TW202336959A - Method for manufacturing a semiconductor memory - Google Patents

Method for manufacturing a semiconductor memory Download PDF

Info

Publication number
TW202336959A
TW202336959A TW111133166A TW111133166A TW202336959A TW 202336959 A TW202336959 A TW 202336959A TW 111133166 A TW111133166 A TW 111133166A TW 111133166 A TW111133166 A TW 111133166A TW 202336959 A TW202336959 A TW 202336959A
Authority
TW
Taiwan
Prior art keywords
data processing
data storage
transistor
preparation
layer
Prior art date
Application number
TW111133166A
Other languages
Chinese (zh)
Other versions
TWI817693B (en
Inventor
施江林
蔡鎮宇
呂增富
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/684,650 external-priority patent/US20230284440A1/en
Priority claimed from US17/684,526 external-priority patent/US20230284438A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Publication of TW202336959A publication Critical patent/TW202336959A/en
Application granted granted Critical
Publication of TWI817693B publication Critical patent/TWI817693B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A method of manufacturing a semiconductor memory is provided. The method includes steps of forming a data storage device; forming a contact element electrically connected to the data storage device; and forming a data processing device over the data storage device and electrically connected to the contact element.

Description

半導體記憶體的製備方法Preparation method of semiconductor memory

本申請案主張美國第17/684,526及17/684,650號專利申請案之優先權(即優先權日為「2022年3月2日」),其內容以全文引用之方式併入本文中。This application claims priority to U.S. Patent Application Nos. 17/684,526 and 17/684,650 (that is, the priority date is "March 2, 2022"), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種半導體記憶體的製備方法。特別是有關於一種半導體記憶體的製備方法,該半導體記憶體在一資料儲存元件與一資料處理元件之間具有一接觸元件。The present disclosure relates to a method of manufacturing a semiconductor memory. In particular, it relates to a method of manufacturing a semiconductor memory, which has a contact element between a data storage element and a data processing element.

電腦處理單元(computer processing unit,CPU)以及圖形處理單元(graphics processing unit,GPU)或其他類型的處理單元變得更快且更強大,對於在這些計算單元與該半導體記憶體之間必須傳輸多快以及多少資料的要求則變得越來越嚴格。一些要求則聚焦在增加晶片外帶寬(off-chip bandwidth)。然而,不斷縮小的該等處理單元之功率限制(power constraint)則限制了其發展。As computer processing units (CPUs) and graphics processing units (GPUs) or other types of processing units become faster and more powerful, more data must be transferred between these computing units and the semiconductor memory. The requirements for how fast and how much data are available are becoming more and more stringent. Some requirements focus on increasing off-chip bandwidth. However, the ever-shrinking power constraints of these processing units have restricted their development.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above description of "prior art" is only to provide background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" None should form any part of this case.

本揭露之一實施例提供一種半導體記憶體。該半導體記憶體包括一資料儲存元件、一資料處理元件以及一接觸元件。該資料處理元件設置在該資料儲存元件上。該接觸元件設置在該資料儲存元件與該資料處理元件之間。該接觸元件將該資料儲存元件與該資料處理元件電性連接。An embodiment of the present disclosure provides a semiconductor memory. The semiconductor memory includes a data storage element, a data processing element and a contact element. The data processing component is disposed on the data storage component. The contact element is disposed between the data storage element and the data processing element. The contact element electrically connects the data storage element and the data processing element.

本揭露之一實施例提供一種半導體記憶體的製備方法,包括形成一資料儲存元件;形成一接觸元件以電性連接到該資料儲存元件;以及形成一資料處理元件在該資料儲存元件上且電性連接到該接觸元件。An embodiment of the present disclosure provides a method for manufacturing a semiconductor memory, including forming a data storage element; forming a contact element to electrically connect to the data storage element; and forming a data processing element on the data storage element and electrically electrically connected to the contact element.

本揭露的該半導體記憶體包括該資料儲存元件以及該資料處理元件,該資料處理元件設置在該資料儲存元件上且經由該接觸元件而電性連接到該資料儲存元件。在多個訊號藉由該資料儲存元件而被接收之前,該資料處理元件可接收或傳送來自一外部電路(例如一半導體記憶體控制器或是一主機元件)的多個命令訊號、多個位址訊號或是多個資料訊號。該資料儲存元件可將該等資料訊號傳送到該資料處理元件,以響應該等命令。該資料處理元件可經配置以處理經由例如多工(multiplexing)或其他功能且來自該資料儲存元件的該等資料訊號,且在該半導體記憶體(或是該資料儲存元件)與該外部元件之間提供較高的處理帶寬。因此,在不犧牲低功率效能的情況下增加了帶寬。The semiconductor memory of the present disclosure includes the data storage element and the data processing element. The data processing element is disposed on the data storage element and is electrically connected to the data storage element through the contact element. The data processing element may receive or transmit multiple command signals, multiple bits from an external circuit (such as a semiconductor memory controller or a host device) before multiple signals are received through the data storage element. address signal or multiple data signals. The data storage component can transmit the data signals to the data processing component in response to the commands. The data processing device may be configured to process the data signals from the data storage device via, for example, multiplexing or other functions, and between the semiconductor memory (or the data storage device) and the external device Provides higher processing bandwidth. Therefore, bandwidth is increased without sacrificing low power performance.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been summarized rather broadly above so that the detailed description of the present disclosure below may be better understood. Other technical features and advantages that constitute the subject matter of the patentable scope of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purposes of the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.

現在使用特定語言描述附圖中所示之本揭露的實施例或例子。應當理解,本揭露的範圍無意由此受到限制。所描述之實施例的任何修改或改良,以及本文件中描述之原理的任何進一步應用,所屬技術領域中具有通常知識者都認為是通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共享相同的元件編號。Specific language will now be used to describe the embodiments or examples of the present disclosure illustrated in the drawings. It should be understood that the scope of the present disclosure is not intended to be limited thereby. Any modifications or improvements to the described embodiments, as well as any further applications of the principles described in this document, are within the realm of ordinary skill in the art. Element numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another embodiment even if they share the same element number.

應當理解,雖然用語「第一(first)」、「第二(second)」、「第三(third)」等可用於本文中以描述不同的元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些用語所限制。這些用語僅用於從另一元件、部件、區域、層或部分中區分一個元件、部件、區域、層或部分。因此,以下所討論的「第一裝置(first element)」、「部件(component)」、「區域(region)」、「層(layer)」或「部分(section)」可以被稱為第二裝置、部件、區域、層或部分,而不背離本文所教示。It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, components, regions, layers and/or sections, These elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Therefore, a "first element", "component", "region", "layer" or "section" discussed below may be referred to as a second device , component, region, layer or portion without departing from the teachings herein.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. exists, but does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

圖1是方塊示意圖,例示本揭露一些實施例的半導體記憶體1以及半導體記憶體控制器50。半導體記憶體控制器50可經由複數個匯流排(buses)連接到半導體記憶體1。半導體記憶體控制器50可經配置以控制半導體記憶體1。半導體記憶體1可包括一資料儲存元件10以及一資料處理元件20。半導體記憶體1可經配置以接收到半導體記憶體控制器50的多個位址訊號、多個資料訊號或是多個命令訊號。半導體記憶體1可經配置以傳送該等位址訊號以及該等資料訊號到半導體記憶體控制器50。資料儲存元件10可經配置以傳送一或多個資料訊號到資料處理訊號20。資料儲存元件10可經配置以接收來自資料處理元件20的一或多個資料訊號。FIG. 1 is a block diagram illustrating a semiconductor memory 1 and a semiconductor memory controller 50 according to some embodiments of the present disclosure. The semiconductor memory controller 50 can be connected to the semiconductor memory 1 via a plurality of buses. The semiconductor memory controller 50 may be configured to control the semiconductor memory 1 . The semiconductor memory 1 may include a data storage device 10 and a data processing device 20 . The semiconductor memory 1 may be configured to receive multiple address signals, multiple data signals or multiple command signals from the semiconductor memory controller 50 . The semiconductor memory 1 may be configured to transmit the address signals and the data signals to the semiconductor memory controller 50 . Data storage element 10 may be configured to transmit one or more data signals to data processing signals 20 . Data storage component 10 may be configured to receive one or more data signals from data processing component 20 .

資料儲存元件10可包括複數個記憶庫BANK1~BANK4。每一個記憶庫可包括複數個半導體記憶體胞、複數個感測放大器(或是列緩衝器)、一列解碼器、一行解碼器及/或複數個輸入/輸出(I/O)緩衝器。The data storage component 10 may include a plurality of memory banks BANK1~BANK4. Each memory bank may include a plurality of semiconductor memory cells, a plurality of sense amplifiers (or column buffers), a column decoder, a row decoder, and/or a plurality of input/output (I/O) buffers.

在讀取操作期間,資料處理元件20可經配置以接收來自半導體記憶體控制器50的一或多個位址訊號或是一或多個命令訊號。資料處理元件20可經配置以經由例如多工而處理所接收的該等訊號,然後將所處理的該等訊號傳送到資料儲存元件10。該列解碼器以及該行解碼器可接收一或多個所處理的訊號(包括該等位址訊號),而該列解碼器與該行解碼器可確定相對應該等位址訊號的多個記憶庫位址。該列解碼器可接收一或多個所處理的訊號(包括該等命令訊號),並依據該等記憶庫位址而開啟多個字元線,然後在相同列數上的資料會經由多個位元線而傳送到該等感測放大器,進而確定資料是「0」還是「1」。然後,在該列解碼器中之該等位址訊號的多工之後,在該等感測放大器中之所確定的該等資料訊號可傳送到資料處理元件20。資料處理元件20可經配置以經由例如多工而處理該等資料訊號,然後將所處理的該等資料訊號傳送到半導體記憶體控制器50。資料處理元件20可增加在半導體記憶體控制器50與半導體記憶體1之間的該帶寬。During a read operation, data processing element 20 may be configured to receive one or more address signals or one or more command signals from semiconductor memory controller 50 . The data processing element 20 may be configured to process the received signals via, for example, multiplexing, and then transmit the processed signals to the data storage element 10 . The column decoder and the row decoder can receive one or more processed signals (including the address signals), and the column decoder and the row decoder can determine a plurality of memory banks corresponding to the address signals. address. The column decoder can receive one or more processed signals (including the command signals) and open multiple word lines according to the memory bank addresses, and then the data on the same column number will pass through multiple bit lines. The element wire is transmitted to the sense amplifiers to determine whether the data is "0" or "1". Then, after multiplexing of the address signals in the column decoder, the determined data signals in the sense amplifiers may be transmitted to data processing element 20 . Data processing element 20 may be configured to process the data signals via, for example, multiplexing, and then transmit the processed data signals to semiconductor memory controller 50 . The data processing device 20 can increase the bandwidth between the semiconductor memory controller 50 and the semiconductor memory 1 .

在寫入期間,資料處理元件20可經配置以接收來自半導體記憶體控制器50的一或多個位址訊號、一或多個資料訊號以及一或多個命令訊號。資料處理元件20可經配置以經由例如多工而處理所接收的該等訊號,然後將所處理的該等訊號傳送到資料儲存元件10。該列解碼器與該行解碼器可接收一或多個位址訊號,且該列解碼器與該行解碼器可確定相對應該等位址訊號的多個記憶庫位址。該列解碼器可接收一或多個命令並依據該等記憶庫位址而開啟多個字元線,然後多個資料訊號會從資料處理元件20傳送到該等感測放大器,進而確定該等資料訊號是否為「0」或是「1」。然後,所確定的該等資料訊號會經由多個位元線而傳送到相對應的多個資料單元,並儲存在相對應的該等資料單元中。資料處理單元20可增加在半導體記憶體控制器50與半導體記憶體1之間的帶寬。During writing, data processing element 20 may be configured to receive one or more address signals, one or more data signals, and one or more command signals from semiconductor memory controller 50 . The data processing element 20 may be configured to process the received signals via, for example, multiplexing, and then transmit the processed signals to the data storage element 10 . The column decoder and the row decoder can receive one or more address signals, and the column decoder and the row decoder can determine a plurality of memory bank addresses corresponding to the corresponding address signals. The column decoder can receive one or more commands and open a plurality of word lines according to the memory bank addresses, and then a plurality of data signals will be transmitted from the data processing element 20 to the sense amplifiers to determine the Whether the data signal is "0" or "1". Then, the determined data signals are transmitted to corresponding data units via multiple bit lines and stored in the corresponding data units. The data processing unit 20 can increase the bandwidth between the semiconductor memory controller 50 and the semiconductor memory 1 .

半導體記憶體1可包括一動態隨機存取半導體記憶體(DRAM)。半導體記憶體控制器50可包括一邏輯電路。半導體記憶體控制器50可包括一DRAM控制器。The semiconductor memory 1 may include a dynamic random access semiconductor memory (DRAM). Semiconductor memory controller 50 may include a logic circuit. Semiconductor memory controller 50 may include a DRAM controller.

圖2是剖視示意圖,例示本揭露一些實施例整合在半導體封裝100中的半導體記憶體1。半導體封裝100可包括半導體記憶體1、半導體記憶體控制器50、一插入器(interposer)60、一封裝基底70以及一電子元件80。插入器60可設置在封裝基底70上。插入器60可經由複數個連接元件60b而安裝在封裝基底70上。半導體記憶體控制器50可設置在插入器60上。半導體記憶體控制器50可經由複數個連接元件50b而安裝在插入器60上。電子元件80可設置在插入器60上。電子元件80可經由複數個連接元件60b而安裝在插入器60上。插入器60可包括複數個佈線層60w1,電性連接到該等連接元件60b。插入器60的多個佈線層60w2可使半導體記憶體控制器50(例如其一實體層(PHY))與封裝基底70(例如其一實體層(PHY))電性連接。插入器60可包括複數個佈線層60w3,使半導體記憶體控制器50與電子元件80電性連接。插入器60可包括複數個佈線層60w3,以電性連接到該等連接元件60b。插入器60的該等佈線層60w3可使電子元件80與封裝基底70電性連接。封裝基底70可包括複數個連接元件70b,用於安裝到一外部支撐基底或支撐板。FIG. 2 is a schematic cross-sectional view illustrating a semiconductor memory 1 integrated in a semiconductor package 100 according to some embodiments of the present disclosure. The semiconductor package 100 may include a semiconductor memory 1, a semiconductor memory controller 50, an interposer 60, a packaging substrate 70 and an electronic component 80. Interposer 60 may be disposed on package substrate 70 . The interposer 60 may be mounted on the packaging substrate 70 via a plurality of connection elements 60b. Semiconductor memory controller 50 may be provided on interposer 60 . The semiconductor memory controller 50 may be mounted on the interposer 60 via a plurality of connection elements 50b. Electronic components 80 may be disposed on interposer 60 . The electronic component 80 can be mounted on the interposer 60 via a plurality of connecting components 60b. The interposer 60 may include a plurality of wiring layers 60w1 electrically connected to the connection elements 60b. The plurality of wiring layers 60w2 of the interposer 60 can electrically connect the semiconductor memory controller 50 (eg, a physical layer (PHY) thereof) to the packaging substrate 70 (eg, a physical layer (PHY) thereof). The interposer 60 may include a plurality of wiring layers 60w3 to electrically connect the semiconductor memory controller 50 to the electronic component 80 . The interposer 60 may include a plurality of wiring layers 60w3 to be electrically connected to the connection elements 60b. The wiring layers 60w3 of the interposer 60 can electrically connect the electronic component 80 to the packaging substrate 70. The packaging substrate 70 may include a plurality of connection elements 70b for mounting to an external support substrate or support plate.

封裝基底70可包括一印刷電路板。電子元件80可包括一處理單元,例如一中央處理單元(CPU)、圖形處理單元(GPU)、系統晶片(SoC)或任何適合於人工智慧(AI)計算的處理單元。Package substrate 70 may include a printed circuit board. The electronic component 80 may include a processing unit, such as a central processing unit (CPU), graphics processing unit (GPU), system on chip (SoC), or any processing unit suitable for artificial intelligence (AI) computing.

半導體記憶體控制器50可包括在其中的複數個矽穿孔(TSVs)50t,且電性連接到半導體記憶體控制器50的實體層PHY。The semiconductor memory controller 50 may include a plurality of through silicon through holes (TSVs) 50t therein and electrically connected to the physical layer PHY of the semiconductor memory controller 50 .

半導體記憶體1可設置在半導體記憶體控制器50上。半導體記憶體1可經由複數個連接元件10b1而安裝在半導體記憶體控制器50上。半導體記憶體1可包括資料儲存元件10、資料處理元件20、一連接層20c、一罩蓋層30以及一接觸元件40。資料儲存元件10可包括多個資料儲存晶粒10m的一堆疊。在較上面的一個資料儲存晶粒10m可經由多個連接元件10b2而安裝在較下面的一個資料儲存晶粒10m。該等資料儲存晶粒10m的數量可取決於電子元件80所需的資料量。舉例來說,該等資料儲存晶粒10m的數量可為4個或更高。資料儲存元件10的每一個資料儲存晶粒10m可經由多個矽穿孔10t、該等連接元件10b2以及該等連接元件10b1而與半導體記憶體控制器50電性連接。The semiconductor memory 1 may be provided on the semiconductor memory controller 50 . The semiconductor memory 1 can be installed on the semiconductor memory controller 50 via a plurality of connection components 10b1. The semiconductor memory 1 may include a data storage element 10, a data processing element 20, a connection layer 20c, a capping layer 30 and a contact element 40. Data storage device 10 may include a stack of multiple data storage dies 10m. An upper data storage die 10m may be mounted on a lower data storage die 10m via a plurality of connecting elements 10b2. The number of data storage dies 10m may depend on the amount of data required by the electronic component 80. For example, the number of data storage dies 10m may be 4 or higher. Each data storage die 10m of the data storage device 10 can be electrically connected to the semiconductor memory controller 50 through a plurality of silicon through holes 10t, the connection components 10b2 and the connection components 10b1.

罩蓋層30可設置在資料儲存元件10與資料處理元件20之間。資料處理元件20可設置在罩蓋層30上。資料處理元件20可設置在資料儲存元件10上。The cover layer 30 may be disposed between the data storage component 10 and the data processing component 20 . The data processing component 20 may be disposed on the cover layer 30 . The data processing component 20 may be disposed on the data storage component 10 .

接觸元件40可延伸穿經罩蓋層30。接觸元件40可被罩蓋層30所圍繞。接觸元件40可延伸經過資料處理元件20(例如其一介電層21)。接觸元件40可被資料處理元件20的介電層21所圍繞。連接層20c設置在資料處理元件20上。連接層20c可使接觸元件40與資料處理元件20電性連接。接觸元件40可使資料儲存元件10與資料處理元件20電性連接。Contact element 40 may extend through cover layer 30 . Contact element 40 may be surrounded by cover layer 30 . Contact element 40 may extend through data processing element 20 (eg, a dielectric layer 21 thereof). The contact element 40 may be surrounded by the dielectric layer 21 of the data processing element 20 . The connection layer 20c is provided on the data processing element 20. The connection layer 20c can electrically connect the contact element 40 and the data processing element 20 . The contact element 40 can electrically connect the data storage element 10 and the data processing element 20 .

圖3是放大頂視示意圖,例示本揭露一些實施例被在圖2中的方框A所包圍的一區域。如圖3所示,資料處理元件20可與資料儲存元件10重疊。資料儲存元件10的尺寸可大於資料處理元件20的尺寸。替代地,資料儲存元件10的尺寸可小於資料處理元件20的尺寸。資料儲存元件10可具有一周圍區10p,圍繞資料儲存元件10的記憶庫。接觸元件40與資料儲存元件10的周圍區10p重疊。周圍區10p可包括一電路層,與資料儲存元件10的其中一或多個記憶庫電性連接。連接層20c可包括各式不同的圖案,用於使資料儲存元件10(或接觸元件40)與資料處理元件20連接。FIG. 3 is an enlarged top view illustrating an area surrounded by box A in FIG. 2 according to some embodiments of the present disclosure. As shown in FIG. 3 , the data processing component 20 may overlap the data storage component 10 . The size of the data storage component 10 may be larger than the size of the data processing component 20 . Alternatively, the size of data storage element 10 may be smaller than the size of data processing element 20 . The data storage device 10 may have a surrounding area 10p surrounding the memory bank of the data storage device 10. The contact element 40 overlaps the surrounding area 10p of the data storage element 10. The surrounding area 10p may include a circuit layer electrically connected to one or more memory banks of the data storage device 10. The connection layer 20c may include various patterns for connecting the data storage element 10 (or the contact element 40) to the data processing element 20.

圖4是放大剖視示意圖,例示本揭露一些實施例沿著在圖3中之剖線B-B'的一區域。資料存儲元件10、資料處理元件20、罩蓋層30以及接觸元件40的詳細結構描述在圖4中。FIG. 4 is an enlarged cross-sectional schematic diagram illustrating a region along the cross-section line BB' in FIG. 3 according to some embodiments of the present disclosure. The detailed structure of the data storage element 10, the data processing element 20, the cover layer 30 and the contact element 40 is described in Figure 4.

請參考圖4,資料處理元件10可包括一單元區、一字元線110、一位元線120、一電容器130、一佈線結構140以及一接觸墊150,而該單元區具有一基底10s。Referring to FIG. 4, the data processing element 10 may include a unit area, a word line 110, a bit line 120, a capacitor 130, a wiring structure 140 and a contact pad 150, and the unit area has a substrate 10s.

在一些實施例中,舉例來說,基底10s可包括矽(Si)、鍺(Ge)、矽鍺(SiGe)、矽碳(SiC)、碳化矽鍺(SiGeC)、鎵(Ga)、砷化鎵(GaAs)、銦(In)、砷化銦(InAs)、磷化銦(InP)或其他IV-IV族、III-V族或II-VI族半導體材料。在一些其他實施例中,基底10s可包括一層式半導體,例如矽/矽鍺、絕緣體上覆矽或絕緣體上覆矽鍺。In some embodiments, for example, the substrate 10s may include silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbon (SiC), silicon germanium carbide (SiGeC), gallium (Ga), arsenide Gallium (GaAs), indium (In), indium arsenide (InAs), indium phosphide (InP) or other Group IV-IV, Group III-V or Group II-VI semiconductor materials. In some other embodiments, the substrate 10s may include a layer of semiconductor, such as silicon/silicon germanium, silicon on insulator, or silicon germanium on insulator.

在一些實施例中,一或多個絕緣結構102可形成在基底10s中。絕緣結構102可包括一淺溝隔離(STI)結構。在一些實施例中,絕緣結構102可包括一隔離材料,例如氧化矽(SiO 2)、氮化矽(Si 3N 4)、氮氧化矽(N 2OSi 2)、氧化氮化矽(N 2OSi 2)或是摻氟矽酸鹽。在一些實施例中,絕緣結構102可界定基底10s的一或多個主動區104。 In some embodiments, one or more insulating structures 102 may be formed in substrate 10s. The isolation structure 102 may include a shallow trench isolation (STI) structure. In some embodiments, the insulating structure 102 may include an isolation material, such as silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (N 2 OSi 2 ), silicon oxynitride (N 2 OSi 2 ) or fluorosilicate. In some embodiments, insulating structure 102 may define one or more active regions 104 of substrate 10s.

在一些實施例中,一或多個摻雜區106可形成在兩個絕緣結構102之間的基底10s之主動區104的一上部中。在一些實施例中,摻雜區106可摻雜有一N型摻雜物,用於形成一NMOSFET(N通道金屬氧化物半導體場效電晶體),而該N型摻雜物例如磷(P)、砷(As)或銻(Sb)。在一些其他實施例中,摻雜區106可摻雜有一P型摻雜物,用於形成一PMOSFET,而該P型摻雜物例如硼(B)或銦(In)。In some embodiments, one or more doped regions 106 may be formed in an upper portion of the active region 104 of the substrate 10 s between the two insulating structures 102 . In some embodiments, the doped region 106 may be doped with an N-type dopant for forming an NMOSFET (N-channel metal oxide semiconductor field effect transistor), and the N-type dopant may be, for example, phosphorus (P). , arsenic (As) or antimony (Sb). In some other embodiments, the doped region 106 may be doped with a P-type dopant for forming a PMOSFET, and the P-type dopant may be boron (B) or indium (In).

在一些實施例中,一電晶體(例如一切換電晶體)Tr1可形成在兩個絕緣結構102之間的基底10s之主動區104中。摻雜區106可包括電晶體Tr1的一源極接面或是一汲極接面。In some embodiments, a transistor (eg, a switching transistor) Tr1 may be formed in the active region 104 of the substrate 10 s between the two insulating structures 102 . The doped region 106 may include a source junction or a drain junction of the transistor Tr1.

字元線110可被主動區104所圍繞。一閘極介電層112可設置在主動區104與字元線110之間。字元線110可被閘極介電層112所圍繞。一埋入隔離層116可設置在字元線110上。埋入隔離層116可被閘極介電層112所圍繞。字元線110可當作電晶體Tr1的一閘極端子使用。在摻雜區106中的該源極接面或是汲極接面可從字元線110延伸到基底10s的一上表面10s1。Word lines 110 may be surrounded by active areas 104 . A gate dielectric layer 112 may be disposed between the active region 104 and the word line 110 . Word line 110 may be surrounded by gate dielectric layer 112 . A buried isolation layer 116 may be disposed on the word line 110 . Buried isolation layer 116 may be surrounded by gate dielectric layer 112 . The word line 110 can be used as a gate terminal of the transistor Tr1. The source junction or drain junction in the doped region 106 may extend from the word line 110 to an upper surface 10s1 of the substrate 10s.

閘極介電層112可選自下列其中至少一個:一氧化矽層、一氮化矽層、一氮氧化矽層、一氧化物/氮化物/氧化物(ONO)或是一高介電常數介電膜,該高介電常數介電膜具有比一氧化矽層大的一介電常數。字元線110可包括選自下列其中至少一個才料:鈦、鉭、鎢或其組合。埋入隔離層116可至少包括一氧化矽層、一氮化矽層、一氮氧化矽層或其組合。The gate dielectric layer 112 may be selected from at least one of the following: a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, an oxide/nitride/oxide (ONO), or a high dielectric constant A dielectric film, the high dielectric constant dielectric film has a dielectric constant greater than that of the silicon oxide layer. The word lines 110 may include at least one material selected from the following: titanium, tantalum, tungsten, or combinations thereof. The buried isolation layer 116 may include at least a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, or a combination thereof.

位元線120可設置在基底10s上。位元線120可沿著一方向延伸,該方向平行於基底10s的表面10s1。位元線120可經由多個導電接觸點124而連接到摻雜區106或是基底10s的主動區104。該等導電接觸點124可設置在位元線120與基底10s之間。位元線120可藉由一隔離層122而與基底10s分隔開。該等導電接觸點124可被隔離層122所圍繞。位元線120可被隔離層122所覆蓋。該等導電接觸點124可相互電性絕緣。Bit lines 120 may be disposed on substrate 10s. The bit lines 120 may extend along a direction parallel to the surface 10s1 of the substrate 10s. The bit line 120 may be connected to the doped region 106 or the active region 104 of the substrate 10 s via a plurality of conductive contacts 124 . The conductive contacts 124 may be disposed between the bit lines 120 and the substrate 10s. The bit lines 120 may be separated from the substrate 10s by an isolation layer 122. The conductive contacts 124 may be surrounded by an isolation layer 122 . Bit line 120 may be covered by isolation layer 122 . The conductive contacts 124 can be electrically insulated from each other.

在一些實施例中,一或多個位元線以及一或多個字元線(圖未示)可形成在兩個相鄰電晶體(例如電晶體Tr1)之間。再者,該等位元線與該等字元線的每一個可電性連接到一栓塞(例如將於後討論如圖4所示的一導電栓塞136)。In some embodiments, one or more bit lines and one or more word lines (not shown) may be formed between two adjacent transistors (eg, transistor Tr1). Furthermore, each of the bit lines and the word lines may be electrically connected to a plug (such as a conductive plug 136 as shown in FIG. 4, discussed later).

導電接觸點124可包括多晶矽、金屬、導電金屬氮化物或其組合。位元線120可包括選自下列其中至少一個:摻雜雜質半導體、金屬、導電金屬氮化物或是金屬矽化物。舉例來說,位元線120可至少包括摻雜多晶矽、TiN、TiSiN、W、矽化鎢或其組合。隔離層122可為一氧化物層、一氮化物層或其組合。Conductive contacts 124 may include polysilicon, metal, conductive metal nitride, or combinations thereof. The bit line 120 may include at least one selected from the group consisting of doped impurity semiconductors, metals, conductive metal nitrides, or metal silicides. For example, bit line 120 may include at least doped polysilicon, TiN, TiSiN, W, tungsten silicide, or combinations thereof. The isolation layer 122 may be an oxide layer, a nitride layer, or a combination thereof.

複數個埋入接觸點126可形成在隔離層122上。在不同於圖4之剖面的一剖面中,複數個埋入接觸點126可連接到基底10s的主動區104。複數個埋入接觸點126可至少包括摻雜雜質半導體、金屬、導電金屬氮化物或其組合。A plurality of buried contacts 126 may be formed on the isolation layer 122 . In a cross-section different from that of Figure 4, a plurality of buried contacts 126 may be connected to the active region 104 of the substrate 10s. The plurality of buried contacts 126 may include at least a doped semiconductor, a metal, a conductive metal nitride, or a combination thereof.

複數個電容器130可連接到複數個埋入接觸點126。該等電容器130可被一介電層132所覆蓋。該等電容器130可連接到基底10s的主動區104。在一些實施例中,該等電容器130可具有一圓柱形形狀,同時該等電容器130的底部可為正方形或是圓形。A plurality of capacitors 130 may be connected to a plurality of buried contacts 126 . The capacitors 130 may be covered by a dielectric layer 132 . The capacitors 130 may be connected to the active region 104 of the substrate 10s. In some embodiments, the capacitors 130 may have a cylindrical shape, and the bottoms of the capacitors 130 may be square or circular.

每一個電容器130可包括一下電極130b、一隔離層130i以及一上電極130t。舉例來說,上電極130t的一部分可被隔離層130i所圍繞,且上電極130t的一部分可被下電極130b所圍繞。舉例來說,隔離層130i的一部分可被下電極130b所圍繞。一支撐元件130s可設置在複數個電容器之間,以避免該等電容器相互傾斜。複數個電容器130可藉由支撐元件130s而進行支撐。Each capacitor 130 may include a lower electrode 130b, an isolation layer 130i, and an upper electrode 130t. For example, a portion of the upper electrode 130t may be surrounded by the isolation layer 130i, and a portion of the upper electrode 130t may be surrounded by the lower electrode 130b. For example, a portion of the isolation layer 130i may be surrounded by the lower electrode 130b. A support element 130s can be disposed between a plurality of capacitors to prevent the capacitors from tilting toward each other. The plurality of capacitors 130 may be supported by the supporting elements 130s.

下電極130b可經由埋入接觸點126而電性連接到一相對應電晶體的一源極接面或是一汲極接面。因此,每一個這樣的下電極130b可用作一半導體記憶體胞之一儲存電容器的一儲存節點。再者,在一些實施例中,上電極130t可為一共同電極,其可電性連接到在半導體記憶體胞內的一接地節點。在一些實施例中,上電極130t可經由上電極130t之電極材料的其他部分或是經由另一個導電元件進行電性連接。The lower electrode 130b may be electrically connected to a source junction or a drain junction of a corresponding transistor via the buried contact 126 . Therefore, each such lower electrode 130b can serve as a storage node of a storage capacitor of a semiconductor memory cell. Furthermore, in some embodiments, the upper electrode 130t may be a common electrode that may be electrically connected to a ground node within the semiconductor memory cell. In some embodiments, the upper electrode 130t may be electrically connected through other parts of the electrode material of the upper electrode 130t or through another conductive element.

在一些實施例中,下電極130b與上電極130t可包括摻雜多晶矽(poly-Si)或金屬。在一些實施例中,隔離層130i與支撐元件130s每一個可包括五氧化二鉭(Ta 2O 5)、氧化鋁(Al 2O 3)、氧化鉭鍶鉍(strontium bismuth tantalum oxide,SrBi 2Ta 2O 9,SBT)、氧化鈦酸鍶鋇(barium strontium titanate oxide,BaSrTiO 3,BST)、具有高於二氧化矽(SiO 2)之一介電常數的一介電材料,或是具有大約為4.0或更大之一介電常數的一介電材料。在一些實施例中,隔離層130i可包含一單層或是可包含多層的堆疊層。 In some embodiments, the lower electrode 130b and the upper electrode 130t may include doped polycrystalline silicon (poly-Si) or metal. In some embodiments, the isolation layer 130i and the support element 130s may each include tantalum pentoxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), tantalum bismuth tantalum oxide, SrBi 2 Ta 2 O 9 , SBT), barium strontium titanate oxide (BaSrTiO 3 , BST), a dielectric material with a higher dielectric constant than silicon dioxide (SiO 2 ), or a dielectric material with a dielectric constant of approximately A dielectric material with a dielectric constant of 4.0 or greater. In some embodiments, the isolation layer 130i may include a single layer or may include a stack of multiple layers.

該等電容器130(或是上電極130t)可經由複數個接觸栓塞134而電性連接到佈線結構140。該等接觸栓塞134可被介電層132所圍繞。該等接觸栓塞134可包括以下至少其中一個:金屬、導電金屬氮化物、一金屬半導體化合物以及摻雜多晶矽。The capacitors 130 (or the upper electrodes 130t) can be electrically connected to the wiring structure 140 through a plurality of contact plugs 134. The contact plugs 134 may be surrounded by the dielectric layer 132 . The contact plugs 134 may include at least one of: metal, conductive metal nitride, a metal semiconductor compound, and doped polysilicon.

請參考圖4,一導電栓塞136可延伸經過介電層132。導電栓塞136可設置在介電層132中。導電栓塞136可被介電層132所圍繞。導電栓塞136可使位元線120與佈線結構140電性連接。導電栓塞136可包括以下至少其中一個:金屬、導電金屬氮化物、一金屬半導體化合物以及摻雜多晶矽。Referring to FIG. 4 , a conductive plug 136 may extend through the dielectric layer 132 . Conductive plugs 136 may be disposed in dielectric layer 132 . Conductive plug 136 may be surrounded by dielectric layer 132 . The conductive plug 136 can electrically connect the bit line 120 and the wiring structure 140 . The conductive plug 136 may include at least one of: metal, conductive metal nitride, a metal semiconductor compound, and doped polysilicon.

佈線結構140可設置在一介電層142中。佈線結構140可將該等電容器130的上電極130t電性連接到在半導體記憶體1內的一接地節點。佈線結構140可將位元線120電性連接到接觸墊150。The wiring structure 140 may be disposed in a dielectric layer 142 . The wiring structure 140 can electrically connect the upper electrodes 130t of the capacitors 130 to a ground node in the semiconductor memory 1 . The wiring structure 140 can electrically connect the bit lines 120 to the contact pads 150 .

佈線結構140可包括一多層結構。舉例來說,佈線結構140可包括一或多個導電線以及用於連接該等導電線的一或多個導電通孔。The wiring structure 140 may include a multi-layer structure. For example, wiring structure 140 may include one or more conductive lines and one or more conductive vias for connecting the conductive lines.

佈線結構140可包括選字以下的至少一材料:金屬、導電金屬氮化物、一金屬半導體化合物以及一摻雜半導體。介電層142可包括一氧化矽層、一氮化矽層、一氮氧化矽層,或是一玻璃、一聚酰亞胺(polyimide,PI)或是其組合。The wiring structure 140 may include at least one material selected from the following: metal, conductive metal nitride, a metal semiconductor compound, and a doped semiconductor. The dielectric layer 142 may include a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, a glass, a polyimide (PI), or a combination thereof.

接觸墊150可設置在資料儲存元件10的一表面101上。接觸墊150可具有設置在資料儲存元件10之表面101上的一部分以及被介電層142所包圍的另一部分。導電墊150可電性連接到佈線結構140的一最上面導線。接觸墊150可被罩蓋層30所覆蓋。雖然一單接觸墊150在圖4中描述,但可有多於一個導電墊設置在資料儲存元件10上。在一些實施例中,該等接觸墊可至少包括鋁或其化合物。The contact pad 150 may be disposed on a surface 101 of the data storage device 10 . Contact pad 150 may have a portion disposed on surface 101 of data storage device 10 and another portion surrounded by dielectric layer 142 . The conductive pad 150 may be electrically connected to an uppermost conductor of the wiring structure 140 . The contact pad 150 may be covered by the capping layer 30 . Although a single contact pad 150 is depicted in FIG. 4 , more than one conductive pad may be provided on the data storage device 10 . In some embodiments, the contact pads may include at least aluminum or compounds thereof.

罩蓋層30可覆蓋資料儲存元件10,以使資料儲存元件10可避免形成資料處理元件20之製程中的污染。罩蓋層30可具有一厚度,該厚度足以保護資料儲存元件10避免在形成資料處理元件20中所產生的汙染或粒子。罩蓋層30的該厚度可在大約0.5μm到大約3μm的範圍之間。The cover layer 30 can cover the data storage device 10 so that the data storage device 10 can avoid contamination during the process of forming the data processing device 20 . The capping layer 30 may have a thickness sufficient to protect the data storage element 10 from contamination or particles generated in the formation of the data processing element 20 . The thickness of capping layer 30 may range from approximately 0.5 μm to approximately 3 μm.

罩蓋層30可包括一二氧化矽、玻璃、藍寶石、金屬氧化物、聚酰亞胺或類似物。罩蓋層30可視為資料處理元件20的一氧化物基底。舉例來說,罩蓋層30可包括一多層結構,但並不以此為限。該多層結構的每一層可包括不同材料,例如二氧化矽、藍寶石、金屬氧化物或是聚酰亞胺。舉例來說,罩蓋層30的一最上面層可括氧化鋁,罩蓋層30的一中間層可包括聚酰亞胺,罩蓋層30的一最下面層可包括玻璃。Capping layer 30 may include silicon dioxide, glass, sapphire, metal oxide, polyimide, or the like. The capping layer 30 can be regarded as an oxide substrate of the data processing element 20 . For example, the cover layer 30 may include a multi-layer structure, but is not limited thereto. Each layer of the multilayer structure may include different materials, such as silicon dioxide, sapphire, metal oxides or polyimide. For example, an uppermost layer of the capping layer 30 may include aluminum oxide, a middle layer of the capping layer 30 may include polyimide, and a lowermost layer of the capping layer 30 may include glass.

請再參考圖4,資料處理元件20可包括一介電層21以及一電晶體Tr2,電晶體Tr2被介電層21所圍繞。電晶體Tr2可包括一上閘極端子22、一上閘極介電層23、一通道區24、一汲極端子25、一源極端子26、一下閘極端子27以及一下閘極介電層28。Please refer to FIG. 4 again. The data processing element 20 may include a dielectric layer 21 and a transistor Tr2. The transistor Tr2 is surrounded by the dielectric layer 21. The transistor Tr2 may include an upper gate terminal 22, an upper gate dielectric layer 23, a channel region 24, a drain terminal 25, a source terminal 26, a lower gate terminal 27 and a lower gate dielectric layer. 28.

介電層21可設置在罩蓋層30的一表面301上。下閘極端子27可設置在罩蓋層30的表面301上。下閘極端子27可被介電層21所覆蓋。下閘極介電層28可設置在通道區24與下閘極端子27之間。下閘極端子27可設置在罩蓋層30與上閘極端子22之間。The dielectric layer 21 may be disposed on a surface 301 of the capping layer 30 . The lower gate terminal 27 may be disposed on the surface 301 of the capping layer 30 . The lower gate terminal 27 may be covered by the dielectric layer 21 . Lower gate dielectric layer 28 may be disposed between channel region 24 and lower gate terminal 27 . The lower gate terminal 27 may be disposed between the capping layer 30 and the upper gate terminal 22 .

通道區24可設置在下閘極端子27上。通道區24可被介電層21所覆蓋。通道區24可設置在上閘極端子22與下閘極端子27之間。通道區24可包括下列材料:氧化銦鎵鋅(IGZO)、氧化銦鋅(IZO)、鍺等等。Channel area 24 may be provided on lower gate terminal 27 . Channel area 24 may be covered by dielectric layer 21 . Channel area 24 may be disposed between upper gate terminal 22 and lower gate terminal 27 . Channel region 24 may include the following materials: indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), germanium, and the like.

上閘極端子22可設置在通道區24上。上閘極介電層23可設置在上閘極端子22與通道區24之間。汲極端子25可設置在通道區24上。源極端子26可設置在通道區24上。上閘極端子22可設置在汲極端子25與源極端子26之間。Upper gate terminal 22 may be provided on channel area 24 . The upper gate dielectric layer 23 may be disposed between the upper gate terminal 22 and the channel region 24 . Drain terminal 25 may be provided on channel region 24 . Source terminal 26 may be provided on channel region 24 . The upper gate terminal 22 may be disposed between the drain terminal 25 and the source terminal 26 .

電晶體Tr2可包括以下其中一個:一絕緣體上覆矽(SOI)電晶體、氧化銦鎵鋅(IGZO)基電晶體、一鍺基(Ge-based)電晶體或是N型CMOS偽電晶體(pseudo transistor)。再者,罩蓋層30的材料可依據要形成之電晶體的類型而變化。The transistor Tr2 may include one of the following: a silicon-on-insulator (SOI) transistor, an indium gallium zinc oxide (IGZO)-based transistor, a germanium-based (Ge-based) transistor, or an N-type CMOS pseudo transistor ( pseudotransistor). Furthermore, the material of capping layer 30 may vary depending on the type of transistor to be formed.

電晶體Tr2可依據施加在上閘極端子22的電壓而導通(turned on)或斷開(turned off)。舉例來說,當沙加在上閘極端子22的電壓超過電晶體Tr2的一臨界電壓時,一累積層會形成在通道區24中,然後在汲極端子25與源極端子26之間的多個載子可經由在通道區24中的累積層而進行傳送。在另一個例子中,當施加在上閘極端子22的電壓低於電晶體Tr2的臨界值時,在通道區24中沒有形成累積層,以使沒有任何載子允許經由通道區24而進行傳送。在一些實施例中,電晶體Tr2可為持續導通。舉例來說,當上閘極端子22為非偏壓時,一累積層存在於通道區24中。換言之,上閘極端子22可施加有一電壓,該電壓超過一斷開臨界電壓,以反向在通道區24中的累積層。The transistor Tr2 can be turned on or off depending on the voltage applied to the upper gate terminal 22 . For example, when the voltage applied to the upper gate terminal 22 exceeds a critical voltage of the transistor Tr2, an accumulation layer will be formed in the channel region 24, and then between the drain terminal 25 and the source terminal 26. Multiple carriers may be transported through the accumulation layer in channel region 24 . In another example, when the voltage applied to the upper gate terminal 22 is lower than the critical value of the transistor Tr2, no accumulation layer is formed in the channel region 24, so that no carriers are allowed to be transferred through the channel region 24 . In some embodiments, the transistor Tr2 may be continuously turned on. For example, when upper gate terminal 22 is unbiased, an accumulation layer exists in channel region 24 . In other words, upper gate terminal 22 may apply a voltage that exceeds a turn-off threshold voltage to reverse the accumulation layer in channel region 24 .

下閘極端子27可用於調整電晶體Tr2的臨界電壓。當下閘極端子27施加有一電壓時,其可對在通道區24中之累積層的形成提供電阻或是輔助。換言之,下閘極端子27可部分控制電晶體Tr2。The lower gate terminal 27 can be used to adjust the threshold voltage of the transistor Tr2. When a voltage is applied to the lower gate terminal 27, it may provide resistance or assist in the formation of the accumulation layer in the channel region 24. In other words, the lower gate terminal 27 can partially control the transistor Tr2.

在電晶體Tr2中的雙閘極結構(例如上閘極端子22與下閘極端子27)提供合宜的臨界電壓控制以及合宜的熱導率。因此,電晶體Tr2可用作一靜電放電(ESD)保護元件或是一ESD保護電路的一部分。The double gate structure (eg, upper gate terminal 22 and lower gate terminal 27) in transistor Tr2 provides suitable threshold voltage control and suitable thermal conductivity. Therefore, the transistor Tr2 can be used as an electrostatic discharge (ESD) protection component or a part of an ESD protection circuit.

上閘極端子22可具有一厚度,從大約30nm到大約300nm。上閘極介電層可具有一厚度,從大約5nm到大約100nm。通道區24可具有一厚度,從大約100nm+/-50nm。下閘極端子27可具有一厚度,從大約30nm到大約300nm。下閘極介電層28可具有一厚度,從大約5nm到大約100nm。Upper gate terminal 22 may have a thickness from about 30 nm to about 300 nm. The upper gate dielectric layer may have a thickness from about 5 nm to about 100 nm. Channel region 24 may have a thickness from approximately 100 nm +/- 50 nm. Lower gate terminal 27 may have a thickness from about 30 nm to about 300 nm. Lower gate dielectric layer 28 may have a thickness from about 5 nm to about 100 nm.

上閘極端子22與下閘極端子27每一個可至少包括摻雜多晶矽(poly-Si)或金屬。介電層21與上閘極介電層22每一個可至少包括二氧化矽(例如HfLaO或是TiO 2),或是其他介電材料。 The upper gate terminal 22 and the lower gate terminal 27 may each include at least doped poly-Si or metal. Each of the dielectric layer 21 and the upper gate dielectric layer 22 may include at least silicon dioxide (such as HfLaO or TiO 2 ), or other dielectric materials.

複數個連接層20c1、20c2、20c3、20c4可設置在資料處理元件20的一表面201上。連接層20c1可電性連接到上閘極端子22。上閘極端子22可經由連接層20c1而施加有一電壓。連接層20c2可電性連接到汲極端子25。汲極端子25可經由連接層20c2而施加有一電壓。連接層20c3可電性連接到源極端子26。源極端子26可經由連接層20c3而施加有一電壓。連接層20c4可經由一導電通孔271而電性連接到下閘極端子27。下閘極端子27可經由連接層20c4而施加有一電壓。在一些實施例中,下閘極端子27可包括導電通孔271。A plurality of connection layers 20c1, 20c2, 20c3, and 20c4 may be disposed on a surface 201 of the data processing element 20. The connection layer 20c1 is electrically connected to the upper gate terminal 22. A voltage can be applied to the upper gate terminal 22 via the connection layer 20c1. The connection layer 20c2 is electrically connected to the drain terminal 25. A voltage can be applied to the drain terminal 25 via the connection layer 20c2. The connection layer 20c3 is electrically connected to the source terminal 26. A voltage can be applied to the source terminal 26 via the connection layer 20c3. The connection layer 20c4 can be electrically connected to the lower gate terminal 27 through a conductive via 271. A voltage can be applied to the lower gate terminal 27 via the connection layer 20c4. In some embodiments, lower gate terminal 27 may include conductive via 271 .

接觸元件40可包括一接觸栓塞401,延伸經過罩蓋層30。接觸栓塞401可被罩蓋層30所圍繞。接觸元件40的接觸栓塞401可設置在資料處理元件20與資料儲存元件10之間。接觸元件40還可包括一接觸栓塞402,延伸經過介電層21。接觸栓塞401與接觸栓塞402可相互連接。接觸元件40可包括下列其中至少一個:金屬、導電金屬氮化物、一金屬半導體化合物以及摻雜多晶矽。Contact element 40 may include a contact plug 401 extending through cover layer 30 . Contact plug 401 may be surrounded by cover layer 30 . The contact plug 401 of the contact element 40 may be disposed between the data processing element 20 and the data storage element 10 . Contact element 40 may also include a contact plug 402 extending through dielectric layer 21 . The contact plug 401 and the contact plug 402 can be connected to each other. Contact element 40 may include at least one of the following: metal, conductive metal nitride, a metal-semiconductor compound, and doped polysilicon.

如圖4所示,接觸元件40在資料儲存元件10的表面101上具有一第一投影面積A1,且資料處理元件20在資料儲存元件10的表面101上具有一第二投影面積A2。As shown in FIG. 4 , the contact element 40 has a first projected area A1 on the surface 101 of the data storage element 10 , and the data processing element 20 has a second projected area A2 on the surface 101 of the data storage element 10 .

接觸元件40可電性連接到連接層20c1。資料處理元件20的電晶體Tr2可電性連接到接觸元件40。接觸元件40可電性連接到接觸墊150。在一些實施例中,資料儲存元件10的其中一個電容器130可電性連接到接觸元件40。接觸元件40可電性連接資料儲存元件10的位元線120。資料儲存元件10的位元線120可電性連接到資料處理元件20的電晶體Tr2。在一些實施例中,資料處理元件20之上閘極端子22的上閘極端子22可電性連接到資料儲存元件10的位元線120。The contact element 40 is electrically connected to the connection layer 20c1. The transistor Tr2 of the data processing element 20 can be electrically connected to the contact element 40 . Contact element 40 may be electrically connected to contact pad 150 . In some embodiments, one of the capacitors 130 of the data storage device 10 may be electrically connected to the contact element 40 . The contact element 40 can be electrically connected to the bit line 120 of the data storage element 10 . The bit line 120 of the data storage device 10 can be electrically connected to the transistor Tr2 of the data processing device 20 . In some embodiments, the upper gate terminal 22 of the upper gate terminal 22 of the data processing device 20 may be electrically connected to the bit line 120 of the data storage device 10 .

資料處理元件20可包括一可程式化計算單元,其由複數個電晶體(包括電晶體Tr2)所構成。每一個電晶體具有類似於電晶體Tr2的結構。資料處理元件20的可程式化計算單元可具有複數個功能,舉例來說,多工、加法(adding)、乘法(multiplying)、多次累積(multiply-accumulating)、乘法與加法(multiplying-and-adding)、儲存(storing)、移動(moving)、複製(copying)但並不意此為限。The data processing element 20 may include a programmable computing unit, which is composed of a plurality of transistors (including transistor Tr2). Each transistor has a structure similar to transistor Tr2. The programmable computing unit of the data processing device 20 can have a plurality of functions, for example, multiplexing, adding, multiplying, multiply-accumulating, multiplying-and- adding), storing (storing), moving (moving), copying (copying) but it is not limited to this.

在藉由資料儲存元件10所接收該等訊號之前,資料處理元件20可經配置以處理多個資料訊號、多個位址訊號以及多個命令訊號。在該等訊號傳送到一外部元件(例如在圖2中的半導體記憶體控制器50)之前,資料處理元件20可經配置以處理來自資料儲存元件10的的多個資料訊號。資料處理元件20可經配置以依據來自其中之一內部控制器或是該外部元件(例如半導體記憶體控制器50)的多個指令而處理該等資料訊號。由於資料處理元件20能夠處理具有如上所述的該等各式不同功能,所以其可增加半導體記憶體1與外部元件(例如半導體記憶體控制器50)之間的帶寬。因此,可降低晶片外帶寬(off-chip bandwidth)。The data processing component 20 may be configured to process multiple data signals, multiple address signals, and multiple command signals before receiving the signals via the data storage component 10 . Data processing device 20 may be configured to process data signals from data storage device 10 before the signals are transmitted to an external device (such as semiconductor memory controller 50 in FIG. 2 ). Data processing element 20 may be configured to process the data signals in accordance with instructions from one of the internal controllers or the external element (eg, semiconductor memory controller 50). Since the data processing device 20 can handle various functions as described above, it can increase the bandwidth between the semiconductor memory 1 and external devices (such as the semiconductor memory controller 50 ). Therefore, off-chip bandwidth can be reduced.

再者,形成資料處理元件20的製程可與資料儲存元件10的後段(BEOL)製程相容。換言之,資料儲存元件20之多個BEOL層的材料不受關於資料處理元件20之形成的成套設備的限制/是可接受的。如所述的,資料處理元件20可包括較高遷移率的多個電晶體,例如IGZO之N型電晶體、Ge之P型電晶體。因此,其提供機會於最佳化資料處理元件20之可程式化計算單元的效能以及電路面積。Furthermore, the process of forming the data processing device 20 can be compatible with the back-end-of-line (BEOL) process of the data storage device 10 . In other words, the materials of the BEOL layers of the data storage device 20 are not limited/acceptable by the apparatus in which the data processing device 20 is formed. As mentioned, the data processing element 20 may include a plurality of transistors with higher mobility, such as IGZO N-type transistors and Ge P-type transistors. Therefore, it provides the opportunity to optimize the performance and circuit area of the programmable computing unit of the data processing device 20 .

形成資料處理元件20的製程溫度可低於大約400℃,其對資料儲存元件10的電子特性是無害的。The process temperature for forming the data processing element 20 can be lower than approximately 400° C., which is harmless to the electronic properties of the data storage element 10 .

在本揭露中,半導體記憶體1包括資料儲存元件10以及 資料處理元件20,且資料處理元件20設置在資料儲存元件10上,且經由接觸元件40而電性連接到資料儲存元件10。資料處理元件20與資料儲存元件10之間的導電路徑相較於一外部元件中的電路是相對短的。可改善在半導體記憶體1與一外部元件之間的傳送中的延遲(latency)。再者,半導體記憶體1的尺寸可適合封裝基底70。因此,封裝程序可維持相同。In the present disclosure, the semiconductor memory 1 includes a data storage element 10 and a data processing element 20, and the data processing element 20 is disposed on the data storage element 10 and is electrically connected to the data storage element 10 through the contact element 40. The conductive path between the data processing element 20 and the data storage element 10 is relatively short compared to the circuit in an external component. Latency in transmission between the semiconductor memory 1 and an external device can be improved. Furthermore, the size of the semiconductor memory 1 can be adapted to the packaging substrate 70 . Therefore, the wrapper can remain the same.

圖5、圖6、圖7、圖8、圖9、圖10、圖11、圖12、圖13、圖14、圖15、圖16、圖17是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的多個階段。為了更好理解本揭露的各方面,至少一些圖式已經進行簡化。在一些實施例中,在圖4中的半導體記憶體1可藉由對應如下所述之圖5、圖6、圖7、圖8、圖9、圖10、圖11、圖12、圖13、圖14、圖15、圖16、圖17的多個步驟進行製造。Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 are schematic cross-sectional views illustrating some embodiments of the present disclosure. Multiple stages of semiconductor memory preparation method. In order to better understand various aspects of the present disclosure, at least some of the figures have been simplified. In some embodiments, the semiconductor memory 1 in FIG. 4 can be configured by corresponding to FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, FIG. 12, FIG. 13, Manufacturing is carried out through multiple steps in Figures 14, 15, 16, and 17.

請參考圖5,可形成一儲存元件10。可形成一基底10s、一字元線110、一位元線120、多個電容器130、一佈線層140及/或一接觸墊150。可暴露資料儲存元件10的表面101。可暴露接觸墊150。Referring to FIG. 5 , a storage element 10 can be formed. A substrate 10s, a word line 110, a bit line 120, a plurality of capacitors 130, a wiring layer 140 and/or a contact pad 150 may be formed. Surface 101 of data storage element 10 may be exposed. Contact pad 150 may be exposed.

請參考圖6,舉例來說,可藉由化學氣相沉積(CVD)、物理氣相沉積(PVD)、遠程電漿CVD(RPCVD)、電漿加強CVD(PECVD)、塗佈等等。可圖案化及蝕刻罩蓋層30以形成一接觸孔89。接觸孔89可穿過罩蓋層30的一部分,並暴露接觸墊150的一部分。Referring to Figure 6, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), remote plasma CVD (RPCVD), plasma enhanced CVD (PECVD), coating, etc. can be used. Capping layer 30 may be patterned and etched to form a contact hole 89 . Contact hole 89 may pass through a portion of capping layer 30 and expose a portion of contact pad 150 .

請參考圖7,一導電材料可藉由形成在接觸孔89以及罩蓋層30的表面301中,然後進行化學機械研磨(CMP)以移除覆蓋層30之表面301上的導電材料。因此,形成一接觸栓塞401,並藉由罩蓋層30的表面301而暴露其一上表面401s。Referring to FIG. 7 , a conductive material can be formed in the contact hole 89 and the surface 301 of the capping layer 30 , and then chemical mechanical polishing (CMP) is performed to remove the conductive material on the surface 301 of the capping layer 30 . Therefore, a contact plug 401 is formed, and an upper surface 401s is exposed through the surface 301 of the cover layer 30 .

請參考圖8,一導電材料90可藉由例如CVD、低壓化學氣相沉積(LPCVD)或電鍍而形成在接觸栓塞401的上表面401s與罩蓋層30的表面301上。一光阻層91可形成在導電材料90上,並藉由微影製程而進行圖案化。Referring to FIG. 8 , a conductive material 90 may be formed on the upper surface 401 s of the contact plug 401 and the surface 301 of the capping layer 30 by, for example, CVD, low pressure chemical vapor deposition (LPCVD) or electroplating. A photoresist layer 91 can be formed on the conductive material 90 and patterned by a photolithography process.

請參考圖9,可以光阻層91的圖案而蝕刻導電材料90,然後可移除光阻層91的餘留部分。因此,一下閘極端子27以及一導電部410形成在罩蓋層30上。Referring to FIG. 9 , the conductive material 90 can be etched in a pattern of the photoresist layer 91 , and then the remaining portion of the photoresist layer 91 can be removed. Therefore, the lower gate terminal 27 and a conductive portion 410 are formed on the capping layer 30 .

請參考圖10,一介電部211可藉由例如化學氣相沉積(CVD)、物理氣相沉積(PVD)、遠程電漿CVD(RPCVD)、電漿加強CVD(PECVD)、塗佈等等,然後藉由一CMP製程而形成在罩蓋層30的表面301以覆蓋導電部410與下閘極端子27。Referring to FIG. 10 , a dielectric portion 211 can be formed by, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), remote plasma CVD (RPCVD), plasma enhanced CVD (PECVD), coating, etc. , and then formed on the surface 301 of the capping layer 30 through a CMP process to cover the conductive portion 410 and the lower gate terminal 27 .

請參考圖11,一通道材料241可藉由原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)、遠程電漿CVD(RPCVD)、電漿加強CVD(PECVD)、塗佈等等而形成在介電部211上。通道材料241可包括氧化銦鎵鋅(indium gallium zinc oxide,IGZO)、氧化銦鋅(indium zinc oxide,IZO)、鍺等等。Referring to Figure 11, a channel material 241 can be formed by atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), remote plasma CVD (RPCVD), or plasma enhanced CVD (PECVD). , coating, etc. to form on the dielectric portion 211 . The channel material 241 may include indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), germanium, and the like.

再者,一光阻層92可形成在通道材料214上並進行圖案化。Furthermore, a photoresist layer 92 can be formed on the channel material 214 and patterned.

請參考圖12,通道材料241可以藉由光阻層92所界定之圖案進行蝕刻,然後一通道區24可形成在介電部211以及一下閘極介電層28可界定在通道區24與下閘極端子27之間。通道區24可在下閘極端子27上。Referring to FIG. 12 , the channel material 241 can be etched through the pattern defined by the photoresist layer 92 , and then a channel region 24 can be formed in the dielectric portion 211 and a lower gate dielectric layer 28 can be defined between the channel region 24 and the lower gate dielectric layer 24 . between gate terminals 27. Channel area 24 may be on lower gate terminal 27.

請參考圖13,一介電部212可形成在介電部211上,以藉由類似於介電部211的一製程而覆蓋通道區24。Referring to FIG. 13 , a dielectric portion 212 may be formed on the dielectric portion 211 to cover the channel region 24 through a process similar to that of the dielectric portion 211 .

請參考圖14,舉例來說,可藉由蝕刻、沉積以及CMP製程而形成一導電通孔411。導電通孔411可形成在導電部410或是下閘極端子27上。Referring to FIG. 14 , for example, a conductive via 411 can be formed through etching, deposition and CMP processes. The conductive via 411 may be formed on the conductive portion 410 or the lower gate terminal 27 .

請參考圖15,一導電部412以及一上閘極端子22的製作技術可包含類似於導電部410的一製程。當上閘極端子22的材料不同於導電部412時,上閘極端子22可個別形成。一上閘極介電層23界定在通道區24與上閘極端子22之間。Referring to FIG. 15 , the manufacturing technology of a conductive portion 412 and an upper gate terminal 22 may include a process similar to that of the conductive portion 410 . When the material of the upper gate terminal 22 is different from the conductive portion 412, the upper gate terminal 22 may be formed separately. An upper gate dielectric layer 23 is defined between channel region 24 and upper gate terminal 22 .

請參考圖16,一介電部213可藉由類似於介電部211的一製程而形成在介電部212,以覆蓋導電部412與上閘極端子22,因此形成一介電層21。Referring to FIG. 16 , a dielectric portion 213 can be formed on the dielectric portion 212 through a process similar to that of the dielectric portion 211 to cover the conductive portion 412 and the upper gate terminal 22 , thereby forming a dielectric layer 21 .

請參考圖17,一導電通孔可形成在介電層21中,以連接導電部412。因此,一接觸栓塞402形成在介電層21中並連接到接觸栓塞401以形成延伸經過介電層21與罩蓋層30的一接觸元件40。接觸元件40可電性連接到資料儲存元件10的位元線120。在一些實施例中,接觸元件40可電性連接到資料儲存元件10的電容器130。在一些實施例中,接觸元件40可電性連接到資料儲存元件10的字元線110。Referring to FIG. 17 , a conductive via hole may be formed in the dielectric layer 21 to connect the conductive portion 412 . Accordingly, a contact plug 402 is formed in the dielectric layer 21 and connected to the contact plug 401 to form a contact element 40 extending through the dielectric layer 21 and the capping layer 30 . The contact element 40 can be electrically connected to the bit line 120 of the data storage element 10 . In some embodiments, contact element 40 may be electrically connected to capacitor 130 of data storage element 10 . In some embodiments, the contact elements 40 may be electrically connected to the word lines 110 of the data storage device 10 .

再者,複數個導電通孔可形成在上閘極端子22、下閘極端子27以及通道區24上,以形成一資料處理元件20的一電晶體Tr2。資料處理元件20的電晶體Tr2可經由接觸元件40而電性連接到資料儲存元件10的位元線120。因此,一垂直電性傳送路徑形成在資料處理元件20與資料儲存元件10之間。Furthermore, a plurality of conductive vias may be formed on the upper gate terminal 22 , the lower gate terminal 27 and the channel region 24 to form a transistor Tr2 of the data processing element 20 . The transistor Tr2 of the data processing element 20 can be electrically connected to the bit line 120 of the data storage element 10 via the contact element 40 . Therefore, a vertical electrical transmission path is formed between the data processing element 20 and the data storage element 10 .

之後,可以在資料處理元件20的表面201上形成複數個連接層(例如圖4中的連接層21c1、21c2、21c3或21c4),並且將接觸元件40與資料處理元件20的電晶體Tr2連接以形成圖4的半導體記憶體1。After that, a plurality of connection layers (such as the connection layers 21c1, 21c2, 21c3 or 21c4 in FIG. 4) can be formed on the surface 201 of the data processing element 20, and the contact element 40 is connected to the transistor Tr2 of the data processing element 20 to The semiconductor memory 1 of FIG. 4 is formed.

再者,在圖5到圖17中之該等步驟的製程溫度低於400℃。資料儲存元件10的特性不受形成資料處理元件20之熱積存(thermal budget)的影響。Furthermore, the process temperatures of the steps in Figures 5 to 17 are lower than 400°C. The characteristics of the data storage device 10 are not affected by the thermal budget forming the data processing device 20 .

圖18是流程示意圖,例示本揭露一些實施例之半導體記憶體的製備方法200。FIG. 18 is a schematic flowchart illustrating a method 200 for manufacturing a semiconductor memory according to some embodiments of the present disclosure.

製備方法200開始於步驟S201,其包括形成一資料儲存元件。The manufacturing method 200 begins with step S201, which includes forming a data storage element.

製備方法200以步驟S203連續,其包括形成一罩蓋層在該資料儲存元件。The manufacturing method 200 continues with step S203, which includes forming a capping layer on the data storage element.

製備方法200以步驟S205連續,其包括形成一接觸元件。該接觸元件電性連接到該資料儲存元件。The preparation method 200 continues with step S205, which includes forming a contact element. The contact element is electrically connected to the data storage element.

製備方法200以步驟S207連續,其包括形成一資料處理元件在該資料儲存元件上。該資料處理元件電性連接到該接觸元件。The manufacturing method 200 continues with step S207, which includes forming a data processing element on the data storage element. The data processing element is electrically connected to the contact element.

製備方法200以步驟S209連續,其包括形成一連續層在該資料處理元件的一介電層上。The preparation method 200 continues with step S209, which includes forming a continuous layer on a dielectric layer of the data processing element.

製備方法200僅為一例子,並不意指將本揭露限制在申請專利範圍中所明確記載的範圍之外。可以在製備方法200的每個步驟之前、期間或之後提供多個額外的步驟,並且對於該製備方法之多個額外實施例,可替換、消除或移動所描述的一些步驟。在一些實施例中,製備方法200還可包括並未在圖18中所描述的多個步驟。在一些實施例中,製備方法200可包括一或多個在圖18中所描述的步驟。The preparation method 200 is only an example and is not intended to limit the present disclosure beyond the scope explicitly stated in the patent application. Additional steps may be provided before, during, or after each step of the preparation method 200, and some of the steps described may be replaced, eliminated, or moved for additional embodiments of the preparation method. In some embodiments, the preparation method 200 may also include multiple steps not depicted in FIG. 18 . In some embodiments, preparation method 200 may include one or more of the steps described in Figure 18.

本揭露之一實施例提供一種半導體記憶體。該半導體記憶體包括一資料儲存元件、一資料處理元件以及一接觸元件。該資料處理元件設置在該資料儲存元件上。該接觸元件設置在該資料儲存元件與該資料處理元件之間。該接觸元件將該資料儲存元件與該資料處理元件電性連接。An embodiment of the present disclosure provides a semiconductor memory. The semiconductor memory includes a data storage element, a data processing element and a contact element. The data processing component is disposed on the data storage component. The contact element is disposed between the data storage element and the data processing element. The contact element electrically connects the data storage element and the data processing element.

本揭露之一實施例提供一種半導體記憶體的製備方法,包括形成一資料儲存元件;形成一接觸元件以電性連接到該資料儲存元件;以及形成一資料處理元件在該資料儲存元件上且電性連接到該接觸元件。An embodiment of the present disclosure provides a method for manufacturing a semiconductor memory, including forming a data storage element; forming a contact element to electrically connect to the data storage element; and forming a data processing element on the data storage element and electrically electrically connected to the contact element.

本揭露的該半導體記憶體包括該資料儲存元件以及該資料處理元件,該資料處理元件設置在該資料儲存元件上且經由該接觸元件而電性連接到該資料儲存元件。在多個訊號藉由該資料儲存元件而被接收之前,該資料處理元件可接收或傳送來自一外部電路(例如一半導體記憶體控制器或是一主機元件)的多個命令訊號、多個位址訊號或是多個資料訊號。該資料儲存元件可將該等資料訊號傳送到該資料處理元件,以響應該等命令。該資料處理元件可經配置以處理經由例如多工(multiplexing)或其他功能且來自該資料儲存元件的該等資料訊號,且在該半導體記憶體(或是該資料儲存元件)與該外部元件之間提供較高的處理帶寬。因此,在不犧牲低功率效能的情況下增加了帶寬。The semiconductor memory of the present disclosure includes the data storage element and the data processing element. The data processing element is disposed on the data storage element and is electrically connected to the data storage element through the contact element. The data processing element may receive or transmit multiple command signals, multiple bits from an external circuit (such as a semiconductor memory controller or a host device) before multiple signals are received through the data storage element. address signal or multiple data signals. The data storage component can transmit the data signals to the data processing component in response to the commands. The data processing device may be configured to process the data signals from the data storage device via, for example, multiplexing or other functions, and between the semiconductor memory (or the data storage device) and the external device Provides higher processing bandwidth. Therefore, bandwidth is increased without sacrificing low power performance.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the claimed claims. For example, many of the processes described above may be implemented in different ways and replaced with other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, etc. that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used according to the present disclosure. A material composition, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patentable scope of this application.

1:半導體記憶體 10:資料儲存元件 10b1:連接元件 10b2:連接元件 10m:資料儲存晶粒 10p:周圍區 10s:基底 10s1:上表面 10t:矽穿孔 20:資料處理元件 20c:連接層 20c1~20c4:連接層 21:介電層 22:上閘極端子 23:上閘極介電層 24:通道區 25:汲極端子 26:源極端子 27:下閘極端子 28:下閘極介電層 30:罩蓋層 40:接觸元件 50:半導體記憶體控制器 50b:連接元件 50t:矽穿孔 60:插入器 60b:連接元件 60w1:佈線層 60w2:佈線層 60w3:佈線層 70:封裝基底 70b:連接元件 80:電子元件 89:接觸孔 90:導電材料 91:光阻層 92:光阻層 100:半導體封裝 101:表面 102:絕緣結構 104:主動區 106:摻雜區 110:字元線 112:閘極介電層 116:埋入隔離層 120:位元線 122:隔離層 124:導電接觸點 126:埋入接觸點 130:電容器 130b:下電極 130i:隔離層 130s:支撐元件 130t:上電極 132:介電層 134:接觸栓塞 136:導電栓塞 140:佈線結構 142:介電層 150:接觸墊 200:製備方法 201:表面 211:介電部 212:介電部 213:介電部 241:通道材料 271:導電通孔 301:表面 401:接觸栓塞 401s:上表面 402:接觸栓塞 410:導電部 411:導電通孔 412:導電部 A1:第一投影面積 A2:第二投影面積 BANK1~BANK4:記憶庫 PHY:實體層 S201:步驟 S203:步驟 S205:步驟 S207:步驟 S209:步驟 Tr1:電晶體 Tr2:電晶體 1: Semiconductor memory 10: Data storage component 10b1: Connecting components 10b2: Connecting components 10m: data storage die 10p:surrounding area 10s: base 10s1: Upper surface 10t: Silicon perforation 20:Data processing components 20c: Connection layer 20c1~20c4: connection layer 21: Dielectric layer 22: Upper gate terminal 23: Upper gate dielectric layer 24: Passage area 25:Drain terminal 26: Source terminal 27:Lower gate terminal 28: Lower gate dielectric layer 30:Cover layer 40:Contact components 50:Semiconductor memory controller 50b: Connecting elements 50t: Silicon perforation 60: Inserter 60b: Connecting elements 60w1: Wiring layer 60w2: Wiring layer 60w3: Wiring layer 70:Packaging substrate 70b: Connecting elements 80: Electronic components 89:Contact hole 90: Conductive materials 91: Photoresist layer 92: Photoresist layer 100:Semiconductor packaging 101:Surface 102:Insulation structure 104:Active zone 106: Doped area 110:Character line 112: Gate dielectric layer 116: Buried isolation layer 120:Bit line 122:Isolation layer 124:Conductive contact point 126: Buried Contact Points 130:Capacitor 130b: Lower electrode 130i: Isolation layer 130s: Support elements 130t: Upper electrode 132:Dielectric layer 134: Contact plug 136:Conductive plug 140: Wiring structure 142:Dielectric layer 150:Contact pad 200:Preparation method 201: Surface 211:Dielectric Department 212:Dielectric Department 213:Dielectric Department 241: Channel material 271:Conductive via 301: Surface 401: Contact plug 401s: upper surface 402: Contact plug 410: Conductive Department 411:Conductive via 412: Conductive Department A1: First projection area A2: Second projection area BANK1~BANK4: memory bank PHY: physical layer S201: Steps S203: Step S205: Step S207: Step S209: Step Tr1: transistor Tr2: Transistor

藉由參考詳細描述以及申請專利範圍而可以獲得對本揭露更完整的理解。本揭露還應理解為與圖式的元件編號相關聯,而圖式的元件編號在整個描述中代表類似的元件。 圖1是方塊示意圖,例示本揭露一些實施例的半導體記憶體以及半導體記憶體控制器。 圖2是剖視示意圖,例示本揭露一些實施例整合在半導體封裝中的半導體記憶體。 圖3是放大頂視示意圖,例示本揭露一些實施例被在圖2中的方框A所包圍的一區域。 圖4是放大剖視示意圖,例示本揭露一些實施例沿著在圖3中之剖線B-B'的一區域。 圖5是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖6是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖7是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖8是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖9是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖10是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖11是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖12是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖13是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖14是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖15是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖16是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖17是剖視示意圖,例示本揭露一些實施例之半導體記憶體的製備方法的一或多個階段。 圖18是流程示意圖,例示本揭露一些實施例之半導體記憶體的製備方法。 A more complete understanding of the present disclosure can be obtained by referring to the detailed description and claimed claims. The present disclosure should also be understood to be associated with the drawing element numbering, which represents similar elements throughout the description. FIG. 1 is a block diagram illustrating a semiconductor memory and a semiconductor memory controller according to some embodiments of the present disclosure. FIG. 2 is a schematic cross-sectional view illustrating a semiconductor memory integrated in a semiconductor package according to some embodiments of the present disclosure. FIG. 3 is an enlarged top view illustrating an area surrounded by box A in FIG. 2 according to some embodiments of the present disclosure. FIG. 4 is an enlarged cross-sectional schematic diagram illustrating a region along the cross-section line BB' in FIG. 3 according to some embodiments of the present disclosure. FIG. 5 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 6 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 7 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 8 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 9 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 10 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 11 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 12 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. 13 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. 14 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 15 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 16 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. 17 is a schematic cross-sectional view illustrating one or more stages of a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure. FIG. 18 is a schematic flowchart illustrating a method of manufacturing a semiconductor memory according to some embodiments of the present disclosure.

1:半導體記憶體 1: Semiconductor memory

10:資料儲存元件 10: Data storage component

10b1:連接元件 10b1: Connecting components

10b2:連接元件 10b2: Connecting elements

10m:資料儲存晶粒 10m: data storage die

10t:矽穿孔 10t: Silicon perforation

20:資料處理元件 20:Data processing components

20c:連接層 20c: Connection layer

21:介電層 21: Dielectric layer

30:罩蓋層 30:Cover layer

40:接觸元件 40:Contact components

50:半導體記憶體控制器 50:Semiconductor memory controller

50b:連接元件 50b: Connecting elements

50t:矽穿孔 50t: Silicon perforation

60:插入器 60: Inserter

60b:連接元件 60b: Connecting components

60w1:佈線層 60w1: Wiring layer

60w2:佈線層 60w2: Wiring layer

60w3:佈線層 60w3: Wiring layer

70:封裝基底 70:Packaging substrate

70b:連接元件 70b: Connecting elements

80:電子元件 80: Electronic components

100:半導體封裝 100:Semiconductor packaging

PHY:實體層 PHY: physical layer

Claims (20)

一種半導體記憶體的製備方法,包括: 形成一資料儲存元件; 形成一接觸元件以電性連接到該資料儲存元件;以及 形成一資料處理元件在該資料儲存元件上且電性連接到該接觸元件。 A method for preparing a semiconductor memory, including: forming a data storage element; forming a contact element to electrically connect to the data storage element; and A data processing element is formed on the data storage element and electrically connected to the contact element. 如請求項1所述之製備方法,還包括形成一罩蓋層在該資料儲存元件上,其中該接觸元件延伸經過該罩蓋層。The preparation method of claim 1, further comprising forming a cover layer on the data storage element, wherein the contact element extends through the cover layer. 如請求項2所述之製備方法,還包括形成一介電層在該罩蓋層上,其中該接觸元件包括一第二接觸栓塞,延伸經過該介電層。The preparation method of claim 2, further comprising forming a dielectric layer on the capping layer, wherein the contact element includes a second contact plug extending through the dielectric layer. 如請求項3所述之製備方法,還包括形成複數個連接層在該介電層上,其中該等連接層的一第一連接層與該接觸元件電性連接。The preparation method of claim 3 further includes forming a plurality of connection layers on the dielectric layer, wherein a first connection layer of the connection layers is electrically connected to the contact element. 如請求項2所述之製備方法,其中該罩蓋層包括二氧化矽或藍寶石。The preparation method of claim 2, wherein the cover layer includes silicon dioxide or sapphire. 如請求項1所述之製備方法,其中形成該資料處理元件是在小於400℃的一製程溫度下執行。The preparation method of claim 1, wherein forming the data processing element is performed at a process temperature of less than 400°C. 如請求項6所述之製備方法,其中該資料儲存元件的多個特性不受形成該資料處理元件的熱積存(thermal budget)所影響。The preparation method of claim 6, wherein multiple characteristics of the data storage element are not affected by a thermal budget forming the data processing element. 如請求項5所述之製備方法,其中形成該資料處理元件包括形成一電晶體以電性連接到該資料儲存元件的一位元線。The preparation method of claim 5, wherein forming the data processing element includes forming a transistor to be electrically connected to a cell line of the data storage element. 如請求項8所述之製備方法,其中該電晶體包括一第一閘極端子以及一第二閘極端子,該第二閘極端子設置在該罩蓋層與該電晶體的該第一閘極端子之間,而形成該資料處理元件包括形成一介電層以覆蓋該電晶體。The preparation method of claim 8, wherein the transistor includes a first gate terminal and a second gate terminal, and the second gate terminal is disposed between the cover layer and the first gate of the transistor. Between the terminals, forming the data processing element includes forming a dielectric layer to cover the transistor. 如請求項9所述之製備方法,還包括形成一連接層在該資料處理元件的該介電層上,以將該資料處理元件電性連接到該接觸元件。The preparation method of claim 9 further includes forming a connection layer on the dielectric layer of the data processing element to electrically connect the data processing element to the contact element. 如請求項1所述之製備方法,其中形成該資料處理元件包括形成一IGZO通道以及一第一閘極端子,而該第一閘極端子在該IGZP通道上。The preparation method of claim 1, wherein forming the data processing element includes forming an IGZO channel and a first gate terminal, and the first gate terminal is on the IGZP channel. 如請求項1所述之製備方法,其中該資料處理元件包括以下其中一個:一絕緣體上覆矽(SOI)電晶體、一氧化銦鎵鋅(IGZO)基電晶體、一鍺基(Ge-based)電晶體或是一N型CMOS偽電晶體(pseudo transistor)。The preparation method of claim 1, wherein the data processing element includes one of the following: a silicon-on-insulator (SOI) transistor, an indium gallium zinc oxide (IGZO)-based transistor, a germanium-based (Ge-based) ) transistor or an N-type CMOS pseudo transistor (pseudo transistor). 如請求項1所述之製備方法,其中形成該資料儲存元件包括形成一電容器以電性連接到該接觸元件。The method of claim 1, wherein forming the data storage element includes forming a capacitor to be electrically connected to the contact element. 如請求項13所述之製備方法,其中形成該資料處理元件包括形成一電晶體以電性連接到該接觸元件。The method of claim 13, wherein forming the data processing element includes forming a transistor to be electrically connected to the contact element. 如請求項8所述之製備方法,其中該電晶體包括一氧化銦鎵鋅(IGZO)通道,而該氧化銦鎵鋅通道設置在該第一閘極端子與該第二閘極端子之間。The preparation method of claim 8, wherein the transistor includes an indium gallium zinc oxide (IGZO) channel, and the indium gallium zinc oxide channel is disposed between the first gate terminal and the second gate terminal. 如請求項1所述之製備方法,其中該接觸元件包括一第一投影面積,在該資料儲存元件的一表面上,而該資料處理元件具有一第二投影面積,在該資料儲存元件的該表面上,其中該第一投影面積與該第二投影面積是不重疊的。The preparation method of claim 1, wherein the contact element includes a first projected area on a surface of the data storage element, and the data processing element has a second projected area on the surface of the data storage element. On the surface, the first projected area and the second projected area do not overlap. 如請求項1所述之製備方法,其中該資料處理元件在一垂直方向與該資料儲存元件重疊,而該接觸元件在一垂直方向與該資料儲存元件重疊。The preparation method of claim 1, wherein the data processing element overlaps the data storage element in a vertical direction, and the contact element overlaps the data storage element in a vertical direction. 如請求項1所述之製備方法,其中該資料處理元件包括以下其中一個:一絕緣體上覆矽電晶體、一氧化銦鎵鋅基電晶體、一鍺基電晶體或是一N型CMOS偽電晶體。The preparation method of claim 1, wherein the data processing element includes one of the following: a silicon-on-insulator transistor, an indium gallium zinc oxide-based transistor, a germanium-based transistor, or an N-type CMOS pseudo-electric transistor. crystal. 如請求項1所述之製備方法,其中該資料儲存元件包括多個儲存晶粒的一堆疊。The preparation method of claim 1, wherein the data storage element includes a stack of a plurality of storage dies. 如請求項1所述之製備方法,其中該資料儲存元件的一尺寸大於該資料處理元件的一尺寸,該資料處理元件包括一靜電放電(ESD)保護電路,且該資料處理元件包括一可程式化計算單元。The preparation method of claim 1, wherein a size of the data storage element is larger than a size of the data processing element, the data processing element includes an electrostatic discharge (ESD) protection circuit, and the data processing element includes a programmable calculation unit.
TW111133166A 2022-03-02 2022-09-01 Method for manufacturing a semiconductor memory TWI817693B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/684,526 2022-03-02
US17/684,650 2022-03-02
US17/684,650 US20230284440A1 (en) 2022-03-02 2022-03-02 Memory with a contact between a data storage device and a data processing device
US17/684,526 US20230284438A1 (en) 2022-03-02 2022-03-02 Method for manufacturing a semiconductor memory

Publications (2)

Publication Number Publication Date
TW202336959A true TW202336959A (en) 2023-09-16
TWI817693B TWI817693B (en) 2023-10-01

Family

ID=88927374

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111133166A TWI817693B (en) 2022-03-02 2022-09-01 Method for manufacturing a semiconductor memory
TW111150632A TWI833531B (en) 2022-03-02 2022-12-29 Semiconductor memory

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111150632A TWI833531B (en) 2022-03-02 2022-12-29 Semiconductor memory

Country Status (1)

Country Link
TW (2) TWI817693B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160124294A (en) * 2015-04-16 2016-10-27 삼성전자주식회사 Semiconductor device including cell region stacked on periperal region and methods for fabricating the same
CN110192269A (en) * 2019-04-15 2019-08-30 长江存储科技有限责任公司 Three dimensional NAND memory part is integrated with multiple functional chips
CN110537259A (en) * 2019-06-28 2019-12-03 长江存储科技有限责任公司 It is calculated in memory in three-dimensional storage part
US11282816B2 (en) * 2020-01-17 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Memory packages and methods of forming same
US11462249B2 (en) * 2020-06-30 2022-10-04 Micron Technology, Inc. System and method for reading and writing memory management data using a non-volatile cell based register
CN112074956B (en) * 2020-07-30 2024-01-05 长江存储科技有限责任公司 Three-dimensional memory device having hydrogen-rich semiconductor channel
US11688681B2 (en) * 2020-08-24 2023-06-27 Ap Memory Technology Corporation DRAM chiplet structure and method for manufacturing the same

Also Published As

Publication number Publication date
TW202336988A (en) 2023-09-16
TWI817693B (en) 2023-10-01
TWI833531B (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US8018058B2 (en) Semiconductor memory device
US7851309B2 (en) Selective epitaxy vertical integrated circuit components and methods
US7276751B2 (en) Trench metal-insulator-metal (MIM) capacitors integrated with middle-of-line metal contacts, and method of fabricating same
US7355232B2 (en) Memory devices with dual-sided capacitors
TWI786612B (en) Semiconductor device structure with air gap structure and method for preparing the same
TW202018914A (en) Semiconductor device and method of forming the same
TWI732255B (en) Semiconductor structure
TWI833531B (en) Semiconductor memory
TWI779615B (en) Semiconductor device with graphene conductive structure and method for forming the same
US20230301072A1 (en) Method for manufacturing memory device having word line with dual conductive materials
US20230284440A1 (en) Memory with a contact between a data storage device and a data processing device
US20230284438A1 (en) Method for manufacturing a semiconductor memory
US11895820B2 (en) Method of manufacturing memory device having word line with improved adhesion between work function member and conductive layer
TWI833235B (en) Method for preparing memory device having word line
US20230232613A1 (en) Memory device having word line with improved adhesion between work function member and conductive layer
US11832432B2 (en) Method of manufacturing memory device having word lines with reduced leakage
US20230298998A1 (en) Memory device having word line with dual conductive materials
US11916099B2 (en) Multilayer dielectric for metal-insulator-metal capacitor
US20230197771A1 (en) Memory device having word lines with reduced leakage
CN118019333A (en) Semiconductor memory and forming method thereof