW 111107255A TW 111107255 A TW111107255 A TW 111107255A TW 202337139 A TW202337139 A TW 202337139A
Authority
TW
Taiwan
Prior art keywords
clock
delay
replica
phase difference
lagging
Prior art date
Application number
TW111107255A
Other languages
Chinese (zh)
Other versions
TWI802300B (en
Inventor
米山滿
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111107255A priority Critical patent/TWI802300B/en
Application granted granted Critical
Publication of TWI802300B publication Critical patent/TWI802300B/en
Publication of TW202337139A publication Critical patent/TW202337139A/en

Links

Images

Landscapes

  • Dram (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A delay-locked loop (DLL) device is provided. The DLL device includes a delay line, a replica circuit, an internal clock generator, a phase detector and a delay controller. The delay line delays the input clock to generate a delay clock in response to the delay signal. The replica circuit generates a replica clock according to the delay clock. The internal clock generator generates a leading clock and a lagging clock according to the replica clock. The phase detector provides an update trigger signal based on a shift phase difference between the replica clock and the input clock, a leading phase difference between the leading clock and the input clock, and a lagging phase difference between the lagging clock and the input clock. The delay controller provides a delay controlling signal, and updates the delay controlling signal in response to the update trigger signal.

Description

延遲鎖相迴路裝置delay locked loop device

本發明是有關於一種延遲鎖相迴路裝置,且特別是有關於一種具有低功率消耗的延遲鎖相迴路裝置。The present invention relates to a delay locked loop device, and in particular to a delay locked loop device with low power consumption.

一般來說,延遲鎖相迴路(delay-locked loop,DLL)裝置會被設定在一更新週期來將所接收的輸入時脈調整為所期望的延遲時脈。Generally, a delay-locked loop (DLL) device is set to an update period to adjust the received input clock to a desired delay clock.

然而,在較短的更新週期的情況下,DLL裝置會頻繁地對用以控制延遲線的延遲控制訊號進行更新,進而增加功率消耗。在較長的更新週期的情況下,一旦DLL裝置所產生的延遲時脈發生明顯的相位偏移時,DLL裝置會無法及時地對延遲時脈進行調整。因此,如何提供兼具低功率消耗並能夠及時地對延遲時脈的延遲鎖相迴路裝置,是本領域技術人員的研究重點之一。However, in the case of a short update cycle, the DLL device will frequently update the delay control signal used to control the delay line, thereby increasing power consumption. In the case of a long update cycle, once the delayed clock generated by the DLL device has a significant phase shift, the DLL device will be unable to adjust the delayed clock in time. Therefore, how to provide a delay locked loop device that has low power consumption and can delay the clock in a timely manner is one of the research focuses of those skilled in the art.

本發明提供一種具有低功率消耗並能夠及時地對延遲時脈進行調整的延遲鎖相迴路(delay-locked loop,DLL)裝置。The present invention provides a delay-locked loop (DLL) device with low power consumption and capable of adjusting a delay clock in time.

本發明的DLL裝置包括延遲線、複本電路、內部時脈產生器、相位檢測器以及延遲控制器。延遲線接收輸入時脈,並反應於延遲控制訊號來對輸入時脈進行延遲以產生延遲時脈。複本電路耦接於延遲線。複本電路接收延遲時脈,並依據延遲時脈來產生複本時脈。內部時脈產生器耦接於複本電路。內部時脈產生器依據複本時脈來產生領先時脈以及落後時脈,並提供該複本時脈。相位檢測器耦接於內部時脈產生器。相位檢測器依據複本時脈與輸入時脈之間的平移相位差、領先時脈與輸入時脈之間的領先相位差以及落後時脈與輸入時脈之間的落後相位差來提供更新觸發訊號。延遲控制器耦接於相位檢測器以及延遲線。延遲控制器提供延遲控制訊號,並反應於更新觸發訊號來更新延遲控制訊號。The DLL device of the present invention includes a delay line, a replica circuit, an internal clock generator, a phase detector and a delay controller. The delay line receives the input clock and responds to the delay control signal to delay the input clock to generate a delay clock. The replica circuit is coupled to the delay line. The replica circuit receives the delay clock and generates a replica clock based on the delay clock. The internal clock generator is coupled to the replica circuit. The internal clock generator generates a leading clock and a lagging clock based on the replica clock and provides the replica clock. The phase detector is coupled to the internal clock generator. The phase detector provides an update trigger signal based on the translational phase difference between the replica clock and the input clock, the leading phase difference between the leading clock and the input clock, and the lagging phase difference between the lagging clock and the input clock. . The delay controller is coupled to the phase detector and the delay line. The delay controller provides a delay control signal and updates the delay control signal in response to the update trigger signal.

基於上述,相位檢測器會依據平移相位差、領先相位差以及落後相位差來提供更新觸發訊號,延遲控制器會反應於更新觸發訊號來更新延遲控制訊號。如此一來,在延遲時脈的相位發生明顯偏移時,DLL裝置能夠及時地對延遲時脈進行調整。在延遲時脈的相位並沒有發生明顯偏移時,DLL裝置則不會對延遲時脈進行調整。如此一來,DLL裝置的功率消耗得以被降低。Based on the above, the phase detector will provide an update trigger signal based on the translation phase difference, the leading phase difference and the lagging phase difference, and the delay controller will update the delay control signal in response to the update trigger signal. In this way, when the phase of the delayed clock deviates significantly, the DLL device can adjust the delayed clock in time. When the phase of the delayed clock does not shift significantly, the DLL device does not adjust the delayed clock. In this way, the power consumption of the DLL device can be reduced.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the invention.

請參考圖1,圖1是依據本發明第一實施例所繪示的延遲鎖相迴路裝置的示意圖。在本實施例中,DLL裝置100包括延遲線110、複本(replica)電路120、內部時脈產生器130、相位檢測器140以及延遲控制器150。延遲線110接收輸入時脈ICLK,並反應於延遲控制訊號SDL來對輸入時脈ICLK進行延遲以產生延遲時脈DCLK。複本電路耦接於延遲線110。複本電路120接收延遲時脈DCLK,並依據延遲時脈DCLK來產生複本時脈RCLK。內部時脈產生器130耦接於複本電路120。內部時脈產生器130依據複本時脈RCLK來產生領先時脈RCLK_lead以及落後時脈RCLK_lag。在本實施例中,輸入時脈ICLK、延遲時脈DCLK、複本時脈RCLK、領先時脈RCLK_lead以及落後時脈RCLK_lag的週期彼此相同。Please refer to FIG. 1 , which is a schematic diagram of a delay locked loop device according to a first embodiment of the present invention. In this embodiment, the DLL device 100 includes a delay line 110 , a replica circuit 120 , an internal clock generator 130 , a phase detector 140 and a delay controller 150 . The delay line 110 receives the input clock ICLK and delays the input clock ICLK in response to the delay control signal SDL to generate the delayed clock DCLK. The replica circuit is coupled to delay line 110 . The replica circuit 120 receives the delayed clock DCLK and generates the replica clock RCLK according to the delayed clock DCLK. The internal clock generator 130 is coupled to the replica circuit 120 . The internal clock generator 130 generates the leading clock RCLK_lead and the lagging clock RCLK_lag according to the replica clock RCLK. In this embodiment, the periods of the input clock ICLK, the delayed clock DCLK, the replica clock RCLK, the leading clock RCLK_lead and the lagging clock RCLK_lag are the same as each other.

在本實施例中,相位檢測器140耦接於內部時脈產生器130。相位檢測器140依據複本時脈RCLK與輸入時脈ICLK之間的平移相位差PD、領先時脈RCLK_lead與輸入時脈ICLK之間的領先相位差PD_lead以及落後時脈RCLK_lag與輸入時脈ICLK之間的落後相位差PD_lag來提供更新觸發訊號SU。In this embodiment, the phase detector 140 is coupled to the internal clock generator 130 . The phase detector 140 is based on the translation phase difference PD between the replica clock RCLK and the input clock ICLK, the leading phase difference PD_lead between the leading clock RCLK_lead and the input clock ICLK, and the difference between the lagging clock RCLK_lag and the input clock ICLK. The lagging phase difference PD_lag is used to provide the update trigger signal SU.

在本實施例中,相位檢測器140接收輸入時脈ICLK、複本時脈RCLK、領先時脈RCLK_lead以及落後時脈RCLK_lag。相位檢測器140獲得複本時脈RCLK與輸入時脈ICLK之間的平移相位差PD。相位檢測器140獲得領先時脈RCLK_lead與輸入時脈ICLK之間的領先相位差PD_lead。相位檢測器140獲得落後時脈RCLK_lag與輸入時脈ICLK之間的落後相位差PD_lag。接下來,相位檢測器140會依據平移相位差PD、領先相位差PD_lead以及落後相位差PD_lag來提供更新觸發訊號SU。In this embodiment, the phase detector 140 receives the input clock ICLK, the replica clock RCLK, the leading clock RCLK_lead, and the lagging clock RCLK_lag. The phase detector 140 obtains the translation phase difference PD between the replica clock RCLK and the input clock ICLK. The phase detector 140 obtains the leading phase difference PD_lead between the leading clock RCLK_lead and the input clock ICLK. The phase detector 140 obtains the lagging phase difference PD_lag between the lagging clock RCLK_lag and the input clock ICLK. Next, the phase detector 140 provides an update trigger signal SU according to the translation phase difference PD, the leading phase difference PD_lead, and the lagging phase difference PD_lag.

在本實施例中,延遲控制器150耦接於相位檢測器140以及延遲線110。延遲控制器150提供延遲控制訊號SDL。當接收到更新觸發訊號SU時,延遲控制器150會反應於更新觸發訊號SU來更新延遲控制訊號SDL。在本實施例中,延遲控制器150會反應於更新觸發訊號SU而被觸發,並基於平移相位差PD來更新延遲控制訊號SDL的數位碼。在另一方面,當沒有接收到更新觸發訊號SU時,延遲控制器150則不會更新延遲控制訊號SDL。In this embodiment, the delay controller 150 is coupled to the phase detector 140 and the delay line 110 . The delay controller 150 provides the delay control signal SDL. When receiving the update trigger signal SU, the delay controller 150 updates the delay control signal SDL in response to the update trigger signal SU. In this embodiment, the delay controller 150 is triggered in response to the update trigger signal SU, and updates the digital code of the delay control signal SDL based on the translation phase difference PD. On the other hand, when the update trigger signal SU is not received, the delay controller 150 does not update the delay control signal SDL.

在此值得一提的是,相位檢測器140會依據平移相位差PD、領先相位差PD_lead以及落後相位差PD_lag來提供更新觸發訊號SU。延遲控制器150會反應於更新觸發訊號SU來更新延遲控制訊號SDL。如此一來,在延遲時脈DCLK的相位發生明顯偏移時,DLL裝置100能夠及時地對延遲時脈DCLK進行調整。在延遲時脈DCLK的相位並沒有發生明顯偏移時,DLL裝置100則不會對延遲時脈DCLK進行調整。如此一來,DLL裝置100的功率消耗得以被降低。It is worth mentioning here that the phase detector 140 provides the update trigger signal SU based on the translation phase difference PD, the leading phase difference PD_lead, and the lagging phase difference PD_lag. The delay controller 150 updates the delay control signal SDL in response to the update trigger signal SU. In this way, when the phase of the delayed clock DCLK deviates significantly, the DLL device 100 can adjust the delayed clock DCLK in time. When the phase of the delayed clock DCLK does not shift significantly, the DLL device 100 does not adjust the delayed clock DCLK. In this way, the power consumption of the DLL device 100 can be reduced.

進一步來說,在本實施例中,相位檢測器140會判斷平移相位差PD、領先相位差PD_lead以及落後相位差PD_lag。當平移相位差PD大於領先相位差PD_lead以及落後相位差PD_lag的其中之一時,表示延遲時脈DCLK的相位發生了明顯的偏移。因此,相位檢測器140提供更新觸發訊號SU。延遲控制器150會反應於更新觸發訊號SU而被觸發,並基於平移相位差PD來更新延遲控制訊號SDL。因此,DLL裝置100進入更新期間。Furthermore, in this embodiment, the phase detector 140 determines the translation phase difference PD, the leading phase difference PD_lead, and the lagging phase difference PD_lag. When the translation phase difference PD is greater than one of the leading phase difference PD_lead and the lagging phase difference PD_lag, it means that the phase of the delayed clock DCLK has significantly shifted. Therefore, the phase detector 140 provides the update trigger signal SU. The delay controller 150 is triggered in response to the update trigger signal SU, and updates the delay control signal SDL based on the translation phase difference PD. Therefore, the DLL device 100 enters the update period.

在另一方面,當平移相位差PD小於或等於領先相位差PD_lead以及落後相位差PD_lag時,表示延遲時脈DCLK的相位並沒有發生了明顯的偏移。因此,相位檢測器停止提供更新觸發訊號SU。延遲控制器150不會更新延遲控制訊號SDL。因此,DLL裝置100進入非更新期間。On the other hand, when the translation phase difference PD is less than or equal to the leading phase difference PD_lead and the lagging phase difference PD_lag, it means that the phase of the delayed clock DCLK has not shifted significantly. Therefore, the phase detector stops providing the update trigger signal SU. The delay controller 150 does not update the delay control signal SDL. Therefore, the DLL device 100 enters a non-update period.

請同時參考圖1以及圖2,圖2是依據本發明一實施例所繪示的內部時脈產生器的示意圖。內部時脈產生器230可適用於圖1所示的內部時脈產生器130。在本實施例中,內部時脈產生器230包括延遲電路DL1~DL3。延遲電路DL1耦接於複本電路120。延遲電路DL1對來自於複本電路120的複本時脈RCLK進行延遲以產生領先時脈RCLK_lead。延遲電路DL2耦接於延遲電路DL1。延遲電路DL2對領先時脈RCLK_lead進行延遲以產生落後單一週期的複本時脈RCLK。延遲電路DL3耦接於延遲電路DL2。延遲電路DL3對落後單一週期的複本時脈RCLK進行延遲以產生落後時脈RCLK_lag。Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 2 is a schematic diagram of an internal clock generator according to an embodiment of the present invention. The internal clock generator 230 may be adapted to the internal clock generator 130 shown in FIG. 1 . In this embodiment, the internal clock generator 230 includes delay circuits DL1˜DL3. The delay circuit DL1 is coupled to the replica circuit 120 . The delay circuit DL1 delays the replica clock RCLK from the replica circuit 120 to generate the leading clock RCLK_lead. Delay circuit DL2 is coupled to delay circuit DL1. The delay circuit DL2 delays the leading clock RCLK_lead to generate a replica clock RCLK that is one cycle behind. Delay circuit DL3 is coupled to delay circuit DL2. The delay circuit DL3 delays the replica clock RCLK which is lagging behind by a single cycle to generate a lagging clock RCLK_lag.

舉例來說,延遲電路DL1可產生第一延遲時間長度。延遲電路DL2可產生第二延遲時間長度。延遲電路DL3可產生第三延遲時間長度。因此,第一延遲時間長度以及第二延遲時間長度的延遲時間長度總和等於複本時脈RCLK的單一週期。延遲電路DL2所提供的複本時脈RCLK相較於領先時脈RCLK_lead具有第二延遲時間長度的延遲。落後時脈RCLK_lag相較於延遲電路DL2所提供的複本時脈RCLK具有第三延遲時間長度的延遲。舉例來說,第二延遲時間長度以及第三延遲時間長度分別為10~20皮秒(pico-second,psec),本發明並不以此為限。舉例來說,延遲電路DL1~DL3分別包括多個串聯耦接的緩衝器來實現。緩衝器的串聯數量會決定延遲電路DL1~DL3所產生的延遲。因此,第二延遲時間長度以及第三延遲時間長度可以由延遲電路DL2、DL3中的緩衝器的串聯數量來決定。For example, the delay circuit DL1 may generate a first delay time length. Delay circuit DL2 may generate a second delay time length. Delay circuit DL3 may generate a third delay time length. Therefore, the sum of the delay time lengths of the first delay time length and the second delay time length is equal to a single cycle of the replica clock RCLK. The replica clock RCLK provided by the delay circuit DL2 has a delay of a second delay time length compared with the leading clock RCLK_lead. The lagging clock RCLK_lag has a delay of a third delay time length compared to the replica clock RCLK provided by the delay circuit DL2. For example, the second delay time length and the third delay time length are 10 to 20 picoseconds (pico-second, psec) respectively, and the present invention is not limited thereto. For example, the delay circuits DL1 to DL3 are implemented by including a plurality of buffers coupled in series. The number of buffers in series will determine the delay generated by delay circuits DL1~DL3. Therefore, the second delay time length and the third delay time length may be determined by the series number of buffers in the delay circuits DL2 and DL3.

請同時參考圖1以及圖3,圖3是依據本發明另一實施例所繪示的內部時脈產生器的示意圖。內部時脈產生器330可適用於圖1所示的內部時脈產生器130。在本實施例中,內部時脈產生器330包括延遲電路DL1~DL3。延遲電路DL1耦接於複本電路120。延遲電路DL1對來自於複本時脈RCLK進行延遲以產生領先時脈RCLK_lead。延遲電路DL2耦接於複本電路120。延遲電路DL2對複本時脈RCLK進行延遲以產生落後單一週期的複本時脈RCLK。換言之,延遲電路DL2對複本時脈RCLK進行單一週期的延遲。延遲電路DL3耦接於複本電路120。延遲電路DL3對複本時脈RCLK進行延遲以產生落後時脈RCLK_lag。Please refer to FIG. 1 and FIG. 3 simultaneously. FIG. 3 is a schematic diagram of an internal clock generator according to another embodiment of the present invention. The internal clock generator 330 may be adapted to the internal clock generator 130 shown in FIG. 1 . In this embodiment, the internal clock generator 330 includes delay circuits DL1˜DL3. The delay circuit DL1 is coupled to the replica circuit 120 . The delay circuit DL1 delays the replica clock RCLK to generate the leading clock RCLK_lead. Delay circuit DL2 is coupled to replica circuit 120 . The delay circuit DL2 delays the replica clock RCLK to generate a replica clock RCLK that is one cycle behind. In other words, the delay circuit DL2 delays the replica clock RCLK by a single cycle. The delay circuit DL3 is coupled to the replica circuit 120 . The delay circuit DL3 delays the replica clock RCLK to generate a lagging clock RCLK_lag.

在本實施例中,延遲電路DL1具有第一時間常數。延遲電路DL2具有第二時間常數。延遲電路DL3具有第三時間常數。第二時間常數大於第一時間常數。第三時間常數大於第二時間常數。因此,領先時脈RCLK_lead的相位會領先延遲電路DL2所產生的複本時脈RCLK的相位。落後時脈RCLK_lag的相位會落後延遲電路DL2所產生的複本時脈RCLK的相位。In this embodiment, the delay circuit DL1 has a first time constant. Delay circuit DL2 has a second time constant. Delay circuit DL3 has a third time constant. The second time constant is greater than the first time constant. The third time constant is greater than the second time constant. Therefore, the phase of the leading clock RCLK_lead will lead the phase of the replica clock RCLK generated by the delay circuit DL2. The phase of the lagging clock RCLK_lag will lag behind the phase of the replica clock RCLK generated by the delay circuit DL2.

在本實施例中,延遲電路DL1包括電容器C_lead。第一時間常數由電容器C_lead的電容值來決定。延遲電路DL2包括電容器C。第二時間常數由電容器C的電容值來決定。延遲電路DL3包括電容器C_lag。第三時間常數由電容器C_lag的電容值來決定。In this embodiment, the delay circuit DL1 includes a capacitor C_lead. The first time constant is determined by the capacitance value of capacitor C_lead. Delay circuit DL2 includes capacitor C. The second time constant is determined by the capacitance value of capacitor C. Delay circuit DL3 includes capacitor C_lag. The third time constant is determined by the capacitance value of the capacitor C_lag.

此外,延遲電路DL1還包括緩衝器B1、B2。緩衝器B1的輸入端耦接於複本電路120。緩衝器B1的輸入端用以接收複本時脈RCLK。緩衝器B1的輸出端耦接於電容器C_lead的第一端。電容器C_lead的第二端耦接於參考低電壓(例如是接地)。緩衝器B2的輸入端耦接於緩衝器B1的輸出端。緩衝器B2的輸出端用以輸出領先時脈RCLK_lead。延遲電路DL2還包括緩衝器B3、B4。緩衝器B3的輸入端耦接於複本電路120。緩衝器B3的輸入端用以接收複本時脈RCLK。緩衝器B3的輸出端耦接於電容器C的第一端。電容器C的第二端耦接於參考低電壓。緩衝器B4的輸入端耦接於緩衝器B3的輸出端。緩衝器B4的輸出端用以輸出落後單一週期的複本時脈RCLK。延遲電路DL3還包括緩衝器B5、B6。緩衝器B5的輸入端耦接於複本電路120。緩衝器B5的輸入端用以接收複本時脈RCLK。緩衝器B5的輸出端耦接於電容器C_lag的第一端。電容器C_lag的第二端耦接於參考低電壓。緩衝器B6的輸入端耦接於緩衝器B5的輸出端。緩衝器B6的輸出端用以輸出落後時脈RCLK_lag。In addition, the delay circuit DL1 also includes buffers B1 and B2. The input terminal of the buffer B1 is coupled to the replica circuit 120 . The input terminal of buffer B1 is used to receive the replica clock RCLK. The output terminal of the buffer B1 is coupled to the first terminal of the capacitor C_lead. The second terminal of the capacitor C_lead is coupled to the reference low voltage (eg, ground). The input terminal of buffer B2 is coupled to the output terminal of buffer B1. The output terminal of buffer B2 is used to output the leading clock RCLK_lead. Delay circuit DL2 also includes buffers B3, B4. The input terminal of the buffer B3 is coupled to the replica circuit 120 . The input terminal of buffer B3 is used to receive the replica clock RCLK. The output terminal of the buffer B3 is coupled to the first terminal of the capacitor C. The second terminal of the capacitor C is coupled to the reference low voltage. The input terminal of buffer B4 is coupled to the output terminal of buffer B3. The output terminal of the buffer B4 is used to output the replica clock RCLK that is one cycle behind. Delay circuit DL3 also includes buffers B5, B6. The input terminal of the buffer B5 is coupled to the replica circuit 120 . The input terminal of buffer B5 is used to receive the replica clock RCLK. The output terminal of the buffer B5 is coupled to the first terminal of the capacitor C_lag. The second terminal of the capacitor C_lag is coupled to the reference low voltage. The input terminal of buffer B6 is coupled to the output terminal of buffer B5. The output terminal of the buffer B6 is used to output the lagging clock RCLK_lag.

在本實施例中,緩衝器B1~B6可用以維持複本時脈RCLK在被延遲過程中的波形。緩衝器B1~B6也可用以延長延遲時間長度。在一些實施例中,緩衝器(未示出)可以被設置於複本電路120與內部時脈產生器330之間以共同延長延遲時間長度。In this embodiment, the buffers B1 to B6 can be used to maintain the waveform of the replica clock RCLK during the delay process. Buffers B1~B6 can also be used to extend the delay time length. In some embodiments, a buffer (not shown) may be disposed between the replica circuit 120 and the internal clock generator 330 to jointly extend the delay time length.

請同時參考圖3以及圖4。圖4是依據圖3所繪示的複本時脈、領先時脈以及落後時脈的時序圖。在本實施例中,圖4示出了時序圖C1、C2。時序圖C1示出了複本時脈RCLK、領先時脈RCLK_lead以及落後時脈RCLK_lag在電容器C_lead、C、C_lag的電容值之間具有較大差值的條件下的時序。時序圖C2示出了複本時脈RCLK、領先時脈RCLK_lead以及落後時脈RCLK_lag在電容器C_lead、C、C_lag的電容值之間具有較小差值的條件下的時序。複本時脈RCLK的上升沿與領先時脈RCLK_lead的上升沿之間具有時間差td1。複本時脈RCLK的上升沿與落後時脈RCLK_lag的上升沿之間具有時間差td2。在電容器C_lead、C、C_lag的電容值之間具有較大差值的條件下,時間差td1、td2會較大。在電容器C_lead、C、C_lag的電容值之間具有較小差值的條件下,時間差td1、td2會較小。Please refer to both Figure 3 and Figure 4. FIG. 4 is a timing diagram based on the replica clock, leading clock and lagging clock shown in FIG. 3 . In this embodiment, FIG. 4 shows timing diagrams C1 and C2. The timing diagram C1 shows the timing of the replica clock RCLK, the leading clock RCLK_lead, and the lagging clock RCLK_lag under the condition that there is a large difference between the capacitance values of the capacitors C_lead, C, and C_lag. The timing diagram C2 shows the timing of the replica clock RCLK, the leading clock RCLK_lead, and the lagging clock RCLK_lag under the condition that there is a small difference between the capacitance values of the capacitors C_lead, C, and C_lag. There is a time difference td1 between the rising edge of the replica clock RCLK and the rising edge of the leading clock RCLK_lead. There is a time difference td2 between the rising edge of the replica clock RCLK and the rising edge of the lagging clock RCLK_lag. Under the condition that there is a large difference between the capacitance values of the capacitors C_lead, C, and C_lag, the time differences td1 and td2 will be large. Under the condition that there is a small difference between the capacitance values of the capacitors C_lead, C, and C_lag, the time differences td1 and td2 will be small.

在本實施例中,領先時脈RCLK_lead的上升沿以及落後時脈RCLK_lag的上升沿會被作為延遲時脈DCLK是否發生的相位發生明顯偏移的重要判斷依據。舉例來說,延遲時脈DCLK的相位發生偏移(如,領先或落後)時,複本時脈RCLK、領先時脈RCLK_lead以及落後時脈RCLK_lag也會發生相同偏移。當輸入時脈的上升沿領先領先時脈RCLK_lead的上升沿時或者是輸入時脈的上升沿落後落後時脈RCLK_lag的上升沿時,延遲時脈DCLK的相位會被判斷為發生明顯的偏移。In this embodiment, the rising edge of the leading clock RCLK_lead and the rising edge of the lagging clock RCLK_lag will be used as an important basis for judging whether the phase of the delayed clock DCLK is significantly shifted. For example, when the phase of the delayed clock DCLK shifts (eg, leads or lags), the replica clock RCLK, the leading clock RCLK_lead, and the lagging clock RCLK_lag will also shift in the same direction. When the rising edge of the input clock leads the rising edge of the leading clock RCLK_lead or when the rising edge of the input clock lags behind the rising edge of the lagging clock RCLK_lag, the phase of the delayed clock DCLK will be judged to be significantly offset.

因此,在電容器C_lead、C、C_lag的電容值之間具有較大差值的條件下,相位檢測器140的更新靈敏度會較低。在電容器C_lead、C、C_lag的電容值之間具有較小差值的條件下,相位檢測器的更新靈敏度會較高。也就是說,電容器C_lead、C、C_lag的電容值可以被設計以決定相位檢測器140的更新靈敏度。Therefore, under the condition that there is a large difference between the capacitance values of the capacitors C_lead, C, and C_lag, the update sensitivity of the phase detector 140 will be low. Under the condition that there is a small difference between the capacitance values of the capacitors C_lead, C, and C_lag, the update sensitivity of the phase detector will be higher. That is, the capacitance values of the capacitors C_lead, C, C_lag can be designed to determine the update sensitivity of the phase detector 140 .

請參考圖5,圖5是依據本發明第二實施例所繪示的延遲鎖相迴路裝置的示意圖。在本實施例中,DLL裝置400包括延遲線110、複本電路120、內部時脈產生器130、相位檢測器440以及延遲控制器150。延遲線110、複本電路120、內部時脈產生器130以及延遲控制器150的實施細節可以在圖1至圖4的多個實施例中獲得足夠的教示,故不再此重述。Please refer to FIG. 5 , which is a schematic diagram of a delay locked loop device according to a second embodiment of the present invention. In this embodiment, the DLL device 400 includes a delay line 110, a replica circuit 120, an internal clock generator 130, a phase detector 440 and a delay controller 150. The implementation details of the delay line 110, the replica circuit 120, the internal clock generator 130 and the delay controller 150 can be sufficiently taught in the various embodiments of FIGS. 1 to 4 and will not be repeated here.

在本實施例中,相位檢測器440包括相位差判斷器PDD1~PDD3以及更新觸發訊號產生器441。相位差判斷器PDD1耦接於延遲控制器150。相位差判斷器PDD1接收複本時脈RCLK以及輸入時脈ICLK。相位差判斷器PDD1依據複本時脈RCLK的上升沿以及輸入時脈ICLK的上升沿來獲得平移相位差PD。相位差判斷器PDD1會將平移相位差PD提供至延遲控制器150。In this embodiment, the phase detector 440 includes phase difference determiners PDD1 to PDD3 and an update trigger signal generator 441. The phase difference determiner PDD1 is coupled to the delay controller 150 . The phase difference determiner PDD1 receives the replica clock RCLK and the input clock ICLK. The phase difference determiner PDD1 obtains the translation phase difference PD according to the rising edge of the replica clock RCLK and the rising edge of the input clock ICLK. The phase difference determiner PDD1 provides the translation phase difference PD to the delay controller 150 .

在本實施例中,相位差判斷器PDD2接收領先時脈RCLK_lead以及輸入時脈ICLK。相位差判斷器PDD2會比較領先時脈RCLK_lead的上升沿以及輸入時脈ICLK的上升沿。當領先時脈RCLK_lead的上升沿落後該輸入時脈ICLK的上升沿時,相位差判斷器PDD2依據領先時脈RCLK_lead來提供第一誤差訊號SE1。相位差判斷器PDD3接收落後時脈RCLK_lag以及輸入時脈ICLK。相位差判斷器PDD3會比較落後時脈RCLK_lag的上升沿以及輸入時脈ICLK的上升沿。當落後時脈RCLK_lag的上升沿領先輸入時脈ICLK的上升沿時,相位差判斷器PDD3依據落後時脈RCLK_lag來提供第二誤差訊號SE2。In this embodiment, the phase difference determiner PDD2 receives the leading clock RCLK_lead and the input clock ICLK. The phase difference determiner PDD2 compares the rising edge of the leading clock RCLK_lead with the rising edge of the input clock ICLK. When the rising edge of the leading clock RCLK_lead lags behind the rising edge of the input clock ICLK, the phase difference determiner PDD2 provides the first error signal SE1 according to the leading clock RCLK_lead. The phase difference determiner PDD3 receives the lagging clock RCLK_lag and the input clock ICLK. The phase difference determiner PDD3 will lag behind the rising edge of the clock RCLK_lag and the rising edge of the input clock ICLK. When the rising edge of the lagging clock RCLK_lag leads the rising edge of the input clock ICLK, the phase difference determiner PDD3 provides the second error signal SE2 according to the lagging clock RCLK_lag.

在本實施例中,更新觸發訊號產生器441耦接於相位差判斷器PDD2、PDD3以及延遲控制器150。更新觸發訊號產生器441依據第一誤差訊號SE1以及第二誤差訊號SE2來提供更新觸發訊號SU。In this embodiment, the update trigger signal generator 441 is coupled to the phase difference determiners PDD2, PDD3 and the delay controller 150. The update trigger signal generator 441 provides the update trigger signal SU according to the first error signal SE1 and the second error signal SE2.

在本實施例中,更新觸發訊號產生器441包括邏輯電路LOC。邏輯電路LOC反應於第一誤差訊號SE1以及第二誤差訊號SE2的其中之一以輸出更新觸發訊號SU。進一步來說,邏輯電路LOC對第一誤差訊號SE1以及第二誤差訊號SE2進行邏輯運算以輸出更新觸發訊號SU。以本實施例為例,第一誤差訊號SE1以及第二誤差訊號SE2分別為具有高邏輯準位的訊號(本發明並不以此為限)。邏輯電路LOC可以由或(OR)邏輯閘來實施。因此,邏輯電路LOC能夠依據第一誤差訊號SE1以及第二誤差訊號SE2的其中之一來輸出具有高邏輯準位的更新觸發訊號SU。在一些實施例中,邏輯電路LOC可以由互斥或(XOR)邏輯閘來實施。In this embodiment, the update trigger signal generator 441 includes a logic circuit LOC. The logic circuit LOC responds to one of the first error signal SE1 and the second error signal SE2 to output the update trigger signal SU. Furthermore, the logic circuit LOC performs logical operations on the first error signal SE1 and the second error signal SE2 to output the update trigger signal SU. Taking this embodiment as an example, the first error signal SE1 and the second error signal SE2 are signals with high logic levels respectively (the invention is not limited thereto). The logic circuit LOC can be implemented by an OR logic gate. Therefore, the logic circuit LOC can output the update trigger signal SU with a high logic level according to one of the first error signal SE1 and the second error signal SE2. In some embodiments, the logic circuit LOC may be implemented as an exclusive OR (XOR) logic gate.

請同時參考圖5以及圖6A,圖6A是依據圖5所繪示的第一時序圖。在本實施例中,複本時脈RCLK與輸入時脈ICLK之間的平移相位差PD小於或等於領先相位差PD_lead以及落後相位差PD_lag。也就是說,輸入時脈ICLK的上升沿落後於領先時脈RCLK_lead的上升沿並且領先於落後時脈RCLK_lag的上升沿。相位差判斷器PDD2提供具有低邏輯準位的第一誤差訊號SE1。相位差判斷器PDD3提供具有低邏輯準位的第二誤差訊號SE2。因此,更新觸發訊號產生器441會提供低邏輯準位的訊號,而不是具有高邏輯準位的更新觸發訊號SU。延遲控制器150不會更新延遲控制訊號SDL。Please refer to FIG. 5 and FIG. 6A at the same time. FIG. 6A is a first timing diagram based on FIG. 5 . In this embodiment, the translation phase difference PD between the replica clock RCLK and the input clock ICLK is less than or equal to the leading phase difference PD_lead and the lagging phase difference PD_lag. That is, the rising edge of the input clock ICLK lags the rising edge of the leading clock RCLK_lead and leads the rising edge of the lagging clock RCLK_lag. The phase difference determiner PDD2 provides the first error signal SE1 with a low logic level. The phase difference determiner PDD3 provides the second error signal SE2 with a low logic level. Therefore, the update trigger signal generator 441 provides a signal with a low logic level instead of the update trigger signal SU with a high logic level. The delay controller 150 does not update the delay control signal SDL.

請同時參考圖5以及圖6B,圖6B是依據圖5所繪示的第二時序圖。在本實施例中,複本時脈RCLK與輸入時脈ICLK之間的平移相位差PD大於領先相位差PD_lead。也就是說,輸入時脈ICLK的上升沿領先於領先時脈RCLK_lead的上升沿並且領先於落後時脈RCLK_lag的上升沿。相位差判斷器PDD2提供具有高邏輯準位的第一誤差訊號SE1。相位差判斷器PDD3提供具有低邏輯準位的第二誤差訊號SE2。因此,更新觸發訊號產生器441會提供具有高邏輯準位的更新觸發訊號SU。延遲控制器150會反應於具有高邏輯準位的更新觸發訊號SU來更新延遲控制訊號SDL。Please refer to FIG. 5 and FIG. 6B at the same time. FIG. 6B is a second timing diagram based on FIG. 5 . In this embodiment, the translation phase difference PD between the replica clock RCLK and the input clock ICLK is greater than the leading phase difference PD_lead. That is, the rising edge of the input clock ICLK leads the rising edge of the leading clock RCLK_lead and leads the rising edge of the lagging clock RCLK_lag. The phase difference determiner PDD2 provides the first error signal SE1 with a high logic level. The phase difference determiner PDD3 provides the second error signal SE2 with a low logic level. Therefore, the update trigger signal generator 441 provides the update trigger signal SU with a high logic level. The delay controller 150 updates the delay control signal SDL in response to the update trigger signal SU having a high logic level.

此外,在本實施例中,當領先時脈RCLK_lead的上升沿被判斷出落後輸入時脈ICLK的上升沿時,第一誤差訊號SE1等於領先時脈RCLK_lead。以本實施例為例,相位差判斷器PDD2會判斷領先時脈RCLK_lead的上升沿以及輸入時脈ICLK的上升沿。當輸入時脈ICLK的上升沿被產生並且領先時脈RCLK_lead的上升沿還沒有被產生時,相位差判斷器PDD2會確定出延遲時脈DCLK的相位明顯領先輸入時脈ICLK的相位。因此,隨後當領先時脈RCLK_lead的上升沿被產生時,相位差判斷器PDD2可將領先時脈RCLK_lead作為第一誤差訊號SE1。Furthermore, in this embodiment, when the rising edge of the leading clock RCLK_lead is determined to lag behind the rising edge of the input clock ICLK, the first error signal SE1 is equal to the leading clock RCLK_lead. Taking this embodiment as an example, the phase difference determiner PDD2 determines the rising edge of the leading clock RCLK_lead and the rising edge of the input clock ICLK. When the rising edge of the input clock ICLK is generated and the rising edge of the leading clock RCLK_lead has not yet been generated, the phase difference determiner PDD2 will determine that the phase of the delayed clock DCLK is significantly ahead of the phase of the input clock ICLK. Therefore, when the rising edge of the leading clock RCLK_lead is subsequently generated, the phase difference determiner PDD2 can use the leading clock RCLK_lead as the first error signal SE1.

請同時參考圖5以及圖6C,圖6C是依據圖5所繪示的第三時序圖。在本實施例中,複本時脈RCLK與輸入時脈ICLK之間的平移相位差PD大於落後相位差PD_lag。也就是說,輸入時脈ICLK的上升沿落後於領先時脈RCLK_lead的上升沿並且落後於落後時脈RCLK_lag的上升沿。相位差判斷器PDD2提供具有低邏輯準位的第一誤差訊號SE1。相位差判斷器PDD3提供具有高邏輯準位的第二誤差訊號SE2。因此,更新觸發訊號產生器441會提供具有高邏輯準位的更新觸發訊號SU。延遲控制器150會反應於具有高邏輯準位的更新觸發訊號SU來更新延遲控制訊號SDL。Please refer to FIG. 5 and FIG. 6C at the same time. FIG. 6C is a third timing diagram based on FIG. 5 . In this embodiment, the translation phase difference PD between the replica clock RCLK and the input clock ICLK is greater than the lagging phase difference PD_lag. That is, the rising edge of the input clock ICLK lags the rising edge of the leading clock RCLK_lead and lags the rising edge of the lagging clock RCLK_lag. The phase difference determiner PDD2 provides the first error signal SE1 with a low logic level. The phase difference determiner PDD3 provides the second error signal SE2 with a high logic level. Therefore, the update trigger signal generator 441 provides the update trigger signal SU with a high logic level. The delay controller 150 updates the delay control signal SDL in response to the update trigger signal SU having a high logic level.

此外,在本實施例中,當落後時脈RCLK_lag的上升沿被判斷出領先輸入時脈ICLK的上升沿時,第二誤差訊號SE2等於落後時脈RCLK_lag。以本實施例為例,相位差判斷器PDD3會判斷落後時脈RCLK_lag的上升沿以及輸入時脈ICLK的上升沿。當落後時脈RCLK_lag的上升沿被產生時並且輸入時脈ICLK的上升沿還沒有被產生時,相位差判斷器PDD2會確定出延遲時脈DCLK的相位明顯落後後輸入時脈ICLK的相位。因此,當落後時脈RCLK_lag的上升沿被產生時並且輸入時脈ICLK的上升沿還沒有被產生時,相位差判斷器PDD3可將落後時脈RCLK_lag作為第二誤差訊號SE2。Furthermore, in this embodiment, when the rising edge of the lagging clock RCLK_lag is determined to be ahead of the rising edge of the input clock ICLK, the second error signal SE2 is equal to the lagging clock RCLK_lag. Taking this embodiment as an example, the phase difference determiner PDD3 determines the rising edge of the lagging clock RCLK_lag and the rising edge of the input clock ICLK. When the rising edge of the lagging clock RCLK_lag is generated and the rising edge of the input clock ICLK has not yet been generated, the phase difference determiner PDD2 determines that the phase of the delayed clock DCLK is significantly behind the phase of the subsequent input clock ICLK. Therefore, when the rising edge of the lagging clock RCLK_lag is generated and the rising edge of the input clock ICLK has not been generated, the phase difference determiner PDD3 may use the lagging clock RCLK_lag as the second error signal SE2.

請參考圖7,圖7是依據本發明一實施例所繪示的相位檢測器的示意圖。在本實施例中,相位檢測器540包括相位差判斷器PDD1~PDD3以及更新觸發訊號產生器541。相位差判斷器PDD1~PDD3的實施細節可以在圖5以及圖6A~6C的多個實施例中獲得足夠的教示,故不再此重述。Please refer to FIG. 7 , which is a schematic diagram of a phase detector according to an embodiment of the present invention. In this embodiment, the phase detector 540 includes phase difference determiners PDD1 to PDD3 and an update trigger signal generator 541. The implementation details of the phase difference determiners PDD1 to PDD3 can be sufficiently taught in the multiple embodiments of FIG. 5 and FIGS. 6A to 6C and will not be repeated here.

在本實施例中,更新觸發訊號產生器541包括計數器CNT1、CNT2以及邏輯電路LOC。計數器CNT1耦接於相位差判斷器PDD2。計數器CNT1對第一誤差訊號SE1的發生次數進行計數以產生計數值CV1。當計數值CV1到達第一預設值時,計數器CNT1提供觸發訊號STR1。計數器CNT2耦接於相位差判斷器PDD3。計數器CNT2對第二誤差訊號SE2的發生次數進行計數以產生計數值CV2。當計數值CV2到達第二預設值時,計數器CNT2提供觸發訊號STR2。在本實施例中,第一預設值以及第二預設值可以是相同的數值或者是不相同的數值。In this embodiment, the update trigger signal generator 541 includes counters CNT1, CNT2 and a logic circuit LOC. The counter CNT1 is coupled to the phase difference determiner PDD2. The counter CNT1 counts the occurrence times of the first error signal SE1 to generate a count value CV1. When the count value CV1 reaches the first preset value, the counter CNT1 provides the trigger signal STR1. The counter CNT2 is coupled to the phase difference determiner PDD3. The counter CNT2 counts the occurrence times of the second error signal SE2 to generate a count value CV2. When the count value CV2 reaches the second preset value, the counter CNT2 provides the trigger signal STR2. In this embodiment, the first preset value and the second preset value may be the same numerical value or different numerical values.

邏輯電路LOC耦接於計數器CNT1、CNT2以及延遲控制器。邏輯電路LOC依據觸發訊號STR1、STR2的其中之一來輸出更新觸發訊號SU。進一步來說,邏輯電路LOC對觸發訊號STR1、STR2進行邏輯運算以輸出更新觸發訊號SU。以本實施例為例,觸發訊號STR1、STR2分別為具有高邏輯準位的訊號(本發明並不以此為限)。邏輯電路LOC可以由或(OR)邏輯閘來實施。因此,邏輯電路LOC能夠依據觸發訊號STR1、STR2的其中之一來輸出具有高邏輯準位的更新觸發訊號SU。在一些實施例中,邏輯電路LOC可以由互斥或(XOR)邏輯閘來實施。The logic circuit LOC is coupled to the counters CNT1, CNT2 and the delay controller. The logic circuit LOC outputs the update trigger signal SU according to one of the trigger signals STR1 and STR2. Furthermore, the logic circuit LOC performs logical operations on the trigger signals STR1 and STR2 to output the update trigger signal SU. Taking this embodiment as an example, the trigger signals STR1 and STR2 are signals with high logic levels respectively (the invention is not limited thereto). The logic circuit LOC can be implemented by an OR logic gate. Therefore, the logic circuit LOC can output the update trigger signal SU with a high logic level according to one of the trigger signals STR1 and STR2. In some embodiments, the logic circuit LOC may be implemented as an exclusive OR (XOR) logic gate.

在此值得一提的是,在本實施例中,當計數值CV1到達第一預設值或者是當計數值CV2到達第二預設值時,邏輯電路LOC才會輸出更新觸發訊號SU。DLL裝置不會頻繁地對延遲控制訊號SDL進行更新。如此一來,DLL裝置的功率消耗能夠進一步地被降低。It is worth mentioning here that in this embodiment, the logic circuit LOC will output the update trigger signal SU only when the count value CV1 reaches the first preset value or when the count value CV2 reaches the second preset value. The DLL device does not frequently update the delay control signal SDL. In this way, the power consumption of the DLL device can be further reduced.

請參考圖8,圖8是依據本發明第三實施例所繪示的延遲鎖相迴路裝置的示意圖。在本實施例中,DLL裝置600包括延遲線110、複本電路120、內部時脈產生器130、相位檢測器140、延遲控制器150以及計時器電路160。延遲線110、複本電路120、內部時脈產生器130、相位檢測器140以及延遲控制器150的實施細節可以在圖1至圖7的多個實施例中獲得足夠的教示,故不再此重述。Please refer to FIG. 8 , which is a schematic diagram of a delay locked loop device according to a third embodiment of the present invention. In this embodiment, the DLL device 600 includes a delay line 110, a replica circuit 120, an internal clock generator 130, a phase detector 140, a delay controller 150 and a timer circuit 160. The implementation details of the delay line 110, the replica circuit 120, the internal clock generator 130, the phase detector 140 and the delay controller 150 can be sufficiently taught in the various embodiments of FIGS. 1 to 7 and will not be repeated here. narrate.

在本實施例中,計時器電路160基於操作週期來控制內部時脈產生器130產生領先時脈RCLK_lead以及落後時脈RCLK_lag。在本實施例中,計時器電路160耦接於延遲線110以及複本電路120。計時器電路160會影響複本電路120接收延遲時脈DCLK。以本實施例為例,計時器電路160包括及(AND)邏輯閘AG以及計時器161。計時器161基於操作週期提供具有第一邏輯準位(即,高邏輯準位)的控制訊號SC。及邏輯閘AG的第一輸入端用以接收延遲時脈DCLK。及邏輯閘AG的第二輸入端用以接收控制訊號SC。及邏輯閘AG的輸出端耦接至複本電路120。因此,計時器電路160基於操作週期控制複本電路120間歇性地接收延遲時脈DCLK。內部時脈產生器130間歇性地產生領先時脈RCLK_lead以及落後時脈RCLK_lag。如此一來,內部時脈產生器130、相位檢測器140的功率消耗能夠進一步地被降低。In this embodiment, the timer circuit 160 controls the internal clock generator 130 to generate the leading clock RCLK_lead and the lagging clock RCLK_lag based on the operation cycle. In this embodiment, the timer circuit 160 is coupled to the delay line 110 and the replica circuit 120 . The timer circuit 160 affects the replica circuit 120 to receive the delayed clock DCLK. Taking this embodiment as an example, the timer circuit 160 includes an AND logic gate AG and a timer 161 . The timer 161 provides the control signal SC having a first logic level (ie, a high logic level) based on the operation cycle. And the first input terminal of the logic gate AG is used to receive the delayed clock DCLK. And the second input end of the logic gate AG is used to receive the control signal SC. And the output terminal of the logic gate AG is coupled to the replica circuit 120 . Therefore, the timer circuit 160 controls the replica circuit 120 to intermittently receive the delayed clock DCLK based on the operating cycle. The internal clock generator 130 intermittently generates the leading clock RCLK_lead and the lagging clock RCLK_lag. In this way, the power consumption of the internal clock generator 130 and the phase detector 140 can be further reduced.

此外,本實施例的延遲控制器150不會頻繁地對延遲控制訊號SDL進行更新。如此一來,本實施例的延遲控制器150的功率消耗能夠進一步地被降低。In addition, the delay controller 150 of this embodiment does not frequently update the delay control signal SDL. In this way, the power consumption of the delay controller 150 of this embodiment can be further reduced.

在一些實施例中,計時器電路160耦接於複本電路120以及內部時脈產生器130。計時器電路160會影響內部時脈產生器130接收複本時脈RCLK。因此,計時器電路160能夠基於操作週期控制內部時脈產生器130間歇性地接收複本時脈RCLK並且間歇性地產生領先時脈RCLK_lead以及落後時脈RCLK_lag。如此一來,內部時脈產生器130、相位檢測器140以及延遲控制器150的功率消耗能夠被降低。In some embodiments, the timer circuit 160 is coupled to the replica circuit 120 and the internal clock generator 130 . The timer circuit 160 affects the internal clock generator 130 to receive the replica clock RCLK. Therefore, the timer circuit 160 can control the internal clock generator 130 to intermittently receive the replica clock RCLK and intermittently generate the leading clock RCLK_lead and the lagging clock RCLK_lag based on the operation cycle. In this way, the power consumption of the internal clock generator 130, the phase detector 140 and the delay controller 150 can be reduced.

請同時參考圖1以及圖9,圖9是依據本發明一實施例所繪示的眼圖以及功率消耗的比較圖。在本實施例中,圖9示出了時脈的眼圖E1、E2、E3以及比較圖。眼圖E1是DLL裝置持續對延遲控制訊號SDL進行更新所產生的眼圖。眼圖E2是DLL裝置持續不對延遲控制訊號SDL進行更新所產生的眼圖。眼圖E3是DLL裝置100反應於更新觸發訊號SU來對延遲控制訊號SDL進行更新所產生的眼圖。Please refer to FIG. 1 and FIG. 9 at the same time. FIG. 9 is a comparison diagram of eye diagrams and power consumption according to an embodiment of the present invention. In this embodiment, FIG. 9 shows the eye diagrams E1, E2, and E3 of the clock and the comparison diagram. Eye diagram E1 is an eye diagram generated by the DLL device continuously updating the delay control signal SDL. Eye diagram E2 is an eye diagram generated by the DLL device continuing not to update the delay control signal SDL. The eye diagram E3 is an eye diagram generated by the DLL device 100 updating the delay control signal SDL in response to the update trigger signal SU.

比較圖示出了眼圖E1的操作點P(E1)、眼圖E2的操作點P(E2)以及眼圖E3的操作點P(E3)。在比較圖中,眼圖E1的眼寬W1最大。由於DLL裝置持續對延遲控制訊號SDL進行更新,因此對應於眼圖E1的功率消耗會非常大。在DLL裝置持續不對延遲控制訊號SDL進行更新的情況下,對應於眼圖E2的功率消耗會非常小。然而,眼圖E1的眼寬W2也會明顯較小。The comparison diagram shows the operating point P(E1) of the eye diagram E1, the operating point P(E2) of the eye diagram E2, and the operating point P(E3) of the eye diagram E3. In the comparison diagram, the eye width W1 of eye diagram E1 is the largest. Since the DLL device continues to update the delay control signal SDL, the power consumption corresponding to the eye diagram E1 will be very large. In the case where the DLL device continues not to update the delay control signal SDL, the power consumption corresponding to the eye diagram E2 will be very small. However, the eye width W2 of eye diagram E1 will also be significantly smaller.

在本實施例中,基於DLL裝置100的實施方式,當平移相位差PD大於領先相位差PD_lead以及落後相位差PD_lag的其中之一時,DLL裝置100對延遲控制訊號SDL進行更新。因此,眼圖E3的眼寬W3僅略小於眼寬W1。對應於眼圖E3的功率消耗僅略大於對應於眼圖E2的功率消耗。In this embodiment, based on the implementation of the DLL device 100, when the translation phase difference PD is greater than one of the leading phase difference PD_lead and the lagging phase difference PD_lag, the DLL device 100 updates the delay control signal SDL. Therefore, the eye width W3 of eye diagram E3 is only slightly smaller than the eye width W1. The power consumption corresponding to eye diagram E3 is only slightly greater than the power consumption corresponding to eye diagram E2.

在本實施例中,例如基於圖4、圖7以及圖8多個實施例的教示。DLL裝置100對延遲控制訊號SDL進行更新的頻繁度及/或更新靈敏度可以被調整。因此,眼圖E3的眼寬W3以及功率消耗可以被調整以接近眼寬W1、W2的其中一者。In this embodiment, for example, the teachings of multiple embodiments are based on FIG. 4 , FIG. 7 , and FIG. 8 . The frequency and/or update sensitivity of the DLL device 100 in updating the delay control signal SDL may be adjusted. Therefore, the eye width W3 and the power consumption of the eye diagram E3 can be adjusted to be close to one of the eye widths W1 and W2.

綜上所述,DLL裝置的相位檢測器會依據平移相位差、領先相位差以及落後相位差來提供更新觸發訊號,DLL裝置的延遲控制器會反應於更新觸發訊號來更新延遲控制訊號。如此一來,在延遲時脈的相位發生明顯偏移時,DLL裝置能夠及時地對延遲時脈進行調整。在延遲時脈的相位並沒有發生明顯偏移時,DLL裝置則不會對延遲時脈進行調整。如此一來,DLL裝置的功率消耗得以被降低。In summary, the phase detector of the DLL device will provide an update trigger signal based on the translation phase difference, the leading phase difference, and the lagging phase difference, and the delay controller of the DLL device will update the delay control signal in response to the update trigger signal. In this way, when the phase of the delayed clock deviates significantly, the DLL device can adjust the delayed clock in time. When the phase of the delayed clock does not shift significantly, the DLL device does not adjust the delayed clock. In this way, the power consumption of the DLL device can be reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

100、400、600:DLL裝置 110:延遲線 120:複本電路 130、230、330:內部時脈產生器 140、440、540:相位檢測器 150:延遲控制器 160:計時器電路 161:計時器 441、541:更新觸發訊號產生器 AG:及邏輯閘 B1~B6:緩衝器 C、C_C_lag、C_lead:電容器 C1、C2:時序圖 CNT1、CNT2:計數器 CV1、CV:計數值 DCLK:延遲時脈 DL1、DL2、DL3:延遲電路 E1、E2、E3:眼圖 ICLK:輸入時脈 LOC:邏輯電路 PD:平移相位差 PDD1、PDD2、PDD3:相位差判斷器 P(E1)、P(E2)、P(E3):操作點 PD_lag:落後相位差 PD_lead:領先相位差 RCLK:複本時脈 RCLK_lead:領先時脈 RCLK_lag:落後時脈 SC:控制訊號 SDL:延遲控制訊號 SE1:第一誤差訊號 SE2:第二誤差訊號 SU:更新觸發訊號 td1、td2:時間差 W1、W2、W3:眼寬 100, 400, 600: DLL device 110: Delay line 120:Copy circuit 130, 230, 330: Internal clock generator 140, 440, 540: Phase detector 150:Delay controller 160: Timer circuit 161: timer 441, 541: Update trigger signal generator AG: and logic gate B1~B6: buffer C, C_C_lag, C_lead: capacitor C1, C2: Timing diagram CNT1, CNT2: counter CV1, CV: count value DCLK: delayed clock DL1, DL2, DL3: delay circuit E1, E2, E3: eye diagram ICLK: input clock LOC: logic circuit PD: translational phase difference PDD1, PDD2, PDD3: phase difference judger P(E1), P(E2), P(E3): operating point PD_lag: lagging phase difference PD_lead: leading phase difference RCLK: replica clock RCLK_lead: leading clock RCLK_lag: lagging clock SC: control signal SDL: delay control signal SE1: first error signal SE2: second error signal SU: update trigger signal td1, td2: time difference W1, W2, W3: Eye width

圖1是依據本發明第一實施例所繪示的延遲鎖相迴路裝置的示意圖。 圖2是依據本發明一實施例所繪示的內部時脈產生器的示意圖。 圖3是依據本發明另一實施例所繪示的內部時脈產生器的示意圖。 圖4是依據圖3所繪示的複本時脈、領先時脈以及落後時脈的時序圖。 圖5是依據本發明第二實施例所繪示的延遲鎖相迴路裝置的示意圖。 圖6A是依據圖5所繪示的第一時序圖。 圖6B是依據圖5所繪示的第二時序圖。 圖6C是依據圖5所繪示的第三時序圖。 圖7是依據本發明一實施例所繪示的相位檢測器的示意圖。 圖8是依據本發明第三實施例所繪示的延遲鎖相迴路裝置的示意圖。 圖9是依據本發明一實施例所繪示的眼圖以及功率消耗的比較圖。 FIG. 1 is a schematic diagram of a delay locked loop device according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of an internal clock generator according to an embodiment of the invention. FIG. 3 is a schematic diagram of an internal clock generator according to another embodiment of the invention. FIG. 4 is a timing diagram based on the replica clock, leading clock and lagging clock shown in FIG. 3 . FIG. 5 is a schematic diagram of a delay locked loop device according to a second embodiment of the present invention. FIG. 6A is a first timing diagram shown in FIG. 5 . FIG. 6B is a second timing diagram shown in FIG. 5 . FIG. 6C is a third timing diagram shown in FIG. 5 . FIG. 7 is a schematic diagram of a phase detector according to an embodiment of the present invention. FIG. 8 is a schematic diagram of a delay locked loop device according to a third embodiment of the present invention. FIG. 9 is a comparison diagram of eye diagrams and power consumption according to an embodiment of the present invention.

100:DLL裝置 100:DLL device

110:延遲線 110: Delay line

120:複本電路 120:Copy circuit

130:內部時脈產生器 130: Internal clock generator

140:相位檢測器 140: Phase detector

150:延遲控制器 150:Delay controller

DCLK:延遲時脈 DCLK: delayed clock

ICLK:輸入時脈 ICLK: input clock

PD:平移相位差 PD: translational phase difference

PD_lag:落後相位差 PD_lag: lagging phase difference

PD_lead:領先相位差 PD_lead: leading phase difference

RCLK:複本時脈 RCLK: replica clock

RCLK_lag:落後時脈 RCLK_lag: lagging clock

RCLK_lead:領先時脈 RCLK_lead: leading clock

SDL:延遲控制訊號 SDL: delay control signal

SU:更新觸發訊號 SU: update trigger signal

Claims (13)

一種延遲鎖相迴路裝置,包括: 一延遲線,經配置以接收一輸入時脈,並反應於一延遲控制訊號來對該輸入時脈進行延遲以產生一延遲時脈; 一複本電路,耦接於該延遲線,經配置以接收該延遲時脈,並依據該延遲時脈來產生一複本時脈; 一內部時脈產生器,耦接於該複本電路,經配置以依據該複本時脈來產生一領先時脈以及一落後時脈,並提供該複本時脈; 一相位檢測器,耦接於該內部時脈產生器,經配置以依據該複本時脈與該輸入時脈之間的一平移相位差、該領先時脈與該輸入時脈之間的一領先相位差以及該落後時脈與該輸入時脈之間的一落後相位差來提供一更新觸發訊號;以及 一延遲控制器,耦接於該相位檢測器以及該延遲線,經配置以提供該延遲控制訊號,並反應於該更新觸發訊號來更新該延遲控制訊號。 A delay locked loop device, including: a delay line configured to receive an input clock and to delay the input clock in response to a delay control signal to generate a delay clock; a replica circuit coupled to the delay line and configured to receive the delay clock and generate a replica clock based on the delay clock; an internal clock generator coupled to the replica circuit and configured to generate a leading clock and a lagging clock based on the replica clock and provide the replica clock; a phase detector coupled to the internal clock generator configured to depend on a translation phase difference between the replica clock and the input clock, a lead between the leading clock and the input clock The phase difference and a lagging phase difference between the lagging clock and the input clock provide an update trigger signal; and A delay controller coupled to the phase detector and the delay line is configured to provide the delay control signal and to update the delay control signal in response to the update trigger signal. 如請求項1所述的延遲鎖相迴路裝置,其中當該平移相位差大於該領先相位差以及落後相位差的其中之一時,該相位檢測器提供該更新觸發訊號。The delay locked loop device as claimed in claim 1, wherein when the translation phase difference is greater than one of the leading phase difference and the lagging phase difference, the phase detector provides the update trigger signal. 如請求項1所述的延遲鎖相迴路裝置,其中當該平移相位差小於或等於該領先相位差以及落後相位差時,該相位檢測器停止提供該更新觸發訊號。The delay locked loop device of claim 1, wherein when the translation phase difference is less than or equal to the leading phase difference and the lagging phase difference, the phase detector stops providing the update trigger signal. 如請求項1所述的延遲鎖相迴路裝置,其中該內部時脈產生器包括: 一第一延遲電路,耦接於該複本電路,經配置以對來自於該複本電路的該複本時脈進行延遲以產生該領先時脈; 一第二延遲電路,耦接於該第一延遲電路,經配置以對該領先時脈進行延遲以產生落後單一週期的該複本時脈;以及 一第三延遲電路,耦接於該第二延遲電路,經配置以對落後單一週期的該複本時脈進行延遲以產生該落後時脈。 The delay locked loop device as claimed in claim 1, wherein the internal clock generator includes: a first delay circuit coupled to the replica circuit and configured to delay the replica clock from the replica circuit to generate the leading clock; a second delay circuit coupled to the first delay circuit configured to delay the leading clock to generate the replica clock lagging behind by a single period; and A third delay circuit, coupled to the second delay circuit, is configured to delay the replica clock that is lagging behind by a single period to generate the lagging clock. 如請求項1所述的延遲鎖相迴路裝置,其中該內部時脈產生器包括: 一第一延遲電路,耦接於該複本電路,經配置以對該複本時脈進行延遲以產生該領先時脈; 一第二延遲電路,耦接於該複本電路,經配置以對該複本時脈進行延遲以產生落後單一週期的該複本時脈;以及 一第三延遲電路,耦接於該複本電路,經配置以對該複本時脈進行延遲以產生該落後時脈。 The delay locked loop device as claimed in claim 1, wherein the internal clock generator includes: a first delay circuit coupled to the replica circuit and configured to delay the replica clock to generate the leading clock; a second delay circuit coupled to the replica circuit and configured to delay the replica clock to generate the replica clock lagging behind by a single period; and A third delay circuit, coupled to the replica circuit, is configured to delay the replica clock to generate the lagging clock. 如請求項5所述的延遲鎖相迴路裝置,其中: 該第一延遲電路具有一第一時間常數, 該第二延遲電路具有一第二時間常數, 該第三延遲電路具有一第三時間常數, 該第二時間常數大於該第一時間常數,並且 該第三時間常數大於該第二時間常數。 The delay locked loop device as claimed in claim 5, wherein: The first delay circuit has a first time constant, The second delay circuit has a second time constant, The third delay circuit has a third time constant, The second time constant is greater than the first time constant, and The third time constant is greater than the second time constant. 如請求項6所述的延遲鎖相迴路裝置,其中: 該第一延遲電路包括: 一第一電容器,其中該第一時間常數由該第一電容器的電容值來決定, 該第二延遲電路包括: 一第二電容器,其中該第二時間常數由該第二電容器的電容值來決定,並且 該第三延遲電路包括: 一第三電容器,其中該第三時間常數由該第三電容器的電容值來決定。 The delay locked loop device as claimed in claim 6, wherein: The first delay circuit includes: a first capacitor, wherein the first time constant is determined by the capacitance value of the first capacitor, The second delay circuit includes: a second capacitor, wherein the second time constant is determined by the capacitance value of the second capacitor, and The third delay circuit includes: a third capacitor, wherein the third time constant is determined by the capacitance value of the third capacitor. 如請求項7所述的延遲鎖相迴路裝置,其中該第二電容器的電容值與該第一電容器的電容值之間的一第一差值以及該第三電容器的電容值與該第二電容器的電容值之間的一第二差值用以決定該相位檢測器的更新靈敏度。The delay locked loop device as claimed in claim 7, wherein a first difference between the capacitance value of the second capacitor and the capacitance value of the first capacitor and a capacitance value of the third capacitor and the second capacitor A second difference between the capacitance values is used to determine the update sensitivity of the phase detector. 如請求項1所述的延遲鎖相迴路裝置,其中該相位檢測器包括: 一第一相位差判斷器,耦接於該延遲控制器,經配置以依據該複本時脈的上升沿以及該輸入時脈的上升沿來獲得該平移相位差; 一第二相位差判斷器,經配置以當該領先時脈的上升沿落後該輸入時脈的上升沿時,依據該領先時脈來提供一第一誤差訊號; 一第三相位差判斷器,經配置以當該落後時脈的上升沿領先該輸入時脈的上升沿時,依據該落後時脈來提供一第二誤差訊號;以及 一更新觸發訊號產生器,耦接於該第二相位差判斷器、該第三相位差判斷器以及該延遲控制器,經配置以依據該第一誤差訊號以及該第二誤差訊號來提供該更新觸發訊號。 The delay locked loop device as claimed in claim 1, wherein the phase detector includes: a first phase difference determiner, coupled to the delay controller, configured to obtain the translation phase difference based on the rising edge of the replica clock and the rising edge of the input clock; a second phase difference determiner configured to provide a first error signal based on the leading clock when the rising edge of the leading clock lags behind the rising edge of the input clock; a third phase difference determiner configured to provide a second error signal based on the lagging clock when the rising edge of the lagging clock leads the rising edge of the input clock; and An update trigger signal generator coupled to the second phase difference determiner, the third phase difference determiner and the delay controller, configured to provide the update based on the first error signal and the second error signal Trigger signal. 如請求項9所述的延遲鎖相迴路裝置,其中該更新觸發訊號產生器包括: 一邏輯電路,經配置以反應於該第一誤差訊號以及該第二誤差訊號的其中之一以輸出該更新觸發訊號。 The delay locked loop device as claimed in claim 9, wherein the update trigger signal generator includes: A logic circuit configured to respond to one of the first error signal and the second error signal to output the update trigger signal. 如請求項10所述的延遲鎖相迴路裝置,其中: 當該領先時脈的上升沿被判斷出落後該輸入時脈的上升沿時,該第一誤差訊號等於該領先時脈,並且 當該落後時脈的上升沿被判斷出領先該輸入時脈的上升沿時,該第二誤差訊號等於該落後時脈。 The delay locked loop device as claimed in claim 10, wherein: When the rising edge of the leading clock is determined to lag behind the rising edge of the input clock, the first error signal is equal to the leading clock, and When the rising edge of the lagging clock is determined to be ahead of the rising edge of the input clock, the second error signal is equal to the lagging clock. 如請求項9所述的延遲鎖相迴路裝置,其中該更新觸發訊號產生器包括: 一第一計數器,耦接於該第二相位差判斷器,經配置以對該第一誤差訊號的發生次數進行計數以產生一第一計數值,並且當該第一計數值到達一第一預設值時,提供一第一觸發訊號; 一第二計數器,耦接於該第三相位差判斷器,經配置以對該第二誤差訊號的發生次數進行計數以產生一第二計數值,並且當該第二計數值到達一第二預設值時,提供該一第二觸發訊號;以及 一邏輯電路,耦接於該第一計數器、該第二計數器以及該延遲控制器,經配置以依據該第一觸發訊號以及該第二觸發訊號的其中之一來輸出該更新觸發訊號。 The delay locked loop device as claimed in claim 9, wherein the update trigger signal generator includes: A first counter, coupled to the second phase difference judger, configured to count the number of occurrences of the first error signal to generate a first count value, and when the first count value reaches a first predetermined When setting, provide a first trigger signal; A second counter, coupled to the third phase difference judger, configured to count the number of occurrences of the second error signal to generate a second count value, and when the second count value reaches a second predetermined When setting, provide the second trigger signal; and A logic circuit, coupled to the first counter, the second counter and the delay controller, is configured to output the update trigger signal according to one of the first trigger signal and the second trigger signal. 如請求項1所述的延遲鎖相迴路裝置,還包括: 一計時器電路,經配置以基於一操作週期來控制該內部時脈產生器產生該領先時脈以及該落後時脈。 The delay locked loop device as described in claim 1 also includes: A timer circuit configured to control the internal clock generator to generate the leading clock and the lagging clock based on an operating cycle.
TW111107255A 2022-03-01 2022-03-01 Delay-locked loop device TWI802300B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111107255A TWI802300B (en) 2022-03-01 2022-03-01 Delay-locked loop device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111107255A TWI802300B (en) 2022-03-01 2022-03-01 Delay-locked loop device

Publications (2)

Publication Number Publication Date
TWI802300B TWI802300B (en) 2023-05-11
TW202337139A true TW202337139A (en) 2023-09-16

Family

ID=87424409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107255A TWI802300B (en) 2022-03-01 2022-03-01 Delay-locked loop device

Country Status (1)

Country Link
TW (1) TWI802300B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10330796B4 (en) * 2002-10-30 2023-09-14 Hynix Semiconductor Inc. Register controlled delay locked loop with acceleration mode
KR100537196B1 (en) * 2004-03-05 2005-12-16 주식회사 하이닉스반도체 Delay locked loop in semiconductor memory device and its clock locking method
TWI281775B (en) * 2006-01-12 2007-05-21 Cheertek Inc Clock recovery circuit
CN102055442B (en) * 2007-11-01 2013-05-01 钰创科技股份有限公司 Frequency locking method of multi-phase delay lock loop in full frequency width

Also Published As

Publication number Publication date
TWI802300B (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US7940103B2 (en) Duty cycle correction systems and methods
US6285172B1 (en) Digital phase-locked loop circuit with reduced phase jitter frequency
US8947141B2 (en) Differential amplifiers, clock generator circuits, delay lines and methods
US6882196B2 (en) Duty cycle corrector
US7994834B2 (en) Duty cycle corrector and clock generator having the same
US7535270B2 (en) Semiconductor memory device
US7352219B2 (en) Duty cycle corrector
TW202211630A (en) Duty-cycle correction circuit for ddr devices
JP2010213308A (en) Delay line unit for delay locked loop circuit and method of locking clock signal delay in delay locked loop circuit
KR20080056544A (en) Delay locked loop circuit for semiconductor memory apparatus
US10333534B1 (en) Apparatuses and methods for providing frequency divided clocks
KR100843002B1 (en) duty cycle correction circuit and delay locked loop with the same
US7800975B2 (en) Digital data buffer with phase aligner
US6340905B1 (en) Dynamically minimizing clock tree skew in an integrated circuit
US10965292B1 (en) Delay-locked loop device and operation method therefor
JPH11145799A (en) Integrated circuit
KR20020081896A (en) Method and DLL(Delay Locked Loop) with controlling phase precisely
TWI802300B (en) Delay-locked loop device
KR101451929B1 (en) Delay locked loop and duty cycle correction method
US6586978B2 (en) Delay locked loop
JP2671516B2 (en) Skew correction circuit
KR101046705B1 (en) Semiconductor device and operating method for thesame
KR100321756B1 (en) Register Delay locked loop operating in high frequency
US20070080731A1 (en) Duty cycle corrector
JPH1093429A (en) Delay circuit and pll circuit using the same