TW202337002A - Memory device and method of manufacturing the same - Google Patents

Memory device and method of manufacturing the same Download PDF

Info

Publication number
TW202337002A
TW202337002A TW111108428A TW111108428A TW202337002A TW 202337002 A TW202337002 A TW 202337002A TW 111108428 A TW111108428 A TW 111108428A TW 111108428 A TW111108428 A TW 111108428A TW 202337002 A TW202337002 A TW 202337002A
Authority
TW
Taiwan
Prior art keywords
layer
along
memory element
width
conductor
Prior art date
Application number
TW111108428A
Other languages
Chinese (zh)
Other versions
TWI796160B (en
Inventor
韋承宏
尤建祥
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111108428A priority Critical patent/TWI796160B/en
Application granted granted Critical
Publication of TWI796160B publication Critical patent/TWI796160B/en
Publication of TW202337002A publication Critical patent/TW202337002A/en

Links

Images

Abstract

Provided is a memory device including a substrate, a plurality of stack structures, and a protective layer. The plurality of stack structures are arranged along a first direction on an array area of the substrate, and each of the stack structures extends along a second direction different from the first direction. In the cross-sectional view of the memory device, each of the stack structures includes, in sequence from the substrate, a charge storage structure, a control gate and a cap layer. The cap layer has a multilayer structure. The protective layer covers sidewalls of the stack structures. A width in the first direction of the charge storage structure, that of the control gate and that of the cap layer are substantially equal to each other.

Description

記憶元件及其製造方法Memory element and manufacturing method thereof

本發明是有關於一種記憶元件及其製造方法,且特別是有關於一種包含具有多層結構的頂蓋層的記憶元件及其製造方法。The present invention relates to a memory element and a manufacturing method thereof, and in particular to a memory element including a top cover layer having a multi-layer structure and a manufacturing method thereof.

隨著半導體技術的提升,半導體記憶元件的尺寸愈來愈小,其中快閃記憶體(Flash Memory)由於具備了重量輕、體積小、功率低等優點而逐漸受到重視。然而,目前快閃記憶體的製作過程中,容易在閘極上方的轉角處形成凸出部。因此,在例如進行蝕刻製程等移除虛擬源極接觸插塞(dummy source contact plugs)或虛擬汲極接觸插塞(dummy drain contact plugs),以形成源極或汲極接觸開口時,容易使位於所述凸出部附近的保護層受到損害,進而產生元件漏電流等問題,使得半導體記憶元件的可靠度降低。With the improvement of semiconductor technology, the size of semiconductor memory components is getting smaller and smaller. Among them, flash memory (Flash Memory) has gradually attracted attention due to its advantages such as light weight, small size, and low power. However, in the current manufacturing process of flash memory, it is easy to form protrusions at the corners above the gate. Therefore, when the dummy source contact plugs or dummy drain contact plugs are removed, such as by performing an etching process to form the source or drain contact openings, it is easy to make the The protective layer near the protruding portion is damaged, causing problems such as element leakage current, which reduces the reliability of the semiconductor memory element.

本發明提供一種記憶元件,包括多個堆疊結構以及保護層。多個堆疊結構沿著第一方向排列在基底的陣列區上,且每一堆疊結構沿著不同於第一方向的第二方向延伸。在記憶元件的剖視圖中,每一堆疊結構自基底依序包括電荷儲存結構、控制閘極及頂蓋層,且頂蓋層具有多層結構。保護層覆蓋堆疊結構的側壁。電荷儲存結構沿第一方向的寬度、控制閘極沿第一方向的寬度及頂蓋層沿第一方向的寬度彼此實質上相等。The invention provides a memory element, which includes a plurality of stacked structures and a protective layer. A plurality of stacked structures are arranged on the array area of the substrate along a first direction, and each stacked structure extends along a second direction different from the first direction. In the cross-sectional view of the memory element, each stacked structure includes a charge storage structure, a control gate and a top cover layer in order from the base, and the top cover layer has a multi-layer structure. A protective layer covers the side walls of the stacked structure. The width of the charge storage structure along the first direction, the width of the control gate along the first direction, and the width of the capping layer along the first direction are substantially equal to each other.

本發明提供一種記憶元件的製造方法,其步驟如下。在陣列區的基底上形成多個堆疊結構。多個堆疊結構沿著第一方向排列,且每一堆疊結構沿著不同於第一方向的第二方向延伸。並且在記憶元件的剖視圖中,每一堆疊結構自基底依序包括電荷儲存結構、控制閘極及頂蓋層,其中頂蓋層具有多層結構。電荷儲存結構沿第一方向的寬度、控制閘極沿第一方向的寬度及頂蓋層沿第一方向的寬度彼此實質上相等。接著,在堆疊結構的側壁上形成保護層。在基底上形成導體層,以填入多個堆疊結構之間的空間。進行平坦化製程,以形成多個導體條。對至少一導體條進行圖案化以形成多個導體柱。並且,進行替代製程,以將多個導體條與多個導體柱替換為多個接觸插塞。The invention provides a method for manufacturing a memory element, the steps of which are as follows. A plurality of stacked structures are formed on the substrate of the array area. The plurality of stacked structures are arranged along a first direction, and each stacked structure extends along a second direction that is different from the first direction. And in the cross-sectional view of the memory element, each stacked structure includes a charge storage structure, a control gate and a top cover layer in order from the base, where the top cover layer has a multi-layer structure. The width of the charge storage structure along the first direction, the width of the control gate along the first direction, and the width of the capping layer along the first direction are substantially equal to each other. Next, a protective layer is formed on the sidewalls of the stacked structure. A conductor layer is formed on the substrate to fill the spaces between the plurality of stacked structures. A planarization process is performed to form multiple conductor strips. At least one conductor strip is patterned to form a plurality of conductor posts. Furthermore, an alternative process is performed to replace the plurality of conductor strips and the plurality of conductor posts with a plurality of contact plugs.

基於上述,在本發明中,電荷儲存結構沿第一方向上的寬度、控制閘極沿第一方向上的寬度、及頂蓋層沿第一方向上的寬度彼此實質上相等,使得堆疊結構具有實質上平滑的側壁。如此一來,可避免保護層受到蝕刻製程等的損壞,並保持其完整性,以更進一步地提升元件可靠度。另一方面,在本發明製造方法中,堆疊結構的頂蓋層可作為研磨緩衝層,因此可直接藉由平坦化製程一併隔離出虛擬源極接觸插塞,後續僅需再進行圖案化製程以形成虛擬汲極接觸插塞即可。Based on the above, in the present invention, the width of the charge storage structure along the first direction, the width of the control gate along the first direction, and the width of the top capping layer along the first direction are substantially equal to each other, so that the stacked structure has Substantially smooth sidewalls. In this way, the protective layer can be prevented from being damaged by the etching process and its integrity can be maintained to further improve component reliability. On the other hand, in the manufacturing method of the present invention, the top cover layer of the stacked structure can be used as a polishing buffer layer, so the dummy source contact plug can be directly isolated through the planarization process, and only a subsequent patterning process is required. to form a virtual drain contact plug.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

圖1A、圖2A、圖3A、圖4A、圖5A、圖6A、圖7A、圖8A、圖9A、圖10A、圖11A、圖11D、圖12A、圖12D、圖13A、圖13C、圖14A、圖14C、圖15A、圖15C、圖16A、圖16C、圖17A與圖17C是依照本發明一實施例的記憶元件的陣列區之製造流程的剖面示意圖;圖1B、圖2B、圖3B、圖4B、圖5B、圖6B、圖7B、圖8B、圖9B、圖10B、圖11B、圖11E、圖12B、圖12E、圖13B、圖13D、圖14B、圖14D、圖15B、圖15D、圖16B、圖16D、圖17B與圖17D是依照本發明一實施例的記憶元件的周邊區之製造流程的剖面示意圖;圖1C、圖11C與圖12C分別是圖1A、圖11A與圖12A的上視示意圖。需說明的是,圖1A、圖11A與圖12A分別是圖1C、圖11C與圖12C的I-I’線的剖面示意圖;圖11D與圖12D分別是圖11C與圖12C的II-II’線的剖面示意圖。Figure 1A, Figure 2A, Figure 3A, Figure 4A, Figure 5A, Figure 6A, Figure 7A, Figure 8A, Figure 9A, Figure 10A, Figure 11A, Figure 11D, Figure 12A, Figure 12D, Figure 13A, Figure 13C, Figure 14A , Figure 14C, Figure 15A, Figure 15C, Figure 16A, Figure 16C, Figure 17A and Figure 17C are schematic cross-sectional views of the manufacturing process of the array area of the memory element according to an embodiment of the present invention; Figure 1B, Figure 2B, Figure 3B, Figure 4B, Figure 5B, Figure 6B, Figure 7B, Figure 8B, Figure 9B, Figure 10B, Figure 11B, Figure 11E, Figure 12B, Figure 12E, Figure 13B, Figure 13D, Figure 14B, Figure 14D, Figure 15B, Figure 15D , Figure 16B, Figure 16D, Figure 17B and Figure 17D are schematic cross-sectional views of the manufacturing process of the peripheral area of the memory element according to an embodiment of the present invention; Figure 1C, Figure 11C and Figure 12C are respectively Figure 1A, Figure 11A and Figure 12A Schematic diagram from above. It should be noted that Figure 1A, Figure 11A and Figure 12A are schematic cross-sectional views taken along line II' of Figure 1C, Figure 11C and Figure 12C respectively; Figures 11D and Figure 12D are respectively taken along line II-II' of Figure 11C and Figure 12C Schematic diagram of line section.

首先,請同時參照圖1A至圖1C,提供一基底100。基底100包括陣列區102及周邊區104。如圖1C所示,隔離結構101配置於基底100中,以將基底100定義出多個主動區(active areas)AA。主動區AA例如沿著第一方向D1延伸。在一實施例中,基底100例如是矽基底。隔離結構101可以是淺溝渠隔離(shallow trench isolation,STI)結構。如圖1A與圖1B所示,穿隧介電層106可形成於基底100的表面100a上。在一實施例中,穿隧介電層106的材料可包括氧化矽等介電材料。First, please refer to FIGS. 1A to 1C to provide a substrate 100 . The substrate 100 includes an array area 102 and a peripheral area 104. As shown in FIG. 1C , the isolation structure 101 is disposed in the substrate 100 to define a plurality of active areas AA on the substrate 100 . The active area AA extends, for example, along the first direction D1. In one embodiment, the substrate 100 is, for example, a silicon substrate. The isolation structure 101 may be a shallow trench isolation (STI) structure. As shown in FIGS. 1A and 1B , the tunnel dielectric layer 106 may be formed on the surface 100 a of the substrate 100 . In one embodiment, the material of the tunnel dielectric layer 106 may include dielectric materials such as silicon oxide.

多個第一堆疊結構110配置於陣列區102的基底100上,多個第二堆疊結構120配置於周邊區104的基底100上。如圖1A與圖1B所示,第一堆疊結構110的高度例如大於第二堆疊結構120的高度。如圖1C所示,第一堆疊結構110可以是條狀結構,並橫越主動區AA。換句話說,第一堆疊結構110沿著不同於第一方向D1的第二方向D2延伸。在本實施例中,第二方向D2垂直於或正交於第一方向D1,但本發明不限於此。另外,雖然圖1A與圖1B中僅繪示出一個第二堆疊結構120,圖1C中僅繪示出五個第一堆疊結構110。在其他實施例中,第一堆疊結構110及第二堆疊結構120的數量可以視設計需求而進行調整,於本發明並不加以限制。A plurality of first stacked structures 110 are arranged on the substrate 100 of the array area 102 , and a plurality of second stacked structures 120 are arranged on the substrate 100 of the peripheral area 104 . As shown in FIGS. 1A and 1B , the height of the first stacked structure 110 is, for example, greater than the height of the second stacked structure 120 . As shown in FIG. 1C , the first stacked structure 110 may be a strip structure and cross the active area AA. In other words, the first stacked structure 110 extends along the second direction D2 that is different from the first direction D1. In this embodiment, the second direction D2 is perpendicular or orthogonal to the first direction D1, but the invention is not limited thereto. In addition, although only one second stacked structure 120 is shown in FIGS. 1A and 1B , only five first stacked structures 110 are shown in FIG. 1C . In other embodiments, the number of the first stacked structure 110 and the second stacked structure 120 can be adjusted according to design requirements, and is not limited in the present invention.

在本實施例中,第一堆疊結構110由下往上依序包括電荷儲存結構112、阻障層BL、控制閘極(Control Gate)CG及頂蓋層CL。在剖視圖1A中,第一堆疊結構110的側壁110b實質上呈一直線。具體來說,電荷儲存結構112、控制閘極CG和頂蓋層CL在同一側的側壁例如位於與基底100的法向量平行的同一直線上。換句話說,電荷儲存結構112沿第一方向D1上的寬度、控制閘極CG沿第一方向D1上的寬度及頂蓋層CL沿第一方向D1上的寬度彼此實質上相等。如此一來,第一堆疊結構110可具有實質上平滑的側壁110b,因此在後續製程中將保護層等形成於第一堆疊結構110的側壁110b時可避免產生凸出部,即可確保位於側壁110b上的保護層具有平滑的表面。在一實施例中,阻障層BL可視為閘間介電層,其可以是氧化物/氮化物/氧化物(Oxide-Nitride-Oxide,ONO)所構成的複合層。控制閘極CG的材料包括導體材料,其可例如是摻雜多晶矽、非摻雜多晶矽或其組合。In this embodiment, the first stacked structure 110 includes a charge storage structure 112, a barrier layer BL, a control gate (Control Gate) CG, and a top cap layer CL in order from bottom to top. In the cross-sectional view 1A, the side wall 110b of the first stacked structure 110 is substantially in a straight line. Specifically, the sidewalls of the charge storage structure 112 , the control gate CG and the capping layer CL on the same side are, for example, located on the same straight line parallel to the normal vector of the substrate 100 . In other words, the width of the charge storage structure 112 along the first direction D1 , the width of the control gate CG along the first direction D1 and the width of the capping layer CL along the first direction D1 are substantially equal to each other. In this way, the first stacked structure 110 can have substantially smooth sidewalls 110b. Therefore, when the protective layer is formed on the sidewalls 110b of the first stacked structure 110 in subsequent processes, protrusions can be avoided, thereby ensuring that the protective layer is positioned on the sidewalls. The protective layer on 110b has a smooth surface. In one embodiment, the barrier layer BL can be regarded as an inter-gate dielectric layer, which can be a composite layer composed of oxide/nitride/oxide (Oxide-Nitride-Oxide, ONO). The material of the control gate CG includes a conductor material, which may be, for example, doped polysilicon, undoped polysilicon, or a combination thereof.

在本實施例中,電荷儲存結構112適用於儲存電荷。在一實施例中,電荷儲存結構112可包括浮置閘極(Floating Gate),但本發明不以此為限。浮置閘極的材料包括導體材料,其可例如是摻雜多晶矽、非摻雜多晶矽或其組合。In this embodiment, the charge storage structure 112 is suitable for storing charges. In one embodiment, the charge storage structure 112 may include a floating gate, but the invention is not limited thereto. The material of the floating gate includes a conductor material, which may be, for example, doped polysilicon, undoped polysilicon, or a combination thereof.

在本實施例中,頂蓋層CL具有多層結構。舉例來說,頂蓋層CL可包括介電層114及硬罩幕層116。介電層114例如配置於控制閘極CG及硬罩幕層116之間。介電層114沿第一方向D1上的寬度實質上等於硬罩幕層116沿第一方向D1上的寬度。如此一來,可確保在後續製程中即使將保護層等形成於頂蓋層CL的側壁時也能夠維持平滑的表面。在本實施例中,硬罩幕層116的厚度例如為100 nm~150 nm。另外,硬罩幕層116的材料例如是氮化矽,但本發明不以此為限。在其他實施例中,硬罩幕層116也可採用其他適宜的厚度和/或硬罩幕材料,只要於化學機械研磨製程等步驟中可以阻擋研磨即可。在一實施例中,介電層114的材料可包括氧化矽等介電材料。In this embodiment, the capping layer CL has a multi-layer structure. For example, the capping layer CL may include a dielectric layer 114 and a hard mask layer 116 . The dielectric layer 114 is, for example, disposed between the control gate CG and the hard mask layer 116 . The width of the dielectric layer 114 along the first direction D1 is substantially equal to the width of the hard mask layer 116 along the first direction D1. In this way, it is ensured that a smooth surface can be maintained even when a protective layer or the like is formed on the sidewall of the capping layer CL in subsequent processes. In this embodiment, the thickness of the hard mask layer 116 is, for example, 100 nm to 150 nm. In addition, the material of the hard mask layer 116 is, for example, silicon nitride, but the present invention is not limited thereto. In other embodiments, the hard mask layer 116 can also use other suitable thicknesses and/or hard mask materials, as long as it can block grinding during chemical mechanical polishing processes and other steps. In one embodiment, the material of the dielectric layer 114 may include dielectric materials such as silicon oxide.

在本實施例中,第二堆疊結構120例如由下往上依序包括閘電極122及介電層124。在一實施例中,閘電極122的材料包括導體材料,其可例如是摻雜多晶矽、非摻雜多晶矽或其組合。介電層124的材料例如是氧化矽等。In this embodiment, the second stacked structure 120 includes a gate electrode 122 and a dielectric layer 124 in order from bottom to top. In one embodiment, the material of the gate electrode 122 includes a conductive material, which may be, for example, doped polysilicon, non-doped polysilicon, or a combination thereof. The material of the dielectric layer 124 is, for example, silicon oxide.

接著,請同時參照圖2A及圖2B,間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A例如依序形成於基底100、第一堆疊結構110及第二堆疊結構120上。舉例來說,在陣列區102中,間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A依序共形地覆蓋基底100的表面100a、及第一堆疊結構110的頂面110a和側壁110b;在周邊區104中,間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A依序共形地覆蓋基底100的表面100a、及第二堆疊結構120的頂面120a和側壁120b。在一實施例中,形成間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A的方法例如為沉積法。間隙壁材料層131A的材料可以是氧化矽等。間隙壁材料層132A的材料可以是氮化矽等。間隙壁材料層133A的材料可以是氧化矽等。Next, please refer to FIGS. 2A and 2B simultaneously. The spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A are formed sequentially on the substrate 100, the first stacked structure 110, and the second stacked structure 120, for example. For example, in the array region 102, the spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A sequentially and conformally cover the surface 100a of the substrate 100, and the top surface 110a of the first stack structure 110. Sidewall 110b; in the peripheral area 104, the spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A sequentially conformally cover the surface 100a of the substrate 100, and the top surface 120a and sidewalls of the second stacked structure 120 120b. In one embodiment, a method of forming the spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A is, for example, a deposition method. The material of the spacer material layer 131A may be silicon oxide or the like. The material of the spacer material layer 132A may be silicon nitride or the like. The material of the spacer material layer 133A may be silicon oxide or the like.

然後,請同時參照圖3A及圖3B,移除部分的間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A,以暴露出第一堆疊結構110的頂面110a、第二堆疊結構120的頂面120a以及部分的穿隧介電層106,而在第一堆疊結構110的側壁110b及第二堆疊結構120的側壁120b上形成間隙壁層131、間隙壁層132及間隙壁層133(以下統稱為間隙壁層130)。在一實施例中,移除部分的間隙壁材料層131A、間隙壁材料層132A及間隙壁材料層133A的方法例如為進行一非等向性蝕刻製程,但本發明不以此為限。Then, please refer to FIGS. 3A and 3B simultaneously to remove part of the spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A to expose the top surface 110a of the first stacked structure 110 and the second stacked structure. 120 and a portion of the tunnel dielectric layer 106, and spacer layers 131, 132 and 133 are formed on the sidewalls 110b of the first stacked structure 110 and the sidewalls 120b of the second stacked structure 120. (Hereinafter collectively referred to as the spacer layer 130). In one embodiment, a method for removing part of the spacer material layer 131A, the spacer material layer 132A, and the spacer material layer 133A is, for example, an anisotropic etching process, but the invention is not limited thereto.

而後,請同時參照圖4A及圖4B,保護層136共形地形成於基底100上。在本實施例中,第一堆疊結構110具有實質上平滑的側壁110b,因此可確保形成於側壁110b上的保護層136可具有實質平滑的表面。在一實施例中,形成保護層136的方法例如沉積法。保護層136的材料可以是氮化矽等。Then, please refer to FIGS. 4A and 4B simultaneously, the protective layer 136 is conformally formed on the substrate 100 . In this embodiment, the first stacked structure 110 has substantially smooth sidewalls 110b, thus ensuring that the protective layer 136 formed on the sidewalls 110b has a substantially smooth surface. In one embodiment, the protective layer 136 is formed by a deposition method, for example. The material of the protective layer 136 may be silicon nitride or the like.

之後,請同時參照圖5A及圖5B,導體層138配置於保護層136上。在本實施例中,導體層138的高度大於第一堆疊結構110的高度及第二堆疊結構120的高度。在本實施例中,位於陣列區102的導體層138的高度例如大於位於周邊區104的導體層138的高度。接著,形成硬罩幕層140於導體層138上。在一實施例中,導體層138的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合。硬罩幕層140的材料可以是氮化矽等適宜材料。After that, please refer to FIG. 5A and FIG. 5B simultaneously, the conductor layer 138 is disposed on the protective layer 136 . In this embodiment, the height of the conductor layer 138 is greater than the height of the first stacked structure 110 and the height of the second stacked structure 120 . In this embodiment, the height of the conductor layer 138 located in the array area 102 is, for example, greater than the height of the conductor layer 138 located in the peripheral area 104 . Next, a hard mask layer 140 is formed on the conductor layer 138 . In one embodiment, the material of the conductor layer 138 may be, for example, doped polysilicon, undoped polysilicon, or a combination thereof. The material of the hard mask layer 140 may be suitable material such as silicon nitride.

接著,請同時參照圖6A及圖6B,在第二堆疊結構120的側壁120b形成間隙壁142。形成間隙壁142的方法例如包括以下步驟,但本發明不以此為限。首先,在位於陣列區102的硬罩幕層140上形成光阻圖案層(未繪示),並以所述光阻圖案層為罩幕進行蝕刻製程,移除位於周邊區104的導體層138及硬罩幕層140,以暴露出第二堆疊結構120。在一實施例中,蝕刻製程可以是以不同蝕刻氣體來進行蝕刻的乾式蝕刻製程,例如反應性離子蝕刻(reactive ion etching,RIE)製程。接著,移除所述光阻圖案層,並毯覆性地沉積例如氧化矽等間隙壁材料(未繪示)於基底100上,並蝕刻所述間隙壁材料,以形成間隙壁142。在本實施例中,部分的保護層136也被移除。Next, please refer to FIGS. 6A and 6B simultaneously, spacers 142 are formed on the sidewalls 120b of the second stacked structure 120 . The method of forming the spacer 142 includes, for example, the following steps, but the present invention is not limited thereto. First, a photoresist pattern layer (not shown) is formed on the hard mask layer 140 located in the array area 102, and an etching process is performed using the photoresist pattern layer as a mask to remove the conductor layer 138 located in the peripheral area 104. and the hard mask layer 140 to expose the second stacked structure 120 . In one embodiment, the etching process may be a dry etching process using different etching gases, such as a reactive ion etching (RIE) process. Next, the photoresist pattern layer is removed, a spacer material (not shown) such as silicon oxide is blanket-deposited on the substrate 100 , and the spacer material is etched to form spacers 142 . In this embodiment, part of the protective layer 136 is also removed.

然後,請同時參照圖7A及圖7B,在形成間隙壁142之後還可包括在基底100上及第二堆疊結構120上形成多個矽化物層144。在一實施例中,矽化物層144的材料可例如是矽化鈦、矽化鈷、矽化鎳或其組合。而後,在基底100上共形地沉積襯層146。在一實施例中,襯層146的材料可以是氮化矽等。Then, please refer to FIGS. 7A and 7B at the same time. After forming the spacers 142 , it may also include forming a plurality of silicide layers 144 on the substrate 100 and the second stacked structure 120 . In one embodiment, the material of the silicide layer 144 may be, for example, titanium silicide, cobalt silicide, nickel silicide, or a combination thereof. Then, a liner layer 146 is conformally deposited on the substrate 100 . In one embodiment, the material of the lining layer 146 may be silicon nitride or the like.

之後,請同時參照圖8A及圖8B,在基底100上毯覆性地形成氧化物層148。在本實施例中,位於陣列區102的氧化物層148的高度例如大於位於周邊區104的氧化物層148的高度。在一實施例中,氧化物層148的材料可以是氧化矽等。Afterwards, please refer to FIGS. 8A and 8B simultaneously to form an oxide layer 148 blanketingly on the substrate 100 . In this embodiment, the height of the oxide layer 148 located in the array region 102 is, for example, greater than the height of the oxide layer 148 located in the peripheral region 104 . In one embodiment, the material of the oxide layer 148 may be silicon oxide or the like.

接著,請同時參照圖9A及圖9B,例如進行一濕式蝕刻製程,移除部分的氧化物層148與襯層146及剩餘的硬罩幕層140,以暴露出導體層138。在本實施例中,以基底100的一表面為基準面,氧化物層150的頂面150a的水平高度例如低於導體層138的頂面138a的水平高度。另外,氧化物層150的頂面150a的水平高度例如高於第一堆疊結構110的頂面110a的水平高度。換句話說,氧化物層150的頂面150a的水平高度介於導體層138的頂面138a的水平高度與第一堆疊結構110的頂面110a的水平高度之間。Next, referring to FIGS. 9A and 9B , for example, a wet etching process is performed to remove part of the oxide layer 148 and the liner layer 146 and the remaining hard mask layer 140 to expose the conductor layer 138 . In this embodiment, taking a surface of the substrate 100 as a reference plane, the horizontal height of the top surface 150 a of the oxide layer 150 is, for example, lower than the horizontal height of the top surface 138 a of the conductor layer 138 . In addition, the horizontal height of the top surface 150 a of the oxide layer 150 is, for example, higher than the horizontal height of the top surface 110 a of the first stacked structure 110 . In other words, the level of the top surface 150 a of the oxide layer 150 is between the level of the top surface 138 a of the conductor layer 138 and the level of the top surface 110 a of the first stacked structure 110 .

然後,請同時參照圖10A及圖10B,以硬罩幕層116作為研磨緩衝層,對導體層138進行平坦化製程直至暴露出保護層136的最高頂面136a,以獲得導體條152。在本實施例中,導體條152位於相鄰兩個第一堆疊結構110之間。以基底100的一表面為基準面,保護層136的最高頂面136a的水平高度實質上等於導體條152的頂面152a的水平高度。換句話說,保護層136的最高頂面136a與導體條152的頂面152a實質上為共平面。相對於此,現有技術中通常採用預留一定高度的導體層,其中所述高度例如大於第一堆疊結構的高度,並在導體層上形成旋塗碳層或光阻層等;然後對所述導體層進行圖案化製程,以獲得多條導體條。然而,本發明將第一堆疊結構110中的硬罩幕層116作為研磨緩衝層,可直接藉由平坦化製程而在形成導體條152的同時也一併隔離出後續預定形成源極接觸插塞的區域(即形成虛擬源極接觸插塞),因此後續僅需再對多個導體條152中的至少一者進行圖案化製程以形成導體柱(即形成虛擬汲極接觸插塞)即可,詳於後文說明。在一實施例中,所述平坦化製程例如是化學機械研磨(chemical mechanical polishing,CMP)製程、回蝕刻製程或其組合。Then, please refer to FIG. 10A and FIG. 10B simultaneously, using the hard mask layer 116 as a grinding buffer layer, a planarization process is performed on the conductor layer 138 until the highest top surface 136 a of the protective layer 136 is exposed to obtain the conductor strip 152 . In this embodiment, the conductor strip 152 is located between two adjacent first stack structures 110 . Taking a surface of the substrate 100 as a reference plane, the horizontal height of the highest top surface 136 a of the protective layer 136 is substantially equal to the horizontal height of the top surface 152 a of the conductor bar 152 . In other words, the highest top surface 136a of the protective layer 136 and the top surface 152a of the conductor bar 152 are substantially coplanar. In contrast, in the prior art, a conductor layer with a certain height is usually reserved, for example, the height is greater than the height of the first stack structure, and a spin-coated carbon layer or a photoresist layer is formed on the conductor layer; and then the The conductor layer undergoes a patterning process to obtain multiple conductor strips. However, the present invention uses the hard mask layer 116 in the first stacked structure 110 as a polishing buffer layer, which can directly form the conductor strip 152 through the planarization process and also isolate the source contact plugs scheduled to be formed later. area (that is, to form a virtual source contact plug), so it is only necessary to subsequently perform a patterning process on at least one of the plurality of conductor strips 152 to form a conductor pillar (that is, to form a virtual drain contact plug), Details are explained later. In one embodiment, the planarization process is, for example, a chemical mechanical polishing (CMP) process, an etch-back process, or a combination thereof.

另一方面,在形成導體條152的步驟中,也可同時對氧化物層150進行平坦化製程,以降低氧化物層150的頂面150a的水平高度。在本實施例中,以基底100的一表面為基準面,氧化物層150的頂面150a的水平高度實質上等於導體條152的頂面152a的水平高度。換句話說,氧化物層150的頂面150a與導體條152的頂面152a實質上為共平面。On the other hand, during the step of forming the conductor strip 152, a planarization process may also be performed on the oxide layer 150 to reduce the horizontal height of the top surface 150a of the oxide layer 150. In this embodiment, taking a surface of the substrate 100 as a reference plane, the horizontal height of the top surface 150 a of the oxide layer 150 is substantially equal to the horizontal height of the top surface 152 a of the conductor strip 152 . In other words, the top surface 150a of the oxide layer 150 and the top surface 152a of the conductor strip 152 are substantially coplanar.

而後,請參照圖11A至圖11E,在基底100上形成罩幕圖案PR。罩幕圖案PR具有多個第一開口OP1,其對應於第一堆疊結構110的一側的導體條152。也就是說,第一開口OP1位於第一堆疊結構110的一側的導體條152的正上方,而不位於第一堆疊結構110的另一側的導體條152的正上方。另外,從圖11A、圖11C、圖11D可知,第一開口OP1位於隔離結構101上的導體條152的正上方,而不位於主動區AA上的導體條152的正上方。如圖11A與圖11C所示,第一開口OP1沿第二方向D2的寬度W例如120 nm,並暴露出部分保護層136及對應的導體條152。在一實施例中,罩幕圖案PR的材料例如碳、光阻類材料等合適材料。Then, referring to FIGS. 11A to 11E , a mask pattern PR is formed on the substrate 100 . The mask pattern PR has a plurality of first openings OP1 corresponding to the conductor bars 152 on one side of the first stacked structure 110 . That is to say, the first opening OP1 is located directly above the conductor bar 152 on one side of the first stacked structure 110 but not directly above the conductor bar 152 on the other side of the first stacked structure 110 . In addition, as can be seen from FIGS. 11A, 11C, and 11D, the first opening OP1 is located directly above the conductor strip 152 on the isolation structure 101, but not directly above the conductor strip 152 on the active area AA. As shown in FIG. 11A and FIG. 11C , the width W of the first opening OP1 along the second direction D2 is, for example, 120 nm, and exposes part of the protective layer 136 and the corresponding conductor strip 152 . In one embodiment, the material of the mask pattern PR includes suitable materials such as carbon and photoresist materials.

之後,請參照圖12A至圖12E,將導體條152圖案化為多個導體柱154。具體來說,以罩幕圖案PR為罩幕,移除被第一開口OP1所暴露的導體條152,以形成多個導體柱154及第二開口OP2。第二開口OP2暴露出位於基底100的表面100a上的保護層136。另外,如圖12C所示,導體柱154分別配置在主動區AA上,且沿著第二方向D2交替配置。更詳細來說,圖12A為圖12C的I-I’線的剖面示意圖,因此,在進行上述圖案化製程後,圖12A中的導體條152會被移除。另一方面,圖12D為圖12C的II-II’線的剖面示意圖。因此,在進行上述圖案化製程後,圖12D中的導體條152不會被移除,以形成導體柱154。在一實施例中,移除導體條152的方法可以是乾式蝕刻製程,例如反應性離子蝕刻(RIE)製程,但本發明不以此為限。After that, please refer to FIGS. 12A to 12E to pattern the conductor strips 152 into a plurality of conductor posts 154 . Specifically, using the mask pattern PR as a mask, the conductor bars 152 exposed by the first opening OP1 are removed to form a plurality of conductor posts 154 and the second opening OP2. The second opening OP2 exposes the protective layer 136 on the surface 100a of the substrate 100. In addition, as shown in FIG. 12C , the conductive pillars 154 are respectively arranged on the active area AA, and are alternately arranged along the second direction D2. In more detail, FIG. 12A is a schematic cross-sectional view along line I-I' of FIG. 12C. Therefore, after the above patterning process is performed, the conductor strip 152 in FIG. 12A will be removed. On the other hand, FIG. 12D is a schematic cross-sectional view taken along line II-II' in FIG. 12C. Therefore, after the above patterning process is performed, the conductor strips 152 in FIG. 12D will not be removed to form the conductor posts 154. In one embodiment, the method for removing the conductor strip 152 may be a dry etching process, such as a reactive ion etching (RIE) process, but the invention is not limited thereto.

在本實施例中,如圖12A、圖12C、圖12D所示,導體條152可視為虛擬源極接觸插塞,而導體柱154可視為虛擬汲極接觸插塞。於此,所謂的「虛擬(dummy)」是指會被後續取代製程所移除的結構。虛擬源/汲極接觸插塞所處的位置會被後續形成的源/汲極接觸插塞所取代。In this embodiment, as shown in FIGS. 12A, 12C, and 12D, the conductor bar 152 can be regarded as a virtual source contact plug, and the conductor post 154 can be regarded as a virtual drain contact plug. Here, the so-called "dummy" refers to structures that will be removed by subsequent replacement processes. The position of the dummy source/drain contact plug is replaced by the subsequently formed source/drain contact plug.

接著,請參照圖13A至圖13D、圖14A至圖14D、圖15A至圖15D、圖16A至圖16D及圖17A至圖17D,進行替代製程(replacement process),以將導體條152與導體柱154替換為多個接觸插塞162、接觸插塞164。具體來說,請參照圖13A至圖13D,可在基底100上依序形成氮化物層156與氧化物層158。氮化物層156共形地覆蓋於基底100上。氧化物層158填入第二開口OP2且毯覆性地覆蓋於氮化物層156上。在一實施例中,氮化物層156可以是氮化矽。氧化物層158可以是氧化矽。Next, please refer to FIGS. 13A to 13D , 14A to 14D , 15A to 15D , 16A to 16D , and 17A to 17D to perform a replacement process to connect the conductor bar 152 with the conductor post. 154 is replaced by a plurality of contact plugs 162 and 164 . Specifically, referring to FIGS. 13A to 13D , a nitride layer 156 and an oxide layer 158 can be sequentially formed on the substrate 100 . The nitride layer 156 conformally covers the substrate 100 . The oxide layer 158 fills the second opening OP2 and blanket covers the nitride layer 156 . In one embodiment, nitride layer 156 may be silicon nitride. Oxide layer 158 may be silicon oxide.

然後,請參照圖14A至圖14D,對氧化物層158進行平坦化製程,以暴露出位於第二開口OP2以外的氮化物層156。在此情況下,氮化物層156的最高頂面156a與氧化物層160的頂面160a可視為共平面。在一實施例中,所述平坦化製程可例如是化學機械研磨(CMP)製程、回蝕刻製程或其組合。Then, referring to FIGS. 14A to 14D , a planarization process is performed on the oxide layer 158 to expose the nitride layer 156 outside the second opening OP2. In this case, the highest top surface 156a of the nitride layer 156 and the top surface 160a of the oxide layer 160 can be considered to be coplanar. In one embodiment, the planarization process may be, for example, a chemical mechanical polishing (CMP) process, an etch-back process, or a combination thereof.

而後,請參照圖15A至圖15D,移除部分氮化物層156、導體條152及導體柱154,以形成多個第三開口OP3及第四開口OP4。多個第三開口OP3及第四開口OP4分別形成在第一堆疊結構110之間,且暴露出保護層136。此處,由於本實施例的第一堆疊結構110具有平滑的側壁110b而不具有凸出部,因此在移除導體條152及導體柱154時,可避免對位於第一堆疊結構110的側壁110b上的保護層136造成損害,進而避免產生元件漏電流等問題,提升半導體記憶元件的可靠度。在本實施例中,第三開口OP3可以是條狀開口,其沿著第二方向D2延伸。第四開口OP4可以是島狀或柱狀開口,其沿著第二方向D2交替配置。在一實施例中,移除部分氮化物層156、導體條152及導體柱154的方法可例如是以不同蝕刻氣體來進行蝕刻的乾式蝕刻製程,例如反應性離子蝕刻(RIE)製程。Then, please refer to FIGS. 15A to 15D to remove part of the nitride layer 156 , the conductor bars 152 and the conductor pillars 154 to form a plurality of third openings OP3 and fourth openings OP4 . A plurality of third openings OP3 and fourth openings OP4 are respectively formed between the first stack structures 110 and expose the protective layer 136 . Here, since the first stacked structure 110 of this embodiment has smooth sidewalls 110b without protrusions, when removing the conductor strips 152 and the conductor posts 154, it is possible to avoid contact with the sidewalls 110b of the first stacked structure 110. The protective layer 136 on the semiconductor memory device causes damage, thereby avoiding problems such as device leakage current and improving the reliability of the semiconductor memory device. In this embodiment, the third opening OP3 may be a strip-shaped opening extending along the second direction D2. The fourth openings OP4 may be island-shaped or columnar openings, which are alternately arranged along the second direction D2. In one embodiment, a method for removing portions of the nitride layer 156, the conductor strips 152, and the conductor pillars 154 may be, for example, a dry etching process using different etching gases, such as a reactive ion etching (RIE) process.

之後,請參照圖16A至圖16D,進行一蝕刻製程,移除第三開口OP3及第四開口OP4下方的保護層136及穿隧介電層106,以分別將第三開口OP3及第四開口OP4向下延伸,進而暴露出基底100。在所述蝕刻製程中,第一堆疊結構110的頂面110a上的保護層136亦被移除,以使第一堆疊結構110的頂面110a與其相鄰的氧化物層160的頂面160a共平面。在一實施例中,所述蝕刻製程可包括乾式蝕刻製程,例如反應性離子蝕刻(RIE)製程。在本實施例中,硬罩幕層116亦可進一步保護第一堆疊結構110免受所述蝕刻製程的損壞。After that, please refer to FIG. 16A to FIG. 16D to perform an etching process to remove the protective layer 136 and the tunnel dielectric layer 106 under the third opening OP3 and the fourth opening OP4, so as to separate the third opening OP3 and the fourth opening OP4 respectively. OP4 extends downward, thereby exposing the substrate 100 . During the etching process, the protective layer 136 on the top surface 110a of the first stacked structure 110 is also removed, so that the top surface 110a of the first stacked structure 110 and the top surface 160a of its adjacent oxide layer 160 are the same. flat. In one embodiment, the etching process may include a dry etching process, such as a reactive ion etching (RIE) process. In this embodiment, the hard mask layer 116 can further protect the first stacked structure 110 from damage during the etching process.

接著,請參照圖17A至圖17D,在第三開口OP3及第四開口OP4中形成導體材料,以形成多個接觸插塞162、接觸插塞164,進而完成本實施例之記憶元件10。在本實施例中,接觸插塞162可視為源極接觸插塞,接觸插塞164可視為汲極接觸插塞。在一實施例中,在記憶元件10的俯視方向上接觸插塞162可以是條狀,且沿著第二方向D2延伸。在另一實施例中,在記憶元件10的俯視方向上接觸插塞164可以是島狀,且沿著第二方向D2交替配置。在一實施例中,記憶元件10例如是快閃記憶元件,但本發明不以此為限。在一實施例中,導體材料包括金屬材料(例如是W、Cu、AlCu等)、阻障金屬(例如是Ti、TiN、Ta、TaN等)或其組合,其形成方法可以是電鍍法、物理氣相沉積法(physical vapor deposition,PVD)、化學氣相沉積法(chemical vapor deposition,CVD)等合適形成方法。Next, referring to FIGS. 17A to 17D , a conductive material is formed in the third opening OP3 and the fourth opening OP4 to form a plurality of contact plugs 162 and 164 to complete the memory element 10 of this embodiment. In this embodiment, the contact plug 162 can be regarded as a source contact plug, and the contact plug 164 can be regarded as a drain contact plug. In one embodiment, the contact plug 162 may be strip-shaped in the plan view direction of the memory element 10 and extend along the second direction D2. In another embodiment, the contact plugs 164 may be island-shaped in the plan view direction of the memory element 10 and alternately arranged along the second direction D2. In one embodiment, the memory element 10 is, for example, a flash memory element, but the invention is not limited thereto. In one embodiment, the conductor material includes a metal material (such as W, Cu, AlCu, etc.), a barrier metal (such as Ti, TiN, Ta, TaN, etc.) or a combination thereof. The formation method may be electroplating, physical Suitable formation methods such as vapor deposition (physical vapor deposition, PVD), chemical vapor deposition (CVD), etc.

以下,將藉由圖17A至圖17D來說明本實施例的記憶元件。應注意的是,本實施例的記憶元件的製造方法雖然是以上述製造方法為例進行製造,但本實施例的記憶元件的製造方法並不以此為限。Hereinafter, the memory element of this embodiment will be described with reference to FIGS. 17A to 17D. It should be noted that although the manufacturing method of the memory element in this embodiment is based on the above manufacturing method as an example, the manufacturing method of the memory element in this embodiment is not limited to this.

請參照圖17A至圖17D,本實施例之記憶元件10,包括:基底100、多個第一堆疊結構110、多個第二堆疊結構120、保護層136以及多個接觸插塞162、164。保護層136覆蓋第一堆疊結構110的側壁110b。多個第一堆疊結構110沿著第一方向D1排列在陣列區102的基底100上,且每一第一堆疊結構110沿著第二方向D2延伸。如剖視圖17A與圖17C所示,第一堆疊結構110自基底100依序包括電荷儲存結構112、阻障層BL、控制閘極CG及頂蓋層CL。具體來說,電荷儲存結構112沿第一方向D1上的寬度、控制閘極CG沿第一方向D1上的寬度及頂蓋層CL沿第一方向D1上的寬度彼此實質上相等。也就是說,第一堆疊結構110具有實質上平滑的側壁110b,如此可避免保護層136受到蝕刻製程等的損壞,保持其完整性,以更進一步地提升可靠度。Referring to FIGS. 17A to 17D , the memory element 10 of this embodiment includes a substrate 100 , a plurality of first stack structures 110 , a plurality of second stack structures 120 , a protective layer 136 and a plurality of contact plugs 162 and 164 . The protective layer 136 covers the sidewalls 110b of the first stack structure 110. The plurality of first stacked structures 110 are arranged on the substrate 100 of the array area 102 along the first direction D1, and each first stacked structure 110 extends along the second direction D2. As shown in cross-sectional views 17A and 17C, the first stacked structure 110 includes a charge storage structure 112, a barrier layer BL, a control gate CG and a top capping layer CL in order from the substrate 100. Specifically, the width of the charge storage structure 112 along the first direction D1 , the width of the control gate CG along the first direction D1 and the width of the capping layer CL along the first direction D1 are substantially equal to each other. That is to say, the first stacked structure 110 has substantially smooth sidewalls 110b, which can prevent the protective layer 136 from being damaged by the etching process and maintain its integrity to further improve reliability.

在本實施例中,頂蓋層CL例如為包括介電層114及硬罩幕層116的多層結構。介電層114配置於控制閘極CG及硬罩幕層116之間。介電層114沿第一方向D1上的寬度實質上等於硬罩幕層116沿第一方向D1上的寬度。如此,可使第一堆疊結構110維持平滑的表面,並確保側壁110b上的保護層136的完整性。In this embodiment, the cap layer CL is, for example, a multi-layer structure including a dielectric layer 114 and a hard mask layer 116 . The dielectric layer 114 is disposed between the control gate CG and the hard mask layer 116 . The width of the dielectric layer 114 along the first direction D1 is substantially equal to the width of the hard mask layer 116 along the first direction D1. In this way, the first stacked structure 110 can maintain a smooth surface and ensure the integrity of the protective layer 136 on the sidewall 110b.

如圖17A至圖17D所示,多個接觸插塞162、接觸插塞164分別配置在多個第一堆疊結構110之間的基底100上。在本實施例中,接觸插塞162可視為源極接觸插塞,接觸插塞164可視為汲極接觸插塞。在一實施例中,在記憶元件10的俯視方向上接觸插塞162可以是條狀,且沿著第二方向D2延伸。在另一實施例中,在記憶元件10的俯視方向上接觸插塞164可以是島狀,且沿著第二方向D2交替配置。在本實施例中,接觸插塞162的頂面162a、接觸插塞164的頂面164a、與第一堆疊結構110的頂面110a彼此實質上為共平面。As shown in FIGS. 17A to 17D , a plurality of contact plugs 162 and 164 are respectively arranged on the substrate 100 between a plurality of first stack structures 110 . In this embodiment, the contact plug 162 can be regarded as a source contact plug, and the contact plug 164 can be regarded as a drain contact plug. In one embodiment, the contact plug 162 may be strip-shaped in the plan view direction of the memory element 10 and extend along the second direction D2. In another embodiment, the contact plugs 164 may be island-shaped in the plan view direction of the memory element 10 and alternately arranged along the second direction D2. In this embodiment, the top surfaces 162 a of the contact plugs 162 , the top surfaces 164 a of the contact plugs 164 , and the top surface 110 a of the first stacked structure 110 are substantially coplanar with each other.

綜上所述,本發明的電荷儲存結構沿第一方向上的寬度、控制閘極沿第一方向上的寬度及頂蓋層沿第一方向上的寬度彼此實質上相等,使得第一堆疊結構具有實質上平滑的側壁,如此可避免保護層受到蝕刻製程等的損壞,並保持其完整性,以更進一步地提升可靠度。另一方面,在本發明製造方法中,第一堆疊結構的硬罩幕層可作為研磨緩衝層,因此可直接藉由平坦化製程一併隔離出虛擬源極接觸插塞,後續僅需進行圖案化製程以形成虛擬汲極接觸插塞即可。To sum up, the width of the charge storage structure of the present invention along the first direction, the width of the control gate along the first direction and the width of the top capping layer along the first direction are substantially equal to each other, so that the first stacked structure Having substantially smooth sidewalls can prevent the protective layer from being damaged by etching processes and maintain its integrity to further improve reliability. On the other hand, in the manufacturing method of the present invention, the hard mask layer of the first stacked structure can be used as a grinding buffer layer, so the dummy source contact plugs can be directly isolated through the planarization process, and only subsequent patterning is required. The process can be modified to form a virtual drain contact plug.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

10:記憶元件 100:基底 100a:表面 101:隔離結構 102:陣列區 104:周邊區 106:穿隧介電層 110:第一堆疊結構 110a、120a、138a、150a、152a、160a:頂面 110b、120b:側壁 112:電荷儲存結構 114:介電層 116、140:硬罩幕層 120:第二堆疊結構 122:閘電極 124:介電層 130、131、132、133:間隙壁層 131A、132A、133A:間隙壁材料層 136:保護層 136a、156a:最高頂面 138:導體層 142:間隙壁 144:矽化物層 146:襯層 148、150、158、160:氧化物層 152:導體條 154:導體柱 156:氮化物層 162、164:接觸插塞 AA:主動區 BL:阻障層 CG:控制閘極 CL:頂蓋層 D1:第一方向 D2:第二方向 PR:罩幕圖案 OP1:第一開口 OP2:第二開口 OP3:第三開口 OP4:第四開口 10:Memory component 100:Base 100a: Surface 101: Isolation structure 102:Array area 104: Surrounding area 106: Tunneling dielectric layer 110: First stack structure 110a, 120a, 138a, 150a, 152a, 160a: top surface 110b, 120b: side wall 112:Charge storage structure 114:Dielectric layer 116, 140: Hard curtain layer 120: Second stack structure 122: Gate electrode 124:Dielectric layer 130, 131, 132, 133: gap wall layer 131A, 132A, 133A: Spacer material layer 136:Protective layer 136a, 156a: highest top surface 138: Conductor layer 142: Gap wall 144:Silicide layer 146: Lining 148, 150, 158, 160: Oxide layer 152: Conductor strip 154: Conductor post 156:Nitride layer 162, 164: Contact plug AA: active area BL: barrier layer CG: control gate CL: top cover D1: first direction D2: second direction PR:Cover pattern OP1: First opening OP2: Second opening OP3: The third opening OP4: The fourth opening

圖1A、圖2A、圖3A、圖4A、圖5A、圖6A、圖7A、圖8A、圖9A、圖10A、圖11A、圖11D、圖12A、圖12D、圖13A、圖13C、圖14A、圖14C、圖15A、圖15C、圖16A、圖16C、圖17A與圖17C是依照本發明一實施例的記憶元件的陣列區之製造流程的剖面示意圖。 圖1B、圖2B、圖3B、圖4B、圖5B、圖6B、圖7B、圖8B、圖9B、圖10B、圖11B、圖11E、圖12B、圖12E、圖13B、圖13D、圖14B、圖14D、圖15B、圖15D、圖16B、圖16D、圖17B與圖17D是依照本發明一實施例的記憶元件的周邊區之製造流程的剖面示意圖。 圖1C、圖11C與圖12C分別是圖1A、圖11A與圖12A的上視示意圖。 Figure 1A, Figure 2A, Figure 3A, Figure 4A, Figure 5A, Figure 6A, Figure 7A, Figure 8A, Figure 9A, Figure 10A, Figure 11A, Figure 11D, Figure 12A, Figure 12D, Figure 13A, Figure 13C, Figure 14A 14C, 15A, 15C, 16A, 16C, 17A and 17C are cross-sectional schematic diagrams of the manufacturing process of the array area of the memory element according to an embodiment of the present invention. Figure 1B, Figure 2B, Figure 3B, Figure 4B, Figure 5B, Figure 6B, Figure 7B, Figure 8B, Figure 9B, Figure 10B, Figure 11B, Figure 11E, Figure 12B, Figure 12E, Figure 13B, Figure 13D, Figure 14B 14D, 15B, 15D, 16B, 16D, 17B and 17D are schematic cross-sectional views of the manufacturing process of the peripheral area of the memory element according to an embodiment of the present invention. 1C, 11C and 12C are schematic top views of FIGS. 1A, 11A and 12A respectively.

10:記憶元件 10:Memory component

100:基底 100:Base

100a:表面 100a: Surface

102:陣列區 102:Array area

106:穿隧介電層 106: Tunneling dielectric layer

110:第一堆疊結構 110: First stack structure

110a:頂面 110a:Top surface

110b:側壁 110b:Side wall

112:電荷儲存結構 112:Charge storage structure

114:介電層 114:Dielectric layer

116:硬罩幕層 116:Hard curtain layer

131、132、133:間隙壁層 131, 132, 133: gap wall layer

136:保護層 136:Protective layer

156:氮化物層 156:Nitride layer

160:氧化物層 160:Oxide layer

162:接觸插塞 162:Contact plug

BL:阻障層 BL: barrier layer

CG:控制閘極 CG: control gate

CL:頂蓋層 CL: top cover

D1:第一方向 D1: first direction

OP2:第二開口 OP2: Second opening

OP3:第三開口 OP3: The third opening

Claims (10)

一種記憶元件,包括: 多個堆疊結構,沿著第一方向排列在基底的陣列區上,且每一所述堆疊結構沿著不同於所述第一方向的第二方向延伸,在所述記憶元件的剖視圖中,每一所述堆疊結構自所述基底依序包括電荷儲存結構、控制閘極及頂蓋層,且所述頂蓋層具有多層結構;以及 保護層,覆蓋所述堆疊結構的側壁, 所述電荷儲存結構沿所述第一方向的寬度、所述控制閘極沿所述第一方向的寬度及所述頂蓋層沿所述第一方向的寬度彼此實質上相等。 A memory element including: A plurality of stacked structures are arranged on the array area of the substrate along a first direction, and each stacked structure extends along a second direction different from the first direction. In the cross-sectional view of the memory element, each stacked structure One of the stacked structures includes a charge storage structure, a control gate and a top cover layer in sequence from the base, and the top cover layer has a multi-layer structure; and a protective layer covering the side walls of the stacked structure, The width of the charge storage structure along the first direction, the width of the control gate along the first direction, and the width of the capping layer along the first direction are substantially equal to each other. 如請求項1所述的記憶元件,其中所述頂蓋層包括介電層及硬罩幕層,所述介電層配置於所述控制閘極及所述硬罩幕層之間,且所述介電層沿所述第一方向的寬度實質上等於所述硬罩幕層沿所述第一方向的寬度。The memory element of claim 1, wherein the top cover layer includes a dielectric layer and a hard mask layer, the dielectric layer is disposed between the control gate and the hard mask layer, and the The width of the dielectric layer along the first direction is substantially equal to the width of the hard mask layer along the first direction. 如請求項2所述的記憶元件,其中所述硬罩幕層的材料為氮化矽。The memory element according to claim 2, wherein the material of the hard mask layer is silicon nitride. 如請求項1所述的記憶元件,更包括: 多個接觸插塞,分別配置在所述多個堆疊結構之間的所述基底上,且所述接觸插塞的相對於所述基底的頂面與所述堆疊結構的相對於所述基底的頂面實質上為共平面。 The memory component as described in claim 1 further includes: A plurality of contact plugs are respectively arranged on the base between the plurality of stacked structures, and the top surface of the contact plugs relative to the base and the top surface of the stacked structure relative to the base The top surfaces are substantially coplanar. 如請求項4所述的記憶元件,其中所述多個接觸插塞包括: 多個源極接觸插塞,在所述記憶元件的俯視方向上所述多個源極接觸插塞呈條狀,且沿著所述第二方向延伸;以及 多個汲極接觸插塞,在所述記憶元件的俯視方向上所述多個汲極接觸插塞呈島狀,且沿著所述第二方向交替配置。 The memory element of claim 4, wherein the plurality of contact plugs include: A plurality of source contact plugs, the plurality of source contact plugs are strip-shaped in the plan view direction of the memory element and extend along the second direction; and A plurality of drain contact plugs are island-shaped in a plan view direction of the memory element and are alternately arranged along the second direction. 一種記憶元件的製造方法,包括: 在陣列區的基底上形成多個堆疊結構,所述多個堆疊結構沿著第一方向排列,且每一所述堆疊結構沿著不同於所述第一方向的第二方向延伸,在所述記憶元件的剖視圖中,每一所述堆疊結構自所述基底依序包括電荷儲存結構、控制閘極及頂蓋層,且所述頂蓋層具有多層結構,其中所述電荷儲存結構沿所述第一方向的寬度、所述控制閘極沿所述第一方向的寬度及所述頂蓋層沿所述第一方向的寬度彼此實質上相等; 在所述堆疊結構的側壁上形成保護層; 在所述基底上形成導體層,以填入所述多個堆疊結構之間的空間; 進行平坦化製程,以形成多個導體條; 對至少一所述導體條進行圖案化以形成多個導體柱;以及 進行替代製程,以將所述多個導體條與所述多個導體柱替換為多個接觸插塞。 A method of manufacturing a memory element, including: A plurality of stacked structures are formed on the base of the array area, the plurality of stacked structures are arranged along a first direction, and each stacked structure extends along a second direction different from the first direction, in the In the cross-sectional view of the memory element, each of the stacked structures includes a charge storage structure, a control gate and a top cover layer in sequence from the base, and the top cover layer has a multi-layer structure, wherein the charge storage structure is along the The width in the first direction, the width of the control gate along the first direction, and the width of the top cover layer along the first direction are substantially equal to each other; forming a protective layer on the side walls of the stacked structure; forming a conductor layer on the substrate to fill the space between the plurality of stacked structures; Perform a planarization process to form multiple conductor strips; Patterning at least one of the conductor strips to form a plurality of conductor posts; and An alternative process is performed to replace the plurality of conductor strips and the plurality of conductor posts with a plurality of contact plugs. 如請求項6所述的記憶元件的製造方法,其中所述頂蓋層包括介電層及硬罩幕層,所述介電層配置於所述控制閘極及所述硬罩幕層之間,且所述介電層沿所述第一方向的寬度實質上等於所述硬罩幕層沿所述第一方向的寬度。The method of manufacturing a memory element according to claim 6, wherein the top cover layer includes a dielectric layer and a hard mask layer, and the dielectric layer is disposed between the control gate and the hard mask layer. , and the width of the dielectric layer along the first direction is substantially equal to the width of the hard mask layer along the first direction. 如請求項7所述的記憶元件的製造方法,其中所述硬罩幕層的材料為氮化矽。The method of manufacturing a memory element according to claim 7, wherein the material of the hard mask layer is silicon nitride. 如請求項6所述的記憶元件的製造方法,其中所述接觸插塞的相對於所述基底的頂面與所述堆疊結構的相對於所述基底的頂面實質上為共平面。The method of manufacturing a memory element according to claim 6, wherein a top surface of the contact plug relative to the base and a top surface of the stacked structure relative to the base are substantially coplanar. 如請求項6所述的記憶元件的製造方法,其中所述替代製程包括: 移除所述多個導體條與所述多個導體柱,以於所述多個堆疊結構之間分別形成多個開口,其中所述多個開口暴露出所述基底;以及 於所述多個開口中填入導體材料,以形成所述多個接觸插塞。 The manufacturing method of memory element according to claim 6, wherein the alternative process includes: removing the plurality of conductor strips and the plurality of conductor posts to respectively form a plurality of openings between the plurality of stacked structures, wherein the plurality of openings expose the substrate; and Conductor material is filled into the plurality of openings to form the plurality of contact plugs.
TW111108428A 2022-03-08 2022-03-08 Memory device and method of manufacturing the same TWI796160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111108428A TWI796160B (en) 2022-03-08 2022-03-08 Memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111108428A TWI796160B (en) 2022-03-08 2022-03-08 Memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI796160B TWI796160B (en) 2023-03-11
TW202337002A true TW202337002A (en) 2023-09-16

Family

ID=86692343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111108428A TWI796160B (en) 2022-03-08 2022-03-08 Memory device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI796160B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129991A1 (en) * 2009-12-02 2011-06-02 Kyle Armstrong Methods Of Patterning Materials, And Methods Of Forming Memory Cells
US8946048B2 (en) * 2010-06-19 2015-02-03 Sandisk Technologies Inc. Method of fabricating non-volatile memory with flat cell structures and air gap isolation
US9123714B2 (en) * 2012-02-16 2015-09-01 Sandisk Technologies Inc. Metal layer air gap formation

Also Published As

Publication number Publication date
TWI796160B (en) 2023-03-11

Similar Documents

Publication Publication Date Title
CN109196649B (en) Method of integrating FINFET CMOS devices with embedded non-volatile memory cells
US6995424B2 (en) Non-volatile memory devices with charge storage insulators
US8273625B2 (en) Structure for flash memory cells
KR101692403B1 (en) Methods of manufacturing a semiconductor device
US7071061B1 (en) Method for fabricating non-volatile memory
US20070004141A1 (en) Method of manufacturing flash memory device
KR20130042352A (en) Method for fabricating non-volatile memory device
US11805644B2 (en) Manufacturing method of memory device
TWI794807B (en) Method of making memory cells, high voltage devices and logic devices on a substrate
JP2004538643A (en) Manufacturing method of semiconductor device provided with nonvolatile memory including memory cell having access gate, control gate and charge storage region
JP5090619B2 (en) Semiconductor device and manufacturing method thereof
KR100655283B1 (en) Electrically Erasable Programmable Read-Only MemoryEEPROM Device And Method Of Fabricating The Same
TWI796160B (en) Memory device and method of manufacturing the same
US8058160B2 (en) Method of forming nonvolatile memory device
TWI700815B (en) Three-dimensional memory device and manufacturing method thereof
TW201644005A (en) Semiconductor device and method of forming the same
CN116867271A (en) Memory element and method for manufacturing the same
US20230337424A1 (en) Memory device and method of manufacturing the same
TW202023033A (en) Non-volatile memory structure and manufacturing method thereof
TWI678796B (en) Memory device and method of manufacturing the same
CN111696989B (en) Memory element and method for manufacturing the same
TWI799100B (en) Method of forming a semiconductor device with memory cells, high voltage devices and logic devices on a substrate
CN111446252B (en) Memory element and manufacturing method thereof
KR100825789B1 (en) Non-volatile memory device and method of fabricating the same
CN100418209C (en) Method of manufacturing nonvolatile memory