TW202336481A - Optical lens and display device - Google Patents

Optical lens and display device Download PDF

Info

Publication number
TW202336481A
TW202336481A TW111119812A TW111119812A TW202336481A TW 202336481 A TW202336481 A TW 202336481A TW 111119812 A TW111119812 A TW 111119812A TW 111119812 A TW111119812 A TW 111119812A TW 202336481 A TW202336481 A TW 202336481A
Authority
TW
Taiwan
Prior art keywords
lens
optical lens
optical
light
image beam
Prior art date
Application number
TW111119812A
Other languages
Chinese (zh)
Other versions
TWI810955B (en
Inventor
郭道宏
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Application granted granted Critical
Publication of TWI810955B publication Critical patent/TWI810955B/en
Publication of TW202336481A publication Critical patent/TW202336481A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical lens adapted to receive an image beam from an imaging element is provided. The optical lens sequentially includes a first lens element, a second lens element, a third lens element and a fourth lens element with refracting power along an optical axis from a light input side to a light output side. The first lens element has a positive refracting power. The second lens element has a negative refracting power. The third lens element has a positive refracting power. The first lens element or the third lens element is made of glass. The optical lens receives the image beam from the light input side. The image beam forms an aperture on the light output side, and the position of the image beam at the aperture has the smallest beam cross-sectional area.

Description

光學鏡頭以及顯示裝置Optical lenses and display devices

本發明是有關於一種光學鏡頭,並且特別涉及一種用於波導顯示器的光學鏡頭。The present invention relates to an optical lens, and in particular to an optical lens for a waveguide display.

隨著立體顯示(stereoscopic display)及虛擬實境(virtual reality)等多媒體影像應用的出現,為了提供令人驚豔的視覺效果,顯示裝置對於高解析度的需求逐漸增加。With the emergence of multimedia imaging applications such as stereoscopic display and virtual reality, the demand for high-resolution display devices is gradually increasing in order to provide stunning visual effects.

具有波導(waveguide)的波導顯示器依其影像源的種類可區分為自發光式面板架構、穿透式面板架構以及反射式面板架構。影像源(面板)產生的影像光束透過光學鏡頭形成一個虛像,此虛像進一步顯示在使用者的眼睛前方的預設位置。當光學鏡頭應用在波導顯示器中,其在設計上的尺寸、重量、解析度以及熱飄移的考量是重要的議題。Waveguide displays with waveguides can be divided into self-illuminating panel structures, transmissive panel structures and reflective panel structures according to the type of image source. The image beam generated by the image source (panel) passes through the optical lens to form a virtual image, which is further displayed at a preset position in front of the user's eyes. When optical lenses are used in waveguide displays, their design considerations of size, weight, resolution, and thermal drift are important issues.

“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "prior art" paragraph is only used to help understand the content of the present invention. Therefore, the content disclosed in the "prior art" paragraph may contain some conventional technologies that do not constitute common knowledge to those with ordinary knowledge in the technical field. The content disclosed in the "Prior Art" paragraph does not mean that the content or the problems to be solved by one or more embodiments of the present invention have been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.

本發明提供一種光學鏡頭,其具有良好的光學品質與熱穩定性。The invention provides an optical lens with good optical quality and thermal stability.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。Other objects and advantages of the present invention can be further understood from the technical features disclosed in the present invention.

為達上述之一或部份或全部目的或是其他目的,本發明提供一種光學鏡頭,適於接收來自一成像元件的一影像光束。光學鏡頭從一入光側至一出光側沿一光軸依序包括具有屈光率的一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且第一透鏡至第四透鏡各自包括朝向入光側且使影像光束通過的一入光面及朝向出光側且使影像光束通過的一出光面。第一透鏡具有正屈光率。第二透鏡具有負屈光率。第三透鏡具有正屈光率。第一透鏡或第三透鏡為玻璃材質。光學鏡頭接收來自入光側的影像光束。影像光束在該出光側形成一光欄且影像光束於光欄的位置具有最小的光束截面積。In order to achieve one, part or all of the above objects or other objects, the present invention provides an optical lens suitable for receiving an image beam from an imaging element. The optical lens includes a first lens, a second lens, a third lens and a fourth lens with refractive power along an optical axis from a light entrance side to a light exit side, and the first lens to the fourth lens Each lens includes a light-incident surface facing the light-incident side and allowing the image beam to pass through, and a light-emitting surface facing the light-emitting side and allowing the image beam to pass through. The first lens has positive refractive power. The second lens has negative refractive power. The third lens has positive refractive power. The first lens or the third lens is made of glass. The optical lens receives the image beam from the light incident side. The image beam forms a diaphragm on the light exit side, and the image beam has the smallest beam cross-sectional area at the position of the diaphragm.

為達上述之一或部份或全部目的或是其他目的,本發明另提供一種光學鏡頭,包括如上述的光學鏡頭、成像元件以及一波導元件。成像元件設置於光學鏡頭的入光側,以提供影像光束。波導元件設置於光學鏡頭的出光側,且具有一光耦合入口以及一光耦合出口。來自成像元件的影像光束通過光學鏡頭後經由光耦合入口進入波導元件,並且波導元件引導影像光束,以使影像光束由光耦合出口離開波導元件。In order to achieve one, part or all of the above objects or other objects, the present invention further provides an optical lens, including the above-mentioned optical lens, imaging element and a waveguide element. The imaging element is arranged on the light incident side of the optical lens to provide an image beam. The waveguide element is arranged on the light exit side of the optical lens and has an optical coupling inlet and an optical coupling outlet. The image beam from the imaging element passes through the optical lens and enters the waveguide element through the optical coupling inlet, and the waveguide element guides the image beam so that the image beam leaves the waveguide element through the optical coupling outlet.

基於上述,本發明的實施例至少具有以下其中一個優點或功效。在本發明的光學鏡頭以及顯示裝置中,光學鏡頭包括第一透鏡、第二透鏡、第三透鏡以及第四透鏡。其中,第一透鏡具有正屈光率,第二透鏡具有負屈光率,第三透鏡具有正屈光率,且第一透鏡或第三透鏡為玻璃材質。相較於習知的鏡頭,本發明的光學鏡頭設計配合使用了較小的0.13吋的成像元件使得整體光機體積可以縮小。光學鏡頭能解析125每毫米線對(lp/mm)空間解析度的影像,且熱飄移量小,具有良好的光學表現。另外,光學鏡頭的鏡片數由習知的5片減少至4片可使得成像模組整體體積縮小。Based on the above, embodiments of the present invention have at least one of the following advantages or effects. In the optical lens and display device of the present invention, the optical lens includes a first lens, a second lens, a third lens and a fourth lens. The first lens has positive refractive power, the second lens has negative refractive power, the third lens has positive refractive power, and the first lens or the third lens is made of glass. Compared with conventional lenses, the optical lens design of the present invention uses a smaller 0.13-inch imaging element, so that the overall optical-mechanical volume can be reduced. The optical lens can resolve images with a spatial resolution of 125 line pairs per millimeter (lp/mm), has small thermal drift, and has good optical performance. In addition, reducing the number of lenses in the optical lens from the conventional 5 to 4 can reduce the overall size of the imaging module.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. Directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only for reference to the directions in the attached drawings. Accordingly, the directional terms used are illustrative and not limiting of the invention.

圖1A為本發明一實施例的顯示裝置的示意圖。請參考圖1A。本實施例提供一種顯示裝置100,包括光學鏡頭110、波導元件130 以及成像元件150。在本實施例中,顯示裝置100例如是頭戴式顯示裝置,但本發明並不限於此。其中光學鏡頭110適於接收來自成像元件150的影像光束IM。光學鏡頭110為不同光學條件的多個光學透鏡所組合,將由後續段落詳細說明。成像元件150設置於光學鏡頭110的入光側IS,提供影像光束IM。波導元件130設置於光學鏡頭110的出光側ES,且波導元件130具有彼此相對的上表面及下表面(未標號)且具有一光耦合入口ET以及一光耦合出口OT。光耦合入口ET與光耦合出口OT分別例如是來自光學鏡頭110的影像光束IM入射至波導元件130的表面區域與影像光束IM離開波導元件130的表面區域。在本實施例中,光耦合入口ET與光耦合出口OT皆位於波導元件130的上表面。來自成像元件150的影像光束IM通過光學鏡頭110後經由光耦合入口ET進入波導元件130,並且影像光束IM在波導元件130內傳遞,最後影像光束IM由光耦合出口OT離開波導元件130,進而投射到目標F,例如是頭戴式顯示裝置的使用者的眼睛。其中,影像光束IM在光學鏡頭110的出光側ES形成一光欄ST,且影像光束IM於光欄ST的位置具有最小的光束截面積。舉例而言,在本實施例中,此最小光束截面積的直徑為3.7毫米。因此,影像光束IM在經過光學鏡頭110之後縮束至光欄ST的位置,並且在通過光欄ST之後發散。具體而言,在本實施例中,光欄ST形成於波導元件130的光耦合入口ET的一位置或接近光耦合入口ET的一位置。位於X軸與Y軸形成的參考平面上,光欄ST的形狀例如大致上為圓形,並且在X軸方向上與在Y軸方向上的直徑尺寸大致上相同。FIG. 1A is a schematic diagram of a display device according to an embodiment of the present invention. Please refer to Figure 1A. This embodiment provides a display device 100 including an optical lens 110, a waveguide element 130 and an imaging element 150. In this embodiment, the display device 100 is, for example, a head-mounted display device, but the invention is not limited thereto. The optical lens 110 is adapted to receive the image beam IM from the imaging element 150 . The optical lens 110 is a combination of multiple optical lenses with different optical conditions, which will be described in detail in subsequent paragraphs. The imaging element 150 is disposed on the light incident side IS of the optical lens 110 to provide the image beam IM. The waveguide element 130 is disposed on the light exit side ES of the optical lens 110. The waveguide element 130 has an upper surface and a lower surface (not numbered) opposite to each other and has an optical coupling inlet ET and an optical coupling outlet OT. The optical coupling entrance ET and the optical coupling outlet OT are, for example, the surface area where the image beam IM from the optical lens 110 is incident on the waveguide element 130 and the surface area where the image beam IM leaves the waveguide element 130 respectively. In this embodiment, the optical coupling inlet ET and the optical coupling outlet OT are both located on the upper surface of the waveguide element 130 . The image beam IM from the imaging element 150 passes through the optical lens 110 and then enters the waveguide element 130 through the optical coupling inlet ET, and the image beam IM is transmitted in the waveguide element 130. Finally, the image beam IM leaves the waveguide element 130 through the optical coupling outlet OT and is projected The target F is, for example, the eyes of the user of the head-mounted display device. The image beam IM forms a diaphragm ST on the light exit side ES of the optical lens 110, and the image beam IM has the smallest beam cross-sectional area at the position of the diaphragm ST. For example, in this embodiment, the diameter of the minimum beam cross-sectional area is 3.7 mm. Therefore, the image beam IM shrinks to the position of the diaphragm ST after passing through the optical lens 110, and diverges after passing through the diaphragm ST. Specifically, in this embodiment, the diaphragm ST is formed at a position of the light coupling entrance ET of the waveguide element 130 or a position close to the light coupling entrance ET. Located on the reference plane formed by the X-axis and the Y-axis, the shape of the aperture ST is, for example, substantially circular, and its diameter in the X-axis direction is substantially the same as in the Y-axis direction.

具體而言,在本實施例中,顯示裝置100還包括稜鏡120、玻璃蓋140、抗反射元件160與反射元件170,其中光學鏡頭110、稜鏡120、玻璃蓋140及成像元件150可合稱為一成像模組105。稜鏡120設置於影像光束IM的路徑上,且設置於成像元件150與光學鏡頭110之間。成像元件150所提供的影像光束IM通過稜鏡120進入光學鏡頭110。成像元件150設置於光學鏡頭110的入光側IS一側。在本實施例中,成像元件150可以是能提供影像光束IM的顯示裝置,例如是有機發光二極體面板(OLED Panel)或微發光二極體面板(Micro LED Panel)。在另一實施例中,成像元件150可以是由紅色微發光二極體面板、綠色微發光二極體面板以及藍色微發光二極體面板所組成,而稜鏡120例如為X稜鏡(X prism),用以將三個不同顏色的微發光二極體面板所發出的色光進行合光而形成影像光束。在本實施例中,成像元件150使用0.13吋的微發光二極體面板,其對角線長度為3.2毫米。圖1B為本發明另一實施例的顯示裝置的示意圖。在圖1B中,顯示裝置100還可包括一照明光源101,且成像元件150為一反射式影像源。照明光源101產生一照明光束,經由光學元件導引至成像元件150後,經過成像元件150的反射並形成為影像光束IM。舉例而言,成像元件150例如為矽基液晶面板(Liquid Crystal On Silicon panel,LCoS panel)或數位微鏡元件(Digital Micro-mirror Device,DMD)等反射式光調變器,本發明並不限於此。本發明對成像元件150的型態及其種類並不加以限制。玻璃蓋140設置於成像元件150與稜鏡120之間,用以保護成像元件150避免灰塵的影響。Specifically, in this embodiment, the display device 100 further includes a lens 120, a glass cover 140, an anti-reflective element 160 and a reflective element 170, wherein the optical lens 110, the lens 120, the glass cover 140 and the imaging element 150 can be combined. It is called an imaging module 105. The lens 120 is disposed on the path of the image beam IM and between the imaging element 150 and the optical lens 110 . The image beam IM provided by the imaging element 150 enters the optical lens 110 through the lens 120 . The imaging element 150 is disposed on the light incident side IS of the optical lens 110 . In this embodiment, the imaging element 150 may be a display device capable of providing an image beam IM, such as an organic light emitting diode panel (OLED Panel) or a micro light emitting diode panel (Micro LED Panel). In another embodiment, the imaging element 150 may be composed of a red micro-LED panel, a green micro-LED panel, and a blue micro-LED panel, and the pixel 120 is, for example, an X pixel ( X prism), used to combine the colored light emitted by three micro-light emitting diode panels of different colors to form an image beam. In this embodiment, the imaging element 150 uses a 0.13-inch micro-LED panel with a diagonal length of 3.2 mm. FIG. 1B is a schematic diagram of a display device according to another embodiment of the present invention. In FIG. 1B , the display device 100 may further include an illumination light source 101 , and the imaging element 150 is a reflective image source. The illumination light source 101 generates an illumination beam, which is guided to the imaging element 150 through the optical element, and is reflected by the imaging element 150 to form an image beam IM. For example, the imaging element 150 is a reflective light modulator such as a Liquid Crystal On Silicon panel (LCoS panel) or a Digital Micro-mirror Device (DMD). The invention is not limited to this. The present invention does not limit the type and type of the imaging element 150 . The glass cover 140 is disposed between the imaging element 150 and the lens 120 to protect the imaging element 150 from dust.

另一方面,波導元件130的光耦合入口ET所在處設有抗反射元件160,其中抗反射元件160例如可以為一層塗佈於波導元件130的上表面且對應光耦合入口ET的抗反射層,或是抗反射元件160可以是於波導元件130的上表面且對應光耦合入口ET的位置進行表面處理而形成的抗反射結構。抗反射元件160係用以使影像光束IM更容易進入波導元件130而降低被波導元件130的表面反射的比例。而波導元件130的下表面且相對於光耦合出口OT的所在處設有反射元件170,其中反射元件170例如可以為一層塗佈於波導元件130的下表面且相對於光耦合出口OT的反射膜層,或是反射元件170可以是於波導元件130的下表面進行表面處理而形成的反射結構。反射元件170可反射在波導元件130內傳遞的影像光束IM並使影像光束IM朝光耦合出口OT傳遞,用以使在波導元件130內的影像光束IM更容易離開波導元件130。On the other hand, an anti-reflective element 160 is provided where the optical coupling entrance ET of the waveguide element 130 is located. The anti-reflective element 160 can be, for example, an anti-reflective layer coated on the upper surface of the waveguide element 130 and corresponding to the optical coupling entrance ET. Or the anti-reflective element 160 can be an anti-reflective structure formed by surface treatment on the upper surface of the waveguide element 130 and corresponding to the position of the light coupling entrance ET. The anti-reflective element 160 is used to make it easier for the image beam IM to enter the waveguide element 130 and reduce the proportion of reflection by the surface of the waveguide element 130 . A reflective element 170 is provided on the lower surface of the waveguide element 130 and opposite to the optical coupling outlet OT. The reflective element 170 can be, for example, a layer of reflective film coated on the lower surface of the waveguide element 130 and opposite to the optical coupling outlet OT. The layer, or reflective element 170, may be a reflective structure formed by surface treatment on the lower surface of the waveguide element 130. The reflective element 170 can reflect the image beam IM transmitted in the waveguide element 130 and transmit the image beam IM toward the optical coupling outlet OT, so that the image beam IM in the waveguide element 130 can leave the waveguide element 130 more easily.

圖2為本發明第一實施例的成像模組的示意圖。請參考圖1A、圖1B及圖2。圖2、圖7及圖12所顯示的成像模組105至少可應用於圖1A或圖1B所顯示的顯示裝置100,故以下先以圖2所顯示的成像模組105為例說明。在第一實施例的成像模組105中,光學鏡頭110從入光側IS至出光側ES沿一光軸OA依序包括具有屈光率的一第一透鏡111、一第二透鏡113、一第三透鏡115以及一第四透鏡117,且第一透鏡111至第四透鏡117各自包括朝向入光側IS且使影像光束IM通過的一入光面9、7、5、3及朝向出光側ES且使影像光束IM通過的一出光面8、6、4、2。另外,成像模組105中的玻璃蓋140和稜鏡120分別具有入光面13、11以及出光面12、10,成像元件150則具有成像面14。FIG. 2 is a schematic diagram of the imaging module according to the first embodiment of the present invention. Please refer to Figure 1A, Figure 1B and Figure 2. The imaging module 105 shown in FIG. 2 , FIG. 7 and FIG. 12 can at least be applied to the display device 100 shown in FIG. 1A or FIG. 1B , so the following description will first take the imaging module 105 shown in FIG. 2 as an example. In the imaging module 105 of the first embodiment, the optical lens 110 sequentially includes a first lens 111, a second lens 113, and a refractive index along an optical axis OA from the light entrance side IS to the light exit side ES. The third lens 115 and a fourth lens 117, and the first lens 111 to the fourth lens 117 each include a light incident surface 9, 7, 5, 3 facing the light incident side IS and allowing the image beam IM to pass, and a light incident surface 9, 7, 5, 3 facing the light exit side. ES and a light-emitting surface 8, 6, 4, 2 through which the image beam IM passes. In addition, the glass cover 140 and the lens 120 in the imaging module 105 have light incident surfaces 13, 11 and light exit surfaces 12, 10 respectively, and the imaging element 150 has an imaging surface 14.

第一透鏡111具有正屈光率。第一透鏡111的材質為塑膠材質。第一透鏡111的入光面9為朝向成像元件150凸出的凸面。第一透鏡111的出光面8為朝向光欄ST的凹面。在本實施例中,第一透鏡111的入光面9與出光面8皆為非球面表面(aspheric surface),但本發明並不以此為限。The first lens 111 has positive refractive power. The first lens 111 is made of plastic material. The light incident surface 9 of the first lens 111 is a convex surface protruding toward the imaging element 150 . The light exit surface 8 of the first lens 111 is a concave surface facing the diaphragm ST. In this embodiment, the light incident surface 9 and the light emergent surface 8 of the first lens 111 are both aspheric surfaces, but the invention is not limited thereto.

第二透鏡113具有負屈光率。第二透鏡113的材質為塑膠材質。第二透鏡113的入光面7為朝向成像元件150的凹面。第二透鏡113的出光面6為朝向光欄ST的凹面。在本實施例中,第二透鏡113的入光面7與出光面6皆為非球面表面,但本發明並不以此為限。The second lens 113 has negative refractive power. The second lens 113 is made of plastic material. The light incident surface 7 of the second lens 113 is a concave surface facing the imaging element 150 . The light exit surface 6 of the second lens 113 is a concave surface facing the diaphragm ST. In this embodiment, the light incident surface 7 and the light emergent surface 6 of the second lens 113 are both aspherical surfaces, but the invention is not limited thereto.

第三透鏡115具有正屈光率。第三透鏡115的材質為玻璃材質。第三透鏡115的入光面5為朝向成像元件150的凹面。第三透鏡115的出光面4為朝向光欄ST凸出的凸面。在本實施例中,第三透鏡115的入光面5與出光面4皆為非球面表面,但本發明並不以此為限。The third lens 115 has positive refractive power. The third lens 115 is made of glass. The light incident surface 5 of the third lens 115 is a concave surface facing the imaging element 150 . The light exit surface 4 of the third lens 115 is a convex surface protruding toward the diaphragm ST. In this embodiment, both the light incident surface 5 and the light exit surface 4 of the third lens 115 are aspherical surfaces, but the invention is not limited thereto.

第四透鏡117具有正屈光率。第四透鏡117的材質為塑膠材質。第四透鏡117的入光面3為朝向成像元件150凸出的凸面。第四透鏡117的出光面2為朝向光欄ST的凹面。在本實施例中,第四透鏡117的入光面3與出光面2皆為非球面表面,但本發明並不以此為限。The fourth lens 117 has positive refractive power. The fourth lens 117 is made of plastic material. The light incident surface 3 of the fourth lens 117 is a convex surface protruding toward the imaging element 150 . The light exit surface 2 of the fourth lens 117 is a concave surface facing the diaphragm ST. In this embodiment, both the light incident surface 3 and the light emergent surface 2 of the fourth lens 117 are aspherical surfaces, but the invention is not limited thereto.

第一實施例的其他詳細光學數據如下表一所示,其中第一實施例的光學鏡頭110的有效焦距為6.01毫米、半視角為15度、像高為1.6毫米。應當說明的是,表一所示的入光面9的曲率半徑所指為第一透鏡111的入光面9在光軸區域的曲率半徑,出光面8的曲率半徑所指為第一透鏡111的出光面8在光軸區域的曲率半徑,依此類推。入光面9的間距(如表一所示為0.93 mm)所指為入光面9與下一個表面(此例中為稜鏡120的出光面10)在光軸OA上的間距,即第一透鏡111與稜鏡120在光軸OA上的間隙為0.93 mm。出光面8的間距(如表一所示為1.74 mm)所指為第一透鏡111的出光面8與入光面9在光軸OA上的間距,即第一透鏡111在光軸OA上的厚度為1.74 mm,依此類推。Other detailed optical data of the first embodiment are shown in Table 1 below. The effective focal length of the optical lens 110 of the first embodiment is 6.01 mm, the half viewing angle is 15 degrees, and the image height is 1.6 mm. It should be noted that the curvature radius of the light incident surface 9 shown in Table 1 refers to the curvature radius of the light incident surface 9 of the first lens 111 in the optical axis region, and the curvature radius of the light exit surface 8 refers to the first lens 111 The curvature radius of the light exit surface 8 in the optical axis area, and so on. The distance between the light incident surface 9 (0.93 mm as shown in Table 1) refers to the distance between the light incident surface 9 and the next surface (in this case, the light exit surface 10 of the 120) on the optical axis OA, that is, the The gap between the first lens 111 and the lens 120 on the optical axis OA is 0.93 mm. The distance between the light exit surface 8 (1.74 mm as shown in Table 1) refers to the distance between the light exit surface 8 and the light entrance surface 9 of the first lens 111 on the optical axis OA, that is, the distance between the first lens 111 on the optical axis OA The thickness is 1.74 mm, and so on.

表一: 第一實施例 有效焦距 = 6.01 mm,半視角 = 15˚,像高 = 1.6 mm。 元件 表面 曲率半徑(mm) 間距(mm) 折射率 阿貝數 虛像   無限大 無限大     光圈ST   無限大 2.11     第四透鏡 117 出光面2 -1.99 1.54 1.53 55.9 入光面3 -2.17 0.06     第三透鏡 115 出光面4 5.47 1.30 1.86 37.0 入光面5 29.59 0.62     第二透鏡 113 出光面6 -8.17 0.75 1.66 20.3 入光面7 5.29 0.43     第一透鏡 111 出光面8 41.39 1.74 1.53 55.9 入光面9 -3.44 0.93     稜鏡 120 出光面10 無限大 4.5 1.51 64.1 入光面11 無限大 1.07     保護蓋 140 出光面12 無限大 0.3 1.50 61.1 入光面13 無限大 0.01     成像元件 150 成像面14 無限大       Table I: First embodiment Effective focal length = 6.01 mm, half viewing angle = 15˚, image height = 1.6 mm. element surface Radius of curvature (mm) Spacing(mm) refractive index Abbe number virtual image infinite infinite Aperture ST infinite 2.11 Fourth lens 117 Light surface 2 -1.99 1.54 1.53 55.9 Light incident surface 3 -2.17 0.06 Third lens 115 Light surface 4 5.47 1.30 1.86 37.0 Light incident surface 5 29.59 0.62 Second lens 113 Light surface 6 -8.17 0.75 1.66 20.3 Light incident surface 7 5.29 0.43 First lens 111 Light surface 8 41.39 1.74 1.53 55.9 Light incident surface 9 -3.44 0.93 稜鏡120 Light surface 10 infinite 4.5 1.51 64.1 Light incident surface 11 infinite 1.07 Protective cover 140 Light surface 12 infinite 0.3 1.50 61.1 Light incident surface 13 infinite 0.01 Imaging element 150 Imaging surface 14 infinite

另值得說明的是,在第一實施例的光學鏡頭110中,其焦距為6.01毫米,玻璃鏡片(即第三透鏡115)的焦距為7.54毫米,玻璃鏡片(即第三透鏡115)的阿貝數為37.09,最靠近光欄ST的第四透鏡117的焦距為22.41毫米。換句話說,第一實施例的光學鏡頭110滿足以下3個條列式: 光學鏡頭110滿足0.5 < fg / f <3; 光學鏡頭110滿足Vg > 30;以及 光學鏡頭110滿足|fs/f| > 1。 其中, fg為光學鏡頭110中玻璃鏡片的有效焦距; f為光學鏡頭110的有效焦距; Vg為光學鏡頭110中玻璃鏡片的阿貝數;以及 fs為光學鏡頭110中最靠近光欄ST的第四透鏡117的有效焦距。 It is also worth noting that in the optical lens 110 of the first embodiment, the focal length is 6.01 mm, the focal length of the glass lens (ie, the third lens 115) is 7.54 mm, and the Abbe of the glass lens (ie, the third lens 115) The number is 37.09, and the focal length of the fourth lens 117 closest to the diaphragm ST is 22.41 mm. In other words, the optical lens 110 of the first embodiment satisfies the following three equations: The optical lens 110 satisfies 0.5 < fg / f < 3; The optical lens 110 satisfies Vg > 30; and The optical lens 110 satisfies |fs/f| > 1. in, fg is the effective focal length of the glass lens in the optical lens 110; f is the effective focal length of the optical lens 110; Vg is the Abbe number of the glass lens in the optical lens 110; and fs is the effective focal length of the fourth lens 117 closest to the diaphragm ST in the optical lens 110 .

在本實施例中,入光面9、7、5、3及出光面8、6、4、2共計八個面均是非球面,而這些非球面是依下列公式定義: ...(1) Y為非球面曲線上的點與光軸的距離; Z為非球面深度,即非球面上距離光軸為Y的點,與相切於非球面光軸上頂點之切面,兩者間的垂直距離; R為透鏡表面之曲率半徑; K為圓錐係數; a2i為第2i階非球面係數。 In this embodiment, eight light incident surfaces 9, 7, 5, 3 and light exit surfaces 8, 6, 4, 2 are all aspherical surfaces, and these aspherical surfaces are defined according to the following formula: ...(1) Y is the distance between a point on the aspheric curve and the optical axis; Z is the depth of the aspheric surface, that is, the point on the aspheric surface that is Y from the optical axis, and the tangent plane tangent to the vertex on the optical axis of the aspheric surface , the vertical distance between them; R is the radius of curvature of the lens surface; K is the cone coefficient; a2i is the 2ith-order aspheric coefficient.

本實施例在上述非球面在公式(1)中的各項非球面係數如下表二所示。其中,表二中欄位編號9表示其為第一透鏡111的入光面9的非球面係數,其它欄位依此類推。在本實施例中,各非球面的第2階非球面係數a 2皆為零,故未列於表格中。 The various aspherical surface coefficients in formula (1) of the above-mentioned aspherical surface in this embodiment are as shown in Table 2 below. Among them, column number 9 in Table 2 indicates that it is the aspherical coefficient of the light incident surface 9 of the first lens 111, and the other columns can be deduced in the same way. In this embodiment, the second-order aspherical surface coefficients a 2 of each aspherical surface are all zero, so they are not listed in the table.

表二: 表面 K a 4 a 6 a 8 a 10 a 12 a 14 2 -7.78E-001 6.18E-003 5.41E-004 -3.47E-005 -8.13E-005 1.79E-005 2.27E-007 3 -1.43E-000 -1.57E-003 7.24E-006 -3.53E-005 5.68E-008 4.49E-008 1.81E-007 4 0 -7.39E-005 -5.97E-005 -1.13E-005 7.63E-007 3.89E-007 1.09E-008 5 0 -5.24E-004 9.08E-006 2.49E-005 -1.27E-006 -2.75E-007 1.00E-007 6 -4.84E-001 -1.26E-002 2.20E-003 -3.78E-004 3.41E-005 1.01E-006 -3.30E-007 7 -9.63E-000 -4.62E-003 1.94E-004 2.46E-005 -7.64E-006 -2.25E-007 1.28E-007 8 0 2.31E-003 -2.36E-003 4.72E-004 -4.67E-005 -5.73E-007 2.54E-007 9 0 4.39E-003 -8.88E-004 2.20E-004 -2.99E-005 2.40E-006 -1.15E-007 Table II: surface K a 4 a 6 a 8 a 10 a 12 a 14 2 -7.78E-001 6.18E-003 5.41E-004 -3.47E-005 -8.13E-005 1.79E-005 2.27E-007 3 -1.43E-000 -1.57E-003 7.24E-006 -3.53E-005 5.68E-008 4.49E-008 1.81E-007 4 0 -7.39E-005 -5.97E-005 -1.13E-005 7.63E-007 3.89E-007 1.09E-008 5 0 -5.24E-004 9.08E-006 2.49E-005 -1.27E-006 -2.75E-007 1.00E-007 6 -4.84E-001 -1.26E-002 2.20E-003 -3.78E-004 3.41E-005 1.01E-006 -3.30E-007 7 -9.63E-000 -4.62E-003 1.94E-004 2.46E-005 -7.64E-006 -2.25E-007 1.28E-007 8 0 2.31E-003 -2.36E-003 4.72E-004 -4.67E-005 -5.73E-007 2.54E-007 9 0 4.39E-003 -8.88E-004 2.20E-004 -2.99E-005 2.40E-006 -1.15E-007

當本第一實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭110的第一透鏡111、第二透鏡113、第三透鏡115、第四透鏡117的溫度值(℃)如下表三所示。並且,當本第一實施例的光學鏡頭110在0℃ ~ 40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面的中心點,光學鏡頭的背焦之熱飄移量小於0.01 mm。When the ambient temperatures of the first embodiment are 0°C, 10°C, 20°C, 30°C and 40°C respectively, the first lens 111, the second lens 113, the third lens 115 and the fourth lens 117 of the optical lens 110 The temperature value (°C) is shown in Table 3 below. Moreover, when the optical lens 110 of the first embodiment is in the ambient temperature range of 0°C ~ 40°C and is used in thermal equilibrium, without readjusting the focal length, the center point of the projection screen, the back of the optical lens, The thermal drift of the focal point is less than 0.01 mm.

表三: 環境溫度 第四透鏡117 第三透鏡115 第二透鏡113 第一透鏡111 0 8 11 16 19 10 18 21 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59 Table 3: ambient temperature Fourth lens 117 Third lens 115 Second lens 113 First lens 111 0 8 11 16 19 10 18 twenty one 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59

圖3為圖2中的光學鏡頭的橫向色差圖。圖4為圖2中的光學鏡頭的像散場曲及畸變圖。圖5為圖2中的光學鏡頭的橫向光束扇形圖。圖6A至圖6F為圖2的光學鏡頭在不同溫度下的調制轉換函數曲線圖。再配合參閱圖3至圖6F,圖3說明第一實施例光學鏡頭110的橫向色差(Lateral Chromatic Aberration),圖4說明第一實施例的光學鏡頭110當參考波長為530奈米時的弧矢(Sagittal)方向(標示X)的場曲(Field Curvature)像差、子午(Tangential)方向(標示Y)的場曲像差及畸變像差(Distortion Aberration)。圖5說明第一實施例光學鏡頭110的橫向光束扇形圖(transverse ray fan plot),其是以波長453奈米、530奈米、620奈米的光所作出的模擬數據圖。圖6A至圖6F則分別說明第一實施例的光學鏡頭110在不同溫度下的調制轉換函數曲線圖。由圖3可以看出,本實施例的光學鏡頭110在不同波長間色差小,故說明色差表現良好。由圖4可以看出,本實施例的光學鏡頭110的場曲像差落在±0.025毫米內,說明第一實施例的光學鏡頭110能有效消除像差。而由畸變像差圖式則顯示出畸變像差維持在±2%的範圍內,說明第一實施例的畸變像差具備光學鏡頭110的成像品質要求,能提供良好的成像品質。Figure 3 is a lateral chromatic aberration diagram of the optical lens in Figure 2. Figure 4 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 2. Figure 5 is a lateral beam fan diagram of the optical lens in Figure 2. FIGS. 6A to 6F are modulation transfer function curves of the optical lens of FIG. 2 at different temperatures. Referring again to FIGS. 3 to 6F, FIG. 3 illustrates the lateral chromatic aberration (Lateral Chromatic Aberration) of the optical lens 110 of the first embodiment. FIG. 4 illustrates the sagittal of the optical lens 110 of the first embodiment when the reference wavelength is 530 nanometers. Field Curvature aberration in the (Sagittal) direction (marked X), field curvature aberration and distortion aberration (Distortion Aberration) in the tangential direction (marked Y). FIG. 5 illustrates a transverse ray fan plot of the optical lens 110 of the first embodiment, which is a simulated data plot using light with wavelengths of 453 nanometers, 530 nanometers, and 620 nanometers. 6A to 6F respectively illustrate the modulation transfer function curves of the optical lens 110 of the first embodiment at different temperatures. It can be seen from FIG. 3 that the optical lens 110 of this embodiment has small chromatic aberration between different wavelengths, which indicates that the chromatic aberration performance is good. It can be seen from FIG. 4 that the field curvature aberration of the optical lens 110 of this embodiment falls within ±0.025 mm, indicating that the optical lens 110 of the first embodiment can effectively eliminate aberrations. The distortion aberration diagram shows that the distortion aberration is maintained within the range of ±2%, indicating that the distortion aberration of the first embodiment meets the imaging quality requirements of the optical lens 110 and can provide good imaging quality.

此外,相較於習知的鏡頭,本實施例的光學鏡頭110設計配合使用了較小的0.13吋的成像元件150使得成像模組105整體體積縮小。此外,光學鏡頭110輸出視角可達30度並提高解析度至125 每毫米線對(lp/mm)。另外,光學鏡頭110的鏡片數由習知的5片減少至4片可使得成像模組105整體體積縮小。In addition, compared with conventional lenses, the optical lens 110 of this embodiment is designed to use a smaller 0.13-inch imaging element 150, so that the overall volume of the imaging module 105 is reduced. In addition, the output viewing angle of the optical lens 110 can reach 30 degrees and the resolution can be increased to 125 line pairs per millimeter (lp/mm). In addition, reducing the number of lenses of the optical lens 110 from the conventional 5 to 4 can reduce the overall size of the imaging module 105 .

為了充分說明本發明的各種實施態樣,將在下文描述本發明的其他實施例。在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。In order to fully explain various implementation aspects of the invention, other embodiments of the invention will be described below. It must be noted here that the following embodiments follow the component numbers and part of the content of the previous embodiments, where the same numbers are used to represent the same or similar elements, and descriptions of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be repeated in the following embodiments.

圖7為本發明第二實施例的成像模組的示意圖。請參考圖7。本第二實施例的成像模組105A與第一實施例的成像模組105大致相似,而兩者的差異如下所述:光學鏡頭110的各光學數據、非球面係數及這些透鏡111、113、115及117之間的參數或多或少有些不同。此外,在本實施例中,第四透鏡117具有負屈光率。第二實施例的其他詳細光學數據如下表四所示。FIG. 7 is a schematic diagram of an imaging module according to a second embodiment of the present invention. Please refer to Figure 7. The imaging module 105A of the second embodiment is roughly similar to the imaging module 105 of the first embodiment, and the differences between the two are as follows: optical data, aspherical coefficients of the optical lens 110 and these lenses 111, 113, The parameters between 115 and 117 are more or less different. Furthermore, in this embodiment, the fourth lens 117 has negative refractive power. Other detailed optical data of the second embodiment are shown in Table 4 below.

表四: 第二實施例 有效焦距 = 6.12 mm,半視角 = 15˚,像高 = 1.6 mm。 元件 表面 曲率半徑(mm) 間距(mm) 折射率 阿貝數 虛像   無限大 無限大     光圈ST   無限大 1.95     第四透鏡 117 出光面2 -2.01 1.84 1.53 55.9 入光面3 -2.69 0.06     第三透鏡 115 出光面4 4.40 1.77 1.80 40.9 入光面5 37.46 0.64     第二透鏡 113 出光面6 -10.52 0.75 1.66 20.3 入光面7 4.46 0.35     第一透鏡 111 出光面8 41.39 1.55 1.53 55.9 入光面9 -3.51 0.85     稜鏡 120 出光面10 無限大 4.5 1.51 64.1 入光面11 無限大 1.07     保護蓋 140 出光面12 無限大 0.3 1.50 61.1 入光面13 無限大 0.01     成像元件 150 成像面14 無限大       Table 4: Second embodiment Effective focal length = 6.12 mm, half viewing angle = 15˚, image height = 1.6 mm. element surface Radius of curvature (mm) Spacing(mm) refractive index Abbe number virtual image infinite infinite Aperture ST infinite 1.95 Fourth lens 117 Light surface 2 -2.01 1.84 1.53 55.9 Light incident surface 3 -2.69 0.06 Third lens 115 Light surface 4 4.40 1.77 1.80 40.9 Light incident surface 5 37.46 0.64 Second lens 113 Light surface 6 -10.52 0.75 1.66 20.3 Light incident surface 7 4.46 0.35 First lens 111 Light surface 8 41.39 1.55 1.53 55.9 Light incident surface 9 -3.51 0.85 稜鏡120 Light surface 10 infinite 4.5 1.51 64.1 Light incident surface 11 infinite 1.07 Protective cover 140 Light surface 12 infinite 0.3 1.50 61.1 Light incident surface 13 infinite 0.01 Imaging element 150 Imaging surface 14 infinite

另值得說明的是,在第二實施例的光學鏡頭110中,其焦距為6.12毫米,玻璃鏡片(即第三透鏡115)的焦距為6毫米,玻璃鏡片(即第三透鏡115)的阿貝數為40.9,最靠近光欄ST的第四透鏡117的焦距為-300毫米。換句話說,第二實施例的光學鏡頭110同樣符合前述圖1A的光學鏡頭110的3個條列式。It is also worth noting that in the optical lens 110 of the second embodiment, the focal length is 6.12 mm, the focal length of the glass lens (ie, the third lens 115) is 6 mm, and the Abbe of the glass lens (ie, the third lens 115) The number is 40.9, and the focal length of the fourth lens 117 closest to the diaphragm ST is -300 mm. In other words, the optical lens 110 of the second embodiment also conforms to the aforementioned three formulas of the optical lens 110 of FIG. 1A .

本實施例在上述非球面在公式(1)中的各項非球面係數如下表五所示。在本實施例中,各非球面的第2階非球面係數a 2皆為零,故未列於表格中。 The various aspherical surface coefficients in formula (1) of the above-mentioned aspherical surface in this embodiment are as shown in Table 5 below. In this embodiment, the second-order aspherical surface coefficients a 2 of each aspherical surface are all zero, so they are not listed in the table.

表五: 表面 K a 4 a 6 a 8 a 10 a 12 a 14 2 -9.05E-001 8.50E-003 7.54E-004 3.16E-005 -1.80E-005 2.11E-005 -4.35E-006 3 -1.45E-000 -1.06E-003 9.98E-005 -4.48E-005 7.56E-006 1.21E-008 -2.80E-007 4 0 -1.06E-004 1.59E-004 2.28E-005 2.41E-006 1.87E-008 4.68E-008 5 0 8.77E-004 1.98E-004 3.00E-005 -2.34E-007 7.25E-007 4.16E-007 6 -1.91E-001 -1.69E-002 1.69E-003 -4.22E-004 2.99E-005 1.49E-006 1.72E-007 7 -9.90E-000 -6.09E-003 -1.77E-004 -6.03E-006 -6.77E-006 2.91E-007 2.30E-007 8 0 2.31E-003 -2.36E-003 4.72E-004 -4.67E-005 -5.73E-007 2.54E-007 9 0 3.34E-003 -6.78E-004 2.14E-004 -2.61E-005 3.31E-006 -2.60E-007 Table 5: surface K a 4 a 6 a 8 a 10 a 12 a 14 2 -9.05E-001 8.50E-003 7.54E-004 3.16E-005 -1.80E-005 2.11E-005 -4.35E-006 3 -1.45E-000 -1.06E-003 9.98E-005 -4.48E-005 7.56E-006 1.21E-008 -2.80E-007 4 0 -1.06E-004 1.59E-004 2.28E-005 2.41E-006 1.87E-008 4.68E-008 5 0 8.77E-004 1.98E-004 3.00E-005 -2.34E-007 7.25E-007 4.16E-007 6 -1.91E-001 -1.69E-002 1.69E-003 -4.22E-004 2.99E-005 1.49E-006 1.72E-007 7 -9.90E-000 -6.09E-003 -1.77E-004 -6.03E-006 -6.77E-006 2.91E-007 2.30E-007 8 0 2.31E-003 -2.36E-003 4.72E-004 -4.67E-005 -5.73E-007 2.54E-007 9 0 3.34E-003 -6.78E-004 2.14E-004 -2.61E-005 3.31E-006 -2.60E-007

當本第二實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭110的第一透鏡111、第二透鏡113、第三透鏡115、第四透鏡117的溫度(℃)如下表六所示。並且,當本第二實施例的光學鏡頭110在0℃ ~ 40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面的中心點,光學鏡頭的背焦之熱飄移量小於0.01毫米。When the ambient temperatures of the second embodiment are 0°C, 10°C, 20°C, 30°C and 40°C respectively, the first lens 111, the second lens 113, the third lens 115 and the fourth lens 117 of the optical lens 110 Temperature (°C) is shown in Table 6 below. Moreover, when the optical lens 110 of the second embodiment is in the ambient temperature range of 0°C ~ 40°C and is used in thermal equilibrium, without readjusting the focal length, the center point of the projection screen, the back of the optical lens, The thermal drift of the focal point is less than 0.01 mm.

表六: 環境溫度 第四透鏡117 第三透鏡115 第二透鏡113 第一透鏡111 0 8 11 16 19 10 18 21 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59 Table 6: ambient temperature Fourth lens 117 Third lens 115 Second lens 113 First lens 111 0 8 11 16 19 10 18 twenty one 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59

圖8為圖7中的光學鏡頭的橫向色差圖。圖9為圖7中的光學鏡頭的像散場曲及畸變圖。圖10為圖7中的光學鏡頭的橫向光束扇形圖。圖11A至圖11F為圖7中的光學鏡頭在不同溫度下的調制轉換函數曲線圖。再配合參閱圖8至圖11F,圖8說明第二實施例光學鏡頭110的橫向色差(Lateral Chromatic Aberration),圖9說明第二實施例的光學鏡頭110當參考波長為530奈米時的弧矢(Sagittal)方向(標示X)的場曲(Field Curvature)像差、子午(Tangential)方向(標示Y)的場曲像差及畸變像差(Distortion Aberration)。圖10說明第二實施例光學鏡頭110的橫向光束扇形圖(transverse ray fan plot),其是以波長453奈米、530奈米、620奈米的光所作出的模擬數據圖。圖11A至圖11F則分別說明第二實施例的光學鏡頭110在不同溫度下的調制轉換函數曲線圖。由圖8可以看出,本實施例的光學鏡頭110在不同波長間色差小,故說明色差表現良好。由圖9可以看出,本實施例的光學鏡頭110的場曲像差落在±0.02毫米內,說明第二實施例的光學鏡頭110能有效消除像差。而由畸變像差圖式則顯示出畸變像差維持在±2.5%的範圍內,說明第二實施例的畸變像差具備光學鏡頭110的成像品質要求,能提供良好的成像品質。Figure 8 is a lateral chromatic aberration diagram of the optical lens in Figure 7. Figure 9 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 7. Figure 10 is a lateral beam fan diagram of the optical lens in Figure 7. Figures 11A to 11F are modulation transfer function curves of the optical lens in Figure 7 at different temperatures. Referring again to FIGS. 8 to 11F , FIG. 8 illustrates the lateral chromatic aberration (Lateral Chromatic Aberration) of the optical lens 110 of the second embodiment. FIG. 9 illustrates the sagittal of the optical lens 110 of the second embodiment when the reference wavelength is 530 nanometers. Field Curvature aberration in the (Sagittal) direction (marked X), field curvature aberration and distortion aberration (Distortion Aberration) in the tangential direction (marked Y). FIG. 10 illustrates a transverse ray fan plot of the optical lens 110 of the second embodiment, which is a simulated data plot using light with wavelengths of 453 nanometers, 530 nanometers, and 620 nanometers. 11A to 11F respectively illustrate the modulation transfer function curves of the optical lens 110 of the second embodiment at different temperatures. It can be seen from FIG. 8 that the optical lens 110 of this embodiment has small chromatic aberration between different wavelengths, which indicates that the chromatic aberration performance is good. It can be seen from FIG. 9 that the field curvature aberration of the optical lens 110 of this embodiment falls within ±0.02 mm, indicating that the optical lens 110 of the second embodiment can effectively eliminate aberrations. The distortion aberration diagram shows that the distortion aberration is maintained within the range of ±2.5%, indicating that the distortion aberration of the second embodiment meets the imaging quality requirements of the optical lens 110 and can provide good imaging quality.

圖12為本發明第三實施例的成像模組的示意圖。請參考圖12。本第三實施例的成像模組105B與第一實施例的成像模組105大致相似,而兩者的差異如下所述:光學鏡頭110的各光學數據、非球面係數及這些透鏡111、113、115及117之間的參數或多或少有些不同。此外,在本實施例中,第一透鏡111的材質為玻璃材質,第二透鏡113、第三透鏡115及第四透鏡117的材質為塑膠材質,第一透鏡111具有正屈光度,第二透鏡113具有負屈光度,第三透鏡115具有正屈光度,第四透鏡117具有正屈光率,且第一透鏡111的表面可以是非球面或球面。第三實施例的其他詳細光學數據如下表七所示。Figure 12 is a schematic diagram of an imaging module according to a third embodiment of the present invention. Please refer to Figure 12. The imaging module 105B of the third embodiment is roughly similar to the imaging module 105 of the first embodiment, and the differences between the two are as follows: optical data, aspherical coefficients of the optical lens 110 and these lenses 111, 113, The parameters between 115 and 117 are more or less different. In addition, in this embodiment, the first lens 111 is made of glass, the second lens 113 , the third lens 115 and the fourth lens 117 are made of plastic. The first lens 111 has positive refractive power, and the second lens 113 has negative refractive power, the third lens 115 has positive refractive power, the fourth lens 117 has positive refractive power, and the surface of the first lens 111 may be aspherical or spherical. Other detailed optical data of the third embodiment are shown in Table 7 below.

表七: 第三實施例 有效焦距 = 5.98 mm,半視角 = 15˚,像高 = 1.6 mm。 元件 表面 曲率半徑(mm) 間距(mm) 折射率 阿貝數 虛像   無限大 無限大     光圈ST   無限大 2.92     第四透鏡 117 出光面2 -1.84 2.09 1.53 55.9 入光面3 -2.43 0.06     第三透鏡 115 出光面4 3.08 1.96 1.53 55.9 入光面5 4.46 0.76     第二透鏡 113 出光面6 16.47 0.75 1.66 20.3 入光面7 3.21 0.31     第一透鏡 111 出光面8 9.13 1.89 1.51 64.1 入光面9 -3.36 0.82     稜鏡 120 出光面10 無限大 4.5 1.51 64.1 入光面11 無限大 1.07     保護蓋 140 出光面12 無限大 0.3 1.50 61.1 入光面13 無限大 0.01     成像元件 150 成像面14 無限大       Table 7: Third embodiment Effective focal length = 5.98 mm, half viewing angle = 15˚, image height = 1.6 mm. element surface Radius of curvature (mm) Spacing(mm) refractive index Abbe number virtual image infinite infinite Aperture ST infinite 2.92 Fourth lens 117 Light surface 2 -1.84 2.09 1.53 55.9 Light incident surface 3 -2.43 0.06 Third lens 115 Light surface 4 3.08 1.96 1.53 55.9 Light incident surface 5 4.46 0.76 Second lens 113 Light surface 6 16.47 0.75 1.66 20.3 Light incident surface 7 3.21 0.31 First lens 111 Light surface 8 9.13 1.89 1.51 64.1 Light incident surface 9 -3.36 0.82 稜鏡120 Light surface 10 infinite 4.5 1.51 64.1 Light incident surface 11 infinite 1.07 Protective cover 140 Light surface 12 infinite 0.3 1.50 61.1 Light incident surface 13 infinite 0.01 Imaging element 150 Imaging surface 14 infinite

另值得說明的是,在第三實施例的光學鏡頭110中,其焦距為5.98毫米,玻璃鏡片(即第一透鏡111)的焦距為5毫米,玻璃鏡片(即第一透鏡111)的阿貝數為64.06,最靠近光欄ST的第四透鏡117的焦距為61.41毫米。換句話說,第三實施例的光學鏡頭110同樣符合前述圖1A的光學鏡頭110的3個條列式。It is also worth noting that in the optical lens 110 of the third embodiment, the focal length is 5.98 mm, the focal length of the glass lens (ie, the first lens 111) is 5 mm, and the Abbe value of the glass lens (ie, the first lens 111) The number is 64.06, and the focal length of the fourth lens 117 closest to the diaphragm ST is 61.41 mm. In other words, the optical lens 110 of the third embodiment also conforms to the aforementioned three formulas of the optical lens 110 of FIG. 1A .

本實施例在上述非球面在公式(1)中的各項非球面係數如下表八所示。在本實施例中,各非球面的第2階非球面係數a 2皆為零,故未列於表格中。 The various aspherical surface coefficients in formula (1) of the above-mentioned aspherical surface in this embodiment are as shown in Table 8 below. In this embodiment, the second-order aspherical surface coefficients a 2 of each aspherical surface are all zero, so they are not listed in the table.

表八: 表面 K a 4 a 6 a 8 a 10 a 12 a 14 2 -9.10E-001 8.90E-003 -6.88E-004 -5.48E-004 7.64E-006 7.43E-005 -1.36E-005 3 -1.27E-000 -2.19E-003 -5.78E-005 -6.55E-005 8.14E-006 1.22E-006 -2.08E-007 4 0 -2.24E-003 -1.92E-004 3.32E-006 4.87E-006 5.01E-007 -8.26E-008 5 0 3.38E-003 6.63E-004 3.22E-005 -1.11E-005 1.22E-006 1.84E-006 6 -6.81E-001 -1.51E-002 2.05E-003 -5.17E-004 7.56E-006 -2.42E-006 7.27E-007 7 -6.08E-000 -7.03E-003 -3.16E-004 -2.75E-006 -5.98E-007 1.61E-006 5.97E-008 8 0 -1.46E-003 -2.36E-003 5.08E-004 -3.73E-005 1.09E-006 6.19E-008 9 0 1.80E-003 -7.69E-004 1.96E-004 -3.05E-005 3.39E-006 -1.70E-007 Table 8: surface K a 4 a 6 a 8 a 10 a 12 a 14 2 -9.10E-001 8.90E-003 -6.88E-004 -5.48E-004 7.64E-006 7.43E-005 -1.36E-005 3 -1.27E-000 -2.19E-003 -5.78E-005 -6.55E-005 8.14E-006 1.22E-006 -2.08E-007 4 0 -2.24E-003 -1.92E-004 3.32E-006 4.87E-006 5.01E-007 -8.26E-008 5 0 3.38E-003 6.63E-004 3.22E-005 -1.11E-005 1.22E-006 1.84E-006 6 -6.81E-001 -1.51E-002 2.05E-003 -5.17E-004 7.56E-006 -2.42E-006 7.27E-007 7 -6.08E-000 -7.03E-003 -3.16E-004 -2.75E-006 -5.98E-007 1.61E-006 5.97E-008 8 0 -1.46E-003 -2.36E-003 5.08E-004 -3.73E-005 1.09E-006 6.19E-008 9 0 1.80E-003 -7.69E-004 1.96E-004 -3.05E-005 3.39E-006 -1.70E-007

當本第三實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭110的第一透鏡111、第二透鏡113、第三透鏡115、第四透鏡117的溫度(℃)如下表九所示。並且,當本第三實施例的光學鏡頭110在0℃ ~ 40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面的中心點,光學鏡頭的背焦之熱飄移量小於0.01毫米。When the ambient temperatures of the third embodiment are 0°C, 10°C, 20°C, 30°C and 40°C respectively, the first lens 111, the second lens 113, the third lens 115 and the fourth lens 117 of the optical lens 110 Temperature (°C) is shown in Table 9 below. Moreover, when the optical lens 110 of the third embodiment is in the ambient temperature range of 0°C ~ 40°C and is used in thermal equilibrium, without readjusting the focal length, corresponding to the center point of the projection screen, the back of the optical lens The thermal drift of the focal point is less than 0.01 mm.

表九: 環境溫度 第四透鏡117 第三透鏡115 第二透鏡113 第一透鏡111 0 8 11 16 19 10 18 21 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59 Table 9: ambient temperature Fourth lens 117 Third lens 115 Second lens 113 First lens 111 0 8 11 16 19 10 18 twenty one 26 29 20 28 31 36 39 30 38 41 46 49 40 48 51 56 59

圖13為圖12中的光學鏡頭的橫向色差圖。圖14為圖12中的光學鏡頭的像散場曲及畸變圖。圖15為圖12中的光學鏡頭的橫向光束扇形圖。圖16A至圖16F為圖12中的光學鏡頭在不同溫度下的調制轉換函數曲線圖。再配合參閱圖13至圖16F,圖13說明第三實施例光學鏡頭110的橫向色差(Lateral Chromatic Aberration),圖14說明第三實施例的光學鏡頭110當參考波長為530奈米時的弧矢(Sagittal)方向(標示X)的場曲(Field Curvature)像差、子午(Tangential)方向(標示Y)的場曲像差及畸變像差(Distortion Aberration)。圖15說明第三實施例光學鏡頭110的橫向光束扇形圖(transverse ray fan plot),其是以波長453奈米、530奈米、620奈米的光所作出的模擬數據圖。圖16A至圖16F則分別說明第二實施例的光學鏡頭110在不同溫度下的調制轉換函數曲線圖。由圖13可以看出,本實施例的光學鏡頭110在不同波長間色差小,故說明色差表現良好。由圖14可以看出,本實施例的光學鏡頭110的場曲像差落在±0.02毫米內,說明第三實施例的光學鏡頭110能有效消除像差。而由畸變像差圖式則顯示出畸變像差維持在±5.0%的範圍內,說明第三實施例的畸變像差具備光學鏡頭110的成像品質要求,能提供良好的成像品質。Figure 13 is a lateral chromatic aberration diagram of the optical lens in Figure 12. Figure 14 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 12. Figure 15 is a transverse beam fan diagram of the optical lens in Figure 12. Figures 16A to 16F are modulation transfer function curves of the optical lens in Figure 12 at different temperatures. Referring again to FIGS. 13 to 16F , FIG. 13 illustrates the lateral chromatic aberration of the optical lens 110 of the third embodiment, and FIG. 14 illustrates the sagittal of the optical lens 110 of the third embodiment when the reference wavelength is 530 nm. Field Curvature aberration in the (Sagittal) direction (marked X), field curvature aberration and distortion aberration (Distortion Aberration) in the tangential direction (marked Y). FIG. 15 illustrates a transverse ray fan plot of the optical lens 110 of the third embodiment, which is a simulated data plot using light with wavelengths of 453 nanometers, 530 nanometers, and 620 nanometers. 16A to 16F respectively illustrate the modulation transfer function curves of the optical lens 110 of the second embodiment at different temperatures. It can be seen from FIG. 13 that the optical lens 110 of this embodiment has small chromatic aberration between different wavelengths, which indicates that the chromatic aberration performance is good. It can be seen from FIG. 14 that the field curvature aberration of the optical lens 110 of this embodiment falls within ±0.02 mm, indicating that the optical lens 110 of the third embodiment can effectively eliminate aberrations. The distortion aberration diagram shows that the distortion aberration is maintained within the range of ±5.0%, indicating that the distortion aberration of the third embodiment meets the imaging quality requirements of the optical lens 110 and can provide good imaging quality.

綜上所述,在本發明的光學鏡頭以及顯示裝置中,光學鏡頭包括第一透鏡、第二透鏡、第三透鏡以及第四透鏡。其中,第一透鏡具有正屈光率,第二透鏡具有負屈光率,第三透鏡具有正屈光率,且第一透鏡或第三透鏡為玻璃材質。相較於習知的鏡頭,本發明的光學鏡頭設計配合使用了較小的0.13吋的成像元件使得整體光機體積可以縮小。光學鏡頭能解析125每毫米線對(lp/mm)空間解析度的影像,且熱飄移量小,具有良好的光學表現。另外,光學鏡頭的鏡片數由習知的5片減少至4片可使得成像模組整體體積縮小。To sum up, in the optical lens and the display device of the present invention, the optical lens includes a first lens, a second lens, a third lens and a fourth lens. The first lens has positive refractive power, the second lens has negative refractive power, the third lens has positive refractive power, and the first lens or the third lens is made of glass. Compared with conventional lenses, the optical lens design of the present invention uses a smaller 0.13-inch imaging element, so that the overall optical-mechanical volume can be reduced. The optical lens can resolve images with a spatial resolution of 125 line pairs per millimeter (lp/mm), has small thermal drift, and has good optical performance. In addition, reducing the number of lenses in the optical lens from the conventional 5 to 4 can reduce the overall size of the imaging module.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above are only preferred embodiments of the present invention, and should not be used to limit the scope of the present invention. That is, simple equivalent changes and modifications may be made based on the patent scope of the present invention and the description of the invention. All are still within the scope of the patent of this invention. In addition, any embodiment or patentable scope of the present invention does not need to achieve all the purposes, advantages or features disclosed in the present invention. In addition, the abstract section and title are only used to assist in searching patent documents and are not intended to limit the scope of the invention. In addition, terms such as “first” and “second” mentioned in this specification or the scope of the patent application are only used to name elements or to distinguish different embodiments or scopes, and are not used to limit the number of elements. upper or lower limit.

100,100A:顯示裝置 101:照明光源 105,105A,105B:成像模組 110:光學鏡頭 111:第一透鏡 113:第二透鏡 115:第三透鏡 117:第四透鏡 120:稜鏡 130:波導元件 140:玻璃蓋 150:成像元件 160:抗反射元件 170:反射元件 1:平面 2,4,6,8,10,12:出光面 3,5,7,9,11,13:入光面 14:成像面 ES:出光側 ET:光耦合入口 F:目標 IM:影像光束 IS:入光側 OA:光軸 OT:光耦合出口 ST:光欄 100,100A:Display device 101:Lighting source 105,105A,105B: Imaging module 110: Optical lens 111:First lens 113:Second lens 115:Third lens 117:Fourth lens 120:稜顡 130:Waveguide components 140:Glass cover 150: Imaging element 160:Anti-reflective element 170: Reflective element 1: Plane 2,4,6,8,10,12: light-emitting surface 3,5,7,9,11,13: light incident surface 14: Imaging surface ES: light exit side ET: optical coupling entrance F: target IM: image beam IS: light incident side OA: optical axis OT: Optical coupling outlet ST: light bar

圖1A為本發明一實施例的顯示裝置的示意圖。 圖1B為本發明另一實施例的顯示裝置的示意圖。 圖2為本發明第一實施例的成像模組的示意圖。 圖3為圖2中的光學鏡頭的橫向色差圖。 圖4為圖2中的光學鏡頭的像散場曲及畸變圖。 圖5為圖2中的光學鏡頭的橫向光束扇形圖。 圖6A至圖6F為圖2中的光學鏡頭在不同溫度下的調制轉換函數曲線圖。 圖7為本發明第二實施例的成像模組的示意圖。 圖8為圖7中的光學鏡頭的橫向色差圖。 圖9為圖7中的光學鏡頭的像散場曲及畸變圖。 圖10為圖7中的光學鏡頭的橫向光束扇形圖。 圖11A至圖11F為圖7中的光學鏡頭在不同溫度下的調制轉換函數曲線圖。 圖12為本發明第三實施例的成像模組的示意圖。 圖13為圖12中的光學鏡頭的橫向色差圖。 圖14為圖12中的光學鏡頭的像散場曲及畸變圖。 圖15為圖12中的光學鏡頭的橫向光束扇形圖。 圖16A至圖16F為圖12中的光學鏡頭在不同溫度下的調制轉換函數曲線圖。 FIG. 1A is a schematic diagram of a display device according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a display device according to another embodiment of the present invention. FIG. 2 is a schematic diagram of the imaging module according to the first embodiment of the present invention. Figure 3 is a lateral chromatic aberration diagram of the optical lens in Figure 2. Figure 4 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 2. Figure 5 is a lateral beam fan diagram of the optical lens in Figure 2. Figures 6A to 6F are modulation transfer function curves of the optical lens in Figure 2 at different temperatures. FIG. 7 is a schematic diagram of an imaging module according to a second embodiment of the present invention. Figure 8 is a lateral chromatic aberration diagram of the optical lens in Figure 7. Figure 9 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 7. Figure 10 is a lateral beam fan diagram of the optical lens in Figure 7. Figures 11A to 11F are modulation transfer function curves of the optical lens in Figure 7 at different temperatures. Figure 12 is a schematic diagram of an imaging module according to a third embodiment of the present invention. Figure 13 is a lateral chromatic aberration diagram of the optical lens in Figure 12. Figure 14 is a diagram of the astigmatism field curvature and distortion of the optical lens in Figure 12. Figure 15 is a transverse beam fan diagram of the optical lens in Figure 12. Figures 16A to 16F are modulation transfer function curves of the optical lens in Figure 12 at different temperatures.

100:顯示裝置 100:Display device

105:成像模組 105: Imaging module

110:光學鏡頭 110: Optical lens

111:第一透鏡 111:First lens

113:第二透鏡 113:Second lens

115:第三透鏡 115:Third lens

117:第四透鏡 117:Fourth lens

120:稜鏡 120:稜顡

130:波導元件 130:Waveguide components

140:玻璃蓋 140:Glass cover

150:成像元件 150: Imaging element

160:抗反射元件 160:Anti-reflective element

170:反射元件 170: Reflective element

ES:出光側 ES: light exit side

ET:光耦合入口 ET: optical coupling entrance

F:目標 F: target

IM:影像光束 IM: image beam

IS:入光側 IS: light incident side

OA:光軸 OA: optical axis

OT:光耦合出口 OT: Optical coupling outlet

ST:光欄 ST: light bar

Claims (20)

一種光學鏡頭,適於接收來自一成像元件的一影像光束,該光學鏡頭從一入光側至一出光側沿一光軸依序包括具有屈光率的一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該第一透鏡至該第四透鏡各自包括朝向該入光側且使該影像光束通過的一入光面及朝向該出光側且使該影像光束通過的一出光面; 該第一透鏡具有正屈光率; 該第二透鏡具有負屈光率; 該第三透鏡具有正屈光率;以及 該第一透鏡或該第三透鏡為玻璃材質, 該光學鏡頭接收來自該入光側的該影像光束,該影像光束在該出光側形成一光欄且該影像光束於該光欄的位置具有最小的光束截面積。 An optical lens suitable for receiving an image beam from an imaging element. The optical lens sequentially includes a first lens with refractive power, a second lens, A third lens and a fourth lens, and the first lens to the fourth lens each include a light incident surface facing the light incident side and allowing the image beam to pass through, and a light incident surface facing the light exit side to allow the image beam to pass through. A bright side; The first lens has positive refractive power; The second lens has negative refractive power; The third lens has positive refractive power; and The first lens or the third lens is made of glass, The optical lens receives the image beam from the light incident side, the image beam forms an aperture on the light exit side, and the image beam has the smallest beam cross-sectional area at the position of the aperture. 如請求項1所述的光學鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡以及該第四透鏡中其中三者為塑膠非球面透鏡,其中另一者為玻璃非球面透鏡。The optical lens according to claim 1, wherein three of the first lens, the second lens, the third lens and the fourth lens are plastic aspheric lenses, and the other one is a glass aspheric lens. 如請求項1所述的光學鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡以及該第四透鏡的材質依序為塑膠、塑膠、玻璃、塑膠。The optical lens according to claim 1, wherein the materials of the first lens, the second lens, the third lens and the fourth lens are plastic, plastic, glass and plastic in that order. 如請求項1所述的光學鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡以及該第四透鏡的材質依序為玻璃、塑膠、塑膠、塑膠。The optical lens according to claim 1, wherein the materials of the first lens, the second lens, the third lens and the fourth lens are glass, plastic, plastic, and plastic in that order. 如請求項1所述的光學鏡頭,其中該第四透鏡具有正屈光率。The optical lens according to claim 1, wherein the fourth lens has positive refractive power. 如請求項3所述的光學鏡頭,其中該第四透鏡具有負屈光率。The optical lens as claimed in claim 3, wherein the fourth lens has negative refractive power. 如請求項1所述的光學鏡頭,其中該光學鏡頭的全視場角介於25度至35度。The optical lens according to claim 1, wherein the full field of view angle of the optical lens is between 25 degrees and 35 degrees. 如請求項1所述的光學鏡頭,其中該第一透鏡的該入光面為朝向該成像元件的凸面。The optical lens according to claim 1, wherein the light incident surface of the first lens is a convex surface facing the imaging element. 如請求項1所述的光學鏡頭,其中該第三透鏡的該出光面為朝向該光欄的凸面。The optical lens according to claim 1, wherein the light exit surface of the third lens is a convex surface facing the diaphragm. 如請求項1所述的光學鏡頭,其中該第四透鏡的該入光面為朝向該成像元件凸出的凸面,且該第四透鏡的該出光面為朝向該光欄的凹面。The optical lens according to claim 1, wherein the light incident surface of the fourth lens is a convex surface protruding toward the imaging element, and the light exit surface of the fourth lens is a concave surface facing the diaphragm. 如請求項1所述的光學鏡頭,其中該第一透鏡的該入光面、該第二透鏡的該入光面、該第二透鏡的該出光面、該第四透鏡的該入光面以及該第四透鏡的該出光面為非球面表面。The optical lens according to claim 1, wherein the light incident surface of the first lens, the light incident surface of the second lens, the light exit surface of the second lens, the light incident surface of the fourth lens, and The light-emitting surface of the fourth lens is an aspherical surface. 如請求項1所述的光學鏡頭,其中該光學鏡頭滿足條件式0.5 < fg/f < 3,其中fg為該光學鏡頭的玻璃鏡片的有效焦距,且f為該光學鏡頭的有效焦距。The optical lens as described in claim 1, wherein the optical lens satisfies the conditional expression 0.5 < fg/f < 3, where fg is the effective focal length of the glass lens of the optical lens, and f is the effective focal length of the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭滿足條件式Vg>30,其中Vg為該光學鏡頭的玻璃鏡片的阿貝數。The optical lens as claimed in claim 1, wherein the optical lens satisfies the conditional expression Vg>30, where Vg is the Abbe number of the glass lens of the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭滿足條件式|fs/f| > 1,其中fs為該第四透鏡的有效焦距,且f為該光學鏡頭的有效焦距。The optical lens as described in claim 1, wherein the optical lens satisfies the conditional expression |fs/f| > 1, where fs is the effective focal length of the fourth lens, and f is the effective focal length of the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭的有效焦距介於5.5毫米至6.5毫米之間。The optical lens as claimed in claim 1, wherein the effective focal length of the optical lens is between 5.5 mm and 6.5 mm. 一種顯示裝置,包括: 如請求項1所述的光學鏡頭; 該成像元件設置於該光學鏡頭的該入光側,以提供該影像光束;以及 一波導元件,設置於該光學鏡頭的該出光側,且具有一光耦合入口以及一光耦合出口,來自該成像元件的該影像光束通過該光學鏡頭後經由該光耦合入口進入該波導元件,並且該波導元件引導該影像光束,以使該影像光束由該光耦合出口離開該波導元件。 A display device including: An optical lens as claimed in claim 1; The imaging element is disposed on the light incident side of the optical lens to provide the image beam; and A waveguide element is disposed on the light exit side of the optical lens and has an optical coupling inlet and an optical coupling outlet. The image beam from the imaging element passes through the optical lens and enters the waveguide element through the optical coupling inlet, and The waveguide element guides the image beam so that the image beam leaves the waveguide element through the optical coupling outlet. 如請求項16所述的顯示裝置,其中該光欄形成於該波導元件的該光耦合入口的一位置或接近該光耦合入口的一位置。The display device of claim 16, wherein the light bar is formed at a position of the light coupling entrance of the waveguide element or a position close to the light coupling entrance. 如請求項16所述的顯示裝置,還包括一稜鏡,設置於該影像光束的路徑上,且設置於該成像元件與該光學鏡頭之間。The display device according to claim 16, further comprising a lens disposed on the path of the image beam and between the imaging element and the optical lens. 如請求項18所述的顯示裝置,還包括一照明光源,其中該成像元件為一反射式影像源,該照明光源產生一照明光束,該照明光束經由該稜鏡導引至該成像元件後,經過該成像元件的反射並形成為該影像光束。The display device as claimed in claim 18, further comprising an illumination light source, wherein the imaging element is a reflective image source, the illumination light source generates an illumination light beam, and after the illumination light beam is guided to the imaging element through the lens, The image beam is formed after reflection by the imaging element. 如請求項18所述的顯示裝置,其中該成像元件為矽基液晶面板、數位微鏡元件、有機發光二極體面板或微發光二極體面板。The display device of claim 18, wherein the imaging element is a silicon-based liquid crystal panel, a digital micromirror element, an organic light-emitting diode panel or a micro-light emitting diode panel.
TW111119812A 2022-03-11 2022-05-27 Optical lens and display device TWI810955B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263318782P 2022-03-11 2022-03-11
US63/318,782 2022-03-11

Publications (2)

Publication Number Publication Date
TWI810955B TWI810955B (en) 2023-08-01
TW202336481A true TW202336481A (en) 2023-09-16

Family

ID=87991835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111119812A TWI810955B (en) 2022-03-11 2022-05-27 Optical lens and display device

Country Status (2)

Country Link
CN (1) CN116774421A (en)
TW (1) TWI810955B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861541B (en) * 2007-11-22 2012-08-01 柯尼卡美能达精密光学株式会社 Wide angle optical system, imaging lens device, monitor camera, and digital apparatus
TWI620956B (en) * 2017-10-19 2018-04-11 聲遠精密光學股份有限公司 Wide angle imaging lens assembly
CN109932820A (en) * 2017-12-18 2019-06-25 中强光电股份有限公司 Display

Also Published As

Publication number Publication date
TWI810955B (en) 2023-08-01
CN116774421A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
JP6993251B2 (en) Projection optical system and image display device
US11275234B2 (en) Projection objective and waveguide display device
TWI671559B (en) Display
JP6545359B2 (en) Optical module, optical device, and wearable display device
TWI797438B (en) Optical lens
TWI671564B (en) Optical lens
JP2018180238A (en) Projection optical system and image projection device
JP7474124B2 (en) Optical lens assembly and head-mounted display device
TWI768313B (en) Optical lens and head-mounted display
JP2019045847A (en) Head mounted display apparatus and image formation lens unit
TWI810955B (en) Optical lens and display device
US20220099971A9 (en) Head-mounted display having volume substrate-guided holographic continuous lens optics with laser illuminated microdisplay
TWI792331B (en) Optical lens and display device
TWI845026B (en) Optical lens module, optical engine and head mounted display
TWI829434B (en) Optical lens module, optical engine module and head mounted display
US20240168264A1 (en) Optical lens module, optical engine module and head-mounted display device
JP2022184784A (en) Optical lens and display device
US20230288626A1 (en) Optical lens and display device
TWI781709B (en) Head-mounted display
CN111399225A (en) Augmented reality optical device based on Fresnel lens and optical waveguide principle
TW202102929A (en) Optical lens
TW202311842A (en) Projection lens and projection apparatus