TW202335674A - Lipid conjugation for targeting astrocytes of the central nervous system - Google Patents

Lipid conjugation for targeting astrocytes of the central nervous system Download PDF

Info

Publication number
TW202335674A
TW202335674A TW111142234A TW111142234A TW202335674A TW 202335674 A TW202335674 A TW 202335674A TW 111142234 A TW111142234 A TW 111142234A TW 111142234 A TW111142234 A TW 111142234A TW 202335674 A TW202335674 A TW 202335674A
Authority
TW
Taiwan
Prior art keywords
oligonucleotide
sense strand
lipid
nucleotide
positions
Prior art date
Application number
TW111142234A
Other languages
Chinese (zh)
Inventor
鮑伯 布朗
瑪莉 強
特拉維斯 葛利姆
馬修 寇斯泰爾斯
Original Assignee
美商黛瑟納製藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商黛瑟納製藥公司 filed Critical 美商黛瑟納製藥公司
Publication of TW202335674A publication Critical patent/TW202335674A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/312Phosphonates
    • C12N2310/3125Methylphosphonates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/345Spatial arrangement of the modifications having at least two different backbone modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Abstract

Oligonucleotide conjugates are provided herein that inhibit or reduce expression of target genes in the astrocytes of the central nervous system. Also provided are compositions including the same and uses thereof, particularly uses relating to treating diseases, disorders and/or conditions associated with expression of an astrocyte target gene in the CNS.

Description

靶定中樞神經系統的星狀細胞之脂質結合物Lipid conjugates targeting stellate cells in the central nervous system

本揭露係關於與脂質部分連接之寡核苷酸,其可用於抑制中樞神經系統之星狀細胞中之目標基因。具體而言,本揭露係關於寡核苷酸-脂質結合物、製備彼等之方法、彼等的化學構形、及使用根據本文中所提供描述之結合之核酸及寡核苷酸來調變(例如,抑制或降低)中樞神經系統(於下文簡稱為「CNS」)(例如,CNS之組織、或區域)之星狀細胞中目標基因之表現之方法。本揭露亦提供包含本說明書之結合物之醫藥上可接受之組成物及使用該等組成物於治療各種疾病或病況之方法。 [ 相關申請案之交互參照 ]本申請案主張2021年11月5日申請之美國臨時專利申請案第63/276,406號之優先權,其以引用方式全文併入本文中。 [ 參考電子序列表 ]電子序列表之內容(DICN_013_001TW_SeqList_ ST26.xml;大小:344,190位元;及創建日期:2022年11月2日)係以全文引用方式併入本文中。 The present disclosure relates to oligonucleotides linked to lipid moieties that can be used to inhibit target genes in stellate cells of the central nervous system. Specifically, the present disclosure relates to oligonucleotide-lipid conjugates, methods of making them, their chemical configuration, and modulation using nucleic acids and oligonucleotides according to the conjugation described herein. A method of inhibiting (e.g., reducing) the expression of a target gene in stellate cells of the central nervous system (hereinafter referred to as "CNS") (e.g., a tissue, or region of the CNS). The present disclosure also provides pharmaceutically acceptable compositions containing the combinations of the present specification and methods of using the compositions to treat various diseases or conditions. [ Cross-reference to related applications ] This application claims priority to U.S. Provisional Patent Application No. 63/276,406, filed on November 5, 2021, which is incorporated herein by reference in its entirety. [ Reference Electronic Sequence Listing ] The contents of the electronic sequence listing (DICN_013_001TW_SeqList_ST26.xml; size: 344,190 bits; and creation date: November 2, 2022) are incorporated herein by reference in their entirety.

藉由經修飾之核酸來調控基因表現在實驗室研究工具及臨床治療方法兩方面上均顯示巨大的潛力。幾類寡核苷酸或基於核酸之治療已在進行臨床研究中,包括反義寡核苷酸(antisense oligonucleotide, ASO)、短干擾RNA(short interfering RNA, siRNA)、雙股核酸(double-stranded nucleic acid, dsNA)、適體、核酶、外顯子跳略(exon-skipping)及剪接改變體(splice-altering)寡核苷酸、免疫調節寡核苷酸、mRNA、及CRISPR。在克服寡核苷酸治療之挑戰(包括改善核酸酶穩定性、RNA接合親和力、及藥物動力學)方面,對相關分子之化學修飾以使其在各種組織、器官及/或細胞類型中具有功能性扮演著關鍵角色。在過去三十年中已發展出各種寡核苷酸之化學修飾策略(包括糖、核鹼基、及磷酸二酯主鏈之修飾)以改善及優化性能及治療功效(Deleavey and Darma, CHEM.BIOL.2012, 19(8):937-54;Wan and Seth, J. MED.CHEM.2016, 59(21): 9645-67;及Egli and Manoharan, ACC. CHEM.RES.2019, 54(4):1036-47)。 由包含siRNA及雙股核酸(dsNA)之基於RNAi寡核苷酸之療法所媒介之治療用基因緘默(therapeutic gene silencing)為大幅擴展可藥化目標空間(druggable target space)提供潛力,並為治療由其他藥物形式(例如,抗體及/或小分子)可能無法治療的孤兒疾病(orphan disease)提供可能性。已開發出抑制或降低肝臟中特定目標基因之表現的基於RNAi寡核苷酸之療法,且目前正在臨床使用中(Sehgal et al.,(2013)JOURNAL OF HEPATOLOGY 59:1354-59)。RNAi寡核苷酸在肝外細胞(extrahepatic cell)、組織、及器官(例如,CNS)中之開發及臨床使用仍然有技術障礙。在CNS中由基於RNAi寡核苷酸之療法所媒介之治療用基因緘默對治療神經疾病特別感興趣(Boudreau & Davidson(2010)BRAIN RESEARCH 1338:112-21)。因此,所屬技術領域中對成功開發新型且有效的RNAi寡核苷酸來調變肝外細胞、組織、及/或器官(例如,CNS)中目標基因之表現存在持續的需求。此受肝外細胞類型之變異特性以及考量到循環模式及細胞膜構成分(諸如受體類型)而變得複雜。 Modulating gene expression through modified nucleic acids shows great potential both as a laboratory research tool and as a clinical treatment method. Several types of oligonucleotide or nucleic acid-based treatments are already in clinical research, including antisense oligonucleotides (ASO), short interfering RNA (siRNA), and double-stranded nucleic acids. nucleic acid (dsNA), aptamers, ribozymes, exon-skipping and splice-altering oligonucleotides, immunomodulatory oligonucleotides, mRNA, and CRISPR. Chemical modification of relevant molecules to function in various tissues, organs, and/or cell types in overcoming the challenges of oligonucleotide therapeutics, including improving nuclease stability, RNA binding affinity, and pharmacokinetics Sex plays a key role. Over the past three decades, various chemical modification strategies for oligonucleotides (including modifications of sugars, nucleobases, and phosphodiester backbones) have been developed to improve and optimize performance and therapeutic efficacy (Deleavey and Darma, CHEM. BIOL.2012, 19(8):937-54; Wan and Seth, J. MED.CHEM.2016, 59(21): 9645-67; and Egli and Manoharan, ACC. CHEM.RES.2019, 54(4 ):1036-47). Therapeutic gene silencing mediated by RNAi oligonucleotide-based therapies including siRNA and double-stranded nucleic acids (dsNA) offers the potential to significantly expand the druggable target space and provide new opportunities for therapeutics This offers possibilities for orphan diseases that may not be treatable by other drug modalities (e.g., antibodies and/or small molecules). RNAi oligonucleotide-based therapies that inhibit or reduce the expression of specific target genes in the liver have been developed and are currently in clinical use (Sehgal et al., (2013) JOURNAL OF HEPATOLOGY 59:1354-59). There are still technical obstacles to the development and clinical use of RNAi oligonucleotides in extrahepatic cells, tissues, and organs (eg, CNS). Therapeutic gene silencing in the CNS mediated by RNAi oligonucleotide-based therapies is of particular interest for the treatment of neurological diseases (Boudreau & Davidson (2010) BRAIN RESEARCH 1338:112-21). Accordingly, there is a continuing need in the art to successfully develop novel and effective RNAi oligonucleotides to modulate the expression of target genes in extrahepatic cells, tissues, and/or organs (eg, CNS). This is complicated by the variable nature of extrahepatic cell types and considerations of circulation patterns and cell membrane components (such as receptor types).

哺乳動物CNS係包括細胞、體液及化學物質之複雜組織系統,其一起交互作用以實現各式各樣的功能,包括運動、導航、認知、說話、視覺、及情感。遺憾的是,已知有多種CNS之疾病疾及病症(例如,神經病症)且會影響或破壞部分或所有此等功能。一般而言,CNS之疾病及病症之治療限於小分子藥物、抗體及/或適應性或行為療法。對開發治療與不適當基因表現相關之CNS之疾病及病症一直存在需求。 本揭露至少部分基於脂質-結合之RNAi寡核苷酸有效降低CNS之星狀細胞中目標基因表現之發現。本文中所提供之例示性脂質-結合之RNAi寡核苷酸已證實在單次投予之後降低CNS中星狀細胞特異性mRNA之目標基因表現。此外,本文中所提供之例示性脂質-結合之RNAi寡核苷酸已證實在整個CNS之多個區域(包括難以到達之區域諸如海馬體及額葉皮質)中之藥理活性。不受理論束縛,疏水性部分(例如,脂質)促進脂質-結合之RNAi寡核苷酸進入CNS中之遞送及分布,從而增加星狀細胞中基因弱化之功效及持續性。因此,本揭露提供藉由使用本文中所述之脂質-結合之RNAi寡核苷酸、及其醫藥上可接受之組成物調變CNS中星狀細胞基因之表現來治療疾病或病症之方法。本揭露進一步提供使用脂質-結合之RNAi寡核苷酸於製造用於藉由調變CNS中星狀細胞基因之表現來治療疾病或病症的藥劑之方法。 因此,在一些態樣中,本揭露提供雙股寡核苷酸,其包含15至30個核苷酸長之反義股及15至50個核苷酸長之正義股,其中反義股及正義股形成15至30個鹼基對之雙股區域,其中反義股包含與星狀細胞mRNA目標序列互補之區域,且其中正義股包含至少一個與正義股之核苷酸結合之脂質部分。 在一些態樣中,脂質部分係選自 在一些態樣中,脂質部分係烴鏈。在一些態樣中,烴鏈係C8至C30烴鏈。在一些態樣中,烴鏈係C16烴鏈。在一些態樣中,C16烴鏈係由 所表示。 在任何前述或相關態樣中,脂質部分係與核苷酸之核糖環之2'碳結合。 在任何前述或相關態樣中,寡核苷酸係鈍端的。在一些態樣中,寡核苷酸在該寡核苷酸之3'末端係鈍端的。在一些態樣中,寡核苷酸包含鈍端。在一些態樣中,鈍端包含正義股之3'末端。在一些態樣中,正義股係20至22個核苷酸。在一些態樣中,至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,其中位置係從5'至3'編號。在一些態樣中,星狀細胞mRNA目標係在脊髓中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,星狀細胞mRNA目標係在延髓中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在進一步態樣中,星狀細胞mRNA目標係在小腦中表現,其中該至少一個脂質部分係與在正義股之位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在一些態樣中,星狀細胞mRNA目標係在下視丘中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,星狀細胞mRNA目標係在額葉皮質中表現,其中該至少一個脂質部分係與在正義股之位置4處之核苷酸結合,且其中位置係從5'至3'編號。 在任何前述或相關態樣中,正義股在3'端處包含主幹-環圈,其中主幹-環圈包含由式:5'-S1-L-S2-3'所表示之核苷酸序列,其中S1係與S2互補,且其中L在S1與S2之間形成環。在一些態樣中,正義股係36至38個核苷酸。在一些態樣中,星狀細胞mRNA目標係在脊髓中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,星狀細胞mRNA目標係在延髓中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在進一步態樣中,星狀細胞mRNA目標係在小腦中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置23、位置28、或位置29處之核苷酸結合,且其中位置係從5'至3'編號。在一些態樣中,星狀細胞mRNA目標係在下視丘中表現,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,星狀細胞mRNA目標係在額葉皮質中表現,其中該至少一個脂質部分係與在正義股之位置23處之核苷酸結合,且其中位置係從5'至3'編號。 在任何前述或相關態樣中,反義股係22至24個核苷酸。在一些態樣中,雙股區域係20至22個鹼基對。 在任何前述或相關態樣中,反義股在3'末端處包含1至4個核苷酸突出端。在一些態樣中,突出端包含嘌呤核苷酸。在一些態樣中,突出端序列係2個核苷酸長。在一些態樣中,突出端係選自AA、GG、AG、及GA。在一些態樣中,突出端係GG或AA。在一些態樣中,突出端係GG。 在任何前述或相關態樣中,互補之區域係與星狀細胞mRNA目標序列之至少15個連續核苷酸互補。在一些態樣中,互補之區域係與星狀細胞mRNA目標序列之19個連續核苷酸互補。在一些態樣中,互補之區域係與星狀細胞mRNA目標序列完全互補。在一些態樣中,互補之區域係與星狀細胞mRNA目標序列部分互補。在一些態樣中,互補之區域包含與星狀細胞mRNA目標序列不多於四個錯配。在一些態樣中,互補之區域包含與星狀細胞mRNA目標序列至多四個錯配。 在任何前述或相關態樣中,寡核苷酸包含至少一個經修飾之核苷酸。在一些態樣中,經修飾之核苷酸包含2'-修飾。在一些態樣中,除了與該至少一個脂質部分結合之正義股之核苷酸之外,正義股及反義股之核苷酸之各者皆包含2'-修飾。在一些態樣中,2'-修飾係選自2'-胺基乙基、2'-氟、2'-O-甲基、2'-O-甲氧基乙基、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸的修飾。在一些態樣中,正義股之核苷酸之約10至20%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、或20%包含2'-氟修飾。在一些態樣中,反義股之核苷酸之約25至35%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、或35%包含2'-氟修飾。在一些態樣中,寡核苷酸之核苷酸之約25至35%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、或35%包含2'-氟修飾。在一些態樣中,正義股包含具有自5'至3'位置1至20的20個核苷酸,其中位置8至11之各者包含2'-氟修飾。在一些態樣中,正義股包含具有自5'至3'位置1至20的20個核苷酸,其中位置9至11之各者包含2'-氟修飾。在一些態樣中,正義股包含具有自5'至3'位置1至36的36個核苷酸,其中位置8至11之各者包含2'-氟修飾。在一些態樣中,正義股包含具有自5'至3'位置1至36的36個核苷酸,其中位置9至11之各者包含2'-氟修飾。在一些態樣中,反義股包含具有自5'至3'位置1至22之22個核苷酸,且其中位置2、3、4、5、7、10及14之各者包含2'-氟修飾。在一些態樣中,除了與該至少一個脂質部分結合之正義股之核苷酸之外,剩餘的核苷酸皆包含2'-O-甲基修飾。 在任何前述或相關態樣中,寡核苷酸包含至少一個經修飾之核苷酸間鍵聯。在一些態樣中,至少一個經修飾之核苷酸間鍵聯係硫代磷酸酯鍵聯。在一些態樣中,反義股包含(i)在位置1與2之間、及在位置2與3之間;或(ii)在位置1與2之間、在位置2與3之間、及在位置3與4之間的硫代磷酸酯鍵聯,其中位置自5'至3'編號為1至4。在一些態樣中,反義股係22個核苷酸長,且其中反義股在位置20與21之間及在位置21與22之間包含硫代磷酸酯鍵聯,其中位置自5'至3'編號為1至22。在一些態樣中,正義股在位置1與2之間包含硫代磷酸酯鍵聯,其中位置自5'至3'編號為1至2。在一些態樣中,正義股係20個核苷酸長,且其中正義股在位置18與19之間、及在位置19與20之間包含硫代磷酸酯鍵聯,其中位置自5'至3'編號為1至22。 在任何前述或相關態樣中,反義股在5'末端處包含磷酸化核苷酸,其中磷酸化核苷酸係選自尿苷及腺苷。在一些態樣中,磷酸化核苷酸係尿苷。在一些態樣中,反義股之5'-核苷酸之糖之4'-碳包含磷酸酯類似物(phosphate analog)。在一些態樣中,磷酸酯類似物係氧基甲基膦酸酯、乙烯基膦酸酯或丙二醯基膦酸酯。 在任何前述或相關態樣中,互補之區域係在反義股之核苷酸位置2至8處與星狀細胞mRNA目標序列完全互補,其中核苷酸位置係自5'至3'編號。在一些態樣中,互補之區域係在反義股之核苷酸位置2至11處與星狀細胞mRNA目標序列完全互補,其中核苷酸位置係自5'至3'編號。 在任何前述或相關態樣中,寡核苷酸係切酶(Dicer)受質。在一些態樣中,寡核苷酸係切酶受質,在內源性切酶加工後,產生能夠降低哺乳動物細胞中之星狀細胞mRNA表現之19至21個核苷酸長之雙股核酸。 在任何前述或相關態樣中,星狀細胞mRNA目標序列係位於中樞神經系統(CNS)之區域中。在一些態樣中,CNS之區域係選自脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。 在任何前述或相關態樣中,寡核苷酸在體外及/或體內降低星狀細胞或星狀細胞群中目標mRNA之表現。 在一些態樣中,本揭露提供醫藥組成物,其包含本文中所述之寡核苷酸、及醫藥上可接受之載劑、遞送劑或賦形劑。 在其他態樣中,本揭露提供治療患有與星狀細胞mRNA之表現相關之疾病、病症、或病況的個體之方法,該方法包含向個體投予治療有效量的本文中所述之寡核苷酸或醫藥組成物,從而治療個體。 在進一步態樣中,本揭露提供將寡核苷酸遞送至個體中之星狀細胞或星狀細胞群之方法,該方法包含將本文中所述之醫藥組成物投予至個體。在一些態樣中,星狀細胞或星狀細胞群係位於CNS之區域中。在一些態樣中,CNS之區域係選自脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。 在其他態樣中,本揭露提供降低細胞、細胞群或個體中星狀細胞mRNA之表現之方法,該方法包含下列步驟: i. 使細胞或細胞群與本文中所述之寡核苷酸或醫藥組成物接觸,視需要地其中細胞或細胞群係星狀細胞或星狀細胞群;或 ii. 向個體投予本文中所述之寡核苷酸或醫藥組成物。在一些態樣中,降低星狀細胞mRNA之表現包含降低mRNA之量或水平、蛋白質之量或水平、或兩者兼具。在一些態樣中,個體患有與星狀細胞mRNA之表現相關之疾病、病症、或病況。在一些態樣中,細胞或細胞群係位於CNS之區域中。在一些態樣中,CNS之區域係選自脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。 在任何前述或相關態樣中,方法包含經由鞘內投予來投予。 在一些態樣中,本揭露提供降低在個體之CNS之組織中之星狀細胞中表現之目標mRNA之表現之方法,其包含向個體投予雙股寡核苷酸,該雙股寡核苷酸包含15至30個核苷酸長之反義股及15至50個核苷酸長之正義股,其中反義股及正義股形成15至30個鹼基對之雙股區域,其中反義股包含與在目標mRNA中之目標序列互補之區域,且其中正義股包含至少一個與正義股之核苷酸結合之脂質部分。在一些態樣中,脂質部分係C16烴。 在本文中所述之方法之任何前述或相關態樣中,寡核苷酸在該寡核苷酸之3'末端處係鈍端的。在一些態樣中,寡核苷酸包含鈍端。在一些態樣中,鈍端包含正義股之3'末端。在一些態樣中,正義股係22至24個核苷酸。在一些態樣中,組織係脊髓,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,組織係延髓,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在進一步態樣中,組織係小腦,其中該至少一個脂質部分係與在正義股之位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在一些態樣中,組織係下視丘,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,組織係額葉皮質,其中該至少一個脂質部分係與在正義股之位置4處之核苷酸結合,且其中位置係從5'至3'編號。 在本文中所述之方法之任何前述或相關態樣中,正義股在3'端處包含主幹-環圈,其中主幹-環圈包含由式:5'-S1-L-S2-3'所表示之核苷酸序列,其中S1係與S2互補,且其中L在S1與S2之間形成環。在一些態樣中,正義股係36至38個核苷酸。在一些態樣中,組織係脊髓,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,組織係延髓,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在進一步態樣中,組織係小腦,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置23、位置28、或位置29處之核苷酸結合,且其中位置係從5'至3'編號。在一些態樣中,組織係下視丘,其中該至少一個脂質部分係與在正義股之位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。在其他態樣中,組織係額葉皮質,其中該至少一個脂質部分係與在正義股之位置23處之核苷酸結合,且其中位置係從5'至3'編號。 在本文中所述之方法之任何前述或相關態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少4週、至少8週、至少12週、至少23週、至少26週、或至少29週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少4週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少8週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少12週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少23週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少26週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少29週。 在本文中所述之方法之任何前述或相關態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至4週、達至8週、達至12週、達至23週、達至26週、或達至29週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至4週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至8週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至12週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至23週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至26週。在一些態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至29週。 在本文中所述之方法之任何前述或相關態樣中,單次劑量的寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至一年。 在一些態樣中,本揭露提供套組,其包含本文中所述之寡核苷酸、視需要的醫藥上可接受之載劑、及包含用於投予至患有與星狀細胞mRNA之表現相關之疾病、病症、或病況的個體之說明之藥品仿單。在一些態樣中,藥品仿單包含鞘內投予之說明。 在其他態樣中,本揭露提供本文中所述之寡核苷酸或醫藥組成物於製造用於治療與星狀細胞mRNA之表現相關之疾病、病症、或病況的藥劑之用途。 在進一步態樣中,本揭露提供本文中所述之寡核苷酸或醫藥組成物,其供使用於、或可適用於治療與星狀細胞mRNA之表現相關之疾病、病症、或病況的藥劑之用途。 The mammalian CNS is a complex system of cells, fluids, and chemicals that interact together to achieve a wide variety of functions, including movement, navigation, cognition, speech, vision, and emotion. Unfortunately, there are a variety of diseases and conditions of the CNS (eg, neurological disorders) that are known to affect or disrupt some or all of these functions. In general, treatment of CNS diseases and disorders is limited to small molecule drugs, antibodies, and/or adaptive or behavioral therapies. There is an ongoing need to develop treatments for diseases and conditions of the CNS associated with inappropriate gene expression. The present disclosure is based at least in part on the discovery that lipid-conjugated RNAi oligonucleotides effectively reduce target gene expression in CNS stellate cells. Exemplary lipid-conjugated RNAi oligonucleotides provided herein have been shown to reduce target gene expression of stellate cell-specific mRNA in the CNS after a single administration. Furthermore, the exemplary lipid-conjugated RNAi oligonucleotides provided herein have demonstrated pharmacological activity in multiple regions throughout the CNS, including hard-to-reach regions such as the hippocampus and frontal cortex. Without being bound by theory, hydrophobic moieties (eg, lipids) facilitate the delivery and distribution of lipid-bound RNAi oligonucleotides into the CNS, thereby increasing the efficacy and persistence of gene attenuation in stellate cells. Accordingly, the present disclosure provides methods of treating a disease or disorder by modulating the expression of stellate cell genes in the CNS using the lipid-conjugated RNAi oligonucleotides described herein, and pharmaceutically acceptable compositions thereof. The present disclosure further provides methods of using lipid-conjugated RNAi oligonucleotides in the manufacture of agents for treating diseases or disorders by modulating the expression of stellate cell genes in the CNS. Accordingly, in some aspects, the present disclosure provides double-stranded oligonucleotides comprising an antisense strand that is 15 to 30 nucleotides long and a sense strand that is 15 to 50 nucleotides long, wherein the antisense strand and The sense strand forms a double-stranded region of 15 to 30 base pairs, wherein the antisense strand contains a region complementary to the stellate cell mRNA target sequence, and wherein the sense strand contains at least one lipid moiety that binds to the nucleotides of the sense strand. In some aspects, the lipid moiety is selected from In some aspects, the lipid moiety is a hydrocarbon chain. In some aspects, the hydrocarbon chain is a C8 to C30 hydrocarbon chain. In some aspects, the hydrocarbon chain is a C16 hydrocarbon chain. In some forms, the C16 hydrocarbon chain consists of represented. In any of the foregoing or related aspects, the lipid moiety is bound to the 2' carbon of the ribose ring of the nucleotide. In any of the foregoing or related aspects, the oligonucleotide is blunt-ended. In some aspects, the oligonucleotide is blunt-ended at the 3' end of the oligonucleotide. In some aspects, the oligonucleotide contains blunt ends. In some aspects, the blunt end includes the 3' end of the positive strand. In some forms, the sense strand is 20 to 22 nucleotides. In some aspects, at least one lipid moiety binds to a nucleotide at position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand, wherein the position is from 5' to 3' number. In some aspects, the stellate cell mRNA target is expressed in the spinal cord, wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand The nucleotides are bound at and the positions are numbered from 5' to 3'. In other aspects, the stellate cell mRNA target is expressed in the medulla oblongata, wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand The nucleotides are bound at and the positions are numbered from 5' to 3'. In a further aspect, the stellate cell mRNA target is expressed in the cerebellum, wherein the at least one lipid moiety binds to a nucleotide at position 4, position 12, position 13, position 18, or position 20 of the sense strand , and the positions are numbered from 5' to 3'. In some aspects, the stellate cell mRNA target is expressed in the hypothalamus, wherein the at least one lipid moiety is associated with position 1, position 4, position 12, position 13, position 18, or position 20 of the sense strand. Nucleotides are bound, and positions therein are numbered from 5' to 3'. In other aspects, the stellate cell mRNA target is expressed in the frontal cortex, wherein the at least one lipid moiety binds to nucleotide at position 4 of the sense strand, and wherein the position is from 5' to 3' number. In any of the foregoing or related aspects, the sense strand includes a backbone-loop at the 3' end, wherein the backbone-loop includes a nucleotide sequence represented by the formula: 5'-S1-L-S2-3', Where S1 is complementary to S2, and L forms a loop between S1 and S2. In some forms, the sense strand is 36 to 38 nucleotides long. In some aspects, the stellate cell mRNA target is expressed in the spinal cord, wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, position 20, The nucleotide at position 23, position 28, position 29, or position 30 binds, and the positions are numbered from 5' to 3'. In other aspects, the stellate cell mRNA target is expressed in the medulla oblongata, wherein the at least one lipid moiety is associated with position 1, position 4, position 18, position 20, position 23, position 28, position 29, Or the nucleotide at position 30 binds, and the positions are numbered from 5' to 3'. In a further aspect, the stellate cell mRNA target is expressed in the cerebellum, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 23, position 28, or position 29 of the sense strand , and the positions are numbered from 5' to 3'. In some aspects, the stellate cell mRNA target is expressed in the hypothalamus, wherein the at least one lipid moiety is associated with position 1, position 4, position 12, position 13, position 18, position 20, position 23 of the sense strand , the nucleotide at position 28, position 29, or position 30 binds, and the positions are numbered from 5' to 3'. In other aspects, the stellate cell mRNA target is expressed in the frontal cortex, wherein the at least one lipid moiety binds to nucleotide at position 23 of the sense strand, and wherein the position is from 5' to 3' number. In any of the foregoing or related aspects, the antisense strand is 22 to 24 nucleotides. In some aspects, the double-stranded region is 20 to 22 base pairs. In any of the foregoing or related aspects, the antisense strand comprises 1 to 4 nucleotide overhangs at the 3' end. In some aspects, the overhangs comprise purine nucleotides. In some aspects, the overhang sequence is 2 nucleotides long. In some aspects, the overhang is selected from AA, GG, AG, and GA. In some aspects, the overhang is GG or AA. In some versions, the overhang is GG. In any of the foregoing or related aspects, the region of complementarity is complementary to at least 15 contiguous nucleotides of the stellate cell mRNA target sequence. In some aspects, the complementary region is complementary to 19 contiguous nucleotides of the stellate cell mRNA target sequence. In some aspects, the complementary region is completely complementary to the stellate cell mRNA target sequence. In some aspects, the complementary region is partially complementary to the stellate cell mRNA target sequence. In some aspects, the complementary region contains no more than four mismatches to the stellate cell mRNA target sequence. In some aspects, the complementary region contains up to four mismatches to the stellate cell mRNA target sequence. In any of the preceding or related aspects, the oligonucleotide comprises at least one modified nucleotide. In some aspects, the modified nucleotides comprise 2'-modifications. In some aspects, in addition to the nucleotides of the sense strand bound to the at least one lipid moiety, each of the nucleotides of the sense strand and the antisense strand comprise 2'-modifications. In some aspects, the 2'-modification is selected from 2'-aminoethyl, 2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl, and 2'-des Modification of oxy-2'-fluoro-β-d-arabinose nucleic acid. In some aspects, the sense strand consists of about 10 to 20%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, or 20% contained 2'-fluoro modifications. In some forms, the antisense strand contains approximately 25 to 35%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, or 35% containing 2'-fluoro modifications. In some aspects, the oligonucleotide is about 25 to 35%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34% , or 35% contains 2'-fluorine modification. In some aspects, the sense strand includes 20 nucleotides from 5' to 3' positions 1 to 20, wherein each of positions 8 to 11 includes a 2'-fluoro modification. In some aspects, the sense strand includes 20 nucleotides from 5' to 3' positions 1 to 20, wherein each of positions 9 to 11 includes a 2'-fluoro modification. In some aspects, the sense strand includes 36 nucleotides from 5' to 3' positions 1 to 36, wherein each of positions 8 to 11 includes a 2'-fluoro modification. In some aspects, the sense strand includes 36 nucleotides from 5' to 3' positions 1 to 36, wherein each of positions 9 to 11 includes a 2'-fluoro modification. In some aspects, the antisense strand includes 22 nucleotides having positions 1 to 22 from 5' to 3', and wherein each of positions 2, 3, 4, 5, 7, 10, and 14 includes 2' -Fluorine modification. In some aspects, except for the nucleotide of the sense strand bound to the at least one lipid moiety, the remaining nucleotides comprise a 2'-O-methyl modification. In any of the preceding or related aspects, the oligonucleotide comprises at least one modified internucleotide linkage. In some aspects, at least one modified internucleotide linkage is linked to a phosphorothioate linkage. In some aspects, the antisense strand includes (i) between positions 1 and 2, and between positions 2 and 3; or (ii) between positions 1 and 2, between positions 2 and 3, and a phosphorothioate linkage between positions 3 and 4, where positions are numbered 1 to 4 from 5' to 3'. In some aspects, the antisense strand is 22 nucleotides long, and wherein the antisense strand includes a phosphorothioate linkage between positions 20 and 21 and between positions 21 and 22, wherein positions from 5' to 3' are numbered 1 to 22. In some aspects, the sense strand includes a phosphorothioate linkage between positions 1 and 2, with positions numbered 1 to 2 from 5' to 3'. In some aspects, the sense strand is 20 nucleotides long, and wherein the sense strand includes a phosphorothioate linkage between positions 18 and 19, and between positions 19 and 20, wherein positions 5' to 3' are numbered from 1 to 22. In any of the foregoing or related aspects, the antisense strand comprises a phosphorylated nucleotide at the 5' end, wherein the phosphorylated nucleotide is selected from uridine and adenosine. In some aspects, the phosphorylated nucleotide is uridine. In some aspects, the 4'-carbon of the sugar of the 5'-nucleotide of the antisense strand contains a phosphate analog. In some aspects, the phosphate analog is oxymethylphosphonate, vinylphosphonate, or malonylphosphonate. In any of the foregoing or related aspects, the region of complementarity is completely complementary to the stellate cell mRNA target sequence at nucleotide positions 2 to 8 of the antisense strand, where the nucleotide positions are numbered from 5' to 3'. In some aspects, the region of complementarity is completely complementary to the stellate cell mRNA target sequence at nucleotide positions 2 to 11 of the antisense strand, where the nucleotide positions are numbered from 5' to 3'. In any of the foregoing or related aspects, the oligonucleotide is a Dicer substrate. In some forms, the oligonucleotide is a Dicer substrate that, upon processing by endogenous Dicer, produces a 19 to 21 nucleotide long double strand that is capable of reducing stellate cell mRNA expression in mammalian cells. nucleic acids. In any of the foregoing or related aspects, the stellate cell mRNA target sequence is located in a region of the central nervous system (CNS). In some aspects, the region of the CNS is selected from the group consisting of spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. In any of the foregoing or related aspects, the oligonucleotide reduces the expression of target mRNA in stellate cells or stellate cell populations in vitro and/or in vivo. In some aspects, the present disclosure provides pharmaceutical compositions comprising an oligonucleotide described herein, and a pharmaceutically acceptable carrier, delivery agent, or excipient. In other aspects, the present disclosure provides methods of treating an individual suffering from a disease, disorder, or condition associated with expression of stellate cell mRNA, the method comprising administering to the individual a therapeutically effective amount of an oligonucleotide described herein. glycosides or pharmaceutical compositions to treat an individual. In a further aspect, the present disclosure provides methods of delivering oligonucleotides to stellate cells or populations of stellate cells in an individual, the method comprising administering to the individual a pharmaceutical composition described herein. In some forms, stellate cells or populations of stellate cells are located in regions of the CNS. In some aspects, the region of the CNS is selected from the group consisting of spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. In other aspects, the present disclosure provides methods of reducing the expression of stellate cell mRNA in a cell, cell population, or individual, the method comprising the steps of: i. contacting the cell or cell population with an oligonucleotide described herein or contacting the pharmaceutical composition, optionally wherein the cells or cell populations are stellate cells or populations of stellate cells; or ii. administering to the individual an oligonucleotide or pharmaceutical composition described herein. In some aspects, reducing the expression of stellate cell mRNA includes reducing the amount or level of mRNA, the amount or level of protein, or both. In some aspects, the individual suffers from a disease, disorder, or condition associated with expression of stellate cell mRNA. In some aspects, cells or cell populations are located in regions of the CNS. In some aspects, the region of the CNS is selected from the group consisting of spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. In any of the foregoing or related aspects, the method includes administering via intrathecal administration. In some aspects, the present disclosure provides methods of reducing the expression of a target mRNA expressed in stellate cells in tissues of the CNS of an individual, comprising administering to the individual a double-stranded oligonucleotide, the double-stranded oligonucleotide The acid contains an antisense strand of 15 to 30 nucleotides long and a sense strand of 15 to 50 nucleotides long, wherein the antisense strand and the sense strand form a double-stranded region of 15 to 30 base pairs, in which the antisense strand The strand contains a region complementary to the target sequence in the target mRNA, and wherein the sense strand contains at least one lipid moiety that binds to the nucleotides of the sense strand. In some aspects, the lipid moiety is a C16 hydrocarbon. In any of the preceding or related aspects of the methods described herein, the oligonucleotide is blunt-ended at the 3' end of the oligonucleotide. In some aspects, the oligonucleotide contains blunt ends. In some aspects, the blunt end includes the 3' end of the positive strand. In some forms, the sense strand is 22 to 24 nucleotides in length. In some aspects, the tissue is spinal cord, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand, And the positions are numbered from 5' to 3'. In other aspects, the tissue is the medulla oblongata, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand, And the positions are numbered from 5' to 3'. In a further aspect, the tissue is cerebellum, wherein the at least one lipid moiety binds to a nucleotide at position 4, position 12, position 13, position 18, or position 20 of the sense strand, and wherein the position is from 5 'To 3' number. In some aspects, the tissue is the hypothalamus, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 12, position 13, position 18, or position 20 of the sense strand, and The positions are numbered from 5' to 3'. In other aspects, the tissue is frontal cortex, wherein the at least one lipid moiety binds to a nucleotide at position 4 of the sense strand, and wherein the positions are numbered from 5' to 3'. In any of the foregoing or related aspects of the methods described herein, the righteous strand includes a backbone-loop at the 3' end, wherein the backbone-loop includes the formula: 5'-S1-L-S2-3' Represents a nucleotide sequence in which S1 is complementary to S2 and in which L forms a loop between S1 and S2. In some forms, the sense strand is 36 to 38 nucleotides long. In some aspects, the tissue is the spinal cord, wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, position 20, position 23, position 28, position 29, or the nucleotide at position 30 is bound, and the positions are numbered from 5' to 3'. In other aspects, the tissue is the medulla oblongata, wherein the at least one lipid moiety is associated with a nucleoside at position 1, position 4, position 18, position 20, position 23, position 28, position 29, or position 30 of the sense strand Acid binds and the positions are numbered from 5' to 3'. In a further aspect, the tissue is cerebellum, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 23, position 28, or position 29 of the sense strand, and wherein the position is from 5 'To 3' number. In some aspects, the tissue is the hypothalamus, wherein the at least one lipid moiety is associated with position 1, position 4, position 12, position 13, position 18, position 20, position 23, position 28, position 29 of the sciatic strand , or the nucleotide at position 30 binds, and wherein the positions are numbered from 5' to 3'. In other aspects, the tissue is frontal cortex, wherein the at least one lipid moiety binds to nucleotide at position 23 of the sense strand, and wherein the positions are numbered from 5' to 3'. In any of the foregoing or related aspects of the methods described herein, a single dose of the oligonucleotide or pharmaceutical composition reduces the expression of stellate cell mRNA for at least 4 weeks, at least 8 weeks, at least 12 weeks, at least 23 weeks weeks, at least 26 weeks, or at least 29 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 4 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 8 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 12 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 23 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 26 weeks. In some aspects, a single dose of an oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for at least 29 weeks. In any of the foregoing or related aspects of the methods described herein, a single dose of the oligonucleotide or pharmaceutical composition reduces the expression of stellate cell mRNA by up to 4 weeks, by 8 weeks, by 12 weeks , up to 23 weeks, up to 26 weeks, or up to 29 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 4 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 8 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 12 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 23 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 26 weeks. In some aspects, a single dose of oligonucleotide or pharmaceutical composition reduces stellate cell mRNA expression for up to 29 weeks. In any of the foregoing or related aspects of the methods described herein, a single dose of an oligonucleotide or pharmaceutical composition reduces the expression of stellate cell mRNA for up to one year. In some aspects, the present disclosure provides kits comprising an oligonucleotide described herein, optionally a pharmaceutically acceptable carrier, and a protein for administration to a patient with stellate cell mRNA. Drug instructions for individuals exhibiting relevant diseases, illnesses, or conditions. In some forms, the drug package insert includes instructions for intrathecal administration. In other aspects, the present disclosure provides use of an oligonucleotide or pharmaceutical composition described herein for the manufacture of a medicament for the treatment of a disease, disorder, or condition associated with the expression of stellate cell mRNA. In a further aspect, the present disclosure provides oligonucleotides or pharmaceutical compositions described herein for use in, or may be suitable for use in, a medicament for the treatment of diseases, disorders, or conditions associated with the expression of stellate cell mRNA purpose.

在一些態樣中,本揭露提供降低中樞神經系統(CNS)中之星狀細胞中表現之目標基因之表現的寡核苷酸-脂質結合物(例如,RNAi寡核苷酸-脂質結合物)。在其他態樣中,本揭露提供治療與星狀細胞mRNA之表現相關之疾病或病症(例如,CNS之疾病)之方法。在其他態樣中,本揭露提供使用本文中所述之脂質-結合之RNAi寡核苷酸、或其醫藥上可接受之組成物治療與星狀細胞mRNA之表現相關之疾病或病症(例如,神經疾病及/或不適當的基因表現)之方法。在其他態樣中,本揭露提供使用本文中所述之脂質-結合之RNAi寡核苷酸於製造用於治療與星狀細胞mRNA之表現相關之疾病或病症的藥劑之方法。在其他態樣中,本文中所提供之脂質-結合之RNAi寡核苷酸係用於藉由調變(例如,抑制或降低)與CNS中之神經疾病或病症相關之星狀細胞目標基因之表現來治療神經疾病或病症。在一些態樣中,本揭露提供藉由降低與CNS(例如,於CNS之細胞、組織或器官中)中之神經疾病或病症相關之星狀細胞目標基因之表現來治療神經疾病或病症之方法。 脂質 - 結合之 RNAi 寡核苷酸本揭露尤其是提供降低CNS中星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸(例如,RNAi寡核苷酸-脂質結合物)。在一些具體實施例中,由本揭露所提供之脂質-結合之RNAi寡核苷酸係靶向(targeted to)編碼目標基因之mRNA。編碼目標基因且由本揭露之脂質-結合之RNAi寡核苷酸所靶定之傳訊RNA(mRNA)在本文中被稱為「目標mRNA(target mRNA)」。 mRNA 目標序列 在一些具體實施例中,脂質-結合之RNAi寡核苷酸係靶定包含目標星狀細胞mRNA之目標序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸係靶向在目標星狀細胞mRNA內之目標序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸、或其部分、片段、或股(例如,雙股寡核苷酸之反義股或引導股)與包含目標星狀細胞mRNA之目標序列接合或黏合,從而降低目標基因表現。在一些具體實施例中,脂質-結合之RNAi寡核苷酸係靶向包含目標星狀細胞mRNA之目標序列以達降低體內星狀細胞目標基因之表現之目的。在一些具體實施例中,藉由靶向特異性星狀細胞目標序列的脂質-結合之RNAi寡核苷酸來降低目標基因表現之量或程度與脂質-結合之RNAi寡核苷酸之效力相關聯。在一些具體實施例中,藉由靶向特異性星狀細胞目標序列的脂質-結合之RNAi寡核苷酸來降低目標基因表現之量或程度與用脂質-結合之RNAi寡核苷酸治療之患有與目標基因表現相關之疾病、病症、或病況之個體或患者之治療益處之量或程度相關聯。 通過檢查編碼目標基因之mRNA(包括多種不同物種(例如,人類、馬來猴、小鼠、及大鼠)之mRNA)之核苷酸序列及體外及體內測試之結果,已發現某些核苷酸序列及對那些寡核苷酸之某些系統性修飾比其他寡核苷酸序列更適於RNAi寡核苷酸媒介之降低,且因此其可用作另外靶向特異性基因目標序列的寡核苷酸之一部分。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸、或其一部分或片段之正義股包含與包含星狀細胞目標mRNA之目標序列類似(例如,具有不超過4個錯配)或同一的核苷酸序列。在一些具體實施例中,本文中所述之雙股寡核苷酸之正義股之一部分或區域包含:包含星狀細胞目標mRNA之目標序列。 在一些具體實施例中,星狀細胞mRNA目標序列係與急性或慢性疼痛相關。在一些具體實施例中,星狀細胞mRNA目標序列係與神經病症相關。在一些具體實施例中,星狀細胞mRNA目標序列係在CNS之至少一區域之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在脊髓之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在腰脊髓之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在胸脊髓之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在頸脊髓之星狀細胞中表現之mRNA。 在一些具體實施例中,星狀細胞mRNA目標序列係在下視丘之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在延髓之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在海馬體之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在小腦之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係在額葉皮質之星狀細胞中表現之mRNA。在一些具體實施例中,星狀細胞mRNA目標序列係與CNS之疾病、病症或病況相關之mRNA。 在一些具體實施例中,本文中之寡核苷酸具有與 GFAPmRNA互補之區域(例如,星狀細胞mRNA目標序列係 GFAP序列。在一些具體實施例中,目標序列係在 GFAPmRNA之目標序列內)以達靶定細胞中之mRNA並抑制其表現之目的。在一些具體實施例中,本文中之寡核苷酸包含 GFAP靶定序列(例如,雙股寡核苷酸之反義股或引導股),其具有藉由互補(瓦生-克立克(Watson-Crick))鹼基配對而與 GFAP目標序列結合或黏合的互補之區域。在一些具體實施例中,本文中所述之雙股寡核苷酸之正義股之一部分或區域包含 GFAP目標序列。在一些具體實施例中, GFAP目標序列包含SEQ ID NO:28至31中任一者之核苷酸序列、或由其所組成。 RNAi 寡核苷酸靶定序列 在一些具體實施例中,由本揭露所提供之脂質-結合之RNAi寡核苷酸包含靶定序列。如本文中所使用,術語「靶定序列(targeting sequence)」係指具有與包含mRNA(例如,星狀細胞目標mRNA)之特異性核苷酸序列互補之區域的核苷酸序列。在一些具體實施例中,由本揭露所提供之脂質-結合之RNAi寡核苷酸包含具有與包含目標mRNA之目標序列之核苷酸序列互補之區域的基因靶定序列。在一些具體實施例中,靶定序列係星狀細胞mRNA目標序列。 靶定序列藉由互補(瓦生-克立克)鹼基配對藉由與包含目標mRNA之目標序列接合或黏合來賦予脂質-結合之RNAi寡核苷酸特異性靶定mRNA之能力。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸(或其股,例如,雙股寡核苷酸之反義股或引導股)包含具有藉由互補(瓦生-克立克)鹼基配對而與包含星狀細胞目標mRNA之目標序列接合或黏合的互補之區域的靶定序列。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸(或其股,例如,雙股寡核苷酸之反義股或引導股)包含具有藉由互補(瓦生-克立克)鹼基配對而與星狀細胞目標mRNA內之目標序列接合或黏合的互補之區域的靶定序列。靶定序列通常具有合適的長度及鹼基含量,以使脂質-結合之RNAi寡核苷酸(或其股)能夠與特異性目標mRNA(例如,星狀細胞mRNA)接合或黏合以達抑制目標基因表現之目的。在一些具體實施例中,靶定序列係至少約12、至少約13、至少約14、至少約15、至少約16、至少約17、至少約18、至少約19、至少約20、至少約21、至少約22、至少約23、至少約24、至少約25、至少約26、至少約27、至少約28、至少約29、或至少約30個核苷酸長。在一些具體實施例中,靶定序列係至少12、至少13、至少14、至少15、至少16、至少17、至少18、至少19、或至少20個核苷酸。在一些具體實施例中,靶定序列係約12至約30個(例如,12至30、12至22、15至25、17至21、18至27、19至27、或15至30個)核苷酸長。在一些具體實施例中,靶定序列係約12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、或30個核苷酸長。在一些具體實施例中,靶定序列係18個核苷酸長。在一些具體實施例中,靶定序列係19個核苷酸長。在一些具體實施例中,靶定序列係20個核苷酸長。在一些具體實施例中,靶定序列係21個核苷酸長。在一些具體實施例中,靶定序列係22個核苷酸長。在一些具體實施例中,靶定序列係23個核苷酸長。在一些具體實施例中,靶定序列係24個核苷酸長。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之目標序列完全互補的靶定序列。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含與星狀細胞目標mRNA內之目標序列完全互補的靶定序列。在一些具體實施例中,靶定序列係與包含目標mRNA之目標序列部分互補。在一些具體實施例中,靶定序列係與星狀細胞目標mRNA內之目標序列部分互補。在一些具體實施例中,靶定序列包含:包含反義股之連續核苷酸之區域。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係約12至約30個核苷酸長(例如,12至30、12至28、12至26、12至24、12至20、12至18、12至16、14至22、16至20、18至20、或18至19個核苷酸長)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係10、11、12、13、14、15、16、17、18、19、或20個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與包含目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係15個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與包含目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係19個核苷酸長。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係15個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之核苷酸之連續序列互補的靶定序列,其中核苷酸之連續序列係19個核苷酸長。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之全長。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之全長之一部分。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之10至20個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之15至19個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之15個核苷酸、16個核苷酸、17個核苷酸、18個核苷酸、19個核苷酸、20個核苷酸、21個核苷酸、或22個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之19個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列完全互補(例如,沒有錯配)且包含反義股之20個核苷酸。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之全長。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之全長之一部分。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之10至20個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之15至19個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之15個核苷酸、16個核苷酸、17個核苷酸、18個核苷酸、19個核苷酸、20個核苷酸、21個核苷酸、或22個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之19個核苷酸。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之靶定序列係與包含星狀細胞目標mRNA之目標序列部分互補(例如,具有不超過4個錯配)且包含反義股之20個核苷酸。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含與包含星狀細胞目標mRNA之對應目標序列具有一或多個鹼基配對(bp)錯配之靶定序列。在一些具體實施例中,靶定序列與包含星狀細胞目標mRNA之對應目標序列具有1個bp錯配、2個bp錯配、3個bp錯配、4個bp錯配、或5個bp錯配,前提是在適當雜交條件下靶定序列與目標序列接合或黏合之能力及/或脂質-結合之RNAi寡核苷酸抑制或降低目標基因表現之能力得以維持(例如,在生理條件下)。替代地,在一些具體實施例中,靶定序列與包含星狀細胞目標mRNA之對應目標序列包含不超過1個、不超過2個、不超過3個、不超過4個、或不超過5個bp錯配,前提是在適當雜交條件下靶定序列與目標序列接合或黏合之能力及/或脂質-結合之RNAi寡核苷酸抑制或降低目標基因表現之能力得以維持。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有1個錯配之靶定序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有2個錯配之靶定序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有3個錯配之靶定序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有4個錯配之靶定序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有5個錯配之靶定序列。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應目標序列具有超過一個錯配(例如,2、3、4、5或更多個錯配)之靶定序列,其中該等錯配中之至少2個(例如,全部)係連續地定位(例如,接連2、3、4、5或更多個錯配)、或其中該等錯配係散置在整個靶定序列之任何位置中。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與對應的目標序列具有超過一個錯配(例如,2、3、4、5或更多個錯配)之靶定序列,其中該等錯配中之至少2個(例如,全部)係連續地定位(例如,接連2、3、4、5或更多個錯配)、或其中至少一或多個非錯配鹼基對係位在錯配之間、或其組合。 寡核苷酸之類型 在本文中之方法中,多種RNAi寡核苷酸類型及/或結構可用於降低目標基因表現(例如,降低在星狀細胞中表現之目標基因之表現)。本文中或他處所述之任何RNAi寡核苷酸類型均予以考量用作併入本文中之靶定序列之框架以達抑制或降低CNS中之星狀細胞中對應目標基因表現之目的。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸藉由參與切酶參與之上游或下游的RNA干擾(RNA interference, RNAi)路徑來抑制目標基因表現。例如,已開發其中每股具有約19至25個核苷酸大小且具有至少一個1至5個核苷酸之3'突出端之RNAi寡核苷酸(參見例如,美國專利第8,372,968號)。亦已開發出藉由切酶加工以生成活性RNAi產物之更長的寡核苷酸(參見例如,美國專利第8,883,996號)。進一步的工作產生延伸之雙股寡核苷酸,其中至少一股之至少一端延伸超出雙股靶定區域,該延伸之雙股寡核苷酸包括其中該等股中之一者包括熱力學上穩定之四環結構的結構(參見例如,美國專利第8,513,207號及第8,927,705號,以及國際專利申請公開案第WO 2010/033225號)。此類結構可包括單股延伸部分(extension)(在分子之一側或兩側上)以及雙股延伸部分。 在一些具體實施例中,本文中之RNAi寡核苷酸結合物參與切酶參與(例如,切酶切割)之下游的RNAi路徑。在一些具體實施例中,本文中所述之寡核苷酸係切酶受質。在一些具體實施例中,在內源性切酶加工後,產生能夠降低星狀細胞目標mRNA之表現之19至23個核苷酸長之雙股核酸。在一些具體實施例中,脂質-結合之RNAi寡核苷酸在正義股之3'端中具有突出端(例如,具有1、2、或3個核苷酸長)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸(例如,siRNA結合物)包含與星狀細胞目標mRNA反義的21個核苷酸引導股及互補隨從股,其中兩股黏合以形成19-bp雙股體且在任一或兩個3'端處之2個核苷酸突出端。亦可考量更長的寡核苷酸設計,包括具有23個核苷酸之引導股及21個核苷酸之隨從股的寡核苷酸,其中在分子之右側(隨從股之3'端/引導股之5'端)上存在鈍端,且在分子之左側(隨從股之5'端/引導股之3'端)上存在二個核苷酸的3'引導股突出端。在此類分子中,存在21 bp雙股區域。參見例如,美國專利第9,012,138號;第9,012,621號及第9,193,753號。 在一些具體實施例中,本文中所揭示之RNAi寡核苷酸結合物包含均在約17至26個(例如,17至26個、20至25個、或21至23個)核苷酸長之範圍內的正義股及反義股。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含均在約19至22個核苷酸長之範圍內的正義股及反義股。在一些具體實施例中,正義股及反義股具有相等長度。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含正義股及反義股,使得在正義股或反義股、或正義股及反義股兩者上存在3'突出端。在一些具體實施例中,就具有之正義股及反義股均在約21至23個核苷酸長之範圍內的脂質-結合之RNAi寡核苷酸而言,在正義股、反義股、或正義股及反義股兩者上之3'突出端係1或2個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸具有22個核苷酸之引導股及20個核苷酸之隨從股,其中在分子之右側(隨從股之3'端/引導股之5'端)上存在鈍端,且在分子之左側(隨從股之5'端/引導股之3'端)上存在2個核苷酸的3'-引導股突出端。在此類分子中,存在20 bp雙股區域。 與本文中之組成物及方法一起使用的其他RNAi寡核苷酸設計包括:16-mer siRNA(參見例如, Nucleic Acids in Chemistry and Biology, Blackburn(ed.), ROYAL SOCIETY OF CHEMISTRY, 2006)、shRNA(例如,具有19 bp或更短的主幹;參見例如,Moore et al.(2010) METHODS MOL.BIOL. 629:141-58)、鈍siRNA(例如,具有19 bp長;參見例如Kraynack & Baker(2006)RNA 12:163-76)、不對稱siRNA(aiRNA;參見例如,Sun et al.(2008) NAT. BIOTECHNOL .26: 1379-82)、不對稱較短的雙股體siRNA(參見例如,Chang et al .(2009) MOL.Ther.17:725-32)、分叉siRNA(參見例如,Hohjoh(2004)FEBS Lett.557:193-98)、及小內部分段干擾RNA(siRNA;參見例如,Bramsen et al.(2007) NUCLEIC ACIDS RES.35:5886-97)。可在一些具體實施例中用於降低或抑制目標基因之表現的寡核苷酸結構之進一步非限制性實施例係微RNA(miRNA)、短髮夾RNA(shRNA)、及短siRNA(參見例如,Hamilton et al.(2002)EMBO J. 21:4671-79;亦參見,美國專利申請公開案第2009/0099115號)。 反義股 在一些具體實施例中,脂質-結合之RNAi寡核苷酸之反義股被稱為「引導股」。例如,反義股與RNA誘導型緘默化複合體(RNA-induced silencing complex, RISC)嚙合並與阿爾古( Argonaute)蛋白質諸如Ago2接合、或與一或多種類似因子嚙合或接合,並指揮目標基因之緘默,所以反義股被稱為引導股。在一些具體實施例中,與引導股互補的正義股被稱為「隨從股」。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含至多約50個核苷酸長(例如,至多50、至多40、至多35、至多30、至多27、至多25、至多21、至多19、至多17、至多15、或至多12個核苷酸長)之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含至少約12個核苷酸長(例如,至少12、至少15、至少19、至少21、至少22、至少25、至少27、至少30、至少35、或至少38個核苷酸長)之反義股。在一些具體實施例中,本文中包含在約12至約40個(例如,12至40、12至36、12至32、12至28、15至40、15至36、15至32、15至30、15至28、17至22、17至25、19至27、19至30、20至40、22至40、25至40、或32至40個)核苷酸長之範圍內的反義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含15至30個核苷酸長之反義股。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸中任一者之反義股係具有12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、或40個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含19至23個核苷酸長之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含19個核苷酸長之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含20個核苷酸長之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含21個核苷酸長之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含22個核苷酸長之反義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含23個核苷酸長之反義股。 正義股 在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含至多約50個核苷酸長(例如,至多50、至多40、至多36、至多30、至多27、至多25、至多21、至多19、至多17、或至多12個核苷酸長)之正義股(或隨從股)。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含至少約12個核苷酸長(例如,至少12、至少15、至少19、至少21、至少25、至少27、至少30、至少36、或至少38個核苷酸長)之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含在約12至約50個(例如,12至50、12至40、12至36、12至32、12至28、15至40、15至36、15至32、15至28、17至21、17至25、19至27、19至30、20至40、22至40、25至40、或32至40個)核苷酸長之範圍內的正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含15至50個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含18至36個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、或50個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含17至21個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含17個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含18個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含19個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含20個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含21個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含22個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含23個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含24個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含25個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含26個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含27個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含28個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含29個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含30個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含31個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含32個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含33個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含34個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含35個核苷酸長之正義股。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含36個核苷酸長之正義股。 在一些具體實施例中,正義股在其3'端處包含主幹-環圈結構。在一些具體實施例中,主幹-環圈係由股內鹼基配對(intrastrand base pairing)所形成。在一些具體實施例中,正義股在其5'端處包含主幹-環圈結構。在一些具體實施例中,主幹係2、3、4、5、6、7、8、9、10、11、12、13、或14個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含2個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含3個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含4個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含5個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含6個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含7個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含8個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含9個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含10個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含11個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含12個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含13個核苷酸長之雙股體。在一些具體實施例中,主幹-環圈之主幹包含14個核苷酸長之雙股體。 在一些具體實施例中,主幹-環圈提供脂質-結合之RNAi寡核苷酸抗降解(例如,酶降解)保護、促進或改善對目標細胞、組織、或器官之靶定及/或遞送、或兩者兼具。例如,在一些具體實施例中,主幹-環圈之環圈提供包含一或多種修飾之核苷酸,該等修飾促進、改善、或增加對目標mRNA(例如,在CNS中表現之目標mRNA)之靶定、目標基因表現之抑制、及/或對目標細胞、組織、或器官(例如,CNS)之遞送、或其組合。在一些具體實施例中,主幹-環圈本身或對主幹環之(多種)修飾實質上不影響脂質-結合之RNAi寡核苷酸之固有的基因表現抑制活性,但卻促進、改善、或增加穩定性(例如,提供抗降解保護)及/或脂質-結合之RNAi寡核苷酸對目標細胞、組織、或器官(例如,CNS)之遞送。在某些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含正義股,其包含(例如,在其3'端處)如:S1-L-S2所示之主幹-環圈,其中S1係與S2互補,且其中L在S1與S2之間形成至多約10個核苷酸長(例如,3、4、5、6、7、8、9、或10個核苷酸長)的單股環圈。在一些具體實施例中,環圈(L)係3個核苷酸長。在一些具體實施例中,環圈(L)係4個核苷酸長。 在一些具體實施例中,四環包含序列5'-GAAA-3'。在一些具體實施例中,主幹環圈包含序列5'-GCAGCCGAAA GGCUGC-3'(SEQ ID NO: 32)。 在一些具體實施例中,具有如上所述之結構S1-L-S2之主幹-環圈之環圈(L)係三環。在一些具體實施例中,三環包含核糖核苷酸、去氧核糖核苷酸、經修飾之核苷酸、遞送配體、及其組合。 在一些具體實施例中,具有如上所述之結構S1-L-S2之主幹-環圈之環圈(L)係四環(例如,在帶缺口之四環結構內)。在一些具體實施例中,四環包含核糖核苷酸、去氧核糖核苷酸、經修飾之核苷酸、遞送配體、及其組合。 在一些具體實施例中,具有如上所述之結構S1-L-S2之主幹-環圈之環圈(L)係如美國專利第10,131,912號中所述之四環,其以引用方式併入(例如,在帶缺口之四環結構內)。 雙股體長度 在一些具體實施例中,在正義股與反義股之間形成之雙股體係至少12個(例如,至少15、至少16、至少17、至少18、至少19、至少20、或至少21個)核苷酸長。在一些具體實施例中,在正義股與反義股之間形成之雙股體係在12至30個核苷酸長之範圍內(例如,12至30、12至27、12至22、15至25、18至30、18至22、18至25、18至27、18至30、19至30、或21至30個核苷酸長)。在一些具體實施例中,在正義股與反義股之間形成之雙股體係12、13、14、15、16、17、18、19、29、21、22、23、24、25、26、27、28、29或30個核苷酸長。在一些具體實施例中,在正義股與反義股之間形成之雙股體係15至30個鹼基對長。在一些具體實施例中,在正義股與反義股之間形成之雙股體係17至21個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體係17個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體係18個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體係19個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體係20個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體係21個鹼基對長。在一些具體實施例中,在正義股與及反義股之間形成之雙股體不會橫跨正義股及/或反義股之整個長度。在一些具體實施例中,在正義股與及反義股之間的雙股體橫跨正義股或反義股之整個長度。在一些具體實施例中,在正義股與及反義股之間的雙股體橫跨正義股及反義股兩者之整個長度。 寡核苷酸端 在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含正義股及反義股,使得在正義股或反義股、或正義股及反義股兩者上存在3'突出端。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸具有一個相較於另一個5'端為熱力學上較不穩定的5'端。在一些具體實施例中,提供不對稱的脂質-結合之RNAi寡核苷酸,其包括在正義股之3'端處的鈍端及在反義股之3'端處的突出端。在一些具體實施例中,在反義股上之3'突出端係1至4個核甘酸長(例如,1、2、3、或4個核苷酸長)。 在一些具體實施例中,3'-突出端係約一個(1)至二十個(20)核苷酸長(例如,約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、或約20個核苷酸長)。在一些具體實施例中,3'突出端係約一個(1)至十九個(19)、一個(1)至十八個(18)、一個(1)至十七個(17)、一個(1)至十六個(16)、一個(1)至十五個(15)、一個(1)至十四個(14)、一個(1)至十三個(13)、一個(1)至十二個(12)、一個(1)至十一個(11)、一個(1)至十個(10)、一個(1)至九個(9)、一個(1)至八個(8)、一個(1)至七個(7)、一個(1)至六個(6)、一個(1)至五個(5)、一個(1)至四個(4)、一個(1)至三個(3)、或約一個(1)至二個(2)核苷酸長。在一些具體實施例中,3'-突出端係(1)個核苷酸長。在一些具體實施例中,3'-突出端係二個(2)核苷酸長。在一些具體實施例中,3'-突出端係三個(3)核苷酸長。在一些具體實施例中,3'-突出端係四個(4)核苷酸長。在一些具體實施例中,3'-突出端係五個(5)核苷酸長。在一些具體實施例中,3'-突出端係六個(6)核苷酸長。在一些具體實施例中,3'-突出端係七個(7)核苷酸長。在一些具體實施例中,3'-突出端係八個(8)核苷酸長。在一些具體實施例中,3'-突出端係九個(9)核苷酸長。在一些具體實施例中,3'-突出端係十個(10)核苷酸長。在一些具體實施例中,3'-突出端係十一個(11)核苷酸長。在一些具體實施例中,3'-突出端係十二個(12)核苷酸長。在一些具體實施例中,3'-突出端係十三個(13)核苷酸長。在一些具體實施例中,3'-突出端係十四個(14)核苷酸長。在一些具體實施例中,3'-突出端係十五個(15)核苷酸長。在一些具體實施例中,3'-突出端係十六個(16)核苷酸長。在一些具體實施例中,3'-突出端係十七個(17)核苷酸長。在一些具體實施例中,3'-突出端係十八個(18)核苷酸長。在一些具體實施例中,3'-突出端係十九個(19)核苷酸長。在一些具體實施例中,3'-突出端係二十個(20)核苷酸長。 一般而言,用於RNAi之寡核苷酸在反義(引導)股之3'端上具有二個(2)核苷酸的突出端。然而,其他突出端亦係可能的。在一些具體實施例中,突出端係3'突出端,其包含在一個與四個核苷酸之間的長度,視需要地一個至四個、一個至三個、一個至二個、二個至四個、二個至三個、或一個、二個、三個、或四個核苷酸。在一些具體實施例中,突出端係5'突出端,其包含在一個與四個核苷酸之間的長度,視需要地一個至四個、一個至三個、一個至二個、二個至四個、二個至三個、或一個、二個、三個、或四個核苷酸。 在一些具體實施例中,本文中之寡核苷酸包含正義股及反義股,其中任一或兩個股之5'末端包含:包含一或多個核苷酸之5'-突出端。在一些具體實施例中,本文中之寡核苷酸包含正義股及反義股,其中正義股包含:包含一或多個核苷酸之5'-突出端。在一些具體實施例中,本文中之寡核苷酸包含正義股及反義股,其中反義股包含:包含一或多個核苷酸之5'-突出端。在一些具體實施例中,本文中之寡核苷酸包含正義股及反義股,其中正義股及反義股兩者均包含:包含一或多個核苷酸之5'-突出端。 在一些具體實施例中,5'-突出端係約一個(1)至二十個(20)核苷酸長(例如,約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、或約20個核苷酸長)。在一些具體實施例中,5'突出端係約一個(1)至十九個(19)、一個(1)至十八個(18)、一個(1)至十七個(17)、一個(1)至十六個(16)、一個(1)至十五個(15)、一個(1)至十四個(14)、一個(1)至十三個(13)、一個(1)至十二個(12)、一個(1)至十一個(11)、一個(1)至十個(10)、一個(1)至九個(9)、一個(1)至八個(8)、一個(1)至七個(7)、一個(1)至六個(6)、一個(1)至五個(5)、一個(1)至四個(4)、一個(1)至三個(3)、或約一個(1)至二個(2)核苷酸長。在一些具體實施例中,5'-突出端係(1)個核苷酸長。在一些具體實施例中,5'-突出端係二個(2)核苷酸長。在一些具體實施例中,5'-突出端係三個(3)核苷酸長。在一些具體實施例中,5'-突出端係四個(4)核苷酸長。在一些具體實施例中,5'-突出端係五個(5)核苷酸長。在一些具體實施例中,5'-突出端係六個(6)核苷酸長。在一些具體實施例中,5'-突出端係七個(7)核苷酸長。在一些具體實施例中,5'-突出端係八個(8)核苷酸長。在一些具體實施例中,5'-突出端係九個(9)核苷酸長。在一些具體實施例中,5'-突出端係十個(10)核苷酸長。在一些具體實施例中,5'-突出端係十一個(11)核苷酸長。在一些具體實施例中,5'-突出端係十二個(12)核苷酸長。在一些具體實施例中,5'-突出端係十三個(13)核苷酸長。在一些具體實施例中,5'-突出端係十四個(14)核苷酸長。在一些具體實施例中,5'-突出端係十五個(15)核苷酸長。在一些具體實施例中,5'-突出端係十六個(16)核苷酸長。在一些具體實施例中,5'-突出端係十七個(17)核苷酸長。在一些具體實施例中,5'-突出端係十八個(18)核苷酸長。在一些具體實施例中,5'-突出端係十九個(19)核苷酸長。在一些具體實施例中,5'-突出端係二十個(20)核苷酸長。 在一些具體實施例中,正義股及/或反義股之3'端或5'端之一或多個(例如,2、3、或4個)末端核苷酸係經修飾。例如,在一些具體實施例中,反義股之3'端之一或兩個末端核苷酸係經修飾。在一些具體實施例中,在反義股之3'端處之最後一個核苷酸係經修飾,例如,包含2'修飾,例如,2'-O-甲氧基乙基。在一些具體實施例中,在反義股之3'端處之最後一或二個末端核苷酸係與目標互補。在一些具體實施例中,在反義股之3'端處之最後一或二個核苷酸不與目標互補。 在一些具體實施例中,本文中所揭示之RNAi寡核苷酸結合物在正義股之3'端處包含主幹-環圈結構且在反義股之3'端處包含兩個末端突出端核苷酸。在一些具體實施例中,本文中之RNAi寡核苷酸結合物包含帶缺口之四環結構,其中正義股之3'端包含主幹四環結構且在反義股之3'端處包含兩個末端突出端核苷酸。 在一些具體實施例中,突出端係選自AA、GG、AG、及GA。在一些具體實施例中,突出端係AA。在一些具體實施例中,突出端係AG。在一些具體實施例中,突出端係GA。在一些具體實施例中,二個末端突出端核苷酸係GG。一般而言,反義股之二個末端GG核苷酸中之一者或兩者不與目標互補。 在一些具體實施例中,正義股或反義股之5'端及/或3'端具有倒置之帽核苷酸(cap nucleotide)。 在一些具體實施例中,在正義股及/或反義股之3'端或5'端之末端核苷酸之間提供一或多個(例如,2、3、4、5、6個)經修飾之核苷酸間鍵聯。在一些具體實施例中,在正義股及/或反義股之3'端或5'端處之突出端之間提供經修飾之核苷酸間鍵聯。 寡核苷酸修飾 在一些具體實施例中,本文中所揭示之RNAi寡核苷酸結合物包含一或多種修飾。寡核苷酸(例如,RNAi寡核苷酸)可以各種方式修飾以改善或控制特異性、穩定性、遞送、生物可用性、對核酸酶降解之抗性、免疫原性、鹼基-配對性質、RNA分布及細胞攝取及與治療研究用途有關的其他特徵。 在一些具體實施例中,修飾係經修飾之糖。在一些具體實施例中,修飾係5'-末端磷酸酯基團。在一些具體實施例中,修飾係經修飾之核苷間鍵聯。在一些具體實施例中,修飾係經修飾之鹼基。在一些具體實施例中,本文中所述之寡核苷酸可包含本文中所述之修飾中之任一者或其任何組合。例如,在一些具體實施例中,本文中所述之寡核苷酸包含至少一個經修飾之糖、5'-末端磷酸酯基團、至少一個經修飾之核苷間鍵聯、及至少一個經修飾之鹼基。 寡核苷酸(例如,RNAi寡核苷酸)上修飾之數目及那些核苷酸修飾之位置可能影響該寡核苷酸之性質。例如,寡核苷酸可藉由將彼等與脂質奈米粒子(lipid nanoparticle, LNP)或類似載體結合或將彼等包括在脂質奈米粒子或類似載體中而在體內遞送。然而,當寡核苷酸不受LNP或類似載體保護時,對該等核苷酸中之至少一些進行修飾可為有利的。因此,在一些具體實施例中,寡核苷酸之所有或實質上所有的核苷酸均係經修飾。在一些具體實施例中,超過一半的核苷酸係經修飾。在一些具體實施例中,少於一半的核苷酸係經修飾。在一些具體實施例中,包含寡核苷酸之所有核苷酸之糖部分在2'位置處均係經修飾。在一些具體實施例中,除了與脂質結合之核苷酸(例如,正義股之5'-末端核苷酸)之外,包含寡核苷酸之所有核苷酸之糖部分在2'位置處均係經修飾。修飾可係可逆或不可逆。在一些具體實施例中,如本文中所述之寡核苷酸具有足以引起所欲特性(例如,防止酶降解、體內投予之後靶定所欲細胞之能力、及/或熱力學穩定性)之一定數量及類型的經修飾之核苷酸。 糖修飾在一些具體實施例中,糖中之核苷酸修飾包含2'-修飾。在一些具體實施例中,2'-修飾可為2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-氟(2'-F)、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、或2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。在一些具體實施例中,修飾係2'-F、2'-OMe或2'-MOE。在一些具體實施例中,糖中之修飾包含糖環之修飾,其可包含糖環之一或多個碳之修飾。例如,核苷酸之糖之修飾可包含將糖之2'-氧與糖之1'-碳或4'-碳連接,或將2'-氧經由伸乙基或亞甲基橋與1'-碳或4'-碳連接。在一些具體實施例中,經修飾之核苷酸具有非環狀糖,其缺乏2'-碳至3'-碳的鍵。在一些具體實施例中,經修飾之核苷酸例如,在糖之4'位置中具有硫醇基團。 在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸包含至少約1個經修飾之核苷酸(例如,至少1、至少5、至少10、至少15、至少20、至少25、至少30、至少35、至少40、至少45、至少50、至少55、至少60、或更多個)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸之正義股包含至少約1個經修飾之核苷酸(例如,至少1、至少5、至少10、至少15、至少20、至少25、至少30、至少35、或更多個)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸之反義股包含至少約1個經修飾之核苷酸(例如,至少1、至少5、至少10、至少15、至少20、或更多個)。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸之正義股之所有核苷酸均係經修飾。在一些具體實施例中,脂質-結合之RNAi寡核苷酸之反義股之所有核苷酸均係經修飾。在一些具體實施例中,脂質-結合之RNAi寡核苷酸(亦即,正義股及反義股兩者)之所有核苷酸均係經修飾。在一些具體實施例中,經修飾之核苷酸包含2'-修飾(例如,2'-F、或2'-OMe、2'-MOE、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸)。 在一些具體實施例中,本揭露提供具有不同修飾模式之脂質-結合之RNAi寡核苷酸。在一些具體實施例中,經修飾之脂質-結合之RNAi寡核苷酸包含具有如實施例及序列表中所示之修飾模式的正義股序列及如實施例及序列表中所示之修飾模式的反義股序列。 在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含具有經2'-F修飾之核苷酸的反義股。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含:包含經2'-F及2'-OMe修飾之核苷酸的反義股。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含具有經2'-F修飾之核苷酸的正義股。在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸包含:包含經2'-F及2'-OMe修飾之核苷酸的正義股。 在一些具體實施例中,本文中所述之寡核苷酸包含正義股,其中正義股之約10至25%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、或20%的核苷酸包含2'-氟修飾。在一些具體實施例中,正義股之約11%的核苷酸包含2-氟修飾。在一些具體實施例中,正義股之約20%的核苷酸包含2-氟修飾。在一些具體實施例中,本文中所述之寡核苷酸包含反義股,其中反義股之約25至35%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、或35%的核苷酸包含2'-氟修飾。在一些具體實施例中,反義股之約32%的核苷酸包含2'-氟修飾。在一些具體實施例中,寡核苷酸具有約15至25%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、或25%的其核苷酸包含2'-氟修飾。在一些具體實施例中,寡核苷酸中約19%的核苷酸包含2'-氟修飾。在一些具體實施例中,寡核苷酸中約26%的核苷酸包含2'-氟修飾。 在一些具體實施例中,就此等寡核苷酸而言,正義股之位置8、9、10、或11中之一或多者係經2'-F基團修飾。在一些具體實施例中,就此等寡核苷酸而言,正義股中未經2'-F基團修飾或未與脂質結合之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置2至7、及12至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至6、及12至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至3、5至7、及12至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及13至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、12、及14至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、12至17、及19至20處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至19處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置2至7、及12至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置2至7、及12至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至3、5至7、及12至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及13至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12、及14至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至17、及19至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至19、及21至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、及12至22、及24至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、12至27、及29至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、12至28、及30至36處之各核苷酸處之糖部分係經2'-OMe修飾。在一些具體實施例中,就此等寡核苷酸而言,在正義股中之位置1至7、12至29、及31至36處之各核苷酸處之糖部分係經2'-OMe修飾。 在一些具體實施例中,正義股包含至少一個經2'-F修飾之核苷酸,其中未經2'-F基團修飾或未與脂質結合之剩餘的核苷酸係經2'-OMe修飾。 在一些具體實施例中,反義股具有7個在糖部分之2'位置處經2'-F修飾的核苷酸。在一些具體實施例中,在反義股之位置2、3、4、5、7、10、及14處之糖部分係經2'-F修飾。在一些具體實施例中,反義股具有14個在糖部分之2'位置處經2'-OMe修飾的核苷酸。在一些具體實施例中,在反義股之位置6、8、9、11、12、13、15、16、17、18、19、20、21、及22處之糖部分係經2'-OMe修飾。 在一些具體實施例中,正義股具有4個在糖部分之2'位置處經2'-F修飾的核苷酸。在一些具體實施例中,在正義股之位置2、3、8、9、10、及11處之糖部分係經2'-F修飾。在一些具體實施例中,正義股具有15個在糖部分之2'位置處經2'-OMe修飾的核苷酸。在一些具體實施例中,在反義股之位置6、8、9、11、12、13、15、16、17、18、19、20、21、及22處之糖部分係經2'-OMe修飾。 在一些具體實施例中,反義股具有3個在糖部分之2'-位置處經2'-F修飾的核苷酸。在一些具體實施例中,在反義股之位置2、5及14處及視需要地在位置1、3、7及10處之至多3個核苷酸之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置2、5及14處之各位置處之糖部分係經2'-F修飾。在其他具體實施例中,在反義股之位置1、2、5及14處之各位置處之糖部分係經2'-F修飾。在其他具體實施例中,在反義股之位置2、4、5及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置1、2、3、5、7、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置2、3、4、5、7、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置1、2、3、5、10、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置2、3、4、5、10、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置2、3、5、7、10、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,在反義股之位置2、3、4、5、7、10、及14處之各位置處之糖部分係經2'-F修飾。在一些具體實施例中,反義股具有9個在糖部分之2'-位置經2'-F修飾的核苷酸。在一些具體實施例中,反義股之位置2、3、4、5、7、10、14、16、及19處之各位置處之糖部分係經2'-F修飾。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置2、5、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置2、3、4、5、7、10、14、16及19處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置1、2、5、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置1、2、3、5、7、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置1、2、3、5、10、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置2、3、5、7、10、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置2、3、4、5、7、10、14、16、及19處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在反義股之位置2、3、4、5、7、10、及14處之各核苷酸具有經2'-F修飾之糖部分,且反義股之各剩餘核苷酸之糖部分經選自由下列所組成之群組的修飾修飾:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、或位置22處具有經2'-F修飾之糖部分。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、或位置22處具有經2'-OMe修飾之糖部分。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含反義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、或位置22處具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置8至11處具有經2'-F修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置3、5、8、10、12、13、15、及17處具有經2'-F修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1至7、及12至17、或12至20處具有經2'OMe修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置2至7、及12至17、或12至20處具有經2'OMe修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1至6、及12至17或12至20處具有經2'OMe修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1、2、4、6、7、9、11、14、16、及18至20處具有經2'OMe修飾之糖部分。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在正義股之位置1至7、及12至17或12至20處之各核苷酸具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在正義股之位置2至7、及12至17或12至20處之各核苷酸具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在正義股之位置1至6、及12至17或12至20處之各核苷酸具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在正義股之位置1、2、4、6、7、9、11、14、16、及18至20處之各核苷酸具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、位置22、位置23、位置24、位置25、位置26、位置27、位置28、位置29、位置30、位置31、位置32、位置33、位置34、位置35、或位置36處具有經2'-F修飾之糖部分。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、位置22、位置23、位置24、位置25、位置26、位置27、位置28、位置29、位置30、位置31、位置32、位置33、位置34、位置35、或位置36處具有經2'-OMe修飾之糖部分。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含正義股,其在位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、位置22、位置23、位置24、位置25、位置26、位置27、位置28、位置29、位置30、位置31、位置32、位置33、位置34、位置35、或位置36處具有經選自由下列所組成之群組的修飾修飾之糖部分:2'-O-丙炔基、2'-O-丙基胺基、2'-胺基、2'-乙基、2'-胺基乙基(EA)、2'-O-甲基(2'-OMe)、2'-O-甲氧基乙基(2'-MOE)、2'-O-[2-(甲基胺基)-2-側氧基乙基](2'-O-NMA)、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-FANA)。 5'- 末端磷酸酯在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸包含5'-末端磷酸酯。在一些具體實施例中,脂質-結合之RNAi寡核苷酸之5'-末端磷酸酯基團增強與Ago2的相互作用。然而,包含5'-磷酸酯基團之寡核苷酸可能易受經由磷酸酶或其他酶降解的影響,其可限制彼等的體內生物可用性。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含對此種降解具有抗性的5'-磷酸酯之類似物。在一些具體實施例中,磷酸酯類似物係氧基甲基膦酸酯、乙烯基膦酸酯或丙二醯基膦酸酯、或其組合。在一些具體實施例中,將脂質-結合之RNAi寡核苷酸股之5'端附接至模擬天然5'-磷酸酯基團之靜電及空間性質的化學部分(「磷酸酯模擬物(phosphate mimic)」)。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸在糖之4'-碳位置處具有磷酸酯類似物(稱為「4'-磷酸酯類似物(4'-phosphate analog)」)。參見例如,國際專利申請公開案第WO 2018/045317號。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含在5'-末端核苷酸處之4'-磷酸酯類似物。在一些具體實施例中,磷酸酯類似物係氧基甲基膦酸酯,其中氧基甲基之氧原子係與糖部分(例如,在其4'-碳處)或其類似物接合。在其他具體實施例中,4'-磷酸酯類似物係硫基甲基膦酸酯或胺基甲基膦酸酯,其中硫基甲基之硫原子或胺基甲基之氮原子係與糖部分之4'-碳或其類似物接合。在一些具體實施例中,4'-磷酸酯類似物係氧基甲基膦酸酯。在一些具體實施例中,氧基甲基膦酸酯係由式-O-CH 2-PO(OH) 2、-O-CH 2-PO(OR) 2、或-O-CH2-POOH(R)所表示,其中R係獨立地選自H、CH 3、烷基、CH 2CH 2CN、CH 2OCOC(CH 3) 3、CH 2OCH 2CH 2Si(CH 3) 3、或保護基團。在一些具體實施例中,烷基係CH 2CH 3。更一般地,R係獨立地選自H、CH 3或CH 2CH 3。在一些具體實施例中,R係CH3。在一些具體實施例中,4'-磷酸酯類似物係5'-甲氧基膦酸酯-4'-氧基。在一些具體實施例中,4'-磷酸酯類似物係4'-氧基甲基膦酸酯。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸包含:包含在5'-末端核苷酸處之4'-磷酸酯類似物的反義股,其中5'-末端核苷酸包含以下結構: 經修飾之核苷酸間鍵聯在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含經修飾之核苷酸間鍵聯。在一些具體實施例中,磷酸酯修飾或取代導致寡核苷酸包含至少約1個(例如,至少1個、至少2個、至少3個、或至少5個)經修飾之核苷酸間鍵聯。在一些具體實施例中,在本文中所揭示之寡核苷酸中之任一者包含約1至約10個(例如,1至10個、2至8個、4至6個、3至10個、5至10個、1至5個、1至3個、或1至2個)經修飾之核苷酸間鍵聯。在一些具體實施例中,本文中所揭示之寡核苷酸包中之任一者包含1、2、3、4、5、6、7、8、9、或10個經修飾之核苷酸間鍵聯。 經修飾之核苷酸間鍵聯可係二硫代磷酸酯鍵聯、硫代磷酸酯鍵聯、磷酸三酯鍵聯、硫羰烷基膦酸酯鍵聯(thionoalkylphosphonate linkage)、硫羰烷基膦酸三酯鍵聯、亞磷醯胺鍵聯、膦酸酯鍵聯、或硼烷磷酸酯鍵聯。在一些具體實施例中,如本文中所揭示之寡核苷酸中任一者之至少一個經修飾之核苷酸間鍵聯係硫代磷酸酯鍵聯。 在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸在正義股之位置1及2、反義股之位置1及2、反義股之位置2及3、反義股之位置3及4、反義股之位置20及21、及反義股之位置21及22中之一或多者之間具有硫代磷酸酯鍵聯。在一些具體實施例中,本文中所述之寡核苷酸在正義股之位置1及2、反義股之位置1及2、反義股之位置2及3、反義股之位置20及21、及反義股之位置21及22中之各者之間具有硫代磷酸酯鍵聯。在一些具體實施例中,本文中所述之寡核苷酸在正義股之位置1及2、反義股之位置1及2、反義股之位置2及3、反義股之位置3及4、反義股之位置20及21、及反義股之位置21及22中之各者之間具有硫代磷酸酯鍵聯。在一些具體實施例中,本文中所述之寡核苷酸在正義股之位置1及2、正義股之位置18及19、正義股之位置19及20、反義股之位置1及2、反義股之位置2及3、反義股之位置3及4、反義股之位置20及21、及反義股之位置21及22中之各者之間具有硫代磷酸酯鍵聯。 在一些具體實施例中,本文中所述之寡核苷酸結合物包含肽核酸(peptide nucleic acid, PNA)。PNA係寡核苷酸模擬物,其中糖-磷酸酯主鏈被由N-(2-胺基乙基)甘胺酸單元所構成之偽肽骨架(pseudopeptide skeleton)置換。核鹼基通過二原子(two-atom)羧甲基間隔物與此骨幹連接。在一些具體實施例中,本文中所述之寡核苷酸結合物包含N-嗎啉基寡聚物(morpholino oligomer, PMO),其包含通過二胺基磷酸酯基團連接之亞甲基N-嗎啉環之核苷酸間鍵聯主鏈。 鹼基修飾在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含一或多個經修飾之核鹼基。在一些具體實施例中,經修飾之核鹼基(本文中亦稱為鹼基類似物)係連接在核苷酸糖部分之1'位置處。在一些具體實施例中,經修飾之核鹼基係含氮鹼基(nitrogenous base)。在一些具體實施例中,經修飾之核鹼基不含氮原子。參見例如,美國專利申請公開案第2008/0274462號。在一些具體實施例中,經修飾之核苷酸係通用鹼基(universal base)。在一些具體實施例中,經修飾之核苷酸不含核鹼基(無鹼基)。 在一些具體實施例中,通用鹼基係位於經修飾之核苷酸中之核苷酸糖部分之1'位置處、或於核苷酸糖部分取代中之同等位置處的雜環部分,當存在於雙股體中時,該雜環部分可與超過一種類型的鹼基相對定位而實質上不改變雙股體之結構。在一些具體實施例中,相較於與目標核酸完全互補的參考單股核酸(例如,寡核苷酸),含有通用鹼基之單股核酸與目標核酸形成雙股體,該雙股體具有比以該互補的核酸所形成之雙股體更低的T m。在一些具體實施例中,當相較於其中通用鹼基已被鹼基置換以生成單一錯配的參考單股核酸時,含有通用鹼基之單股核酸與目標核酸形成雙股體,該雙股體具有比以包含錯配之核酸所形成之雙股體更高的T m。 通用接合核苷酸之非限制性實施例包括,但不限於肌苷(inosine)、1-β-D-呋喃核糖基-5-硝基吲哚及/或1-β-D-呋喃核糖基-3-硝基吡咯(參見美國專利申請公開案第2007/0254362號;Van Aerschot et al.(1995)NUCLEIC ACIDS RES .23:4363-4370;Loakes et al.(1995)NUCLEIC ACIDS RES .23:2361-66;及Loakes & Brown(1994)NUCLEIC ACIDS RES.22:4039-43)。 靶定配體 在一些具體實施例中,所欲的是將本揭露之寡核苷酸(例如,脂質-結合之RNAi寡核苷酸)靶向中樞神經系統(CNS)之一或多種細胞或組織。此種策略可有助於避免在其他器官中之非所欲作用或避免寡核苷酸對不受益於寡核苷酸的細胞、組織、或器官之過度損耗。因此,在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸係經修飾以促進對特定組織、細胞、或器官之靶定及/或遞送(例如,以促進將結合物遞送至CNS)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含至少一個(例如,1、2、3、4、5、6、或更多個核苷酸)與一或多個靶定配體結合之核苷酸。 在一些具體實施例中,本文中所揭示之脂質-結合之RNAi寡核苷酸之1或多個(例如,1、2、3、4、5、或6個)核苷酸係各自與單獨的靶定配體結合。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之1個核苷酸係與單獨的靶定配體結合。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸之2至4個核苷酸係各自與單獨的靶定配體結合。在一些具體實施例中,靶定配體係與在正義股或反義股之任一端處之2至4個核苷酸(例如,靶定配體係與正義股或反義股之5'或3'端上之2至4個核苷酸突出端或延伸部分結合)結合,使得靶定配體類似於牙刷之刷毛且脂質-結合之RNAi寡核苷酸類似於牙刷。例如,脂質-結合之RNAi寡核苷酸可在正義股之5'或3'端處包含主幹-環圈且主幹之環圈之1、2、3、或4個核苷酸可個別地與靶定配體結合。在一些具體實施例中,由本揭露所提供之脂質-結合之RNAi寡核苷酸在正義股之3'端處包含主幹-環圈,其中主幹-環圈之環圈包含三環或四環,且其中包含三環或四環之3或4個核苷酸分別個別地與靶定配體結合。 GalNAc係ASGPR之高親和力配體,該ASGPR主要表現在肝細胞之竇狀表面(sinusoidal surface)上且在結合、內化、及後續清除含有末端半乳糖或GalNAc殘基的循環糖蛋白質(去唾液酸糖蛋白質)方面具有主要作用。GalNAc部分與本揭露之寡核苷酸之結合(間接或直接)可用於將此等寡核苷酸靶向在細胞上表現之ASGPR。在一些具體實施例中,本揭露之寡核苷酸係與至少一或多個GalNAc部分結合,其中GalNAc部分將寡核苷酸靶向人類肝臟細胞(例如,人類肝細胞)上表現之ASGPR。在一些具體實施例中,GalNAc部分將寡核苷酸靶向肝臟。 在一些具體實施例中,本揭露之寡核苷酸係直接地或間接地與單價GalNAc結合。在一些具體實施例中,寡核苷酸係直接地或間接地與超過一個單價GalNAc(亦即,係與2、3、或4個單價GalNAc部分結合,且一般係與3、或4個單價GalNAc部分結合)結合。在一些具體實施例中,寡核苷酸係與一或多個二價GalNAc、三價GalNAc、或四價GalNAc部分結合。 在一些具體實施例中,寡核苷酸之1或多個(例如,1、2、3、4、5、或6個)核苷酸係各自與GalNAc部分結合。在一些具體實施例中,四環之2至4個核苷酸係各自與單獨的GalNAc結合。在一些具體實施例中,三環之1至3個核苷酸係各自與單獨的GalNAc結合。在一些具體實施例中,靶定配體係與在正義股或反義股之任一端處之2至4個核苷酸(例如,配體係與正義股或反義股之5'或3'端上之2至4個核苷酸突出端或延伸部分結合)結合,使得GalNAc部分類似於牙刷之刷毛且寡核苷酸類似於牙刷。在一些具體實施例中,GalNAc部分係與正義股之核苷酸結合。例如,四個(4)GalNAc部分可與正義股之四環中之核苷酸結合,其中GalNAc部分各自與1個核苷酸結合。 在一些具體實施例中,四環係腺嘌呤及鳥嘌呤核苷酸之任何組合。 在一些具體實施例中,四環(L)具有經由本文中所述之任何連接子附接至四環之任何一個或多個鳥嘌呤核苷酸之單價GalNAc部分,如下所示(X=雜原子): 在一些具體實施例中,四環(L)具有經由本文中所述之任何連接子附接至四環之任何一個或多個腺嘌呤核苷酸之單價GalNAc部分,如下所示(X=雜原子): 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含附接至鳥嘌呤核苷酸之單價GalNAc,被稱為[ademG-GalNAc]或2'-胺基二乙氧基甲醇-鳥嘌呤-GalNAc,如下所繪示: 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸包含附接至腺嘌呤核苷酸之單價GalNAc,被稱為[ademA-GalNAc]或2'-胺基二乙氧基甲醇-腺嘌呤-GalNAc,如下所繪示: 下文顯示包含5'至3'核苷酸序列GAAA之環圈之此種結合物之實施例(L=連接子,X=雜原子)。此種環圈可存在於例如正義股之位置27至30處。在化學式中, 係用於描述與寡核苷酸股之附接點。 可使用適當的方法或化學(例如,點擊化學(click chemistry))以將靶定配體連接至核苷酸。在一些具體實施例中,靶定配體係使用點擊連接子與核苷酸結合。在一些具體實施例中,可使用基於縮醛之連接子將靶定配體與本文中所述之寡核苷酸中任一者之核苷酸結合。基於縮醛之連接子揭示於例如國際專利申請公開案第WO 2016/100401號中。在一些具體實施例中,連接子係不穩定的連接子。然而,在其他具體實施例中,連接子係穩定的。下文顯示包含5'至3'核苷酸GAAA之環圈之實施例,其中GalNAc部分係使用縮醛連接子附接至環圈之核苷酸。此種環圈可存在於例如正義股之位置27至30處。在化學式中, 係與寡核苷酸股之附接點。 如上所述,可使用各種適當的方法或化學合成技術(例如,點擊化學)將靶定配體連接至核苷酸。在一些具體實施例中,靶定配體係使用點擊連接子與核苷酸結合。在一些具體實施例中,可使用基於縮醛之連接子將靶定配體與本文中所述之寡核苷酸中任一者之核苷酸結合。基於縮醛之連接子揭示於例如國際專利申請公開案第WO 2016/100401號中。在一些具體實施例中,連接子係不穩定的連接子。然而,在其他具體實施例中,連接子係穩定的連接子。 在一些具體實施例中,在靶定配體(例如,GalNAc部分)與脂質-結合之RNAi寡核苷酸之間提供雙股延伸部分(例如,具有至多3、4、5、或6 bp長)。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸不具有與其結合之GalNAc。 脂質結合物 在一些具體實施例中,本文中所述之脂質部分中之任一者係與寡核苷酸之正義股之核苷酸結合。在一些具體實施例中,脂質部分係與寡核苷酸之末端位置結合。在一些具體實施例中,脂質部分係與正義股之5'末端核苷酸結合。在一些具體實施例中,脂質部分係與正義股之3'末端核苷酸結合。 在一些具體實施例中,脂質部分係與正義股上之內部核苷酸結合。內部位置係除正義股各端之二個末端位置之外的任何核苷酸位置。在一些具體實施例中,脂質部分係與正義股之一或多個內部位置結合。在一些具體實施例中,脂質部分係與正義股之位置1、位置2、位置3、位置4、位置5、位置6、位置7、位置8、位置9、位置10、位置11、位置12、位置13、位置14、位置15、位置16、位置17、位置18、位置19、位置20、位置21、位置22、位置23、位置24、位置25、位置26、位置27、位置28、位置29、位置30、位置31、位置32、位置33、位置34、位置35、或位置36結合。在一些具體實施例中,脂質部分係與正義股之位置1結合。在一些具體實施例中,脂質部分係與正義股之位置4結合。在一些具體實施例中,脂質部分係與正義股之位置8結合。在一些具體實施例中,脂質部分係與正義股之位置12結合。在一些具體實施例中,脂質部分係與正義股之位置13結合。在一些具體實施例中,脂質部分係與正義股之位置18結合。在一些具體實施例中,脂質部分係與正義股之位置20結合。在一些具體實施例中,脂質部分係與正義股之位置23結合。在一些具體實施例中,脂質部分係與正義股之位置28結合。在一些具體實施例中,脂質部分係與正義股之位置29結合。在一些具體實施例中,脂質部分係與正義股之位置30結合。 在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸包含至少一個與一或多個脂質部分結合之核苷酸。在一些具體實施例中,一或多個脂質部分係與相同核苷酸結合。在一些具體實施例中,一或多個脂質部分係與不同核苷酸結合。在一些具體實施例中,一個、二個、三個、四個、五個、或六個脂質部分係與寡核苷酸結合。在一些具體實施例中,一或多個脂質部分係與腺嘌呤核苷酸結合。在一些具體實施例中,一或多個脂質部分係與鳥嘌呤核苷酸結合。在一些具體實施例中,一或多個脂質部分係與胞嘧啶核苷酸結合。在一些具體實施例中,一或多個脂質部分係與胸腺嘧啶核苷酸結合。在一些具體實施例中,一或多個脂質部分係與尿嘧啶核苷酸結合。 在一些具體實施例中,脂質部分係烴鏈。在一些具體實施例中,烴鏈係飽和的。在一些具體實施例中,烴鏈係不飽和的。在一些具體實施例中,烴鏈係支鏈。在一些具體實施例中,烴鏈係直鏈。在一些具體實施例中,脂質部分係C8至C30烴鏈。在一些具體實施例中,脂質部分係C8:0、C10:0、C11:0、C12:0、C14:0、C16:0、C17:0、C18:0、C18:1、C18:2、C22:5、C22:0、C24:0、C26:0、C22:6、C24:1、二醯基C16:0或二醯基C18:1。 在一些具體實施例中,脂質部分係C16烴鏈。 在一些具體實施例中,脂質部分係經由連接子與寡核苷酸結合。在一些具體實施例中,脂質-結合之寡核苷酸之核苷酸係由式II-b或II-c所表示: 或其醫藥上可接受之鹽,其中: L 1係共價鍵、單價或二價飽和或不飽和、直鏈或支鏈C 1-50烴鏈,其中烴鏈之0至10個亞甲基單元獨立地係由下列所置換:-Cy-、-O-、-C(O)NR-、-NR-、-S-、-C(O)-、-C(O)O-、-S(O)-、-S(O) 2-、-P(O)OR-、-P(S)OR-、或 ; R 4係氫、R A、或合適的胺保護基;及 R 5係金剛烷基、或飽和或不飽和、直鏈、或支鏈C 1-50烴鏈,其中烴鏈之0至10個亞甲基單元獨立地係由下列所置換:-O-、-C(O)NR-、-NR-、-S-、-C(O)-、-C(O)O-、-S(O)-、-S(O) 2-、-P(O)OR-、或-P(S)OR。 在脂質-結合之RNAi寡核苷酸之一些具體實施例中,R 5係選自 在脂質-結合之RNAi寡核苷酸之某些具體實施例中, R 5係選自 在一些具體實施例中,R 5在一些具體實施例中,R 5在一些具體實施例中,脂質-結合之RNAi寡核苷酸之核苷酸係由式 II-IbII-Ic所表示: 或其醫藥上可接受之鹽;其中 B係核鹼基、或氫; m係1至50; X 1係-O-、或-S-; Y係氫、 、或 ; R 3係氫、或合適的保護基; X 2係O、或S; X 3係-O-、-S-、或共價鍵; Y 1係附接至核苷、核苷酸、或寡核苷酸之2'-或3'-末端的連接基團; Y 2係氫、亞磷醯胺類似物、附接至核苷、核苷酸、或寡核苷酸之5'-末端的核苷酸間連接基團、或附接至固體支撐物的連接基團; R 5係金剛烷基、或飽和或不飽和、直鏈、或支鏈C 1-50烴鏈,其中烴鏈之0至10個亞甲基單元獨立地係由下列所置換:-O-、-C(O)NR-、-NR-、-S-、-C(O)-、-C(O)O-、-S(O)-、-S(O) 2-、-P(O)OR-、或-P(S)OR-;及 R係氫、合適的保護基、或視需要地選自下列之經取代之基團:C 1-6脂族、苯基、具有1至2個獨立地選自氮、氧、及硫之雜原子的4至7員飽和或部分不飽和雜環、及具有1至4個獨立地選自氮、氧、及硫之雜原子的5至6員雜芳基環。 在一些具體實施例中,脂質係 在一些具體實施例中,寡核苷酸-配體結合物之寡核苷酸係雙股分子。在一些具體實施例中,寡核苷酸係RNAi分子。在一些具體實施例中,雙股寡核苷酸包含主幹環圈。在一些具體實施例中,主幹環圈係如S1-L-S2所示,其中S1係與S2互補,且其中L在S1及S2之間形成環圈。在一些具體實施例中,配體係與主幹環圈之環圈之核苷酸中之任一者結合。在一些具體實施例中,配體係與主幹環圈之主幹之核苷酸中之任一者結合。在一些具體實施例中,配體係與環圈中自5'至3'之第一個核苷酸結合。在一些具體實施例中,配體係與環圈中自5'至3'之第二個核苷酸結合。在一些具體實施例中,配體係與環圈中自5'至3'之第三個核苷酸結合。在一些具體實施例中,配體係與環圈中自5'至3'之第四個核苷酸結合。在一些具體實施例中,配體係與環圈中之一個、二個、三個、或四個核苷酸結合。在一些具體實施例中,配體係與主幹環圈中之三個核苷酸結合。 在一些具體實施例中,主幹環圈係16個核苷酸長。在一些具體實施例中,配體係與主幹環圈中自5'至3'之第三個核苷酸結合。在一些具體實施例中,配體係與主幹環圈中自5'至3'之第八個核苷酸結合。在一些具體實施例中,配體係與主幹環圈中自5'至3'之第九個核苷酸結合。在一些具體實施例中,配體係與主幹環圈中自5'至3'之第十個核苷酸結合。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含20個核苷酸之正義股,其中位置自5'至3'編號為1至20。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置1結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置4結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置8結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置12結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置13結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置18結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與20個核苷酸正義股之位置20結合之脂質。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含36個核苷酸之正義股,其中位置自5'至3'編號為1至36。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置1結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置4結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置8結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置12結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置13結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置18結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置20結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置23結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置28結合之脂質。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置29的脂質結合。在一些具體實施例中,脂質-結合之RNAi寡核苷酸-包含與36個核苷酸正義股之位置30結合之脂質。 例示性寡核苷酸 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與脂肪酸結合之核苷酸。在一些具體實施例中,脂肪酸係飽和脂肪酸。在一些具體實施例中,脂肪酸係不飽和脂肪酸。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與脂質結合之核苷酸。在一些具體實施例中,脂質係碳鏈。在一些具體實施例中,碳鏈係飽和的。在一些具體實施例中,碳鏈係不飽和的。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含與16個碳(C16)脂質結合之核苷酸。在一些具體實施例中,C16脂質包含至少一個雙鍵。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸之寡核苷酸係與如下所示之C16脂質結合: 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含20個核苷酸長之正義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含22個核苷酸長之反義股。在一些具體實施例中,正義股係20個核苷酸長且反義股係22個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含20個核苷酸長之正義股及22個核苷酸長之反義股,其中正義股及反義股形成20個鹼基對之雙股區域。 在一些具體實施例中,正義股之3'端係鈍端。在一些具體實施例中,反義股之5'端係鈍端。在一些具體實施例中,反義股之3'端包含突出端。在一些具體實施例中,突出端係2個核苷酸長。在一些具體實施例中,突出端係GG。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含一或多個2'修飾。在一些具體實施例中,2'修飾係選自2'-氟或2'-甲基。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之反義股及正義股,其中正義股包含至少一個與正義股之5'末端核苷酸結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之反義股及正義股,其中正義股包含至少一個與正義股之5'末端核苷酸結合之C16烴鏈。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之5'末端核苷酸結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之5'末端核苷酸結合之C16烴鏈。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之不對稱雙股區域,該不對稱雙股區域在反義股之3'端上具有突出端且在寡核苷酸之3'端上具有鈍端,其中正義股包含至少一個與正義股上之5'末端核苷酸結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之不對稱雙股區域,該不對稱雙股區域在反義股之3'端上具有突出端且在寡核苷酸之3'端上具有鈍端,其中正義股包含至少一個與正義股上之5'末端核苷酸結合之C16烴鏈。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之反義股及正義股,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之反義股及正義股,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之C16烴鏈。在一些具體實施例中,並非所有內部核苷酸均適用於將RNAi寡核苷酸遞送至CNS之星狀細胞之脂質結合。例如,在一些具體實施例中,在自5'至3'編號之在正義股之位置9或10處之結合物不適用於將RNAi寡核苷酸遞送至CNS之星狀細胞。在一些具體實施例中,在自5'至3'編號之正義股之內部位置處的脂質結合物不包括位置9及10。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之C16烴鏈。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之不對稱雙股區域,該不對稱雙股區域在反義股之3'端上具有突出端且在寡核苷酸之3'端上具有鈍端,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至22個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之不對稱雙股區域,該不對稱雙股區域在反義股之3'端上具有突出端且在寡核苷酸之3'端上具有鈍端,其中正義股包含至少一個與正義股之內部核苷酸(例如,在位置7處之核苷酸)結合之C16烴鏈。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含36個核苷酸長之正義股。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含22個核苷酸長之反義股。在一些具體實施例中,正義股係36個核苷酸長且反義股係22個核苷酸長。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含36個核苷酸長之正義股及22個核苷酸長之反義股,其中正義股及反義股形成20個鹼基對之雙股區域。 在一些具體實施例中,正義股之3'端包含主幹-環圈。在一些具體實施例中,正義股之3'端包含四環。在一些具體實施例中,正義股之3'端包含:包含SEQ ID NO: 32之主幹-環圈。在一些具體實施例中,反義股之3'端包含突出端。在一些具體實施例中,突出端係2個核苷酸長。在一些具體實施例中,突出端係GG。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與正義股之5'末端核苷酸結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與正義股之核苷酸結合之烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與正義股之5'末端核苷酸結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含:包含四環之正義股及至少一個與四環之核苷酸結合之C16烴鏈。 在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第一個核苷酸(自5'>3'之位置1)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第四個核苷酸(自5'>3'之位置4)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第八個核苷酸(自5'>3'之位置8)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第十二個核苷酸(自5'>3'之位置12)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第十三個核苷酸(自5'>3'之位置13)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第十八個核苷酸(自5'>3'之位置18)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第二十核苷酸(自5'>3'之位置20)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第二十三個核苷酸(自5'>3'之位置23)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第二十八個核苷酸(自5'>3'之位置28)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第二十九個核苷酸(自5'>3'之位置29)結合之C16烴鏈。在一些具體實施例中,脂質-結合之RNAi寡核苷酸包含本文中所述之22至24個核苷酸之反義股及20至36個核苷酸之正義股,其中反義股及正義股形成20至22個鹼基對之雙股區域,其中正義股包含至少一個與正義股之第三十個核苷酸(自5'>3'之位置30)結合之C16烴鏈。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低星狀細胞目標基因之表現的脂質-結合之RNAi寡核苷酸包含下列之修飾模式 雜交至: 其中[mXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸、[fXs]=與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸、[mX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸、[fX]=與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸、[MePhosphonate-4O-mX]=經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸、[ademX-Ls]=脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸、及[ademX-L]=脂質附接至核苷酸,視需要地其中L係C16烴。 在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與在正義股之位置2、位置3、位置6、位置13、位置14、位置15、位置19、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與在正義股之位置1、位置4、位置23、位置28、位置29、或位置30處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與在正義股之位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質-結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及至少一個與在正義股之位置23處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及至少一個與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及至少一個與在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及至少一個與在正義股之位置4、位置12、位置13、位置18、或位置20處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現的脂質-結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及至少一個與在正義股之位置1、位置4、位置12、位置13、位置18、或位置20處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質-結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及至少一個與在正義股之位置4處之核苷酸結合之烴鏈,其中位置係從5'至3'編號。 在一些具體實施例中,整篇描述之位置編號係基於從5'至3'的編號,例如5'端處之末端核苷酸係位置1。 在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置8結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質。在一些具體實施例中,用於降低脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置19結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含主幹-環圈之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質。 在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置8結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置8結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置28結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置29結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置30結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含主幹-環圈之正義股及與正義股之位置23結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在正義股3'端處包含鈍端之正義股及與正義股之位置8結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置8結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質。 在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置8結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低腰脊髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置8結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低延髓中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低小腦中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置1結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置12結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置13結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置18結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。在一些具體實施例中,用於降低下視丘中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置20結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 在一些具體實施例中,用於降低額葉皮質中星狀細胞mRNA之表現之脂質結合之RNAi寡核苷酸包含在其3'端處包含鈍端之正義股及與正義股之位置4結合之脂質,且其中該寡核苷酸包含至少一個經修飾之核苷酸。 提供核酸及其類似物之通用方法包含本文中所述之脂質結合物之核酸及其類似物可使用所屬技術領域中已知之各種方法,包括標準亞磷醯胺方法來製作。可使用任何亞磷醯胺合成方法來合成本揭露所提供之核酸。在某些具體實施例中,在固相合成方法中使用亞磷醯胺以產出反應性中間物亞磷酸酯化合物,隨後使用已知方法將其氧化以產生經膦酸酯修飾之寡核苷酸,一般具有磷酸二酯或硫代磷酸酯核苷酸間鍵聯。本揭露之寡核苷酸合成可以任一方向進行:使用所屬技術領域已知之方法自5'至3'或自3'至5'。 在某些具體實施例中,用於合成提供之核酸之方法包含(a)將核苷或其類似物經由共價鍵聯附接至固體支撐物;(b)將核苷亞磷醯胺或其類似物與步驟(a)之核苷或其類似物上之反應性羥基偶合,以在其間形成核苷酸間鍵,其中將在固體支撐物上任何未偶合之核苷或其類似物用封端試劑封端;(c)將該核苷酸間鍵用氧化劑氧化;及(d)用隨後的核苷亞磷醯胺或其類似物重複步驟(b)至(c)以形成核酸或其類似物,其中至少步驟(a)之核苷或其類似物、步驟(b)之核苷亞磷醯胺或其類似物或步驟(d)之隨後核苷亞磷醯胺或其類似物中之至少一者包含本文中所述之脂質結合物部分。一般而言,重複偶合、封端/氧化步驟及視需要地去保護步驟,直到寡核苷酸達到所欲長度及/或序列為止,之後將其自固體支撐物切割下來。在某些具體實施例中,製備包含1至3個核酸或其類似物之寡核苷酸,該等核酸或其類似物在四環上包含脂質結合物單元。 在下文 流程 A中,在所繪示之特定保護基、脫離基、或轉化條件之情況下,所屬技術領域中具有通常知識者將理解其他保護基、脫離基、及轉化條件亦為合適且被考量。亦考量 流程 A中之屬中所設想之需要額外保護基策略之某些反應性官能基(例如,-N(H)-、-OH等)且由所屬技術領域具有通常知識者所理解。此類基團及轉化詳細描述於 March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, M. B. Smith and J. March, 5 thEdition, John Wiley & Sons, 2001、 COMPREHENSIVE ORGANIC TRANSFORMATIONS,(R. C. Larock, 2 ndEdition, John Wiley & Sons, 1999)、及 PROTECTING GROUPS IN ORGANIC SYNTHESIS,(T. W. Greene and P. G. M. Wuts, 3 rdedition, John Wiley & Sons, 1999)中,其各自特此以全文引用方式併入本文中。 在某些具體實施例中,本揭露之核酸、及其類似物大致上根據下文所示之 流程 A 、流程 A1、及 流程 B製備: 流程 A :合成本揭露之配體結合之寡核苷酸 流程 A1 :合成本揭露之脂質結合之寡核苷酸 如上文 流程 A流程 A1中所繪示,將式 I-1之核酸或其類似物與一或多個配體/親脂性化合物結合,以形成包含一多個配體/脂質結合物之式 I或式 Ia之化合物。一般而言,結合係藉由所屬技術領域中已知之技術以串聯或並聯之方式通過式 I-1或式 I-1a之核酸或其類似物與一或多個的金剛烷基及/或親脂性化合物(例如,脂肪酸)之間的酯化或醯胺化反應來進行。然後可將式 I或式 Ia之核酸或其類似物去保護,以形成式 I-2或式 I-2a之化合物,並用合適的羥基保護基(例如,DMTr)保護,以形成式 I-3或式 I-3a之化合物。在一個態樣中,式 I-3或式 I-3a之核酸-配體結合物可共價地附接至固體支撐物(例如,通過琥珀酸連接基團),以形成包含一或多個金剛烷基及/或脂質結合物之式 I-4或式 I-4a之固體支撐物核酸-配體結合物或其類似物。在另一態樣中,式 I-3或式 I-3a之核酸-配體結合物可與P(III)形成試劑(例如,2-氰基乙基 N, N-二-異丙基氯亞磷醯胺)反應,以形成包含P(III)基團之式 I-5或式 I-5a之核酸或其類似物。然後,可將式 I-5或式 I-5a之核酸-配體結合物或其類似物經受使用已知及常用製程進行之寡聚合形成條件,以製備所屬技術領域中之寡核苷酸。例如,將式 I-5或式 I-5a之化合物與帶有5'-羥基之固體支撐型核酸-配體結合物或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及/或自固體支撐物切割下來,以提供各種核苷酸長度之寡核苷酸,該寡核苷酸由式 II-1或式 II-Ia之化合物所表示包括一或多個脂質結合物核苷酸單元(lipid conjugate nucleotide unit)。 B、E、L、配體、LC、n、PG 1、PG 2、PG 4、R 1、R 2、R 3、X、X 1、X 2、X 3、及Z之各者係如上文所定義及本文中所述。 流程B:本揭露之寡核苷酸之後合成脂質結合物 如上文 流程 B中所繪示,可將式 I-1之核酸或其類似物去保護以形成式 I-6之化合物,用合適的羥基保護基(例如,DMTr)保護,以形成式 I-7之化合物,並與P(III)形成試劑(例如2-氰基乙基 N, N-二-異丙基氯亞磷醯胺)反應,以形成包含P(III)基團之式 I-8之核酸或其類似物。接下來,可將式 I-8之核酸或其類似物經受使用已知及常用製程進行之寡聚合形成條件,以製備所屬技術領域中之寡核苷酸。例如,將式 I-8之化合物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及/或自固體支撐物切割下來,以提供由式 II-2之化合物所表示之各種核苷酸長度之寡核苷酸。然後可將式 II-2之寡核苷酸與一或多個配體(例如,金剛烷基、或親脂性化合物(例如,脂肪酸))結合,以形成包含一或多個配體結合物之式 II-1之化合物。一般而言,結合係藉由所屬技術領域中已知之技術以串聯或並聯之方式通過式 II-2之核酸或其類似物與一或多個的金剛烷基或脂肪酸之間的酯化或醯胺化反應來進行。 B、E、L、配體、LC、n、PG 1、PG 2、PG 4、R 1、R 2、R 3、X、X 1、X 2、X 3、及Z之各者係如上文所定義及本文中所述。 在某些具體實施例中,本揭露之核酸、及其類似物係根據下文所示之 流程 C流程 D製備: 流程C:合成本揭露之脂質結合之寡核苷酸 如上文 流程 C中所繪示,將式 C1之核酸或其類似物保護,以形成式 C2之化合物。然後將式 C2之核酸或其類似物烷基化(例如,使用DMSO及乙酸經由普梅雷爾重排(Pummerer rearrangement)),以形成式 C3之單硫縮醛化合物。接下來,將式 C3之核酸或其類似物與 C4在適當條件(例如,溫和氧化條件)下偶合,以形成式 C5之核酸或其類似物。然後可將式 C5之核酸或其類似物去保護,以形成式 C6之化合物,並與式 C7之配體(金剛烷基或親脂性化合物(例如,脂肪酸))在適當醯胺形成條件(例如,HATU,DIPEA)下偶合,以形成包含本揭露之脂質結合物之式 I-b之核酸-配體結合物或其類似物。然後可將式 I-b之核酸-配體結合物或其類似物去保護,以形成式 C8之化合物,並用合適的羥基保護基(例如,DMTr)保護,以形成式 C9之化合物。在一個態樣中,式 C9之核酸、或其類似物可共價地附接至固體支撐物(例如,通過琥珀酸連接基團),以形成包含本揭露之配體結合物(金剛烷基及/或脂質部分)之式 C10之固體支撐物核酸-配體結合物或其類似物。在另一態樣中,式 C9之核酸-配體結合物或其類似物可與P(III)形成試劑(例如,2-氰基乙基 N, N-二-異丙基氯亞磷醯胺)反應,以形成包含P(III)基團之式 C11之核酸-配體結合物或其類似物。然後,可將式 C11之核酸-配體結合物或其類似物經受使用已知及常用製程進行之寡聚合形成條件,以製備所屬技術領域中之寡核苷酸。例如,將式 C11之化合物與帶有5'-羥基之固體支撐型核酸-配體結合物或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及/或自固體支撐物切割下來,以提供各種核苷酸長度之寡核苷酸,該寡核苷酸由式 II-b-3之化合物所表示包括一或多個金剛烷基及/或脂質結合核苷酸單元。 B、E、L 2、PG 1、PG 2、PG 3、PG 4、R 1、R 2、R 3、R 4、R 5、X 1、X 2、X 3、V、W、及Z之各者係如上文所定義及本文中所述。 流程D:本揭露之寡核苷酸之後合成脂質結合物 B、E、L 2、PG 1、PG 2、PG 3、PG 4、R 1、R 2、R 3、R 4、R 5、X 1、X 2、X 3、V、W、及Z之各者係如上文所定義及本文中所述。如上文 流程 D中所繪示,可將式 C5之核酸或其類似物選擇性地去保護,以形成式 D1之化合物,用合適的羥基保護基(例如,DMTr)保護,以形成式 D2之化合物,並與P(III)形成試劑(例如2-氰基乙基 N, N-二-異丙基氯亞磷醯胺)反應,以形成式 D3之核酸或其類似物。接下來,將式 D3之核酸或其類似物經受使用已知及常用製程預製之寡聚合形成條件,以製備所屬技術領域中之寡核苷酸。例如,將式 D3之化合物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及/或自固體支撐物切割下來,以提供由式 D4之化合物所表示之各種核苷酸長度之寡核苷酸。然後可將式 D4之寡核苷酸去保護,以形成式 D5之化合物,並與疏水性配體(例如,金剛烷基或親脂性部分)偶合,以形成式 C7(例如,金剛烷基或脂肪酸)之化合物在適當醯胺形成條件(例如,HATU、DIPEA)下偶合,以形成包含本揭露之配體(例如,金剛烷基或脂肪酸)結合物之式 II-b-3之寡核苷酸。 所屬技術領域中具有通常知識者應當理解本揭露之核酸或其類似物中存在之各種官能基(諸如脂族基團、醇、羧酸、酯、醯胺、醛、鹵素、及腈)可藉由所屬技術領域中眾所周知之技術相互轉化,該等技術包括但不限於還原、氧化、酯化、水解、部分氧化、部分還原、鹵化、脫水、部分水合、及水合。參見例如,“ MARCH’s ADVANCED ORGANIC CHEMISTRY”,(5 thEd., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001),其各自係以全文引用方式併入本文中。此類相互轉化可能需要前述技術中之一或多者,而用於合成本揭露提供之核酸之某些方法係於下文範例中描述。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之寡核苷酸或其醫藥上可接受之鹽之方法,該脂質結合物單元由式 II-a-1所表示: 該方法包含下列之步驟: (a) 提供式 I-5a之核酸或其類似物: 或其鹽,及 (b) 將式 I-5a之該化合物寡聚合,以形成式 II-1a之化合物,其中 B、E、L、LC、n、PG 4、R 1、R 2、R 3、X、X 1、X 2、X 3、E、及Z之各者係如上文所定義及本文中所述。 在上文步驟(b)中,寡聚合係指使用已知及常用製程進行寡聚合形成條件來製備所屬技術領域中之寡核苷酸。例如,將式 I-5a之化合物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及自固體支撐物切割下來,以提供由本揭露之包含脂質結合物之式 II-1a之化合物所表示之各種核苷酸長度之寡核苷酸。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之寡核苷酸之方法,其進一步包含製備式 I-5a之核酸或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 Ia之核酸或其類似物: 或其鹽, (b) 將式 Ia之該核酸或其類似物去保護,以形成式 I-2a之化合物: 或其鹽, (c) 將式 I-2之該核酸或其類似物保護,以形成式 I-3a之化合物: 或其鹽,及 (d) 將式 I-3a之該核酸或其類似物用P(III)形成試劑處理,以形成式 I-5a之核酸或其類似物,其中 B、E、L、LC、n、PG 4、R 1、R 2、R 3、X、X 1、X 2、X 3、E、及Z之各者係如上文所定義及本文中所述。 在上文步驟(b)中,式 Ia之化合物之PG 1及PG 2包含矽基醚或環狀矽烯衍生物,其可在酸性條件下或用氟陰離子移除。提供氟陰離子以移除基於矽之保護基之試劑之實施例包括氫氟酸、氟化氫吡啶、三乙胺三氫氟酸鹽、氟化四- N-丁基銨等。 在上文步驟(c)中,式 I-2a之化合物係用合適的羥基保護基保護。在某些具體實施例中,用於保護式 I-2a之化合物之5'-羥基之保護基PG 4包括酸不穩定保護基諸如三苯甲基、4-甲氧基三苯甲基、4,4'-二甲氧基三苯甲基、4,4',4"-三甲氧基三苯甲基、9-苯基-𠮿-9-基(9-phenyl-xanthen-9-yl)、9-(對苯甲基)-𠮿-9-基、苯基𠮿基(pixyl)、2,7-二甲基苯基𠮿基等。在某些具體實施例中,酸不穩定保護基係適用於在酸敏感性核酸或其類似物之溶液相及固相兩者合成期間使用例如二氯乙酸或三氯乙酸去保護。 在上文步驟(d)中,將式 I-3a之化合物用P(III)形成試劑處理,以得到式 I-5a之化合物。在本揭露之上下文中,P(III)形成試劑係反應以成磷(III)化合物之磷試劑。在一些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺或2-氰基乙基二氯磷酸酯。在某些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺。具有通常知識者應認識到,以式 I-3a之化合物之X 1置換P(III)形成試劑中之脫離基係在合適的鹼存在或不存在之情況下達成。此類合適的鹼係所屬技術領域中眾所周知且包括有機鹼及無機鹼。在某些具體實施例中,鹼係三級胺諸如三乙胺或二異丙基乙胺。在其他具體實施例中,上文之步驟(d)係使用 N, N-二甲基磷胺基二氯化物作為P(V)形成試劑來進行。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之寡核苷酸之方法,其進一步包含製備式 Ia之核酸-脂質結合物或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 I-1之核酸或其類似物: 或其鹽,及, (b)  將一或多個親脂性化合物與式 I-1之核酸或其類似物結合,以形成包含一或多個脂質結合物之式 Ia之核酸或其類似物,其中: B、E、L、LC、n、PG 1、PG 2、R1、R 2、X、X 1、及Z之各者係如上文所定義及本文中所述。 在上文步驟(b)中,式 I-1a之核酸或其類似物係與一或多個親脂性化合物結合以形成包含一多個本揭露之脂質結合物之式 Ia之化合物。一般而言,結合係藉由所屬技術領域中已知之技術以串聯或並聯之方式通過式 I-1a之核酸或其類似物與一或多個的脂肪酸之間的酯化或醯胺化反應來進行。在某些具體實施例中,結合係在合適的醯胺形成條件下進行,以得到包含一多個脂質結合物之式 I之化合物。合適的醯胺形成條件可包括使用所屬技術領域中已知之醯胺偶合劑,諸如但不限於HATU、PyBOP、DCC、DIC、EDC、HBTU、HCTU、PyAOP、PyBrOP、BOP、BOP-Cl、DEPBT、T3P、TATU、TBTU、TNTU、TOTU、TPTU、TSTU、或TDBTU。替代地,親脂性化合物之結合可藉由本文 A中所述之交叉偶合技術中之任一者來完成。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之寡核苷酸其醫藥上可接受之鹽之方法,該脂質結合物單元由式 II-1所表示: 該方法包含下列之步驟: (a) 提供式 II-2之寡核苷酸: 或其鹽,及, (b) 將一或多個親脂性化合物與式 II-2之寡核苷酸結合,以形成包含一或多個脂質結合物之式 II-1之寡核苷酸。在上文步驟(b)中,式 II-2之寡核苷酸係與一或多個親脂性化合物結合,以形成包含一多個本揭露之脂質結合物之式 II-1之寡核苷酸。一般而言,結合係藉由所屬技術領域中已知之技術以串聯或並聯之方式通過式 II-2之寡核苷酸與一或多個脂肪酸之間的酯化或醯胺化反應來進行。在某些具體實施例中,結合係在合適的醯胺形成條件下進行,以得到包含一多個脂質結合物之式 II-1寡核苷酸。合適的醯胺形成條件可包括使用所屬技術領域中已知之醯胺偶合劑,諸如但不限於HATU、PyBOP、DCC、DIC、EDC、HBTU、HCTU、PyAOP、PyBrOP、BOP、BOP-Cl、DEPBT、T3P、TATU、TBTU、TNTU、TOTU、TPTU、TSTU、或TDBTU。替代地,親脂性化合物之結合可藉由本文 A中所述之交叉偶合技術中之任一者來完成。 在一些具體實施例中,本揭露提供用於製備包含由式 II-2所表示之單元之寡核苷酸: 或其醫藥上可接受之鹽之方法,其包含下列之步驟: (a) 提供式 I-8之核酸或其類似物: 或其鹽,及 (b) 將式 I-8之該化合物寡聚合,以形成式 II-2之化合物。 在上文步驟(b)中,寡聚合係指使用已知及常用製程進行寡聚合形成條件來製備所屬技術領域中之寡核苷酸。例如,將式 I-8之化合物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及自固體支撐物切割下來,以提供由式 II-2之化合物所表示之各種核苷酸長度之寡核苷酸。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之核酸或其類似物之方法,其進一步包含製備式 I-8之核酸或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 I-1之核酸或其類似物: 或其鹽, (b) 將式 I-1之該核酸或其類似物去保護,以形成式 I-6之化合物: 或其鹽, (c) 將式 I-6之該核酸或其類似物保護,以形成式 I-7之化合物: 或其鹽,及 (d) 將式 I-7之該核酸或其類似物用P(III)形成試劑處理,以形成式 I-8之核酸或其類似物,在上文步驟(b)中,式 I-1之化合物之PG 1及PG 2包含矽基醚或環狀矽烯衍生物,其可在酸性條件下或用氟陰離子移除。提供氟陰離子以移除基於矽之保護基之試劑之實施例包括氫氟酸、氟化氫吡啶、三乙胺三氫氟酸鹽、氟化四- N-丁基銨等。 在上文步驟(c)中,式 I-6之化合物係用合適的羥基保護基保護。在某些具體實施例中,用於保護式 I-6之化合物之5'-羥基之保護基PG 4包括酸不穩定保護基諸如三苯甲基、4-甲氧基三苯甲基、4,4'-二甲氧基三苯甲基、4,4',4"-三甲氧基三苯甲基、9-苯基-𠮿-9-基、9-(對苯甲基)-𠮿-9-基、苯基𠮿基、2,7-二甲基苯基𠮿基等。在某些具體實施例中,酸不穩定保護基係適用於在酸敏感性核酸或其類似物之溶液相及固相兩者合成期間使用例如二氯乙酸或三氯乙酸去保護。 在上文步驟(d)中,將式 I-7之化合物用P(III)形成試劑處理,以得到式 I-8之化合物。在本揭露之上下文中,P(III)形成試劑係反應以成磷(III)化合物之磷試劑。在一些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺或2-氰基乙基二氯磷酸酯。在某些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺。具有通常知識者應認識到,以式 I-7之化合物之X 1置換P(III)形成試劑中之脫離基係在合適的鹼存在或不存在之情況下達成。此類合適的鹼係所屬技術領域中眾所周知且包括有機鹼及無機鹼。在某些具體實施例中,鹼係三級胺諸如三乙胺或二異丙基乙胺。在其他具體實施例中,上文之步驟(d)係使用 N, N-二甲基磷胺基二氯化物作為P(V)形成試劑來進行。 在一些具體實施例中,本揭露提供用於製備包含一或多個金剛烷基及/或脂質部分之寡核苷酸-配體結合物或其醫藥上可接受之鹽之方法,該脂質結合物單元由式 II-b-3所表示: 該方法包含下列之步驟: (a) 提供式 C11之核酸-配體結合物或其類似物: 或其鹽,及 (b) 將式 C11之該化合物寡聚合,以形成式 II-b-3之化合物。在上文步驟(b)中,寡聚合係指使用已知及常用製程進行寡聚合形成條件來製備所屬技術領域中之寡核苷酸。例如,將式 C11之化合物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及自固體支撐物切割下來,以提供具有一或多個核酸-配體結合物單元之各種核苷酸長度之寡核苷酸-配體結合物,其中各單元係由包含本揭露之金剛烷基或脂質部分之式 II-b-3之化合物所表示。 在一些具體實施例中,用於製備包含一或多個脂質結合物之式 II-b-3之寡核苷酸之方法進一步包含製備式 C11之核酸-脂質結合物或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 I-b之核酸或其類似物: 或其鹽, (b) 將式 I-b之該核酸-配體結合物或其類似物去保護,以形成式 C8之化合物: 或其鹽, (c) 將式 C8之該核酸-配體結合物或其類似物保護,以形成式 C9之化合物: 或其鹽,及 (d) 將式 C9之該核酸-配體結合物或其類似物用P(III)形成試劑處理,以形成式 C11之核酸或其類似物。在上文步驟(b)中,式 I-b之化合物之PG 1及PG 2包含矽基醚或環狀矽烯衍生物,其可在酸性條件下或用氟陰離子移除。提供氟陰離子以移除基於矽之保護基之試劑之實施例包括氫氟酸、氟化氫吡啶、三乙胺三氫氟酸鹽、氟化四- N-丁基銨等。 在上文步驟(c)中,式 C8之化合物係用合適的羥基保護基保護。在某些具體實施例中,用於保護式 C8之化合物之5'-羥基之保護基PG 4包括酸不穩定保護基諸如三苯甲基、4-甲氧基三苯甲基、4,4'-二甲氧基三苯甲基、4,4',4"-三甲氧基三苯甲基、9-苯基-𠮿-9-基、9-(對苯甲基)-𠮿-9-基、苯基𠮿基、2,7-二甲基苯基𠮿基等。在某些具體實施例中,酸不穩定保護基係適用於在酸敏感性核酸或其類似物之溶液相及固相兩者合成期間使用例如二氯乙酸或三氯乙酸去保護。 在上文步驟(d)中,將式 C9之化合物用P(III)形成試劑進行處理,以得到式 C11之化合物。在本揭露之上下文中,P(III)形成試劑係反應以成磷(III)化合物之磷試劑。在一些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺或2-氰基乙基二氯磷酸酯。在某些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺。具有通常知識者應認識到,以式 C9之化合物之X 1置換P(III)形成試劑中之脫離基係在合適的鹼存在或不存在之情況下達成。此類合適的鹼係所屬技術領域中眾所周知且包括有機鹼及無機鹼。在某些具體實施例中,鹼係三級胺諸如三乙胺或二異丙基乙胺。在其他具體實施例中,上文之步驟(d)係使用 N, N-二甲基磷胺基二氯化物作為P(V)形成試劑來進行。 在一些具體實施例中,本揭露提供用於製備式 II-b-3之寡核苷酸-配體結合物之方法,該寡核苷酸-配體結合物包含一或多個各自包含一或多個金剛烷基或脂質部分之核酸-配體結合物單元,該方法進一步包含製備式 I-b之核酸-配體結合物或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 C6之核酸-配體結合物或其類似物: 或其鹽,及, (b) 將親脂性化合物與式 C6之核酸或其類似物結合,以形成包含一或多個金剛烷基及/或脂質結合物之式 I-b之核酸-配體結合物或其類似物。在上文步驟(b)中,結合係在合適的醯胺形成條件下進行,以得到包含金剛烷基及/或脂質結合物之式 I-b之化合物。合適的醯胺形成條件可包括使用所屬技術領域中已知之醯胺偶合劑,諸如但不限於HATU、PyBOP、DCC、DIC、EDC、HBTU、HCTU、PyAOP、PyBrOP、BOP、BOP-Cl、DEPBT、T3P、TATU、TBTU、TNTU、TOTU、TPTU、TSTU、或TDBTU。在某些具體實施例中,醯胺形成條件包含HATU、及DIPEA、或TEA。 在某些具體實施例中,式 C6之核酸-配體結合物或其類似物係呈鹽形式(例如,丁烯二酸鹽)提供,並在進行結合步驟之前首先轉換成游離鹼(例如,使用碳酸氫鈉)。 在一些具體實施例中,本揭露提供用於製備式 II-b-3之寡核苷酸-配體結合物之方法,該寡核苷酸-配體結合物包含一或多個核酸-配體結合物單元,該方法進一步包含製備式 C6之核酸-配體結合物或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 C1之核酸或其類似物: 或其鹽,及, (b) 將式 C1之該核酸或其類似物保護,以形成式 C2之化合物: 或其鹽, (c) 將式 C2之該核酸或其類似物烷基化,以形成式 C3之化合物: 或其鹽, (d) 將式 C3之該核酸或其類似物經式 C4之化合物: 或其鹽取代,以形成式 C5之化合物: 或其鹽, (e) 將式 C5之該核酸或其類似物去保護,以形成式C6之核酸-配體結合物或其類似物。在上文步驟(b)中,將式 C2之PG 1及PG 2基團與彼等的居間原子一起形成環狀二醇保護基,諸如環狀縮醛或縮酮。此類基團包括亞甲基、亞乙基、亞苄基、亞異丙基、亞環己基、及亞環戊基、矽烯衍生物諸如二-三級丁基矽烯、及1,1,3,3-四異丙基二矽氧烷亞基(1,1,3,3-tetraisopropylidisiloxanylidene)、環狀碳酸酯、環狀硼酸酯、及基於環狀腺苷單磷酸酯(亦即,cAMP)之環狀單磷酸酯衍生物。在某些具體實施例中,環狀二醇保護基係1,1,3,3-四異丙基二矽氧烷亞基,其在鹼性條件下自式 C1之二醇與1,3-二氯-1,1,3,3-四異丙基二矽氧烷之反應製備。 在上文步驟(c)中,式 C2之核酸或其類似物係在酸性條件下用DMSO及乙酐之混合物烷基化。在某些具體實施例中,當-V-H係羥基時,DMSO及乙酐之混合物在乙酸存在之情況下經由普梅雷爾重排原位形成(甲硫基)乙酸甲酯,然後與式 C2之核酸或其類似物之羥基反應,以提供式 C3之單硫縮醛官能化片段核酸或其類似物。 在上文步驟(d)中,使用式 C4之核酸或其類似物取代式 C3之核酸或其類似物之硫甲基,得到式 C4之核酸或其類似物。在某些具體實施例中,取代發生在溫和氧化及/或酸性條件下。在一些具體實施例中,V係氧。在一些具體實施例中,溫和氧化試劑包括元素碘及過氧化氫之混合物、尿素過氧化氫複合物、硝酸銀/硫酸銀、溴酸鈉、過氧二硫酸銨(ammonium peroxodisulfate)、過氧二硫酸四丁基銨(tetrabutylammonium peroxydisulfate)、Oxone®、Chloramine T、Selectfluor®、Selectfluor® II、次氯酸鈉、或碘酸鉀/過碘酸鈉。在某些具體實施例中,溫和氧化試劑包括N-碘基琥珀醯亞胺、N-溴基琥珀醯亞胺、N-氯基琥珀醯亞胺、1,3-二碘-5,5-二甲基乙內醯脲(1,3-diiodo-5,5-dimethylhydantion)、三溴化吡啶鎓(pyridinium tribromide)、氯化碘或其複合物等。一般在溫和氧化條件下使用的酸包括硫酸、對甲苯磺酸、三氟甲磺酸、甲磺酸、及三氟乙酸。在某些具體實施例中,溫和氧化試劑包括N-碘基琥珀醯亞胺及三氟甲磺酸之混合物。 在上文步驟(e)中,移除式 C5之核酸-配體結合物或其類似物之PG 3及視需要地R 4(當R 4係合適的胺保護基時),得到式 C6之核酸-配體結合物或其類似物或其鹽。在一些具體實施例中,PG 3及/或R 4包含胺甲酸酯衍生物,其可在酸性或鹼性條件下移除。在某些具體實施例中,式 C5之核酸-配體結合物或其類似物之保護基(例如,PG 3及R 4兩者或獨立地PG 3或R 4中任一者)係藉由酸水解來移除。應當理解,在酸水解式 C5之核酸-配體結合物或其類似物之保護基後,形成其式 C6之鹽。例如,當藉由用酸(諸如鹽酸)處理來移除式 C5之核酸-配體結合物或其類似物之酸不穩定保護基時,則所得胺化合物將形成為其鹽酸鹽。所屬技術領域中具有通常知識者應認識到,各式各樣的酸可用於移除酸不穩定的胺基保護基,且因此予以考量式 C6之核酸或其類似物之各式各樣的鹽形式。 在其他具體實施例中,式 C5之核酸或其類似物之保護基(例如,PG 3及R 4兩者或獨立地PG 3或R 4中任一者)係藉由鹼水解來移除。例如,Fmoc及三氟乙醯基保護基可藉由用鹼處理來移除。所屬技術領域中具有通常知識者應認識到,各式各樣的鹼可用於移除鹼不穩定的胺基保護基。在一些具體實施例中,鹼係哌啶。在一些具體實施例中,鹼係1,8-二氮雜雙環[5.4.0]十一-7-烯(DBU)。在某些具體實施例中,式 C5之核酸-配體結合物或其類似物係在鹼性條件下去保護,接著用酸處理,以形成式 C6之鹽。在某些具體實施例中,酸係丁烯二酸,式 C6之鹽係丁烯二酸鹽。 在一些具體實施例中,本揭露提供用於製備包含一或多個核酸-配體結合物之寡核苷酸-配體結合物或其醫藥上可接受之鹽之方法,該核酸-配體結合物單元由式II-b-3所表示: 該方法包含下列之步驟: (a) 提供式 D5之寡核苷酸: 或其鹽,及, (b) 將一或多個金剛烷基或親脂性化合物與式 D5之寡核苷酸結合,以形成包含一或多個核酸-配體結合物單元之式 II-b-3之寡核苷酸-配體結合物。在上文步驟(b)中,結合係在合適的醯胺形成條件下進行,以得到包含金剛烷基或脂質結合物之式 D5之化合物。合適的醯胺形成條件可包括使用所屬技術領域中已知之醯胺偶合劑,諸如但不限於HATU、PyBOP、DCC、DIC、EDC、HBTU、HCTU、PyAOP、PyBrOP、BOP、BOP-Cl、DEPBT、T3P、TATU、TBTU、TNTU、TOTU、TPTU、TSTU、或TDBTU。在某些具體實施例中,醯胺形成條件包含HATU、及DIPEA或TEA。 在一些具體實施例中,本揭露提供用於製備包含由式 D5所表示之單元之寡核苷酸-配體結合物之方法: 或其鹽,該方法包含下列之步驟: (a) 提供式 D4之核酸-配體結合物或其類似物: 或其鹽,及 (b) 將式 D4之該化合物去保護,以形成式 D5之化合物。在上文步驟(b)中,移除式D4之寡核苷酸之PG 3及視需要地R 4(當R 4係合適的胺保護基時),得到式 D5之寡核苷酸-配體結合物或其鹽。在一些具體實施例中,PG 3及/或R 4包含胺甲酸酯衍生物,其可在酸性或鹼性條件下被移除。在某些具體實施例中,式 D4之寡核苷酸-配體結合物之保護基(例如,PG 3及R 4兩者或獨立地PG 3或R 4中任一者)係藉由酸水解來移除。應當理解,在酸水解式 D4之寡核苷酸-配體結合物之保護基後,形成其式 D5之鹽。例如,當藉由用酸(諸如鹽酸)處理來移除式 D4之寡核苷酸之酸不穩定保護基時,則所得胺化合物將形成為其鹽酸鹽。所屬技術領域中具有通常知識者應認識到,各式各樣的酸可用於移除酸不穩定的胺基保護基,且因此予以考量式 D5之核酸-配體結合物單元或其類似物之各式各樣的鹽形式。 在其他具體實施例中,式 D4之寡核苷酸-配體結合物之保護基(例如,PG 3及R 4兩者或獨立地PG 3或R 4中任一者)係藉由鹼水解來移除。例如,Fmoc及三氟乙醯基保護基可藉由用鹼處理來移除。所屬技術領域中具有通常知識者應認識到,各式各樣的鹼可用於移除鹼不穩定的胺基保護基。在一些具體實施例中,鹼係哌啶。在一些具體實施例中,鹼係1,8-二氮雜雙環[5.4.0]十一-7-烯(DBU)。 在一些具體實施例中,本揭露提供用於製備包含一或多個具有一或多個金剛烷基及/或脂質部分之核酸-配體結合物單元之寡核苷酸-配體結合物或其醫藥上可接受之鹽之方法,該結合物單元由式D4所表示: 該方法包含下列之步驟: (a) 提供式 D3之核酸或其類似物: 或其鹽,及 (b) 將式 D3之該化合物寡聚合,以形成式 D4之化合物。 在上文步驟(b)中,寡聚合係指使用已知及常用製程進行寡聚合形成條件來製備所屬技術領域中之寡核苷酸。例如,將式 D3之核酸或其類似物與帶有5'-羥基之固體支撐型核酸或其類似物偶合。進一步的步驟可包含一或多次去保護、偶合、亞磷酸酯氧化,及自固體支撐物切割下來,以提供由本揭露之包含金剛烷基或脂質結合物之式 D4之化合物所表示之各種核苷酸長度之寡核苷酸。 在一些具體實施例中,本揭露提供用於製備包含一或多個脂質結合物之核酸或其類似物之方法,其進一步包含製備式 D3之核酸或其類似物: 或其鹽,該方法包含下列之步驟: (a) 提供式 C5之核酸或其類似物: 或其鹽, (b) 將式 C5之該核酸或其類似物去保護,以形成式 D1之化合物: 或其鹽, (c) 將式 D1之該核酸或其類似物保護,以形成式 D2之核酸或其類似物。 或其鹽,及 (d) 將式 D2之該核酸或其類似物用P(III)形成試劑處理,以形成式 D3之核酸或其類似物。在上文步驟(b)中,式 C5之核酸或其類似物之PG 1及PG 2包含矽基醚或環狀矽烯衍生物,其可在酸性條件下或用氟陰離子移除。提供氟陰離子以移除基於矽之保護基之試劑之實施例包括氫氟酸、氟化氫吡啶、三乙胺三氫氟酸鹽、氟化四- N-丁基銨等。 在上文步驟(c)中,式 D1之核酸或其類似物係用合適的羥基保護基保護。在某些具體實施例中,用於保護式 D1之化合物之5'-羥基之保護基PG 4包括酸不穩定保護基諸如三苯甲基、4-甲氧基三苯甲基、4,4'-二甲氧基三苯甲基、4,4',4"-三甲氧基三苯甲基、9-苯基-𠮿-9-基、9-(對苯甲基)-𠮿-9-基、苯基𠮿基、2,7-二甲基苯基𠮿基等。在某些具體實施例中,酸不穩定保護基係適用於在酸敏感性核酸或其類似物之溶液相及固相兩者合成期間使用例如二氯乙酸或三氯乙酸去保護。 在上文步驟(d)中,將式 D2之核酸或其類似物用P(III)形成試劑處理,以得到式 D3之化合物。在本揭露之上下文中,P(III)形成試劑係反應以成磷(III)化合物之磷試劑。在一些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺或2-氰基乙基二氯磷酸酯。在某些具體實施例中,P(III)形成試劑係2-氰基乙基 N, N-二異丙基氯亞磷醯胺。具有通常知識者應認識到,以式 D2之化合物之X 1置換P(III)形成試劑中之脫離基係在合適的鹼存在或不存在之情況下達成。此類合適的鹼係所屬技術領域中眾所周知且包括有機鹼及無機鹼。在某些具體實施例中,鹼係三級胺諸如三乙胺或二異丙基乙胺。在其他具體實施例中,上文之步驟(d)係使用 N, N-二甲基磷胺基二氯化物作為P(V)形成試劑來進行。 調配物已開發促進寡核苷酸使用之各種調配物。例如,可使用調配物將寡核苷酸(例如,脂質-結合之RNAi寡核苷酸)遞送至個體或細胞環境,該調配物使降解最小化、促進遞送及/或攝取,或為調配物中之寡核苷酸提供另一種有益性質。在一些具體實施例中,本文中提供包含寡核苷酸(例如,脂質-結合之RNAi寡核苷酸)之組成物,其降低目標mRNA(例如,在CNS之星狀細胞中表現之目標mRNA)之表現。此類組成物可經合適地調配使得當投予至個體(到目標細胞之最直接環境(immediate environment)中或全身性地)時,足夠的寡核苷酸部分進入細胞以降低目標基因表現。任何各種合適的寡核苷酸調配物均可用於遞送寡核苷酸以降低如本文中所揭示之星狀細胞目標基因表現。在一些具體實施例中,寡核苷酸經調配於諸如經磷酸鹽緩衝之鹽水溶液的緩衝溶液、脂質體、微胞結構、及殼體中。 在一些具體實施例中,本文中之調配物包含賦形劑。在一些具體實施例中,賦形劑賦予組成物改善之穩定性、改善之吸收、改善之溶解度及/或活性成分之治療性增強。在一些具體實施例中,賦形劑係緩衝劑(例如,檸檬酸鈉、磷酸鈉、tris鹼、或氫氧化鈉)或媒劑(例如,經緩衝之溶液、石蠟油、二甲亞碸、或礦物油)。在一些具體實施例中,寡核苷酸經冷凍乾燥以延長其儲存期限,然後在使用(例如,投予至個體)之前製成溶液。因此,包含本文中所述之寡核苷酸中任一者之組成物中之賦形劑可為凍乾保護劑(lyoprotectant)(例如,甘露醇、乳糖、聚乙二醇或聚乙烯吡咯啶酮)或崩潰溫度調節劑(collapse temperature modifier)(例如葡聚糖、Ficoll™或明膠)。同樣地,本文中之寡核苷酸可呈彼等游離酸之形式提供。 在一些具體實施例中,醫藥組成物經調配以與其預期之投予途徑相容。投予途徑之實例包括腸胃外(例如,靜脈內、肌內、腹膜內、皮內、皮下,鞘內)、口服(例如,吸入)、經皮(例如,局部)、經黏膜、及直腸投予。在一些具體實施例中,醫藥組成物經調配以遞送至中樞神經系統(例如,鞘內、硬膜外)。在一些具體實施例中,醫藥組成物經調配以遞送至眼部(例如,眼用(ophthalmic)、眼內、結膜下、玻璃體內(intravitreal)、眼球後(retrobulbar)、前房內(intracameral))。 適於可注射用途之醫藥組成物包括滅菌水溶液(當水溶性時)或分散液及用於即時製備滅菌可注射溶液或分散液之滅菌粉末。就靜脈內投予而言,合適的載劑包括生理鹽水、抑菌水、Cremophor EL™(BASF, Parsippany, N.J.)、或經磷酸鹽緩衝之鹽水(PBS)。載劑可係含有例如水、乙醇、多元醇(例如,甘油、丙二醇、及液態聚乙二醇等)、及其合適的混合物之溶劑或分散介質。在許多情況下,較佳的將是在組成物中包括等滲劑,例如糖、多元醇(諸如甘露醇、山梨醇)、氯化鈉。滅菌可注射溶液可藉由將寡核苷酸以所需量與視需要之上文所列舉之成分中之一種或組合併入所選擇之溶劑中,接著過濾滅菌來製備。 在一些具體實施例中,組成物可含有至少約0.1%的治療劑(例如,本文中之脂質-結合之RNAi寡核苷酸)或更多,儘管該(等)活性成分之百分比可在總組成物之重量或體積之約1%至約80%或更多之間。諸如溶解度、生物可用性、生物半衰期、投予途徑、產品儲存期限、以及其他藥理學考慮之因素係應由製備此類醫藥調配物之所屬技術領域中具有通常知識者所考量,且因此可能需要各種劑量及治療方案。 使用方法 降低目標基因表現 在一些具體實施例中,本揭露提供用於將有效量的本文中之脂質-結合之RNAi寡核苷酸中之任一者與細胞或細胞群接觸或遞送至其以降低CNS中之星狀細胞中目標基因之表現之方法。在一些具體實施例中,星狀細胞目標基因在CNS之區域中之表現降低。在一些具體實施例中,CNS之區域括包括,但不限於大腦、前額葉皮層、額葉皮質、運動皮質、顳葉皮質、頂葉皮質、枕葉皮質、感覺皮質、海馬體、尾狀體(caudate)、紋狀體、蒼白體(globus pallidus)、視丘、中腦、背蓋(tegmentum)、黑質(substantia nigra)、腦橋、腦幹、小腦白質(cerebellar white matter)、小腦、齒狀核、延髓、頸脊髓、胸脊髓、腰脊髓、頸背根神經節(cervical dorsal root ganglion)、胸背根神經節(thoracic dorsal root ganglion)、腰背根神經節、薦椎背根神經節(sacral dorsal root ganglion)、核狀神經節(nodose ganglia)、股神經、坐神經、腓腸神經、杏仁核、下視丘、殼核(putamen)、胼肢體、及腦神經。在一些具體實施例中,CNS之區域係選自腰脊髓、小腦、延髓、海馬體、下視丘、額葉皮質、及其組合。在一些態樣中,CNS之區域係選自脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、下視丘、小腦、額葉皮質、及其組合。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低脊髓中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低腰脊髓中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低胸脊髓中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低頸脊髓之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低下視丘中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低延髓中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低海馬體中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低小腦中之星狀細胞中目標基因之表現。在一些具體實施例中,本文中所述之脂質-結合之RNAi寡核苷酸降低額葉皮質中之星狀細胞中目標基因之表現。 在一些具體實施例中,目標基因表現之降低係藉由測量細胞中目標mRNA、由目標mRNA所編碼之蛋白質、或目標基因(mRNA或蛋白質)活性之量或水平降低來判定。該等方法包括本文中所述及所屬技術領域中具有通常知識者已知者。 在一些具體實施例中,本揭露提供用於將有效量的本文中之寡核苷酸(例如,RNAi寡核苷酸)中之任一者與細胞或細胞群接觸或遞送至其以降低 GFAP表現之方法。在一些具體實施例中, GFAP表現之降低係藉由測量細胞中之 GFAPmRNA、GFAP蛋白質、或GFAP活性之量或水平降低來判定。該等方法包括本文中所述及所屬技術領域中具有通常知識者已知者。 在一些具體實施例中,本揭露提供用於降低中樞神經系統中之 GFAP表現之方法。在一些具體實施例中,中樞神經系統包含腦及脊髓。在一些具體實施例中, GFAP表現在腦之至少一個區域中降低。在一些具體實施例中,腦之區域包括脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、小腦、下視丘、海馬體、及額葉皮質。 在一些具體實施例中,用於降低個體之脊髓之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處的脂質部分。 在一些具體實施例中,用於降低個體之延髓之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置4、位置8、位置12、位置13、位置18、或位置20處的脂質部分。 在一些具體實施例中,用於降低個體之小腦之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置4、位置12、位置13、位置18、或位置20處的脂質部分。 在一些具體實施例中,用於降低個體之下視丘之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置1、位置4、位置12、位置13、位置18、或位置20處的脂質部分。 在一些具體實施例中,用於降低個體之額葉皮質之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置4處的脂質部分。 在一些具體實施例中,用於降低個體之脊髓之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含主幹-環圈及至少一個結合在正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處的脂質部分。 在一些具體實施例中,用於降低個體之延髓之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含主幹-環圈及至少一個結合在正義股之位置1、位置4、位置18、位置20、位置23、位置28、位置29、或位置30處的脂質部分。 個體之小腦包含向個體投予脂質-結合之RNAi寡核苷酸,其包含主幹-環圈及至少一個結合在正義股之位置1、位置4、位置23、位置28、或位置29處的脂質部分。 在一些具體實施例中,用於降低個體之下視丘之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置1、位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處的脂質部分。 在一些具體實施例中,用於降低個體之額葉皮質之星狀細胞中目標基因之表現之方法包含向個體投予脂質-結合之RNAi寡核苷酸,其包含鈍端及至少一個結合在正義股之位置23處的脂質部分。 在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或寡核苷酸使星狀細胞mRNA之表現降低至少2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、或35週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少4週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少8週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少12週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少23週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少26週。在一些具體實施例中,單次劑量的本文中所述之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低至少29週。 在一些具體實施例中,單次劑量的本文中之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至1個月、達至2個月、達至3個月、達至4個月、達至5個月、達至6個月、達至7個月、達至8個月、達至9個月、達至10個月、達至11個月、達至12個月、達至13個月、達至14個月、達至15個月、或達至16個月。在一些具體實施例中,單次劑量的本文中之寡核苷酸或醫藥組成物使星狀細胞mRNA之表現降低達至12個月。 在一些具體實施例中,目標基因表現之降低係藉由測量細胞中目標mRNA、由目標mRNA所編碼之蛋白質、或目標基因(mRNA或蛋白質)活性之量或水平之降低來判定。該等方法包括本文中所述及所屬技術領域中具有通常知識者已知者。 本文中所提供之方法可用於任何適當的細胞類型。在一些具體實施例中,細胞係表現星狀細胞目標mRNA的任何細胞。在一些具體實施例中,細胞係獲自個體之初代星狀細胞細胞。在一些具體實施例中,初代細胞已經經歷有限次數的繼代,使得細胞實質上維持天然表型性質。在一些具體實施例中,寡核苷酸被遞送至的細胞係離體或體外的(亦即,可遞送至培養中之細胞或遞送至細胞所在之生物體)。 在一些具體實施例中,使用所屬技術領域中已知之核酸遞送方法將本文中所揭示之脂質-結合之RNAi寡核苷酸遞送至細胞或細胞群(例如,星狀細胞)包括,但不限於注射含有脂質-結合之RNAi寡核苷酸之溶液或醫藥組成物、藉由以脂質-結合之RNAi寡核苷酸所覆蓋之粒子撞擊(bombardment)、將細胞或細胞群暴露於含有脂質-結合之RNAi寡核苷酸之溶液中、或將細胞膜在脂質-結合之RNAi寡核苷酸存在之情況下電穿孔。可使用將寡核苷酸遞送至細胞之所屬技術領域中已知之其他方法,諸如脂質媒介之載劑輸送、化學媒介之輸送、及陽離子脂質體轉染(諸如磷酸鈣)、及其他等等。 在一些具體實施例中,目標基因表現之降低係藉由評估與目標基因表現相關之細胞或細胞群之一或多種分子、性質或特性的檢定或技術,或藉由評估直接指示細胞或細胞群中之目標基因表現的分子(例如,目標mRNA或蛋白質)的檢定或技術來測定。在一些具體實施例中,本文中所提供之脂質-結合之RNAi寡核苷酸在星狀細胞中降低目標基因表現之程度係藉由將與脂質-結合之RNAi寡核苷酸接觸之星狀細胞或星狀細胞群與對照細胞或對照細胞群(例如,未與脂質-結合之RNAi寡核苷酸接觸或與對照脂質-結合之RNAi寡核苷酸接觸之星狀細胞或星狀細胞群)中之目標基因表現進行比較來評估。在一些具體實施例中,預測定在對照細胞或對照細胞群中目標基因表現之對照量或水平,使得不需在進行檢定或技術之每一次情況下測量對照量或水平。預測定之水平或值可採用各種形式。在一些具體實施例中,預測定之水平或值可為單一截止值,諸如中位數或平均值。 在一些具體實施例中,將本文中所述之脂質-結合之RNAi寡核苷酸與星狀細胞或星狀細胞群接觸或遞送至其導致星狀細胞目標基因之表現降低。在一些具體實施例中,目標基因表現降低係相對於未與脂質-結合之RNAi寡核苷酸接觸或與對照脂質-結合之RNAi寡核苷酸接觸之細胞或細胞群中目標基因表現之對照量或水平。在一些具體實施例中,目標基因表現降低相對於目標基因表現之對照量或水平係約1%或更低、約5%或更低、約10%或更低、約15%或更低、約20%或更低、約25%或更低、約30%或更低、約35%或更低、約40%或更低、約45%或更低、約50%或更低、約55%或更低、約60%或更低、約70%或更低、約80%或更低、或約90%或更低。在一些具體實施例中,目標基因表現之對照量或水平係未與本文中之脂質-結合之RNAi寡核苷酸接觸的細胞或細胞群中目標mRNA及/或蛋白質之量或水平。在一些具體實施例中,根據本文中之方法將脂質-結合之RNAi寡核苷酸遞送至細胞或細胞群之效果係在任何有限時間段或時間量(例如,數分鐘、數小時、數天、數週、數個月)之後評定。例如,在一些具體實施例中,目標基因表現係在將脂質-結合之RNAi寡核苷酸與細胞或細胞群接觸或遞送至其之後至少約4小時、約8小時、約12小時、約18小時、約24小時;或至少約1天、約2天、約3天、約4天、約5天、約6天、約7天、約8天、約9天、約10天、約11天、約12天、約13天、約14天、約21天、約28天、約35天、約42天、約49天、約56天、約63天、約70天、約77天、或約84天或更多天於細胞或細胞群中測定。在一些具體實施例中,目標基因表現係在將脂質-結合之RNAi寡核苷酸與細胞或細胞群接觸或遞送至其之後至少約1個月、約2個月、約3個月、約4個月、約5個月、或約6個月或更久於細胞或細胞群中測定。 治療方法 本揭露提供用作藥劑,特別是供使用於治療與CNS相關之疾病、病症、及病狀之方法的寡核苷酸。本揭露亦提供脂質-結合之RNAi寡核苷酸,供使用於、或可適用於治療患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體(例如,人類),該疾病、病症、或病況將受益於降低星狀細胞目標基因之表現。在一些具體實施例中,本揭露提供脂質-結合之RNAi寡核苷酸,供使用於、或可適用於治療患有與星狀細胞目標基因表現相關之疾病、病症或病況之個體。本揭露亦提供脂質-結合之RNAi寡核苷酸,供使用於、或可適於製造用於治療與星狀細胞目標基因之表現相關之疾病、病症或病況的藥劑或醫藥組成物。在一些具體實施例中,脂質-結合之RNAi寡核苷酸,供使用於、或可適於目標mRNA並降低星狀細胞目標基因之表現(例如,經由RNAi路徑)。在一些具體實施例中,脂質-結合之RNAi寡核苷酸,供使用於、或可適用於目標mRNA並降低星狀細胞目標mRNA、蛋白質及/或活性之量或水平。 此外,在本文中之方法之一些具體實施例中,選擇患有或易患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體以用本文中之脂質-結合之RNAi寡核苷酸治療。在一些具體實施例中,方法包含選擇具有或易具有與星狀細胞目標基因之表現相關之疾病、病症或病況之標誌物(例如,生物標誌物)之個體,該等標記諸如但不限於目標mRNA、蛋白質、或其組合。同樣地,且如下文詳述,由本揭露所提供之方法之一些具體實施例包括以下步驟,諸如測量或獲得星狀細胞目標基因之表現之標誌物之基線值,然後將如此獲得之值與一或多個其他基線值或在對個體投予脂質-結合之RNAi寡核苷酸之後所獲得之值進行比較,以評定治療之效果。 本揭露亦提供用本文中所提供之脂質-結合之RNAi寡核苷酸治療患有、疑似患有與星狀細胞目標基因之表現相關之疾病、病症、或病況、或處於發展出與星狀細胞目標基因之表現相關疾病、病症、或病況之風險中之個體之方法。在一些具體實施例中,本揭露提供使用本文中所提供之脂質-結合之RNAi寡核苷酸治療或減弱與星狀細胞目標基因之表現相關之疾病、病症或病況之發作或進展之方法。在一些具體實施例中,本揭露提供使用本文中所提供之脂質-結合之RNAi寡核苷酸以在患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體中達到一或多種治療益處之方法。 在本文中之方法之一些具體實施例中,藉由投予治療有效量的本文中所提供之脂質-結合之RNAi寡核苷酸中之任一者或多者來治療個體。在一些具體實施例中,治療包含降低星狀細胞目標基因(例如,於CNS中)之表現。在一些具體實施例中,個體經治療性治療。在一些具體實施例中,個體經預防性治療。 在本文中之方法之一些具體實施例中,將本文中所提供之脂質-結合之RNAi寡核苷酸、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物投予至患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體中,使得個體中目標基因表現降低,從而治療個體。在一些具體實施例中,個體中目標mRNA之量或水平降低。在一些具體實施例中,個體中由目標mRNA所編碼之蛋白質之量或水平降低。 在本文中之方法之一些具體實施例中,將本文中所提供之脂質-結合之RNAi寡核苷酸、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物投予至患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體中,使得當相較於投予脂質-結合之RNAi寡核苷酸或醫藥組成物前之目標基因表現時,個體中目標基因表現降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。在一些具體實施例中,當相較於未接受脂質-結合之RNAi寡核苷酸或醫藥組成物或接受對照脂質-結合之RNAi寡核苷酸、醫藥組成物或治療之個體(例如,參考或對照個體)中之目標基因表現時,個體中星狀細胞目標基因之表現降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。 在本文中之方法之一些具體實施例中,將本文中之脂質-結合之RNAi寡核苷酸、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物投予至患有與星狀細胞目標基因之表現相關之疾病、病症或病況的個體中,使得當相較於投予脂質-結合之RNAi寡核苷酸或醫藥組成物前之目標mRNA之量或水平時,個體中目標mRNA之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、約99%、或大於99%。在一些具體實施例中,當相較於未接受脂質-結合之RNAi寡核苷酸或醫藥組成物或接受對照脂質-結合之RNAi寡核苷酸、醫藥組成物或治療之個體(例如,參考或對照個體)中目標mRNA之量或水平時,個體中目標mRNA之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%或大於99%。 在本文中之方法之一些具體實施例中,將本文中之脂質-結合之RNAi寡核苷酸、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物投予至患有與星狀細胞目標基因之表現相關之疾病、病症或病況之個體中,使得當相較於投予脂質-結合之RNAi寡核苷酸或醫藥組成物前由目標基因所編碼之蛋白質之量或水平時,個體中由星狀細胞目標基因所編碼之蛋白質之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。在一些具體實施例中,當相較於未接受脂質-結合之RNAi寡核苷酸或醫藥組成物或接受對照脂質-結合之RNAi寡核苷酸、醫藥組成物或治療之個體(例如,參考或對照個體)中由目標基因所編碼之蛋白質之量或水平時,個體中由星狀細胞目標基因所編碼之蛋白質之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。 在本文中之方法之一些具體實施例中,將本文中之脂質-結合之RNAi寡核苷酸、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物投予至患有與星狀細胞目標基因之表現相關之疾病、病症或病況的個體中,使得當相較於投予脂質-結合之RNAi寡核苷酸或醫藥組成物前目標基因活性之量或水平時,個體中目標基因活性之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。在一些具體實施例中,當相較於未接受脂質-結合之RNAi寡核苷酸或醫藥組成物或接受對照脂質-結合之RNAi寡核苷酸、醫藥組成物或治療之個體(例如,參考或對照個體)中目標基因活性之量或水平時,個體中目標基因活性之量或水平降低至少約30%、約35%、約40%、約45%、約50%、約55%、約60%、約65%、約70%、約75%、約80%、約85%、約90%、約95%、約99%、或大於99%。 測定個體中或來自個體之樣本中之目標基因表現、目標mRNA之量或水平、由目標基因所編碼之蛋白質之量或水平、及/或目標基因活性之量或水平之合適的方法係所屬技術領域中已知的。此外,本文中所示之實施例說明用於測定目標基因表現之例示性方法。 在一些具體實施例中,目標基因表現、目標基因mRNA之量或水平、由目標基因所編碼之蛋白質之量或水平、目標基因活性之量或水平、或其任何組合在自個體獲得或單離之細胞(例如,星狀細胞)、細胞群或細胞群組(例如,類器官)、器官(例如,CNS)、血液或其部分(例如,血漿)、組織(例如,腦組織)、樣本(例如,CSF樣本或腦生檢樣本)、或任何其他生物材料中降低。在一些具體實施例中,星狀細胞目標基因之表現、目標基因mRNA之量或水平、由目標基因所編碼之蛋白質之量或水平、目標基因活性之量或水平、或其任何組合在自個體獲得或單離之超過一種類型的細胞(例如,星狀細胞)、超過一種群組的細胞、超過一種器官(例如,腦及一或多種其他器官)、超過一種血液部分(例如,血漿及一或多種其他血液部分)、超過一種類型的組織(例如,腦組織及一或多種其他類型的組織)、超過一種類型的樣本(例如,腦生檢樣本及一或多種其他類型的生檢樣本)中降低。 在一些具體實施例中,星狀細胞目標基因在脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、下視丘、感覺皮質、或小腦中之一或多者中之表現降低。在一些具體實施例中,星狀細胞目標基因在脊髓中之表現降低。在一些具體實施例中,星狀細胞目標基因在腰脊髓中之表現降低。在一些具體實施例中,星狀細胞目標基因在胸脊髓中之表現降低。在一些具體實施例中,星狀細胞目標基因在頸脊髓中之表現降低。在一些具體實施例中,星狀細胞目標基因在下視丘中之表現降低。在一些具體實施例中,星狀細胞目標基因在延髓中之表現降低。在一些具體實施例中,星狀細胞目標基因在海馬體中之表現降低。在一些具體實施例中,星狀細胞目標基因在感覺皮質中之表現降低。在一些具體實施例中,星狀細胞目標基因在小腦中之表現降低。在一些具體實施例中,星狀細胞目標基因在額葉皮質中之表現降低。 與星狀細胞目標基因之表現相關之疾病、病症、或病況之實施例包括但不限於脊髓小腦性失調症1(Spinocerebellar Atxia 1)、脊髓小腦性失調症2、脊髓小腦性失調症3、普里昂疾病(Prion Disease)、亞歷山大氏病(Alexander’s’ Disease)、MECP2重複症候群(MECP2 Duplication Syndrome)、杭丁頓氏舞蹈症(Huntington’s Disease)、帕金森氏症(Parkinson’s Disease)、亞歷山大氏病、進行性核上神經麻痺症(progressive supranuclear palsy, PSP)、皮質基底核退化症(Corticobasal degeneration, CBD)、嗜銀顆粒疾病(Argyrophilic grain disease, AGD)、全腦膠質細胞Tau蛋白病(Globular glial tauopathy, GGT)、老化相關之tau星形膠質細胞病(Ageing-related tau astrogliopathy, ARTAG)、家族額顳葉失智症17(Familial Frontotemporal Dementia 17, FTD-17)、伴有呼吸衰竭之神經退行性疾病(Tauopathy with Respiratory Failure)、伴有癲癇發作之失智症(Dementia with Seizure)、匹克症(Pick’s disease)、第1型或第2型肌強直性營養不良(Myotonic dystrophy 1 or 2 , MD1 or MD2)、唐氏症(Down’s syndrome)、痙攣性截癱(Spastic Paraplegia, SP)、C型尼曼匹克症(Niemann-Pick disease type C)、路易氏體失智症(Dementia with Lewy bodies, DLB)、路易氏體吞嚥困難(Lewy body dysphagia)、路易氏體病(Lewy body disease)、橄欖體橋腦小腦萎縮症(Olivopontocerebellar atrophy)、紋狀體黑質退化退化症(Sriatonigral degeneration)、夏伊-德雷格爾症候群(Shy-Drager syndrome)、脊髓性肌肉萎縮症V(Spinal muscular atrophy V, SMAV)、杭丁頓氏舞蹈症(HD)、阿茲海默症(Alzheimer’s Disease)、SCA1、SCA2、SCA3、SCA7、SCA10(第1、2、3、7或10型脊髓小腦運動失調症(spinocerebellar ataxia type 1, 2, 3, 7 or 10)、多系統萎縮症(Multiple System Atrophy, MSA)、脊髓延髓性肌肉萎縮症(Spinal and Bulbar Muscular Atrophy)(SBMA,甘迺迪氏症(Kennedy disease))、弗里德賴希運動失調(Friedrich Ataxia)、X染色體脆折症運動失調症候群(Fragile X-associated tremor/ataxia syndrome, FXTAS)、X染色體脆折症候群(Fragile X syndrome, FRAXA)、X連鎖智力遲鈍(X-Linked Mental Retardation, XLMR)、帕金森氏症(Parkinson’s Disease)、肌張力障礙、SBMA(脊髓延髓肌肉萎縮症(spinobulbar muscular atrophy))、神經性病變疼痛障礙(neuropathic pain disorder)、脊髓損傷、齒狀核紅核蒼白球丘腦底核萎縮症(Dentatorubral-pallidoluysian atrophy, DRPLA)、隱性CNS障礙(recessive CNS disorder)、ALS(肌肉萎縮性脊髓側索硬化症(amyotrophic lateral sclerosis))、M2DS(MECP2重複症候群(MECP2 duplication syndrome))、FTD(額顳葉失智症(frontotemporal dementia))、普里昂疾病(Prion disease)、成年發病腦白質失養症(Adult Onset Leukodystrophy)、亞歷山大氏病(Alexander’s Disease)、克拉培氏病(Krabbe Disease)、慢性創傷性腦病變(Chronic Traumatic Encephalopathy)、家族性腦中葉硬化症(Pelizaeus-Merzbacher disease, PMD)、拉弗拉病(Lafora disease)、中風、類澱粉腦血管病變(Cerebral Amyloid Angiopathy, CAA)、及異染性白質失養症(Metachromatic Leukodystrophy, MLD)。與星狀細胞目標基因之表現相關之疾病、病症、或病況之實施例包括但不限於脊髓小腦性失調症1、脊髓小腦性失調症2、脊髓小腦性失調症3、普里昂疾病、亞歷山大氏病、MECP2重複症候群、亨汀頓氏舞蹈症、帕金森氏症、及阿茲海默症。 在一些具體實施例中,星狀細胞目標基因可為來自任何哺乳動物(諸如人類)之目標基因。可根據本文中所述之方法使任何星狀細胞基因緘默。本文中所述之方法一般涉及向個體投予治療有效量的本文中之脂質-結合之RNAi寡核苷酸,亦即,能夠產生所欲治療結果之量。治療上可接受之量(therapeutically acceptable amount)可為可治療性治療疾病或病症之量。對於任一位個體之適當劑量將視某些因素而定,該些因素包括個體的身材、體表面積、年齡、欲投予之組成物、組成物中之(多種)活性成分、投予時間及途徑、一般健康狀況、及待同時投予之其他藥物。 在一些具體實施例中,個體係經下列方式投予本文中之組成物中之任一者:經腸(例如,經口、由胃飼管(gastric feeding tube)、由十二指腸飼管(duodenal feeding tube)、經由胃造口術、或經直腸)、經腸胃外(例如,皮下注射、靜脈內注射或輸注、動脈內注射或輸注、骨內輸注、肌內注射、顱內注射、腦室內注射、鞘內)、經局部(例如,皮上、吸入、經由眼藥水、或通過黏膜)、或藉由直接注射到目標器官(例如,個體之腦)中。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經鞘內投予到腦脊髓液(CSF)(注射或輸注到蜘蛛膜下腔內之體液中)中。在一些具體實施例中,鞘內投予本文中之脂質-結合之RNAi寡核苷酸、或其組成物係以單次快速注射到蜘蛛膜下腔中來進行。在一些具體實施例中,鞘內投予本文中之脂質-結合之RNAi寡核苷酸、或其組成物係以輸注到蜘蛛膜下腔中來進行。在一些具體實施例中,本文中、或其組成物之鞘內投予係經由導管進入蜘蛛膜下腔中來進行。在一些具體實施例中,鞘內投予本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經由泵來進行。在一些具體實施例中,鞘內投予本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經由可植入式泵來進行。在一些具體實施例中,投予係經由以貯劑操作或起作用的可植入式裝置來進行。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經鞘內投予到小腦延髓池(亦稱為大池(cisterna magna))中。進入大池中之鞘內投予被稱為「腦池內投予(intracisternal administration)」或「腦大池內(i.c.m.)投予(intracisternal magna administration)」。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經鞘內投予到腰脊髓之蜘蛛膜下腔中。進入腰脊髓之蜘蛛膜下腔中之鞘內投予被稱為「腰鞘內(i.t.)投予(lumbar intrathecal(i.t.)administration)」。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經鞘內投予到頸脊髓之蜘蛛膜下腔中。進入頸脊髓之蜘蛛膜下腔中之鞘內投予被稱為「頸鞘內(i.t.)投予(cervical intrathecal(i.t.)administration)」。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係經鞘內投予到胸脊髓之蜘蛛膜下腔中。進入胸脊髓之蜘蛛膜下腔中之鞘內投予被稱為「胸鞘內(i.t.)投予(thoracic intrathecal(i.t.)administration)」。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係藉由腦室內注射或輸注到腦室中來投予。進入腦室空間(ventricular space)之腦室內投予被稱為「腦室內(i.c.v.)投予(intracerebroventricular(i.c.v.)administration)」。在一些具體實施例中,奧莫耶(Ommaya)貯劑係用於藉由腦室內注射或輸注來投予本文中之脂質-結合之RNAi寡核苷酸、或其組成物。 在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係每年投予一次、每6個月投予一次、每4個月投予一次、每季投予一次(每三個月一次)、每兩個月投予一次(每2個月一次)、每月投予一次、或每週投予一次。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係每週或以二、或三週之間隔投予。在一些具體實施例中,本文中之脂質-結合之RNAi寡核苷酸、或其組成物係每日投予。在一些具體實施例中,個體經投予脂質-結合之RNAi寡核苷酸、或其組成物之一或多個負載劑量(loading dose),接著為脂質-結合之RNAi寡核苷酸之一或多個維持劑量(maintenance dose)。 在一些具體實施例中,欲治療之個體係人類、或非人類靈長類、或其他哺乳動物個體。其他例示性個體包括家養動物,諸如狗及貓;家畜,諸如馬、牛、豬、羊、山羊、及雞;及動物,諸如小鼠、大鼠、豚鼠、及倉鼠。 套組在一些具體實施例中,本揭露提供套組,其包含本文中之脂質-結合之RNAi寡核苷酸、或其組成物、及使用說明。在一些具體實施例中,套組包含本文中之脂質-結合之RNAi寡核苷酸、或其組成物、及含有套組及/或其任何組分之使用說明之藥品仿單。在一些具體實施例中,套組包含於合適的容器中之本文中之脂質-結合之RNAi寡核苷酸、或其組成物、一或多種對照品、及各種緩衝劑、試劑、酶、及所屬技術領域中眾所週知之其他標準成分。在一些具體實施例中,容器包含至少一個將本文中之脂質-結合之RNAi寡核苷酸、或其組成物放入其中之小瓶、孔、試管、燒瓶、瓶、注射器、或其他容器裝置,並且在一些情況下經合適的等分。在其中提供額外組分之一些具體實施例中,套組含有將此組分放置其中之額外容器。套組亦可包括嚴格限制用於商業銷售含有本文中之脂質-結合之RNAi寡核苷酸、或其組成物、及任何其他試劑之裝置。此類容器可包括其中保有所欲小瓶之射出成型或吹模成型之塑膠容器。容器及/或套組可包括貼有使用說明及/或警語之標籤。 在一些具體實施例中,套組包含本文中之脂質-結合之RNAi寡核苷酸、或其組成物、及醫藥上可接受之載劑、或包含脂質-結合之RNAi寡核苷酸之醫藥組成物及在有其需要之個體中治療或延遲與星狀細胞目標基因之表現相關之疾病、病症或病況之進展的說明。 [ 定義 ]如本文中所使用,術語「及/或(and/or)」包括相關所列項目中之一或多者之任何及所有組合。此外,單數形式及冠詞「一(a/an/)」、「該(the)」意欲亦包括複數形式,除非另有明確說明。進一步應當理解術語:包括(include)、包含(comprise)、包括及/或包含(including and/or comprising)當用於本說明書中時,表明存在陳述之特徵、整數、步驟、操作、元件、及/或組分,但不排除存在或附加的一或多個其他特徵、整數、步驟、操作、元件、組分、及/或其群組。此外,應當理解當提及包括組分或子系統之元件及/或顯示為與另一個元件連接或偶合時,其可與其他元件直接連接或偶合或可存在居間元件。 除非另有定義,否則本文中所使用之所有技術及科學術語具有與此揭露所屬之技術領域中具有通常知識者所共同理解之相同含義。雖然類似或同等於本文中所述者之方法及材料亦可用於實踐所揭示之方法或組成物中,但本文中描述者係例示性方法、及材料。 描述本文中有用的分子生物學技術,包括載體、啟動子及許多其他相關主題之使用之一般教科書,包括Berger及Kimmel, GUIDE TO MOLECULAR CLONING TECHNIQUES, Methods in Enzymology, volume 152,(Academic Press, Inc., San Diego, Calif.)("Berger");Sambrook et al., Molecular Cloning--A Laboratory Manual ,2d ed., Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989("Sambrook")及Current Protocols in Molecular Biology, F.M.Ausubel et al., eds., CURRENT PROTOCOLS, A JOINT VENTURE BETWEEN GREENE PUBLISHING ASSOCIATES, INC. AND JOHN WILEY AND SONS, INC.,(1999增刊)("Ausubel")。足以指導所屬技術領域人員通過體外擴增方法(包括聚合酶連鎖反應(polymerase chain reaction, PCR)、連接酶連鎖反應(ligase chain reaction, LCR)、Q.beta複製酶擴增及其他RNA聚合酶媒介之技術(例如,NASBA))例如生產本揭露之同源性核酸之規程之實施例係見於下列文獻中:Berger、Sambrook、及Ausubel、以及於Mullis et al.,(1987)美國專利第4,683,202號;Innis et al., eds.(1990);PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS(Academic Press Inc. San Diego, Calif.)("Innis");Arnheim and Levinson(Oct. 1, 1990)CandEN 36-47;J.NIH RES.(1991)3:81-94;Kwoh et al.,(1989) PROC.NATL.ACAD.SCI.USA 86: 1173;Guatelliet al(1990) PROC.NAT'L.ACAD.SCI.USA 87: 1874;Lomell et al.,(1989) J. CLIN.CHEM 35: 1826;Landegren et al.,(1988)SCIENCE 241: 1077-80;Van Brunt(1990)BIOTECHNOLOGY 8: 291-94;Wu and Wallace(1989)GENE 4:560;Barringer et al., (1990)GENE 89:117;以及Sooknanan and Malek(1995) BIOTECHNOLOGY 13: 563-564。在Wallace et al.,美國專利第5,426,039號中描述選殖體外擴增核酸之改善方法。在Cheng et al.,(1994)NATURE 369: 684-85及其中所引用之文獻中總結藉由PCR擴增大核酸之改善方法,其中生成至多40 kb之PCR擴增子。 如本說明及隨附之申請專利範圍中所使用,單數形式之「一(a/an)」及「該(the)」包含複數之指涉物,除非上下文另有清楚說明。因此,例如,提及「醫藥載體(a pharmaceutical carrier)」包括二或更多種此類載體等之混合物。 在本文中範圍可表示為自「約」一個值,及/或至「約」另一個值。當以這樣的範圍表示時,另一個具體實施例包括自一個值及/或至另一個值。類似地,當藉由使用前置「大約」來表示數值的近似值時,應當理解該值形成另一個具體實施例。進一步應理解,每個範圍之端點不管就牽涉另一個端點,或是獨立於另一個端點來看都是有意義的。亦要理解,本文中所揭示之數個值且除了該值本身之外,每個值在本文中亦揭示為「約」那個值。例如,如果揭示「10」,則亦揭示「大約10」。亦要理解,當揭示一個值時,即亦揭示「小於或等於」該值、「大於或等於該值」、以及在值之間的可能範圍,如由所屬技術領域中具有通常知識者所理解。例如,如果揭示值「10」,則亦揭示「小於或等於10」以及「大於或等於10」。亦要理解,在整個應用中,數據係以數種不同格式來提供,且此數據代表端點及起點,及該些數據點之任合組合的範圍。例如,如果揭示特定數據點「10」及特定數據點「15」,則應理解被認為揭示大於、大於或等於、小於、小於或等於、及等於10及15、以及在10及15之間。亦要理解在二個特定單元之間的各單元亦被揭示。例如,如果揭示10及15,則亦揭示11、12、13、及14。 如本文中所使用,「互補(complementary)」係指在二個核苷酸(例如,在二個相對核酸上或在單一核酸股之相對區域上)之間允許二個核苷酸彼此形成鹼基對的結構關係。例如,與相對核酸之嘧啶核苷酸互補的一個核酸之嘌呤核苷酸可藉由彼此形成氫鍵來鹼基配對在一起。在一些具體實施例中,互補核苷酸可以瓦生-克立克方式或以允許形成穩定雙股體之任何其他方式鹼基配對。在一些具體實施例中,二個核酸可具有彼此互補以形成互補之區域之多個核苷酸之區域,如本文中所述。 如本文中所使用,「去氧核糖核苷酸(deoxyribonucleotide)」係指當與核糖核苷酸相比時,在其戊糖之2'位置處具有氫代替羥基之核苷酸。經修飾之去氧核糖核苷酸係除了在2'位置處以外具有一或多個原子之修飾或取代之去氧核糖核苷酸,包括糖、磷酸酯基團或鹼基內或本身之修飾或取代。 如本文中所使用,「雙股RNA(double-stranded RNA/dsRNA/dsRNAi)」係指實質上呈雙股體形式的RNA寡核苷酸。在一些具體實施例中,dsRNA寡核苷酸之(多個)雙股區域之互補鹼基配對係在共價分離之核酸股之核苷酸之反向平行序列(antiparallel sequence)之間形成。在一些具體實施例中,dsRNA之(多個)雙股區域之互補鹼基配對係在共價連接之核酸股之核苷酸之反向平行序列之間形成。在一些具體實施例中,dsRNA之(多個)雙股區域之互補鹼基配對係由經折疊(例如,經由髮夾)的單一核酸股所形成,以提供鹼基配對在一起的核苷酸之互補反向平行序列。在一些具體實施例中,dsRNA包含二個彼此完全雙股化的共價分離之核酸股。然而,在一些具體實施例中,dsRNA包含二個部分雙股化(例如,在一端或兩端處具有突出端)的共價分離之核酸股。在一些具體實施例中,dsRNA包含部分互補的核苷酸之反向平行序列,且因此,可具有一或多個錯配,該等錯配可包括內部錯配或端錯配。 如本文中所使用,關於核酸(例如,寡核苷酸)之「雙股體(duplex)」係指通過核苷酸之二個反向平行序列之互補鹼基配對所形成之結構。 如本文中所使用,「賦形劑(excipient)」係指可包括在組成物中,例如,提供或促成所欲稠度或穩定效果之非治療劑。 如本文中所使用,「環圈(loop)」係指核酸(例如,寡核苷酸)之未配對區域,其由二個核酸之反向平行區域所側接,該等二個核酸之反向平行區域彼此充分互補,使得在適當的雜交條件下(例如,在磷酸鹽緩衝溶液中、在細胞中),側接未配對區域的二個反向平行區域雜交以形成雙股體(稱為「主幹」)。 如本文中所使用「GFAP」係指神經膠質纖維酸性蛋白質(Glial Fibrillary Acidic Protein)。GFAP存在於中樞神經系統(CNS)之星狀細胞中。GFAP係一種中間絲蛋白質(intermediate filament protein),其為細胞結構提供支撐。 如本文中所使用,「GFAP表現之降低(reduction of GFAP expression)」係指細胞、細胞群、樣本、或個體中之GFAP mRNA、GFAP蛋白質及/或GFAP活性之量或水平當相較於適當參考(例如,參考細胞、細胞群、樣本、或個體)時減少。 如本文中所使用,「經修飾之核苷酸間鍵聯(modified internucleotide linkage)」係指當與包含磷酸二酯鍵之參考核苷酸間鍵聯相比時,具有一或多個化學修飾之核苷酸間鍵聯。在一些具體實施例中,經修飾之核苷酸係非天然存在之鍵聯。一般而言,經修飾之核苷酸間鍵聯對其中存在經修飾之核苷酸間鍵聯的核酸賦予一或多種所欲性質。例如,經修飾之核苷酸可改善熱穩定性、對降解之抗性、核酸酶抗性、溶解度、生物可用性、生物活性、降低之免疫原性等。 如本文中所使用,「經修飾之核苷酸(modified nucleotide)」係指當與選自下列之對應參考核苷酸相比時,具有一或多個化學修飾之核苷酸:腺嘌呤核糖核苷酸、鳥嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸、腺嘌呤去氧核糖核苷酸、鳥嘌呤去氧核糖核苷酸、胞嘧啶去氧核糖核苷酸、及胸苷去氧核糖核苷酸。一些具體實施例中,經修飾之核苷酸係非天然存在之核苷酸。在一些具體實施例中,經修飾之核苷酸在其糖、核鹼基及/或磷酸酯基團中具有一或多個化學修飾。在一些具體實施例中,經修飾之核苷酸具有一或多個與對應參考核苷酸結合之化學部分。一般而言,經修飾之核苷酸對其中存在經修飾之核苷酸的核酸賦予一或多種所欲性質。例如,經修飾之核苷酸可改善熱穩定性、對降解之抗性、核酸酶抗性、溶解度、生物可用性、生物活性、降低之免疫原性等。 如本文中所使用,「星狀細胞mRNA(astrocyte mRNA)」及「星狀細胞基因(astrocyte gene)」係指由中樞神經系統之星狀細胞中之基因所編碼/表現之任何基因、mRNA、及/或蛋白質。星狀細胞係神經膠質細胞,其在整個CND中進行數種功能,諸如突觸支撐及神經傳遞。 如本文中所使用,「帶缺口之四環結構(nicked tetraloop structure)」係指以分開之正義(隨從)股及反義(引導)股為特徵的RNAi寡核苷酸結構,其中正義股具有與反義股互補之區域,且其中該等股中之至少一股(通常為正義股)具有經組態之四環以穩定在該至少一股內所形成之相鄰的主幹區域。 如本文中所使用,「寡核苷酸(oligonucleotide)」係指短核酸(例如,小於約100個核苷酸長)。寡核苷酸可為單股(single-stranded, ss)或ds。寡核苷酸可具有或可不具有雙股區域。作為非限制性實施例組,寡核苷酸可係,但不限於小干擾RNA(siRNA)、微RNA(miRNA)、短髮夾RNA(shRNA)、切酶基質干擾RNA(dsiRNA)、反義寡核苷酸、短siRNA或ss siRNA。在一些具體實施例中,雙股(dsRNA)係RNAi寡核苷酸。 術語「脂質-結合之RNAi寡核苷酸(lipid-conjugated RNAi oligonucleotide)」及「寡核苷酸-配體結合物(oligonucleotide-ligand conjugate)」可互換使用且係指包含一或多個與一或多個靶定配體(例如,脂質)結合之核苷酸之寡核苷酸。 如本文中所使用,「突出端(overhang)」係指自延伸超出互補股之末端的一個股或區域產生之(多個)末端非鹼基配對核苷酸,該一個股或區域與互補股之末端形成雙股體。在一些具體實施例中,突出端包含自dsRNA之5'末端或3'末端處之雙股區域延伸之一或多個未配對核苷酸。在一些具體實施例中,突出端係在dsRNA之反義股或正義股上之3'或5'突出端。 如本文中所使用,「磷酸酯類似物(phosphate analog)」係指模擬磷酸酯基團之靜電及/或空間性質的化學部分。在一些具體實施例中,磷酸酯類似物係定位在寡核苷酸之5'末端核苷酸處,代替通常易受酶移除影響之5'-磷酸酯。在一些具體實施例中,5'磷酸酯類似物含有磷酸酶-抗性鍵聯(phosphatase-resistant linkage)。磷酸酯類似物之實施例包括但不限於5'膦酸酯,諸如5'亞甲基膦酸酯(5'-MP)及5'-(E)-乙烯基膦酸酯(5'-VP)。在一些具體實施例中,寡核苷酸在5'末端核苷酸處之糖之4'-碳位置處具有磷酸酯類似物(稱為「4'-磷酸酯類似物」)。4'-磷酸酯類似物之實施例係氧基甲基膦酸酯,其中氧基甲基之氧原子係與糖部分(例如,在其4'-碳處)或其類似物接合。參見例如,美國臨時專利申請案第62/383,207號(2016年9月2日申請)及第62/393,401號(2016年9月12日申請)。已開發出針對寡核苷酸之5'端之其他修飾(參見例如,國際專利申請案第WO 2011/133871號;美國專利第8,927,513號;及Prakash et al.,(2015)NUCLEIC ACIDS RES .43:2993-3011)。 如本文中所使用,目標基因之「表現降低(reduced expression)」係指當相較於適當參考(例如,參考細胞、細胞群、樣本、或個體)時,細胞、細胞群、樣本、或個體中由目標基因所編碼之RNA轉錄物(例如,目標mRNA)或蛋白質之量或水平減少及/或基因活性之量或水平減少。例如,當相較於未用雙股寡核苷酸處理之細胞時,用本文中之寡核苷酸或結合物(例如,脂質-結合之RNAi寡核苷酸,其包含具有與包含目標mRNA之核苷酸序列互補的核苷酸序列之反義股)接觸細胞之行為可導致目標mRNA、由目標基因所編碼之蛋白質、及/或目標基因活性(例如,經由RNAi路徑使目標mRNA失活及/或降解)之量或水平減少。類似地,且如本文中所使用,「降低表現(reducing expression)」係指導致目標基因之表現降低的行為。 如本文中所使用,「互補之區域(region of complementarity)」係指與核苷酸之反向平行序列充分互補的核酸(例如,dsRNA)之核苷酸序列,以允許在適當雜交條件(例如,於磷酸鹽緩衝液中、於細胞中等)下在兩個核苷酸序列之間雜交。在一些具體實施例中,本文中之寡核苷酸包含具有與mRNA目標序列互補之區域之靶定序列。 如本文中所使用,「核糖核苷酸(ribonucleotide)」係指具有核糖作為其戊糖之核苷酸,在其2'位置處含有羥基。經修飾之核糖核苷酸係除了在2'位置處以外具有一或多個原子之修飾或取代之核糖核苷酸,包括核糖、磷酸酯基團或鹼基內或本身之修飾或取代。 如本文中所使用,「RNAi寡核苷酸(RNAi oligonucleotide)」係指(a)具有正義股(隨從)及反義股(引導)之dsRNA,其中反義股或反義股之一部分係藉由阿爾古2(Ago2)核酸內切酶而用於切割目標mRNA,或(b)具有單一反義股之ss寡核苷酸,其中該反義股(或反義股之一部分)係藉由Ago2核酸內切酶而用於切割目標mRNA。 如本文中所使用,「股(strand)」係指通過核苷酸間鍵聯(例如,磷酸二酯鍵聯或硫代磷酸酯鍵聯)連接在一起之單一、連續核苷酸序列。在一些具體實施例中,股具有二個自由端(例如,5'端及3'端)。 如本文中所使用,「個體(subject)」意指任何哺乳動物,包括小鼠、兔子、及人類。在一個具體實施例中,個體係人類或NHP。此外,「個體(individual)」或「患者(patient)」可與「個體(subject)」可互換使用。 如本文中所使用,「合成(synthetic)」係指人工合成(例如,使用機器(例如,固態核酸合成儀))或其他非衍生自通常產生分子之天然來源(例如,細胞或生物體)的核酸或其他分子。 如本文中所使用,「靶定配體(targeting ligand)」係指選擇性地與感興趣之組織或細胞之同源分子(例如,受體)接合及/或可與另一物質結合以達將另一物質靶向感興趣之組織或細胞之目的的分子或「部分(moiety)」(例如,碳水化合物、胺糖、膽固醇、多肽、或脂質)。例如,在一些具體實施例中,可將靶定配體與寡核苷酸結合以達將寡核苷酸靶向感興趣之特定組織或細胞之目的。在一些具體實施例中,靶定配體選擇性地與細胞表面受體接合。因此,在一些具體實施例中,靶定配體當與寡核苷酸結合時,其通過選擇性地與細胞表面上表現之受體接合及由包含寡核苷酸、靶定配體及受體之複合物之細胞進行核內體內化(endosomal internalization)而促進將寡核苷酸遞送到特定細胞中。在一些具體實施例中,靶定配體經由連接子與寡核苷酸結合,該連接子在細胞內化之後或期間被切割,使得寡核苷酸在細胞中釋離靶定配體。 如本文中所使用,「四環(tetraloop)」係指增加由核苷酸之側接序列雜交所形成之相鄰的雙股體之穩定性的環圈。穩定性之增加可以相鄰的主幹雙股體之解鏈溫度(T m)之增加偵測,即該解鏈溫度比來自由隨機選擇之核苷酸序列所組成之具有可相比長度之一組環圈所預期之相鄰的主幹雙股體之平均T m高。例如,四環可於10 mM NaHPO 4中賦予包含至少2個鹼基對(bp)長之雙股體之髮夾至少約50℃、至少約55℃、至少約56℃、至少約58℃、至少約60℃、至少約65℃、或至少約75℃之T m。在一些具體實施例中,四環可藉由堆疊相互作用而使相鄰的主幹雙股體中之bp穩定。此外,四環中核苷酸間之相互作用包括,但不限於非瓦生-克立克(non-Watson-Crick)鹼基配對、堆疊相互作用、氫鍵結及接觸相互作用(Cheong et al.,(1990)NATURE 346:680-82;Heus and Pardi(1991) SCIENCE 253:191-94)。在一些具體實施例中,四環包含3至6個核苷酸或由其所組成,且一般係4至5個核苷酸。在一些具體實施例中,四環包含3、4、5至6個核苷酸或由其所組成,該等核苷酸可經修飾或可不經修飾(例如,其可與或可不與靶定部分結合)。在一個具體實施例中,四環由4個核苷酸所組成。任何核苷酸均可用於四環中,且可如Cornish-Bowden ((1985)NUCLEIC ACIDS RES .13:3021-3030)中所述使用此類核苷酸之標準IUPAC-IUB符號。例如,字母「N」可用於意指任何鹼基均可位在該位置,字母「R」可用於顯示A(腺嘌呤)或G(鳥嘌呤)可位在該位置,而「B」可用於顯示C(胞嘧啶)、G(鳥嘌呤)、T(胸腺嘧啶)可位在該位置。四環之實施例包括四環之UNCG家族(例如,UUCG)、四環之GNRA家族(例如,GAAA)、及CUUG四環(Woese et al.,(1990) PROC.NATL. ACAD.SCI.USA 87:8467-71;Antao et al.,(1991) NUCLEIC ACIDS RES .19:5901-05)。DNA四環之實施例包括四環之d(GNNA)家族(例如,d(GTTA)、四環之d(GNRA))家族、四環之d(GNAB)家族、四環之d(CNNG)家族、及四環之d(TNCG)家族(例如,d(TTCG))。(參見例如,Nakano et al.,(2002)BIOCHEM. 41:4281-92;Shinji et al.,(2000) NIPPON KAGAKKAI KOEN YOKOSHU 78:731)。在一些具體實施例中,四環係含在帶缺口之四環結構內。 如本文中所使用,「治療(treat/treating)」係指出於改善有關現有病況(例如,疾病、病症)的個體之健康及/或幸福或預防或減少病況發生之可能性之目的而向有其需要的個體提供照護之行為,例如藉由將治療劑(例如,本文中之寡核苷酸)投予至個體。在一些具體實施例中,治療涉及降低由個體所經歷之病況(例如,疾病、病症)之至少一種徵象、症狀、或促成因素之頻率或嚴重性。 實施例 實施例 1 RNAi 寡核苷酸之製備 寡核苷酸合成及純化前述實施例中所述之寡核苷酸(RNAi寡核苷酸)係使用本文中所述之方法化學合成。大致上,RNAi寡核苷酸係使用如針對19至23mer RNAi寡核苷酸所述之固相寡核苷酸合成方法來合成(參見例如,Scaringe et al.(1990) NUCLEIC ACIDS RES .18:5433-41及Usman et al.(1987)J. AM. CHEM.SOC .109:7845-45,亦參見,美國專利第5,804,683號;第5,831,071號;第5,998,203號;第6,008,400號;第6,111,086號;第6,117,657號;第6,353,098號;第6,362,323號;第6,437,117號及第6,469,158),並且使用已知之亞磷醯胺合成方法(參見例如,Hughes and Ellington(2017)COLD SPRING HARB PERSPECT BIOL .9(1): a023812;Beaucage S.L., Caruthers M.H. STUDIES ON NUCLEOTIDE CHEMISTRY V : Deoxynucleoside Phosphoramidites-A New Class of Key I ntermediates for Deoxypolynucleotide Synthesis, TETRAHEDRON LETT. 1981;22:1859-62. doi: 10.1016/S0040-4039(01) 90461-7);PCT申請案第PCT/US2021/ 42469號(其各自以引用方式併入本文中))。具有19mer核心序列之RNAi寡核苷酸經安排成具有36mer正義股及22mer反義股以供RNAi機制處理。該19mer核心序列係與GFAP mRNA中之區域互補。 合成單個RNA股並根據標準方法進行HPLC純化(Integrated DNA Technologies;Coralville, IA)。例如,RNA寡核苷酸係使用固相亞磷醯胺化學法(solid phase phosphoramidite chemistry)、去保護來合成,並在NAP-5管柱(Amersham Pharmacia Biotech;Piscataway, NJ)上使用標準方法去鹽(Damha & Olgivie(1993)METHODS MOL.BIOL.20:81-114;Wincott et al.(1995)NUCLEIC ACIDS RES.23:2677-84)而亞磷醯胺合成如下文所示: 合成 2-(2-((((6aR,8R,9R,9aR)-8-(6- 苯醯胺基 -9H- 嘌呤 -9- )-2,2,4,4- 四異丙基四氫 -6H- 呋喃并 [3,2-f][1,3,5,2,4] 三氧雜二矽辛 (trioxadisilocin)-9- ) 氧基 ) 甲氧基 ) 乙氧基 ) -1- 甲酸銨 (1-6) 將化合物 1-1(25.00 g, 67.38 mmol)於20 mL的DMF中之溶液在10℃下用吡啶(11 mL, 134.67 mmol)及四異丙基二矽氧烷二氯化物(tetraisopropyldisiloxane dichloride)(22.63 mL, 70.75 mmol)處理。將所得混合物在25℃下攪拌3 h並用20%檸檬酸(50 mL)淬熄。將水層用EtOAc(3X50 mL)萃取並將合併之有機層在真空中濃縮。將粗殘餘物自MTBE及正庚烷(1:15, 320 mL)之混合物中再結晶,以得到呈白色油狀固體之化合物 1-2(37.20 g, 90%)。 將化合物 1-2(37.00 g, 60.33 mmol)於20 mL的DMSO中之溶液用AcOH(20 mL, 317.20 mmol)及Ac 2O(15 mL, 156.68 mmol)處理。將混合物在25℃下攪拌15 h。將反應用EtOAc(100 mL)稀釋並用sat. K 2CO 3(50 mL)淬熄。將水層用EtOAc(3X50 mL)萃取。將合併之有機層濃縮並用ACN(30 mL)再結晶,以得到呈白色固體之化合物 1-3(15.65 g, 38.4%)。 將化合物 1-3(20.00 g, 29.72 mmol)於120 mL的DCM中之溶液在25℃下用Fmoc-胺基-乙氧基乙醇(11.67 g, 35.66 mmol)處理。攪拌混合物以得到澄清溶液,然後用4Å分子篩(20.0 g)、 N-碘基琥珀醯亞胺(8.02 g, 35.66 mmol)、及TfOH(5.25 mL, 59.44 mmol)處理。將混合物在30℃下攪拌直到HPLC分析指示化合物 1-3之消耗>95%為止。將反應用TEA(6 mL)淬熄並過濾。將濾液用EtOAc稀釋,用sat. NaHCO 3(2X100 mL)、sat. Na 2SO 3(2X100 mL)、及水(2X100 mL)洗滌並在真空中濃縮,以得到呈黃色固體之粗化合物 1-4(26.34 g, 93.9%),其無需進一步純化即直接用於下一步驟中。 將化合物 1-4(26.34 g, 27.62 mmol)於DCM/水(10:7, 170 mL)之混合物中之溶液在5℃下用DBU(7.00 mL, 45.08 mmol)處理。將混合物在5至25℃下攪拌1 h.。然後將有機層分離,用水(100 mL)洗滌,並用DCM(130 mL)稀釋。將溶液分四部分用丁烯二酸(7.05 g, 60.76 mmol)及4Å分子篩(26.34g)處理。將混合物攪拌1 h,濃縮,並自MTBE及DCM(5:1)之混合物中再結晶,得到呈白色固體之化合物 1-6(14.74 g, 62.9%): 1H NMR(400 MHz, d 6 -DMSO)8.73(s, 1H), 8.58(s, 1H), 8.15-8.02(m, 2H), 7.65-7.60(m, 1H), 7.59-7.51(m, 2H), 6.52(s, 2H), 6.15(s, 1H), 5.08-4.90(m, 3H), 4.83-4.78(m, 1H), 4.15-3.90(m, 3H), 3.79-3.65(m, 2H), 2.98-2.85(m, 6H), 1.20-0.95(m, 28H)。 合成 (2R,3R,4R,5R)-5-(6- 苯醯胺基 -9H- 嘌呤 -9- )-2-(( (4- 甲氧苯基 )( 苯基 ) 甲氧基 ) 甲基 )-4-((2-(2-[ 脂質 ]- 醯胺乙氧基 ) 乙氧基 ) 甲氧基 ) 四氫呋喃 -3- (2- 氰基乙基 ) 二異丙基亞磷醯胺 (2-4a 2-4e) 將化合物 1-6(50.00 g, 59.01 mmol)於150 mL的2-甲基四氫呋喃中之溶液用冰冷K 2HPO 4(6%, 100 mL)水溶液及鹽水(20%, 2X100 mL)洗滌。將有機層分離並在0℃下用己酸(10.33 mL, 82.61 mmol)、HATU(33.66 g, 88.52 mmol)、及DMAP(10.81 g, 147.52 mmol)處理。將所得混合物升溫至25℃並攪拌1 h。將溶液用水(2X100 mL)、鹽水(100 mL)洗滌,並在真空中濃縮,以得到粗殘餘物。矽膠快速層析法(1:1己烷/丙酮)給出呈白色固體之化合物 2-1a(34.95 g, 71.5%)。 將化合物 2-1a(34.95 g, 42.19 mmol)及TEA(9.28 mL, 126.58 mmol)於80 mL的THF中之混合物在10℃下用三乙胺三氫氟酸鹽(20.61 mL, 126.58 mmol)逐滴處理。將混合物升溫至25℃並攪拌2 h。將反應濃縮,溶解於DCM(100 mL)中,並用sat. NaHCO 3(5X20 mL)及鹽水(50 mL)洗滌。將有機層在真空中濃縮,以得到粗化合物 2-2a(24.72 g, 99%),其無需進一步純化即直接用於下一步驟中。 將化合物 2-2a(24.72 g, 42.18 mmol)於50 mL的DCM中之溶液用 N-甲基瑪琳(18.54 mL, 168.67 mmol)及DMTr-Cl(15.69 g, 46.38 mmol)處理。將混合物在25℃下攪拌2 h並用sat. NaHCO 3(50 mL)淬熄。將有機層分離,用水洗滌,濃縮,以得到漿狀粗製物。矽膠快速層析法(1:1己烷/丙酮)給出呈白色固體之化合物 2-3a(30.05 g, 33.8 mmol, 79.9%)。 在氮氣氣氛下將化合物 2-3a(25.00 g, 28.17 mmol)於50 mL的DCM中之溶液用 N-甲基瑪琳(3.10 mL, 28.17 mmol)及四唑(0.67 mL, 14.09 mmol)處理。將雙(二異丙基胺基)氯化膦(9.02 g, 33.80 mmol)逐滴添加至溶液中並將所得混合物在25℃下攪拌4 h。將反應用水(15 mL)淬熄,並將水層用DCM(3X50 mL)萃取。將合併之有機層用sat. NaHCO 3(50 mL)洗滌,濃縮,以得到粗固體,將該粗固體自DCM/MTBE/正己烷(1:4:40)之混合物中再結晶,以得到呈白色固體之化合物 2-4a(25.52 g, 83.4%): 1H NMR(400 MHz, d 6 -DMSO)11.25(s, 1H), 8.65-8.60(m, 2 H), 8.09-8.02(m, 2H), 7.71(s, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.85-6.79(m, 4H), 6.23-6.20(m, 1H), 5.23-5.14(m, 1H), 4.80-4.69(m, 3H), 4.33-4.23(m, 2H), 3.90-3.78(m, 1H), 3.75(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.82-2.80(m, 1H), 2.65-2.60(m, 1H), 2.05-1.96(m, 2H), 1.50-1.39(m, 2H), 1.31-1.10(m, 14H), 1.08-1.05(m, 2 H), 0.85-0.79(m, 3H); 31P NMR(162 MHz, d 6 -DMSO)149.43, 149.18。 化合物 2-4b 2-4c 2-4d 2-4e係使用上述化合物 2-4a之類似程序製備。獲得呈白色固體之化合物 2-4b(25.50 g, 85.4%): 1H NMR(400 MHz, d 6 -DMSO)11.23(s, 1H), 8.65-8.60(m, 2 H), 8.05-8.02(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.23-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.97(m, 2H), 1.50-1.38(m, 2H), 1.31-1.10(m, 18H), 1.08-1.05(m, 2H), 0.85-0.78(m, 3H); 31P NMR(162 MHz, d 6 -DMSO)149.43, 149.19。 獲得呈灰白色固體之化合物 2-4c(36.60 g, 66.3%): 1H NMR(400 MHz, d 6 -DMSO)11.22(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.25-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.50(m, 3H), 3.50-3.20(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m, 2H), 1.33-1.12(m, 38H), 1.08-1.05(m, 2 H), 0.86-0.80(m, 3H); 31P NMR(162 MHz, d 6 -DMSO)149.42, 149.17。 獲得呈灰白色固體之化合物 2-4d(26.60 g, 72.9%): 1H NMR(400 MHz, d 6 -DMSO)11.22(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m, 2H), 7.38-7.33(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.22-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m, 2H), 1.35-1.08(m, 38H), 1.08-1.05(m, 2 H), 0.85-0.79(m, 3H); 31P NMR(162 MHz, d 6 -DMSO)149.47, 149.22。 獲得呈白色固體之化合物 2-4e(38.10 g, 54.0%): 1H NMR(400 MHz, d 6 -DMSO)11.21(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.23-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.73(s, 6H), 3.74-3.52(m, 3H), 3.47-3.22(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m, 2H), 1.35-1.06(m, 46H), 1.08-1.06(m, 2 H), 0.85-0.77(m, 3H); 31P NMR(162 MHz, d 6 -DMSO)149.41, 149.15。 寡聚物係使用離子交換高效液相層析法(ion-exchange high performance liquid chromatography, IE-HPLC)在Amersham Source 15Q管柱(1.0 cm×25 cm;Amersham Pharmacia Biotech)上使用15 min的步進式線性梯度(step-linear gradient)來純化。梯度自90:10的緩衝液A:B變化至52:48的緩衝液A:B,其中緩衝液A係100 mM Tris pH 8.5而緩衝液B係100 mM Tris pH 8.5,1 M NaCl。在260 nm下監測樣本並收集對應於全長寡核苷酸物種之峰,合併,在NAP-5管柱上去鹽,並冷凍乾燥。 各寡聚物之純度係藉由毛細管電泳(capillary electrophoresis, CE)在Beckman PACE 5000(Beckman Coulter, Inc.;Fullerton, CA)上測定。CE毛細管具有100 μm內徑且含有ssDNA 100R凝膠(Beckman-Coulter)。一般而言,將約0.6 nmole的寡核苷酸注射到毛細管中,在444 V/cm之電場中運行,並藉由在260 nm下之UV吸光度來偵測。變性Tris-Borate-7 M-尿素電泳緩衝液購自Beckman-Coulter。如藉由CE所評定,獲得之寡核苷酸至少90%純,供使用於下述實施例中。化合物鑑定係藉由Voyager DE™ Biospectometry Work Station(Applied Biosystems;Foster City, CA)之基質輔助雷射脫附飛行時間(matrix-assisted laser desorption ionization time-of-flight, MALDI-TOF)質譜儀依循製造商的建議規程來驗證。獲得所有寡聚物之相對分子量,其常在預期分子量之0.2%內。 製備雙股體將單股RNA寡聚物重新懸浮(例如,以100 μM濃度)於由100 mM乙酸鉀、30 mM HEPES(pH 7.5)所組成之雙股體緩衝液中。將互補的正義股及反義股以等莫耳量混合以產出例如,50 μM雙股體之最終溶液。將樣本在RNA緩衝液(IDT)中加熱至100℃ 5',並在使用之前使其冷卻至室溫。將RNAi寡核苷酸儲存在-20℃下。將單股RNA寡聚物冷凍乾燥儲存或在-80℃下儲存於無核酸酶之水中。 本文中所述之合成方法用於生成 實施例 4 5 7 、及 8中所述之脂質-結合之寡核苷酸。 實施例 2 GalNAc- 結合之 GFAP RNAi 寡核苷酸經由鞘內及腦室內投予在體內以濃度依賴性之方式抑制小鼠 Gfap 神經膠質纖維酸性蛋白質(GFAP)編碼主要存在於CNS之星狀細胞中之中間絲蛋白質。 GFAP充分弱化表明本文中所述之寡核苷酸降低在星狀細胞中表現之目標基因之表現的能力。為評估RNAi寡核苷酸在體內降低 Gfap表現之能力,使用如 實施例 1中所述合成之寡核苷酸以生成包含帶缺口之四環GalNAc-結合之結構的雙股RNAi寡核苷酸(本文中稱為「GalNAc-結合之 GFAP寡核苷酸(GalNAc-conjugated GFAPoligonucleotide)」或「GalNAc- GFAP寡核苷酸」),其具有36-mer隨從股及22-mer引導股。進一步,包含隨從股及引導股之核苷酸序列具有不同模式的經修飾之核苷酸及硫代磷酸酯鍵聯。包含四環之三個核苷酸各自與GalNAc部分(CAS#14131-60-3)結合。各股之修飾模式說明如下: 雜交至: 修飾鍵: 1 符號 修飾 / 鍵聯 [MePhosphonate-4O-mUs] 經4'-O-單甲基膦酸酯-2'-O-甲基修飾之核苷酸 [ademX-GalNAc] GalNAc附接至核苷酸 [mXs] 與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'- O-甲基修飾之核苷酸 [fXs] 與鄰近核苷酸具有硫代磷酸酯鍵聯之經2'-氟修飾之核苷酸 [mX] 與鄰近核苷酸具有磷酸二酯鍵聯之經2'- O-甲基修飾之核苷酸 [fX] 與鄰近核苷酸具有磷酸二酯鍵聯之經2'-氟修飾之核苷酸 [AdemX-C16] C16脂質附接至核苷酸 [AdemX-C16s] C16脂質附接至與鄰近核苷酸具有硫代磷酸酯鍵聯之核苷酸 i. 鞘內投予評定GFAP-1477(如 2中所示)經由鞘內(i.t.)投予在中樞神經系統(CNS)中降低鼠類 Gfap之能力。具體而言,經由i.t.腰注射對小鼠投予調配於人工腦脊髓液(aCSF)中之10、32、100、320、或1000 µg的GFAP-1477。在鞘內注射之後第7天將動物處死。自CNS組織中萃取RNA,藉由qPCR測定鼠類 GfapmRNA水平(對內源性持家基因 Rpl23標準化)。使用PrimeTime™ qPCR探針檢定(IDT)測定鼠類 GfapmRNA之水平,其由一對引子及經螢光標記之5'核酸酶探針所組成,該探針特異於鼠類 GfapmRNA。在經處理之小鼠樣本中之鼠類 GfapmRNA殘餘之百分比係使用2 -ΔΔCt(「δ-δ Ct」)法(Livak and Schmittgen(2001)METHODS 25:402-408)來測定。在CNS之組織中觀察到 Gfap表現以劑量依賴性之方式降低。具體而言,如 1A 、圖 1B 、圖 1C 、及圖 1F中分別所示,在來自頸脊髓、胸脊髓、腰脊髓、及小腦之樣本中 Gfap表現降低約50%或更多。如 1D 及圖 1E分別所示,在額葉皮質及海馬體中觀察到 Gfap表現之降低較少。 2中顯示剩餘之mRNA之平均百分比(%),以及基於在各寡核苷酸濃度下於組織中剩餘之mRNA百分比測定之腦之各區域之ED 50值。總之,此數據顯示具有GalNAc-結合之四環的 GFAP靶定寡核苷酸在i.t.投予之後在CNS之幾個組織中以劑量-依賴性之方式抑制 GFAP表現。 ii. 腦室內投予亦評定GFAP-1477經由腦室內(i.c.v)投予在中樞神經系統(CNS)中降低鼠類 Gfap之能力。具體而言,經由i.c.v.對小鼠投予調配於aCSF中之10、32、100、或300 µg的GFAP-1477。在i.c.v.注射之後第7天將動物處死。如上所述自CNS組織中萃取RNA。在CNS之組織中觀察到 Gfap表現以劑量-依賴性之方式降低。具體而言,如 3A 至圖 3D中分別所示,在額葉皮質、腦幹、海馬體、及腰脊髓之樣本中, Gfap表現降低約50%或更多。 4中顯示剩餘之mRNA之平均百分比(%),以及基於在各寡核苷酸濃度下於組織中剩餘之mRNA百分比測定之腦之各區域之ED 50值。總之,此數據顯示具有GalNAc-結合之四環的 GFAP靶定寡核苷酸經由i.c.v投予在CNS之幾個組織中以劑量-依賴性之方式抑制 GFAP表現。 實施例 3 合成四環 RNAi 寡核苷酸 - 脂質結合物本文中所述之脂質-結合之四環寡核苷酸可使用在PCT申請案第PCT/US2021/42469號中詳述之後合成方法來合成。具體而言,寡核苷酸可使用諸如下文繪示之後合成結合方法(post-synthetic conjugation approach)來合成。 方案 1合成具有結合至四環之單脂質(直鏈及支鏈)的RNAi寡核苷酸-脂質結合物。後合成結合可通過醯胺偶合反應來實現。 R 1COOH基團表示脂肪酸C8:0、C10:0、C11:0、C12:0、C14:0、C16:0、C17:0、C18:0、C18:1、C18:2、C22:5、C22:0、C24:0、C26:0、C22:6、C24:1、二醯基C16:0、或二醯基C18:1。例示性R1結構提供如下: 合成 正義股 1反義股 1係藉由固相合成來製備。 合成 結合之正義股 1a1i結合之正義股 1a係通過後合成結合方法來合成 在艾本德管(Eppendorf tube)1中,在rt下將辛酸(0.58 mg, 4 umol)於DMA(0.75 mL)中之溶液用HATU(1.52 mg, 4 umol)處理。在艾本德管2中,將寡核苷酸(oligo) 正義股 1(10.00 mg, 0.8 umol)於H 2O(0.25 mL)中之溶液用DIPEA(1.39 uL, 8 umol)處理。將於艾本德管1中之溶液添加至艾本德管2中並使用ThermoMixer在rt下混合。在藉由LC-MS分析指示反應完成之後,將反應混合物用5 mL的水稀釋並藉由逆相XBridge C18管柱使用100 mM TEAA於ACN中及H 2O中之5至95%梯度來純化。使用Genevac在減壓下將產物流份濃縮。將合併之殘餘溶劑使用Amicon® Ultra-15 Centrifugal (3K)對水(1 X)、鹽水(1 X)、及水(3 X)透析。將Amicon膜用水(3 X 2 mL)洗滌,然後將合併之溶劑冷凍乾燥,以得到 結合之正義股 1a之非晶形白色固體(6.43 mg,64%產率)。 結合之正義股 1b 1i係與合成 結合之正義股 1a所述類似的程序製備並以42%至69%產率獲得。 黏合 雙股體 1a 1j結合之正義股 1a(10 mg,按重量測量)溶解於0.5 mL去離子水中以製備20 mg/mL溶液。將 反義股 1(10 mg,按OD測量)溶解於0.5 mL去離子水中以製備20 mg/mL溶液,將其用於結合之正義股之滴定及雙股體量之定量。基於結合之正義股及反義股兩者之莫耳量之計算,將所需 反義股 1部分添加至 結合之正義股 1a溶液中。將所得混合物在95℃下攪拌5 min並使其冷卻至rt。黏合進程係藉由離子交換HPLC監測。基於黏合進程,進一步添加數個 反義股 1部分以完成黏合,純度>95%。將溶液冷凍乾燥以得到 雙股體 1a(C8)且其量係基於在黏合中消耗之反義股之莫耳量來計算。 雙股體 1b 1i係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下方案1-2繪示合成在環圈上具有單脂質之帶缺口之四環GalXC結合物。後合成結合係通過Cu催化之炔烴-疊氮化物環化加成反應(Cu-catalyzed alkyne-azide cycloaddition reaction)來實現。 正義股 1B反義股 1B係藉由固相合成來製備。 合成 結合之正義股 1j。 在艾本德管1中,將寡核苷酸(10.00 mg, 0.8 umol)於DMA/ H 2O(0.5 mL)之3:1混合物中之溶液用脂質連接子疊氮化物(11.26 mg, 4 umol)處理。在艾本德管2中,將CuBr二甲硫醚(1.64 mg, 8 umol)溶解於ACN(0.5 mL)中。將兩個溶液藉由使N 2鼓泡通過來除氣10 min。然後將CuBrSMe 2之ACN溶液添加到管1中並將所得混合物在40℃下攪拌。在藉由LC-MS分析指示反應完成之後,將反應混合物用0.5 M EDTA(2 mL)稀釋並使用Amicon® Ultra-15 Centrifugal (3K)對水(2 X)透析。將反應粗製物藉由逆相XBridge C18管柱使用100 mM TEAA於ACN(加入30% IPA)及H 2O中之5至95%梯度來純化。使用Genevac在減壓下將產物流份濃縮。將合併之殘餘溶劑使用Amicon® Ultra-15 Centrifugal (3K)對水(1 X)、鹽水(1 X)、及水(3 X)透析。將Amicon膜用水(3 X 2 mL)洗滌,將合併之溶劑冷凍乾燥,以得到 結合之正義股 1j之非晶形白色固體(6.90 mg,57%產率)。 雙股體 1j( PEG2K- 二醯基 C18)係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下方案1-3繪示使用後合成結合方法合成在環圈上具有雙脂質之帶缺口之四環GalXC結合物。 正義股 2反義股 2係藉由固相合成來製備。 結合之正義股 2a2b係使用與 結合之正義股 1a類似的程序,但用10 eq的脂質、10 eq的HATU、及20 eq的DIPEA製備。 雙股體 2a(2XC11)2b(2XC22)係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下方案1-4繪示使用後合成結合方法合成與單脂質結合之完全硫代磷酸酯化主幹-環圈之GalXC。 正義股 3反義股 3係藉由固相合成來製備。 結合之正義股 3a係使用與合成 結合之正義股 1a所述類似的程序製備並以65%產率獲得。 雙股體 3a(PS-C22)係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下方案1-5繪示使用後合成結合方法合成與單脂質結合之短正義股之GalXC。 正義股 4反義股 4係藉由固相合成來製備。 結合之正義股 4a係使用與合成 結合之正義股 1a所述類似的程序製備並以74%產率獲得。 雙股體 4a(SS-C22)係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下方案1-6繪示固相合成在環圈上具有(多個)脂質之帶缺口之四環GalXC結合物之實例。 合成結合之正義股 6 結合之正義股 6係使用市售寡核苷酸合成儀藉由固相合成來製備。該寡核苷酸係使用經2'-修飾之核苷亞磷醯胺(諸如2'-F、或2'-OMe)及2'-二乙氧基甲醇連接之脂肪酸醯胺核苷亞磷醯胺合成。寡核苷酸合成係使用標準寡核苷酸合成規程在固相支撐物上以3'向5'方向執行。5-乙硫基-1H-四唑(ETT)係用作偶合反應之活化劑。碘溶液係用於亞磷酸三酯氧化反應。3-(二甲基胺基亞甲基)胺基-3H-1,2,4-二噻唑-3-硫酮(DDTT)係用於形成硫代磷酸酯鍵聯。將經合成之寡核苷酸用濃縮水性銨(aqueous ammonium)處理10 h。將氨自懸浮液中移除並將固體支撐物殘留物藉由過濾移除。將粗製寡核苷酸用TEAA處理、分析、並藉由強陰離子交換高效液相層析法(strong anion exchange high performance liquid chromatography, SAX-HPLC)純化。將流份合併並使用Amicon® Ultra-15 Centrifugal(3K)對水(3 X)、鹽水(1 X)、及水(3 X)透析。然後將剩餘之溶劑冷凍乾燥,以得到所欲之 結合之正義股 6雙股體 6係使用與黏合 雙股體 1a(C8)所述相同的程序製備。 以下 方案 1-7繪示使用後合成結合方法合成在5'端處與單脂質結合之GalXC。 合成結合之正義股10a 結合之正義股 10a係使用與合成 結合之正義股 5相同的方法或實質上類似的方法獲得。 雙股體 10a之合成實施例 雙股體 10a係使用與合成 雙股體 5相同的方法或實質上類似的方法獲得。 實施例 4 GFAP- 靶定寡核苷酸經由鞘內及腦大池內投予顯示長期作用持續期 (Long-term Duration of Action)在此實施例中,使用具有不同靶定配體之寡核苷酸測定作用持續期。具體而言,將如 實施例 2中所述之GalNAc-結合之 Gfap寡核苷酸、及由 實施例 1中所述方法生成之C16-結合之 Gfap寡核苷酸(其序列提供於 3中)投予至大鼠以進行長期研究。C16脂質部分係結合在正義股之位置28處。 四環RNAi寡核苷酸修飾模式 雜交至: 修飾鍵: 1 i. 鞘內投予將上述GalNAc-結合及脂質-結合之 Gfap寡核苷酸經由鞘內(i.t.)注射投予至大鼠以評定 Gfap表現之降低的長期持續期。具體而言,經由i.t.注射對史道二氏大鼠(Sprague-Dawley rat)(250 g)投予單次1000 µg劑量的調配於aCSF中之 3中之寡核苷酸。在i.t.注射之後的第8週、第12週、及第23週評定目標之弱化。自前額葉皮質、感覺皮質、紋狀體、海馬體、環腦導水管灰質(periaqueductal grey)、小腦、腦幹、及脊髓(SC)段1至8(SC1至SC8)之組織樣本中萃取RNA,藉由qPCR測定大鼠 GfapmRNA水平,如 實施例 2中所述。鼠類 GfapmRNA之水平係使用PrimeTime™ qPCR探針檢定(IDT)測定。在研究過程(亦即在第8、第12、及第23週)中,C16-結合之寡核苷酸顯示在腦幹及SC1至SC8中之 Gfap表現降低約50%或更多( 5A)。相比之下,在所有取樣腦組織中,使用GalNAc-結合之寡核苷酸觀察到 Gfap表現降低較少( 5B)。此數據顯示在單次鞘內注射之後中樞神經系統中星狀細胞目標mRNA( 例如, GFAP)之長期持續抑制。 ii. 腦大池內投予 3中所述之C16-結合之 GFAP寡核苷酸腦大池內(i.c.m.)注射投予至大鼠以評定 Gfap表現之降低的長期持續期。具體而言,經由i.c.m注射對史道二氏大鼠投予單次1000 µg劑量的調配於aCSF中之寡核苷酸。在注射之後的第4週及第12週評定 Gfap之表現。自前額葉皮質、感覺皮質、海馬體、下視丘、小腦、腦幹、頸脊髓、及腰脊髓之組織樣本中萃取RNA,藉由qPCR測定大鼠 GfapmRNA水平,如 實施例 2中所述。在i.c.m.注射之後的第4週時,在所有腦區域中觀察到 Gfap表現降低約50%或更多,而在小腦、腦幹、頸脊髓、及腰脊髓中,約50%或更多的 Gfap表現降低維持到i.c.m.注射之後的第12週( 6)。 對第二動物群別投予 3中相同的C16脂質-結合之 Gfap寡核苷酸以評定至第26週及第39週 GfapmRNA表現之降低。如上所述,對大鼠投予單一劑量的寡核苷酸。自額葉皮質、紋狀體、感覺皮質、海馬體、下視丘、環腦導水管灰質、小腦、腦幹、及脊髓(SC)段1至8(SC1至SC8)之組織樣本中萃取RNA,藉由qPCR測定大鼠 GfapmRNA水平,如 實施例 2中所述。在給藥後的第26週時,在小腦、腦幹、及SC1至SC5中觀察到 Gfap表現降低約50%或更多( 7A)。到第39週,在小腦、腦幹、及SC1至SC7中觀察到 Gfap表現降低約25至50%( 7B)。此數據顯示在單次腦大池內注射之後中樞神經系統中星狀細胞目標mRNA( 例如, GFAP)之長期持續抑制。 實施例 5 :在四環 RNAi 寡核苷酸脂質 - 結合物對中樞神經系統之體內活性上脂質結合之位置效應在體內評估包含四環之RNAi寡核苷酸-脂質結合物降低CNS之星狀細胞中之mRNA表現之能力。C16-結合之 Gfap寡核苷酸係如 實施例 1中所述生成。具體而言,C16脂質係結合在正義股中之位置(P)1、4、8、12、13、18、20、23、28、29、及30中之一者處,如下文修飾模式所示。未經修飾之正義股及反義股分別提供於SEQ ID NO: 3及4中,而經修飾之股顯示於 4中。 四環RNAi寡核苷酸修飾模式: P1 正義股: P4 正義股: P8 正義股: P12 正義股: P13 正義股: P18 正義股: P20 正義股: P23 正義股: P28 正義股: P29 正義股: P30 正義股: P1,P4、P8、P12、P13、P18、P20、P23、P28、P29、及P30之各者雜交至具有下列修飾模式之反義股: 修飾鍵: 1 為了評估 4中之寡核苷酸,經由鞘內(i.t.)腰注射將6至8週大之C57BL/6雌性小鼠用調配於人工腦脊髓液中之300 µg的RNAi寡核苷酸處理。在注射之後第7天評定目標表現。 自腰脊髓、延髓、小腦、下視丘、海馬體、及額葉皮質之組織樣本中萃取RNA,藉由qPCR測定鼠類 GfapmRNA水平,如 實施例 2中所述。在腰脊髓中,所有的寡核苷酸均降低 GfapmRNA表現( 8A)。在P1、P4、P13、P18、P20、P23、P29、或P30處與C16脂質結合之寡核苷酸降低延髓中之mRNA表現( 8B)。在小腦中,表現被在P4、P23、或P29處與C16脂質結合之寡核苷酸降低( 8C)。在P1、P4、P12、P13、P18、P20、P23、P28、P29、或P30處與C16脂質結合之寡核苷酸降低下視丘中之 GfapmRNA表現( 8D)。在海馬體及額葉皮質中觀察到輕微的弱化(分別為 8E 及圖 8F)。總而言之,C16-結合之四環寡核苷酸在經由i.t.腰注射投予至CNS之後降低數個CNS組織中之 Gfap表現。 實施例 6 :合成脂質 - 結合之鈍端寡核苷酸以下示意圖繪示合成在5'-端處具有C16-脂質之鈍端寡核苷酸。本文中所述之脂質-結合之鈍端寡核苷酸可使用在PCT申請案第PCT/US2021/42469號中詳述之後合成方法來合成。具體而言,寡核苷酸可使用諸如下文繪示之後合成結合方法來合成。在艾本德管1中,在rt下將棕櫚酸於DMA中之溶液用HATU處理。在艾本德管2中,將寡核苷酸正義股於H 2O中之溶液用DIPEA處理。將於艾本德管1中之溶液添加至艾本德管2中並使用ThermoMixer在rt下混合。在藉由LC-MS分析指示反應完成之後,將反應混合物用5 mL的水稀釋並藉由逆相XBridge C18管柱使用100 mM TEAA於ACN中及H 2O中之5至95%梯度來純化。使用Genevac在減壓下將產物流份濃縮。將合併之殘餘溶劑使用Amicon® Ultra-15 Centrifugal(3K)對水(1 X)、鹽水(1 X)、及水(3 X)透析。將Amicon膜用水(3 X 2 mL)洗滌,然後將合併之溶劑冷凍乾燥,以得到非晶形白色固體。 實施例 7 :在鈍端 RNAi 寡核苷酸對中樞神經系統之體內活性上脂質結合之位置效應評估在正義股之不同位置處與脂質結合之RNAi寡核苷酸結合物對降低CNS中之星狀細胞目標表現之能力。如上述生成與C16脂質結合之RNAi寡核苷酸。具體而言,生成在3'末端處具有鈍端及在5'末端處具有2個核苷酸突出端,且其中C16脂質結合在正義股之位置(P)1、4、8、12、13、18及20處之寡核苷酸,如下文修飾模式所示。比較包括自 實施例 5中選定之脂質-結合之四環寡核苷酸(P1、P4、P23、及P28)。未經修飾之正義股及反義股分別提供於SEQ ID NO: 19及4中,而經修飾之股顯示於 5中。 鈍端RNAi寡核苷酸修飾模式: P1 正義股: P4 正義股: P8 正義股: P12 正義股: P13 正義股: P18 正義股: P20 正義股: 將P1、P4、P8、P12、P13、P18、及P20之各者雜交至具有下列修飾模式之反義股: 修飾鍵: 1 為了評估 5中之鈍端寡核苷酸-脂質結合物,經由鞘內(i.t.)腰注射將6至8週大之C57BL/6雌性小鼠用調配於人工腦脊髓液(aCSF)中之500 µg的脂質-結合之鈍端RNAi寡核苷酸處理。對照動物僅注射aCSF。在注射之後第7天評定目標表現。 自腰脊髓、延髓、小腦、下視丘、海馬體、及額葉皮質之組織樣本中萃取RNA,藉由qPCR測定鼠類 GfapmRNA水平(對內源性持家基因 Rpl23標準化,如指示)。使用 實施例 2中所述之方法測定鼠類 GfapmRNA之水平。在來自CNS之數個組織之樣本中, GfapmRNA表現降低約50%或更多( 9A 至圖 9F)。具體而言,在腰脊髓及延髓中,所有的脂質結合位置均降低 GfapmRNA( 9A 及圖 9B)。在小腦中,在P4、P12、P13、P18、或P20處與C16脂質結合之寡核苷酸降低mRNA表現( 9C)。在下視丘中,表現被在P1、P4、P12、P13、P18、或P20處與C16脂質結合之寡核苷酸降低( 9D)。在海馬體及額葉皮質中觀察到 GfapmRNA之輕微抑制(分別為 9E 及圖 9F)。對於各腦區域,所測試之脂質-結合之四環寡核苷酸均顯示出與 實施例 5中所示類似的表現降低。總體而言,在鈍端寡核苷酸中之數個脂質-結合之位置係CNS中之目標mRNA的成功抑制劑。 比較來自 實施例 5及本實施例中所述之實驗的剩餘之mRNA百分比。具體而言,將數據總結於 10A 至圖 10F中,其顯示四環及鈍端寡核苷酸之跨腦區域及脂質位置之效力。 實施例 8 C16- 結合之 GFAP 鈍端寡核苷酸在體內以濃度依賴性之方式抑制小鼠 Gfap 評定在位置1處與C16脂質結合之鈍端寡核苷酸以濃度依賴性之方式經由i.t.投予對降低中樞神經系統(CNS)中之鼠類 Gfap之能力。具體而言,經由i.t.注射對小鼠投予3、10、30、100、或300 µg的調配於aCSF中之GFAP-1477(SEQ ID NO: 20(正義股)及SEQ ID NO: 18(反義股))。在i.t.注射之後第7天或第28天將動物處死。如 實施例 2中所述自肝組織萃取RNA。在數個CNS組織中觀察到 Gfap表現以濃度依賴性之方式降低。具體而言,在注射之後第7天時,在下視丘、小腦、腦幹、及腰脊髓中表現降低( 11A)。在相同組織中,該降低維持到第28天,指示在單次投予鈍端寡核苷酸之後的長期抑制( 11B)。總之,此數據顯示脂質-結合之鈍端寡核苷酸抑制星狀細胞目標mRNA之長期效力。 In some aspects, the present disclosure provides oligonucleotide-lipid conjugates (e.g., RNAi oligonucleotide-lipid conjugates) that reduce expression of a target gene expressed in stellate cells in the central nervous system (CNS) . In other aspects, the present disclosure provides methods of treating diseases or conditions associated with expression of stellate cell mRNA (eg, diseases of the CNS). In other aspects, the present disclosure provides use of lipid-conjugated RNAi oligonucleotides described herein, or pharmaceutically acceptable compositions thereof, to treat diseases or conditions associated with expression of stellate cell mRNA (e.g., neurological disease and/or inappropriate genetic expression). In other aspects, the present disclosure provides methods of using lipid-conjugated RNAi oligonucleotides described herein in the manufacture of medicaments for treating diseases or conditions associated with expression of stellate cell mRNA. In other aspects, lipid-conjugated RNAi oligonucleotides provided herein are used to modulate (e.g., inhibit or reduce) stellate cell target genes associated with neurological diseases or disorders in the CNS. Manifested to treat neurological diseases or conditions. In some aspects, the present disclosure provides methods of treating neurological diseases or disorders by reducing expression of stellate cell target genes associated with the neurological disease or disorder in the CNS (e.g., in cells, tissues, or organs of the CNS) . Lipids - Combined RNAi OligonucleotidesIn particular, the present disclosure provides lipid-conjugated RNAi oligonucleotides (eg, RNAi oligonucleotide-lipid conjugates) that reduce expression of stellate cell target genes in the CNS. In some embodiments, lipid-conjugated RNAi oligonucleotides provided by the present disclosure are targeted to mRNA encoding a target gene. The messenger RNA (mRNA) encoding the target gene and targeted by the lipid-conjugated RNAi oligonucleotides of the present disclosure is referred to herein as "target mRNA". mRNA target sequence In some embodiments, lipid-conjugated RNAi oligonucleotides target target sequences comprising target stellate cell mRNA. In some embodiments, lipid-conjugated RNAi oligonucleotides target target sequences within target stellate cell mRNA. In some embodiments, a lipid-conjugated RNAi oligonucleotide, or a portion, fragment, or strand thereof (e.g., an antisense or guide strand of a double-stranded oligonucleotide) is combined with a stellate cell mRNA of interest. Target sequences are spliced or glued, thereby reducing target gene expression. In some embodiments, lipid-conjugated RNAi oligonucleotides target a target sequence comprising target stellate cell mRNA for the purpose of reducing expression of the stellate cell target gene in vivo. In some embodiments, the amount or degree of reduction in target gene expression by a lipid-conjugated RNAi oligonucleotide that targets a specific stellate cell target sequence correlates with the efficacy of the lipid-conjugated RNAi oligonucleotide. Union. In some embodiments, reducing the amount or extent of target gene expression by lipid-conjugated RNAi oligonucleotides targeting specific stellate cell target sequences is consistent with treatment with lipid-conjugated RNAi oligonucleotides. Correlates the amount or degree of therapeutic benefit to an individual or patient suffering from a disease, disorder, or condition associated with expression of a target gene. Certain nucleosides have been discovered by examining the nucleotide sequences of mRNAs encoding target genes, including those from a variety of different species (e.g., humans, Malay monkeys, mice, and rats) and the results of in vitro and in vivo tests Acid sequences and certain systematic modifications to those oligonucleotides are more suitable than other oligonucleotide sequences for the reduction of RNAi oligonucleotide mediators, and therefore they can be used as additional oligos targeting specific gene target sequences. part of a nucleotide. In some embodiments, the sense strand of a lipid-conjugated RNAi oligonucleotide described herein, or a portion or fragment thereof, comprises a target sequence similar to that comprising a stellate cell target mRNA (e.g., having no more than 4 mismatch) or identical nucleotide sequences. In some embodiments, a portion or region of the sense strand of a double-stranded oligonucleotide described herein includes a target sequence including a stellate cell target mRNA. In some embodiments, the stellate cell mRNA target sequence is associated with acute or chronic pain. In some embodiments, stellate cell mRNA target sequences are associated with neurological disorders. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells in at least one region of the CNS. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the spinal cord. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the lumbar spinal cord. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the thoracic spinal cord. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the cervical spinal cord. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the hypothalamus. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells in the medulla oblongata. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the hippocampus. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in cerebellar stellate cells. In some embodiments, the stellate cell mRNA target sequence is an mRNA expressed in stellate cells of the frontal cortex. In some embodiments, the stellate cell mRNA target sequence is an mRNA associated with a disease, disorder, or condition of the CNS. In some embodiments, the oligonucleotides herein have GFAPRegions of mRNA complementarity (e.g., stellate cell mRNA target sequences are GFAPsequence. In some embodiments, the target sequence is tethered to GFAPwithin the target sequence of the mRNA) to achieve the purpose of targeting the mRNA in cells and inhibiting its expression. In some embodiments, the oligonucleotides herein comprise GFAPTargeting sequences (e.g., antisense or leader strands of double-stranded oligonucleotides) that have the ability to bind to GFAPThe complementary region to which a target sequence binds or adheres. In some embodiments, a portion or region of the sense strand of a double-stranded oligonucleotide described herein comprises GFAPtarget sequence. In some specific embodiments, GFAPThe target sequence includes or consists of the nucleotide sequence of any one of SEQ ID NOs: 28 to 31. RNAi Oligonucleotide targeting sequence In some embodiments, lipid-bound RNAi oligonucleotides provided by the present disclosure comprise targeting sequences. As used herein, the term "targeting sequence" refers to a nucleotide sequence having a region complementary to a specific nucleotide sequence comprising an mRNA (eg, a stellate cell target mRNA). In some embodiments, lipid-binding RNAi oligonucleotides provided by the present disclosure comprise a gene-targeting sequence having a region complementary to a nucleotide sequence comprising a target sequence of target mRNA. In some embodiments, the targeting sequence is a stellate cell mRNA target sequence. The targeting sequence confers the ability of the lipid-conjugated RNAi oligonucleotide to specifically target the mRNA by joining or adhering to the target sequence containing the target mRNA via complementary (Wasen-Click) base pairing. In some embodiments, lipid-conjugated RNAi oligonucleotides (or strands thereof, e.g., antisense strands or guide strands of double-stranded oligonucleotides) herein comprise compounds that possess the properties of (Rick) base-pairing to a complementary region of the targeting sequence that joins or binds to the target sequence containing the stellate cell target mRNA. In some embodiments, lipid-conjugated RNAi oligonucleotides (or strands thereof, e.g., antisense strands or guide strands of double-stranded oligonucleotides) herein comprise compounds that possess the properties of (Rick) target sequence of the complementary region that base-pairs with or binds to the target sequence in the stellate cell target mRNA. The targeting sequence is typically of appropriate length and base content to enable the lipid-conjugated RNAi oligonucleotide (or strand thereof) to engage or bind to the specific target mRNA (e.g., stellate cell mRNA) to achieve the inhibitory target The purpose of gene expression. In some embodiments, the targeting sequence is at least about 12, at least about 13, at least about 14, at least about 15, at least about 16, at least about 17, at least about 18, at least about 19, at least about 20, at least about 21 , at least about 22, at least about 23, at least about 24, at least about 25, at least about 26, at least about 27, at least about 28, at least about 29, or at least about 30 nucleotides long. In some embodiments, the targeting sequence is at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 nucleotides. In some embodiments, the targeting sequences are about 12 to about 30 (eg, 12 to 30, 12 to 22, 15 to 25, 17 to 21, 18 to 27, 19 to 27, or 15 to 30) Nucleotide length. In some embodiments, the targeting sequence is about 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides long. In some embodiments, the targeting sequence is 18 nucleotides long. In some embodiments, the targeting sequence is 19 nucleotides long. In some embodiments, the targeting sequence is 20 nucleotides long. In some embodiments, the targeting sequence is 21 nucleotides long. In some embodiments, the targeting sequence is 22 nucleotides long. In some embodiments, the targeting sequence is 23 nucleotides long. In some embodiments, the targeting sequence is 24 nucleotides long. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a targeting sequence that is fully complementary to a target sequence comprising a stellate cell target mRNA. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a targeting sequence that is fully complementary to a target sequence within a stellate cell target mRNA. In some embodiments, the targeting sequence is partially complementary to the target sequence comprising the target mRNA. In some embodiments, the targeting sequence is partially complementary to the target sequence within the stellate cell target mRNA. In some embodiments, the targeting sequence includes a region of contiguous nucleotides that includes the antisense strand. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a targeting sequence complementary to a contiguous sequence of nucleotides comprising a stellate cell target mRNA, wherein the contiguous sequence of nucleotides is about 12 to about 30 nucleotides long (e.g., 12 to 30, 12 to 28, 12 to 26, 12 to 24, 12 to 20, 12 to 18, 12 to 16, 14 to 22, 16 to 20, 18 to 20 , or 18 to 19 nucleotides long). In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence complementary to a contiguous sequence of nucleotides comprising a stellate cell target mRNA, wherein the contiguous sequence of nucleotides is 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides long. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that is complementary to a contiguous sequence of nucleotides comprising the target mRNA, wherein the contiguous sequence of nucleotides is 15 nucleotides long. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that is complementary to a contiguous sequence of nucleotides comprising the target mRNA, wherein the contiguous sequence of nucleotides is 19 nucleotides long. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence complementary to a contiguous sequence of nucleotides comprising a stellate cell target mRNA, wherein the contiguous sequence of nucleotides is 15 nucleotides long. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence complementary to a contiguous sequence of nucleotides comprising a stellate cell target mRNA, wherein the contiguous sequence of nucleotides is 19 nucleotides long. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., without mismatches) to the target sequence comprising the stellate cell target mRNA and includes the full length of the antisense strand. . In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., without mismatches) to the target sequence comprising the stellate cell target mRNA and includes the full length of the antisense strand. part of it. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., no mismatch) to the target sequence comprising the stellate cell target mRNA and includes 10 of the antisense strands. to 20 nucleotides. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., no mismatch) to the target sequence comprising the stellate cell target mRNA and includes the antisense strand. to 19 nucleotides. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., no mismatch) to the target sequence comprising the stellate cell target mRNA and includes the antisense strand. nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, or 22 nucleotides. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., no mismatch) to the target sequence comprising the stellate cell target mRNA and includes the antisense strand. nucleotides. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is completely complementary (e.g., no mismatch) to the target sequence comprising the stellate cell target mRNA and includes 20 of the antisense strand. nucleotides. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- The total length of the stock. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- Part of the total length of the stock. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- 10 to 20 nucleotides of the strand. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- 15 to 19 nucleotides of the strand. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- 15 nucleotides, 16 nucleotides, 17 nucleotides, 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, or 22 nucleosides acid. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- The 19 nucleotides of the righteous stock. In some embodiments, the targeting sequence of the lipid-binding RNAi oligonucleotides herein is partially complementary (e.g., with no more than 4 mismatches) to a target sequence comprising a stellate cell target mRNA and includes an anti- The 20 nucleotides of the righteous stock. In some specific embodiments, lipid-binding RNAi oligonucleotides herein comprise a targeting sequence that has one or more base pairing (bp) mismatches with a corresponding target sequence comprising a stellate cell target mRNA. In some embodiments, the targeting sequence has a 1 bp mismatch, a 2 bp mismatch, a 3 bp mismatch, a 4 bp mismatch, or a 5 bp mismatch with a corresponding target sequence comprising a stellate cell target mRNA. Mismatch, provided that the ability of the targeting sequence to engage or bind to the target sequence and/or the ability of the lipid-bound RNAi oligonucleotide to inhibit or reduce expression of the target gene is maintained under appropriate hybridization conditions (e.g., under physiological conditions ). Alternatively, in some embodiments, the targeting sequence and the corresponding target sequence comprising the stellate cell target mRNA comprise no more than 1, no more than 2, no more than 3, no more than 4, or no more than 5 bp mismatch, provided that the ability of the targeting sequence to engage or adhere to the target sequence and/or the ability of the lipid-bound RNAi oligonucleotide to inhibit or reduce the expression of the target gene is maintained under appropriate hybridization conditions. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has 1 mismatch to the corresponding target sequence. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has 2 mismatches with the corresponding target sequence. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has 3 mismatches to the corresponding target sequence. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has 4 mismatches to the corresponding target sequence. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has 5 mismatches to the corresponding target sequence. In some embodiments, the lipid-binding RNAi oligonucleotide comprises a targeting sequence that has more than one mismatch (e.g., 2, 3, 4, 5 or more mismatches) with a corresponding target sequence, wherein the At least 2 (e.g., all) of the mismatches are located contiguously (e.g., 2, 3, 4, 5 or more mismatches in a row), or wherein the mismatches are interspersed throughout the targeted sequence. in any position. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a targeting sequence that has more than one mismatch (e.g., 2, 3, 4, 5 or more mismatches) with a corresponding target sequence, wherein At least 2 (e.g., all) of the mismatches are located contiguously (e.g., 2, 3, 4, 5 or more mismatches in succession), or at least one or more of the non-mismatched base pairs The system is located between mismatches, or a combination thereof. Type of oligonucleotide In the methods herein, a variety of RNAi oligonucleotide types and/or structures can be used to reduce target gene expression (eg, reduce expression of a target gene expressed in stellate cells). Any RNAi oligonucleotide type described herein or elsewhere is contemplated for use as a framework for incorporation into targeting sequences herein for the purpose of inhibiting or reducing expression of the corresponding target gene in stellate cells in the CNS. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein inhibit target gene expression by participating in the upstream or downstream RNA interference (RNAi) pathway of Dicer. For example, RNAi oligonucleotides have been developed in which each strand is approximately 19 to 25 nucleotides in size and has at least one 3' overhang of 1 to 5 nucleotides (see, eg, U.S. Patent No. 8,372,968). Longer oligonucleotides that are processed by Dicer to generate active RNAi products have also been developed (see, eg, US Pat. No. 8,883,996). Further work resulted in extended double-stranded oligonucleotides in which at least one end of at least one strand extends beyond the double-stranded targeting region, including wherein one of the strands includes a thermodynamically stable The structure of the four-ring structure (see, for example, U.S. Patent Nos. 8,513,207 and 8,927,705, and International Patent Application Publication No. WO 2010/033225). Such structures may include single-stranded extensions (on one or both sides of the molecule) as well as double-stranded extensions. In some embodiments, the RNAi oligonucleotide conjugates herein participate in the RNAi pathway downstream of Dicer engagement (eg, Dicer cleavage). In some embodiments, the oligonucleotides described herein are Dicer substrates. In some embodiments, after endogenous Dicer processing, a 19 to 23 nucleotide long double-stranded nucleic acid is produced that is capable of reducing expression of the stellate cell target mRNA. In some embodiments, the lipid-bound RNAi oligonucleotide has an overhang in the 3' end of the sense strand (eg, is 1, 2, or 3 nucleotides long). In some embodiments, lipid-conjugated RNAi oligonucleotides (e.g., siRNA conjugates) comprise a 21 nucleotide leader strand antisense to a stellate cell target mRNA and a complementary follower strand, where the two strands are bonded to A 19-bp duplex is formed with 2 nucleotide overhangs at either or both 3' ends. Longer oligonucleotide designs may also be considered, including those with a 23-nt leader strand and a 21-nt follower strand, where the oligonucleotide on the right side of the molecule (the 3' end of the follower strand/ There is a blunt end on the 5' end of the leader strand) and a two-nucleotide 3' leader overhang on the left side of the molecule (5' end of the follower strand/3' end of the leader strand). In this type of molecule, a 21 bp double-stranded region is present. See, for example, U.S. Patent Nos. 9,012,138; 9,012,621; and 9,193,753. In some embodiments, the RNAi oligonucleotide conjugates disclosed herein comprise each are about 17 to 26 (e.g., 17 to 26, 20 to 25, or 21 to 23) nucleotides in length. Just shares and anti-righteous shares within the scope. In some embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein comprise a sense strand and an antisense strand each ranging from about 19 to 22 nucleotides in length. In some embodiments, the sense strand and antisense strand are of equal length. In some embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein comprise a sense strand and an antisense strand, such that there is 3 on the sense strand or the antisense strand, or both the sense strand and the antisense strand. 'Protruding end. In some embodiments, for lipid-bound RNAi oligonucleotides having a sense strand and an antisense strand both in the range of about 21 to 23 nucleotides in length, the sense strand, the antisense strand , or the 3' overhangs on both the sense and antisense strands are 1 or 2 nucleotides long. In some embodiments, a lipid-conjugated RNAi oligonucleotide has a 22 nucleotide leader strand and a 20 nucleotide follower strand, where on the right side of the molecule (the 3' end of the follower/leader There is a blunt end on the 5' end of the molecule, and a 2-nucleotide 3'-leader overhang on the left side of the molecule (5' end of the follower strand/3' end of the leader strand). In this type of molecule, a 20 bp double-stranded region is present. Other RNAi oligonucleotide designs for use with the compositions and methods herein include: 16-mer siRNA (see, e.g., Nucleic Acids in Chemistry and Biology, Blackburn(ed.), ROYAL SOCIETY OF CHEMISTRY, 2006), shRNA (e.g., with a backbone of 19 bp or less; see e.g., Moore et al.(2010) METHODS MOL. BIOL. 629:141-58), blunt siRNA (e.g., 19 bp long; see e.g. Kraynack & Baker (2006) RNA 12:163-76), asymmetric siRNA (aiRNA; see e.g., Sun et al.(2008) NAT. BIOTECHNOL .26: 1379-82), asymmetric shorter duplex siRNA (see e.g., Chang et al .(2009) MOL. Ther. 17:725-32), forked siRNA (see e.g., Hohjoh (2004) FEBS Lett. 557:193-98), and small internal segmented interfering RNA (siRNA; see e.g., Bramsen et al.(2007) NUCLEIC ACIDS RES. 35:5886-97). Further non-limiting examples of oligonucleotide structures that may be used in some embodiments to reduce or inhibit the expression of a gene of interest are microRNAs (miRNAs), short hairpin RNAs (shRNAs), and short siRNAs (see e.g. ,Hamilton et al.(2002) EMBO J. 21:4671-79; see also, U.S. Patent Application Publication No. 2009/0099115). Antisense stocks In some embodiments, the antisense strand of the lipid-conjugated RNAi oligonucleotide is referred to as the "lead strand." For example, the antisense strand engages the RNA-induced silencing complex (RISC) and interacts with Argu ( Argonaute) protein such as Ago2 engages, or engages or engages with one or more similar factors, and directs the silencing of the target gene, so the antisense strand is called a guide strand. In some embodiments, the justice strands that are complementary to the leading strands are called "follower strands." In some specific embodiments, lipid-conjugated RNAi oligonucleotides herein comprise up to about 50 nucleotides in length (e.g., up to 50, up to 40, up to 35, up to 30, up to 27, up to 25, up to 21. Antisense strands at most 19, at most 17, at most 15, or at most 12 nucleotides long). In some embodiments, the lipid-bound RNAi oligonucleotide comprises at least about 12 nucleotides long (e.g., at least 12, at least 15, at least 19, at least 21, at least 22, at least 25, at least 27, at least 30. Antisense strands at least 35, or at least 38 nucleotides long). In some embodiments, between about 12 to about 40 (e.g., 12 to 40, 12 to 36, 12 to 32, 12 to 28, 15 to 40, 15 to 36, 15 to 32, 15 to Antisense in the range of 30, 15 to 28, 17 to 22, 17 to 25, 19 to 27, 19 to 30, 20 to 40, 22 to 40, 25 to 40, or 32 to 40) nucleotides long share. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise antisense strands that are 15 to 30 nucleotides long. In some specific embodiments, the antisense strands of any of the lipid-conjugated RNAi oligonucleotides disclosed herein have 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 nucleotides long. In some embodiments, lipid-conjugated RNAi oligonucleotides comprise antisense strands that are 19 to 23 nucleotides long. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 19 nucleotide long antisense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 20 nucleotide long antisense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 21 nucleotide long antisense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 22 nucleotide long antisense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 23 nucleotide long antisense strand. justice unit In some specific embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein comprise up to about 50 nucleotides long (e.g., up to 50, up to 40, up to 36, up to 30, up to 27, up to 25 , up to 21, up to 19, up to 17, or up to 12 nucleotides long) sense strand (or follower strand). In some specific embodiments, lipid-conjugated RNAi oligonucleotides herein comprise at least about 12 nucleotides in length (e.g., at least 12, at least 15, at least 19, at least 21, at least 25, at least 27, at least 30. A sense strand at least 36, or at least 38 nucleotides long). In some embodiments, the lipid-binding RNAi oligonucleotides herein comprise from about 12 to about 50 (e.g., 12 to 50, 12 to 40, 12 to 36, 12 to 32, 12 to 28, 15 to 40, 15 to 36, 15 to 32, 15 to 28, 17 to 21, 17 to 25, 19 to 27, 19 to 30, 20 to 40, 22 to 40, 25 to 40, or 32 to 40) nucleotide length range of the sense strand. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a sense strand that is 15 to 50 nucleotides long. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a sense strand that is 18 to 36 nucleotides long. In some embodiments, lipid-conjugated RNAi oligonucleotides herein include 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 cores The long righteous stock of glycosides. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a sense strand that is 17 to 21 nucleotides long. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 17 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a sense strand that is 18 nucleotides long. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 19 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 20 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 21 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 22 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 23 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 24 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 25 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 26 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 27 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 28 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 29 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 30 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 31 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 32 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 33 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 34 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 35 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a 36 nucleotide long sense strand. In some embodiments, the sense strand contains a backbone-loop structure at its 3' end. In some embodiments, the backbone-loops are formed by intrastrand base pairing. In some embodiments, the sense strand contains a backbone-loop structure at its 5' end. In some embodiments, the backbone is a duplex that is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a duplex that is 2 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a 3 nucleotide long duplex. In some embodiments, the backbone of the backbone-loop includes a duplex that is 4 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a 5 nucleotide long duplex. In some embodiments, the backbone of the backbone-loop includes a duplex that is 6 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a 7 nucleotide long duplex. In some embodiments, the backbone of the backbone-loop includes an 8 nucleotide long duplex. In some embodiments, the backbone of the backbone-loop includes a 9 nucleotide long duplex. In some embodiments, the backbone of the backbone-loop includes a duplex that is 10 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a duplex that is 11 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a duplex that is 12 nucleotides long. In some embodiments, the stem-loop stem includes a duplex that is 13 nucleotides long. In some embodiments, the backbone of the backbone-loop includes a duplex that is 14 nucleotides long. In some embodiments, the backbone-loop provides lipid-bound RNAi oligonucleotides with protection against degradation (e.g., enzymatic degradation), promotes or improves targeting and/or delivery to target cells, tissues, or organs, Or both. For example, in some embodiments, loops of backbone-loops provide nucleotides that include one or more modifications that promote, improve, or increase response to a target mRNA (e.g., a target mRNA expressed in the CNS) Targeting, inhibition of target gene expression, and/or delivery to target cells, tissues, or organs (e.g., CNS), or combinations thereof. In some embodiments, the backbone-loop itself or the modification(s) to the backbone loop does not substantially affect the inherent gene expression suppressing activity of the lipid-bound RNAi oligonucleotide, but promotes, improves, or increases Stability (eg, providing protection against degradation) and/or delivery of lipid-bound RNAi oligonucleotides to target cells, tissues, or organs (eg, CNS). In certain embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a sense strand comprising (e.g., at its 3' end) a backbone-loop as shown: S1-L-S2 , wherein S1 is complementary to S2, and wherein L is up to about 10 nucleotides long (e.g., 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides long) between S1 and S2 ) of single-stranded loops. In some embodiments, loop (L) is 3 nucleotides long. In some embodiments, loop (L) is 4 nucleotides long. In some specific embodiments, the tetraloop contains the sequence 5'-GAAA-3'. In some embodiments, the backbone loop includes the sequence 5'-GCAGCCGAAA GGCUGC-3' (SEQ ID NO: 32). In some embodiments, the loop (L) having the backbone-loop structure S1-L-S2 as described above is a tricyclic ring. In some embodiments, tricycles include ribonucleotides, deoxyribonucleotides, modified nucleotides, delivery ligands, and combinations thereof. In some embodiments, the loop (L) of the backbone-loop having the structure S1-L-S2 as described above is a four-ring (eg, within a notched four-ring structure). In some embodiments, the tetracycle includes ribonucleotides, deoxyribonucleotides, modified nucleotides, delivery ligands, and combinations thereof. In some embodiments, the loop (L) of the backbone-loop having the structure S1-L-S2 as described above is a tetracyclic loop as described in U.S. Patent No. 10,131,912, which is incorporated by reference ( For example, within a gapped four-ring structure). Duplex length In some embodiments, there are at least 12 double-stranded systems formed between the sense strand and the antisense strand (eg, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21) Nucleotide length. In some embodiments, the duplex system formed between the sense strand and the antisense strand ranges from 12 to 30 nucleotides in length (e.g., 12 to 30, 12 to 27, 12 to 22, 15 to 25, 18 to 30, 18 to 22, 18 to 25, 18 to 27, 18 to 30, 19 to 30, or 21 to 30 nucleotides long). In some specific embodiments, a double-stranded system 12, 13, 14, 15, 16, 17, 18, 19, 29, 21, 22, 23, 24, 25, 26 is formed between the sense strand and the antisense strand. , 27, 28, 29 or 30 nucleotides long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 15 to 30 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 17 to 21 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 17 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 18 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 19 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 20 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand is 21 base pairs long. In some embodiments, the duplex formed between the sense strand and the antisense strand does not span the entire length of the sense strand and/or the antisense strand. In some embodiments, the duplex between the sense strand and the antisense strand spans the entire length of the sense strand or antisense strand. In some embodiments, the duplex between the sense strand and the antisense strand spans the entire length of both the sense strand and the antisense strand. oligonucleotide end In some embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein comprise a sense strand and an antisense strand, such that there is 3 on the sense strand or the antisense strand, or both the sense strand and the antisense strand. 'Protruding end. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein have a 5' end that is thermodynamically less stable than the other 5' end. In some embodiments, asymmetric lipid-bound RNAi oligonucleotides are provided that include a blunt end at the 3' end of the sense strand and an overhang at the 3' end of the antisense strand. In some embodiments, the 3' overhang on the antisense strand is 1 to 4 nucleotides long (eg, 1, 2, 3, or 4 nucleotides long). In some specific embodiments, the 3'-overhang is about one (1) to twenty (20) nucleotides long (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or about 20 nucleotides long). In some embodiments, the 3' overhangs range from about one (1) to nineteen (19), from one (1) to eighteen (18), from one (1) to seventeen (17), (1) to sixteen (16), one (1) to fifteen (15), one (1) to fourteen (14), one (1) to thirteen (13), one (1) ) to twelve (12), one (1) to eleven (11), one (1) to ten (10), one (1) to nine (9), one (1) to eight (8), one (1) to seven (7), one (1) to six (6), one (1) to five (5), one (1) to four (4), one ( 1) to three (3), or about one (1) to two (2) nucleotides in length. In some embodiments, the 3'-overhang is (1) nucleotide long. In some embodiments, the 3'-overhang is two (2) nucleotides long. In some embodiments, the 3'-overhang is three (3) nucleotides long. In some embodiments, the 3'-overhang is four (4) nucleotides long. In some embodiments, the 3'-overhang is five (5) nucleotides long. In some embodiments, the 3'-overhang is six (6) nucleotides long. In some embodiments, the 3'-overhang is seven (7) nucleotides long. In some embodiments, the 3'-overhang is eight (8) nucleotides long. In some embodiments, the 3'-overhang is nine (9) nucleotides long. In some embodiments, the 3'-overhang is ten (10) nucleotides long. In some embodiments, the 3'-overhang is eleven (11) nucleotides long. In some embodiments, the 3'-overhang is twelve (12) nucleotides long. In some embodiments, the 3'-overhang is thirteen (13) nucleotides long. In some embodiments, the 3'-overhang is fourteen (14) nucleotides long. In some embodiments, the 3'-overhang is fifteen (15) nucleotides long. In some embodiments, the 3'-overhang is sixteen (16) nucleotides long. In some embodiments, the 3'-overhang is seventeen (17) nucleotides long. In some embodiments, the 3'-overhang is eighteen (18) nucleotides long. In some embodiments, the 3'-overhang is nineteen (19) nucleotides long. In some embodiments, the 3'-overhang is twenty (20) nucleotides long. Generally, oligonucleotides used for RNAi have a two (2) nucleotide overhang on the 3' end of the antisense (leader) strand. However, other protrusions are also possible. In some embodiments, the overhang is a 3' overhang, which is comprised between one and four nucleotides in length, optionally one to four, one to three, one to two, two to four, two to three, or one, two, three, or four nucleotides. In some embodiments, the overhang is a 5' overhang, which is comprised between one and four nucleotides in length, optionally one to four, one to three, one to two, two to four, two to three, or one, two, three, or four nucleotides. In some embodiments, the oligonucleotides herein comprise a sense strand and an antisense strand, wherein the 5' end of either or both strands includes a 5'-overhang comprising one or more nucleotides. In some embodiments, the oligonucleotides herein comprise a sense strand and an antisense strand, wherein the sense strand comprises a 5'-overhang comprising one or more nucleotides. In some embodiments, the oligonucleotides herein comprise a sense strand and an antisense strand, wherein the antisense strand comprises a 5'-overhang comprising one or more nucleotides. In some embodiments, oligonucleotides herein comprise a sense strand and an antisense strand, wherein both the sense strand and the antisense strand comprise a 5'-overhang comprising one or more nucleotides. In some embodiments, the 5'-overhang is about one (1) to twenty (20) nucleotides long (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or about 20 nucleotides long). In some embodiments, the 5' overhangs range from about one (1) to nineteen (19), from one (1) to eighteen (18), from one (1) to seventeen (17), (1) to sixteen (16), one (1) to fifteen (15), one (1) to fourteen (14), one (1) to thirteen (13), one (1) ) to twelve (12), one (1) to eleven (11), one (1) to ten (10), one (1) to nine (9), one (1) to eight (8), one (1) to seven (7), one (1) to six (6), one (1) to five (5), one (1) to four (4), one ( 1) to three (3), or about one (1) to two (2) nucleotides in length. In some embodiments, the 5'-overhang is (1) nucleotide long. In some embodiments, the 5'-overhang is two (2) nucleotides long. In some embodiments, the 5'-overhang is three (3) nucleotides long. In some embodiments, the 5'-overhang is four (4) nucleotides long. In some embodiments, the 5'-overhang is five (5) nucleotides long. In some embodiments, the 5'-overhang is six (6) nucleotides long. In some embodiments, the 5'-overhang is seven (7) nucleotides long. In some embodiments, the 5'-overhang is eight (8) nucleotides long. In some embodiments, the 5'-overhang is nine (9) nucleotides long. In some embodiments, the 5'-overhang is ten (10) nucleotides long. In some embodiments, the 5'-overhang is eleven (11) nucleotides long. In some embodiments, the 5'-overhang is twelve (12) nucleotides long. In some embodiments, the 5'-overhang is thirteen (13) nucleotides long. In some embodiments, the 5'-overhang is fourteen (14) nucleotides long. In some embodiments, the 5'-overhang is fifteen (15) nucleotides long. In some embodiments, the 5'-overhang is sixteen (16) nucleotides long. In some embodiments, the 5'-overhang is seventeen (17) nucleotides long. In some embodiments, the 5'-overhang is eighteen (18) nucleotides long. In some embodiments, the 5'-overhang is nineteen (19) nucleotides long. In some embodiments, the 5'-overhang is twenty (20) nucleotides long. In some embodiments, one or more (eg, 2, 3, or 4) terminal nucleotides at the 3' end or the 5' end of the sense strand and/or the antisense strand are modified. For example, in some embodiments, one or both terminal nucleotides at the 3' end of the antisense strand are modified. In some embodiments, the last nucleotide at the 3' end of the antisense strand is modified, e.g., includes a 2' modification, e.g., 2'-O-methoxyethyl. In some embodiments, the last one or two terminal nucleotides at the 3' end of the antisense strand are complementary to the target. In some embodiments, the last one or two nucleotides at the 3' end of the antisense strand are not complementary to the target. In some embodiments, the RNAi oligonucleotide conjugates disclosed herein comprise a backbone-loop structure at the 3' end of the sense strand and two terminal overhang cores at the 3' end of the antisense strand. glycosides. In some embodiments, the RNAi oligonucleotide conjugates herein comprise a gapped tetracyclic structure, wherein the 3' end of the sense strand contains a backbone tetracyclic structure and the 3' end of the antisense strand contains two Terminal overhang nucleotide. In some embodiments, the overhang is selected from AA, GG, AG, and GA. In some embodiments, the overhang is AA. In some embodiments, the overhang is AG. In some embodiments, the overhang is GA. In some embodiments, the two terminal overhang nucleotides are GG. Generally, one or both of the two terminal GG nucleotides of the antisense strand are not complementary to the target. In some embodiments, the 5' end and/or 3' end of the sense strand or antisense strand has an inverted cap nucleotide. In some embodiments, one or more (e.g., 2, 3, 4, 5, 6) are provided between the terminal nucleotides at the 3' end or 5' end of the sense strand and/or the antisense strand. Modified inter-nucleotide linkages. In some embodiments, modified internucleotide linkages are provided between overhangs at the 3' or 5' ends of the sense strand and/or antisense strand. Oligonucleotide modification In some embodiments, RNAi oligonucleotide conjugates disclosed herein comprise one or more modifications. Oligonucleotides (e.g., RNAi oligonucleotides) can be modified in various ways to improve or control specificity, stability, delivery, bioavailability, resistance to nuclease degradation, immunogenicity, base-pairing properties, RNA distribution and cellular uptake and other characteristics relevant to therapeutic research use. In some embodiments, the modification is a modified sugar. In some embodiments, the modification is a 5'-terminal phosphate group. In some embodiments, the modification is a modified internucleoside linkage. In some embodiments, the modification is a modified base. In some specific embodiments, the oligonucleotides described herein can comprise any one or any combination of the modifications described herein. For example, in some embodiments, oligonucleotides described herein comprise at least one modified sugar, a 5'-terminal phosphate group, at least one modified internucleoside linkage, and at least one modified sugar. Modified bases. The number of modifications on an oligonucleotide (eg, an RNAi oligonucleotide) and the location of those nucleotide modifications may affect the properties of the oligonucleotide. For example, oligonucleotides can be delivered in vivo by conjugating them to or including them in lipid nanoparticles (LNPs) or similar carriers. However, when the oligonucleotides are not protected by LNP or similar carriers, it may be advantageous to modify at least some of these nucleotides. Thus, in some embodiments, all or substantially all of the nucleotides of the oligonucleotide are modified. In some embodiments, more than half of the nucleotides are modified. In some embodiments, less than half of the nucleotides are modified. In some embodiments, the sugar moiety of all nucleotides comprising the oligonucleotide is modified at the 2' position. In some embodiments, the sugar moiety of all nucleotides of the oligonucleotide is at the 2' position, except for the nucleotide bound to the lipid (e.g., the 5'-terminal nucleotide of the sense strand). All have been modified. Modifications can be reversible or irreversible. In some embodiments, oligonucleotides as described herein possess sufficient properties to elicit desired properties (e.g., protection from enzymatic degradation, ability to target desired cells following in vivo administration, and/or thermodynamic stability) A certain number and type of modified nucleotides. Sugar modification In some embodiments, the nucleotide modifications in the sugar comprise 2'-modifications. In some specific embodiments, the 2'-modification can be 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'-fluoro(2 '-F), 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'- O-[2-(methylamino)-2-side oxyethyl](2'-O-NMA), or 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2 '-FANA). In some embodiments, the modification is 2'-F, 2'-OMe or 2'-MOE. In some embodiments, the modification in the sugar includes modification of the sugar ring, which may include modification of one or more carbons of the sugar ring. For example, modification of the sugar of the nucleotide may include linking the 2'-oxygen of the sugar to the 1'-carbon or 4'-carbon of the sugar, or linking the 2'-oxygen to the 1' carbon via an ethyl or methylene bridge. -carbon or 4'-carbon linkage. In some embodiments, modified nucleotides have acyclic sugars that lack a 2'-carbon to 3'-carbon bond. In some embodiments, the modified nucleotide has, for example, a thiol group in the 4' position of the sugar. In some embodiments, lipid-bound RNAi oligonucleotides described herein comprise at least about 1 modified nucleotide (e.g., at least 1, at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, or more). In some embodiments, the sense strand of a lipid-bound RNAi oligonucleotide comprises at least about 1 modified nucleotide (e.g., at least 1, at least 5, at least 10, at least 15, at least 20, at least 25 , at least 30, at least 35, or more). In some embodiments, the antisense strand of a lipid-bound RNAi oligonucleotide comprises at least about 1 modified nucleotide (e.g., at least 1, at least 5, at least 10, at least 15, at least 20, or more). In some embodiments, all nucleotides of the sense strand of the lipid-conjugated RNAi oligonucleotide are modified. In some embodiments, all nucleotides of the antisense strand of the lipid-conjugated RNAi oligonucleotide are modified. In some embodiments, all nucleotides of the lipid-bound RNAi oligonucleotide (ie, both the sense and antisense strands) are modified. In some embodiments, the modified nucleotides include 2'-modifications (e.g., 2'-F, or 2'-OMe, 2'-MOE, and 2'-deoxy-2'-fluoro-β -d-arabinose nucleic acid). In some embodiments, the present disclosure provides lipid-bound RNAi oligonucleotides with different modification patterns. In some embodiments, modified lipid-binding RNAi oligonucleotides comprise a sense strand sequence having a modification pattern as shown in the Examples and Sequence Listing and a modification pattern as shown in the Examples and Sequence Listing antisense sequence. In some embodiments, lipid-bound RNAi oligonucleotides disclosed herein comprise antisense strands having 2'-F modified nucleotides. In some embodiments, lipid-bound RNAi oligonucleotides disclosed herein comprise antisense strands comprising 2'-F and 2'-OMe modified nucleotides. In some embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein comprise a sense strand having a 2'-F modified nucleotide. In some embodiments, lipid-bound RNAi oligonucleotides disclosed herein comprise a sense strand comprising nucleotides modified with 2'-F and 2'-OMe. In some embodiments, the oligonucleotides described herein comprise sense strands, wherein about 10 to 25%, 10%, 11%, 12%, 13%, 14%, 15%, 16% of the sense strands , 17%, 18%, 19%, or 20% of the nucleotides contained 2'-fluoro modifications. In some embodiments, about 11% of the nucleotides in the sense strand comprise 2-fluoro modifications. In some embodiments, about 20% of the nucleotides in the sense strand comprise 2-fluoro modifications. In some embodiments, the oligonucleotides described herein comprise antisense strands, wherein about 25 to 35%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, or 35% of the nucleotides contained 2'-fluoro modifications. In some embodiments, about 32% of the nucleotides of the antisense strand comprise 2'-fluoro modifications. In some specific embodiments, the oligonucleotide has about 15 to 25%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, or 25% % of its nucleotides contain 2'-fluoro modifications. In some embodiments, about 19% of the nucleotides in the oligonucleotide comprise 2'-fluoro modifications. In some embodiments, about 26% of the nucleotides in the oligonucleotide comprise 2'-fluoro modifications. In some embodiments, for such oligonucleotides, one or more of positions 8, 9, 10, or 11 of the sense strand is modified with a 2'-F group. In some embodiments, for such oligonucleotides, the sugar moiety at each nucleotide in the sense strand that is not modified with a 2'-F group or not bound to a lipid is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 20 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 2 to 7, and 12 to 20 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 6, and 12 to 20 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 3, 5 to 7, and 12 to 20 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 13 to 20 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, 12, and 14 to 20 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, 12 to 17, and 19 to 20 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 19 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 36 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 2 to 7, and 12 to 36 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 2 to 7, and 12 to 36 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 3, 5 to 7, and 12 to 36 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 36 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 13 to 36 in the sense strand is modified with 2'-OMe. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12, and 14 to 36 in the sense strand is modified with 2'-OMe . In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 17, and 19 to 36 in the sense strand is via a 2'- OMe modified. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 19, and 21 to 36 in the sense strand is via a 2'- OMe modified. In some embodiments, for such oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, and 12 to 22, and 24 to 36 in the sense strand is via a 2'- OMe modified. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, 12 to 27, and 29 to 36 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, 12 to 28, and 30 to 36 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, for these oligonucleotides, the sugar moiety at each nucleotide at positions 1 to 7, 12 to 29, and 31 to 36 in the sense strand is modified with 2'-OMe Grooming. In some embodiments, the sense strand comprises at least one 2'-F modified nucleotide, wherein the remaining nucleotides that are not modified with a 2'-F group or not bound to a lipid are modified with 2'-OMe. Grooming. In some embodiments, the antisense strand has 7 nucleotides modified with 2'-F at the 2' position of the sugar moiety. In some embodiments, the sugar moieties at positions 2, 3, 4, 5, 7, 10, and 14 of the antisense strand are modified with 2'-F. In some embodiments, the antisense strand has 14 nucleotides modified with 2'-OMe at the 2' position of the sugar moiety. In some embodiments, the sugar moieties at positions 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, and 22 of the antisense strand are via a 2'- OMe modified. In some embodiments, the sense strand has 4 nucleotides modified with 2'-F at the 2' position of the sugar moiety. In some embodiments, the sugar moieties at positions 2, 3, 8, 9, 10, and 11 of the sense strand are modified with 2'-F. In some embodiments, the sense strand has 15 nucleotides modified with 2'-OMe at the 2' position of the sugar moiety. In some embodiments, the sugar moieties at positions 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, and 22 of the antisense strand are via a 2'- OMe modified. In some embodiments, the antisense strand has 3 nucleotides modified with 2'-F at the 2'-position of the sugar moiety. In some embodiments, the sugar moieties of up to 3 nucleotides at positions 2, 5, and 14 of the antisense strand, and optionally at positions 1, 3, 7, and 10, are 2'-F modified . In some embodiments, the sugar moiety at each of positions 2, 5, and 14 of the antisense strand is modified with 2'-F. In other embodiments, the sugar moiety at each of positions 1, 2, 5, and 14 of the antisense strand is modified with 2'-F. In other embodiments, the sugar moiety at each of positions 2, 4, 5, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 1, 2, 3, 5, 7, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 2, 3, 4, 5, 7, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 1, 2, 3, 5, 10, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 2, 3, 4, 5, 10, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 2, 3, 5, 7, 10, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the sugar moiety at each of positions 2, 3, 4, 5, 7, 10, and 14 of the antisense strand is modified with 2'-F. In some embodiments, the antisense strand has 9 nucleotides modified with 2'-F at the 2'-position of the sugar moiety. In some embodiments, the sugar moiety at each of positions 2, 3, 4, 5, 7, 10, 14, 16, and 19 of the antisense strand is modified with 2'-F. In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand having a 2'- F-modified sugar moiety, and the sugar moiety of each remaining nucleotide of the antisense strand is modified by a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propylamino , 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2 '-MOE), 2'-O-[2-(methylamino)-2-side-oxyethyl](2'-O-NMA), and 2'-deoxy-2'-fluoro-β -d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand at positions 2, 3, 4, 5, 7, 10, 14, 16, and 19 of the antisense strand Each nucleotide at has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propyne base, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2 '-O-methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-pentoxyethyl] (2'-O-NMA), and 2 '-Deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand, each nucleotide at positions 1, 2, 5, and 14 of the antisense strand having a 2 '-F modified sugar moiety, and the sugar moiety of each remaining nucleotide of the antisense strand is modified by a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propyl Amino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side-oxyethyl](2'-O-NMA), and 2'-deoxy-2'-fluoro -β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand with each nucleoside at positions 1, 2, 3, 5, 7, and 14 of the antisense strand. The acid has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'- O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methyl Oxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side oxyethyl] (2'-O-NMA), and 2'-deoxy- 2'-Fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand with each nucleoside at positions 1, 2, 3, 5, 10, and 14 of the antisense strand. The acid has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'- O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methyl Oxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side oxyethyl] (2'-O-NMA), and 2'-deoxy- 2'-Fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand with each nucleoside at positions 2, 3, 5, 7, 10, and 14 of the antisense strand. The acid has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'- O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methyl Oxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side oxyethyl] (2'-O-NMA), and 2'-deoxy- 2'-Fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand at positions 2, 3, 4, 5, 7, 10, 14, 16, and Each nucleotide at position 19 has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propanol Alkynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-pentoxyethyl] (2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise an antisense strand at each of positions 2, 3, 4, 5, 7, 10, and 14 of the antisense strand. The nucleotide has a sugar moiety modified with 2'-F, and the sugar moiety of each remaining nucleotide of the antisense strand is modified with a modification selected from the group consisting of: 2'-O-propynyl, 2 '-O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O -Methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side oxyethyl] (2'-O-NMA), and 2'-de Oxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise antisense strands at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8. Position 9, position 10, position 11, position 12, position 13, position 14, position 15, position 16, position 17, position 18, position 19, position 20, position 21, or position 22 has a longitude 2'- F modified sugar part. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise antisense strands at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8. Position 9, position 10, position 11, position 12, position 13, position 14, position 15, position 16, position 17, position 18, position 19, position 20, position 21, or position 22 has a longitude 2'- OMe modified sugar part. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise antisense strands at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8. Position 9, Position 10, Position 11, Position 12, Position 13, Position 14, Position 15, Position 16, Position 17, Position 18, Position 19, Position 20, Position 21, or Position 22 has a member selected from the following Modified sugar moieties of the group consisting of: 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)- 2-Pendant oxyethyl] (2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some specific embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise a sense strand having a 2'-F modified sugar moiety at positions 8 to 11. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand having a 2'-transition at positions 3, 5, 8, 10, 12, 13, 15, and 17 F modified sugar part. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand having a 2'OMe modified sugar at positions 1 to 7, and 12 to 17, or 12 to 20 part. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand having a 2'OMe modified sugar at positions 2 to 7, and 12 to 17, or 12 to 20 part. In some specific embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise a sense strand having a 2'OMe modified sugar moiety at positions 1 to 6, and 12 to 17, or 12 to 20 . In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand at positions 1, 2, 4, 6, 7, 9, 11, 14, 16, and 18 to 20 There is a sugar moiety modified by 2'OMe. In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise a sense strand, each nucleotide at positions 1 to 7, and 12 to 17, or 12 to 20 of the sense strand has A sugar moiety modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'- Aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methyl Amino)-2-Pendant oxyethyl] (2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise a sense strand, wherein each nucleotide at positions 2 to 7, and 12 to 17, or 12 to 20 of the sense strand has A sugar moiety modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'- Aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methyl Amino)-2-Pendant oxyethyl] (2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise a sense strand, wherein each nucleotide at positions 1 to 6, and 12 to 17, or 12 to 20 of the sense strand has A sugar moiety modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'- Aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methyl Amino)-2-Pendant oxyethyl] (2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand at positions 1, 2, 4, 6, 7, 9, 11, 14, 16, and Each nucleotide at positions 18 to 20 has a sugar moiety modified with a modification selected from the group consisting of: 2'-O-propynyl, 2'-O-propylamino, 2'-amino , 2'-ethyl, 2'-aminoethyl (EA), 2'-O-methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2 '-O-[2-(methylamino)-2-side-oxyethyl](2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA). In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8 , position 9, position 10, position 11, position 12, position 13, position 14, position 15, position 16, position 17, position 18, position 19, position 20, position 21, position 22, position 23, position 24, position 25. Having a 2'-F modified sugar moiety at position 26, position 27, position 28, position 29, position 30, position 31, position 32, position 33, position 34, position 35, or position 36. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8 , position 9, position 10, position 11, position 12, position 13, position 14, position 15, position 16, position 17, position 18, position 19, position 20, position 21, position 22, position 23, position 24, position 25. Having a 2'-OMe modified sugar moiety at position 26, position 27, position 28, position 29, position 30, position 31, position 32, position 33, position 34, position 35, or position 36. In some specific embodiments, lipid-bound RNAi oligonucleotides provided herein comprise a sense strand at position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8 , position 9, position 10, position 11, position 12, position 13, position 14, position 15, position 16, position 17, position 18, position 19, position 20, position 21, position 22, position 23, position 24, position 25. Position 26, position 27, position 28, position 29, position 30, position 31, position 32, position 33, position 34, position 35, or position 36 having a modification selected from the group consisting of: Sugar part: 2'-O-propynyl, 2'-O-propylamino, 2'-amino, 2'-ethyl, 2'-aminoethyl (EA), 2'-O- Methyl (2'-OMe), 2'-O-methoxyethyl (2'-MOE), 2'-O-[2-(methylamino)-2-side oxyethyl]( 2'-O-NMA), and 2'-deoxy-2'-fluoro-β-d-arabinose nucleic acid (2'-FANA).5'- terminal phosphateIn some embodiments, lipid-conjugated RNAi oligonucleotides described herein comprise a 5'-terminal phosphate. In some embodiments, the 5'-terminal phosphate group of the lipid-conjugated RNAi oligonucleotide enhances the interaction with Ago2. However, oligonucleotides containing 5'-phosphate groups may be susceptible to degradation via phosphatases or other enzymes, which may limit their in vivo bioavailability. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise analogs of the 5'-phosphate that are resistant to such degradation. In some embodiments, the phosphate analog is oxymethylphosphonate, vinylphosphonate, or malonylphosphonate, or combinations thereof. In some embodiments, the 5' end of the lipid-conjugated RNAi oligonucleotide strand is attached to a chemical moiety that mimics the electrostatic and steric properties of the natural 5'-phosphate group ("phosphate mimetic"). mimic)”). In some embodiments, the lipid-conjugated RNAi oligonucleotides herein have a phosphate analog at the 4'-carbon position of the sugar (referred to as a "4'-phosphate analog"). )"). See, for example, International Patent Application Publication No. WO 2018/045317. In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a 4'-phosphate analog at the 5'-terminal nucleotide. In some embodiments, the phosphate analog is an oxymethylphosphonate, wherein the oxygen atom of the oxymethyl group is bonded to a sugar moiety (eg, at its 4'-carbon) or an analog thereof. In other embodiments, the 4'-phosphate analog is a thiomethylphosphonate or an aminomethylphosphonate, wherein the sulfur atom of the thiomethyl group or the nitrogen atom of the aminomethyl group is with a sugar. Partial 4'-carbon or the like is joined. In some embodiments, the 4'-phosphate analog is oxymethylphosphonate. In some embodiments, the oxymethylphosphonate is of the formula -O-CH 2-PO(OH) 2,-O-CH 2-PO(OR) 2, or -O-CH2-POOH(R), where R is independently selected from H, CH 3, alkyl, CH 2CH 2CN,CH 2OCOC(CH 3) 3,CH 2OCH 2CH 2Si(CH 3) 3, or protecting group. In some embodiments, the alkyl group is CH 2CH 3. More generally, R is independently selected from H, CH 3or CH 2CH 3. In some specific embodiments, R is CH3. In some embodiments, the 4'-phosphate analog is 5'-methoxyphosphonate-4'-oxy. In some embodiments, the 4'-phosphate analog is 4'-oxymethylphosphonate. In some specific embodiments, lipid-conjugated RNAi oligonucleotides provided herein comprise: an antisense strand comprising a 4'-phosphate analog at the 5'-terminal nucleotide, wherein the 5'- The terminal nucleotide contains the following structure: Modified internucleotide linkagesIn some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise modified internucleotide linkages. In some embodiments, the phosphate modification or substitution results in the oligonucleotide comprising at least about 1 (eg, at least 1, at least 2, at least 3, or at least 5) modified internucleotide linkages Union. In some specific embodiments, any of the oligonucleotides disclosed herein comprise about 1 to about 10 (e.g., 1 to 10, 2 to 8, 4 to 6, 3 to 10 , 5 to 10, 1 to 5, 1 to 3, or 1 to 2) modified inter-nucleotide linkages. In some specific embodiments, any of the oligonucleotide packages disclosed herein comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 modified nucleotides Inter-linkage. The modified inter-nucleotide linkage can be a phosphorodithioate linkage, a phosphorothioate linkage, a phosphotriester linkage, a thionoalkylphosphonate linkage, or a thionoalkylphosphonate linkage. Phosphonate triester linkage, phosphoamide linkage, phosphonate linkage, or borane phosphate linkage. In some specific embodiments, at least one modified internucleotide linkage of any of the oligonucleotides disclosed herein is a phosphorothioate linkage. In some embodiments, the lipid-bound RNAi oligonucleotides provided herein are at positions 1 and 2 of the sense strand, positions 1 and 2 of the antisense strand, positions 2 and 3 of the antisense strand, and There is a phosphorothioate linkage between one or more of positions 3 and 4 of the strand, positions 20 and 21 of the antisense strand, and positions 21 and 22 of the antisense strand. In some embodiments, the oligonucleotides described herein are at positions 1 and 2 of the sense strand, positions 1 and 2 of the antisense strand, positions 2 and 3 of the antisense strand, positions 20 and 2 of the antisense strand. 21, and each of positions 21 and 22 of the antisense strand has a phosphorothioate linkage. In some embodiments, the oligonucleotides described herein are at positions 1 and 2 of the sense strand, positions 1 and 2 of the antisense strand, positions 2 and 3 of the antisense strand, positions 3 and 3 of the antisense strand. 4. There is a phosphorothioate bond between positions 20 and 21 of the antisense strand and positions 21 and 22 of the antisense strand. In some specific embodiments, the oligonucleotides described herein are at positions 1 and 2 of the sense strand, positions 18 and 19 of the sense strand, positions 19 and 20 of the sense strand, positions 1 and 2 of the antisense strand, There is a phosphorothioate linkage between each of positions 2 and 3 of the antisense strand, positions 3 and 4 of the antisense strand, positions 20 and 21 of the antisense strand, and positions 21 and 22 of the antisense strand. In some embodiments, the oligonucleotide conjugates described herein comprise peptide nucleic acid (PNA). PNA is an oligonucleotide mimetic in which the sugar-phosphate backbone is replaced by a pseudopeptide skeleton composed of N-(2-aminoethyl)glycine units. The nucleobases are connected to this backbone via a two-atom carboxymethyl spacer. In some embodiments, the oligonucleotide conjugates described herein comprise N-morpholino oligomers (PMO), which contain methylene N linked through a diaminophosphate group. -The inter-nucleotide bonding backbone of the morpholine ring. base modificationIn some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise one or more modified nucleobases. In some embodiments, a modified nucleobase (also referred to herein as a base analog) is attached at the 1' position of the sugar moiety of the nucleotide. In some embodiments, the modified nucleobase is a nitrogenous base. In some embodiments, the modified nucleobase contains no nitrogen atoms. See, for example, US Patent Application Publication No. 2008/0274462. In some embodiments, the modified nucleotide is a universal base. In some embodiments, the modified nucleotide contains no nucleobases (abase). In some embodiments, the universal base is a heterocyclic moiety located at the 1' position of the nucleotide sugar moiety in the modified nucleotide, or at the equivalent position in the substitution of the nucleotide sugar moiety, when When present in a duplex, the heterocyclic moiety can be positioned relative to more than one type of base without substantially changing the structure of the duplex. In some embodiments, a single-stranded nucleic acid containing universal bases forms a duplex with the target nucleic acid, which has A lower T than the duplex formed with the complementary nucleic acid m. In some embodiments, the single-stranded nucleic acid containing the universal base forms a duplex with the target nucleic acid when compared to a reference single-stranded nucleic acid in which the universal base has been base-substituted to create a single mismatch. Strands have a higher T than duplexes formed from nucleic acids containing mismatches m. Non-limiting examples of common conjugating nucleotides include, but are not limited to, inosine, 1-β-D-ribofuranosyl-5-nitroindole, and/or 1-β-D-ribofuranosyl -3-Nitropyrrole (see U.S. Patent Application Publication No. 2007/0254362; Van Aerschot et al.(1995)NUCLEIC ACIDS RES .23:4363-4370;Loakes et al.(1995)NUCLEIC ACIDS RES .23:2361-66; and Loakes & Brown (1994) NUCLEIC ACIDS RES. 22:4039-43). targeting ligand In some embodiments, it is desirable to target the oligonucleotides of the present disclosure (eg, lipid-conjugated RNAi oligonucleotides) to one or more cells or tissues of the central nervous system (CNS). Such a strategy may help avoid undesirable effects in other organs or avoid excessive depletion of the oligonucleotide to cells, tissues, or organs that do not benefit from the oligonucleotide. Accordingly, in some embodiments, lipid-binding RNAi oligonucleotides disclosed herein are modified to facilitate targeting and/or delivery to specific tissues, cells, or organs (e.g., to facilitate binding to delivery to CNS). In some embodiments, lipid-bound RNAi oligonucleotides comprise at least one (e.g., 1, 2, 3, 4, 5, 6, or more nucleotides) with one or more targeting partners. body-bound nucleotides. In some embodiments, one or more (e.g., 1, 2, 3, 4, 5, or 6) nucleotides of the lipid-conjugated RNAi oligonucleotides disclosed herein are each associated with a separate of targeted ligand binding. In some embodiments, one nucleotide of the lipid-conjugated RNAi oligonucleotides herein binds to a separate targeting ligand. In some embodiments, each of the 2 to 4 nucleotides of the lipid-conjugated RNAi oligonucleotides herein binds to a separate targeting ligand. In some embodiments, the targeting ligand is associated with 2 to 4 nucleotides at either end of the sense or antisense strand (e.g., the targeting ligand is associated with 5' or 3' of the sense or antisense strand). The 2 to 4 nucleotide overhangs or extensions on the 'end bind) so that the targeting ligand resembles the bristles of a toothbrush and the lipid-conjugated RNAi oligonucleotide resembles a toothbrush. For example, a lipid-conjugated RNAi oligonucleotide can contain a backbone-loop at the 5' or 3' end of the sense strand and 1, 2, 3, or 4 nucleotides of the backbone loop can be individually combined with Targeted ligand binding. In some embodiments, lipid-bound RNAi oligonucleotides provided by the present disclosure comprise a backbone-loop at the 3' end of the sense strand, wherein the loop of the backbone-loop contains three or four loops, And the 3 or 4 nucleotides containing three or four rings are individually combined with the targeting ligand. GalNAc is a high-affinity ligand for ASGPR, which is mainly expressed on the sinusoidal surface of hepatocytes and plays a role in binding, internalization, and subsequent clearance of circulating glycoproteins (asialoproteins) containing terminal galactose or GalNAc residues. Acid sugar protein) plays a major role. Binding (indirect or direct) of the GalNAc moiety to the oligonucleotides of the present disclosure can be used to target these oligonucleotides to ASGPR expressed on cells. In some embodiments, oligonucleotides of the disclosure bind to at least one or more GalNAc moieties, wherein the GalNAc moiety targets the oligonucleotide to ASGPR expressed on human liver cells (eg, human hepatocytes). In some embodiments, the GalNAc moiety targets the oligonucleotide to the liver. In some embodiments, the oligonucleotides of the present disclosure bind to monovalent GalNAc, either directly or indirectly. In some embodiments, the oligonucleotide binds, directly or indirectly, to more than one monovalent GalNAc (i.e., to 2, 3, or 4 monovalent GalNAc moieties, and typically to 3, or 4 monovalent GalNAc moieties). GalNAc partially binds) binds. In some embodiments, the oligonucleotide is conjugated to one or more bivalent GalNAc, trivalent GalNAc, or tetravalent GalNAc moieties. In some embodiments, one or more (eg, 1, 2, 3, 4, 5, or 6) nucleotides of the oligonucleotide are each bound to the GalNAc moiety. In some embodiments, 2 to 4 nucleotides of the four loops each bind to a separate GalNAc. In some embodiments, 1 to 3 nucleotides of the tricycle are each bound to a separate GalNAc. In some embodiments, the targeting ligand is bound to 2 to 4 nucleotides at either end of the sense or antisense strand (e.g., the ligand is bound to the 5' or 3' end of the sense or antisense strand). The 2 to 4 nucleotide overhangs or extensions on the oligonucleotide bind) so that the GalNAc portion resembles the bristles of a toothbrush and the oligonucleotide resembles a toothbrush. In some embodiments, the GalNAc moiety is bound to the nucleotide of the sense strand. For example, four (4) GalNAc moieties may bind to nucleotides in the four loops of the sense strand, with each GalNAc moiety binding to 1 nucleotide. In some embodiments, any combination of tetracyclic adenine and guanine nucleotides. In some specific embodiments, tetracycle (L) has a monovalent GalNAc moiety attached to any one or more guanine nucleotides of the tetracycle via any linker described herein, as shown below (X = hetero atom): In some specific embodiments, tetracycle (L) has a monovalent GalNAc moiety attached to any one or more adenine nucleotides of the tetracycle via any linker described herein, as shown below (X = hetero atom): In some embodiments, the lipid-conjugated RNAi oligonucleotides herein comprise a monovalent GalNAc attached to a guanine nucleotide, referred to as [ademG-GalNAc] or 2'-aminodiethoxy Methanol-guanine-GalNAc, as shown below: In some embodiments, lipid-conjugated RNAi oligonucleotides herein comprise a monovalent GalNAc attached to an adenine nucleotide, referred to as [ademA-GalNAc] or 2'-aminodiethoxy Methanol-Adenine-GalNAc, as shown below: An example of such a conjugate comprising a loop of the 5' to 3' nucleotide sequence GAAA (L=linker, X=heteroatom) is shown below. Such loops may be present, for example, at positions 27 to 30 of the righteous strand. In the chemical formula, is used to describe the point of attachment to an oligonucleotide strand. Appropriate methods or chemistry (eg, click chemistry) can be used to attach the targeting ligand to the nucleotide. In some embodiments, the targeting ligand binds to the nucleotide using a click linker. In some embodiments, an acetal-based linker may be used to conjugate a targeting ligand to the nucleotide of any of the oligonucleotides described herein. Acetal-based linkers are disclosed, for example, in International Patent Application Publication No. WO 2016/100401. In some embodiments, the linker is an unstable linker. However, in other embodiments, the linker is stable. Shown below are examples of loops containing the 5' to 3' nucleotide GAAA, where the GalNAc moiety is attached to the nucleotides of the loop using an acetal linker. Such loops may be present, for example, at positions 27 to 30 of the righteous strand. In the chemical formula, It is the attachment point to the oligonucleotide strand. As described above, targeting ligands can be attached to nucleotides using a variety of suitable methods or chemical synthesis techniques (eg, click chemistry). In some embodiments, the targeting ligand binds to the nucleotide using a click linker. In some embodiments, an acetal-based linker may be used to conjugate a targeting ligand to the nucleotide of any of the oligonucleotides described herein. Acetal-based linkers are disclosed, for example, in International Patent Application Publication No. WO 2016/100401. In some embodiments, the linker is an unstable linker. However, in other embodiments, the linker is a stable linker. In some embodiments, a double-stranded extension (e.g., having up to 3, 4, 5, or 6 bp in length) is provided between the targeting ligand (e.g., GalNAc moiety) and the lipid-bound RNAi oligonucleotide. ). In some embodiments, the lipid-bound RNAi oligonucleotides herein do not have GalNAc bound thereto. Lipid conjugates In some embodiments, any of the lipid moieties described herein binds to the nucleotides of the sense strand of the oligonucleotide. In some embodiments, the lipid moiety is bound to a terminal position of the oligonucleotide. In some embodiments, the lipid moiety is bound to the 5' terminal nucleotide of the sense strand. In some embodiments, the lipid moiety is bound to the 3' terminal nucleotide of the sense strand. In some embodiments, the lipid moiety binds to internal nucleotides on the sense strand. An internal position is any nucleotide position other than the two terminal positions at each end of the sense strand. In some embodiments, the lipid moiety is bound to one or more internal positions of the sense strand. In some embodiments, the lipid moiety is associated with position 1, position 2, position 3, position 4, position 5, position 6, position 7, position 8, position 9, position 10, position 11, position 12, Location 13, location 14, location 15, location 16, location 17, location 18, location 19, location 20, location 21, location 22, location 23, location 24, location 25, location 26, location 27, location 28, location 29 , position 30, position 31, position 32, position 33, position 34, position 35, or position 36 combined. In some embodiments, the lipid moiety binds to position 1 of the sense strand. In some embodiments, the lipid moiety binds to position 4 of the sense strand. In some embodiments, the lipid moiety binds to position 8 of the sense strand. In some embodiments, the lipid moiety binds to position 12 of the sense strand. In some embodiments, the lipid moiety binds to position 13 of the sense strand. In some embodiments, the lipid moiety binds to position 18 of the sense strand. In some embodiments, the lipid moiety binds to position 20 of the sense strand. In some embodiments, the lipid moiety binds to position 23 of the sense strand. In some embodiments, the lipid moiety binds to position 28 of the sense strand. In some embodiments, the lipid moiety binds to position 29 of the sense strand. In some embodiments, the lipid moiety binds to position 30 of the sense strand. In some embodiments, lipid-binding RNAi oligonucleotides described herein comprise at least one nucleotide that binds to one or more lipid moieties. In some embodiments, one or more lipid moieties are bound to the same nucleotide. In some embodiments, one or more lipid moieties are bound to different nucleotides. In some embodiments, one, two, three, four, five, or six lipid moieties are conjugated to the oligonucleotide. In some embodiments, one or more lipid moieties are bound to adenine nucleotides. In some embodiments, one or more lipid moieties are conjugated to guanine nucleotides. In some embodiments, one or more lipid moieties are bound to cytosine nucleotides. In some embodiments, one or more lipid moieties are bound to thymine nucleotides. In some embodiments, one or more lipid moieties are conjugated to uracil nucleotides. In some embodiments, the lipid moiety is a hydrocarbon chain. In some embodiments, the hydrocarbon chain is saturated. In some embodiments, the hydrocarbon chain is unsaturated. In some embodiments, the hydrocarbon chain is branched. In some embodiments, the hydrocarbon chain is straight. In some embodiments, the lipid moiety is a C8 to C30 hydrocarbon chain. In some specific embodiments, the lipid moiety is C8:0, C10:0, C11:0, C12:0, C14:0, C16:0, C17:0, C18:0, C18:1, C18:2, C22:5, C22:0, C24:0, C26:0, C22:6, C24:1, diyl C16:0 or diyl C18:1. In some embodiments, the lipid moiety is a C16 hydrocarbon chain. In some embodiments, the lipid moiety is conjugated to the oligonucleotide via a linker. In some embodiments, the nucleotide of the lipid-conjugated oligonucleotide is represented by Formula II-b or II-c: or a pharmaceutically acceptable salt thereof, wherein: L 1It is a covalent bond, monovalent or divalent saturated or unsaturated, linear or branched C 1-50Hydrocarbon chain, in which 0 to 10 methylene units of the hydrocarbon chain are independently replaced by: -Cy-, -O-, -C(O)NR-, -NR-, -S-, -C( O)-, -C(O)O-, -S(O)-, -S(O) 2-, -P(O)OR-, -P(S)OR-, or ; R 4System hydrogen, R A, or a suitable amine protecting group; and R 5It is adamantyl, or saturated or unsaturated, straight chain, or branched C 1-50Hydrocarbon chain, in which 0 to 10 methylene units of the hydrocarbon chain are independently replaced by: -O-, -C(O)NR-, -NR-, -S-, -C(O)-, -C(O)O-, -S(O)-, -S(O) 2-, -P(O)OR-, or -P(S)OR. In some embodiments of lipid-conjugated RNAi oligonucleotides, R 5Department selected from In certain embodiments of lipid-conjugated RNAi oligonucleotides, R 5Department selected from In some embodiments, R 5department In some embodiments, R 5department In some embodiments, the nucleotide of the lipid-conjugated RNAi oligonucleotide is represented by the formula II-Ibor II-IcRepresents: or a pharmaceutically acceptable salt thereof; wherein B series nucleobase, or hydrogen; m ranges from 1 to 50; X 1Department -O-, or -S-; Y series hydrogen, ,or ; R 3It is hydrogen or a suitable protecting group; X 2Department O, or S; X 3is -O-, -S-, or covalent bond; Y 1A linking group attached to the 2'- or 3'-end of a nucleoside, nucleotide, or oligonucleotide; Y 2Be hydrogen, a phosphoramidite analog, an internucleotide linking group attached to the 5'-end of a nucleoside, nucleotide, or oligonucleotide, or a linking group attached to a solid support ; R 5It is adamantyl, or saturated or unsaturated, straight chain, or branched C 1-50Hydrocarbon chain, in which 0 to 10 methylene units of the hydrocarbon chain are independently replaced by: -O-, -C(O)NR-, -NR-, -S-, -C(O)-, -C(O)O-, -S(O)-, -S(O) 2-, -P(O)OR-, or -P(S)OR-; and R is hydrogen, a suitable protecting group, or optionally a substituted group selected from: C 1-6Aliphatic, phenyl, 4 to 7 membered saturated or partially unsaturated heterocyclic ring with 1 to 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and 1 to 4 heteroatoms independently selected from nitrogen, oxygen , and 5- to 6-membered heteroaryl rings of heteroatoms of sulfur. In some embodiments, the lipid system In some embodiments, the oligonucleotides of the oligonucleotide-ligand conjugates are double-stranded molecules. In some embodiments, the oligonucleotides are RNAi molecules. In some embodiments, the double-stranded oligonucleotide contains backbone loops. In some embodiments, the backbone loop is shown as S1-L-S2, where S1 is complementary to S2, and where L forms a loop between S1 and S2. In some embodiments, the ligand binds to any of the nucleotides in the loops of the backbone loops. In some embodiments, the ligand binds to any of the nucleotides in the backbone of the backbone loop. In some embodiments, the ligand binds to the first nucleotide from 5' to 3' of the loop. In some embodiments, the ligand binds to the second nucleotide from 5' to 3' of the loop. In some embodiments, the ligand binds to the third nucleotide from 5' to 3' of the loop. In some embodiments, the ligand binds to the fourth nucleotide from 5' to 3' in the loop. In some embodiments, the ligand binds to one, two, three, or four nucleotides in the loop. In some embodiments, the ligand binds to three nucleotides in the backbone loop. In some embodiments, the backbone loop is 16 nucleotides long. In some embodiments, the ligand binds to the third nucleotide from 5' to 3' of the backbone loop. In some embodiments, the ligand binds to the eighth nucleotide from 5' to 3' in the backbone loop. In some embodiments, the ligand binds to the ninth nucleotide from 5' to 3' in the backbone loop. In some embodiments, the ligand binds to the tenth nucleotide from 5' to 3' in the backbone loop. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a 20 nucleotide sense strand, with positions numbered 1 to 20 from 5' to 3'. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 1 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 4 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 8 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 12 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 13 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 18 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a lipid bound to position 20 of the 20 nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a 36 nucleotide sense strand, with positions numbered 1 to 36 from 5' to 3'. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 1 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 4 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 8 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 12 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 13 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 18 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 20 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 23 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 28 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises lipid binding to position 29 of the 36-nucleotide sense strand. In some embodiments, the lipid-bound RNAi oligonucleotide-comprises a lipid bound to position 30 of the 36-nucleotide sense strand. Exemplary oligonucleotides In some embodiments, lipid-conjugated RNAi oligonucleotides comprise nucleotides conjugated to fatty acids. In some embodiments, the fatty acid is a saturated fatty acid. In some embodiments, the fatty acid is an unsaturated fatty acid. In some embodiments, lipid-bound RNAi oligonucleotides comprise nucleotides that bind to lipids. In some embodiments, the lipid is a carbon chain. In some embodiments, the carbon chain is saturated. In some embodiments, the carbon chain is unsaturated. In some embodiments, lipid-bound RNAi oligonucleotides comprise nucleotides bound to a 16 carbon (C16) lipid. In some specific embodiments, the C16 lipid contains at least one double bond. In some embodiments, the oligonucleotide of the lipid-conjugated RNAi oligonucleotide is conjugated to a C16 lipid as follows: In some embodiments, lipid-bound RNAi oligonucleotides comprise a 20 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 22 nucleotide long antisense strand. In some embodiments, the sense strand is 20 nucleotides long and the antisense strand is 22 nucleotides long. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 20 nucleotide long sense strand and a 22 nucleotide long antisense strand, wherein the sense strand and antisense strand form 20 bases For the double-stranded area. In some embodiments, the 3' end of the sense strand is blunt. In some embodiments, the 5' end of the antisense strand is blunt. In some embodiments, the 3' end of the antisense strand includes an overhang. In some embodiments, the overhang is 2 nucleotides long. In some embodiments, the overhang is GG. In some embodiments, lipid-bound RNAi oligonucleotides comprise one or more 2' modifications. In some embodiments, the 2' modification is selected from 2'-fluoro or 2'-methyl. In some embodiments, lipid-bound RNAi oligonucleotides comprise an antisense strand and a sense strand as described herein, wherein the sense strand comprises at least one hydrocarbon chain bound to the 5' terminal nucleotide of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise an antisense strand and a sense strand as described herein, wherein the sense strand comprises at least one C16 hydrocarbon chain bound to the 5' terminal nucleotide of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, wherein the sense strand contains at least one hydrocarbon chain bound to the 5' terminal nucleotide of the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, wherein the sense strand contains at least one C16 hydrocarbon chain bound to the 5' terminal nucleotide of the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a 20 to 22 base pair asymmetric double-stranded region with an overhang on the 3' end of the antisense strand and a blunt end on the 3' end of the oligonucleotide, The sense strand includes at least one hydrocarbon chain bound to the 5' terminal nucleotide on the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a 20 to 22 base pair asymmetric double-stranded region with an overhang on the 3' end of the antisense strand and a blunt end on the 3' end of the oligonucleotide, The sense strand includes at least one C16 hydrocarbon chain bound to the 5' terminal nucleotide on the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises an antisense strand and a sense strand as described herein, wherein the sense strand comprises at least one nucleotide internal to the sense strand (e.g., at position 7 of nucleotides) combined with a hydrocarbon chain. In some embodiments, a lipid-bound RNAi oligonucleotide comprises an antisense strand and a sense strand as described herein, wherein the sense strand comprises at least one nucleotide internal to the sense strand (e.g., at position 7 nucleotide) combined C16 hydrocarbon chain. In some embodiments, not all internal nucleotides are suitable for lipid binding to stellate cells that deliver RNAi oligonucleotides to the CNS. For example, in some embodiments, conjugates at positions 9 or 10 on the sense strand, numbered from 5' to 3', are not suitable for delivery of RNAi oligonucleotides to stellate cells in the CNS. In some embodiments, lipid conjugates at internal positions of the sense strand numbered from 5' to 3' do not include positions 9 and 10. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, wherein the sense strand contains at least one hydrocarbon chain bound to an internal nucleotide of the sense strand (eg, the nucleotide at position 7). In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, wherein the sense strand contains at least one C16 hydrocarbon chain bound to an internal nucleotide of the sense strand (eg, the nucleotide at position 7). In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a 20 to 22 base pair asymmetric double-stranded region with an overhang on the 3' end of the antisense strand and a blunt end on the 3' end of the oligonucleotide, The sense strand includes at least one hydrocarbon chain bound to an internal nucleotide of the sense strand (eg, the nucleotide at position 7). In some embodiments, a lipid-bound RNAi oligonucleotide comprises a 22- to 24-nucleotide antisense strand and a 20- to 22-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a 20 to 22 base pair asymmetric double-stranded region with an overhang on the 3' end of the antisense strand and a blunt end on the 3' end of the oligonucleotide, The sense strand includes at least one C16 hydrocarbon chain bound to an internal nucleotide of the sense strand (eg, the nucleotide at position 7). In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 36 nucleotide long sense strand. In some embodiments, the lipid-conjugated RNAi oligonucleotide comprises a 22 nucleotide long antisense strand. In some embodiments, the sense strand is 36 nucleotides long and the antisense strand is 22 nucleotides long. In some embodiments, the lipid-bound RNAi oligonucleotide comprises a 36 nucleotide long sense strand and a 22 nucleotide long antisense strand, wherein the sense strand and antisense strand form 20 bases For the double-stranded area. In some embodiments, the 3' end of the sense strand contains a backbone-loop. In some embodiments, the 3' end of the sense strand contains four rings. In some embodiments, the 3' end of the sense strand comprises: a stem-loop comprising SEQ ID NO: 32. In some embodiments, the 3' end of the antisense strand includes an overhang. In some embodiments, the overhang is 2 nucleotides long. In some embodiments, the overhang is GG. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a sense strand comprising a backbone-loop at its 3' end and at least one hydrocarbon chain bound to the 5' terminal nucleotide of the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a sense strand comprising a backbone-loop at its 3' end and at least one hydrocarbon chain bound to the nucleotide of the sense strand. In some embodiments, a lipid-bound RNAi oligonucleotide comprises a sense strand comprising a backbone-loop at its 3' end and at least one C16 hydrocarbon strand bound to the 5' terminal nucleotide of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a sense strand comprising a tetracyclic loop and at least one C16 hydrocarbon chain bound to a nucleotide of the tetracyclic loop. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the first nucleotide of the sense strand (position 1 from 5'>3'). In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the fourth nucleotide (position 4 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the eighth nucleotide (position 8 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the twelfth nucleotide (position 12 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the thirteenth nucleotide (position 13 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the eighteenth nucleotide (position 18 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the twentieth nucleotide (position 20 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the twenty-third nucleotide (position 23 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the twenty-eighth nucleotide (position 28 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the twenty-ninth nucleotide (position 29 from 5'>3') of the sense strand. In some embodiments, lipid-bound RNAi oligonucleotides comprise a 22- to 24-nucleotide antisense strand and a 20- to 36-nucleotide sense strand as described herein, wherein the antisense strand and The sense strand forms a double-stranded region of 20 to 22 base pairs, in which the sense strand contains at least one C16 hydrocarbon chain bound to the thirtieth nucleotide (position 30 from 5'>3') of the sense strand. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O-Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O- Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotide, and [ademX-L] = lipid attached to the nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell target genes comprise the following modification pattern Cross to: Where [mXs] = 2'- phosphorothioate linkage to adjacent nucleotide O- Methyl modified nucleotide, [fXs] = 2'-fluoro modified nucleotide with phosphorothioate linkage to adjacent nucleotide, [mX] = phosphodiester with adjacent nucleotide The Sutra of Key Links 2'- O - Methyl modified nucleotide, [fX] = 2'-fluoro modified nucleotide with phosphodiester linkage to adjacent nucleotide, [MePhosphonate-4O-mX] = 4'-O- Monomethylphosphonate-2'-O-methyl modified nucleotides, [ademX-Ls] = lipid attached to nucleotides with phosphorothioate linkages to adjacent nucleotides, and [ademX -L]=lipid attached to nucleotide, optionally where L is a C16 hydrocarbon. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell mRNA in the spinal cord comprise a sense strand comprising a backbone-loop at its 3' end and at least one strand associated with the sense strand The hydrocarbon chain of the nucleotide binding at position 2, position 3, position 6, position 13, position 14, position 15, position 19, position 20, position 23, position 28, position 29, or position 30, where the position is Numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing the expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a backbone-loop at its 3' end and at least one linkage with the sense strand. A hydrocarbon chain bound to a nucleotide at position 1, position 4, position 8, position 12, position 13, position 18, position 20, position 23, position 28, position 29, or position 30, where the position is from 5' to 3' number. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell mRNA in the cerebellum comprise a sense strand comprising a backbone-loop at its 3' end and at least one covalent linkage with the sense strand. A hydrocarbon chain bound to a nucleotide at position 1, position 4, position 23, position 28, position 29, or position 30, where the positions are numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing the expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a backbone-loop at its 3' end and at least one covalent linkage with the sense strand. A hydrocarbon chain bound to a nucleotide at position 1, position 4, position 12, position 13, position 18, position 20, position 23, position 28, position 29, or position 30, where the position is from 5' to 3' number. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing expression of stellate cell mRNA in the frontal cortex comprises a sense strand comprising a stem-loop at its 3' end and at least one The hydrocarbon chain of the nucleotide bound at position 23 of the sense strand, where the positions are numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing the expression of stellate cell mRNA in the spinal cord comprises a sense strand having a blunt end at its 3' end and at least one position corresponding to the sense strand. 1. A hydrocarbon chain bound to a nucleotide at position 4, position 8, position 12, position 13, position 18, or position 20, where the positions are numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a blunt-ended sense strand at its 3' end and at least one position corresponding to the sense strand. 1. A hydrocarbon chain bound to a nucleotide at position 4, position 8, position 12, position 13, position 18, or position 20, where the positions are numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and at least one position corresponding to the sense strand. 4. A hydrocarbon chain bound to a nucleotide at position 12, position 13, position 18, or position 20, where the positions are numbered from 5' to 3'. In some embodiments, lipid-conjugated RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a sense strand with a blunt end at its 3' end and at least one position corresponding to the sense strand. 1. A hydrocarbon chain bound to a nucleotide at position 4, position 12, position 13, position 18, or position 20, where the positions are numbered from 5' to 3'. In some embodiments, a lipid-conjugated RNAi oligonucleotide for reducing the expression of stellate cell mRNA in the frontal cortex comprises a sense strand comprising a blunt end at its 3' end and at least one covalent linkage with the sense strand. A hydrocarbon chain bound to a nucleotide at position 4, where the positions are numbered from 5' to 3'. In some embodiments, position numbering throughout this description is based on numbering from 5' to 3', such that the terminal nucleotide at the 5' end is position 1. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the spinal cord comprise a sense strand comprising a stem-loop at its 3' end and binding to position 1 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 4 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 8 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 12 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 13 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 18 of the sense strand of lipids. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the spinal cord comprise a sense strand comprising a stem-loop at its 3' end and binding to position 20 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the spinal cord comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand of lipids. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the spinal cord comprise a sense strand comprising a stem-loop at its 3' end and binding to position 30 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata includes at its 3' end the sense strand of the backbone-loop and binds to position 1 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata includes at its 3' end the sense strand of the backbone-loop and binds to position 4 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata includes at its 3' end the sense strand of the backbone-loop and binds to position 18 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata includes at its 3' end the sense strand of the backbone-loop and binds to position 19 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 20 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 30 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 1 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 4 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises at its 3' end the sense strand of the backbone-loop and binding to position 1 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises at its 3' end the sense strand of the backbone-loop and binding to position 4 of the sense strand. Lipids. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a backbone-looped sense strand at its 3' end and binding to position 12 of the sense strand. Lipids. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a backbone-looped sense strand at its 3' end and binding to position 13 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 18 of the sense strand of lipids. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a sense strand comprising a stem-loop at its 3' end and binding to position 20 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 30 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the frontal cortex comprises a sense strand comprising a stem-loop at its 3' end and a position relative to the sense strand 23-bound lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 1 of the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 4 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 8 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 12 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 13 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 18 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 20 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 23 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 28 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 29 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a backbone-loop at its 3' end and position 30 relative to the sense strand A conjugated lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 1 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 4 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 8 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 12 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 13 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 18 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 20 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a stem-loop at its 3' end and binding to position 30 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 1 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 4 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a sense strand comprising a stem-loop at its 3' end and binding to position 1 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 4 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 12 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 13 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 18 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, lipid-bound RNAi oligonucleotides for reducing expression of stellate cell mRNA in the hypothalamus comprise a sense strand comprising a stem-loop at its 3' end and binding to position 20 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 23 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 28 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 29 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a stem-loop at its 3' end and binding to position 30 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the frontal cortex comprises a sense strand comprising a stem-loop at its 3' end and a position relative to the sense strand 23-bound lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at its 3' end and binding to position 1 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 4 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing the expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at the 3' end of the sense strand and binding to position 8 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 12 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at its 3' end and binding to position 13 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 18 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at its 3' end and binding to position 20 of the sense strand. Lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 1 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 8 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 1 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand . In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the frontal cortex comprises a sense strand containing a blunt end at its 3' end and binding to position 4 of the sense strand of lipids. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at its 3' end and binding to position 1 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 4 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 8 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 12 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord includes a blunt-ended sense strand at its 3' end and a lipid binding to position 13 of the sense strand. , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand comprising a blunt end at its 3' end and binding to position 18 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the lumbar spinal cord comprises a sense strand containing a blunt end at its 3' end and binding to position 20 of the sense strand. Lipid, and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 1 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 8 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the medulla oblongata comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the cerebellum comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 1 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 4 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 12 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 13 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 18 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the hypothalamus comprises a sense strand comprising a blunt end at its 3' end and a lipid binding to position 20 of the sense strand , and wherein the oligonucleotide comprises at least one modified nucleotide. In some embodiments, a lipid-bound RNAi oligonucleotide for reducing expression of stellate cell mRNA in the frontal cortex comprises a sense strand containing a blunt end at its 3' end and binding to position 4 of the sense strand A lipid, and wherein the oligonucleotide comprises at least one modified nucleotide.Provides general methods for nucleic acids and their analogsNucleic acids and analogs comprising the lipid conjugates described herein can be prepared using a variety of methods known in the art, including standard phosphoramidite methods. Any phosphoramidite synthesis method can be used to synthesize the nucleic acids provided in this disclosure. In certain embodiments, phosphoramidites are used in solid phase synthesis methods to produce reactive intermediate phosphite compounds, which are subsequently oxidized using known methods to produce phosphonate modified oligonucleosides Acids, typically with phosphodiester or phosphorothioate internucleotide linkages. Oligonucleotide synthesis of the present disclosure can be performed in either direction: from 5' to 3' or from 3' to 5' using methods known in the art. In certain embodiments, methods for synthesizing provided nucleic acids comprise (a) attaching a nucleoside or analog thereof to a solid support via a covalent linkage; (b) attaching a nucleoside phosphoramidite or The analog thereof is coupled to the reactive hydroxyl group on the nucleoside or analog thereof of step (a) to form an internucleotide bond therebetween, wherein any uncoupled nucleoside or analog thereof on the solid support is used capping with a capping reagent; (c) oxidizing the internucleotide bond with an oxidizing agent; and (d) repeating steps (b) to (c) with a subsequent nucleoside phosphoramidite or analog thereof to form a nucleic acid or Analogs thereof, wherein at least the nucleoside of step (a) or an analog thereof, the nucleoside phosphoramidite of step (b) or an analog thereof, or the subsequent nucleoside phosphoramidite of step (d) or an analog thereof At least one of them includes a lipid conjugate moiety described herein. Generally, the coupling, capping/oxidation steps, and optional deprotection steps are repeated until the oligonucleotide reaches the desired length and/or sequence, after which it is cleaved from the solid support. In certain embodiments, oligonucleotides are prepared that include 1 to 3 nucleic acids or analogs thereof that comprise lipid conjugate units on a tetracyclic ring. below process AWhere specific protecting groups, leaving groups, or transformation conditions are shown, one of ordinary skill in the art will understand that other protecting groups, leaving groups, and transformation conditions are also suitable and may be considered. Also consider process ACertain reactive functional groups requiring additional protecting group strategies (eg, -N(H)-, -OH, etc.) are contemplated and understood by those of ordinary skill in the art. Such groups and transformations are described in detail in March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, M. B. Smith and J. March, 5 thEdition, John Wiley & Sons, 2001. COMPREHENSIVE ORGANIC TRANSFORMATIONS,(R. C. Larock, 2 ndEdition, John Wiley & Sons, 1999), and PROTECTING GROUPS IN ORGANIC SYNTHESIS,(T. W. Greene and P. G. M. Wuts, 3 rdedition, John Wiley & Sons, 1999), each of which is hereby incorporated by reference in its entirety. In certain embodiments, the nucleic acids of the present disclosure, and their analogs, are substantially in accordance with the process A ,process A1,and process BPreparation: process A :Synthesis of ligand-binding oligonucleotides disclosed herein process A1 :Synthesis of the disclosed lipid-binding oligonucleotides As above process Aand process A1As shown in , the formula I-1Nucleic acids or analogs thereof are combined with one or more ligands/lipophilic compounds to form a formula containing a plurality of ligands/lipid conjugates Ior formula Iaof compounds. Generally speaking, the combination is performed in series or parallel by techniques known in the art. I-1or formula I-1aThe esterification or amidation reaction between nucleic acids or analogs thereof and one or more adamantyl and/or lipophilic compounds (eg, fatty acids) is carried out. Then the formula can be Ior formula Iadeprotect the nucleic acid or its analogues to form the formula I-2or formula I-2acompound and protected with a suitable hydroxyl protecting group (e.g., DMTr) to form the formula I-3or formula I-3aof compounds. In an aspect, the formula I-3or formula I-3aThe nucleic acid-ligand conjugates can be covalently attached to a solid support (e.g., via a succinic acid linking group) to form a formula containing one or more adamantyl and/or lipid conjugates. I-4or formula I-4aSolid support nucleic acid-ligand conjugate or the like. In another aspect, the formula I-3or formula I-3aNucleic acid-ligand conjugates can form reagents with P(III) (e.g., 2-cyanoethyl N, N-Di-isopropyl phosphoridite chloride) reacts to form a formula containing a P(III) group I-5or formula I-5anucleic acid or its analogues. Then, the formula can be I-5or formula I-5aThe nucleic acid-ligand conjugate or analog thereof is subjected to oligopolymerization conditions using known and commonly used processes to prepare oligonucleotides in the art. For example, consider the formula I-5or formula I-5aThe compound is coupled to a solid supported nucleic acid-ligand conjugate bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and/or cleavage from the solid support to provide oligonucleotides of various nucleotide lengths represented by the formula II-1or formula II-IaCompounds represented include one or more lipid conjugate nucleotide units. B,E,L,ligand,LC,n,PG 1,PG 2,PG 4,R 1,R 2,R 3,X,X 1,X 2,X 3Each of , and Z is as defined above and described herein. Process B: Synthesis of lipid conjugates after oligonucleotides of the present disclosure As above process BAs shown in , the formula can be I-1Nucleic acid or its analogues are deprotected to form the formula I-6The compound is protected with a suitable hydroxyl protecting group (e.g., DMTr) to form the formula I-7compounds and form reagents with P(III) (e.g. 2-cyanoethyl N, N-Di-isopropyl phosphoridite chloride) reacts to form a formula containing a P(III) group I-8nucleic acid or its analogues. Next, the formula can be I-8The nucleic acid or analog thereof is subjected to oligopolymerization conditions using known and commonly used processes to prepare oligonucleotides in the art. For example, consider the formula I-8The compound is coupled to a solid supported nucleic acid bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and/or cleavage from the solid support to provide the formula II-2The compounds represent oligonucleotides of various nucleotide lengths. Then the formula can be II-2The oligonucleotide is combined with one or more ligands (e.g., adamantyl, or a lipophilic compound (e.g., fatty acid)) to form a formula containing one or more ligand conjugates II-1of compounds. Generally speaking, the combination is performed in series or parallel by techniques known in the art. II-2It is carried out by esterification or amidation reaction between nucleic acid or its analog and one or more adamantyl groups or fatty acids. B,E,L,ligand,LC,n,PG 1,PG 2,PG 4,R 1,R 2,R 3,X,X 1,X 2,X 3Each of , and Z is as defined above and described herein. In certain embodiments, the nucleic acids of the present disclosure, and analogs thereof, are formulated according to the methods shown below. process Cand process DPreparation: Procedure C: Synthesis of Lipid-Conjugated Oligonucleotides of the Disclosure As above process CAs shown in , the formula C1Nucleic acid or its analogues are protected to form the formula C2of compounds. Then change the formula C2Alkylation of nucleic acids or analogs thereof (e.g., via Pummerer rearrangement using DMSO and acetic acid) to form formula C3Monothioacetal compounds. Next, change the formula C3Nucleic acid or its analogues and C4Couple under appropriate conditions (e.g., mild oxidizing conditions) to form the formula C5nucleic acid or its analogues. Then the formula can be C5deprotect the nucleic acid or its analogues to form the formula C6compound, and with the formula C7The ligand (adamantyl or lipophilic compound (e.g., fatty acid)) is coupled under appropriate amide-forming conditions (e.g., HATU, DIPEA) to form a formula comprising a lipid conjugate of the present disclosure IbNucleic acid-ligand conjugates or analogs thereof. Then the formula can be IbThe nucleic acid-ligand conjugate or its analog is deprotected to form the formula C8compound and protected with a suitable hydroxyl protecting group (e.g., DMTr) to form the formula C9of compounds. In an aspect, the formula C9The nucleic acid, or analog thereof, can be covalently attached to a solid support (e.g., via a succinic acid linker) to form a formula containing the ligand conjugates (adamantyl and/or lipid moieties) of the present disclosure. C10Solid support nucleic acid-ligand conjugate or the like. In another aspect, the formula C9Nucleic acid-ligand conjugates or analogs thereof can form reagents with P(III) (e.g., 2-cyanoethyl N, N-Di-isopropyl phosphoridite chloride) reacts to form a formula containing a P(III) group C11Nucleic acid-ligand conjugates or analogs thereof. Then, the formula can be C11The nucleic acid-ligand conjugate or analog thereof is subjected to oligopolymerization conditions using known and commonly used processes to prepare oligonucleotides in the art. For example, consider the formula C11The compound is coupled to a solid supported nucleic acid-ligand conjugate bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and/or cleavage from the solid support to provide oligonucleotides of various nucleotide lengths represented by the formula II-b-3Compounds represented include one or more adamantyl and/or lipid-binding nucleotide units. B,E,L 2,PG 1,PG 2,PG 3,PG 4,R 1,R 2,R 3,R 4,R 5,X 1,X 2,X 3Each of , V, W, and Z is as defined above and described herein. Process D: Synthesis of lipid conjugates after oligonucleotides of the present disclosure B,E,L 2,PG 1,PG 2,PG 3,PG 4,R 1,R 2,R 3,R 4,R 5,X 1,X 2,X 3Each of , V, W, and Z is as defined above and described herein. As above process DAs shown in , the formula can be C5Nucleic acids or analogs thereof are selectively deprotected to form the formula D1The compound is protected with a suitable hydroxyl protecting group (e.g., DMTr) to form the formula D2compounds and form reagents with P(III) (e.g. 2-cyanoethyl N, N-di-isopropyl phosphoramidite chloride) reacts to form the formula D3nucleic acid or its analogues. Next, change the formula D3The nucleic acid or its analogue is subjected to pre-prepared oligopolymerization conditions using known and commonly used processes to prepare oligonucleotides in the art. For example, consider the formula D3The compound is coupled to a solid supported nucleic acid bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and/or cleavage from the solid support to provide the formula D4The compounds represent oligonucleotides of various nucleotide lengths. Then the formula can be D4The oligonucleotide is deprotected to form the formula D5compounds and coupled with hydrophobic ligands (e.g., adamantyl or lipophilic moieties) to form C7(e.g., adamantyl or fatty acid) compounds are coupled under appropriate amide-forming conditions (e.g., HATU, DIPEA) to form formulas comprising conjugates of the disclosed ligands (e.g., adamantyl or fatty acid) II-b-3of oligonucleotides. One of ordinary skill in the art will understand that various functional groups (such as aliphatic groups, alcohols, carboxylic acids, esters, amides, aldehydes, halogens, and nitriles) present in the nucleic acids of the present disclosure or their analogs can be Interconversion by techniques well known in the art, including but not limited to reduction, oxidation, esterification, hydrolysis, partial oxidation, partial reduction, halogenation, dehydration, partial hydration, and hydration. See e.g., " MARCH'S ADVANCED ORGANIC CHEMISTRY",(5 thEd., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001), each of which is incorporated by reference in its entirety. Such interconversion may require one or more of the aforementioned techniques, and certain methods for synthesizing the nucleic acids provided by this disclosure are described in the examples below. In some embodiments, the present disclosure provides methods for preparing oligonucleotides comprising one or more lipid conjugates, or pharmaceutically acceptable salts thereof, the lipid conjugate units being represented by the formula II-a-1Represents: This method includes the following steps: (a) Offering I-5aNucleic acid or its analogues: or its salt, and (b) general formula I-5aThe compound oligomericly polymerizes to form the formula II-1acompound, among which B,E,L,LC,n,PG 4,R 1,R 2,R 3,X,X 1,X 2,X 3Each of , E, and Z is as defined above and described herein. In the above step (b), oligopolymerization refers to using known and commonly used processes to perform oligopolymerization forming conditions to prepare oligonucleotides in the art. For example, consider the formula I-5aThe compound is coupled to a solid supported nucleic acid bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and cleavage from the solid support to provide the lipid conjugate-containing formula of the present disclosure. II-1aThe compounds represent oligonucleotides of various nucleotide lengths. In some embodiments, the present disclosure provides methods for preparing oligonucleotides comprising one or more lipid conjugates, further comprising preparing I-5aNucleic acid or its analogues: or its salt, the method includes the following steps: (a) Offering IaNucleic acid or its analogues: or its salt, (b) general formula IaThe nucleic acid or analog thereof is deprotected to form the formula I-2aThe compound of: or its salt, (c) general formula I-2The nucleic acid or its analog is protected to form the formula I-3aThe compound of: or its salt, and (d) general formula I-3aThe nucleic acid or analog thereof is treated with a P(III) forming reagent to form the formula I-5aNucleic acid or its analogues, wherein B,E,L,LC,n,PG 4,R 1,R 2,R 3,X,X 1,X 2,X 3Each of , E, and Z is as defined above and described herein. In step (b) above, the formula IaThe compound of PG 1and PG 2Contains silyl ethers or cyclic silene derivatives, which can be removed under acidic conditions or with fluoride anions. Examples of reagents that provide fluoride anions to remove silicon-based protecting groups include hydrofluoric acid, pyridine hydrogen fluoride, triethylamine trihydrofuride, tetrafluorofluoride N-Butylammonium, etc. In step (c) above, the formula I-2aThe compounds are protected with appropriate hydroxyl protecting groups. In some embodiments, for protective I-2aThe protective group PG of the 5'-hydroxyl group of the compound 4Includes acid-labile protecting groups such as trityl, 4-methoxytrityl, 4,4'-dimethoxytrityl, 4,4',4"-trimethoxytrityl base, 9-phenyl-𠮿-9-yl (9-phenyl-xanthen-9-yl), 9-(p-phenylmethyl)-𠮿-9-yl, phenyl𠮿yl (pixyl), 2,7 - dimethylphenyl hydroxyl group, etc. In certain embodiments, the acid-labile protecting group is suitable for use during both solution and solid phase synthesis of acid-sensitive nucleic acids or the like using, for example, dichloroacetic acid or trichloroacetic acid to remove protection. In the above step (d), the equation I-3aThe compound is treated with a P(III)-forming reagent to obtain the formula I-5aof compounds. In the context of this disclosure, a P(III)-forming reagent is a phosphorus reagent that reacts to form a phosphorus(III) compound. In some embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropyl phosphoridite chloride or 2-cyanoethyl dichlorophosphate. In certain embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropylphosphoridite chloride. Those with ordinary knowledge should realize that in the form I-3aCompound X 1Displacement of the leaving group in the P(III)-forming reagent is accomplished in the presence or absence of a suitable base. Such suitable bases are well known in the art and include organic and inorganic bases. In certain embodiments, the basic tertiary amine is such as triethylamine or diisopropylethylamine. In other embodiments, step (d) above uses N, N- Dimethylphosphoramidite dichloride is carried out as P(V) forming reagent. In some embodiments, the present disclosure provides methods for preparing oligonucleotides comprising one or more lipid conjugates, further comprising preparing IaNucleic acid-lipid conjugates or analogs thereof: or its salt, the method includes the following steps: (a) Offering I-1Nucleic acid or its analogues: or its salt, and, (b) Combine one or more lipophilic compounds with the formula I-1Nucleic acids or analogs thereof are combined to form a formula comprising one or more lipid conjugates IaNucleic acids or analogs thereof, wherein: B,E,L,LC,n,PG 1,PG 2,R1,R 2,X,X 1Each of , and Z is as defined above and described herein. In step (b) above, the formula I-1aNucleic acids or analogs thereof are combined with one or more lipophilic compounds to form a formula comprising one or more lipid conjugates of the present disclosure. Iaof compounds. Generally speaking, the combination is performed in series or parallel by techniques known in the art. I-1aIt is carried out by an esterification or amidation reaction between a nucleic acid or its analog and one or more fatty acids. In certain embodiments, conjugation is performed under suitable amide-forming conditions to provide a formula comprising a plurality of lipid conjugates. Iof compounds. Suitable amide forming conditions may include the use of amide coupling agents known in the art, such as, but not limited to, HATU, PyBOP, DCC, DIC, EDC, HBTU, HCTU, PyAOP, PyBrOP, BOP, BOP-Cl, DEPBT, T3P, TATU, TBTU, TNTU, TOTU, TPTU, TSTU, or TDBTU. Alternatively, the binding of lipophilic compounds can be achieved by surface AThis can be accomplished by any of the cross-coupling techniques described in . In some embodiments, the present disclosure provides methods for preparing pharmaceutically acceptable salts of oligonucleotides comprising one or more lipid conjugates, the lipid conjugate units being represented by the formula II-1Represents: This method includes the following steps: (a) Offering II-2The oligonucleotide: or its salt, and, (b) Combine one or more lipophilic compounds with the formula II-2oligonucleotides are combined to form a formula containing one or more lipid conjugates II-1of oligonucleotides. In step (b) above, the formula II-2The oligonucleotide is combined with one or more lipophilic compounds to form a formula including one or more lipid conjugates of the present disclosure. II-1of oligonucleotides. Generally speaking, the combination is performed in series or parallel by techniques known in the art. II-2It is carried out by esterification or amidation reaction between oligonucleotide and one or more fatty acids. In certain embodiments, conjugation is performed under suitable amide-forming conditions to provide a formula comprising a plurality of lipid conjugates. II-1Oligonucleotides. Suitable amide forming conditions may include the use of amide coupling agents known in the art, such as, but not limited to, HATU, PyBOP, DCC, DIC, EDC, HBTU, HCTU, PyAOP, PyBrOP, BOP, BOP-Cl, DEPBT, T3P, TATU, TBTU, TNTU, TOTU, TPTU, TSTU, or TDBTU. Alternatively, the binding of lipophilic compounds can be achieved by surface AThis can be accomplished by any of the cross-coupling techniques described in . In some embodiments, the present disclosure provides for preparation of a compound comprising: II-2Oligonucleotide of the unit represented: Or its pharmaceutically acceptable salt method, which includes the following steps: (a) Offering I-8Nucleic acid or its analogues: or its salt, and (b) general formula I-8The compound oligomericly polymerizes to form the formula II-2of compounds. In the above step (b), oligopolymerization refers to using known and commonly used processes to perform oligopolymerization forming conditions to prepare oligonucleotides in the art. For example, consider the formula I-8The compound is coupled to a solid supported nucleic acid bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and cleavage from the solid support to provide Eq. II-2The compounds represent oligonucleotides of various nucleotide lengths. In some embodiments, the present disclosure provides methods for preparing nucleic acids or analogs thereof comprising one or more lipid conjugates, further comprising preparing a formula I-8Nucleic acid or its analogues: or its salt, the method includes the following steps: (a) Offering I-1Nucleic acid or its analogues: or its salt, (b) general formula I-1The nucleic acid or analog thereof is deprotected to form the formula I-6The compound of: or its salt, (c) general formula I-6The nucleic acid or its analog is protected to form the formula I-7The compound of: or its salt, and (d) general formula I-7The nucleic acid or analog thereof is treated with a P(III) forming reagent to form the formula I-8Nucleic acid or analog thereof, in step (b) above, the formula I-1The compound of PG 1and PG 2Contains silyl ethers or cyclic silene derivatives, which can be removed under acidic conditions or with fluoride anions. Examples of reagents that provide fluoride anions to remove silicon-based protecting groups include hydrofluoric acid, pyridine hydrogen fluoride, triethylamine trihydrofuride, tetrafluorofluoride N-Butylammonium, etc. In step (c) above, the formula I-6The compounds are protected with appropriate hydroxyl protecting groups. In some embodiments, for protective I-6The protective group PG of the 5'-hydroxyl group of the compound 4Includes acid-labile protecting groups such as trityl, 4-methoxytrityl, 4,4'-dimethoxytrityl, 4,4',4"-trimethoxytrityl base, 9-phenyl-𠮿-9-yl, 9-(p-phenylmethyl)-𠮿-9-yl, phenyl𠮿yl, 2,7-dimethylphenyl𠮿yl, etc. In some specific In embodiments, acid-labile protecting groups are suitable for deprotection using, for example, dichloroacetic acid or trichloroacetic acid during both solution and solid phase synthesis of acid-sensitive nucleic acids or analogs thereof. In the above step (d), the equation I-7The compound is treated with a P(III)-forming reagent to obtain the formula I-8of compounds. In the context of this disclosure, a P(III)-forming reagent is a phosphorus reagent that reacts to form a phosphorus(III) compound. In some embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropyl phosphoridite chloride or 2-cyanoethyl dichlorophosphate. In certain embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropylphosphoridite chloride. Those with ordinary knowledge should realize that in the form I-7Compound X 1Displacement of the leaving group in the P(III)-forming reagent is accomplished in the presence or absence of a suitable base. Such suitable bases are well known in the art and include organic and inorganic bases. In certain embodiments, the basic tertiary amine is such as triethylamine or diisopropylethylamine. In other embodiments, step (d) above uses N, N- Dimethylphosphoramidite dichloride is carried out as P(V) forming reagent. In some embodiments, the present disclosure provides methods for preparing oligonucleotide-ligand conjugates comprising one or more adamantyl and/or lipid moieties, or pharmaceutically acceptable salts thereof, the lipid conjugates The object unit consists of the formula II-b-3Represents: This method includes the following steps: (a) Offering C11Nucleic acid-ligand conjugates or analogs thereof: or its salt, and (b) general formula C11The compound oligomericly polymerizes to form the formula II-b-3of compounds. In the above step (b), oligopolymerization refers to using known and commonly used processes to perform oligopolymerization forming conditions to prepare oligonucleotides in the art. For example, consider the formula C11The compound is coupled to a solid supported nucleic acid bearing a 5'-hydroxyl group or an analog thereof. Further steps may include one or more deprotection, coupling, phosphite oxidation, and cleavage from the solid support to provide oligos of various nucleotide lengths with one or more nucleic acid-ligand conjugate units. Glycoside-ligand conjugates, wherein each unit is composed of a formula containing an adamantyl or lipid moiety of the present disclosure II-b-3represented by the compound. In some embodiments, formulas for preparing one or more lipid conjugates II-b-3The method of oligonucleotide further comprises preparing formula C11Nucleic acid-lipid conjugates or analogs thereof: or its salt, the method includes the following steps: (a) Offering ibNucleic acid or its analogues: or its salt, (b) general formula IbThe nucleic acid-ligand conjugate or analog thereof is deprotected to form the formula C8The compound of: or its salt, (c) general formula C8The nucleic acid-ligand conjugate or analog thereof is protected to form the formula C9The compound of: or its salt, and (d) general formula C9The nucleic acid-ligand conjugate or analog thereof is treated with a P(III) forming reagent to form the formula C11nucleic acid or its analogues. In step (b) above, the formula IbThe compound of PG 1and PG 2Contains silyl ethers or cyclic silene derivatives, which can be removed under acidic conditions or with fluoride anions. Examples of reagents that provide fluoride anions to remove silicon-based protecting groups include hydrofluoric acid, pyridine hydrogen fluoride, triethylamine trihydrofuride, tetrafluorofluoride N-Butylammonium, etc. In step (c) above, the formula C8The compounds are protected with appropriate hydroxyl protecting groups. In some embodiments, for protective C8The protective group PG of the 5'-hydroxyl group of the compound 4Includes acid-labile protecting groups such as trityl, 4-methoxytrityl, 4,4'-dimethoxytrityl, 4,4',4"-trimethoxytrityl base, 9-phenyl-𠮿-9-yl, 9-(p-phenylmethyl)-𠮿-9-yl, phenyl𠮿yl, 2,7-dimethylphenyl𠮿yl, etc. In some specific In embodiments, acid-labile protecting groups are suitable for deprotection using, for example, dichloroacetic acid or trichloroacetic acid during both solution and solid phase synthesis of acid-sensitive nucleic acids or analogs thereof. In the above step (d), the equation C9The compound is treated with a P(III)-forming reagent to obtain the formula C11of compounds. In the context of this disclosure, a P(III)-forming reagent is a phosphorus reagent that reacts to form a phosphorus(III) compound. In some embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropyl phosphoridite chloride or 2-cyanoethyl dichlorophosphate. In certain embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropylphosphoridite chloride. Those with ordinary knowledge should realize that in the form C9Compound X 1Displacement of the leaving group in the P(III)-forming reagent is accomplished in the presence or absence of a suitable base. Such suitable bases are well known in the art and include organic and inorganic bases. In certain embodiments, the basic tertiary amine is such as triethylamine or diisopropylethylamine. In other embodiments, step (d) above uses N, N- Dimethylphosphoramidite dichloride is carried out as P(V) forming reagent. In some embodiments, the present disclosure provides for preparing formula II-b-3A method of oligonucleotide-ligand conjugates, the oligonucleotide-ligand conjugates comprising one or more nucleic acid-ligand conjugate units each containing one or more adamantyl or lipid moieties, the The method further includes the preparation formula IbNucleic acid-ligand conjugates or analogs thereof: or its salt, the method includes the following steps: (a) Offering C6Nucleic acid-ligand conjugates or analogs thereof: or its salt, and, (b) Combine the lipophilic compound with the formula C6Nucleic acids or analogs thereof are combined to form a formula containing one or more adamantyl and/or lipid conjugates IbNucleic acid-ligand conjugates or analogs thereof. In step (b) above, the conjugation is carried out under suitable amide formation conditions to obtain a formula containing an adamantyl and/or lipid conjugate. ibof compounds. Suitable amide forming conditions may include the use of amide coupling agents known in the art, such as, but not limited to, HATU, PyBOP, DCC, DIC, EDC, HBTU, HCTU, PyAOP, PyBrOP, BOP, BOP-Cl, DEPBT, T3P, TATU, TBTU, TNTU, TOTU, TPTU, TSTU, or TDBTU. In certain embodiments, the amide forming conditions include HATU, and DIPEA, or TEA. In certain embodiments, the formula C6The nucleic acid-ligand conjugate or analog thereof is provided in salt form (eg, fumarate) and first converted to the free base (eg, using sodium bicarbonate) before performing the conjugation step. In some embodiments, the present disclosure provides for preparing formula II-b-3A method for oligonucleotide-ligand conjugates, the oligonucleotide-ligand conjugates comprising one or more nucleic acid-ligand conjugate units, the method further comprising the preparation formula C6Nucleic acid-ligand conjugates or analogs thereof: or its salt, the method includes the following steps: (a) Offering C1Nucleic acid or its analogues: or its salt, and, (b) general formula C1The nucleic acid or its analog is protected to form the formula C2The compound of: or its salt, (c) general formula C2The nucleic acid or analog thereof is alkylated to form the formula C3The compound of: or its salt, (d) general formula C3The nucleic acid or its analog is of the formula C4The compound of: or its salt substituted to form the formula C5The compound of: or its salt, (e) general formula C5The nucleic acid or analog thereof is deprotected to form a nucleic acid-ligand conjugate of formula C6 or an analog thereof. In step (b) above, the equation C2PG 1and PG 2The groups together with their intervening atoms form cyclic diol protecting groups, such as cyclic acetals or ketals. Such groups include methylene, ethylene, benzylidene, isopropylene, cyclohexylene, and cyclopentylene, silicone derivatives such as di-tertiary butylsilicon, and 1,1 , 3,3-tetraisopropyldisiloxane subunit (1,1,3,3-tetraisopropylidisiloxanylidene), cyclic carbonate, cyclic borate, and cyclic adenosine monophosphate (i.e. , cAMP) cyclic monophosphate derivative. In certain embodiments, the cyclic diol protecting group is 1,1,3,3-tetraisopropyldisiloxane subunit, which under basic conditions is from the formula C1Prepared by the reaction of diol and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane. In step (c) above, the formula C2The nucleic acid or its analogue is alkylated with a mixture of DMSO and acetic anhydride under acidic conditions. In certain embodiments, when -V-H is a hydroxyl group, a mixture of DMSO and acetic anhydride undergoes Pumerel rearrangement in situ to form (methylthio)methyl acetate in the presence of acetic acid, and is then combined with formula C2hydroxyl reaction of nucleic acid or its analogues to provide the formula C3Monothioacetal functionalized fragment nucleic acid or analogs thereof. In step (d) above, use the formula C4Nucleic acid or its analog substitution formula C3The thiomethyl group of the nucleic acid or its analogues can be obtained by formula C4nucleic acid or its analogues. In certain embodiments, substitution occurs under mild oxidative and/or acidic conditions. In some embodiments, V is oxygen. In some embodiments, mild oxidizing agents include mixtures of elemental iodine and hydrogen peroxide, urea hydrogen peroxide complex, silver nitrate/silver sulfate, sodium bromate, ammonium peroxodisulfate, peroxodisulfate Tetrabutylammonium peroxydisulfate, Oxone®, Chloramine T, Selectfluor®, Selectfluor® II, sodium hypochlorite, or potassium iodate/sodium periodate. In certain embodiments, mild oxidizing reagents include N-iodosuccinimide, N-bromosuccinimide, N-chlorosuccinimide, 1,3-diiodo-5,5- Dimethylhydantion (1,3-diiodo-5,5-dimethylhydantion), pyridinium tribromide (pyridinium tribromide), iodine chloride or its complex, etc. Acids commonly used under mild oxidizing conditions include sulfuric acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, methanesulfonic acid, and trifluoroacetic acid. In certain embodiments, the mild oxidizing agent includes a mixture of N-iodosuccinimide and triflate. In step (e) above, remove the equation C5PG of nucleic acid-ligand conjugates or analogs thereof 3and R as necessary 4(when R 4When it is a suitable amine protecting group), we get the formula C6Nucleic acid-ligand conjugates or analogs or salts thereof. In some embodiments, PG 3and/or R 4Contains urethane derivatives, which can be removed under acidic or alkaline conditions. In certain embodiments, the formula C5Protecting groups for nucleic acid-ligand conjugates or analogs thereof (e.g., PG 3and R 4Both or independently PG 3or R 4either) are removed by acid hydrolysis. It should be understood that in the acid hydrolysis formula C5After the protecting group of the nucleic acid-ligand conjugate or its analogue, the formula is formed C6of salt. For example, when the formula is removed by treatment with an acid, such as hydrochloric acid C5When the acid-labile protecting group of the nucleic acid-ligand conjugate or its analog is used, the resulting amine compound will form its hydrochloride salt. One of ordinary skill in the art will recognize that a wide variety of acids can be used to remove acid-labile amine protecting groups, and therefore consider Eq. C6Various salt forms of nucleic acids or their analogs. In other specific embodiments, the formula C5Protective groups for nucleic acids or their analogs (e.g., PG 3and R 4Both or independently PG 3or R 4either) are removed by alkaline hydrolysis. For example, Fmoc and trifluoroacetyl protecting groups can be removed by treatment with a base. One of ordinary skill in the art will recognize that a wide variety of bases can be used to remove base-labile amine protecting groups. In some embodiments, the base is piperidine. In some specific embodiments, the base is 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). In certain embodiments, the formula C5The nucleic acid-ligand conjugate or its analog is deprotected under basic conditions and then treated with acid to form the formula C6of salt. In certain embodiments, the acid is butenedioic acid, formula C6The salt is fumarate. In some embodiments, the present disclosure provides methods for preparing oligonucleotide-ligand conjugates comprising one or more nucleic acid-ligand conjugates, or pharmaceutically acceptable salts thereof, the nucleic acid-ligand conjugates The conjugate unit is represented by formula II-b-3: This method includes the following steps: (a) Offering D5The oligonucleotide: or its salt, and, (b) Combine one or more adamantyl or lipophilic compounds with the formula D5oligonucleotides are combined to form a formula containing one or more nucleic acid-ligand conjugate units II-b-3oligonucleotide-ligand conjugates. In step (b) above, conjugation is carried out under suitable amide-forming conditions to obtain an adamantyl or lipid conjugate of the formula D5of compounds. Suitable amide forming conditions may include the use of amide coupling agents known in the art, such as, but not limited to, HATU, PyBOP, DCC, DIC, EDC, HBTU, HCTU, PyAOP, PyBrOP, BOP, BOP-Cl, DEPBT, T3P, TATU, TBTU, TNTU, TOTU, TPTU, TSTU, or TDBTU. In certain embodiments, amide forming conditions include HATU, and DIPEA or TEA. In some embodiments, the present disclosure provides for preparations comprising: D5Methods for oligonucleotide-ligand conjugates of the units represented: or its salt, the method includes the following steps: (a) Offering D4Nucleic acid-ligand conjugates or analogs thereof: or its salt, and (b) general formula D4The compound is deprotected to form the formula D5of compounds. In step (b) above, removing the PG of the oligonucleotide of formula D4 3and R as necessary 4(when R 4When it is a suitable amine protecting group), we get the formula D5oligonucleotide-ligand conjugates or salts thereof. In some embodiments, PG 3and/or R 4Contains urethane derivatives which can be removed under acidic or alkaline conditions. In certain embodiments, the formula D4Protecting groups for oligonucleotide-ligand conjugates (e.g., PG 3and R 4Both or independently PG 3or R 4either) are removed by acid hydrolysis. It should be understood that in the acid hydrolysis formula D4After the protecting group of the oligonucleotide-ligand conjugate, its formula is formed D5of salt. For example, when the formula is removed by treatment with an acid, such as hydrochloric acid D4When the oligonucleotide has an acid-labile protecting group, the resulting amine compound will form its hydrochloride salt. One of ordinary skill in the art will recognize that a wide variety of acids can be used to remove acid-labile amine protecting groups, and therefore consider Eq. D5Various salt forms of nucleic acid-ligand conjugate units or analogs thereof. In other specific embodiments, the formula D4Protecting groups for oligonucleotide-ligand conjugates (e.g., PG 3and R 4Both or independently PG 3or R 4either) are removed by alkaline hydrolysis. For example, Fmoc and trifluoroacetyl protecting groups can be removed by treatment with a base. One of ordinary skill in the art will recognize that a wide variety of bases can be used to remove base-labile amine protecting groups. In some embodiments, the base is piperidine. In some specific embodiments, the base is 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). In some embodiments, the present disclosure provides for the preparation of oligonucleotide-ligand conjugates comprising one or more nucleic acid-ligand conjugate units having one or more adamantyl and/or lipid moieties or Its pharmaceutically acceptable salt method, the conjugate unit is represented by formula D4: This method includes the following steps: (a) Offering D3Nucleic acid or its analogues: or its salt, and (b) general formula D3The compound oligomericly polymerizes to form the formula D4of compounds. In the above step (b), oligopolymerization refers to using known and commonly used processes to perform oligopolymerization forming conditions to prepare oligonucleotides in the art. For example, consider the formula D3The nucleic acid or its analog is coupled to a solid support nucleic acid or its analog having a 5'-hydroxyl group. Further steps may include one or more deprotection, coupling, phosphite oxidation, and cleavage from the solid support to provide the adamantyl or lipid conjugate-containing formula of the present disclosure. D4The compounds represent oligonucleotides of various nucleotide lengths. In some embodiments, the present disclosure provides methods for preparing nucleic acids or analogs thereof comprising one or more lipid conjugates, further comprising preparing a formula D3Nucleic acid or its analogues: or its salt, the method includes the following steps: (a) Offering C5Nucleic acid or its analogues: or its salt, (b) general formula C5The nucleic acid or analog thereof is deprotected to form the formula D1The compound of: or its salt, (c) general formula D1The nucleic acid or its analog is protected to form the formula D2nucleic acid or its analogues. or its salt, and (d) general formula D2The nucleic acid or analog thereof is treated with a P(III) forming reagent to form the formula D3nucleic acid or its analogues. In step (b) above, the formula C5PG of nucleic acid or its analogues 1and PG 2Contains silyl ethers or cyclic silene derivatives, which can be removed under acidic conditions or with fluoride anions. Examples of reagents that provide fluoride anions to remove silicon-based protecting groups include hydrofluoric acid, pyridine hydrogen fluoride, triethylamine trihydrofuride, tetrafluorofluoride N-Butylammonium, etc. In step (c) above, the formula D1The nucleic acid or analog thereof is protected with a suitable hydroxyl protecting group. In some embodiments, for protective D1The protective group PG of the 5'-hydroxyl group of the compound 4Includes acid-labile protecting groups such as trityl, 4-methoxytrityl, 4,4'-dimethoxytrityl, 4,4',4"-trimethoxytrityl base, 9-phenyl-𠮿-9-yl, 9-(p-phenylmethyl)-𠮿-9-yl, phenyl𠮿yl, 2,7-dimethylphenyl𠮿yl, etc. In some specific In embodiments, acid-labile protecting groups are suitable for deprotection using, for example, dichloroacetic acid or trichloroacetic acid during both solution and solid phase synthesis of acid-sensitive nucleic acids or analogs thereof. In the above step (d), the equation D2The nucleic acid or its analogue is treated with a P(III) forming reagent to obtain the formula D3of compounds. In the context of this disclosure, a P(III)-forming reagent is a phosphorus reagent that reacts to form a phosphorus(III) compound. In some embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropyl phosphoridite chloride or 2-cyanoethyl dichlorophosphate. In certain embodiments, the P(III) forming reagent is 2-cyanoethyl N, N-Diisopropylphosphoridite chloride. Those with ordinary knowledge should realize that in the form D2Compound X 1Displacement of the leaving group in the P(III)-forming reagent is accomplished in the presence or absence of a suitable base. Such suitable bases are well known in the art and include organic and inorganic bases. In certain embodiments, the basic tertiary amine is such as triethylamine or diisopropylethylamine. In other embodiments, step (d) above uses N, N- Dimethylphosphoramidite dichloride is carried out as P(V) forming reagent. PreparationsVarious formulations have been developed to facilitate the use of oligonucleotides. For example, oligonucleotides (e.g., lipid-conjugated RNAi oligonucleotides) can be delivered to an individual or cellular environment using formulations that minimize degradation, facilitate delivery and/or uptake, or are The oligonucleotides provide another beneficial property. In some embodiments, provided herein are compositions comprising oligonucleotides (e.g., lipid-conjugated RNAi oligonucleotides) that reduce target mRNA (e.g., target mRNA expressed in stellate cells of the CNS). ) performance. Such compositions can be suitably formulated so that when administered to an individual (either into the immediate environment of a target cell or systemically), a sufficient portion of the oligonucleotide enters the cell to reduce target gene expression. Any of a variety of suitable oligonucleotide formulations may be used to deliver oligonucleotides to reduce stellate cell target gene expression as disclosed herein. In some embodiments, oligonucleotides are formulated in buffer solutions such as phosphate buffered saline solution, liposomes, microstructures, and shells. In some embodiments, the formulations herein include excipients. In some embodiments, excipients confer improved stability, improved absorption, improved solubility, and/or enhanced therapeutic properties of the active ingredient to the composition. In some embodiments, the excipient is a buffer (eg, sodium citrate, sodium phosphate, tris base, or sodium hydroxide) or vehicle (eg, buffered solution, paraffin oil, dimethyl sulfoxide, or mineral oil). In some embodiments, the oligonucleotide is freeze-dried to extend its storage life and then made into solution prior to use (eg, administration to an individual). Accordingly, an excipient in a composition comprising any of the oligonucleotides described herein can be a lyoprotectant (e.g., mannitol, lactose, polyethylene glycol, or polyvinylpyrrolidine ketones) or collapse temperature modifier (such as dextran, Ficoll™ or gelatin). Likewise, the oligonucleotides herein may be provided in their free acid form. In some embodiments, pharmaceutical compositions are formulated to be compatible with their intended route of administration. Examples of routes of administration include parenteral (e.g., intravenous, intramuscular, intraperitoneal, intradermal, subcutaneous, intrathecal), oral (e.g., inhalation), transdermal (e.g., topical), transmucosal, and rectal administration. give. In some embodiments, pharmaceutical compositions are formulated for delivery to the central nervous system (eg, intrathecal, epidural). In some embodiments, the pharmaceutical compositions are formulated for delivery to the eye (e.g., ophthalmic, intraocular, subconjunctival, intravitreal, retrobulbar, intracameral) ). Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (when water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.), or phosphate buffered saline (PBS). The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyols (eg, glycerol, propylene glycol, liquid polyethylene glycol, etc.), and suitable mixtures thereof. In many cases it will be preferable to include isotonic agents such as sugars, polyols (such as mannitol, sorbitol), sodium chloride in the composition. Sterile injectable solutions can be prepared by incorporating the oligonucleotide in the required amount and, if necessary, one or a combination of the ingredients enumerated above in a solvent of choice, followed by filtered sterilization. In some embodiments, the compositions may contain at least about 0.1% of a therapeutic agent (e.g., a lipid-conjugated RNAi oligonucleotide herein) or more, although the percentage of active ingredient(s) may be in the total. Between about 1% and about 80% or more of the weight or volume of the composition. Factors such as solubility, bioavailability, biological half-life, route of administration, product storage life, and other pharmacological considerations should be considered by one of ordinary skill in the art of preparing such pharmaceutical formulations, and thus may require various Dosage and treatment regimen. Instructions Reduce target gene expression In some specific embodiments, the present disclosure provides for contacting or delivering to a cell or population of cells an effective amount of any of the lipid-conjugated RNAi oligonucleotides herein to reduce star formation in the CNS. Methods for expression of target genes in cells. In some embodiments, expression of stellate cell target genes is reduced in regions of the CNS. In some embodiments, regions of the CNS include, but are not limited to, the brain, prefrontal cortex, frontal cortex, motor cortex, temporal cortex, parietal cortex, occipital cortex, sensory cortex, hippocampus, caudate Caudate, striatum, globus pallidus, optic thalamus, midbrain, tegmentum, substantia nigra, pons, brainstem, cerebellar white matter, cerebellum, Dentate nucleus, medulla oblongata, cervical spinal cord, thoracic spinal cord, lumbar spinal cord, cervical dorsal root ganglion, thoracic dorsal root ganglion, lumbar dorsal root ganglion, sacral dorsal root nerve Sacral dorsal root ganglion, nodose ganglia, femoral nerve, sciatic nerve, sural nerve, amygdala, hypothalamus, putamen, callosum, and cranial nerves. In some embodiments, the CNS region is selected from the group consisting of lumbar spinal cord, cerebellum, medulla oblongata, hippocampus, hypothalamus, frontal cortex, and combinations thereof. In some aspects, the region of the CNS is selected from the group consisting of spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, hypothalamus, cerebellum, frontal cortex, and combinations thereof. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the spinal cord. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the lumbar spinal cord. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the thoracic spinal cord. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in cervical spinal cord stellate cells. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the hypothalamus. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the medulla oblongata. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the hippocampus. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the cerebellum. In some embodiments, lipid-conjugated RNAi oligonucleotides described herein reduce expression of target genes in stellate cells in the frontal cortex. In some embodiments, a decrease in target gene expression is determined by measuring a decrease in the amount or level of target mRNA, protein encoded by target mRNA, or target gene (mRNA or protein) activity in the cell. Such methods include those described herein and known to those of ordinary skill in the art. In some specific embodiments, the present disclosure provides for contacting or delivering an effective amount of any of the oligonucleotides herein (e.g., RNAi oligonucleotides) to a cell or population of cells to reduce GFAPMethod of performance. In some specific embodiments, GFAPReduction in performance was achieved by measuring the GFAPDetermined by a decrease in the amount or level of mRNA, GFAP protein, or GFAP activity. Such methods include those described herein and known to those of ordinary skill in the art. In some embodiments, the present disclosure provides for reducing stress in the central nervous system GFAPMethod of performance. In some embodiments, the central nervous system includes the brain and spinal cord. In some specific embodiments, GFAPManifestations are reduced in at least one area of the brain. In some embodiments, regions of the brain include the spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, cerebellum, hypothalamus, hippocampus, and frontal cortex. In some embodiments, a method for reducing expression of a target gene in stellate cells of the spinal cord of an individual comprises administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding to the sense strand The lipid moiety at position 1, position 4, position 8, position 12, position 13, position 18, or position 20. In some embodiments, methods for reducing expression of a target gene in medulla oblongata stellate cells of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding to the sense strand The lipid moiety at position 4, position 8, position 12, position 13, position 18, or position 20. In some embodiments, methods for reducing expression of a target gene in cerebellar stellate cells of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding to the sense strand The lipid moiety at position 4, position 12, position 13, position 18, or position 20. In some embodiments, a method for reducing expression of a target gene in stellate cells of the inferior thalamus of an individual comprises administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding site The lipid portion at position 1, position 4, position 12, position 13, position 18, or position 20 of the justice strand. In some embodiments, methods for reducing expression of a target gene in stellate cells of the frontal cortex of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding site The lipid part at position 4 of the justice strand. In some embodiments, methods for reducing expression of a target gene in stellate cells of the spinal cord of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a backbone-loop and at least one binding in The lipid portion of the justice strand at position 1, position 4, position 8, position 12, position 13, position 18, position 20, position 23, position 28, position 29, or position 30. In some embodiments, methods for reducing expression of a target gene in medulla oblongata stellate cells of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a backbone-loop and at least one binding in The lipid portion at position 1, position 4, position 18, position 20, position 23, position 28, position 29, or position 30 of the justice strand. The cerebellum of an individual comprises administering to the individual a lipid-bound RNAi oligonucleotide comprising a backbone-loop and at least one lipid bound at position 1, position 4, position 23, position 28, or position 29 of the sense strand part. In some embodiments, a method for reducing expression of a target gene in stellate cells of the inferior thalamus of an individual comprises administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding site The lipid portion of the justice strand at position 1, position 1, position 4, position 12, position 13, position 18, position 20, position 23, position 28, position 29, or position 30. In some embodiments, methods for reducing expression of a target gene in stellate cells of the frontal cortex of an individual comprise administering to the individual a lipid-conjugated RNAi oligonucleotide comprising a blunt end and at least one binding site The lipid part at position 23 of the justice strand. In some embodiments, a single dose of an oligonucleotide or oligonucleotides described herein reduces the expression of stellate cell mRNA by at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 4 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 8 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 12 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 23 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 26 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition described herein reduces the expression of stellate cell mRNA for at least 29 weeks. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition herein reduces the expression of stellate cell mRNA by 1 month, by 2 months, by 3 months, by 4 months, up to 5 months, up to 6 months, up to 7 months, up to 8 months, up to 9 months, up to 10 months, up to 11 months, up to 12 months months, up to 13 months, up to 14 months, up to 15 months, or up to 16 months. In some embodiments, a single dose of an oligonucleotide or pharmaceutical composition herein reduces the expression of stellate cell mRNA for up to 12 months. In some embodiments, a decrease in target gene expression is determined by measuring a decrease in the amount or level of target mRNA, protein encoded by target mRNA, or target gene (mRNA or protein) activity in the cell. Such methods include those described herein and known to those of ordinary skill in the art. The methods provided herein can be used with any appropriate cell type. In some embodiments, the cell line is any cell expressing a stellate cell target mRNA. In some embodiments, the cell line is obtained from an individual's primary stellate cell line. In some embodiments, the primary cells have undergone a limited number of passages such that the cells substantially maintain native phenotypic properties. In some embodiments, the cell line to which the oligonucleotide is delivered is ex vivo or ex vivo (ie, can be delivered to cells in culture or to the organism in which the cells reside). In some embodiments, lipid-conjugated RNAi oligonucleotides disclosed herein are delivered to cells or cell populations (e.g., stellate cells) using nucleic acid delivery methods known in the art including, but not limited to Injection of a solution or pharmaceutical composition containing lipid-conjugated RNAi oligonucleotides, exposure of cells or cell populations to particles containing lipid-conjugated RNAi oligonucleotides by bombardment, of RNAi oligonucleotide, or the cell membrane is electroporated in the presence of lipid-conjugated RNAi oligonucleotide. Other methods known in the art for delivering oligonucleotides to cells may be used, such as lipid-vectored vehicle delivery, chemical-vectored delivery, and cationic liposome transfection (such as calcium phosphate), among others. In some embodiments, target gene expression is reduced by an assay or technique that assesses one or more molecules, properties, or characteristics of a cell or cell population that correlates with target gene expression, or by assessing a direct indicator cell or cell population. An assay or technique is used to determine the molecules (e.g., target mRNA or protein) in which the target gene is expressed. In some embodiments, lipid-conjugated RNAi oligonucleotides provided herein reduce target gene expression in stellate cells to an extent by contacting the stellate cells with the lipid-conjugated RNAi oligonucleotide. cells or populations of stellate cells versus control cells or populations of cells (e.g., stellate cells or populations of stellate cells that are not contacted with a lipid-conjugated RNAi oligonucleotide or that are contacted with a control lipid-conjugated RNAi oligonucleotide) ) to evaluate by comparing the expression of target genes. In some embodiments, the control amount or level of target gene expression in a control cell or control cell population is predetermined such that the control amount or level does not need to be measured every time an assay or technique is performed. The predetermined level or value can take a variety of forms. In some embodiments, the predetermined level or value may be a single cutoff value, such as a median or mean. In some embodiments, contacting or delivering a lipid-conjugated RNAi oligonucleotide described herein to a stellate cell or population of stellate cells results in reduced expression of a stellate cell target gene. In some embodiments, the reduction in target gene expression is relative to a control of target gene expression in cells or cell populations that are not contacted with a lipid-conjugated RNAi oligonucleotide or that are contacted with a control lipid-conjugated RNAi oligonucleotide. quantity or level. In some specific embodiments, the target gene expression is reduced relative to the control amount or level of the target gene expression by about 1% or lower, about 5% or lower, about 10% or lower, about 15% or lower, About 20% or less, about 25% or less, about 30% or less, about 35% or less, about 40% or less, about 45% or less, about 50% or less, about 55% or less, about 60% or less, about 70% or less, about 80% or less, or about 90% or less. In some embodiments, the control amount or level of target gene expression is the amount or level of target mRNA and/or protein in cells or cell populations that have not been contacted with the lipid-conjugated RNAi oligonucleotides herein. In some embodiments, the effect of delivering a lipid-conjugated RNAi oligonucleotide to a cell or cell population according to the methods herein is over any limited period or amount of time (e.g., minutes, hours, days). , weeks, months). For example, in some embodiments, the target gene is expressed at least about 4 hours, about 8 hours, about 12 hours, about 18 hours after contacting or delivering the lipid-conjugated RNAi oligonucleotide to the cell or cell population. hours, about 24 hours; or at least about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 13 days, about 14 days, about 21 days, about 28 days, about 35 days, about 42 days, about 49 days, about 56 days, about 63 days, about 70 days, about 77 days, or about 84 days or more when measured in cells or cell populations. In some embodiments, the target gene is expressed at least about 1 month, about 2 months, about 3 months, about 3 months after contacting or delivering the lipid-conjugated RNAi oligonucleotide to the cell or cell population. Determined in cells or populations of cells at 4 months, about 5 months, or about 6 months or more. Treatment The present disclosure provides oligonucleotides for use as medicaments, and particularly for use in methods of treating diseases, disorders, and conditions associated with the CNS. The present disclosure also provides lipid-conjugated RNAi oligonucleotides for use in, or that may be applicable to, the treatment of individuals (e.g., humans) suffering from a disease, disorder or condition associated with expression of a stellate cell target gene. , disorder, or condition would benefit from reduced expression of stellate cell target genes. In some embodiments, the present disclosure provides lipid-conjugated RNAi oligonucleotides for use, or may be adapted to treat individuals suffering from a disease, disorder or condition associated with stellate cell target gene expression. The present disclosure also provides lipid-conjugated RNAi oligonucleotides for use in, or may be suitable for, the manufacture of medicaments or pharmaceutical compositions for the treatment of diseases, disorders or conditions associated with expression of stellate cell target genes. In some embodiments, lipid-conjugated RNAi oligonucleotides are used, or can be adapted to target mRNA and reduce expression of stellate cell target genes (eg, via the RNAi pathway). In some embodiments, lipid-conjugated RNAi oligonucleotides are used, or can be adapted to target mRNA and reduce the amount or level of stellate cell target mRNA, protein and/or activity. Furthermore, in some embodiments of the methods herein, individuals who have or are susceptible to a disease, disorder, or condition associated with expression of a stellate cell target gene are selected for use with the lipid-conjugated RNAi oligonucleotides herein. Glycoside treatment. In some embodiments, methods include selecting individuals who have or are susceptible to having markers (e.g., biomarkers) of a disease, disorder, or condition associated with expression of a stellate cell target gene, such as, but not limited to, the target mRNA, protein, or combinations thereof. Likewise, and as described in detail below, some embodiments of the methods provided by the present disclosure include steps such as measuring or obtaining baseline values for markers of expression of stellate cell target genes, and then comparing the values so obtained with a Or multiple other baseline values or values obtained after administration of a lipid-conjugated RNAi oligonucleotide to an individual are compared to assess the effectiveness of the treatment. The present disclosure also provides for the use of lipid-conjugated RNAi oligonucleotides provided herein to treat patients with, suspected of having, or developing a disease, disorder, or condition associated with expression of stellate cell target genes. Methods for expression of cellular target genes in individuals at risk for diseases, disorders, or conditions. In some specific embodiments, the present disclosure provides methods of using lipid-conjugated RNAi oligonucleotides provided herein to treat or attenuate the onset or progression of a disease, disorder, or condition associated with expression of a stellate cell target gene. In some embodiments, the present disclosure provides for the use of lipid-conjugated RNAi oligonucleotides provided herein to achieve a or A variety of therapeutic benefits. In some embodiments of the methods herein, an individual is treated by administering a therapeutically effective amount of any one or more of the lipid-conjugated RNAi oligonucleotides provided herein. In some embodiments, treatment includes reducing expression of stellate cell target genes (eg, in the CNS). In some embodiments, the subject is therapeutically treated. In some embodiments, the subject is treated prophylactically. In some embodiments of the methods herein, a lipid-conjugated RNAi oligonucleotide provided herein, or a pharmaceutical composition comprising a lipid-conjugated RNAi oligonucleotide, is administered to a patient with celiac disease. In an individual with a disease, disease or condition related to the expression of a target gene in a cell, the expression of the target gene in the individual is reduced, thereby treating the individual. In some embodiments, the amount or level of target mRNA is reduced in the individual. In some embodiments, the amount or level of protein encoded by the target mRNA is reduced in the individual. In some embodiments of the methods herein, a lipid-conjugated RNAi oligonucleotide provided herein, or a pharmaceutical composition comprising a lipid-conjugated RNAi oligonucleotide, is administered to a patient with celiac disease. In an individual with a disease, disorder or condition associated with expression of a cell target gene such that expression of the target gene in the individual is reduced compared to expression of the target gene before administration of a lipid-conjugated RNAi oligonucleotide or pharmaceutical composition At least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or greater than 99%. In some embodiments, when compared to individuals who did not receive a lipid-conjugated RNAi oligonucleotide or pharmaceutical composition or who received a control lipid-conjugated RNAi oligonucleotide, pharmaceutical composition, or treatment (e.g., reference or control individual), the expression of the stellate cell target gene in the individual is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, About 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or greater than 99%. In some embodiments of the methods herein, a lipid-conjugated RNAi oligonucleotide herein, or a pharmaceutical composition comprising a lipid-conjugated RNAi oligonucleotide, is administered to a patient with stellate cells. In an individual with a disease, disorder or condition associated with expression of the target gene, such that when compared to the amount or level of target mRNA before administration of the lipid-conjugated RNAi oligonucleotide or pharmaceutical composition, the amount of target mRNA in the individual is The amount or level is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, about 99%, or greater than 99%. In some embodiments, when compared to individuals who did not receive a lipid-conjugated RNAi oligonucleotide or pharmaceutical composition or who received a control lipid-conjugated RNAi oligonucleotide, pharmaceutical composition, or treatment (e.g., reference or a control individual), the amount or level of target mRNA in the individual is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60% , about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99% or greater than 99%. In some embodiments of the methods herein, a lipid-conjugated RNAi oligonucleotide herein, or a pharmaceutical composition comprising a lipid-conjugated RNAi oligonucleotide, is administered to a patient with stellate cells. In an individual with a disease, disorder, or condition associated with expression of the target gene, such that when compared to the amount or level of the protein encoded by the target gene prior to administration of the lipid-conjugated RNAi oligonucleotide or pharmaceutical composition, the individual The amount or level of the protein encoded by the stellate cell target gene is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or greater than 99%. In some embodiments, when compared to individuals who did not receive a lipid-conjugated RNAi oligonucleotide or pharmaceutical composition or who received a control lipid-conjugated RNAi oligonucleotide, pharmaceutical composition, or treatment (e.g., ref. or the amount or level of the protein encoded by the target gene in the individual), the amount or level of the protein encoded by the stellate cell target gene in the individual is reduced by at least about 30%, about 35%, about 40%, about 45 %, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or greater than 99% . In some embodiments of the methods herein, a lipid-conjugated RNAi oligonucleotide herein, or a pharmaceutical composition comprising a lipid-conjugated RNAi oligonucleotide, is administered to a patient with stellate cells. In an individual with a disease, disorder, or condition associated with the expression of the target gene, such that the target gene activity in the individual is reduced when compared to the amount or level of target gene activity before administration of the lipid-conjugated RNAi oligonucleotide or pharmaceutical composition. The amount or level is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, About 85%, about 90%, about 95%, about 99%, or greater than 99%. In some embodiments, when compared to individuals who did not receive a lipid-conjugated RNAi oligonucleotide or pharmaceutical composition or who received a control lipid-conjugated RNAi oligonucleotide, pharmaceutical composition, or treatment (e.g., reference or a control individual), the amount or level of target gene activity in the individual is reduced by at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or greater than 99%. Suitable methods for determining the expression of a target gene, the amount or level of target mRNA, the amount or level of protein encoded by the target gene, and/or the amount or level of target gene activity in an individual or in a sample from an individual are within the art. known in the field. Furthermore, the examples shown herein illustrate exemplary methods for determining expression of a gene of interest. In some embodiments, target gene expression, the amount or level of target gene mRNA, the amount or level of protein encoded by the target gene, the amount or level of target gene activity, or any combination thereof, is obtained or isolated from an individual. Cells (e.g., stellate cells), cell populations or groups of cells (e.g., organoids), organs (e.g., CNS), blood or portions thereof (e.g., plasma), tissues (e.g., brain tissue), samples (e.g., brain tissue) For example, CSF samples or brain biopsy samples), or any other biological material. In some embodiments, the expression of the stellate cell target gene, the amount or level of the target gene mRNA, the amount or level of the protein encoded by the target gene, the amount or level of the target gene activity, or any combination thereof, is different from that in the individual. More than one type of cell (e.g., stellate cells), more than one population of cells, more than one organ (e.g., brain and one or more other organs), more than one blood fraction (e.g., plasma and one or more other organs) obtained or isolated or multiple other blood parts), more than one type of tissue (e.g., brain tissue and one or more other types of tissue), more than one type of sample (e.g., brain biopsy sample and one or more other types of biologic sample) Medium to low. In some embodiments, expression of the stellate cell target gene is reduced in one or more of the spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, hypothalamus, sensory cortex, or cerebellum. In some embodiments, expression of stellate cell target genes is reduced in the spinal cord. In some embodiments, expression of stellate cell target genes is reduced in the lumbar spinal cord. In some embodiments, expression of stellate cell target genes is reduced in the thoracic spinal cord. In some embodiments, expression of stellate cell target genes is reduced in the cervical spinal cord. In some embodiments, expression of stellate cell target genes is reduced in the hypothalamus. In some embodiments, expression of stellate cell target genes is reduced in the medulla oblongata. In some embodiments, expression of stellate cell target genes is reduced in the hippocampus. In some embodiments, expression of stellate cell target genes is reduced in sensory cortex. In some embodiments, expression of stellate cell target genes is reduced in the cerebellum. In some embodiments, expression of stellate cell target genes is reduced in the frontal cortex. Examples of diseases, disorders, or conditions associated with expression of stellate cell target genes include, but are not limited to, Spinocerebellar Atxia 1, Spinocerebellar Atxia 2, Spinocerebellar Atxia 3, Universal Prion Disease, Alexander's Disease, MECP2 Duplication Syndrome, Huntington's Disease, Parkinson's Disease, Alexander's Disease, Progress Progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic grain disease (AGD), global glial tauopathy, GGT), aging-related tau astrogliopathy (ARTAG), Familial Frontotemporal Dementia 17 (FTD-17), neurodegenerative diseases with respiratory failure (Tauopathy with Respiratory Failure), Dementia with Seizure, Pick's disease, Myotonic dystrophy 1 or 2, MD1 or MD2 ), Down's syndrome, spastic paraplegia (SP), Niemann-Pick disease type C, Dementia with Lewy bodies (DLB), Lewy body dysphagia, Lewy body disease, Olivopontocerebellar atrophy, Sriatonigral degeneration, Schail-De Shy-Drager syndrome, Spinal muscular atrophy V (SMAV), Huntington's disease (HD), Alzheimer's Disease, SCA1, SCA2, SCA3, SCA7, SCA10 (spinocerebellar ataxia type 1, 2, 3, 7 or 10), multiple system atrophy (MSA), spinal cord Spinal and Bulbar Muscular Atrophy (SBMA, Kennedy disease), Friedrich Ataxia, Fragile X-associated tremor /ataxia syndrome (FXTAS), Fragile X syndrome (FRAXA), X-Linked Mental Retardation (XLMR), Parkinson's Disease, dystonia, SBMA (spinal cord Spinobulbar muscular atrophy, neuropathic pain disorder, spinal cord injury, Dentatorubral-pallidoluysian atrophy (DRPLA), latent CNS disorders (recessive CNS disorder), ALS (amyotrophic lateral sclerosis), M2DS (MECP2 duplication syndrome), FTD (frontotemporal dementia), general Prion disease, Adult Onset Leukodystrophy, Alexander's Disease, Krabbe Disease, Chronic Traumatic Encephalopathy, Familial Pelizaeus-Merzbacher disease (PMD), Lafora disease, stroke, Cerebral Amyloid Angiopathy (CAA), and Metachromatic Leukodystrophy (MLD) ). Examples of diseases, disorders, or conditions associated with expression of stellate cell target genes include, but are not limited to, spinocerebellar disorders 1, spinocerebellar disorders 2, spinocerebellar disorders 3, Prion disease, Alexander's disease disease, MECP2 duplication syndrome, Huntington's disease, Parkinson's disease, and Alzheimer's disease. In some embodiments, the stellate cell target gene may be a target gene from any mammal, such as a human. Any stellate cell gene can be silenced according to the methods described herein. The methods described herein generally involve administering to an individual a therapeutically effective amount of a lipid-conjugated RNAi oligonucleotide herein, that is, an amount capable of producing the desired therapeutic outcome. A therapeutically acceptable amount may be an amount that therapeutically treats a disease or condition. The appropriate dosage for any individual will depend on factors including the individual's size, body surface area, age, the composition to be administered, the active ingredient(s) in the composition, the time of administration, and route, general health status, and other medications to be administered concurrently. In some embodiments, the subject is administered any of the compositions herein: enterally (e.g., orally, by a gastric feeding tube, by a duodenal feeding tube) tube), via gastrostomy, or transrectally), parenterally (e.g., subcutaneous injection, intravenous injection or infusion, intraarterial injection or infusion, intraosseous infusion, intramuscular injection, intracranial injection, intracerebroventricular injection , intrathecally), topically (e.g., on the skin, inhaled, via eye drops, or through mucous membranes), or by direct injection into the target organ (e.g., the brain of an individual). In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered intrathecally into the cerebrospinal fluid (CSF) (injection or infusion into body fluids within the subarachnoid space). )middle. In some embodiments, intrathecal administration of the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, is performed as a single bolus injection into the subarachnoid space. In some embodiments, intrathecal administration of the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, is performed by infusion into the subarachnoid space. In some embodiments, intrathecal administration of the present invention, or compositions thereof, is performed via a catheter into the subarachnoid space. In some embodiments, intrathecal administration of the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, is via a pump. In some embodiments, intrathecal administration of the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, is via an implantable pump. In some embodiments, administration is via an implantable device that operates or functions as a reservoir. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered intrathecally into the cisterna magna (also known as the cisterna magna). Intrathecal administration into the cisterna magna is called "intracisternal administration" or "intracisternal magna administration". In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered intrathecally into the subarachnoid space of the lumbar spinal cord. Intrathecal administration into the subarachnoid space of the lumbar spinal cord is called "lumbar intrathecal (i.t.) administration". In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered intrathecally into the subarachnoid space of the cervical spinal cord. Intrathecal administration into the subarachnoid space of the cervical spinal cord is called "cervical intrathecal (i.t.) administration". In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered intrathecally into the subarachnoid space of the thoracic spinal cord. Intrathecal administration into the subarachnoid space of the thoracic spinal cord is called "thoracic intrathecal (i.t.) administration". In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered by intracerebroventricular injection or infusion into the cerebral ventricles. Intracerebroventricular administration into the ventricular space is called "intracerebroventricular (i.c.v.) administration". In some embodiments, Ommaya depots are used to administer the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, by intracerebroventricular injection or infusion. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered annually, every 6 months, every 4 months, or quarterly. Once (every three months), every two months (every 2 months), monthly, or weekly. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered weekly or at intervals of two or three weeks. In some embodiments, the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, are administered daily. In some embodiments, the subject is administered one or more loading doses of a lipid-conjugated RNAi oligonucleotide, or a composition thereof, followed by one of the lipid-conjugated RNAi oligonucleotides or multiple maintenance doses. In some embodiments, the subject to be treated is a human, or non-human primate, or other mammalian subject. Other exemplary individuals include domestic animals, such as dogs and cats; domestic animals, such as horses, cattle, pigs, sheep, goats, and chickens; and animals, such as mice, rats, guinea pigs, and hamsters.setIn some embodiments, the present disclosure provides kits comprising lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, and instructions for use. In some embodiments, a kit includes a lipid-conjugated RNAi oligonucleotide herein, or a composition thereof, and a package insert containing instructions for use of the kit and/or any component thereof. In some embodiments, a kit includes a lipid-conjugated RNAi oligonucleotide herein, or compositions thereof, one or more controls, and various buffers, reagents, enzymes, and Other standard ingredients well known in the art. In some embodiments, the container includes at least one vial, well, test tube, flask, bottle, syringe, or other container device into which a lipid-conjugated RNAi oligonucleotide, or composition thereof, herein is placed, and in some cases by appropriate aliquots. In some embodiments where additional components are provided, the kit contains additional containers in which the components are placed. Kits may also include devices strictly restricted for commercial sale containing the lipid-conjugated RNAi oligonucleotides herein, or compositions thereof, and any other reagents. Such containers may include injection molded or blow molded plastic containers in which the desired vial is retained. Containers and/or kits may include labels with instructions for use and/or warnings. In some embodiments, a kit includes a lipid-conjugated RNAi oligonucleotide herein, or a composition thereof, and a pharmaceutically acceptable carrier, or a pharmaceutical containing a lipid-conjugated RNAi oligonucleotide. Compositions and instructions for treating or delaying the progression of a disease, disorder or condition associated with expression of a stellate cell target gene in an individual in need thereof. [ definition ]As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. In addition, the singular form and the articles "a/an/" and "the" are intended to include the plural form as well, unless expressly stated otherwise. It should further be understood that the terms include, comprise, including and/or comprising, when used in this specification, indicate the presence of stated features, integers, steps, operations, elements, and /or components, but not excluding the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Furthermore, it will be understood that when an element is referred to as a component or subsystem and/or shown as being connected or coupled to another element, it can be directly connected or coupled to the other element or intervening elements may be present. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods or compositions, the methods and materials described herein are exemplary. General textbooks describing molecular biology techniques useful in this article, including the use of vectors, promoters, and many other related topics, include Berger and Kimmel, GUIDE TO MOLECULAR CLONING TECHNIQUES, Methods in Enzymology, volume 152, (Academic Press, Inc. , San Diego, Calif.) ("Berger"); Sambrook et al., Molecular Cloning--A Laboratory Manual ,2d ed., Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989 ("Sambrook") and Current Protocols in Molecular Biology, F.M.Ausubel et al., eds., CURRENT PROTOCOLS, A JOINT VENTURE BETWEEN GREENE PUBLISHING ASSOCIATES, INC. AND JOHN WILEY AND SONS, INC.,(1999 Supplement) ("Ausubel"). Sufficient to guide those skilled in the art through in vitro amplification methods (including polymerase chain reaction (PCR), ligase chain reaction (LCR), Q.beta replicase amplification and other RNA polymerase media Examples of techniques (e.g., NASBA) such as procedures for producing homologous nucleic acids of the present disclosure are found in: Berger, Sambrook, and Ausubel, and in Mullis et al., (1987) U.S. Patent No. 4,683,202; Innis et al., eds. (1990); PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS (Academic Press Inc. San Diego, Calif.) ("Innis"); Arnheim and Levinson (Oct. 1, 1990) CandEN 36-47; J. NIH RES.(1991)3:81-94; Kwoh et al., (1989) PROC.NATL.ACAD.SCI.USA 86: 1173; Guatelliet al(1990) PROC.NAT'L.ACAD.SCI.USA 87: 1874; Lomell et al., (1989) J. CLIN.CHEM 35: 1826; Landegren et al., (1988) SCIENCE 241: 1077-80; Van Brunt (1990) BIOTECHNOLOGY 8: 291-94; Wu and Wallace (1989) GENE 4: 560; Barringer et al., (1990) GENE 89:117; and Sooknanan and Malek (1995) BIOTECHNOLOGY 13: 563-564. inWallace et al., US Patent No. 5,426,039 describes an improved method for amplifying nucleic acids in vitro. In Cheng et al., (1994) NATURE 369: 684-85 and the literature cited therein summarize improved methods for the amplification of large nucleic acids by PCR, in which PCR amplicons of up to 40 kb are generated. As used in this specification and the accompanying claims, the singular forms "a/an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a pharmaceutical carrier" includes a mixture of two or more such carriers and the like. Ranges may be expressed herein as from "about" one value, and/or to "about" another value. When expressed as such a range, another embodiment includes from one value and/or to the other value. Similarly, when an approximation of a numerical value is expressed by use of the preceding "about", it should be understood that the value forms another embodiment. It is further understood that the endpoints of each range are meaningful whether viewed in relation to the other endpoint or independently of the other endpoint. It is also understood that every value disclosed herein and in addition to the value itself, each value disclosed herein is also "about" that value. For example, if "10" is revealed, "approximately 10" is also revealed. It is also to be understood that when a value is disclosed, "less than or equal to" the value, "greater than or equal to" the value, and possible ranges between values are also disclosed, as would be understood by one of ordinary skill in the art. . For example, if the value "10" is revealed, then "less than or equal to 10" and "greater than or equal to 10" are also revealed. Also understand that throughout the application, data is provided in several different formats, and that this data represents endpoints and starting points, as well as ranges for any combination of those data points. For example, if a particular data point of "10" is disclosed and a particular data point of "15" is disclosed, it will be understood that the disclosure is considered to be greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15, and between 10 and 15. Also understand that units between two specific units are also revealed. For example, if 10 and 15 are disclosed, 11, 12, 13, and 14 are also disclosed. As used herein, "complementary" refers to a relationship between two nucleotides (e.g., on two opposing nucleic acids or on opposing regions of a single nucleic acid strand) that allows the two nucleotides to form a base with each other. Structural relationship of base pairs. For example, purine nucleotides of one nucleic acid that are complementary to pyrimidine nucleotides of an opposing nucleic acid can base pair together by forming hydrogen bonds with each other. In some embodiments, complementary nucleotides may be base paired in a Watson-Click manner or in any other manner that allows the formation of stable duplexes. In some embodiments, two nucleic acids can have regions of multiple nucleotides that are complementary to each other to form a region of complementarity, as described herein. As used herein, "deoxyribonucleotide" refers to a nucleotide that has a hydrogen in place of a hydroxyl group at the 2' position of its pentose sugar when compared to ribonucleotides. Modified deoxyribonucleotides are deoxyribonucleotides having modifications or substitutions of one or more atoms other than at the 2' position, including modifications within or on sugars, phosphate groups or bases or replace. As used herein, "double-stranded RNA/dsRNA/dsRNAi" refers to an RNA oligonucleotide that is substantially in the form of a duplex. In some embodiments, complementary base pairing of the double-stranded region(s) of a dsRNA oligonucleotide is formed between antiparallel sequences of nucleotides in covalently separated nucleic acid strands. In some embodiments, complementary base pairing of the double-stranded region(s) of the dsRNA is formed between antiparallel sequences of nucleotides of the covalently linked nucleic acid strands. In some embodiments, the complementary base pairing of the double-stranded region(s) of the dsRNA is formed from a single nucleic acid strand that is folded (e.g., via a hairpin) to provide nucleotides that are base paired together. of complementary antiparallel sequences. In some embodiments, the dsRNA comprises two covalently separated nucleic acid strands that are fully double-stranded from each other. However, in some embodiments, the dsRNA comprises two covalently separated nucleic acid strands that are partially double-stranded (eg, have overhangs at one or both ends). In some embodiments, the dsRNA contains antiparallel sequences of partially complementary nucleotides and, therefore, may have one or more mismatches, which may include internal mismatches or terminal mismatches. As used herein, a "duplex" with respect to a nucleic acid (eg, an oligonucleotide) refers to a structure formed by complementary base pairing of two antiparallel sequences of nucleotides. As used herein, "excipient" refers to a non-therapeutic agent that may be included in a composition, for example, to provide or contribute to a desired consistency or stabilizing effect. As used herein, a "loop" refers to an unpaired region of a nucleic acid (e.g., an oligonucleotide) that is flanked by antiparallel regions of two nucleic acids that are antiparallel to each other. The parallel regions are sufficiently complementary to each other that under appropriate hybridization conditions (e.g., in phosphate buffer solution, in cells), two antiparallel regions flanking the unpaired region hybridize to form a duplex (called a duplex). "trunk"). As used herein, "GFAP" refers to glial fibrillary acidic protein (Glial Fibrillary Acidic Protein). GFAP is found in stellate cells of the central nervous system (CNS). GFAP is an intermediate filament protein that provides support for cell structure. As used herein, "reduction of GFAP expression" refers to the amount or level of GFAP mRNA, GFAP protein, and/or GFAP activity in a cell, cell population, sample, or individual when compared to an appropriate Reduced by reference (eg, reference cell, cell population, sample, or individual). As used herein, "modified internucleotide linkage" refers to one or more chemical modifications when compared to a reference internucleotide linkage that includes a phosphodiester bond linkages between nucleotides. In some embodiments, the modified nucleotides are non-naturally occurring linkages. Generally speaking, a modified internucleotide linkage confers one or more desirable properties to the nucleic acid in which the modified internucleotide linkage is present. For example, modified nucleotides can improve thermal stability, resistance to degradation, nuclease resistance, solubility, bioavailability, biological activity, reduced immunogenicity, etc. As used herein, "modified nucleotide" refers to a nucleotide that has one or more chemical modifications when compared to a corresponding reference nucleotide selected from: adenine ribose Nucleotides, guanine ribonucleotides, cytosine ribonucleotides, uracil ribonucleotides, adenine deoxyribonucleotides, guanine deoxyribonucleotides, cytosine deoxyribonucleotides acid, and thymidine deoxyribonucleotides. In some embodiments, the modified nucleotides are non-naturally occurring nucleotides. In some embodiments, modified nucleotides have one or more chemical modifications in their sugar, nucleobase, and/or phosphate groups. In some embodiments, modified nucleotides have one or more chemical moieties that bind to corresponding reference nucleotides. Generally speaking, modified nucleotides confer one or more desired properties on the nucleic acid in which the modified nucleotide is present. For example, modified nucleotides can improve thermal stability, resistance to degradation, nuclease resistance, solubility, bioavailability, biological activity, reduced immunogenicity, etc. As used herein, "astrocyte mRNA" and "astrocyte gene" refer to any gene, mRNA, or gene encoded/expressed by genes in stellate cells of the central nervous system. and/or protein. Stellate cells are glial cells that perform several functions throughout the CND, such as synaptic support and neurotransmission. As used herein, "nicked tetraloop structure" refers to an RNAi oligonucleotide structure characterized by separate sense (follower) strands and antisense (leader) strands, where the sense strand has Regions that are complementary to the antisense strands and in which at least one of the strands (usually the sense strand) has four loops configured to stabilize the adjacent backbone region formed within the at least one strand. As used herein, "oligonucleotide" refers to a short nucleic acid (eg, less than about 100 nucleotides long). Oligonucleotides can be single-stranded (ss) or ds. Oligonucleotides may or may not have double-stranded regions. As a non-limiting set of examples, oligonucleotides may be, but are not limited to, small interfering RNA (siRNA), microRNA (miRNA), short hairpin RNA (shRNA), Dicer matrix interfering RNA (dsiRNA), antisense Oligonucleotides, short siRNA or ss siRNA. In some embodiments, the double-stranded (dsRNA) is an RNAi oligonucleotide. The terms "lipid-conjugated RNAi oligonucleotide" and "oligonucleotide-ligand conjugate" are used interchangeably and refer to a combination of one or more Or oligonucleotides that target ligand (eg, lipid) binding nucleotides. As used herein, an "overhang" refers to the terminal non-base-paired nucleotide(s) resulting from a strand or region extending beyond the terminus of the complementary strand that is consistent with the complementary strand The ends form double strands. In some embodiments, the overhang comprises one or more unpaired nucleotides extending from the double-stranded region at the 5' end or the 3' end of the dsRNA. In some embodiments, the overhang is a 3' or 5' overhang on the antisense or sense strand of the dsRNA. As used herein, "phosphate analog" refers to a chemical moiety that mimics the electrostatic and/or steric properties of a phosphate group. In some embodiments, the phosphate analog is positioned at the 5' terminal nucleotide of the oligonucleotide, replacing the 5'-phosphate that is normally susceptible to enzymatic removal. In some embodiments, the 5' phosphate analog contains a phosphatase-resistant linkage. Examples of phosphate analogs include, but are not limited to, 5'phosphonate esters such as 5'methylenephosphonate (5'-MP) and 5'-(E)-vinylphosphonate (5'-VP ). In some embodiments, the oligonucleotide has a phosphate analog at the 4'-carbon position of the sugar at the 5' terminal nucleotide (termed a "4'-phosphate analog"). An example of a 4'-phosphate analog is an oxymethylphosphonate in which the oxygen atom of the oxymethyl group is bonded to a sugar moiety (eg, at its 4'-carbon) or analog thereof. See, for example, U.S. Provisional Patent Application Nos. 62/383,207 (filed on September 2, 2016) and 62/393,401 (filed on September 12, 2016). Other modifications targeting the 5' end of oligonucleotides have been developed (see, e.g., International Patent Application No. WO 2011/133871; U.S. Patent No. 8,927,513; and Prakash et al.,(2015)NUCLEIC ACIDS RES .43:2993-3011). As used herein, "reduced expression" of a target gene refers to a cell, cell population, sample, or individual when compared to an appropriate reference (e.g., a reference cell, cell population, sample, or individual) The amount or level of RNA transcript (e.g., target mRNA) or protein encoded by the target gene is reduced and/or the amount or level of gene activity is reduced. For example, when compared to cells that were not treated with a double-stranded oligonucleotide, an oligonucleotide or conjugate herein (e.g., a lipid-conjugated RNAi oligonucleotide that contains a target mRNA that contains The action of contacting a cell with an antisense strand of a nucleotide sequence that is complementary to the nucleotide sequence can result in the target mRNA, the protein encoded by the target gene, and/or the activity of the target gene (e.g., inactivation of the target mRNA via the RNAi pathway and/or degradation). Similarly, and as used herein, "reducing expression" refers to behavior that results in reduced expression of a target gene. As used herein, a "region of complementarity" refers to a nucleotide sequence of a nucleic acid (e.g., dsRNA) that is sufficiently complementary to an antiparallel sequence of nucleotides to permit hybridization under appropriate hybridization conditions (e.g., , in phosphate buffer, in cells, etc.) to hybridize between two nucleotide sequences. In some embodiments, oligonucleotides herein comprise a targeting sequence having a region complementary to an mRNA target sequence. As used herein, "ribonucleotide" refers to a nucleotide having ribose as its pentose sugar, containing a hydroxyl group at its 2' position. Modified ribonucleotides are ribonucleotides that have modifications or substitutions of one or more atoms other than at the 2' position, including modifications or substitutions within or themselves of the ribose, phosphate group, or base. As used herein, "RNAi oligonucleotide" refers to (a) a dsRNA having a sense strand (follower) and an antisense strand (leader), in which the antisense strand or a portion of the antisense strand is derived from Used to cleave target mRNA by Ago2 endonuclease, or (b) ss oligonucleotide with a single antisense strand, wherein the antisense strand (or part of the antisense strand) is generated by Ago2 endonuclease is used to cleave target mRNA. As used herein, "strand" refers to a single, contiguous sequence of nucleotides linked together by internucleotide linkages (eg, phosphodiester linkages or phosphorothioate linkages). In some embodiments, the strand has two free ends (eg, a 5' end and a 3' end). As used herein, "subject" means any mammal, including mice, rabbits, and humans. In a specific embodiment, the subject is human or NHP. In addition, "individual" or "patient" may be used interchangeably with "subject". As used herein, "synthetic" means artificially synthesized (e.g., using machines (e.g., solid-state nucleic acid synthesizers)) or otherwise not derived from natural sources (e.g., cells or organisms) from which molecules are typically produced. Nucleic acids or other molecules. As used herein, "targeting ligand" refers to a molecule that selectively binds to a homologous molecule (e.g., a receptor) in a tissue or cell of interest and/or can bind to another substance to achieve A molecule or "moiety" (eg, carbohydrate, amino sugar, cholesterol, polypeptide, or lipid) that targets another substance to a tissue or cell of interest. For example, in some embodiments, a targeting ligand can be combined with an oligonucleotide for the purpose of targeting the oligonucleotide to a specific tissue or cell of interest. In some embodiments, the targeting ligand selectively engages a cell surface receptor. Accordingly, in some embodiments, the targeting ligand, when bound to the oligonucleotide, does so by selectively engaging a receptor expressed on the cell surface and consisting of the oligonucleotide, the targeting ligand, and the receptor. The cells of the somatic complex undergo endosomal internalization to facilitate delivery of oligonucleotides to specific cells. In some embodiments, the targeting ligand binds to the oligonucleotide via a linker that is cleaved after or during cellular internalization, such that the oligonucleotide releases the targeting ligand in the cell. As used herein, "tetraloop" refers to a loop that increases the stability of adjacent duplexes formed by hybridization of flanking sequences of nucleotides. The stability can be increased by increasing the melting temperature (T) of adjacent backbone duplexes. m), that is, the melting temperature ratio derived from the average T of adjacent backbone duplexes expected from a set of loops of comparable length consisting of randomly selected nucleotide sequences mhigh. For example, tetracycline can be dissolved in 10 mM NaHPO 4At least about 50°C, at least about 55°C, at least about 56°C, at least about 58°C, at least about 60°C, at least about 65°C, or at least about 75°C T m. In some embodiments, tetracycles can stabilize bp in adjacent backbone duplexes through stacking interactions. In addition, interactions between nucleotides in the four-ring ring include, but are not limited to, non-Watson-Crick base pairing, stacking interactions, hydrogen bonding and contact interactions (Cheong et al.,(1990)NATURE 346:680-82; Heus and Pardi (1991) SCIENCE 253:191-94). In some embodiments, the tetracycle contains or consists of 3 to 6 nucleotides, and typically 4 to 5 nucleotides. In some embodiments, a tetracycle includes or consists of 3, 4, 5 to 6 nucleotides, which may or may not be modified (e.g., which may or may not be associated with the target partially combined). In a specific embodiment, the tetracycle consists of 4 nucleotides. Any nucleotide can be used in the tetracycle and can be used as in Cornish-Bowden ((1985) NUCLEIC ACIDS RES .The standard IUPAC-IUB notation for such nucleotides is used as described in 13:3021-3030). For example, the letter "N" can be used to mean that any base can be at that position, the letter "R" can be used to show that A (adenine) or G (guanine) can be at that position, and "B" can be used to It shows that C (cytosine), G (guanine), and T (thymine) can be located at this position. Examples of four-rings include the UNCG family of four-rings (e.g., UUCG), the GNRA family of four-rings (e.g., GAAA), and the CUUG four-rings (Woese et al.,(1990) PROC.NATL. ACAD.SCI.USA 87:8467-71; Antao et al.,(1991) NUCLEIC ACIDS RES .19:5901-05). Examples of DNA tetracycles include the d(GNNA) family of tetracycles (e.g., d(GTTA), d(GNRA) tetracycles) family, the d(GNAB) family of tetracycles, and the d(CNNG) family of tetracycles , and the d(TNCG) family of four rings (for example, d(TTCG)). (See e.g., Nakano et al.,(2002)BIOCHEM. 41:4281-92; Shinji et al.,(2000) NIPPON KAGAKKAI KOEN YOKOSHU 78:731). In some embodiments, the four-ring system is contained within a gapped four-ring structure. As used herein, "treating" means providing treatment to an individual for the purpose of improving the health and/or well-being of an individual with an existing condition (e.g., disease, disorder) or preventing or reducing the likelihood of the condition occurring. The act of providing care to an individual in need thereof, such as by administering a therapeutic agent (eg, an oligonucleotide herein) to the individual. In some embodiments, treatment involves reducing the frequency or severity of at least one sign, symptom, or contributing factor of a condition (eg, disease, disorder) experienced by an individual. Example Example 1 : RNAi Preparation of oligonucleotides Oligonucleotide synthesis and purificationThe oligonucleotides (RNAi oligonucleotides) described in the preceding examples were chemically synthesized using methods described herein. In principle, RNAi oligonucleotides are synthesized using solid-phase oligonucleotide synthesis methods as described for 19 to 23mer RNAi oligonucleotides (see, e.g., Scaringe et al.(1990) NUCLEIC ACIDS RES .18:5433-41 and Usman et al.(1987)J. AM. CHEM.SOC .109:7845-45, see also, U.S. Patent Nos. 5,804,683; 5,831,071; 5,998,203; 6,008,400; 6,111,086; 6,117,657; 6,353,098; 6,362,323; 6,437,117 No. 6,469,158) , and using known phosphoramidite synthesis methods (see, e.g., Hughes and Ellington (2017) COLD SPRING HARB PERSPECT BIOL .9(1):a023812; Beaucage S.L., Caruthers M.H. STUDIES ON NUCLEOTIDE CHEMISTRY V : Deoxynucleoside Phosphoramidites-A New Class of Key I ntermediates for Deoxypolynucleotide Synthesis, TETRAHEDRON LETT. 1981;22:1859-62. doi: 10.1016/S0040-4039(01) 90461-7); PCT Application No. PCT/US2021/42469 (each of which is incorporated herein by reference). RNAi oligonucleotides with a 19mer core sequence are arranged to have a 36mer sense strand and a 22mer antisense strand for processing by the RNAi machinery. The 19mer core sequence is complementary to a region in the GFAP mRNA. Individual RNA strands were synthesized and subjected to HPLC purification according to standard methods (Integrated DNA Technologies; Coralville, IA). For example, RNA oligonucleotides were synthesized using solid phase phosphoramidite chemistry, deprotection, and deprotection on a NAP-5 column (Amersham Pharmacia Biotech; Piscataway, NJ) using standard methods. Salt (Damha & Olgivie (1993) METHODS MOL. BIOL. 20:81-114; Wincott et al.(1995) NUCLEIC ACIDS RES.23:2677-84) The synthesis of phosphoramidite is as follows: synthesis 2-(2-((((6aR,8R,9R,9aR)-8-(6- Benzamide group -9H- Purine -9- base )-2,2,4,4- Tetraisopropyltetrahydrogen -6H- Furano [3,2-f][1,3,5,2,4] trioxadioxin (trioxadisilocin)-9- base ) Oxygen ) Methoxy ) Ethoxy ) Second -1- Ammonium formate (1-6) compound 1-1(A solution of 25.00 g, 67.38 mmol) in 20 mL of DMF was treated with pyridine (11 mL, 134.67 mmol) and tetraisopropyldisiloxane dichloride (22.63 mL, 70.75 mmol) at 10°C. handle. The resulting mixture was stirred at 25 °C for 3 h and quenched with 20% citric acid (50 mL). The aqueous layer was extracted with EtOAc (3X50 mL) and the combined organic layers were concentrated in vacuo. The crude residue was recrystallized from a mixture of MTBE and n-heptane (1:15, 320 mL) to obtain the compound as a white oily solid 1-2(37.20 g, 90%). compound 1-2(37.00 g, 60.33 mmol) in 20 mL of DMSO was added with AcOH (20 mL, 317.20 mmol) and Ac 2O (15 mL, 156.68 mmol) treatment. The mixture was stirred at 25 °C for 15 h. The reaction was diluted with EtOAc (100 mL) and resolved with sat. K 2CO 3(50 mL) quenched. The aqueous layer was extracted with EtOAc (3X50 mL). The combined organic layers were concentrated and recrystallized from ACN (30 mL) to obtain the compound as a white solid. 1-3(15.65 g, 38.4%). compound 1-3(20.00 g, 29.72 mmol) in 120 mL of DCM was treated with Fmoc-amino-ethoxyethanol (11.67 g, 35.66 mmol) at 25°C. The mixture was stirred to obtain a clear solution and then filtered with 4Å molecular sieves (20.0 g), N- Treatment with iodosuccinimide (8.02 g, 35.66 mmol), and TfOH (5.25 mL, 59.44 mmol). The mixture was stirred at 30 °C until HPLC analysis indicated the compound 1-3until the consumption is >95%. The reaction was quenched with TEA (6 mL) and filtered. The filtrate was diluted with EtOAc and sat. NaHCO 3(2X100 mL), sat. Na 2SO 3(2X100 mL), and water (2X100 mL) and concentrated in vacuo to give the crude compound as a yellow solid. 1-4(26.34 g, 93.9%), which was used directly in the next step without further purification. compound 1-4A solution of (26.34 g, 27.62 mmol) in a mixture of DCM/water (10:7, 170 mL) was treated with DBU (7.00 mL, 45.08 mmol) at 5 °C. The mixture was stirred at 5 to 25 °C for 1 h. The organic layer was then separated, washed with water (100 mL), and diluted with DCM (130 mL). The solution was divided into four parts and treated with butenedioic acid (7.05 g, 60.76 mmol) and 4Å molecular sieve (26.34g). The mixture was stirred for 1 h, concentrated, and recrystallized from a mixture of MTBE and DCM (5:1) to obtain the compound as a white solid. 1-6(14.74 g, 62.9%): 1H NMR (400 MHz, d 6 -DMSO)8.73(s, 1H), 8.58(s, 1H), 8.15-8.02(m, 2H), 7.65-7.60(m, 1H), 7.59-7.51(m, 2H), 6.52(s, 2H) , 6.15(s, 1H), 5.08-4.90(m, 3H), 4.83-4.78(m, 1H), 4.15-3.90(m, 3H), 3.79-3.65(m, 2H), 2.98-2.85(m, 6H), 1.20-0.95(m, 28H). synthesis (2R,3R,4R,5R)-5-(6- Benzamide group -9H- Purine -9- base )-2-(( pair (4- Methoxyphenyl )( phenyl ) Methoxy ) methyl )-4-((2-(2-[ Lipids ]- amide ethoxy ) Ethoxy ) Methoxy ) Tetrahydrofuran -3- base (2- Cyanoethyl ) diisopropylphosphoramidite (2-4a to 2-4e) compound 1-6(50.00 g, 59.01 mmol) in 150 mL of 2-methyltetrahydrofuran with ice-cold K 2HPO 4(6%, 100 mL) aqueous solution and brine (20%, 2X100 mL). The organic layer was separated and treated with caproic acid (10.33 mL, 82.61 mmol), HATU (33.66 g, 88.52 mmol), and DMAP (10.81 g, 147.52 mmol) at 0°C. The resulting mixture was warmed to 25 °C and stirred for 1 h. The solution was washed with water (2X100 mL), brine (100 mL), and concentrated in vacuo to give a crude residue. Silica gel flash chromatography (1:1 hexane/acetone) gave the compound as a white solid 2-1a(34.95 g, 71.5%). compound 2-1aA mixture of (34.95 g, 42.19 mmol) and TEA (9.28 mL, 126.58 mmol) in 80 mL of THF was treated dropwise with triethylamine trihydrofuride (20.61 mL, 126.58 mmol) at 10 °C. The mixture was warmed to 25 °C and stirred for 2 h. The reaction was concentrated, dissolved in DCM (100 mL) and washed with sat. NaHCO 3(5X20 mL) and brine (50 mL). The organic layer was concentrated in vacuo to give crude compound 2-2a(24.72 g, 99%), which was used directly in the next step without further purification. compound 2-2a(24.72 g, 42.18 mmol) in 50 mL of DCM for N-Methylmarine (18.54 mL, 168.67 mmol) and DMTr-Cl (15.69 g, 46.38 mmol) treatment. The mixture was stirred at 25 °C for 2 h and washed with sat. NaHCO 3(50 mL) quenched. The organic layer was separated, washed with water, and concentrated to obtain a crude syrup. Silica gel flash chromatography (1:1 hexane/acetone) gave the compound as a white solid 2-3a(30.05 g, 33.8 mmol, 79.9%). The compound was placed under a nitrogen atmosphere 2-3a(25.00 g, 28.17 mmol) in 50 mL of DCM for N-Methylmarin (3.10 mL, 28.17 mmol) and tetrazole (0.67 mL, 14.09 mmol) treatment. Bis(diisopropylamino)phosphine chloride (9.02 g, 33.80 mmol) was added dropwise to the solution and the resulting mixture was stirred at 25 °C for 4 h. The reaction was quenched with water (15 mL) and the aqueous layer was extracted with DCM (3X50 mL). The combined organic layers were treated with sat. NaHCO 3(50 mL) and concentrated to obtain a crude solid, which was recrystallized from a mixture of DCM/MTBE/n-hexane (1:4:40) to obtain the compound as a white solid. 2-4a(25.52 g, 83.4%): 1H NMR (400 MHz, d 6 -DMSO)11.25(s, 1H), 8.65-8.60(m, 2 H), 8.09-8.02(m, 2H), 7.71(s, 1H), 7.67-7.60(m, 1H), 7.59-7.51(m , 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.85-6.79(m, 4H), 6.23-6.20(m, 1H), 5.23-5.14(m, 1H), 4.80 -4.69(m, 3H), 4.33-4.23(m, 2H), 3.90-3.78(m, 1H), 3.75(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H) , 3.14-3.09(m, 2H), 3.09(s, 1H), 2.82-2.80(m, 1H), 2.65-2.60(m, 1H), 2.05-1.96(m, 2H), 1.50-1.39(m, 2H), 1.31-1.10(m, 14H), 1.08-1.05(m, 2H), 0.85-0.79(m, 3H); 31P NMR (162 MHz, d 6 -DMSO)149.43, 149.18. compound 2-4b , 2-4c , 2-4d ,and 2-4eThe above compounds are used 2-4aPrepared by similar procedures. Obtain the compound as a white solid 2-4b(25.50 g, 85.4%): 1H NMR (400 MHz, d 6 -DMSO)11.23(s, 1H), 8.65-8.60(m, 2 H), 8.05-8.02(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51 (m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.23-5.17(m, 1H) , 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.97(m, 2H), 1.50-1.38( m, 2H), 1.31-1.10(m, 18H), 1.08-1.05(m, 2H), 0.85-0.78(m, 3H); 31P NMR (162 MHz, d 6 -DMSO)149.43, 149.19. Obtain compound as off-white solid 2-4c(36.60 g, 66.3%): 1H NMR (400 MHz, d 6 -DMSO)11.22(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51( m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.25-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.50(m, 3H), 3.50-3.20(m, 6H ), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m , 2H), 1.33-1.12(m, 38H), 1.08-1.05(m, 2H), 0.86-0.80(m, 3H); 31P NMR (162 MHz, d 6 -DMSO)149.42, 149.17. Obtain compound as off-white solid 2-4d(26.60 g, 72.9%): 1H NMR (400 MHz, d 6 -DMSO)11.22(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51( m, 2H), 7.38-7.33(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.22-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.74(s, 6H), 3.74-3.52(m, 3H), 3.50-3.20(m, 6H ), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m , 2H), 1.35-1.08(m, 38H), 1.08-1.05(m, 2H), 0.85-0.79(m, 3H); 31P NMR (162 MHz, d 6 -DMSO)149.47, 149.22. Obtain the compound as a white solid 2-4e(38.10 g, 54.0%): 1H NMR (400 MHz, d 6 -DMSO)11.21(s, 1H), 8.64-8.59(m, 2H), 8.05-8.00(m, 2H), 7.73-7.70(m, 1H), 7.67-7.60(m, 1H), 7.59-7.51( m, 2H), 7.38-7.34(m, 2H), 7.30-7.25(m, 7H), 6.89-6.80(m, 4H), 6.21-6.15(m, 1H), 5.23-5.17(m, 1H), 4.80-4.69(m, 3H), 4.40-4.21(m, 2H), 3.91-3.80(m, 1H), 3.73(s, 6H), 3.74-3.52(m, 3H), 3.47-3.22(m, 6H ), 3.14-3.09(m, 2H), 3.09(s, 1H), 2.83-2.79(m, 1H), 2.68-2.62(m, 1H), 2.05-1.99(m, 2H), 1.50-1.38(m , 2H), 1.35-1.06(m, 46H), 1.08-1.06(m, 2H), 0.85-0.77(m, 3H); 31P NMR (162 MHz, d 6 -DMSO)149.41, 149.15. Oligomers were analyzed using ion-exchange high performance liquid chromatography (IE-HPLC) on an Amersham Source 15Q column (1.0 cm × 25 cm; Amersham Pharmacia Biotech) using a 15 min step Purify using step-linear gradient. The gradient varied from 90:10 buffer A:B to 52:48 buffer A:B, where buffer A was 100 mM Tris pH 8.5 and buffer B was 100 mM Tris pH 8.5, 1 M NaCl. Samples were monitored at 260 nm and peaks corresponding to full-length oligonucleotide species were collected, pooled, desalted on a NAP-5 column, and freeze-dried. The purity of each oligomer was determined by capillary electrophoresis (CE) on a Beckman PACE 5000 (Beckman Coulter, Inc.; Fullerton, CA). CE capillaries have an inner diameter of 100 μm and contain ssDNA 100R gel (Beckman-Coulter). Typically, approximately 0.6 nmole of oligonucleotide is injected into a capillary, run in an electric field of 444 V/cm, and detected by UV absorbance at 260 nm. Denatured Tris-Borate-7 M-urea electrophoresis buffer was purchased from Beckman-Coulter. The oligonucleotides obtained were at least 90% pure as assessed by CE and were used in the following examples. Compound identification was performed using a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer in the Voyager DE™ Biospectometry Work Station (Applied Biosystems; Foster City, CA). Verify with the manufacturer's recommended procedures. The relative molecular weights of all oligomers were obtained and were usually within 0.2% of the expected molecular weight. Preparation of doubletsResuspend the single-stranded RNA oligos (e.g., at a concentration of 100 μM) in duplex buffer consisting of 100 mM potassium acetate, 30 mM HEPES (pH 7.5). Complementary sense and antisense strands are mixed in equimolar amounts to yield, for example, a 50 μM final solution of the duplex. Samples were heated to 100°C in RNA buffer (IDT) for 5' and allowed to cool to room temperature before use. Store RNAi oligonucleotides at -20°C. Single-stranded RNA oligos are stored freeze-dried or stored in nuclease-free water at -80°C. The synthetic methods described in this article were used to generate Example 4 , 5 , 7 ,and 8Lipid-conjugated oligonucleotides as described in . Example 2 : GalNAc- Combined GFAP RNAi Intrathecal and intracerebroventricular administration of oligonucleotides inhibits mice in a concentration-dependent manner in vivo Gfap Glial fibrillary acidic protein (GFAP) encodes an intermediate filament protein found primarily in stellate cells of the CNS. GFAPSufficient attenuation demonstrates the ability of the oligonucleotides described herein to reduce the expression of the target gene expressed in stellate cells. To assess the in vivo reduction of RNAi oligonucleotides GfapThe ability to perform, using e.g. Example 1Oligonucleotides were synthesized as described in to generate double-stranded RNAi oligonucleotides containing a gapped four-ring GalNAc-bound structure (referred to herein as "GalNAc-bound GFAPOligonucleotide (GalNAc-conjugated GFAPoligonucleotide)" or "GalNAc- GFAPOligonucleotide"), which has a 36-mer follower strand and a 22-mer leader strand. Further, the nucleotide sequences comprising the follower and leader strands have different patterns of modified nucleotides and phosphorothioate linkages. Each of the three nucleotides that comprise the four loops binds to the GalNAc moiety (CAS#14131-60-3). The modification mode of each stock is explained as follows: Cross to: Modifier keys: surface 1 symbol Modification / keying [MePhosphonate-4O-mUs] Nucleotide modified with 4'-O-monomethylphosphonate-2'-O-methyl [ademX-GalNAc] GalNAc attaches to nucleotides [mXs] 2'- O -methyl modified nucleotides with phosphorothioate linkages to adjacent nucleotides [fXs] 2'-fluoro modified nucleotides with phosphorothioate linkages to adjacent nucleotides [mX] 2'- O -methyl modified nucleotides with phosphodiester linkages to adjacent nucleotides [fX] 2'-fluoro modified nucleotides with phosphodiester linkages to adjacent nucleotides [AdemX-C16] C16 lipid attached to nucleotides [AdemX-C16s] C16 lipids attached to nucleotides with phosphorothioate linkages to adjacent nucleotides i. Intrathecal administrationEvaluate GFAP-1477 (e.g. surface 2(shown in ) decreases in the central nervous system (CNS) of mice via intrathecal (i.t.) administration Gfapability. Specifically, mice were administered 10, 32, 100, 320, or 1000 µg of GFAP-1477 formulated in artificial cerebrospinal fluid (aCSF) via i.t. lumbar injection. Animals were sacrificed on day 7 after intrathecal injection. RNA was extracted from CNS tissue and assayed by qPCR in mice GfapmRNA levels (for endogenous housekeeping genes Rpl23standardization). Murine using the PrimeTime™ qPCR Probe Assay (IDT) GfapThe level of mRNA, which consists of a pair of primers and a fluorescently labeled 5' nuclease probe, which is specific for mice GfapmRNA. Rats in treated mouse samples GfapThe percentage of mRNA residue was calculated using 2 -ΔΔCt("δ-δ Ct") method (Livak and Schmittgen (2001) METHODS 25:402-408). Observed in CNS tissues GfapPerformance decreased in a dose-dependent manner. Specifically, such as Figure 1A , Figure 1B , Figure 1C , and pictures 1FAs shown in respectively, in samples from the cervical spinal cord, thoracic spinal cord, lumbar spinal cord, and cerebellum GfapPerformance is reduced by approximately 50% or more. like Figure 1D and pictures 1Eshown respectively, observed in the frontal cortex and hippocampus GfapPerformance degradation is less. Figure 2Shown in 50value. Taken together, this data shows that a GalNAc-bound tetracyclic GFAPTargeting oligonucleotide inhibits in several tissues of the CNS in a dose-dependent manner following i.t. administration GFAPPerformance. ii. intracerebroventricular administrationGFAP-1477 was also assessed to reduce the effects of GFAP-1477 in the central nervous system (CNS) in mice via intracerebroventricular (i.c.v) administration. Gfapability. Specifically, mice were administered 10, 32, 100, or 300 µg of GFAP-1477 formulated in aCSF via i.c.v. Animals were sacrificed on day 7 after i.c.v. injection. RNA was extracted from CNS tissue as described above. Observed in CNS tissue GfapPerformance is reduced in a dose-dependent manner. Specifically, such as Figure 3A To the picture 3DAs shown in respectively, in the samples of frontal cortex, brainstem, hippocampus, and lumbar spinal cord, GfapPerformance is reduced by approximately 50% or more. Figure 4Shown in 50value. Taken together, this data shows that a GalNAc-bound tetracyclic GFAPTargeted oligonucleotides inhibited in several tissues of the CNS in a dose-dependent manner when administered via i.c.v. GFAPPerformance. Example 3 : Synthesis of tetracyclic rings RNAi Oligonucleotides - Lipid conjugatesThe lipid-conjugated tetracyclic oligonucleotides described herein can be synthesized using synthetic methods later detailed in PCT Application No. PCT/US2021/42469. Specifically, oligonucleotides can be synthesized using a post-synthetic conjugation approach such as that shown below. plan 1Synthesis of RNAi oligonucleotide-lipid conjugates with single lipids (linear and branched) bound to tetracyclic rings. Post-synthetic conjugation can be achieved by amide coupling reactions. R 1The COOH group represents fatty acids C8:0, C10:0, C11:0, C12:0, C14:0, C16:0, C17:0, C18:0, C18:1, C18:2, C22:5, C22 :0, C24:0, C26:0, C22:6, C24:1, diyl C16:0, or diyl C18:1. An exemplary R1 structure is provided below: synthesis justice unit 1and Antisense stocks 1It is prepared by solid phase synthesis. synthesis Combined Justice Shares 1ato 1i. Combined Justice Shares 1aSynthesized by post-synthetic combining methods .A solution of caprylic acid (0.58 mg, 4 umol) in DMA (0.75 mL) was treated with HATU (1.52 mg, 4 umol) in Eppendorf tube 1 at rt. In Ebende tube 2, place the oligonucleotide justice unit 1(10.00 mg, 0.8 umol) in H 2A solution in O (0.25 mL) was treated with DIPEA (1.39 uL, 8 umol). Add the solution in Ebende Tube 1 to Ebende Tube 2 and mix using a ThermoMixer at rt. After indicating completion of the reaction by LC-MS analysis, the reaction mixture was diluted with 5 mL of water and passed through a reverse-phase XBridge C18 column using 100 mM TEAA in ACN and H 2Purify using a gradient of 5 to 95% in O. The product fractions were concentrated under reduced pressure using Genevac. The combined residual solvents were dialyzed against water (1X), brine (1X), and water (3X) using an Amicon® Ultra-15 Centrifugal (3K). The Amicon membrane was washed with water (3 × 2 mL), and then the combined solvents were freeze-dried to obtain Combined Justice Shares 1aamorphous white solid (6.43 mg, 64% yield). Combined Justice Shares 1b to 1iSystem and synthesis Combined Justice Shares 1aA similar procedure was described and obtained in 42% to 69% yield. bond double body 1a to 1jwill Combined Justice Shares 1a(10 mg by weight) was dissolved in 0.5 mL of deionized water to prepare a 20 mg/mL solution. will Antisense stocks 1(10 mg, measured by OD) was dissolved in 0.5 mL of deionized water to prepare a 20 mg/mL solution, which was used for titration of bound sense strands and quantification of duplex volume. Based on the calculation of the molar amount of the combined sense and antisense shares, the required Antisense stocks 1Add section to Combined Justice Shares 1ain solution. The resulting mixture was stirred at 95 °C for 5 min and allowed to cool to rt. The adhesion progress was monitored by ion exchange HPLC. Based on the gluing process, several further Antisense stocks 1Partially bonded, purity >95%. The solution was freeze-dried to obtain double body 1a(C8)And the amount is calculated based on the molar amount of antisense strand consumed in adhesion. double body 1b to 1isystem use and bonding double body 1a(C8)Prepared by the same procedure as described. Scheme 1-2 below illustrates the synthesis of a gapped tetracyclic GalXC conjugate with a single lipid on the loop. Post-synthetic conjugation is achieved through Cu-catalyzed alkyne-azide cycloaddition reaction. Justice Unit 1Band Antisense stocks 1BIt is prepared by solid phase synthesis. synthesis Combined Justice Shares 1j. In Ebende tube 1, dissolve oligonucleotide (10.00 mg, 0.8 umol) in DMA/H 2A solution in a 3:1 mixture of O (0.5 mL) was treated with lipid linker azide (11.26 mg, 4 umol). In Ebende tube 2, dissolve CuBr dimethyl sulfide (1.64 mg, 8 umol) in ACN (0.5 mL). Combine the two solutions by adding N 2Degas by bubbling through for 10 min. Then CuBrSMe 2The ACN solution was added to tube 1 and the resulting mixture was stirred at 40 °C. After indicating completion of the reaction by LC-MS analysis, the reaction mixture was diluted with 0.5 M EDTA (2 mL) and dialyzed against water (2X) using Amicon® Ultra-15 Centrifugal (3K). The reaction crude product was passed through a reverse phase XBridge C18 column using 100 mM TEAA in ACN (added 30% IPA) and H 2Purify using a gradient of 5 to 95% in O. The product fractions were concentrated under reduced pressure using Genevac. The combined residual solvents were dialyzed against water (1X), brine (1X), and water (3X) using an Amicon® Ultra-15 Centrifugal (3K). The Amicon membrane was washed with water (3 × 2 mL) and the combined solvents were freeze-dried to obtain Combined Justice Shares 1jamorphous white solid (6.90 mg, 57% yield). double body 1j( PEG2K- Dihydroxyl C18)system use and bonding double body 1a(C8)Prepared by the same procedure as described. Schemes 1-3 below illustrate the synthesis of gapped tetracyclic GalXC conjugates with double lipids on the loop using post-synthetic conjugation methods. justice unit 2and Antisense stocks 2It is prepared by solid phase synthesis. Combined Justice Shares 2aand 2bSystem used with Combined Justice Shares 1aSimilar procedure, but prepared with 10 eq of lipids, 10 eq of HATU, and 20 eq of DIPEA. double body 2a(2XC11)and 2b(2XC22)system use and bonding double body 1a(C8)Prepared by the same procedure as described. Schemes 1-4 below illustrate the synthesis of fully phosphorothioated backbone-loop GalXC conjugated to a single lipid using a post-synthetic conjugation approach. justice unit 3and Antisense stocks 3It is prepared by solid phase synthesis. Combined Justice Shares 3asystem use and synthesis Combined Justice Shares 1aA similar procedure was prepared and obtained in 65% yield. double body 3a(PS-C22)system use and bonding double body 1a(C8)Prepared by the same procedure as described. Schemes 1-5 below illustrate the use of post-synthetic conjugation methods to synthesize short sense strands of GalXC conjugated to a single lipid. justice unit 4and Antisense stocks 4It is prepared by solid phase synthesis. Combined Justice Shares 4asystem use and synthesis Combined Justice Shares 1aA similar procedure was prepared and obtained in 74% yield. double body 4a(SS-C22)system use and bonding double body 1a(C8)Prepared by the same procedure as described. Schemes 1-6 below illustrate examples of solid-phase synthesis of gapped tetracyclic GalXC conjugates with lipid(s) on the loop. Synthetic combination of justice shares 6 . Combined Justice Shares 6It was prepared by solid-phase synthesis using a commercially available oligonucleotide synthesizer. The oligonucleotide uses a 2'-modified nucleoside phosphoramidite (such as 2'-F, or 2'-OMe) and a 2'-diethoxymethanol-linked fatty acid amide nucleoside phosphite Amide synthesis. Oligonucleotide synthesis was performed in the 3' to 5' direction on a solid support using standard oligonucleotide synthesis protocols. 5-Ethylthio-1H-tetrazole (ETT) is used as the activator of the coupling reaction. Iodine solution is used in the phosphite attempts oxidation reaction. 3-(Dimethylaminomethylene)amino-3H-1,2,4-dithiazole-3-thione (DDTT) is used to form phosphorothioate linkages. The synthesized oligonucleotides were treated with concentrated aqueous ammonium for 10 h. Ammonia was removed from the suspension and solid support residue was removed by filtration. The crude oligonucleotides were treated with TEAA, analyzed, and purified by strong anion exchange high performance liquid chromatography (SAX-HPLC). Fractions were combined and dialyzed against water (3X), saline (1X), and water (3X) using an Amicon® Ultra-15 Centrifugal (3K). The remaining solvent is then freeze-dried to obtain the desired Combined Justice Shares 6. double body 6system use and bonding double body 1a(C8)Prepared by the same procedure as described. the following plan 1-7Shown is the synthesis of GalXC conjugated to a single lipid at the 5' end using a post-synthetic conjugation approach. Synthetic Combination of Justice Shares 10a Combined Justice Shares 10asystem use and synthesis Combined Justice Shares 5Obtained by the same method or substantially similar method. double body 10aSynthetic Examples double body 10asystem use and synthesis double body 5Obtained by the same method or substantially similar method. Example 4 : GFAP- Targeted oligonucleotides show long duration of action via intrathecal and intracisternal administration (Long-term Duration of Action)In this example, the duration of action was determined using oligonucleotides with different targeting ligands. Specifically, it will be as follows: Example 2GalNAc-binding as described in GfapOligonucleotides, and Example 1C16-conjugated generated by the method described in GfapOligonucleotides (the sequences of which are provided in surface 3Medium) administered to rats for long-term studies. The C16 lipid moiety is bound to position 28 of the sense strand. Four-loop RNAi oligonucleotide modification pattern Cross to: Modifier keys: surface 1 i. Intrathecal administrationThe above GalNAc-conjugated and lipid-conjugated GfapOligonucleotides were administered to rats via intrathecal (i.t.) injection for assessment GfapA long-lasting period of reduced performance. Specifically, Sprague-Dawley rats (250 g) were administered a single 1000 µg dose of 1000 µg in aCSF via i.t. injection. surface 3Among the oligonucleotides. Target weakening was assessed at weeks 8, 12, and 23 after i.t. injection. RNA was extracted from tissue samples of the prefrontal cortex, sensory cortex, striatum, hippocampus, periaqueductal gray, cerebellum, brainstem, and spinal cord (SC) segments 1 to 8 (SC1 to SC8). , determined by qPCR in rats GfapmRNA levels, such as Example 2described in. Rats GfapThe levels of mRNA were measured using the PrimeTime™ qPCR Probe Assay (IDT). Over the course of the study (i.e., at weeks 8, 12, and 23), C16-binding oligonucleotides were shown to be present in the brainstem and SC1 to SC8. GfapPerformance is reduced by approximately 50% or more ( Figure 5A). In contrast, in all brain tissues sampled, using GalNAc-conjugated oligonucleotides GfapLess performance degradation ( Figure 5B). This data shows that stellate cell target mRNA ( For example, GFAP)of long-term continued suppression. ii. intracisternal administrationwill surface 3C16-binding as described in GFAPOligonucleotides were administered intracisternally (i.c.m.) to rats for assessment GfapA long-lasting period of reduced performance. Specifically, Stewart rats were administered a single 1000 µg dose of oligonucleotide formulated in aCSF via i.c.m injection. Assessments at 4 and 12 weeks after injection Gfapits performance. RNA was extracted from tissue samples of prefrontal cortex, sensory cortex, hippocampus, hypothalamus, cerebellum, brainstem, cervical spinal cord, and lumbar spinal cord, and assayed by qPCR in rats. GfapmRNA levels, such as Example 2described in. Observed in all brain regions at 4 weeks after i.c.m. injection GfapPerformance is reduced by about 50% or more, and in the cerebellum, brainstem, cervical spinal cord, and lumbar spinal cord, about 50% or more GfapReduced performance was maintained until week 12 after i.c.m. injection ( Figure 6). Investing in the second animal group surface 3The same C16 lipid in - combined with GfapOligonucleotides are assessed through weeks 26 and 39 GfapDecreased expression of mRNA. Rats were administered a single dose of oligonucleotide as described above. RNA was extracted from tissue samples of frontal cortex, striatum, sensory cortex, hippocampus, hypothalamus, circumaqueductal gray matter, cerebellum, brainstem, and spinal cord (SC) segments 1 to 8 (SC1 to SC8). , determined by qPCR in rats GfapmRNA levels, such as Example 2described in. At 26 weeks after dosing, it was observed in the cerebellum, brainstem, and SC1 to SC5 GfapPerformance is reduced by approximately 50% or more ( Figure 7A). By week 39, observed in the cerebellum, brainstem, and SC1 to SC7 GfapPerformance is reduced by approximately 25 to 50% ( Figure 7B). This data shows that stellate cell target mRNA ( For example, GFAP)of long-term continued suppression. Example 5 : In the Fourth Ring Road RNAi oligonucleotide lipids - Positional effects of lipid binding on in vivo activity of conjugates in the central nervous systemThe ability of RNAi oligonucleotide-lipid conjugates containing tetraloops to reduce mRNA expression in CNS stellate cells was evaluated in vivo. C16-Combined GfapOligonucleotide systems such as Example 1generated as described in . Specifically, the C16 lipid binds to the sense strand at one of positions (P) 1, 4, 8, 12, 13, 18, 20, 23, 28, 29, and 30, as shown in the modification pattern below. Show. The unmodified sense and antisense strands are provided in SEQ ID NO: 3 and 4 respectively, while the modified strands are shown in surface 4middle. Four-loop RNAi oligonucleotide modification pattern: P1 Justice shares: P4 Justice shares: P8 Justice shares: P12 Justice shares: P13 Justice shares: P18 Justice shares: P20 Justice shares: P23 Justice shares: P28 Justice shares: P29 Justice shares: P30 Justice shares: Each of P1, P4, P8, P12, P13, P18, P20, P23, P28, P29, and P30 was hybridized to an antisense strand with the following modification pattern: Modifier keys: surface 1 in order to evaluate surface 4For the oligonucleotides in, 6- to 8-week-old C57BL/6 female mice were treated with 300 µg of RNAi oligonucleotides in artificial cerebrospinal fluid via intrathecal (i.t.) lumbar injection. Target performance was assessed on day 7 after injection. RNA was extracted from tissue samples of the lumbar spinal cord, medulla oblongata, cerebellum, hypothalamus, hippocampus, and frontal cortex, and assayed by qPCR in mice. GfapmRNA levels, such as Example 2described in. In the lumbar spinal cord, all oligonucleotides were reduced GfapmRNA expression( Figure 8A). Oligonucleotides binding to C16 lipids at P1, P4, P13, P18, P20, P23, P29, or P30 reduce mRNA expression in the medulla oblongata ( Figure 8B). In the cerebellum, expression was reduced by oligonucleotides binding to C16 lipids at P4, P23, or P29 ( Figure 8C). Oligonucleotides that bind to C16 lipids at P1, P4, P12, P13, P18, P20, P23, P28, P29, or P30 reduce the GfapmRNA expression( Figure 8D). Slight weakening was observed in the hippocampus and frontal cortex (respectively Figure 8E and pictures 8F). In summary, C16-conjugated tetracyclic oligonucleotides reduce inflammatory response in several CNS tissues after administration to the CNS via i.t. waist injection. GfapPerformance. Example 6 :Synthetic lipid - Blunt-ended oligonucleotideThe following schematic illustrates the synthesis of a blunt-ended oligonucleotide with a C16-lipid at the 5'-end. Lipid-conjugated blunt-ended oligonucleotides described herein may be synthesized using synthetic methods later detailed in PCT Application No. PCT/US2021/42469. Specifically, oligonucleotides can be synthesized using post-synthesis conjugation methods such as those illustrated below. In Ebende tube 1, a solution of palmitic acid in DMA was treated with HATU at rt. In Ebende tube 2, place the oligonucleotide sense strand in H 2The solution in O was treated with DIPEA. Add the solution in Ebende Tube 1 to Ebende Tube 2 and mix using a ThermoMixer at rt. After indicating completion of the reaction by LC-MS analysis, the reaction mixture was diluted with 5 mL of water and passed through a reverse-phase XBridge C18 column using 100 mM TEAA in ACN and H 2Purify using a gradient of 5 to 95% in O. The product fractions were concentrated under reduced pressure using Genevac. The combined residual solvents were dialyzed against water (1X), brine (1X), and water (3X) using an Amicon® Ultra-15 Centrifugal (3K). The Amicon membrane was washed with water (3 × 2 mL) and the combined solvents were freeze-dried to give an amorphous white solid. Example 7 : at the blunt end RNAi Positional effects of lipid binding of oligonucleotides on in vivo activity in the central nervous systemRNAi oligonucleotide conjugates that bind to lipids at different locations on the sense strand were evaluated for their ability to reduce stellate cell target expression in the CNS. RNAi oligonucleotides binding to C16 lipids were generated as described above. Specifically, a protein with a blunt end at the 3' end and a 2 nucleotide overhang at the 5' end was generated, with the C16 lipid bound to the sense strand at positions (P) 1, 4, 8, 12, 13 , 18 and 20 oligonucleotides, as shown in the modification pattern below. Comparison includes from Example 5Selected lipid-bound tetracyclic oligonucleotides (P1, P4, P23, and P28). The unmodified sense and antisense strands are provided in SEQ ID NO: 19 and 4 respectively, while the modified strands are shown in surface 5middle. Blunt-ended RNAi oligonucleotide modification patterns: P1 Justice shares: P4 Justice shares: P8 Justice shares: P12 Justice shares: P13 Justice shares: P18 Justice shares: P20 Justice shares: Each of P1, P4, P8, P12, P13, P18, and P20 was hybridized to an antisense strand with the following modification pattern: Modifier keys: surface 1 in order to evaluate surface 5The blunt-end oligonucleotide-lipid conjugate in 6- to 8-week-old C57BL/6 female mice was administered via intrathecal (i.t.) waist injection with 500 µg of lipid in artificial cerebrospinal fluid (aCSF). -Conjugated blunt-ended RNAi oligonucleotide treatment. Control animals were injected with aCSF only. Target performance was assessed on day 7 after injection. RNA was extracted from tissue samples of the lumbar spinal cord, medulla oblongata, cerebellum, hypothalamus, hippocampus, and frontal cortex, and assayed by qPCR in mice. GfapmRNA levels (for endogenous housekeeping genes Rpl23Standardized, as indicated). use Example 2Rats were determined as described in Gfaplevels of mRNA. In a sample of several tissues from the CNS, GfapmRNA expression is reduced by approximately 50% or more ( Figure 9A To the picture 9F). Specifically, in the lumbar spinal cord and medulla oblongata, all lipid binding sites were reduced GfapmRNA( Figure 9A and pictures 9B). In the cerebellum, oligonucleotides that bind to C16 lipids at P4, P12, P13, P18, or P20 reduce mRNA expression ( Figure 9C). In the hypothalamus, performance was reduced by oligonucleotides binding to C16 lipids at P1, P4, P12, P13, P18, or P20 ( Figure 9D). Observed in the hippocampus and frontal cortex GfapSlight inhibition of mRNA (respectively Figure 9E and pictures 9F). For each brain region, the lipid-conjugated tetracyclic oligonucleotides tested all showed consistent Example 5Similar performance degradation is shown in . Overall, several lipid-binding sites in blunt-ended oligonucleotides are successful inhibitors of target mRNAs in the CNS. Compare from Example 5and the remaining percentage of mRNA for the experiments described in this example. Specifically, the data are summarized in Figure 10A To the picture 10F, which shows the potency of tetracyclic and blunt-end oligonucleotides across brain regions and lipid locations. Example 8 : C16- Combined GFAP Blunt-ended oligonucleotides inhibit mice in a concentration-dependent manner in vivo Gfap Assessing the effect of blunt-ended oligonucleotides that bind to C16 lipids at position 1 when administered i.t. in a concentration-dependent manner on reducing the central nervous system (CNS) in mice Gfapability. Specifically, mice were administered 3, 10, 30, 100, or 300 µg of GFAP-1477 (SEQ ID NO: 20 (sense) and SEQ ID NO: 18 (anti) formulated in aCSF via i.t. injection. Loyal shares)). Animals were sacrificed on day 7 or 28 after i.t. injection. like Example 2RNA was extracted from liver tissue as described. Observed in several CNS tissues GfapPerformance decreases in a concentration-dependent manner. Specifically, on day 7 after injection, expression decreased in the hypothalamus, cerebellum, brainstem, and lumbar spinal cord ( Figure 11A). In the same tissue, this decrease was maintained until day 28, indicating long-term suppression after a single administration of blunt-ended oligonucleotide ( Figure 11B). Taken together, this data demonstrates the long-term efficacy of lipid-conjugated blunt-ended oligonucleotides in inhibiting stellate cell target mRNA.

[ 1A] [ 1F]提供之圖繪示靶定星狀細胞特異性基因 GFAP之GalNAc-結合之寡核苷酸的濃度反應。在用GalNAc-結合之 Gfap寡核苷酸( 2)處理之後測定在小鼠之下列區域中剩餘之鼠類 GfapmRNA之百分比(%):頸脊髓( 1A)、胸脊髓( 1B)、腰脊髓( 1C)、額葉皮質( 1D)、海馬體( 1E)、及小腦( 1F)。小鼠係用調配於人工腦脊髓液(artificial cerebrospinal fluid, aCSF)中之10、32、100、320、或1000 µg的GalNAc-結合之 Gfap寡核苷酸經由鞘內注射到腰椎中來處理。鞘內注射之後第七(7)天,將 GfapmRNA之水平對核糖體蛋白質L23(RPL23) mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照小鼠的總體表現。 [ 2]提供之圖繪示基於 1A 至圖 1F中之結果,在中樞神經系統(CNS)之不同組織中剩餘之鼠類 GfapmRNA之平均百分比(%)及針對各CNS組織計算所得之EC 50(ED 50)。 [ 3A] [ 3D]提供之圖繪示GalNAc-結合之 Gfap寡核苷酸的濃度反應。在用GalNAc-結合之 Gfap寡核苷酸( 2)處理之後測定在小鼠之下列區域中剩餘之鼠類 GfapmRNA之百分比(%):額葉皮質( 3A)、腦幹( 3B)、海馬體( 3C)、及腰脊髓( 3D)。小鼠係用調配於人工腦脊髓液(aCSF)中之10、32、100、或300 µg的寡核苷酸經由腦室內(i.c.v)注射來處理。i.c.v.注射之後第七(7)天,將 GfapmRNA之水平對核糖體蛋白質L23(RPL23)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照小鼠的總體表現。 [ 4]提供之圖繪示在CNS之不同組織中基於 3A 至圖 3D中之結果的剩餘之鼠類 GfapmRNA之平均百分比(%)及針對各CNS組織計算所得之EC 50(ED 50)。 [ 5A] [ 5B]提供之圖繪示在用C16脂質-結合之 Gfap四環(tetraloop)寡核苷酸( 5A)或用GalNAc-結合「GalXC」之 Gfap四環寡核苷酸( 5B)處理之後在大鼠之中樞神經系統組織中再開採之大鼠 GfapmRNA之百分比(%)。將大鼠用調配於人工腦脊髓液(aCSF)中之1000 µg的 3中指示之 Gfap寡核苷酸經由鞘內注射到腰椎來處理。在投予後第8、12、或23週,將 GfapmRNA之水平對肽醯基脯胺醯基異構酶B(peptidylprolyl Isomerase B, Ppib)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照大鼠的總體表現。 [ 6]提供之圖繪示在用C16脂質-結合之 Gfap四環寡核苷酸處理之後在大鼠之中樞神經系統組織中再開採之大鼠 GfapmRNA之百分比(%)。將大鼠用調配於人工腦脊髓液(aCSF)中之1000 µg的 3中指示之 Gfap脂質-結合之四環寡核苷酸經由腦大池內注射來處理。在投予後第4、或12週,將 GfapmRNA之水平對肽醯基脯胺醯基異構酶B(Ppib)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照大鼠的總體表現。 [ 7A 7B]提供之圖繪示在用C16脂質-結合之 Gfap四環寡核苷酸處理之後在大鼠之中樞神經系統組織中再開採之大鼠 GfapmRNA之百分比(%)。將大鼠用調配於人工腦脊髓液(aCSF)中之1000 µg的 3中指示之 Gfap脂質-結合之四環寡核苷酸經由腦大池內注射來處理。在投予後第26週( 7A)或第39週( 7B)時,將 GfapmRNA之水平對肽醯基脯胺醯基異構酶B(Ppib)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照大鼠的總體表現。 [ 8A] [ 8F]提供之圖繪示在用在x軸上指示之核苷酸位置處具有結合之脂質 Gfap四環寡核苷酸處理之後,在小鼠之下列區域中剩餘之鼠類 GfapmRNA之百分比(%):腰脊髓( 8A)、延髓( 8B)、小腦( 8C)、下視丘( 8D)、海馬體( 8E)、及額葉皮質( 8F)。將小鼠用300 µg的調配於人工腦脊髓液(aCSF)中之 4中指示之 Gfap脂質-結合之四環寡核苷酸經由鞘內(i.t.)注射來處理。給藥後第7天,將 GfapmRNA之水平對核糖體蛋白質L23(RPL23)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照小鼠的總體表現。 [ 9A] [ 9F]提供之圖繪示在用在x軸上指示之核苷酸位置處具有結合之脂質 Gfap鈍端或四環寡核苷酸處理之後,在小鼠之下列區域中剩餘之鼠類 GfapmRNA之百分比(%):腰脊髓( 9A)、延髓( 9B)、小腦( 9C)、下視丘( 9D)、海馬體( 9E)、及額葉皮質( 9F)。將小鼠用300 µg的調配於人工腦脊髓液(aCSF)中之 5中指示之C16脂質-結合之 Gfap寡核苷酸經由鞘內注射到腰椎中來處理。鞘內注射之後第七(7)天,將 GfapmRNA之水平對核糖體蛋白質L23(RPL23)mRNA標準化,並測定在組織類型之間相對於用aCSF處理之對照小鼠的總體表現。 [ 10A] [ 10F]提供之圖繪示如 8A 至圖 8F 及圖 9A 至圖 9F中所評定在用脂質-結合之 Gfap鈍端或四環寡核苷酸處理之後,在小鼠之下列區域中剩餘之鼠類 GfapmRNA之百分比(%):腰脊髓( 10A)、延髓( 10B)、小腦( 10C)、下視丘( 10D)、海馬體( 10E)、及額葉皮質( 10F)。實驗1表示在 8A 至圖 8F中評定之寡核苷酸。實驗2表示在 9A 至圖 9F中評定之四環寡核苷酸。實驗3表示在 9A 至圖 9F中評定之鈍端寡核苷酸。 [ 11A] [ 11B]提供之圖繪示C16- 結合Gfap鈍端寡核苷酸的濃度反應。在用C16-結合之 Gfap鈍端寡核苷酸處理之後,在小鼠之CNS中剩餘之鼠類 GfapmRNA之百分比(%)。小鼠係用調配於人工腦脊髓液(aCSF)中之3、10、30、100、或300 µg的指示之寡核苷酸經由鞘內注射到腰椎中來處理。鞘內注射之後第七(7)天( 11A)及第28天( 11B),將 GfapmRNA之水平對核糖體蛋白質L23 (RPL23)mRNA標準化,並相對於用aCSF處理之對照小鼠測定在組織類型之間的總體表現及ED 50[ Figure 1A ] to [ Figure 1F ] provide graphs illustrating the concentration response of GalNAc-binding oligonucleotides targeting the stellate cell-specific gene GFAP . The percentage (%) of murine Gfap mRNA remaining in the following regions of mice after treatment with GalNAc-conjugated Gfap oligonucleotides ( Table 2 ) was determined: cervical spinal cord ( Fig. 1A ), thoracic spinal cord ( Fig. 1B ) , lumbar spinal cord ( Figure 1C ), frontal cortex ( Figure 1D ), hippocampus ( Figure 1E ), and cerebellum ( Figure 1F ). Mice were treated with 10, 32, 100, 320, or 1000 µg of GalNAc-conjugated Gfap oligonucleotide in artificial cerebrospinal fluid (aCSF) via intrathecal injection into the lumbar spine. Seven (7) days after intrathecal injection, Gfap mRNA levels were normalized to ribosomal protein L23 (RPL23) mRNA and overall performance determined between tissue types relative to control mice treated with aCSF. [ Figure 2 ] Provides a graph depicting the average percentage (%) of murine Gfap mRNA remaining in different tissues of the central nervous system (CNS) and calculated for each CNS tissue based on the results in Figures 1A to 1F EC 50 (ED 50 ). [ Figure 3A ] to [ Figure 3D ] provide graphs illustrating the concentration response of GalNAc-bound Gfap oligonucleotides. The percentage (%) of murine Gfap mRNA remaining in the following regions of mice after treatment with GalNAc-conjugated Gfap oligonucleotides ( Table 2 ) was determined: frontal cortex ( Fig. 3A ), brain stem ( Fig. 3B) ), hippocampus ( Figure 3C ), and lumbar spinal cord ( Figure 3D ). Mice were treated via intracerebroventricular (icv) injection with 10, 32, 100, or 300 µg of oligonucleotides in artificial cerebrospinal fluid (aCSF). Seven (7) days after icv injection, Gfap mRNA levels were normalized to ribosomal protein L23 (RPL23) mRNA and overall performance determined between tissue types relative to control mice treated with aCSF. [ Figure 4 ] A graph is provided illustrating the average percentage (%) of remaining murine Gfap mRNA in different tissues of the CNS based on the results in Figures 3A to 3D and the EC 50 (ED 50 ) calculated for each CNS tissue. ). [ Figure 5A ] to [ Figure 5B ] provide diagrams illustrating the use of C16 lipid-conjugated Gfap tetraloop oligonucleotide ( Figure 5A ) or the use of GalNAc-conjugated "GalXC" Gfap tetraloop oligonucleotide. Percentage (%) of rat Gfap mRNA re-exploited in central nervous system tissue of rats after acid treatment ( Fig. 5B ). Rats were treated with 1000 µg of the Gfap oligonucleotides indicated in Table 3 formulated in artificial cerebrospinal fluid (aCSF) via intrathecal injection into the lumbar spine. Gfap mRNA levels were normalized to peptidylprolyl Isomerase B (Ppib) mRNA at 8, 12, or 23 weeks post-dose and determined between tissue types relative to those treated with aCSF Overall performance of treated control rats. [ Figure 6 ] A graph is provided showing the percentage (%) of rat Gfap mRNA recovered in rat central nervous system tissue after treatment with C16 lipid-conjugated Gfap tetracyclic oligonucleotide. Rats were treated via intracisternal injection with 1000 µg of the Gfap lipid-conjugated tetracyclic oligonucleotides indicated in Table 3 formulated in artificial cerebrospinal fluid (aCSF). Levels of Gfap mRNA were normalized to peptidyl prolinyl isomerase B (Ppib) mRNA at 4 or 12 weeks post-dose and determined between tissue types relative to control rats treated with aCSF. Overall performance. [ Figures 7A - 7B ] Provided are graphs illustrating the percentage (%) of rat Gfap mRNA recovered in rat central nervous system tissue following treatment with C16 lipid-conjugated Gfap tetracyclic oligonucleotide. Rats were treated via intracisternal injection with 1000 µg of the Gfap lipid-conjugated tetracyclic oligonucleotides indicated in Table 3 formulated in artificial cerebrospinal fluid (aCSF). Levels of Gfap mRNA were normalized to peptidylprolinyl isomerase B (Ppib) mRNA at either week 26 ( Fig. 7A ) or week 39 ( Fig. 7B ) after administration and determined between tissue types. Overall performance relative to control rats treated with aCSF. [ Figure 8A ] to [ Figure 8F ] provide graphs illustrating the remaining in the following regions of mice after treatment with lipid Gfap tetracyclic oligonucleotides with binding at the nucleotide positions indicated on the x-axis. Percentage (%) of mouse Gfap mRNA: lumbar spinal cord ( Figure 8A ), medulla oblongata ( Figure 8B ), cerebellum ( Figure 8C ), hypothalamus (Figure 8D ), hippocampus ( Figure 8E), and frontal cortex ( Figure 8E ) 8F ). Mice were treated via intrathecal (it) injection with 300 µg of the Gfap lipid-conjugated tetracyclic oligonucleotides indicated in Table 4 formulated in artificial cerebrospinal fluid (aCSF). On day 7 post-dose, Gfap mRNA levels were normalized to ribosomal protein L23 (RPL23) mRNA and overall performance determined between tissue types relative to control mice treated with aCSF. [ Figure 9A ] to [ Figure 9F ] provide graphs illustrating the following regions in mice after treatment with lipid Gfap blunt-ended or tetracyclic oligonucleotides with binding at the nucleotide positions indicated on the x-axis Percentage (%) of mouse Gfap mRNA remaining in: lumbar spinal cord ( Figure 9A ), medulla oblongata ( Figure 9B ), cerebellum ( Figure 9C ), hypothalamus ( Figure 9D ), hippocampus ( Figure 9E ), and frontal lobe cortex ( Fig. 9F ). Mice were treated with 300 µg of the C16 lipid-conjugated Gfap oligonucleotides indicated in Table 5 formulated in artificial cerebrospinal fluid (aCSF) via intrathecal injection into the lumbar spine. Seven (7) days after intrathecal injection, Gfap mRNA levels were normalized to ribosomal protein L23 (RPL23) mRNA and overall performance determined between tissue types relative to control mice treated with aCSF. [ FIG. 10A ] to [ FIG. 10F ] provide graphs illustrating the effects on small cells after treatment with lipid-conjugated Gfap blunt-ended or tetracyclic oligonucleotides as assessed in FIGS. 8A to 8F and 9A to 9F . Percentage (%) of mouse Gfap mRNA remaining in the following regions of the mouse: lumbar spinal cord ( Figure 10A ), medulla oblongata ( Figure 10B ), cerebellum ( Figure 10C ), hypothalamus ( Figure 10D ), hippocampus ( Figure 10E ) , and frontal cortex ( Figure 10F ). Experiment 1 represents the oligonucleotides evaluated in Figures 8A to 8F . Experiment 2 represents the tetracyclic oligonucleotides evaluated in Figures 9A to 9F . Experiment 3 represents the blunt-ended oligonucleotides evaluated in Figures 9A - 9F . [ Figure 11A ] to [ Figure 11B ] provide graphs illustrating the concentration response of C16- bound Gfap blunt-ended oligonucleotides. Percentage (%) of murine Gfap mRNA remaining in the CNS of mice after treatment with C16-conjugated Gfap blunt-ended oligonucleotides. Mice were treated with 3, 10, 30, 100, or 300 µg of the indicated oligonucleotides in artificial cerebrospinal fluid (aCSF) via intrathecal injection into the lumbar spine. On days seven (7) ( Figure 11A ) and 28 ( Figure 11B ) after intrathecal injection, Gfap mRNA levels were normalized to ribosomal protein L23 (RPL23) mRNA and determined relative to control mice treated with aCSF Overall performance and ED 50 between tissue types.

TW202335674A_111142234_SEQL.xmlTW202335674A_111142234_SEQL.xml

Claims (101)

一種雙股寡核苷酸,其包含15至30個核苷酸長之反義股及15至50個核苷酸長之正義股,其中該反義股及正義股形成15至30個鹼基對之雙股區域(duplex region),其中該反義股包含與星狀細胞mRNA目標序列互補之區域,且其中該正義股包含至少一個與該正義股之核苷酸結合之脂質部分。A double-stranded oligonucleotide comprising an antisense strand of 15 to 30 nucleotides long and a sense strand of 15 to 50 nucleotides long, wherein the antisense strand and the sense strand form 15 to 30 bases For a duplex region, wherein the antisense strand includes a region complementary to a stellate cell mRNA target sequence, and wherein the sense strand includes at least one lipid moiety that binds to a nucleotide of the sense strand. 如請求項1之寡核苷酸,其中該脂質部分係選自 The oligonucleotide of claim 1, wherein the lipid part is selected from 如請求項1之寡核苷酸,其中該脂質部分係烴鏈。The oligonucleotide of claim 1, wherein the lipid part is a hydrocarbon chain. 如請求項3之寡核苷酸,其中該烴鏈係C8至C30烴鏈。The oligonucleotide of claim 3, wherein the hydrocarbon chain is a C8 to C30 hydrocarbon chain. 如請求項3或4之寡核苷酸,其中該烴鏈係C16烴鏈。The oligonucleotide of claim 3 or 4, wherein the hydrocarbon chain is a C16 hydrocarbon chain. 如請求項5之寡核苷酸,其中該C16烴鏈係由 所表示。 The oligonucleotide of claim 5, wherein the C16 hydrocarbon chain is composed of represented. 如請求項1至6中任一項之寡核苷酸,其中該脂質部分係與該核苷酸之該核糖環之該2'碳結合。The oligonucleotide of any one of claims 1 to 6, wherein the lipid moiety is combined with the 2' carbon of the ribose ring of the nucleotide. 如請求項1至7中任一項之寡核苷酸,其中該寡核苷酸係鈍端的。The oligonucleotide of any one of claims 1 to 7, wherein the oligonucleotide is blunt-ended. 如請求項8之寡核苷酸,其中該寡核苷酸在該寡核苷酸之該3'末端處係鈍端的。The oligonucleotide of claim 8, wherein the oligonucleotide is blunt-ended at the 3' end of the oligonucleotide. 如請求項1至7中任一項之寡核苷酸,其中該寡核苷酸包含鈍端。The oligonucleotide of any one of claims 1 to 7, wherein the oligonucleotide includes a blunt end. 如請求項10之寡核苷酸,其中該鈍端包含該正義股之該3'端。The oligonucleotide of claim 10, wherein the blunt end includes the 3' end of the sense strand. 如請求項8至11中任一項之寡核苷酸,其中該正義股係20至22個核苷酸。The oligonucleotide of any one of claims 8 to 11, wherein the sense strand is 20 to 22 nucleotides. 如請求項12之寡核苷酸,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sense strand , where the positions are numbered from 5' to 3'. 如請求項12之寡核苷酸,其中該星狀細胞mRNA目標係在該脊髓中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the stellate cell mRNA target is expressed in the spinal cord, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, and position of the sense strand 13. The nucleotide at position 18, or position 20 is bound, and the positions are numbered from 5' to 3'. 如請求項12之寡核苷酸,其中該星狀細胞mRNA目標係在該延髓中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the stellate cell mRNA target is expressed in the medulla oblongata, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, and position of the sense strand 13. The nucleotide at position 18, or position 20 is bound, and the positions are numbered from 5' to 3'. 如請求項12之寡核苷酸,其中該星狀細胞mRNA目標係在該小腦中表現,其中該至少一個脂質部分係與在該正義股之位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the stellate cell mRNA target is expressed in the cerebellum, and wherein the at least one lipid moiety is associated with position 4, position 12, position 13, position 18, or The nucleotide at position 20 binds, and the positions are numbered from 5' to 3'. 如請求項12之寡核苷酸,其中該星狀細胞mRNA目標係在該下視丘中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the stellate cell mRNA target is expressed in the hypothalamus, and wherein the at least one lipid moiety is associated with position 1, position 4, position 12, and position 13 of the sense strand , position 18, or position 20, where the positions are numbered from 5' to 3'. 如請求項12之寡核苷酸,其中該星狀細胞mRNA目標係在該額葉皮質中表現,其中該至少一個脂質部分係與在該正義股之位置4處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 12, wherein the stellate cell mRNA target is expressed in the frontal cortex, wherein the at least one lipid moiety binds to the nucleotide at position 4 of the sense strand, and wherein Positions are numbered from 5' to 3'. 如請求項1至7中任一項之寡核苷酸,其中該正義股在該3'端處包含主幹-環圈,其中該主幹-環圈包含由式:5'-S1-L-S2-3'所表示之核苷酸序列,其中S1係與S2互補,且其中L在S1與S2之間形成環。The oligonucleotide of any one of claims 1 to 7, wherein the sense strand includes a backbone-loop at the 3' end, wherein the backbone-loop includes the formula: 5'-S1-L-S2 The nucleotide sequence represented by -3', wherein S1 is complementary to S2, and wherein L forms a loop between S1 and S2. 如請求項1至7及19中任一項之寡核苷酸,其中該正義股係36至38個核苷酸。The oligonucleotide of any one of claims 1 to 7 and 19, wherein the sense strand is 36 to 38 nucleotides. 如請求項20之寡核苷酸,其中該星狀細胞mRNA目標係在該脊髓中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 20, wherein the stellate cell mRNA target is expressed in the spinal cord, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, and position of the sense strand 13. Nucleotide binding at position 18, position 20, position 23, position 28, position 29, or position 30, and the positions are numbered from 5' to 3'. 如請求項20之寡核苷酸,其中該星狀細胞mRNA目標係在該延髓中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 20, wherein the stellate cell mRNA target is expressed in the medulla oblongata, and wherein the at least one lipid moiety is associated with position 1, position 4, position 18, position 20, and position of the sense strand 23. Nucleotide binding at position 28, position 29, or position 30, and wherein the positions are numbered from 5' to 3'. 如請求項20之寡核苷酸,其中該星狀細胞mRNA目標係在該小腦中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置23、位置28、或位置29處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 20, wherein the stellate cell mRNA target is expressed in the cerebellum, and wherein the at least one lipid moiety is associated with position 1, position 4, position 23, position 28, or The nucleotide at position 29 binds, and the positions are numbered from 5' to 3'. 如請求項20之寡核苷酸,其中該星狀細胞mRNA目標係在該下視丘中表現,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 20, wherein the stellate cell mRNA target is expressed in the hypothalamus, and wherein the at least one lipid moiety is associated with position 1, position 4, position 12, and position 13 of the sense strand , a nucleotide binding at position 18, position 20, position 23, position 28, position 29, or position 30, and wherein the positions are numbered from 5' to 3'. 如請求項20之寡核苷酸,其中該星狀細胞mRNA目標係在該額葉皮質中表現,其中該至少一個脂質部分係與在該正義股之位置23處之核苷酸結合,且其中位置係從5'至3'編號。The oligonucleotide of claim 20, wherein the stellate cell mRNA target is expressed in the frontal cortex, wherein the at least one lipid moiety binds to the nucleotide at position 23 of the sense strand, and wherein Positions are numbered from 5' to 3'. 如請求項1至25中任一項之寡核苷酸,其中該反義股係22至24個核苷酸。The oligonucleotide of any one of claims 1 to 25, wherein the antisense strand is 22 to 24 nucleotides. 如請求項1至26中任一項之寡核苷酸,其中該雙股區域係20至22個鹼基對。The oligonucleotide of any one of claims 1 to 26, wherein the double-stranded region is 20 to 22 base pairs. 如請求項1至27中任一項之寡核苷酸,其中該反義股在該3'末端處包含1至4個核苷酸突出端。The oligonucleotide of any one of claims 1 to 27, wherein the antisense strand comprises 1 to 4 nucleotide overhangs at the 3' end. 如請求項28之寡核苷酸,其中該突出端包含嘌呤核苷酸。The oligonucleotide of claim 28, wherein the overhang includes a purine nucleotide. 如請求項28或29之寡核苷酸,其中該突出端序列係2個核苷酸長。The oligonucleotide of claim 28 or 29, wherein the overhang sequence is 2 nucleotides long. 如請求項30之寡核苷酸,其中該突出端係選自AA、GG、AG、及GA。The oligonucleotide of claim 30, wherein the overhang is selected from AA, GG, AG, and GA. 如請求項31之寡核苷酸,其中該突出端係GG或AA。The oligonucleotide of claim 31, wherein the overhang is GG or AA. 如請求項31之寡核苷酸,其中該突出端係GG。The oligonucleotide of claim 31, wherein the overhang is GG. 如請求項1至33中任一項之寡核苷酸,其中該互補之區域係與該星狀細胞mRNA目標序列之至少15個連續核苷酸互補。The oligonucleotide of any one of claims 1 to 33, wherein the complementary region is complementary to at least 15 consecutive nucleotides of the stellate cell mRNA target sequence. 如請求項1至34中任一項之寡核苷酸,其中該互補之區域係與該星狀細胞mRNA目標序列之19個連續核苷酸互補。The oligonucleotide of any one of claims 1 to 34, wherein the complementary region is complementary to 19 consecutive nucleotides of the stellate cell mRNA target sequence. 如請求項1至35中任一項之寡核苷酸,其中該互補之區域係與該星狀細胞mRNA目標序列完全互補。The oligonucleotide of any one of claims 1 to 35, wherein the complementary region is completely complementary to the stellate cell mRNA target sequence. 如請求項1至35中任一項之寡核苷酸,其中該互補之區域係與該星狀細胞mRNA目標序列部分互補。The oligonucleotide of any one of claims 1 to 35, wherein the complementary region is partially complementary to the stellate cell mRNA target sequence. 如請求項37之寡核苷酸,其中該互補之區域包含與該星狀細胞mRNA目標序列不多於四個的錯配。The oligonucleotide of claim 37, wherein the complementary region contains no more than four mismatches with the stellate cell mRNA target sequence. 如請求項1至38中任一項之寡核苷酸,其中該寡核苷酸包含至少一個經修飾之核苷酸。The oligonucleotide of any one of claims 1 to 38, wherein the oligonucleotide comprises at least one modified nucleotide. 如請求項39之寡核苷酸,其中該經修飾之核苷酸包含2'-修飾。The oligonucleotide of claim 39, wherein the modified nucleotide comprises a 2'-modification. 如請求項40之寡核苷酸,其中除了與該至少一個脂質部分結合之該正義股之該核苷酸之外,該正義股及該反義股之該等核苷酸之各者包含2'-修飾。The oligonucleotide of claim 40, wherein in addition to the nucleotide of the sense strand bound to the at least one lipid moiety, each of the nucleotides of the sense strand and the antisense strand comprise 2 '-modification. 如請求項40至41中之寡核苷酸,其中該2'-修飾係選自下列的修飾:2'-胺基乙基、2'-氟、2'-O-甲基、2'-O-甲氧基乙基、及2'-去氧-2'-氟-β-d-阿拉伯糖核酸(2'-deoxy-2'-fluoro-β-d-arabinonucleic acid)。The oligonucleotide of claims 40 to 41, wherein the 2'-modification is selected from the following modifications: 2'-aminoethyl, 2'-fluoro, 2'-O-methyl, 2'- O-methoxyethyl, and 2'-deoxy-2'-fluoro-β-d-arabinonucleic acid (2'-deoxy-2'-fluoro-β-d-arabinonucleic acid). 如請求項40至42中任一項之寡核苷酸,其中該正義股之該等核苷酸之約10至20%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、或20%包含2'-氟修飾。For example, the oligonucleotide of any one of claims 40 to 42, wherein about 10 to 20%, 10%, 11%, 12%, 13%, 14%, 15% of the nucleotides of the sense strand , 16%, 17%, 18%, 19%, or 20% contain 2'-fluorine modification. 如請求項40至43中任一項之寡核苷酸,其中該反義股之該等核苷酸之約25至35%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、或35%包含2'-氟修飾。For example, the oligonucleotide of any one of claims 40 to 43, wherein about 25 to 35%, 25%, 26%, 27%, 28%, 29%, 30% of the nucleotides of the antisense strand %, 31%, 32%, 33%, 34%, or 35% contain a 2'-fluoro modification. 如請求項40至44中任一項之寡核苷酸,其中該寡核苷酸之該等核苷酸之約25至35%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、或35%包含2'-氟修飾。Such as the oligonucleotide of any one of claims 40 to 44, wherein about 25 to 35%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, or 35% contained 2'-fluoro modifications. 如請求項40至45中任一項之寡核苷酸,其中該正義股包含20個核苷酸且從5'至3'為位置1至20,其中位置8至11之各者包含2'-氟修飾。The oligonucleotide of any one of claims 40 to 45, wherein the sense strand includes 20 nucleotides and is from 5' to 3' at positions 1 to 20, wherein each of positions 8 to 11 includes 2' -Fluorine modification. 如請求項40至45中任一項之寡核苷酸,其中該正義股包含20個核苷酸且從5'至3'為位置1至20,其中位置9至11之各者包含2'-氟修飾。The oligonucleotide of any one of claims 40 to 45, wherein the sense strand includes 20 nucleotides and is from 5' to 3' at positions 1 to 20, wherein each of positions 9 to 11 includes 2' -Fluorine modification. 如請求項40至45中任一項之寡核苷酸,其中該正義股包含36個核苷酸且從5'至3'為位置1至36,其中位置8至11之各者包含2'-氟修飾。The oligonucleotide of any one of claims 40 to 45, wherein the sense strand comprises 36 nucleotides and is from 5' to 3' at positions 1 to 36, wherein each of positions 8 to 11 includes 2' -Fluorine modification. 如請求項40至45中任一項之寡核苷酸,其中該正義股包含36個核苷酸且從5'至3'為位置1至36,其中位置9至11之各者包含2'-氟修飾。The oligonucleotide of any one of claims 40 to 45, wherein the sense strand includes 36 nucleotides and is from 5' to 3' at positions 1 to 36, wherein each of positions 9 to 11 includes 2' -Fluorine modification. 如請求項40至49中任一項之寡核苷酸,其中該反義股包含22個核苷酸且從5'至3'為位置1至22,且其中位置2、3、4、5、7、10、及14之各者包含2'-氟修飾。The oligonucleotide of any one of claims 40 to 49, wherein the antisense strand includes 22 nucleotides and positions 1 to 22 from 5' to 3', and wherein positions 2, 3, 4, 5 Each of , 7, 10, and 14 contains a 2'-fluorine modification. 如請求項41至50中任一項之寡核苷酸,其中除了與該至少一個脂質部分結合之該正義股之該核苷酸之外,該等剩餘的核苷酸包含2'-O-甲基修飾。The oligonucleotide of any one of claims 41 to 50, wherein in addition to the nucleotide of the sense strand bound to the at least one lipid moiety, the remaining nucleotides comprise 2'-O- Methyl modification. 如前述請求項中任一項之寡核苷酸,其中該寡核苷酸包含至少一個經修飾之核苷酸間鍵聯。The oligonucleotide of any one of the preceding claims, wherein the oligonucleotide comprises at least one modified inter-nucleotide linkage. 如請求項52之寡核苷酸,其中該至少一個經修飾之核苷酸間鍵聯係硫代磷酸酯鍵聯。The oligonucleotide of claim 52, wherein the at least one modified internucleotide linkage is linked to a phosphorothioate linkage. 如請求項53之寡核苷酸,其中該反義股包含硫代磷酸酯鍵聯,其(i)在位置1與2之間、及在位置2與3之間;或(ii)在位置1與2之間、在位置2與3之間、及在位置3與4之間,其中位置係從5'至3'編號為1至4。The oligonucleotide of claim 53, wherein the antisense strand comprises a phosphorothioate linkage (i) between positions 1 and 2, and between positions 2 and 3; or (ii) at position Between 1 and 2, between positions 2 and 3, and between positions 3 and 4, where positions are numbered 1 to 4 from 5' to 3'. 如請求項53或54之寡核苷酸,其中該反義股係22個核苷酸長,且其中該反義股在位置20與21之間及在位置21與22之間包含硫代磷酸酯鍵聯,其中位置從5'至3'編號為1至22。The oligonucleotide of claim 53 or 54, wherein the antisense strand is 22 nucleotides long, and wherein the antisense strand contains a phosphorothioate between positions 20 and 21 and between positions 21 and 22 Ester linkage where positions are numbered 1 to 22 from 5' to 3'. 如請求項53至55中任一項之寡核苷酸,其中該正義股在位置1與2之間包含硫代磷酸酯鍵聯,其中位置從5'至3'編號為1至2。The oligonucleotide of any one of claims 53 to 55, wherein the sense strand comprises a phosphorothioate linkage between positions 1 and 2, wherein positions are numbered 1 to 2 from 5' to 3'. 如請求項53至56中任一項之寡核苷酸,其中該正義股係20個核苷酸長,且其中該正義股在位置18與19之間、及在位置19與20之間包含硫代磷酸酯鍵聯,其中位置從5'至3'編號為1至22。The oligonucleotide of any one of claims 53 to 56, wherein the sense strand is 20 nucleotides long, and wherein the sense strand is comprised between positions 18 and 19, and between positions 19 and 20 Phosphorothioate linkage where positions are numbered 1 to 22 from 5' to 3'. 如請求項1至57中任一項之寡核苷酸,其中該反義股在5'末端處包含磷酸化核苷酸,其中該磷酸化核苷酸係選自尿苷及腺苷。The oligonucleotide of any one of claims 1 to 57, wherein the antisense strand comprises a phosphorylated nucleotide at the 5' end, wherein the phosphorylated nucleotide is selected from uridine and adenosine. 如請求項58之寡核苷酸,其中該磷酸化核苷酸係尿苷。The oligonucleotide of claim 58, wherein the phosphorylated nucleotide is uridine. 如前述請求項中任一項之寡核苷酸,其中該反義股之該5'-核苷酸之該糖之該4'-碳包含磷酸酯類似物。The oligonucleotide of any one of the preceding claims, wherein the 4'-carbon of the sugar of the 5'-nucleotide of the antisense strand comprises a phosphate analog. 如請求項60之寡核苷酸,其中該磷酸酯類似物係氧基甲基膦酸酯、乙烯基膦酸酯或丙二醯基膦酸酯。The oligonucleotide of claim 60, wherein the phosphate analog is oxymethylphosphonate, vinylphosphonate or malonylphosphonate. 如請求項1至61中任一項之寡核苷酸,其中該互補之區域係在該反義股之核苷酸位置2至8處與該星狀細胞mRNA目標序列完全互補,其中核苷酸位置係從5'至3'編號。The oligonucleotide of any one of claims 1 to 61, wherein the complementary region is completely complementary to the stellate cell mRNA target sequence at nucleotide positions 2 to 8 of the antisense strand, wherein the nucleoside Acid positions are numbered from 5' to 3'. 如請求項1至61中任一項之寡核苷酸,其中該互補之區域係在該反義股之核苷酸位置2至11處與該星狀細胞mRNA目標序列完全互補,其中核苷酸位置係從5'至3'編號。The oligonucleotide of any one of claims 1 to 61, wherein the complementary region is completely complementary to the stellate cell mRNA target sequence at nucleotide positions 2 to 11 of the antisense strand, wherein the nucleoside Acid positions are numbered from 5' to 3'. 如請求項1至63中任一項之寡核苷酸,其中該寡核苷酸係切酶(Dicer)受質。The oligonucleotide of any one of claims 1 to 63, wherein the oligonucleotide is a Dicer substrate. 如請求項1至63中任一項之寡核苷酸,其中該寡核苷酸係切酶受質,在內源性切酶加工後產生19至21個核苷酸長之雙股核酸,其能夠降低哺乳動物細胞中之星狀細胞mRNA表現。The oligonucleotide of any one of claims 1 to 63, wherein the oligonucleotide is a Dicer substrate and produces a double-stranded nucleic acid of 19 to 21 nucleotides in length after processing by the endogenous Dicer, It reduces stellate cell mRNA expression in mammalian cells. 如請求項1至65中任一項之寡核苷酸,其中該星狀細胞mRNA目標序列係位於該中樞神經系統(CNS)之區域中。The oligonucleotide of any one of claims 1 to 65, wherein the stellate cell mRNA target sequence is located in the region of the central nervous system (CNS). 如請求項66之寡核苷酸,其中該CNS之該區域係選自該脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。The oligonucleotide of claim 66, wherein the region of the CNS is selected from the group consisting of the spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. 如請求項1至67中任一項之寡核苷酸,其中該寡核苷酸在體外及/或體內降低星狀細胞或星狀細胞群中目標mRNA之表現。The oligonucleotide of any one of claims 1 to 67, wherein the oligonucleotide reduces the expression of target mRNA in stellate cells or stellate cell populations in vitro and/or in vivo. 一種醫藥組成物,其包含如請求項1至68中任一項之寡核苷酸、及醫藥上可接受之載劑、遞送劑或賦形劑。A pharmaceutical composition comprising the oligonucleotide of any one of claims 1 to 68, and a pharmaceutically acceptable carrier, delivery agent or excipient. 一種用於治療患有與星狀細胞mRNA之表現相關之疾病、病症或病況之個體之方法,該方法包含向該個體投予治療有效量的如請求項1至68中任一項之寡核苷酸或如請求項69之醫藥組成物,從而治療該個體。A method for treating an individual suffering from a disease, disorder or condition associated with expression of stellate cell mRNA, the method comprising administering to the individual a therapeutically effective amount of an oligonucleotide according to any one of claims 1 to 68 or a pharmaceutical composition as claimed in claim 69, thereby treating the individual. 一種將寡核苷酸遞送至個體中之星狀細胞或星狀細胞群之方法,該方法包含將如請求項69之醫藥組成物投予至該個體。A method of delivering an oligonucleotide to a stellate cell or a population of stellate cells in an individual, the method comprising administering a pharmaceutical composition according to claim 69 to the individual. 如請求項71之方法,其中該星狀細胞或星狀細胞群係位於該CNS之區域中。The method of claim 71, wherein the stellate cell or stellate cell population is located in a region of the CNS. 如請求項72之方法,其中該CNS之該區域係選自該脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。The method of claim 72, wherein the region of the CNS is selected from the group consisting of the spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. 一種用於降低細胞、細胞群、或個體中星狀細胞mRNA之表現之方法,該方法包含下列之步驟: i.    使該細胞或該細胞群與如請求項1至68中任一項之寡核苷酸、或如請求項69之醫藥組成物接觸,視需要地其中該細胞或細胞群係星狀細胞或星狀細胞群;或 ii.   向該個體投予如請求項1至68中任一項之寡核苷酸、或如請求項69之醫藥組成物。 A method for reducing the expression of stellate cell mRNA in a cell, cell population, or individual, the method comprising the following steps: i. Bringing the cell or cell population into contact with the oligonucleotide of any one of claims 1 to 68, or the pharmaceutical composition of claim 69, optionally wherein the cell or cell population is a stellate cell or a stellate cell population; or ii. Administer the oligonucleotide according to any one of claims 1 to 68, or the pharmaceutical composition according to claim 69 to the individual. 如請求項74之方法,其中降低該星狀細胞mRNA之表現包含降低mRNA之量或水平、蛋白質之量或水平、或兩者之量或水平。The method of claim 74, wherein reducing the expression of the stellate cell mRNA comprises reducing the amount or level of mRNA, the amount or level of protein, or both. 如請求項74或75之方法,其中該個體患有與該星狀細胞mRNA之表現相關之疾病、病症或病況。The method of claim 74 or 75, wherein the individual suffers from a disease, disorder or condition associated with expression of the stellate cell mRNA. 如請求項74至76中任一項之方法,其中該細胞或細胞群係位於該CNS之區域中。The method of any one of claims 74 to 76, wherein the cell or cell population is located in a region of the CNS. 如請求項77之方法,其中該CNS之該區域係選自該脊髓、腰脊髓、胸脊髓、頸脊髓、延髓、海馬體、小腦、下視丘、額葉皮質、及其組合。The method of claim 77, wherein the region of the CNS is selected from the group consisting of the spinal cord, lumbar spinal cord, thoracic spinal cord, cervical spinal cord, medulla oblongata, hippocampus, cerebellum, hypothalamus, frontal cortex, and combinations thereof. 如請求項70至78中任一項之方法,其中投予係鞘內的。The method of any one of claims 70 to 78, wherein the administration is intrathecally. 一種降低在個體之該CNS之組織中之星狀細胞中表現之目標mRNA之表現之方法,該方法包含向該個體投予雙股寡核苷酸,該雙股寡核苷酸包含15至30個核苷酸長之反義股及15至50個核苷酸長之正義股,其中該反義股及正義股形成15至30個鹼基對之雙股區域,其中該反義股包含與在該目標mRNA中之目標序列互補之區域,且其中該正義股包含至少一個與該正義股之核苷酸結合之脂質部分。A method of reducing the expression of target mRNA expressed in stellate cells in the tissue of the CNS of an individual, the method comprising administering to the individual a double-stranded oligonucleotide, the double-stranded oligonucleotide comprising 15 to 30 An antisense strand of 15 to 50 nucleotides long and a sense strand of 15 to 50 nucleotides long, wherein the antisense strand and the sense strand form a double-stranded region of 15 to 30 base pairs, wherein the antisense strand includes A region complementary to the target sequence in the target mRNA, and wherein the sense strand includes at least one lipid moiety that binds to a nucleotide of the sense strand. 如請求項80之方法,其中該脂質部分係C16烴。The method of claim 80, wherein the lipid moiety is a C16 hydrocarbon. 如請求項80至81之方法,其中該寡核苷酸在該寡核苷酸之該3'末端處係鈍端的。The method of claims 80 to 81, wherein the oligonucleotide is blunt-ended at the 3' end of the oligonucleotide. 如請求項82之方法,其中該正義股係22至24個核苷酸。The method of claim 82, wherein the sense strand is 22 to 24 nucleotides. 如請求項83之方法,其中該組織係該脊髓,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 83, wherein the tissue is the spinal cord, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the sciatic strand. Nucleotides are bound, and positions therein are numbered from 5' to 3'. 如請求項83之方法,其中該組織係該延髓,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 83, wherein the tissue is the medulla oblongata, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, or position 20 of the justice strand. Nucleotides are bound, and positions therein are numbered from 5' to 3'. 如請求項83之方法,其中該組織係該小腦,其中該至少一個脂質部分係與在該正義股之位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 83, wherein the tissue is the cerebellum, and wherein the at least one lipid moiety binds to a nucleotide at position 4, position 12, position 13, position 18, or position 20 of the sense strand, and The positions are numbered from 5' to 3'. 如請求項83之方法,其中該組織係該下視丘,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置12、位置13、位置18、或位置20處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 83, wherein the tissue is the hypothalamus, and wherein the at least one lipid moiety is associated with the nucleus at position 1, position 4, position 12, position 13, position 18, or position 20 of the justice strand The nucleotides are bound and the positions are numbered from 5' to 3'. 如請求項83之方法,其中該組織係該額葉皮質,其中該至少一個脂質部分係與在該正義股之位置4處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 83, wherein the tissue is the frontal cortex, wherein the at least one lipid moiety binds to a nucleotide at position 4 of the sense strand, and wherein the positions are numbered from 5' to 3'. 如請求項80至81中任一項之方法,其中該正義股在該3'端處包含主幹-環圈,其中該主幹-環圈包含由式:5'-S1-L-S2-3'所表示之核苷酸序列,其中S1係與S2互補,且其中L在S1與S2之間形成環。The method of any one of claims 80 to 81, wherein the justice strand includes a backbone-loop at the 3' end, wherein the backbone-loop includes the formula: 5'-S1-L-S2-3' Represented is a nucleotide sequence in which S1 is complementary to S2 and in which L forms a loop between S1 and S2. 如請求項89之方法,其中該正義股係36至38個核苷酸。The method of claim 89, wherein the sense strand is 36 to 38 nucleotides. 如請求項90之方法,其中該組織係該脊髓,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置8、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 90, wherein the tissue is the spinal cord, and wherein the at least one lipid moiety is associated with position 1, position 4, position 8, position 12, position 13, position 18, position 20, position 23 of the sciatic strand , the nucleotide at position 28, position 29, or position 30 binds, and the positions are numbered from 5' to 3'. 如請求項90之方法,其中該組織係該延髓,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 90, wherein the tissue is the medulla oblongata, and wherein the at least one lipid moiety is associated with position 1, position 4, position 18, position 20, position 23, position 28, position 29, or position of the justice strand 30 nucleotides are bound, and the positions are numbered from 5' to 3'. 如請求項90之方法,其中該組織係該小腦,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置23、位置28、或位置29處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 90, wherein the tissue is the cerebellum, wherein the at least one lipid moiety binds to a nucleotide at position 1, position 4, position 23, position 28, or position 29 of the sense strand, and The positions are numbered from 5' to 3'. 如請求項90之方法,其中該組織係該下視丘,其中該至少一個脂質部分係與在該正義股之位置1、位置4、位置12、位置13、位置18、位置20、位置23、位置28、位置29、或位置30處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 90, wherein the tissue is the hypothalamus, and wherein the at least one lipid moiety is associated with positions 1, 4, 12, 13, 18, 20, 23, The nucleotide at position 28, position 29, or position 30 binds, and the positions are numbered from 5' to 3'. 如請求項90之方法,其中該組織係該額葉皮質,其中該至少一個脂質部分係與在該正義股之位置23處之核苷酸結合,且其中位置係從5'至3'編號。The method of claim 90, wherein the tissue is the frontal cortex, wherein the at least one lipid moiety binds to nucleotide at position 23 of the sense strand, and wherein the positions are numbered from 5' to 3'. 如請求項70至95中任一項之方法,其中單次劑量的該寡核苷酸或醫藥組成物使該星狀細胞mRNA之表現降低至少4週、至少8週、至少12週、至少23週、至少26週、或至少29週。The method of any one of claims 70 to 95, wherein a single dose of the oligonucleotide or pharmaceutical composition reduces the expression of the stellate cell mRNA for at least 4 weeks, at least 8 weeks, at least 12 weeks, at least 23 weeks weeks, at least 26 weeks, or at least 29 weeks. 如請求項70至95中任一項之方法,其中單次劑量的該寡核苷酸或醫藥組成物使該星狀細胞mRNA之表現降低達至一年。The method of any one of claims 70 to 95, wherein a single dose of the oligonucleotide or pharmaceutical composition reduces the expression of the stellate cell mRNA for up to one year. 一種套組,其包含如請求項1至68中任一項之寡核苷酸、視需要的醫藥上可接受之載劑、及藥品仿單,該藥品仿單包含用於向患有與星狀細胞mRNA之表現相關之疾病、病症或病況之個體投予之說明。A kit comprising the oligonucleotide of any one of claims 1 to 68, a pharmaceutically acceptable carrier if necessary, and a drug instruction sheet, the drug instruction sheet containing a medicine for treating patients with a star Instructions for administration to individuals with diseases, disorders, or conditions associated with expression of cellular mRNA. 如請求項98之套組,其中該藥品仿單包含用於鞘內投予之說明。For example, the kit of claim 98, wherein the drug package insert includes instructions for intrathecal administration. 一種如請求項1至68中任一項之寡核苷酸或如請求項69之醫藥組成物於製造用於治療與星狀細胞mRNA之表現相關之疾病、病症或病況的藥劑之用途。Use of an oligonucleotide according to any one of claims 1 to 68 or a pharmaceutical composition according to claim 69 in the manufacture of a medicament for the treatment of diseases, disorders or conditions associated with the expression of stellate cell mRNA. 如請求項1至68中任一項之寡核苷酸或如請求項69之醫藥組成物,其供使用於、或可適用於治療與星狀細胞mRNA之表現相關之疾病、病症或病況。The oligonucleotide of any one of claims 1 to 68 or the pharmaceutical composition of claim 69 is for use, or is applicable, in the treatment of diseases, disorders or conditions associated with the expression of stellate cell mRNA.
TW111142234A 2021-11-05 2022-11-04 Lipid conjugation for targeting astrocytes of the central nervous system TW202335674A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163276406P 2021-11-05 2021-11-05
US63/276,406 2021-11-05

Publications (1)

Publication Number Publication Date
TW202335674A true TW202335674A (en) 2023-09-16

Family

ID=86242054

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142234A TW202335674A (en) 2021-11-05 2022-11-04 Lipid conjugation for targeting astrocytes of the central nervous system

Country Status (3)

Country Link
AR (1) AR127588A1 (en)
TW (1) TW202335674A (en)
WO (1) WO2023081823A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020206350A1 (en) * 2019-04-04 2020-10-08 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting gene expression in the central nervous system
WO2021178607A1 (en) * 2020-03-05 2021-09-10 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases

Also Published As

Publication number Publication date
AR127588A1 (en) 2024-02-07
WO2023081823A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP2022526419A (en) Compositions and Methods for Inhibiting Gene Expression in the Central Nervous System
CN108026531B (en) Antisense nucleic acid
CN115210377A (en) Oligonucleotide compositions and methods thereof
KR20220069103A (en) Chemical modification of small interfering RNAs with minimal fluorine content
JP2023053352A (en) Antisense oligomer compounds
TW202333750A (en) Rnai oligonucleotide conjugates
TW202321449A (en) Oligonucleotide-based delivery vehicle for oligonucleotides agents and methods of use thereof
TW202335674A (en) Lipid conjugation for targeting astrocytes of the central nervous system
TW202228729A (en) Selective delivery of oligonucleotides to glial cells
TW202340462A (en) Lipid conjugation for targeting oligodendrocytes of the central nervous system
JP6934695B2 (en) Nucleic acid medicine and its use
TW202308662A (en) Lipid conjugation for targeting neurons of the central nervous system
US20240117351A1 (en) Compositions and methods for inhibiting gene expression in the central nervous system
EP3341480A1 (en) Modified antisense oligomers for exon inclusion in spinal muscular atrophy
CN117597444A (en) Lipid conjugation for targeting neurons of the central nervous system
JP2024518564A (en) Lipid conjugation for targeting neurons in the central nervous system
US20230416743A1 (en) Compositions and methods for inhibiting snca expression
US20230416742A1 (en) Compositions and methods for inhibiting mapt expression
CN112055597A (en) Methods and compositions for treating conditions associated with biliary duct deficiency
US20240124875A1 (en) Rnai conjugates and uses thereof
TW202409275A (en) Compositions and methods for inhibiting snca expression
WO2024040041A1 (en) Regulation of activity of rnai molecules
TW202330920A (en) Compositions and methods for modulating apoc3 expression
JP2024514880A (en) Compositions and methods for modulating PNPLA3 expression
TW202345873A (en) Compositions and methods for modulatingscapactivity