TW202334430A - 自酵母菌產生之alpha-1抗胰蛋白酶用於治療病毒感染 - Google Patents

自酵母菌產生之alpha-1抗胰蛋白酶用於治療病毒感染 Download PDF

Info

Publication number
TW202334430A
TW202334430A TW111149485A TW111149485A TW202334430A TW 202334430 A TW202334430 A TW 202334430A TW 111149485 A TW111149485 A TW 111149485A TW 111149485 A TW111149485 A TW 111149485A TW 202334430 A TW202334430 A TW 202334430A
Authority
TW
Taiwan
Prior art keywords
aat
yeast
protein
recombinant
fragment
Prior art date
Application number
TW111149485A
Other languages
English (en)
Inventor
曼弗雷德 斯坦格爾
Original Assignee
德商阿泰克醫療有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商阿泰克醫療有限公司 filed Critical 德商阿泰克醫療有限公司
Publication of TW202334430A publication Critical patent/TW202334430A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/57Protease inhibitors from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • C07K14/8121Serpins
    • C07K14/8125Alpha-1-antitrypsin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Dispersion Chemistry (AREA)
  • Otolaryngology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本發明係關於一種表現於經遺傳修飾之酵母菌中用於治療病毒感染及/或肺部發炎的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。在一個實施例中,該病毒感染為病毒性呼吸道感染,較佳為冠狀病毒感染,諸如SARS CoV感染,更佳為SARS-CoV-2。本發明進一步關於一種由經遺傳修飾之酵母菌產生重組AAT蛋白或其片段的方法。在實施例中,該方法包含以下步驟:培養經遺傳修飾之酵母菌,該酵母菌包含具有AAT編碼區可操作地連接至啟動子或啟動子/強化子組合之外源核酸分子;使重組AAT在該培養之酵母菌中表現;及自該培養物分離重組AAT。在實施例中,自酵母菌產生之該重組AAT製備呈醫藥組合物,諸如溶液,較佳適於霧化且隨後由個體吸入。

Description

自酵母菌產生之ALPHA-1抗胰蛋白酶用於治療病毒感染
本發明屬於重組蛋白生產及用該重組蛋白治療病毒感染及/或與肺部發炎相關之醫學病況的領域。
本發明之一個態樣係關於一種表現於經遺傳修飾之酵母菌中的用於治療病毒性呼吸道感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。在實施例中,病毒感染為冠狀病毒感染,諸如SARS CoV感染,更佳SARS-CoV-2。
本發明之另一態樣係關於一種包含該重組AAT蛋白或其片段及醫藥學上可接受之載劑的醫藥組合物。在實施例中,醫藥組合物適於由個體吸入。在實施例中,組合物為適於吸入之溶液、適於吸入之可溶性粉末或適於吸入之乾粉。
本發明之另一態樣係關於一種由經遺傳修飾之酵母菌產生重組AAT蛋白或其片段之方法。在實施例中,該方法包含以下步驟:培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子;使重組AAT在該經培養之酵母菌中表現;且自該培養物分離重組AAT。在實施例中,重組AAT蛋白或其片段表現於酵母菌科(family Saccharomycetaceae),較佳酵母菌科畢赤酵母屬( Saccharomycetaceae Pichia),更佳巴斯德畢赤酵母( Pichia pastoris)之酵母菌中。
本發明之另一態樣係關於一種生產醫藥組合物之方法,其包含由經遺傳修飾之酵母菌產生重組AAT或其片段及向重組AAT蛋白或其片段添加一或多種醫藥學上可接受之載劑的步驟。
嚴重急性呼吸道症候群(SARS)為冠狀病毒(CoV)介導之呼吸道疾病,在2002中首次被觀測到。基於科學報告,假定所有人類CoV可能均屬於人畜共通源。一旦人類感染,該病毒便可經由飛沫傳播及人類之間的密切接觸而迅速擴散,從而導致疾病流行或甚至大流行。作為一個實例,「2019年冠狀病毒疾病」 (COVID-19)由病原性冠狀病毒SARS-CoV-2引起。自2019年12月開始,病毒數週內在全球擴散開且導致國際衛生緊急情況。世界範圍的大流行病對衛生系統構成巨大的挑戰,且另外導致社會生活受到限制及全球市場經濟受到削弱。由於迄今為止未有可供使用的證實有效的療法,且該疾病與高發病率及死亡率相關,所以對彼等患病者之治療性干預以及對控制爆發之預防性措施的需求巨大。
Alpha-1抗胰蛋白酶(亦稱為A1AT、AAT、PI、SERPINA1)為約52 kDa糖蛋白,其為最豐富的內源性絲胺酸蛋白酶抑制劑(SERPIN超家族)之一。AAT被視為急性期蛋白,因此AAT濃度可在急性發炎時增加許多倍。
儘管初步知曉了其抗蛋白酶及消炎活性,但在過去十年內進行之研究已逐漸證實,AAT亦為免疫調節劑及細胞保護分子。因此,富含AAT之微環境被證明含有含量降低之促發炎細胞介素,諸如IL-1、IL-6及TNF-α及含量增加之消炎介體,諸如IL-1受體拮抗劑及IL-10。此現象亦描繪於人類PBMC活體外研究中以及由接受吸入AAT之囊腫纖維化患者獲得的樣品中。同時,已證實AAT直接結合IL-8及危險相關分子模式分子(DAMP),諸如細胞外HSP70及gp96,該等DAMP另外充當相關免疫反應之佐劑(Lior等人, Expert Opinion on Therapeutic Patents, 2016)。
出人意料地,AAT之消炎品質亦使先天性免疫細胞對真實威脅起反應;使巨噬細胞易於吞噬細菌、嗜中性白血球清除感染部位及負載抗原之樹突狀細胞遷移至引流淋巴結。另一方面,T淋巴細胞間接地對富含AAT之環境作出反應,待由先天性免疫細胞刺激。舉例而言,AAT已被證明能誘導促進保護性調節性T細胞擴增之半成熟抗原呈現細胞。屬於先天性及適應性免疫系統兩者之B淋巴細胞似乎在AAT存在下以減少的同型轉換形式發揮經修飾之反應,引起保護性IgM產生增強。已表明,在用AAT進行治療期間,例如依在CF患者中所描繪,細菌負荷之降低可能與增強之抗病原體免疫反應有關;同時,局部組織免受過多不當損傷,該不當損傷可能藉由升高局部DAMP之含量而促進有害的適應性反應(Lior等人, Expert Opinion on Therapeutic Patents, 2016)。
報告已指示,在COVID-19中AAT之產量增加,但此消炎反應無法抑制嚴重疾病(McElvaney等人, Am J Respir Crit Care Med. 2020年9月15日;202(6):812-821)。SARS-CoV-2進入受感染細胞係由病毒刺突蛋白經由其受體結合域(RBD)與人類血管收縮素轉化酶-2 (ACE2)目標受體結合來介導。舉例而言,藉由人類抗體阻斷此相互作用引起患者中病毒之中和,且因此使得感染癒合。進一步研究亦展示,SARS-CoV-2之進入係藉由內源性及外源性蛋白酶促進。此等蛋白酶以蛋白水解方式活化SARS-CoV-2刺突糖蛋白且為病毒向性之關鍵調節劑。AAT已被鑑別為一種豐富的血清蛋白酶抑制劑,其強力限制蛋白酶介導的SARS-CoV-2之進入。活體外AAT對蛋白酶介導之SARS-CoV-2進入的抑制以低於血清及支氣管肺泡組織中存在的濃度發生,表明AAT作用與生理相關(Oguntuyo等人, bioRxiv. 2020年8月15日)。
然而,迄今為止,獲得AAT仍主要依賴於自人類血漿純化。舉例而言,可用方法基本上受限於藉由添加硫酸銨進行之蛋白質沈澱。AAT純化之邏輯演進係硫酸銨分級分離與其他可利用AAT之物理化學特性之程序的組合。為了使較大蛋白質(通常由硫酸銨沈澱產生)池更容易分離至其中之一者(或多者)富集AAT的若干小池中,研究者所考慮之第一參數為蛋白質電荷。近年來,隨著在離子交換及親和層析領域中各種複雜材料之出現,觀測到增加之純化水平。舉例而言,在Morihara等人中,在用硫酸銨(80%)飽和人類血漿之後,將集結粒溶解於磷酸鹽緩衝液pH 8.0中,透析,且裝載於Affi-GEL Blue管柱上。在Zn-螯合劑管柱上之兩個後續步驟繼之以DE-離子交換層析使得能夠產生均質的AAT。
Kwon等人在純化來自酵母菌的以糖基化形式被分泌於培養基中之重組AAT上為前行者。其開發出一種程序,該程序涉及用硫酸銨(60-75%飽和)沈澱蛋白質,隨後進行一系列由陰離子交換(DEAE及mono Q管柱)及親和(A -Gel Blue管柱)層析組成之後續層析步驟。儘管酵母菌產生之AAT作為蛋白酶抑制劑(相比於血漿形式)具有完全功能,但此蛋白質之分子量(不同於血漿AAT)用內切糖苷酶H處理後,會減少至在大腸桿菌中產生之重組AAT之分子量。此指示此形式之N連接之糖基化為高甘露糖型。作者亦觀測到,糖基化賦予酵母菌產生之AAT以增強的針對熱失活之動力學穩定性。然而,對於重組蛋白之分泌產生,糖化酵母菌(Saccharomyces diastaticus)並不理想(Purification and characterization of alpha 1-antitrypsin secreted by recombinant yeast Saccharomyces diastaticus. J. Biotechnol. 1995, 42, 191-195.)。
Arjmand等人 2011 (Avicenna J Med Biotechnol. 2011, 3(3): 127-134)揭示重組人類AAT在甲基營養型巴斯德畢赤酵母菌中之表現及純化。人類AAT以分泌方式且在誘導型醇氧化酶1 (AOX1)啟動子之控制下表現。培養基中AAT蛋白之量在用甲醇誘導之後72小時經量測為60 mg/L。
Arjmand等人 2013 (Electronic Journal of Biotechnology, 2013, 第16卷, 第1期, 1-14)揭示巴斯德畢赤酵母( P . pastoris)作為宿主用於重組AAT之高效生產及分泌的用途。研究結果揭露,使巴斯德畢赤酵母之AAT基因之密碼子使用最佳化對在誘導型醇氧化酶1 (AOX1)及組成型甘油醛磷酸脫氫酶(GAP)啟動子控制下分泌之AAT含量具有積極作用。
WO2021191900揭示一種用呈適於吸入之劑型的包含重組人類AAT之醫藥組合物治療COVID-19的方法。
關於自人類血漿分離AAT仍有許多缺點要解決,例如人類血漿中白蛋白之豐度是一項挑戰,且人類血漿產生AAT之產率有限,因此需要用於產生分泌重組蛋白之最佳化方法。此外,迄今為止,酵母菌中AAT之重組產生受到相對較低產率的限制且缺乏臨床應用。
不管自人類血漿純化AAT之進展及重組產生AAT之進展,據本發明人所知,迄今為止不存在有說服力的解決方案來解決先前技術之缺點。需要減少或避免與自人類血漿分離AAT相關的問題的方法及手段,且需要重組AAT之新穎手段及用途。本領域中之研究尋求獲得適用於治療用途之所需量及純度之AAT的新手段。需要解決之另一目標問題為提供對病毒性呼吸道疾病及/或與肺部發炎相關之醫學病況的新穎治療。
鑒於先前技術,本發明潛在之技術問題為提供用於治療及/或預防病毒感染及/或與肺部發炎相關之醫學病況的替代及/或改良手段。另一本發明潛在之問題為提供用於產生足夠量及品質之AAT以用於治療用途的改良或替代手段。另一本發明潛在之問題為提供治療冠狀病毒感染或與該等感染相關之醫學病況的新穎手段。
此等問題由獨立技術方案之特徵解決。本發明之較佳實施例由附屬技術方案提供。
在一個態樣中,本發明係關於表現於經遺傳修飾之酵母菌中的用於治療病毒感染及/或肺部發炎的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在一個實施例中,本發明係關於一種表現於經遺傳修飾之酵母菌中的用於治療病毒性呼吸道感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
本發明因此進一步關於表現於經遺傳修飾之酵母菌中的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段在製造供治療病毒性呼吸道感染用之藥劑中的用途。
在實施例中,病毒感染或病毒性呼吸道感染為冠狀病毒感染,諸如SARS CoV感染,更佳SARS-CoV-2。
如下文實例中所示,本發明人已意外發現,表現於經遺傳修飾之酵母菌中之重組AAT較適用於治療病毒性呼吸道感染,尤其SARS CoV,諸如SARS-CoV-2。
儘管先前已有描述酵母菌中之AAT產生,但據本發明人所知,先前尚未評定過來自酵母菌之重組AAT在治療病毒性呼吸道疾病方面之功效。出人意料地,下文實例中呈現之實驗工作表明,來自酵母菌之重組AAT不僅能夠阻斷病毒進入活體外模型細胞,而且觀測到相對於來自人類血漿之純化AAT之現有治療性調配物的改良。舉例而言,與Prolastin AAT製劑相比,自酵母菌分離之重組AAT在阻斷病毒假粒子進入Caco2目標細胞方面展示出相對優良的特性。
因此,本發明代表一種使用酵母菌作為表現系統之新穎且驚人有效的重組AAT製劑。相應地,在實施例中經分離重組AAT蛋白本身、用於產生重組AAT之經遺傳修飾之酵母菌以及製備及使用酵母菌中產生之AAT的方法可藉由在治療病毒性呼吸道疾病上之功效的本發明發現來定義。
關於醫療用途及醫學適應症之實施例 在一個態樣中,本發明係關於一種表現於經遺傳修飾之酵母菌中的用於治療病毒性呼吸道感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在實施例中,本發明係關於表現於經遺傳修飾之酵母菌中的用於治療與病毒性呼吸道感染相關之醫學病況的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在一個實施例中,病毒性呼吸道感染為冠狀病毒感染,較佳為SARS冠狀病毒感染,更佳為SARS-CoV-2。
在實施例中,本發明係關於一種表現於經遺傳修飾之巴斯德畢赤酵母菌株中的用於治療病毒性呼吸道感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
儘管已知AAT能有效治療肺病,但使用表現於酵母菌中之AAT代表一種治療肺部或呼吸系統之病毒感染的出乎意料的有用且有效的方式。首先,肺病本身在其病理原因方面有很大差異,且病毒性肺病在機制及生物學上不同於其他肺病。如在本發明中治療病毒性肺部疾病之有效性本身並不能自早期的關於其他肺病,例如基於非病毒性發炎或慢性病況之疾病,諸如免疫疾病或慢性阻塞性肺病(COPD)之AAT治療的揭示內容被預料到。
在本發明之情形中,表現於經遺傳修飾之酵母菌中之重組alpha1-抗胰蛋白酶(AAT)蛋白質或其片段的用途不限於治療SARS-CoV感染,諸如SARS-CoV-2。在實施例中,待治療之病毒感染亦可指其他人類冠狀病毒感染,諸如人類冠狀病毒NL63、229E、HKU1及/或OC43或自其衍生之冠狀病毒。
在實施例中,待治療之病況為COVID-19之形式,其可為無症狀、輕度、中度或重度。
在實施例中,依本文所述之重組AAT用於預防及/或治療長COVID或與長COVID相關之醫學病況。
在實施例中,患者另外經歷COVID-19之標準醫學治療。舉例而言,標準醫學治療包含氧氣支持、無創通氣、高流量氧氣、機械通氣及體外膜氧化。
在實施例中,患者另外經歷COVID-19及/或其他病毒感染,諸如流感及RSV之標準醫學治療。舉例而言,一或多種止痛藥、抗發熱製劑及/或消炎劑可與AAT治療組合投與。
在實施例中,待治療之患者具有COVID-19症狀,其可存在任何持續時間或強度,例如患者可展現急性、延遲及/或持續的COVID症狀。
在本發明之實施例中,投與重組AAT持續複數個連續日。在實施例中,患者可經由吸入在一天內多次、一週內多次或甚至持續數週接受治療。
在本發明之實施例中,重組AAT作為預防性治療投與,例如藉由在暴露或可能暴露於病毒之前不久投與AAT實現呼吸道中病毒感染之短期預防。
在本發明之實施例中,治療得到以下至少一種結果:病毒清除增強、住院減少、氧依賴性降低、特別護理或機械通氣需求減少、醫療利用或負擔減少、曠課或曠工減少、抗生素需求減少、類固醇需求減少、復發頻率降低及/或發病率或發病風險降低。
在實施例中,使用本發明之治療減少展現諸如流感或COVID之病毒性呼吸道疾病之症狀的個體之時間。可在比不投與AAT更大之程度上減少醫學病況之症狀。症狀可因此減少至小於兩週、小於10天、小於7天或小於6天、5天、4天、3天、2天,或病毒性呼吸道疾病之症狀小於1天。
在實施例中,用AAT治療另外包含至少一種其他治療劑。此類藥劑可為(但不限於)抗病毒劑,例如選自由以下組成之群的抗病毒劑:蛋白酶抑制劑、解螺旋酶抑制劑、病毒複製抑制劑及病毒細胞進入抑制劑。
在實施例中,患者另外經歷抗病毒治療,該抗病毒治療選自(但不限於)神經胺糖酸酶抑制劑(NAI),諸如達菲(Tamiflu) (奧司他韋(oseltamivir))、阿培利司(Alpivab) (帕拉米韋(peramivir))、瑞樂沙旋達碟(Relenza) (紮那米韋(zanamivir))或紮那米韋(Zanamivir) (靜脈內調配物),或一或多種M2抑制劑(金剛烷),諸如金剛胺或金剛乙胺。
在實施例中,本發明係關於表現於經遺傳修飾之酵母菌中的用於治療或預防呼吸道之任何給定病毒感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
藉助於實例,呼吸道病毒疾病可發生於腺病毒、冠狀病毒(普通感冒病毒)、流感(flu)、副流感、小病毒b19 (第五病)、呼吸道融合性病毒(RSV)或鼻病毒(普通感冒)之任何感染。其他病毒性呼吸道疾病或病毒可與以下有關:HBoV,人類博卡病毒(bocavirus);HCoV,人類冠狀病毒;HMPV,人類間質肺炎病毒;HPIV,人類副流感病毒;HRSV,人類呼吸道融合性病毒;HRV,人類鼻病毒;PCF,咽結膜熱;SARS,嚴重急性呼吸道症候群;SARS-CoV,與SARS相關之冠狀病毒;URI,上呼吸道感染。
在實施例中,本發明亦關於表現於經遺傳修飾之酵母菌中的用於治療或預防流感感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在實施例中,本發明亦關於表現於經遺傳修飾之酵母菌中的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段,其用於治療或預防病毒性呼吸道疾病,較佳對藉由AAT實現之蛋白酶抑制敏感的疾病,如下文實例中所示。
在一個實施例中,投與重組AAT蛋白治療SARS-CoV-2、流感或RSV病毒感染,其中AAT蛋白或其片段係由巴斯德畢赤酵母表現且AAT蛋白或其片段係藉由吸入霧化溶液投與。
在一個實施例中,投與重組AAT蛋白治療SARS-CoV-2病毒感染,且AAT蛋白或其片段係由巴斯德畢赤酵母表現且使用層析,諸如離子交換或疏水相互作用層析分離,且AAT蛋白或其片段係藉由吸入霧化溶液投與。
關於 AAT 序列之實施例 在一個實施例中,AAT蛋白或其片段包含根據SEQ ID NO 3或5之序列或由SEQ ID NO 1、2或4編碼。
在本發明之情形中,SEQ ID NO 1、3及5為編碼AAT蛋白之例示性核苷酸序列。根據本發明之編碼AAT之核苷酸序列不限於SEQ ID NO 1、3及5且在實施例中可針對表現經最佳化,例如為編碼AAT蛋白之密碼子最佳化核苷酸序列。
在實施例中,AAT蛋白或其片段包含根據SEQ ID NO 3或5之序列或由其組成。此等序列為例示性序列且對本發明不具有限制性。
以下更詳細地揭示序列變化形式,包含例如經由取代及/或缺失之胺基酸序列變化及/或長度變化。
關於酵母菌中產生之 AAT 的實施例 依本文中更詳細地描述,本發明之重組AAT由酵母菌表現。儘管熟習此項技術者已知經分離之人類AAT (來自血漿)具有治療有用性,但尚未預料到酵母菌AAT蛋白在治療病毒性呼吸道疾病之特定情形下的活性。依本文所述之重組AAT之酵母菌來源不僅歸因於酵母菌中之重組表現系統能夠產生更大量的AAT,而且在治療病毒感染之情形下,經酵母菌表現之AAT亦能夠實現出人意料的治療作用。如下文實例中所示,與自血漿分離之AAT相比,來自酵母菌的重組AAT似乎在活體外阻斷病毒進入目標細胞上實現更大的作用。
在實施例中,在不結合至較佳及非限制性實例之情況下,依本文所述之酵母菌株及表現方式可在獲得本文所述之重組酵母菌之有益特性方面起作用。就酵母菌株、表現載體、特定啟動子或培養條件之使用而言,重組AAT之來源可為治療性重組AAT蛋白本身提供固有的物理及/或功能特徵。因此,在實施例中,與自酵母菌表現或製造重組AAT相關之特徵可用於定義本發明之重組AAT蛋白。
在一個實施例中,重組AAT蛋白或其片段表現於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母之酵母菌中。
在一個實施例中,重組AAT或其片段具有不低於自人類血漿純化之AAT的血清半衰期及/或活性。
在一個實施例中,AAT或其片段包含重組AAT蛋白或其片段之轉譯後修飾。
在一個實施例中,轉譯後修飾為O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化或其任何組合,較佳包含一或多個來自在酵母菌中之表現的特異性修飾,諸如Man3GlcNAc2。
在一個實施例中,重組AAT蛋白或其片段包含一或多種類人糖型模式。
在一個實施例中,AAT蛋白或其片段在包含以下步驟之方法中由經遺傳修飾之酵母菌產生: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子, b.使重組AAT在經培養之酵母菌中表現,及 c.自培養物分離重組AAT。
在一個實施例中,AAT蛋白或其片段在包含以下步驟之方法中由經遺傳修飾之酵母菌產生: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子,其中該酵母菌較佳屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母, b. 使重組AAT或其片段在該經培養之酵母菌中表現,其中該啟動子較佳為甘油醛-3-磷酸脫氫酶(GAP)或醇氧化酶I (AOX1),及 c.自該培養物分離重組AAT或其片段。
關於自酵母菌產生 AAT 之方法的實施例 在另一態樣中,本發明係關於一種由經遺傳修飾之酵母菌產生重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段之方法,其包含以下步驟: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子, b.使重組AAT在經培養之酵母菌中表現,及 c.自培養物分離重組AAT。
依本文所述,藉由依本文所述之用於產生AAT之方法獲得的重組AAT較佳經組態以用於治療病毒感染,較佳病毒性呼吸道感染之醫療用途。
在實施例中,依本文所用之酵母菌可為適於表現重組蛋白之任何酵母菌屬。
在實施例中,酵母菌(yeast)屬於酵母菌屬( Saccharomyces)、畢赤酵母屬、漢遜酵母屬( Hansenula)、耶氏酵母屬( Yarrowia)、阿氏酵母屬( Arxula)、克魯維酵母屬( Kluyveromyces)或裂殖酵母屬( Schizosaccharomyces)中之一或多者,例如為釀酒酵母( Saccharomyces cerevisiae)、巴斯德畢赤酵母、多形漢遜酵母( Hansenula polymorpha)、解脂耶氏酵母( Yarrowia lipolytica)、解腺嘌呤阿氏酵母( Arxula adeninivorans)、乳酸克魯維酵母菌或粟酒裂殖酵母( Schizosaccharomyces pombe)。
在實施例中,酵母菌屬於酵母菌科,較佳酵母菌科畢赤酵母屬。
在實施例中,酵母菌為巴斯德畢赤酵母。
在實施例中,酵母菌為釀酒酵母。
在實施例中,酵母菌為粟酒裂殖酵母。
不受理論束縛,使用酵母菌宿主表現重組AAT (較佳rhAAT)賦予AAT不同於自人類來源,諸如人類血漿分離之AAT的結構、功能及/或活性。因此,由酵母菌重組表現之AAT之定義表示AAT蛋白本身之結構及/或功能特徵。
在實施例中,經由在酵母菌中表現誘導之AAT蛋白的轉譯後修飾經由表現及分泌至培養物上清液實現極佳AAT活性與異常高產率之組合。
在實施例中,在酵母菌中表現能夠使酵母菌AAT相對於富集及/或分離之人類AAT製劑之穩定性增加、純度提高、活性增加及/或對投與後降解之抗性提高中之一或多者。
在實施例中,酵母菌中產生之AAT在投與人類個體之後展現出人意料地少的不合需要之副作用。本發明人設想,由酵母菌表現之AAT展示在人類個體中耐受性概況良好且對AAT製劑的非所要免疫反應的風險較低。
在實施例中,用於重組AAT產生之特殊酵母菌株賦予AAT不同於其他酵母菌株中產生的AAT及/或自人類來源,諸如人類血漿分離之AAT之結構、功能及/或活性。舉例而言,本文所提供之實例展示重組AAT自巴斯德畢赤酵母之出乎意料地良好表現、分泌及分離。在實施例中,由巴斯德畢赤酵母表現之AAT展現相對於其他酵母菌宿主中之AAT及/或經分離之人類AAT之表現的結構、功能、活性、表現、分泌及/或分離的一或多個優點。
在一個實施例中,依本文所用之方法包含使用經組態以調控AAT在酵母菌,諸如醇氧化酶I (AOX1)中之表現的誘導型啟動子。
在實施例中,AAT蛋白或其片段屬於選自由哺乳動物、魚類、真菌及植物組成之群的來源,較佳地其中AAT蛋白為人類AAT蛋白或其片段。
在實施例中,AAT蛋白或片段自酵母菌分泌至培養基中,直至每公升液體培養基至少1 mg蛋白質之濃度(mg/L),較佳至2至100 mg/L之濃度,更佳至5至100 mg/mL或10至100 mg/L之濃度。
在實施例中,自酵母菌分泌至培養基之AAT蛋白或其片段的濃度相當於1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100 mg/L。產率亦可在來源於以上提供之值中之任何一或多者的範圍內。在實施例中,自酵母菌分泌至培養基之AAT蛋白或其片段的濃度相當於高於本文所呈現之值的濃度。
在一個實施例中,經遺傳修飾之酵母菌屬於酵母菌科,較佳酵母菌科酵母菌屬,更佳釀酒酵母,其中該酵母菌亦產生黃腐酚(Xanthohumol)。在實施例中,經遺傳修飾之酵母菌為畢赤酵母屬菌株,且亦產生黃腐酚。
用於表現重組AAT之經遺傳修飾之酵母菌較佳包含經組態以用於有效AAT表現之酵母菌表現載體。包含酵母菌系統之複製及表現組分之適合載體為熟習此項技術者已知。非限制性地,適合載體為本文所述之載體,諸如pGAPz、pPICz及/或pEX-A258。
依本文所述,採用具有AAT編碼區的外源核酸分子,諸如酵母菌表現載體,其中該AAT編碼區經可操作地連接至啟動子或啟動子/強化子組合。適合啟動子可由熟習此項技術者選擇。
在實施例中,啟動子為甘油基-3-磷酸脫氫酶(GAP)。
在其他實施例中,啟動子為誘導型,較佳為醇氧化酶I (AOX1)。
在實施例中,自經遺傳修飾之酵母菌表現AAT通常引起可溶性AAT分泌於酵母菌培養物之上清液中。在進一步使用前,重組AAT通常需要分離或純化。亦可使用必需方案產生臨床級AAT。
在實施例中,本發明之重組AAT使用離子交換及/或親和及/或疏水性相互作用層析及/或尺寸排阻層析分離。在實施例中,酵母菌培養物上清液可用硫酸銨處理以沈澱蛋白質。隨後,將沈澱之集結粒溶解於適合緩衝液(諸如pH 8.0之磷酸鹽緩衝液)中,視情況透析,且裝載至適當管柱用於純化。舉例而言,離子交換層析允許產生高純度重組AAT。
在實施例中,純化酵母菌中產生之重組AAT之上清液包含陽離子交換層析(CEX)。
在實施例中,純化酵母菌中產生之重組AAT之上清液包含陰離子交換層析(AEX)。
在實施例中,純化酵母菌中產生之重組AAT之上清液包括尺寸排阻層析。
在實施例中,純化酵母菌中產生之重組AAT之上清液包括疏水性相互作用層析。
在實施例中,純化酵母菌中產生之重組AAT之上清液包括親和層析。
在實施例中,AAT可在酵母菌中作為與適合的純化標籤,諸如組胺酸標籤(His-標籤)融合之融合蛋白表現,此有助於後續純化步驟。
在實施例中,自酵母菌製備AAT之方法可包含在自酵母菌分離之後活體外修飾重組AAT蛋白。在實施例中,修飾包含重組AAT蛋白與生物相容性聚合物之共價連接。
關於組合物及投與形式之實施例 本發明之另一態樣係關於一種包含在酵母菌中產生之該重組AAT蛋白或其片段及醫藥學上可接受之載劑的醫藥組合物。 在實施例中,醫藥組合物適於由個體吸入。在實施例中,組合物為適於吸入之溶液、適於吸入之可溶性粉末或適於吸入之乾粉。
在實施例中,藉由吸入投與可涵蓋經由適於吸入之溶液、適於吸入之可溶性粉末或適於吸入之乾粉吸入酵母菌中產生之重組AAT或其片段中之一或多者。
在一個實施例中,AAT蛋白或其片段係藉由吸入霧化溶液投與。
在實施例中,醫藥組合物可藉由用於吸入之霧化器,例如Pari Boy Pro或類似裝置製備。
在一個實施例中,病毒感染為冠狀病毒感染,諸如SARS CoV,較佳SARS-CoV-2,且AAT蛋白或其片段係藉由吸入霧化溶液投與。
在一相關態樣中,本發明係關於一種用於治療病毒性呼吸道感染之醫藥組合物,其包含表現於經遺傳修飾之酵母菌中之重組alpha1-抗胰蛋白酶(AAT)蛋白質或其片段。
在一個實施例中,病毒感染為SARS-CoV-2,AAT蛋白或其片段表現於巴斯德畢赤酵母中,且AAT藉由吸入霧化溶液來投與。
在實施例中,本發明之組合物經調配以用於非經腸投與,例如經血管內(靜脈內或動脈內)、腹膜內或肌肉內投與。
在實施例中,供使用之醫藥組合物可伴隨著同時或依序投與一或多種適用於治療病毒感染或與肺部發炎相關之醫學病況的其他活性劑。
在一個實施例中,一或多種其他活性劑可為黃腐酚。
在不受理論束縛的情況下,在使用酵母菌科,較佳酵母菌科屬,更佳釀酒酵母之酵母菌的醱酵製程期間,當將啤酒花添加至製程中時,黃腐酚作為副產物產生且藉由靶向冠狀病毒,例如SARS-CoV-2之蛋白酶,充當用於各種冠狀病毒之強效泛抑制劑(pan-inhibitor)。
Wang等人, 2021展示在酶促檢定中黃腐酚抑制蛋白酶活性,同時用黃腐酚進行預處理限制SARS-CoV-2及Vero-E6細胞中之PEDV複製。黃腐酚為冠狀病毒之強效泛抑制劑及用於進一步藥物研發之極佳主導化合物(Wang等人, 2021, Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease, international journal of molecular sciences)。
因此,在實施例中,來自酵母菌科,較佳酵母菌科酵母菌屬,更佳釀酒酵母之經遺傳修飾之酵母菌不僅產生重組AAT蛋白,且亦產生可引起治療病毒感染,諸如冠狀病毒之協同效應的輔助物質黃腐酚。
在實施例中,本發明係關於一種用於預防、降低風險及/或治療病毒性呼吸道感染之方法,該方法包含向有需要之個體投與治療量之重組AAT蛋白,其中該重組AAT蛋白或其片段表現於依本文所述之經遺傳修飾之酵母菌中,其中該投與較佳地包含吸入AAT蛋白,例如霧化液滴,及/或向個體注射AAT蛋白。
本發明之其他態樣 本發明之另一態樣係關於可自如本發明之任何實施例中所述之方法獲得的重組AAT蛋白或其片段。
本發明之另一態樣係關於一種經遺傳修飾之酵母菌,其中該酵母菌經遺傳修飾以表現重組AAT及其片段,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子。
本發明之另一態樣係關於藉由在酵母菌中表現產生之重組AAT蛋白或其片段。
本發明之另一態樣係關於由包含以下之步驟產生的重組AAT蛋白或其片段: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子,該啟動子諸如為甘油醛-3-磷酸脫氫酶(GAP)、醇氧化酶I (AOX1) b.使重組AAT在經培養之酵母菌中表現,及 c.自培養物分離重組AAT。
本發明之另一態樣係關於一種生產醫藥組合物之方法,其包含以下步驟: a.根據依本文所述之方法由經遺傳修飾之酵母菌產生重組AAT或其片段,及 b.添加一或多種醫藥學上可接受之載劑至重組AAT蛋白或其片段。
本發明之其他例示性態樣及實施例係關於例如: 實施例1.一種由經遺傳修飾之酵母菌產生重組alpha1-抗胰蛋白酶(AAT)蛋白質或其片段之方法,其包含以下步驟: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子, b.使重組AAT在經培養之酵母菌中表現,及 c.自培養物分離重組AAT。
實施例2.根據前述實施例之方法,其中啟動子為經組態以調控AAT於酵母菌中之表現的誘導型啟動子,諸如醇氧化酶I (AOX1)。
實施例3.如前述實施例中任一項之方法,其中該酵母菌屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母。
實施例4.如前述實施例中任一項之方法,其中AAT蛋白或其片段屬於選自由哺乳動物、魚類、真菌及植物組成之群的來源,較佳地其中AAT蛋白為人類AAT蛋白。
實施例5.如前述實施例中任一項之方法,其中該外源核酸分子包含如SEQ ID NO: 1或SEQ ID NO: 2中所闡述之序列。
實施例6.如前述實施例中任一項之方法,其中重組AAT具有不低於自人類血漿純化之AAT的血清半衰期及/或活性。
實施例7.如前述實施例中任一項之方法,其中AAT蛋白或片段自酵母菌分泌至培養基中,直至每公升液體培養基至少1 mg蛋白質之濃度(mg/L),較佳至5-100 mg/L之濃度。
實施例8.如前述實施例中任一項之方法,其包含重組AAT蛋白之轉譯後修飾。
實施例9.如前述實施例中任一項之方法,其中轉譯後修飾為O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化或其任何組合。
實施例10.如前述實施例中任一項之方法,其中重組AAT蛋白具有一或多種類人糖型模式。
實施例11.如前述實施例中任一項之方法,其包含在自酵母菌分離之後活體外修飾重組AAT蛋白。
實施例12.如前述實施例之方法,其中修飾係重組AAT蛋白與生物相容性聚合物之共價連接。
實施例13.一種重組AAT蛋白或其片段,其可獲自根據前述實施例中之任一者的方法。
實施例14.如前述實施例之重組AAT蛋白或其片段,其包含一或多個來自在酵母菌中之表現的特異性修飾,諸如Man3GlcNAc2。
實施例15.一種經遺傳修飾之酵母菌,其中該酵母菌經遺傳修飾以表現重組AAT及其片段,該酵母菌包含具有可操作地連接於啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子。
實施例16.如前述實施例之經遺傳修飾之酵母菌,其中該外源核酸分子包含如SEQ ID NO: 1或SEQ ID NO: 2中所闡述之序列。
實施例17.如實施例15及16中任一項之經遺傳修飾之酵母菌,其中該啟動子為甘油醛-3-磷酸脫氫酶(GAP)。
實施例18.如實施例15至17中任一項之經遺傳修飾之酵母菌,其中該啟動子為誘導型,較佳為醇氧化酶I (AOX1)。
實施例19.如實施例15至18中任一項之經遺傳修飾之酵母菌,其中該酵母菌屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母。
實施例20.一種重組AAT蛋白或其片段,其由包含以下之步驟產生: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子,該啟動子諸如為甘油醛-3-磷酸脫氫酶(GAP)、醇氧化酶I (AOX1) b.使重組AAT在經培養之酵母菌中表現,及 c.自培養物分離重組AAT,其中該酵母菌屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母。
實施例21.如前述實施例之重組AAT蛋白或其片段,其中外源核酸分子包含如SEQ ID NO: 1或SEQ ID NO: 2中所闡述之序列,及/或其中AAT胺基酸序列包含根據SEQ ID NO: 3或SEQ ID NO: 5之序列。
實施例22.如實施例20至21之重組AAT蛋白或其片段,其包含轉譯後修飾,例如O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化及其任何組合。
實施例23.如實施例20至22之重組AAT蛋白或其片段,其包含一或多種類人糖型模式。
實施例24.一種生產醫藥組合物之方法,其包含以下步驟: a.根據實施例1至12中任一項之方法由經遺傳修飾之酵母菌產生重組AAT或其片段,及 b.添加一或多種醫藥學上可接受之載劑至重組AAT蛋白或其片段。
實施例25.一種醫藥組合物,其包含重組AAT蛋白或其片段及醫藥學上可接受之載劑,其中該重組AAT蛋白或其片段表現於根據實施例15至19中任一項之經遺傳修飾之酵母菌中。
實施例26.根據前述實施例之醫藥組合物,其中該組合物為適於吸入之溶液或適於吸入之可溶性粉末或直接用於吸入之乾粉。
實施例27.根據前述實施例之醫藥組合物,其中組合物可藉由用於吸入之霧化器製備。
實施例28.如實施例25之醫藥組合物,其用於預防及/或治療病毒感染。
實施例29.根據前述實施例之醫藥組合物,其中病毒感染由冠狀病毒、較佳SARS-CoV-2引起。
實施例30.如實施例25之醫藥組合物,其用於預防及/或治療與肺部發炎相關之醫學病況。
實施例31.如實施例28至30之供使用之醫藥組合物,其進一步包含同時或依序投與一或多種適用於治療病毒感染或與肺部發炎相關之醫學病況的其他活性劑。
本發明之各種態樣及實施例由常見及出人意料的發現統一、受益於該發現、基於該發現及/或藉由該發現聯繫起來,該發現為由經基因工程改造之酵母菌產生之重組AAT蛋白可有效地應用於治療病毒感染及/或與肺部發炎相關之醫學病況。描述本發明之一或多個態樣或實施例的任何給定特徵可用於描述本發明之任何其他態樣或實施例,且視為揭示於本發明之任何其他態樣或實施例的情形中。舉例而言,與AAT產生方法有關的本發明實施例可視為與本發明之其他態樣,諸如AAT蛋白本身及/或其醫學用途有關,且揭示於該等其他態樣的情形中。 本說明書中所揭示之序列之概述:
SEQ ID NO 序列 描述
1 ATGCCGTCTTCTGTCTCGTGGGGCATCCTCCTGCTGGCAGGCCTGTGCTGCCTGGTCCCTGTCTCCCTGGCTGAGGATCCCCAGGGAGATGCTGCCCAGAAGACAGATACATCCCACCATGATCAGGATCACCCAACCTTCAACAAGATCACCCCCAACCTGGCTGAGTTCGCCTTCAGCCTATACCGCCAGCTGGCACACCAGTCCAACAGCACCAATATCTTCTTCTCCCCAGTGAGCATCGCTACAGCCTTTGCAATGCTCTCCCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCCTGAATTTCAACCTCACGGAGATTCCGGAGGCTCAGATCCATGAAGGCTTCCAGGAACTCCTCCGTACCCTCAACCAGCCAGACAGCCAGCTCCAGCTGACCACCGGCAATGGCCTGTTCCTCAGCGAGGGCCTGAAGCTAGTGGATAAGTTTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAAGCCTTCACTGTCAACTTCGGGGACACCGAAGAGGCCAAGAAACAGATCAACGATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTTGGTCAAGGAGCTTGACAGAGACACAGTTTTTGCTCTGGTGAATTACATCTTCTTTAAAGGCAAATGGGAGAGACCCTTTGAAGTCAAGGACACCGAGGAAGAGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATGAAGCGTTTAGGCATGTTTAACATCCAGCACTGTAAGAAGCTGTCCAGCTGGGTGCTGCTGATGAAATACCTGGGCAATGCCACCGCCATCTTCTTCCTGCCTGATGAGGGGAAACTACAGCACCTGGAAAATGAACTCACCCACGATATCATCACCAAGTTCCTGGAAAATGAAGACAGAAGGTCTGCCAGCTTACATTTACCCAAACTGTCCATTACTGGAACCTATGATCTGAAGAGCGTCCTGGGTCAACTGGGCATCACTAAGGTCTTCAGCAATGGGGCTGACCTCTCCGGGGTCACAGAGGAGGCACCCCTGAAGCTCTCCAAGGCCGTGCATAAGGCTGTGCTGACCATCGACGAGAAAGGGACTGAAGCTGCTGGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCCGAGGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACAAAATACCAAGTCTCCCCTCTTCATGGGAAAAGTGGTGAATCCCACCCAAAAATAA AAT編碼序列
2 GAAGATCCACAAGGTGATGCTGCTCAGAAAACAGACACCTCACACCATGATCAAGATCATCCGACATTTAACAAGATCACACCTAACCTTGCAGAGTTCGCCTTTTCCTTGTATCGTCAGCTTGCTCATCAAAGCAACTCGACGAACATTTTCTTTTCCCCAGTAAGTATTGCAACTGCATTTGCTATGCTATCGTTGGGTACCAAAGCTGACACTCATGACGAAATATTGGAGGGTCTAAACTTTAACTTGACAGAAATCCCCGAAGCCCAAATTCATGAGGGATTTCAAGAGTTGTTGAGAACTCTAAACCAACCTGACTCTCAACTGCAGTTAACTACCGGTAATGGACTGTTCTTAAGCGAAGGTTTAAAATTGGTCGATAAGTTCCTTGAGGACGTTAAGAAGTTGTATCACTCTGAGGCTTTTACGGTCAATTTCGGAGATACTGAGGAAGCCAAGAAACAAATCAATGACTACGTGGAAAAGGGAACTCAAGGCAAGATCGTTGACTTGGTGAAAGAACTGGATAGAGATACCGTATTTGCTTTAGTGAACTACATCTTCTTTAAAGGGAAATGGGAAAGACCATTCGAGGTCAAGGATACTGAGGAGGAAGATTTTCACGTCGACCAGGTAACCACTGTTAAGGTTCCGATGATGAAACGATTGGGAATGTTCAACATTCAGCACTGTAAGAAGTTGTCAAGTTGGGTTCTGCTTATGAAGTACTTAGGGAATGCAACTGCCATTTTCTTCTTGCCTGATGAAGGTAAACTGCAACATTTGGAAAATGAACTTACACACGATATTATCACCAAATTTCTAGAGAACGAAGATAGGAGATCAGCCTCTTTGCATTTGCCAAAGCTGTCAATAACAGGTACTTATGACTTGAAATCCGTTCTTGGCCAATTGGGCATAACTAAGGTGTTTTCTAATGGTGCTGATTTGAGTGGTGTTACAGAGGAAGCTCCCTTAAAGCTATCTAAGGCTGTTCACAAAGCAGTTCTTACCATTGACGAGAAAGGTACTGAAGCTGCAGGAGCTATGTTTCTGGAAGCCATTCCTATGTCCATTCCACCTGAAGTTAAATTCAATAAGCCTTTTGTCTTTCTTATGATTGAGCAGAATACGAAATCTCCATTATTCATGGGAAAGGTAGTGAATCCAACCCAGAAA 密碼子優化AAT編碼序列1
3 EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDATEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK 人類AAT序列1
4 GAGGACCCTCAAGGTGACGCCGCTCAAAAGACTGATACCTCGCACCACGACCAAGACCACCCAACTTTTAACAAGATTACTCCTAATCTAGCTGAGTTCGCATTCTCTCTCTACAGACAACTCGCTCATCAGTCTAACTCTACGAACATTTTCTTCTCCCCAGTGTCCATTGCAACTGCTTTCGCCATGCTTTCTTTGGGTACTAAGGCTGACACACACGACGAGATTTTAGAAGGATTGAACTTTAATCTTACCGAAATTCCTGAGGCCCAAATTCACGAAGGTTTTCAGGAGCTGCTTAGAACTCTTAACCAGCCAGATAGCCAGCTACAACTTACTACTGGAAATGGACTATTCTTGAGTGAAGGTCTGAAGCTAGTTGACAAATTCCTCGAAGATGTGAAAAAGTTGTACCATTCTGAGGCTTTCACCGTCAACTTCGGTGACACAGAGGAGGCTAAAAAGCAGATCAACGACTACGTTGAAAAGGGTACGCAAGGTAAAATCGTTGACCTCGTTAAAGAGCTTGATAGAGACACCGTATTTGCTCTTGTCAATTACATCTTCTTTAAAGGAAAGTGGGAGAGACCTTTCGAGGTCAAGGACACCGAGGAGGAAGATTTTCATGTAGATCAAGTCACCACTGTTAAGGTTCCAATGATGAAGCGTCTCGGTATGTTTAACATCCAACACTGTAAAAAGCTATCTTCTTGGGTCCTTCTGATGAAGTACCTGGGTAACGCTACTGCAATCTTCTTCCTACCAGATGAAGGTAAGCTCCAGCACCTAGAGAACGAACTTACCCACGACATCATTACTAAGTTCCTGGAAAACGAAGACCGTAGATCCGCTTCCCTGCACCTCCCAAAACTGTCTATCACTGGTACCTATGACCTCAAGTCTGTTCTGGGTCAACTAGGTATAACCAAAGTGTTTTCAAACGGCGCTGACCTCTCCGGTGTGACTGAAGAGGCACCTCTCAAGCTGTCCAAGGCCGTTCACAAGGCAGTCCTTACCATTGATGAAAAGGGAACTGAAGCTGCCGGCGCTATGTTCCTAGAGGCCATCCCAATGTCAATTCCTCCCGAGGTTAAGTTCAACAAGCCATTCGTCTTCCTAATGATTGAACAAAACACAAAGTCTCCTCTGTTCATGGGAAAGGTTGTTAACCCAACCCAAAAGTAATAG 密碼子優化AAT編碼序列2
5 EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK 人類AAT序列2
專利及非專利文獻之所有引用文檔均以全文引用的方式併入本文中。
Alpha-1 抗胰蛋白酶 ( AAT ) Alpha-1抗胰蛋白酶(亦稱為A1AT、AAT、PI、SERPINA1)為約52 kDa糖蛋白,其為最豐富的內源性絲胺酸蛋白酶抑制劑(SERPIN超家族)之一。AAT被視為急性期蛋白,其中AAT濃度可在急性發炎時增加許多倍。
AAT編碼區較佳為編碼天然存在或合成的AAT蛋白序列的展現AAT功能的任何核酸,與人類AAT相比,其具有降低、相同、類似或提高的活性,或功能上類似於人類AAT。AAT之胺基酸序列可以寄存編號1313184B自NCBI資料庫獲得。編碼AAT之對應核酸序列可由分子生物學或遺傳學之技術人員提供。本發明涵蓋展現與未經修飾之人類形式之AAT功能類似或相似性的AAT之序列變異體的用途。
一個AAT編碼序列(CDS)在http://www.ncbi.nlm.nih.gov/ nuccore/NM_000295.4上公開且為一個較佳實施例。此序列包含全序列之鹼基262至1518。SEQ ID NO 1表示一個例示性AAT編碼序列。
在本發明之一些實施例中,CDS經密碼子最佳化以增加蛋白質產生。密碼子最佳化之後的編碼序列較佳如在SEQ ID NO 2中讀取。
根據SEQ ID NO 1及/或2之核苷酸序列編碼根據SEQ ID NO 3之胺基酸序列之人類AAT蛋白。
在實施例中,使用根據SEQ ID NO 5之人類AAT蛋白,其對應於此項技術中已知之人類AAT序列。
因此,本發明涵蓋表現本文所描述之重組AAT的經遺傳修飾之酵母菌、較佳巴斯德畢赤酵母的用途,其中酵母菌包含選自由以下組成之群的核酸分子: a)包含編碼AAT蛋白之核苷酸序列,諸如根據SEQ ID NO 3或5,較佳根據SEQ ID NO 1或2之核苷酸序列的核酸分子, b)與根據a)之核苷酸序列互補的核酸分子; c)包含具有足夠序列一致性在功能上與根據a)或b)之核苷酸序列類似/等效之核苷酸序列,較佳包含與根據a)或b)之核苷酸序列具有至少70%、75%、80%、85%、較佳90%、更佳95%的序列一致性的核酸分子; d)由於遺傳密碼簡併成根據a)至c)之核苷酸序列的核酸分子;及/或 e)根據a)至d)之核苷酸序列由缺失、添加、取代、易位、反轉及/或插入修飾且在功能上類似/等效於根據a)至d)之核苷酸序列的核酸分子。
因此,本發明涵蓋根據SEQ ID NO 3或5之AAT蛋白或其變異體,或如本文所述包含編碼根據SEQ ID NO 3或5之胺基酸序列的核苷酸序列的經遺傳修飾之酵母菌,較佳巴斯德畢赤酵母的用途。
本發明涵蓋SEQ ID NO 3之其他序列變異體,尤其與SEQ ID NO 3或5具有至少70%序列一致性,較佳與SEQ ID NO 3或5具有至少75%、80%、85%、90%或至少95%序列一致性之變異體。此類序列變異體較佳在功能上類似或等效於本文揭示之人類AAT。在維持SEQ ID NO 3或5之人類AAT之功能等效性的情況下,本發明亦涵蓋蛋白質長度之變化。例如50個胺基酸、40個、30個、20個或10個胺基酸之蛋白質長度之截短或延長可維持AAT活性且因此涵蓋於本發明中。
功能上類似之序列係指編碼功能性AAT基因產物及實現與人類AAT相同或類似之功能作用的能力。AAT功能可藉由其活體外抑制多種蛋白酶,諸如胰蛋白酶之能力或其抑制嗜中性白血球彈性蛋白酶之能力確定(如下文所述)。用於測定蛋白酶活性或用於測定嗜中性白血球彈性蛋白酶活性之適當分析為熟習此項技術者已知。
可經由胺基酸序列中之取代發生的對AAT蛋白之蛋白質修飾及編碼該等分子之核酸序列亦包括在本發明之範疇內。依本文所定義之取代為對蛋白質之胺基酸序列進行之修飾,其中一或多個胺基酸經相同數目之(不同)胺基酸置換,產生含有與初級蛋白質不同之胺基酸序列的蛋白質。在一些實施例中,此修正將不顯著改變蛋白質之功能。如同添加,取代可為天然或人工的。此項技術中熟知,可在不顯著改變蛋白質功能之情況下進行胺基酸取代。當修飾係關於「保守性」胺基酸取代,即為一種胺基酸取代另一種具有類似特性之胺基酸時,尤其如此。此類「保守」胺基酸可為天然或合成胺基酸,因為尺寸、電荷、極性及構形可在不顯著影響蛋白質之結構及功能的情況下經取代。通常,許多胺基酸可經保守胺基酸取代而不有害地影響蛋白質之功能。一般而言,非極性胺基酸Gly、Ala、Val、Ile及Leu;非極性芳族胺基酸Phe、Trp及Tyr;中性極性胺基酸Ser、Thr、Cys、Gln、Asn及Met;帶正電荷胺基酸Lys、Arg及His;帶負電荷胺基酸Asp及Glu,代表保守胺基酸之群。此清單不為詳盡的。舉例而言,熟知Ala、Gly、Ser及有時Cys可彼此取代,即使其屬於不同群組。
術語「保守性胺基酸取代」為此項技術中所熟知,其係關於特定胺基酸經具有類似特徵(例如,類似電荷或疏水性、類似體積)之胺基酸取代。實例包括天冬胺酸取代麩胺酸,或異白胺酸取代白胺酸。保守性取代變異體將1)相對於親本序列僅具有保守性胺基酸取代,2)相對於親本序列將具有至少90%序列一致性,較佳至少95%一致性、96%一致性、97%一致性、98%一致性或99%或更高一致性;及3)將保留神經保護或神經恢復活性。就此而言,上述多肽序列之任何保守性取代變異體涵蓋於本發明中。此類變異體視為「AAT蛋白」。
依本文所用,關於參考多肽或核酸序列之「序列一致性百分比(%)」被定義為在比對序列且必要時引入空位以實現最大序列一致性百分比,且不考慮任何保守性取代作為序列一致性之一部分之後,與參考多肽或核酸序列中之胺基酸殘基或核苷酸一致的候選序列中之胺基酸殘基或核苷酸的百分比。出於測定胺基酸或核酸序列一致性百分比之目的,可以此項技術內之各種方法,例如使用公開可用的電腦軟體程式進行比對。諸如BLAST或Clustal之軟體實現此類序列比對及一致性百分比之計算。依本文所用,兩個序列之間的同源性百分比相當於序列之間的一致性百分比。序列之間的百分比一致性或同源性之判定可例如藉由使用GAP程式(Genetics Computer Group,軟體;目前可在http://www.accelrys.com上經由Accelrys獲得)進行,且可使用例如ClustalW演算法(VNTI軟體,InforMax Inc.)進行比對。可使用所關注核酸序列搜索序列資料庫。資料庫搜索演算法典型地基於BLAST軟體(Altschul等人,1990)。在一些實施例中,可沿核酸之全長確定同源性或一致性百分比。
在實施例中,AAT在相關序列之N端及/或C端處可包含0至10個胺基酸添加或缺失。此意謂多肽可具有a)在其N端處0、1、2、3、4、5、6、7、8、9或10個額外胺基酸,及在其C端處0、1、2、3、4、5、6、7、8、9或10個胺基酸缺失;或b)在其C端處0、1、2、3、4、5、6、7、8、9或10個額外胺基酸,及在其N端處0、1、2、3、4、5、6、7、8、9或10個核苷酸缺失;c)在其N端處0、1、2、3、4、5、6、7、8、9或10個額外胺基酸,在其N端處0、1、2、3、4、5、6、7、8、9或10個額外胺基酸;或d)在其N端處0、1、2、3、4、5、6、7、8、9或10個胺基酸缺失,及在其C端處0、1、2、3、4、5、6、7、8、9或10個胺基酸缺失。
此外,除本文所述之多肽以外,亦涵蓋肽模擬物。肽類似物常用於醫學行業作為非肽藥物,其特性類似於模板肽的特性。此等類型之非肽化合物被稱為「肽模擬物(peptide mimetics)」或「肽模擬物(peptidomimetics)」(Fauchere (1986) Adv. Drug Res. 15: 29; Veber及Freidinger (1985) TINS 第392頁; 及Evans等人 (1987) J. Med. Chem. 30: 1229),且通常藉助於電腦化分子模型化來開發。在結構上與治療適用之肽類似之肽模擬物可用於產生同等的治療或預防效果。在一些實施例中,可能較佳的是使用肽模擬物,以便在向個體投與時延長多肽之穩定性。為此目的,多肽之肽模擬物可為較佳的,其不由人類蛋白酶體裂解。
編碼本發明之AAT的核酸分子可根據此項技術中用於在含有相關目標DNA之細胞中表現的標準方法經密碼子最佳化。舉例而言,若預期的目標核酸在酵母菌細胞中,則考慮編碼AAT之酵母菌密碼子最佳化聚核苷酸用於本文所述之構築體中。
在其他實施例中,Alpha-1抗胰蛋白酶(AAT)蛋白質可經其他絲胺酸蛋白酶抑制劑置換。因此,關於依本文所揭示之AAT的任何特徵亦可涉及其他絲胺酸蛋白酶抑制劑。在一個實施例中,絲胺酸蛋白酶抑制劑為胰蛋白酶樣絲胺酸蛋白酶抑制劑。
胰蛋白酶樣絲胺酸蛋白酶抑制劑抑制具有胰蛋白酶樣活性的絲胺酸蛋白酶。絲胺酸在絲胺酸蛋白酶之酶活性位點處充當親核胺基酸。多個胰蛋白酶樣絲胺酸蛋白酶已作為抑制之治療目標而被積極研究。經由內飲作用之病毒進入視目標細胞蛋白酶,諸如絲胺酸蛋白酶而定。
若病毒需要目標細胞絲胺酸蛋白酶用於病毒進入及生長,則病毒感染為目標細胞絲胺酸蛋白酶依賴型。
目標細胞絲胺酸蛋白酶活化為病毒與目標細胞膜之融合及將病毒基因體釋放至目標細胞之胞溶質中所需的病毒刺突蛋白。靶向宿主細胞絲胺酸蛋白酶可防止內飲作用依賴性病毒之病毒生長,其中抑制目標細胞絲胺酸蛋白酶為治療感染有內飲作用依賴性病毒之個體的有效方法。絲胺酸蛋白酶抑制劑,較佳地胰蛋白酶樣絲胺酸蛋白酶抑制劑抑制病毒感染及病毒生長。作為非限制性實例,胰蛋白酶樣絲胺酸蛋白酶抑制劑包括卡莫司他(camostat)、抑肽酶、苯甲脒、加貝酯(gabexate)、抗纖維蛋白溶酶肽(leupeptin)、萘莫司他(nafamostat)、胃酶抑素(pepstatin) A、利巴韋林(ribavirin)、司匹司他(sepimostat)、烏司他丁(ulinastatin)及帕莫司他(patamostat)。
分子 依本文所用,「核酸」或「核酸分子」意指由單體核苷酸鏈構成之分子,諸如DNA分子 (例如cDNA或基因體DNA)。核酸可編碼例如啟動子、AAT基因或其部分或調控元件。核酸分子可為單股或雙股。
「AAT核酸」係指包含AAT基因或其部分或AAT基因或其部分之功能變異體的核酸。基因之功能變異體包括具有微小變化之基因之變異體,諸如緘默突變、單核苷酸多形現象、錯義突變及不顯著改變基因功能之其他突變或缺失。
依本文所用之術語「核酸構築體」係指單股或雙股核酸分子,其與天然存在之基因分離,或經修飾而以在自然界中不存在或為合成的方式含有核酸區段。當核酸構築體含有用於表現本發明之編碼序列所需的控制序列時,術語核酸構築體與術語「表現卡匣」同義。
「編碼」特定AAT蛋白(包括其片段及部分)之DNA序列係轉錄成特定RNA及/或蛋白質之核酸序列。DNA聚核苷酸可編碼轉譯成蛋白質之RNA (mRNA),或DNA聚核苷酸可編碼未轉譯成蛋白質之RNA (例如,tRNA、rRNA或靶向DNA之RNA;亦稱為「非編碼」RNA或「ncRNA」)。
依本文所用,術語「基因」或「編碼序列」意欲泛指編碼蛋白質之DNA區(經轉錄區)。當置於適當調控區,諸如啟動子控制下時,編碼序列經轉錄(DNA)且轉譯(RNA)成多肽。基因可包含若干可操作地連接之片段,諸如啟動子、5'-前導序列、編碼序列及3'-非轉譯序列,該等片段包含聚腺苷酸化位點。片語「基因之表現」係指基因轉錄成RNA及/或轉譯成活性蛋白質的過程。
依本文所用,「蛋白質」或「多肽」應意謂肽及蛋白質兩者。在本發明中,多肽可為天然存在或重組的(亦即,經由重組DNA技術產生),且可含有突變(例如,點、插入及缺失突變)以及其他共價修飾(例如,糖基化及標記(經由生物素、鏈黴抗生物素蛋白、螢光素及放射性同位素))或其他與其他組分結合之分子鍵。舉例而言,本發明之範疇涵蓋聚乙二醇化蛋白質。聚乙二醇化廣泛用作生產後修飾方法以用於改良治療蛋白之生物醫學功效及物理化學特性。多年來已藉由使用多種聚乙二醇化藥劑證實此技術之用途及安全性(參考Jevsevar等人, Biotechnol J. 2010年1月;5(1 ):1 13-28)。在一些實施例中,當與未經修飾之多肽相比時,本文中所描述之多肽經修飾以展現較長的活體內半衰期及抗蝕劑降解。此類修飾為熟習此項技術者已知,諸如環化多肽、與維生素B12融合之多肽、裝訂肽(stapled peptide)、蛋白質脂化及天然L-胺基酸經D-胺基酸取代(參考Bruno等人, Ther Deliv. 2013年11月; 4(11):1443-1467)。
在酵母菌中產生重組 AAT本發明係關於一種由經遺傳修飾之酵母菌產生重組AAT或其片段的方法,其包含以下步驟:培養經遺傳修飾之酵母菌,該酵母菌包含具有可操作地連接至啟動子或啟動子/強化子組合之AAT編碼區的外源核酸分子;使重組AAT在該經培養之酵母菌中表現;且自該培養物分離重組AAT。
可在本發明之情形下使用之酵母菌表現平台包含用於產生大量蛋白質(此處為AAT)以用於研究或工業用途之酵母菌株。雖然酵母菌通常比例如,細菌,更需充分的資源來維持,但某些產物可僅由真核細胞,如酵母菌產生,迫使使用酵母菌表現平台。酵母菌在生產率方面及在其分泌、處理及修飾蛋白質之能力方面不同。因而,不同類型之酵母菌(亦即,不同表現平台)較適合於不同研究及工業應用。重要地,酵母菌中之蛋白質表現及產生因酵母菌能夠在較大容器中快速生長,以高效方式產生蛋白質而為有利的;為安全的,且可在化妝品組合物之情形下產生且修飾準備好供人類消耗的蛋白質產物。
重組治療劑之製造為治療藥物之快速生產部分。酵母菌為用於異源蛋白質產生之現有真核宿主且在合成醫藥重組體方面提供獨特益處。酵母菌易於在便宜的培養基上急劇生長,容易用於基因操縱且能夠添加真核生物之轉譯後變化。許多酵母菌,包含釀酒酵母、巴斯德畢赤酵母、多形漢遜酵母、解脂耶氏酵母、解腺嘌呤阿氏酵母、乳酸克魯維酵母菌及粟酒裂殖酵母,為用於重組蛋白產生之例示性酵母菌宿主,且可經相應地採用。
酵母菌為用於自重組DNA產生蛋白質之常見宿主。其提供相對簡單的基因操作及在便宜的培養基上快速生長至較高細胞密度。作為真核生物,其能夠進行蛋白質修飾,如真核細胞中常見但細菌相對罕見之糖基化。歸因於此,酵母菌可產生與來自哺乳動物且尤其人類之天然產物相同或極類似的複雜蛋白質。最常用之酵母菌表現平台係基於焙用酵母菌釀酒酵母。然而,其他酵母菌表現平台,諸如酵母菌科畢赤酵母屬,尤其巴斯德畢赤酵母已有研究,且基於其不同特性及能力而廣泛用於各種應用。舉例而言,其中一些在廣泛範圍之碳源上生長且並不受限於葡萄糖,如同焙用酵母菌之情況。其中之若干種亦應用於基因工程改造及產生外源蛋白質且可用於本發明之情形中。
在實施例中,與本發明相關之酵母菌屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母。
巴斯德畢赤酵母為生產包括工業酶及生物藥劑之異源蛋白質的極佳表現宿主。迄今為止,此甲基營養型表現系統已成功用於產生許多重組蛋白,包括人類紅血球生成素、磷脂酶C、植酸酶、人類超氧化歧化酶、胰蛋白酶、人類血清白蛋白、膠原蛋白及人類單株抗體3H6 Fab片段。與任何其他酵母菌屬相比,巴斯德畢赤酵母在重組蛋白之分泌產生中更有效。工業對於此宿主之興趣亦歸因於強大的甲烷調控之醇氧化酶啟動子(AOX1)、高效分泌機制、轉譯後修飾能力及合成培養基上生長的較高細胞密度。已使用巴斯德畢赤酵母表現各種重組蛋白。在巴斯德畢赤酵母中存在產生治療蛋白之若干成功案例。在前述研究(2016)中,已證實在巴斯德畢赤酵母中針對肉毒梭菌(Clostridium botulinum)神經毒素類型E (BoNT/E)之奈米抗體(VHH)的產生。實現16 mg/l之產物產率,其高於藉由大腸桿菌產生之水平。另外,Xia等人展示在此酵母菌中產生30 mg/l重組血管生成素。此外,已報導了在巴斯德畢赤酵母中人類脂聯素之111 mg/l生產率,重組聚木糖酶8.1 g/l及抗HIV抗體260 mg/l。
血漿中的AAT之平均濃度為1.3 mg/ml,半衰期為3至5天。蛋白質尺寸、糖基化模式、AAT之介穩定抑制性質及生產成本代表重組AAT之生產方面的挑戰。甲基營養型酵母菌巴斯德畢赤酵母作為產生人類AAT之有吸引力的宿主。其擁有引入許多轉譯後修飾,諸如經由在分泌路徑中移動而獲得之糖基化及蛋白水解加工的能力。對於糖蛋白,諸如AAT,此等修飾對於適當功能及/或結構極重要。
在實施例中,AAT表現於巴斯德畢赤酵母中作為與組胺酸標籤(His-標籤)融合的融合蛋白,此有助於純化步驟。包括來自釀酒酵母α-因子分泌信號之信號序列以引導蛋白質分泌至細胞外培養基。此強大的表現系統利用高誘導型醇氧化酶1 (AOX1)啟動子表現大量糖基化蛋白質。巴斯德畢赤酵母產生AAT活性且其特徵分別使用彈性蛋白酶抑制分析評估。
在實施例中,經遺傳修飾之酵母菌屬於酵母菌科,較佳酵母菌科酵母菌屬,更佳為釀酒酵母。在實施例中,釀酒酵母相對於細菌可為較佳宿主。釀酒酵母菌表現系統為最常用真核生物中之一者,該系統已用作研究各種生物現象及重組生產治療蛋白之模型。已解決使用釀酒酵母之蛋白質糖基化之潛在問題,從而使釀酒酵母成為用於治療蛋白生產之可行酵母菌。舉例而言,已證明破壞與糖基化修飾路徑相關之Mnn2p及Mnn11p基因改良重組纖維素酶之產生。此外,α-1,6-甘露糖基轉移酶Och1p之移除增強活性形式之人類組織類型纖維蛋白溶酶原活化物的產生。此等研究指定N-糖基化修飾亦引起增加之蛋白質分泌。重組蛋白可在細胞內表現或使用分泌信號肽導引至分泌設備。在所有酵母菌表現系統中起作用的通常使用之信號序列為交配因子α1 (MFα1)之前原序列(prepro-sequence)。
釀酒酵母自安全視角來看亦具有一些重要優點,且此特性促進此系統在各種工業製程中之使用。其一般視為安全的(GRAS),因為釀酒酵母為非病原性的且歷史上已用於各種營養行業及生物藥劑之生產中。另一方面,當前關於酵母菌之遺傳學、生理學及醱酵的知識有助於此生物體在生產有用產品中之用途。B型肝炎表面抗原、水蛭素、胰島素、升糖素、尿酸氧化酶、巨噬細胞群落刺激因子及血小板衍生生長因子為市場上來自釀酒酵母之產物之實例。包括甲基營養型酵母菌巴斯德畢赤酵母及多形漢遜酵母及非甲基營養型酵母菌解脂耶氏酵母、乳酸克魯維酵母菌及解腺嘌呤阿氏酵母之替代表現系統亦為可行的替代物。
轉譯後修飾 在一個實施例中,依本文所用之方法包含重組AAT蛋白之轉譯後修飾。
在實施例中,轉譯後修飾為O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化或其任何組合。
在實施例中,重組AAT蛋白具有一或多種類人糖型模式。
在實施例中,依本文所用之方法包含在自酵母菌分離之後活體外修飾重組AAT蛋白。
在一些實施例中,修飾為重組AAT蛋白與生物相容性聚合物之共價連接。
術語「轉譯後修飾」係指在轉譯之後或期間發生的AAT之經轉譯多肽鏈的任何改變。此包括多肽之胺基酸側鏈之修飾或末端胺基或羧基之修飾。轉譯後修飾係指將諸如乙酸酯、磷酸酯、碳水化合物部分及脂質之生化基團連接至胺基酸側鏈,從而在轉譯之後改變蛋白質之生化及物理特性。許多蛋白質在其轉譯之後不久且一些在蛋白質摺疊之後且一些在定位之後進行轉譯後修飾。轉譯後最常見蛋白質修飾為磷酸化、糖基化、甲基化、泛素化、S-亞硝基化、N-乙醯化。
此類修飾可為在蛋白質生物合成後藉由表現系統以酶促方式進行之共價修飾。轉譯後修飾進一步包含酶促裂解肽鍵及加工所轉譯蛋白質;特定化學基團、聚合物、脂質、碳水化合物或甚至整個蛋白質共價添加至胺基酸側鏈。多肽鏈在其生物合成之後的此等化學修飾延長胺基酸結構及特性範圍,且因此使蛋白質之結構及功能多樣化。在一較佳實施例中,重組AAT蛋白進行轉譯後修飾,諸如磷酸化、糖基化、泛素化、亞硝基化、甲基化、乙醯化、脂質化及蛋白水解。
在本發明之一個態樣中,所分泌或釋放之AAT蛋白經歷糖基化,其涵蓋將糖部分添加至蛋白質的不同選擇方案,其範圍自酵母菌表現系統中的核轉錄因子之單個單醣修飾至細胞表面受體之高度複雜分支鏈多醣變化,較佳O-糖基化及/或N-糖基化。N-糖基化係碳水化合物與多肽之天冬醯胺結合。O-糖基化係碳水化合物與絲胺酸/蘇胺酸之結合。
在實施例中,重組AAT蛋白之修飾為重組AAT與生物相容性聚合物(諸如聚乙二醇(PEG))之共價連接。依本文所用之術語「聚乙二醇化」係指聚乙二醇聚合物鏈共價及非共價連接至分子及宏觀結構,諸如藥物,或生物活性蛋白質或囊泡之過程。聚乙二醇化通常經由PEG之反應性衍生物與目標分子一起培育來進行。PEG與蛋白質之共價連接可「遮蔽」來自宿主免疫系統之介質(降低免疫原性及抗原性),且增加其流體動力學尺寸(在溶液中之尺寸),其藉由降低腎清除率而延長其循環時間。在一個態樣中,聚乙二醇化可出現在重組AAT蛋白之N端處。
依本文所用,術語「生物相容性聚合物」係指對身體及體液暴露具有適用性的聚合物。生物相容性聚合物為合成的及天然的且有助於接近生命系統或與活細胞密切合作。使用此等聚合物對身體之任何組織、器官或功能進行量測、治療、增強或替代。生物相容性聚合物在不改變其正常功能及觸發過敏或其他副作用之情況下改善身體功能。其涵蓋組織培養、組織支架、植入、人工移植物、傷口製造、控制藥物遞送、骨骼填充材料等之發展。生物相容性聚合物為諸如聚苯乙烯(PS)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乙烯(PE)、聚胺基甲酸酯(PU)、聚碳酸酯(PC)、聚對苯二甲酸伸乙酯(PET)、聚醚醚酮(PEEK)。
依本文所用,「聚乙二醇」為具有自工業製造至醫藥之許多應用的聚醚化合物。PEG亦視其分子量而稱為聚氧化乙烯或聚氧化烯。
在某些態樣中,重組AAT蛋白結合至水溶性聚合物。此可藉由此項技術中已知之多種化學方法中之任一者進行。舉例而言,在一個實施例中,重組AAT蛋白藉由使用N-羥基丁二醯亞胺(NHS)酯使PEG與蛋白質之游離胺基結合而經修飾。在另一實施例中,水溶性聚合物,例如PEG,使用順丁烯二醯亞胺化學方法偶合至游離SH基團或在事先氧化之後將PEG醯肼或PEG胺偶合至重組AAT蛋白之碳水化合物部分。
根據本發明之一個實施例,聚乙二醇化使用20 kDa或更大之PEG進行。PEG結合至AAT且提供包裹蛋白質之作用,此在結合至清除劑受體之後引起防禦而免於損失或引起由失活蛋白酶之降解。
PEG為呈直鏈或分支鏈形式之聚合物,且具有小分子量之PEG無法完全包裹蛋白質且因此無法完全保護蛋白質。因此,分子量應相同或高於臨界水平以充分包裹待保護之蛋白質。本發明之重組AAT蛋白之聚乙二醇化可藉由用半胱胺酸取代聚乙二醇化位置處之胺基酸且接著結合至含有特異性針對一端處之半胱胺酸之丙烯醯基、碸或順丁烯二醯亞胺基的PEG來進行。
由酵母菌產生之糖基化 AAT 在實施例中,轉譯後修飾為O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化或其任何組合。在實施例中,重組AAT蛋白具有一或多種類人糖型模式。
用於產生依本文所用之AAT的酵母菌允許AAT經修飾成類人結構。術語「類人」結構或「類人」糖型模式與糖基化模式(例如延長重組AAT之血清半衰期)及/或與人類血漿衍生之AAT相當的穩定性有關。「類人」糖型模式較佳在與未經修飾之AAT蛋白相比重組AAT之血清半衰期質延長的程度上與人類糖基化模式不同但類似。借助於實例,「類人」糖型模式可包含一或多種選自由以下組成之群的聚糖:甘露糖、N-乙醯基葡糖胺(GlcNAc)、半乳糖、N-乙醯基神經胺糖酸(Neu5Ac)、N-羥乙醯基神經胺酸及木糖。
藉由酵母菌進行重組AAT之糖基化模式及藉由酵母菌進行其他轉譯後修飾產生一種新類型的重組AAT。此可由熟習此項技術者藉由SDS-page分析驗證。相比於血漿衍生之AAT的色帶,自酵母菌(諸如巴斯德畢赤酵母)產生之重組AAT的色帶的上移或下移可為新類型之重組AAT的證據。
重組 AAT 分離 / 純化 根據本發明,較佳使用技術人員已知之手段自例如培養物上清液或自酵母菌培養物獲得之其他製劑純化或分離AAT。使用標準實驗室設備可以收集藉由巴斯德畢赤酵母之醱酵獲得之材料,以便處理來自上清液之產物。舉例而言,適合的方法包含離心步驟及/或深層過濾,隨後視情況包含(無菌)膜過濾。亦可用低速離心,低速離心足以使酵母菌細胞集結下降,留下清澈且透明的上清液,此亦可充當不存在細菌污染物之證據。此類程序產生備用於諸如層析之後續純化步驟之上清液。
舉例而言,熟習此項技術者可無需過度費力地選擇涉及液相層析之適合於分離相關蛋白質之各種方法。舉例而言,用於層析之固相(稱為層析介質或樹脂)通常為藉由確定與待分離之分子之相互作用的各種化學基團官能化的經工程改造之多孔惰性載體。適用於本文所述之rAAT的常用分離方式為(但不限於)基於特異性結合相互作用(親和層析)、電荷(離子交換層析)、尺寸(尺寸排阻層析/凝膠過濾層析)、疏水性表面積(疏水相互作用層析及逆相層析)及/或多種特性(多峰或混合模式層析)。
醫學適應症 在本發明之一個態樣中,提供一種依本文所描述之醫藥組合物或組合,其用於治療及/或預防個體之病毒感染及/或與病毒感染相關之醫學病況。待治療之較佳病毒感染或相關疾病為本文中所描述之彼等病毒感染。
依本文所用,當生物體由病原性病毒入侵時,發生「病毒感染」。病毒類型較佳選自由以下組成之群:腺病毒、柯薩奇病毒(coxsackievirus)、埃-巴二氏病毒(Epstein-Barr virus)、A型肝炎病毒、B型肝炎病毒、C型肝炎病毒、1型單純疱疹病毒、2型單純疱疹病毒、巨細胞病毒、8型人類疱疹病毒、HIV、RSV、流感病毒、麻疹病毒、腮腺炎病毒、人類乳頭狀瘤病毒、脊髓灰白質炎病毒、狂犬病病毒、呼吸道融合性病毒、風疹病毒、水痘-帶狀疱疹病毒、SARS-CoV-2病毒。
在一個實施例中,該病毒科較佳選自以下之群:腺病毒科、小核糖核酸病毒科、疱疹病毒科、小核糖核酸病毒科、肝去氧核糖核酸病毒科、黃病毒科、疱疹病毒科、逆轉錄病毒科、正黏液病毒科、副黏液病毒科、乳突狀瘤病毒科、小核糖核酸病毒科、炮彈病毒科、披膜病毒科、疱疹病毒科及冠狀病毒科。
藉助於實例,呼吸道病毒疾病可發生於腺病毒、冠狀病毒(普通感冒病毒)、流感(flu)、副流感、小病毒b19 (第五病)、呼吸道融合性病毒(RSV)或鼻病毒(普通感冒)之任何感染。其他病毒性呼吸道疾病或病毒可與以下有關:HBoV,人類博卡病毒(bocavirus);HCoV,人類冠狀病毒;HMPV,人類間質肺炎病毒;HPIV,人類副流感病毒;HRSV,人類呼吸道融合性病毒;HRV,人類鼻病毒;PCF,咽結膜熱;SARS,嚴重急性呼吸道症候群;SARS-CoV,與SARS相關之冠狀病毒;URI,上呼吸道感染。
上述病毒中之任何一或多者可對本文所述之本發明治療敏感且因此對各病毒之治療代表本發明之一實施例。
在實施例中,本發明亦關於表現於經遺傳修飾之酵母菌中的用於治療或預防以上病毒感染中之一或多者的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在實施例中,本發明亦關於表現於經遺傳修飾之酵母菌中的用於治療或預防流感感染的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段。
在本發明之一個態樣中,提供依本文所述之本發明之醫藥組合物或組合用於治療與冠狀病毒相關之醫學病況,諸如SARS冠狀病毒,其中與SARS冠狀病毒相關之醫學病況較佳為COVID-19或SARS冠狀病毒相關呼吸道疾病。
依本文所用,「患者」或「個體」可為脊椎動物。在本發明之情形中,術語「個體」包括人類及動物兩者,尤其哺乳動物,及其他生物體。
依本文所用,「有需要之個體」係指罹患疾病,特定言之冠狀病毒疾病,或處於罹患疾病之風險下的個體。有需要之個體可為具有冠狀病毒疾病之症狀而住院之個體、具有冠狀病毒疾病之症狀且處於走動環境或在家中之個體或具有無症狀的冠狀病毒疾病且處於走動環境或在家中之個體。
在本發明中,「治療」或「療法」一般意謂獲得所需藥理作用及/或生理作用。該作用鑒於完全地或部分地預防疾病及/或症狀,可為預防性的,例如降低個體患有疾病或症狀之風險,或鑒於部分地或完全地治癒疾病及/或該疾病之副作用,可為治療性的。
在本發明中,「療法」包括對哺乳動物、尤其人類之疾病或病況之任意治療,例如以下治療(a)至(c):(a)預防患者之疾病、病況或症狀發作;(b)抑制病況之症狀,亦即預防症狀進展;(c)改善病況之症狀,亦即誘導疾病或症狀消退。
在一個實施例中,本文所述之治療係關於經由預防病毒進入目標細胞而減輕或抑制冠狀病毒感染或其症狀。依本文所述之預防療法意欲涵蓋預防或減輕冠狀病毒感染之風險,歸因於在用本文所述之藥劑治療後細胞經由與ACE2蛋白質相互作用而降低冠狀病毒感染之可能。
依本文所用,「具有感染性疾病之症狀的患者」為呈現以下(但不限於)中之一或多者的個體:發熱、腹瀉、疲乏、肌肉疼痛、咳嗽、(若被動物咬過)呼吸困難、嚴重頭痛且發熱、皮疹或腫脹、不明原因或長期發熱或視力問題。其他症狀可為發熱及發冷、體溫極低、排尿減少(乏尿症)、脈博快、呼吸快、噁心及嘔吐。在較佳實施例中,感染性疾病之症狀為發熱、腹瀉、疲乏、肌肉疼痛、脈搏快、呼吸快、噁心及嘔吐及/或咳嗽。
依本文所用,具有「呼吸道之病毒感染之症狀」的患者為呈現以下(但不限於)中之一或多者的個體:感冒類症狀或流感類疾病,諸如發熱、咳嗽、流鼻涕、打噴嚏、喉嚨痛、呼吸困難、頭痛、肌肉疼痛、疲乏、脈搏快、噁心及嘔吐、味覺及/或嗅覺缺失及/或不適(感覺不適)。
在一些實施例中,感染SARS-病毒之症狀為發熱、喉嚨痛、咳嗽、肌痛或疲乏,且在一些實施例中,另外為生痰、頭痛、咯血及/或腹瀉。在一些實施例中,感染SARS-冠狀病毒(例如SARS-CoV-2)之症狀為發熱、喉嚨痛、咳嗽、味覺及/或嗅覺缺失、呼吸短促及/或疲乏。
依本文所用,術語「處於罹患嚴重急性呼吸道症候群(SARS) 之風險下的患者」係關於較佳不同於一般群體中具有增加(例如高於平均值)的罹患SARS之風險的任何給定個人的個體。在一些實施例中,患者患有SARS症狀或SARS冠狀病毒感染症狀。在一些實施例中,患者無SARS症狀或SARS冠狀病毒感染症狀。在一些實施例中,個體已與患有SARS冠狀病毒感染或症狀之人接觸。在一些實施例中,已測試處於罹患SARS之風險下的人是否存在SARS冠狀病毒感染。在一些實施例中,處於罹患SARS之風險下的人對SARS冠狀病毒感染,較佳冠狀病毒感染之存在呈陽性。
在實施例中,處於罹患SARS之風險下的患者為無症狀患者,其(尚)未展示SARS之特定症狀。無症狀患者可處於罹患SARS之風險下,因為患者已與感染SARS冠狀病毒之個體接觸。舉例而言,無症狀患者可能已藉由軟體應用程式(app)鑑別為處於罹患SARS之風險下,該app安裝於其智慧型手機或對應(攜帶型)裝置上且指示與在其相應行動裝置/智慧型手機上使用對應app的感染患者的物理接近或較短物理距離。測定與感染人員之接觸/物理接近的其他方法為熟習此項技術者已知且同樣適用於本發明之方法。
在一些實施例中,患有或處於罹患嚴重急性呼吸道症候群(SARS)之風險下的患者患有冠狀病毒感染。
冠狀病毒為一組在哺乳動物及鳥類中引起疾病的相關病毒。冠狀病毒之科學名稱為正冠狀病毒亞科(Orthocoronavirinae)或冠狀病毒亞科(Coronavirinae)。冠狀病毒屬於冠狀病毒科。該科劃分成冠狀病毒亞科及環曲病毒亞科(Torovirinae),其進一步劃分成六個屬:α冠狀病毒屬、β冠狀病毒屬、γ冠狀病毒屬、δ冠狀病毒屬、環曲病毒屬(Torovirus)及白鯿魚病毒屬(Bafinivirus)。儘管α冠狀病毒屬及β冠狀病毒屬之病毒主要感染哺乳動物,但γ冠狀病毒感染禽類物種及δ冠狀病毒屬之成員已發現於哺乳動物及禽類宿主兩者中。
在人類中,冠狀病毒引起呼吸道感染,其可為輕度的,諸如一些感冒病例,及其他可致死的呼吸道感染,諸如SARS、MERS及COVID-19。冠狀病毒為具有正義單股RNA基因體及具有螺旋對稱性之核衣殼的包膜病毒。冠狀病毒之基因體尺寸在大致27千鹼基至34千鹼基(已知為RNA病毒中之最大基因組尺寸)範圍內。
已知各種人類冠狀病毒屬,諸如但不限於β-CoV屬人類冠狀病毒OC43 (HCoV-OC43)、β-CoV屬人類冠狀病毒HKU1 (HCoV-HKU1)、α-CoV屬人類冠狀病毒229E (HCoV-229E)、α-CoV屬人類冠狀病毒NL63 (HCoV-NL63)、中東呼吸症候群相關冠狀病毒(MERS-CoV)、嚴重急性呼吸道症候群冠狀病毒(SARS-CoV)、嚴重急性呼吸道症候群冠狀病毒2 (SARS-CoV-2)。
冠狀病毒在風險因素方面差異顯著。一些可殺死超過30%之感染者(諸如MERS-CoV),且一些相對無害,諸如普通感冒。冠狀病毒引起的感冒主要症狀例如為腫脹腺引起的諸如發熱及喉嚨痛,主要在冬季及早春季節發生。冠狀病毒可引起肺炎(直接病毒性肺炎或繼發性細菌肺炎)及支氣管炎(直接病毒性支氣管炎或繼發性細菌支氣管炎)。冠狀病毒亦可引起SARS。
核酸定序技術(通常稱為下一代定序,NGS)之進展提供自多種生物樣品獲得之大量序列資料且允許表徵已知及新穎病毒株。現有方法因此可用於確定冠狀病毒感染。
依本文所用,「長COVID」,亦稱為COVID-19後症候群、COVID-19之急性後後遺症(PASC)或慢性COVID症候群(CCS),應意謂特徵為在COVID-19之典型康復期後出現或持續存在的長期後遺症的病況。長COVID可幾乎影響每一器官系統,後遺症包括呼吸系統病症、神經系統及神經認知病症、精神健康病症、代謝障礙、心臟血管病症、胃腸道病症、不適、疲乏、肌肉骨胳痛及貧血。通常報導廣泛範圍之症狀,包括疲乏、頭痛、呼吸短促、無嗅覺症(嗅覺喪失)、嗅覺倒錯(嗅覺扭曲)、肌無力、低熱及認知功能障礙。
與長COVID相關之其他症狀或醫學病況包括但不限於極度疲乏、長期咳嗽、肌無力、低度發熱、不能集中(腦霧)、記憶差錯、情緒變化(有時伴隨抑鬱及其他精神健康問題)、睡眠困難、頭痛、關節疼痛、手臂及腿部刺痛、腹瀉及陣發性嘔吐、味覺及嗅覺喪失、喉嚨痛及吞咽困難、新發糖尿病及高血壓、胃灼熱(胃食道逆流病)、皮疹、呼吸短促、胸痛、心悸、腎臟問題(急性腎損傷及慢性腎病)、口腔健康變化(牙齒、唾液、牙齦)、無嗅覺症(嗅覺缺失)、嗅覺倒錯(嗅覺變化)、耳鳴、血液凝結(深層靜脈栓塞及肺栓塞)
在一個實施例中,長COVID在開始急性COVID-19之後4週或更長時間針對新的或持續的症狀分成另外兩種情況:在發作後4至12週持續的COVID-19症狀作用,及發作後12週或更長時間的COVID-19後症候群作用。
在其他實施例中,「在數週之時段內未完全恢復」之個體的長COVID症狀統稱為SARS-CoV-2感染之急性後後遺症(PASC)。長COVID症狀包括疲乏、呼吸短促、「腦霧」、睡眠障礙、間歇性發熱、胃腸道症狀、焦慮及抑鬱。症狀可持續數月且可在輕度至失能範圍內,其中在感染時間之後亦會出現新症狀。CDC術語Covid後病況將長Covid限定為第一次感染後持續4週或更多週的症狀。
組合物及投與 依本文所述之AAT蛋白或包含該蛋白質之組合物可包含不同類型的載劑,此視其是以固體、液體或氣溶膠形式投與及其對於諸如注射之投與途徑是否需要為無菌的而定。
活性劑AAT可經靜脈內、皮內、動脈內、腹膜內、病灶內、顱內、關節內、前列腺內、胸膜內、氣管內、鼻內、玻璃體內、陰道內、直腸內、外用、瘤內、肌肉內、腹膜內、皮下、結膜下、囊泡內、經黏膜、心包內、臍內、眼內、經口、外用、局部、吸入(例如氣溶膠吸入)、注射、輸注、連續輸液、即刻、經導管、經由灌洗、以乳膏形式、以脂質組合物形式(例如脂質體)、藉由海綿或藉由熟悉此項技術者將已知的前述其他方法或任何組合局部施加(參見例如Remington's Pharmaceutical Sciences, 第18版 Mack Printing Company, 1990,其以引用之方式併入本文中)。
本發明涵蓋藉由將治療有效數目之多肽引入至個體或個體之血流中來治療患者。依本文所用,將多肽「引入」至個體之血流中應包括但不限於經由注射將此類多肽引入至個體之靜脈或動脈中之一者中。該投與亦可例如進行一次、複數次及/或經一或多個延長之週期。單次注射較佳,但在一些情況下,隨時間推移重複注射(例如每季度、每半年或每年)可為必需的。此類投與亦較佳使用多肽及醫藥學上可接受之載劑的混雜物進行。醫藥學上可接受之載劑為熟習此項技術者所熟知且包括但不限於0.01-0.1 M且較佳0.05 M磷酸鹽緩衝劑或0.8%鹽水。
依本文所用,術語「治療有效量」可與「治療有效劑量」或「足夠/有效量或劑量」中之任一者交換,且係指產生所需治療作用之劑量。特定言之,有效劑量一般指本文所揭示之組合物足以誘導免疫來預防及/或改善冠狀病毒感染或減少與冠狀病毒感染相關之至少一種症狀及/或增強另一治療性組合物之功效的量。有效劑量可指足以延遲感染發作或使感染發作降至最低的組合物的量。有效劑量可指足以預防病毒感染或降低病毒感染風險之組合物的量。有效劑量亦可指在感染之治療或管理方面提供治療益處之組合物的量。另外,有效劑量可為單獨或與其他療法組合之組合物的量,其在病毒感染之治療或管理方面提供治療益處。有效劑量亦可為針對後續暴露於冠狀病毒足以增強個體(尤其人類)的自身免疫反應的量。準確有效劑量視治療目的而定,且可藉由熟習此項技術者使用已知技術確定。
依本文所用,「醫藥學上可接受之載劑」包括任何及所有溶劑、分散介質、包衣、抗細菌劑及抗真菌劑、等張劑及吸收延遲劑及其類似物。此類介質及試劑用於醫藥學活性物質之用途在此項技術中熟知。除非任何習知介質或試劑與活性成分不相容,否則考慮將其用於治療性組合物中。補充活性成份亦可併入組合物中。
另外,此類醫藥學上可接受之載劑可為水溶液或非水溶液、懸浮液及乳液,最佳為水溶液。水性載劑包括水、醇/水溶液、乳液及懸浮液,包括鹽水及緩衝介質。非經腸媒劑包括氯化鈉溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖及氯化鈉、乳酸林格氏液及不揮發性油。靜脈內媒劑包括流體及營養補充劑、電解質補充劑(諸如林格氏右旋糖、基於林格氏右旋糖之彼等補充劑)及其類似媒劑。常用於靜脈內投與之流體見於例如Remington: The Science and Practice of Pharmacy, 第20版, 第808頁, Lippincott Williams S- Wilkins (2000)中。亦可存在防腐劑及其他添加劑,諸如抗微生物劑、抗氧化劑、螯合劑、惰性氣體及其類似物。
片語「醫藥學上可接受」係指當投與人類時不產生過敏性或類似不良反應的分子實體及組合物。含有蛋白質作為活性成分之水性組合物之製備在此項技術中已充分瞭解。通常,此類組合物係以呈液體溶液或懸浮液之可注射劑形式製備;亦可製備適合於在注射之前形成於液體中之溶液或於液體中之懸浮液的固體形式。亦可乳化製劑。
非經腸劑型之實例包括活性劑在等張鹽水、5%葡萄糖或其他熟知醫藥學上可接受之液體載劑,諸如液體醇、二醇、酯及醯胺中之水溶液。根據本發明之非經腸劑型可呈包含組合物之劑量的可復原凍乾物形式,該組合物包含顆粒體蛋白。在本發明實施例之一個態樣中,可投與此項技術中已知之多種延長或持續釋放劑型中之任一者,諸如美國專利第4,713,249號、第5,266,333號及第5,417,982號(其揭示內容以引用之方式併入本文中)中所述之可生物降解碳水化合物基質。
在一說明性實施例中,描述與AAT一起用於非經腸投與的醫藥調配物,其包含:a)醫藥活性量之顆粒體蛋白;b)醫藥學上可接受之pH緩衝劑,以提供在約pH 4.5至約pH 9範圍內的pH;c)濃度範圍為約0至約250毫莫耳的離子強度調節劑;及d)濃度範圍為約0.5%至約7%總分子量的水溶性黏度調節劑,或a)、b)、c)及d)之任何組合。
在各種說明性實施例中,適用於本文所述之組合物及方法中的pH緩衝劑為熟習此項技術者已知的彼等試劑,且包括例如乙酸鹽、硼酸鹽、碳酸鹽、檸檬酸鹽及磷酸鹽緩衝劑,以及鹽酸、氫氧化鈉、氧化鎂、磷酸一鉀、碳酸氫鹽、氨、碳酸、鹽酸、檸檬酸鈉、檸檬酸、乙酸、磷酸氫二鈉、硼砂、硼酸、氫氧化鈉、二乙基巴比妥酸(diethyl barbituric acid)及蛋白質,以及各種生物緩衝液,例如TAPS、Bicine、Tris、Tricine、HEPES、TES、MOPS、PIPES、Cacodylate、MES。
在另一說明性實施例中,離子強度調節劑包括此項技術中已知的彼等藥劑,例如甘油、丙二醇、甘露糖醇、葡萄糖、右旋糖、山梨糖醇、氯化鈉、氯化鉀及其他電解質。
本發明之組合物較佳經調配以用於非經腸投與,例如經血管內(靜脈內或動脈內)、腹膜內或肌肉內投與。術語「非經腸投與」係指除經由消化道以外的投與模式,諸如藉由注射或輸注,且另外指皮下、肌肉內或靜脈內注射、腹膜內注射,其亦涵蓋於本文中。肌肉內投與包括靜脈內或動脈內投與。液體醫藥組合物,無論其是否為溶液、懸浮液或其他類似形式,可包括以下適合賦形劑中之一或多者:無菌稀釋劑,諸如注射用水;鹽水溶液,較佳為生理鹽水;林格氏溶液;等張氯化鈉;不揮發性油,諸如可充當溶劑或懸浮介質之合成單甘油酯或二甘油酯;聚乙二醇、甘油、丙二醇或其他溶劑;抗菌劑,諸如苯甲醇或對羥基苯甲酸甲酯;抗氧化劑,諸如抗壞血酸或亞硫酸氫鈉;螯合劑,諸如乙二胺四乙酸;緩衝劑,諸如乙酸鹽、檸檬酸鹽或磷酸鹽;及用於調節張力之試劑,諸如氯化鈉或右旋糖。非經腸製劑可封裝於由玻璃或塑膠製成之安瓿、拋棄式注射器或多劑量小瓶中。可注射醫藥組合物較佳地為無菌的。另外,必要時,待投與之醫藥組合物亦可含有少量無毒輔助物質,諸如潤濕劑或乳化劑、pH緩衝劑、穩定劑、溶解增強劑及其他此類試劑,例如乙酸鈉、去水山梨醇單月桂酸酯、三乙醇胺油酸酯及環糊精。
包含AAT蛋白之組合物的單位每日劑量可視患者病況、所治療之疾病病況、AAT之投與途徑及組織分佈以及共同使用其他治療性治療之可能性而顯著變化。待向患者投與之AAT之有效量係基於體表面積、患者體重、醫師對患者病況之評定及其類似者。
在一個說明性實施例中,AAT之有效劑量可在每公斤患者體重約1 mg至每公斤患者體重約500 mg,更佳每公斤患者體重約10 mg至每公斤患者體重約300 mg,且更佳每公斤患者體重約50 mg至每公斤患者體重約200 mg範圍內,例如每公斤患者體重約100 mg或約180 mg。
根據本發明,組合物之投與可較佳經由吸入個體呼吸道之黏膜表面而進行。「吸入投與」係指口腔吸入與經鼻吸入。「口腔吸入」係關於藥物藉由經由口腔之吸入投與,且藥物必須霧化成比藉由經鼻途徑投與之液滴更小的液滴,使得藥物可通過氣管(windpipe/trachea)並進入肺中。進入肺中之深度取決於液滴之尺寸。較小液滴進入更深,此增加藥物吸收量。在肺內部,其被吸收至血流中。
藉由此途徑投與之藥物可藉由計量給藥容器(吸入器)以乾粉形式遞送。
藥物亦可藉由用於吸入之霧化器,諸如Pari Boy Pro自包含該藥物之溶液霧化成霧狀物或尺寸適合之液滴或氣溶膠。
吸入藥物可快速地被吸收且在局部及全身起作用。吸入器裝置可實現恰當劑量。一般而言,粉末粒子中提供之粉狀粒子中僅20-50%的肺部遞送劑量會在口腔吸入後沈積於肺中。50-70%未沈積氣溶膠化粒子剩餘物一旦呼出,會自肺清除出。在實施例中,>8 μm的吸入粉末粒子在結構上傾向於藉由慣性衝擊沈積於中心氣管及傳導氣管中。在實施例中,直徑在3與8 μm之間的吸入粉末粒子往往主要藉由沈降在肺之過渡區中沈積。在實施例中,直徑<3 μm之吸入粉末粒子在結構上傾向於主要經由擴散沈積於周邊肺之呼吸道區中。
術語「鼻用吸入劑」係指預期沈積部位為呼吸道或鼻區或咽區的藥品或製劑,包括遞送裝置(若適用)。鼻用吸入劑不包括主要在鼻道中沈積的局部鼻用噴霧或沖洗劑。藥物亦可藉由諸如Pari Boy Pro的用於吸入之霧化器自包含該藥物之溶液霧化成霧狀物或尺寸適合之液滴或氣溶膠。
在本發明之情形中亦涵蓋藉由不同投與途徑同時投與及/或隨後投與醫藥組合物。在實施例中,組合物之投與途徑包含吸入投與。在一較佳實施例中,非經腸投與根據本發明之醫藥組合物或包含人類血漿衍生之AAT蛋白的醫藥組合物係同時或隨後進行。在另一較佳實施例中,經鼻及/或經口投與根據本發明之醫藥組合物或包含人類血漿衍生之AAT蛋白的醫藥組合物係同時或隨後進行。
依本文所用,「呼吸道」通常被視為包含鼻、咽、喉、氣管及具有其不同區室之肺。呼吸道涉及哺乳動物呼吸過程,且為呼吸系統之一部分,且內襯有呼吸道黏膜或呼吸道上皮。
依本文所用,「黏膜表面」之特徵在於存在上覆黏膜流體,例如唾液、淚液、鼻、胃、子宮頸及支氣管黏液,其功能包括供應及遞送一系列免疫調節及促癒合物種,包括生長因子、抗微生物蛋白質及免疫球蛋白。
依本文所用,「醫藥賦形劑」基本上為除組合物中之活性醫藥成分以外的任何東西。
在醫藥組合物之調配中,賦形劑通常連同活性醫藥成分一起添加以1)保護、支持或增強調配物之穩定性;2)在有效藥物之情況下使調配物聚成大塊以用於輔助調配出精確劑型;3)改善患者接受性;4)幫助改善活性藥物之生物可用性;5)在調配物儲存及使用期間增強調配物之總體安全性及有效性。
將用於調配醫藥組合物之賦形劑細分成各種功能分類,此視其意欲在所得調配物中發揮的作用而定。一些賦形劑可在不同調配物類型中具有不同功能作用,且另外,個別賦形劑可取決於彼等不同功能作用而具有不同等級、類型及來源。常用於調配醫藥懸浮液之賦形劑之可能類型包括溶劑/媒劑、共溶劑、緩衝劑、防腐劑、抗氧化劑、潤濕劑/界面活性劑、消泡劑、絮凝改質劑、懸浮劑/黏度調節劑、調味劑、甜味劑、著色劑、保濕劑及螯合劑。
依本文所用,「低溫保存」為藉由冷凍將細胞器、細胞、組織、細胞外基質、器官或任何其他易受由不受調控之化學動力學引起的傷害的生物構築體冷卻至極低的溫度(通常使用乾冰-20℃至-80℃,或在一些情況下使用液氮冷卻至-196℃)進行保存的過程。在足夠低的溫度下,有效停止可能對相關生物材料造成傷害的任何酶促或化學活性。低溫保存方法試圖達到低溫而不引起由在冷凍期間形成冰晶體而引起之額外傷害。
依本文所用,「氣溶膠」為例如藉由氣溶膠產生器,諸如小體積霧化器(SVN)、加壓計量給藥吸入器(pMDI)或乾粉吸入器(DPI)產生之液體及固體粒子之懸浮液。氣溶膠沈積為氣溶膠粒子沈積於吸收表面上的過程。
臨床用途中之氣溶膠裝置產生雜分散(亦稱為多分散)粒度,意謂氣溶膠中存在尺寸之混合。特定尺寸及/或尺寸範圍呈現於上文發明內容中。由單一粒度組成之單分散氣溶膠為罕見的。多分散氣溶膠可由質量中值直徑(MMD)界定。此量度確定粒度(μm)高於及低於含有50%之粒子質量之粒度。此為在粒度分佈上均勻劃分藥物之質量或量之粒度。由於量測尺寸之方式,此通常以質量中值空氣動力學直徑或MMAD給出。MMAD愈高,粒度愈大,直徑愈大。
乾粉調配物可提供包括比液體調配物更高的穩定性及可能不需要防腐劑的優點。粉末往往在被溶解及清除之前黏附於鼻黏膜之濕潤表面。使用減緩纖毛動作之生物黏著賦形劑或試劑可降低清除率且改善吸收。許多因素,如水分敏感性、溶解度、粒度、粒子形狀及流動特性,將影響沈積及吸收。
根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少兩天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少三天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少四天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少五天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少六天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少一週。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少八天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少九天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續至少十天。根據一些實施例,經由吸入投與之醫藥組合物每天投與一次,持續十天。
鼻用乾粉噴霧之實例 SBNL Pharma (www.snbl.com)最近報導佐米曲普坦(zolmitriptan)粉末環糊精調配物(μcoTM System)用於增強吸收之1期研究的資料,先前在活體外研究中有描述。佐米曲普坦吸收快速,且相對生物可用性高於市售錠劑及鼻用噴霧。該公司具有基於膠囊之單劑量粉末裝置(Fit-lizer),適合投與根據本發明之粉末調配物。當插入腔室中時,膠囊之頂部及底部由尖銳刀片切去。用手壓縮塑膠腔室,壓縮空氣在致動期間穿過單向閥及膠囊,且噴出粉末。
Bespak (www.bespak.com),Unidose-DPTM之原理,類似於Fit-lizer裝置。空氣填充區室經壓縮直至銷釘刺破膜以釋放壓力,噴出粉末羽狀流。已在基於人類MRI影像之鼻鑄造模型中測試模型抗體(人類IgG)之粉末調配物的遞送。大約95%劑量遞送至鼻腔,但大部分劑量沈積在鼻前庭,僅約30%沈積至鼻腔之更深區室中。
乾粉吸入器之實例 Astra Zeneca出售布地奈德(budesonide)粉末,其用經改良用於經鼻吸入之Turbuhaler多劑量吸入器裝置(Rhinocort Turbuhaler®; www.az.com)遞送。其在一些市場中作為液體噴霧之替代方案出售,用於過敏性鼻炎及鼻息肉。
Aptar group (www.aptar.com)提供簡單的基於泡殼之粉末吸入器。在使用之前刺穿泡殼且將裝置鼻件置放於一個鼻孔中。個體用手指封閉另一個鼻孔且將粉末吸入鼻中。使用此來自Pfeiffer/ Aptar之基於泡殼之粉末吸入器(BiDoseTM/ProhalerTM)的用於巴金森氏病(Parkinson's)的阿樸嗎啡(apomorphine)之粉末調配物處於臨床開發中,該臨床開發由Britannia進行,一家英國公司,最近被Stada Pharmaceutical (www.stada.de)收購。涵蓋此類投與裝置用於投與依本文所述之組合物。
具有液體調配物之吸入器之實例 吸入溶液及懸浮液藥品通常為基於水之調配物,含有治療學上之活性成分且亦可含有額外賦形劑。基於水之口服吸入溶液及懸浮液必須為無菌的。吸入溶液及懸浮液意欲藉由經口吸入遞送至肺部以用於局部及/或全身作用,且將與指定霧化器,例如可產生可撓性的且具有可變液滴譜以用於嚴重慢性呼吸道疾病療法之Pari Boy Pro一起使用。建議針對此等藥品演示單位劑量以防止在使用期間的微生物污染。用於此等藥品之容器封閉系統由容器及封閉件組成且可包括保護性封裝,諸如被覆箔片。
舉例而言,阿米卡星(amikacin)脂質體吸入懸浮液(ALIS; Arikayce®)為胺基糖苷抗細菌藥物阿米卡星之脂質體調配物。在霧化後經由吸入投與之ALIS調配物經設計以促進肺靶向及定位藥物遞送,而使全身性暴露量降至最低。涵蓋此類投與裝置用於投與依本文所述之組合物。
具有液體調配物之鼻用噴霧之實例 鼻用噴霧施配器通常為非加壓施配器,其遞送含有計量劑量之活性成分的噴霧。劑量可藉由噴霧泵計量或可已在製造期間經預計量。鼻用噴霧單元可經設計以用於單位給藥或可排出含有藥物物質之調配物的至多數百計量之噴霧。將鼻用噴霧施加至鼻腔以用於局部及/或全身作用。
液體經鼻調配物主要為水溶液,但亦可遞送懸浮液及乳液。尤其對於在加濕抵消通常伴隨慢性鼻病之乾燥及結痂的情況下之局部適應症,認為液體調配物為方便的。
舉例而言,可例如獲自Nemera (La Verpillière, France)或Aptar Pharma (Illinois, USA)之施配器為較佳的。舉例而言,Nemera提供Advancia®鼻用噴霧施配器,其為具有良好劑量一致性及優秀保持性、防堵塞致動器、金屬不接觸調配物及衛生抗致動卡扣蓋之高效能泵。作為另一實例,Aptar Pharma經鼻泵技術消除了藥物製造商向鼻用噴霧調配物添加防腐劑之需要。Advanced Preservative Free (APF)系統使用頂封及過濾技術以防止調配物被污染。彈簧加壓式頂端密封機構與通風通道中之過濾膜一起被採用。
計量及噴霧產生(例如孔口、噴嘴、噴射)泵機構及組件用於可再現地遞送藥物調配物,且此等機構及組件可由就尺寸及組成而言精確控制的設計不同的許多部件構成。調配物分散為噴霧需要能量。此通常藉由迫使調配物通過鼻致動器及其孔口來實現。調配物及容器封閉系統(容器、封閉件、泵及任何保護性封裝)共同構成藥品。容器封閉系統之設計影響藥品之給與效能。
在一些實施例中,多次使用之施配器使用防止細菌或病毒進入儲槽或泵裝置之膜(較佳為聚矽氧)。在一些實施例中,多次使用之施配器採用無金屬流體路徑,由此防止調配物氧化。在一些實施例中,多次使用之施配器採用彈簧加壓頂端密封機構,由此防止微生物在噴霧事件之間進入裝置。
在一個實施例中,施配器經組態以用於5至1000 µL,較佳5至500 µL,更佳10至300 µL,更佳20至200 µL之多個個別噴霧事件。
在一個實施例中,施配器包含0.1至500 mL,較佳1至100 mL,更佳2至50 mL,諸如約5、10或15 mL之總體積之組合物。
用於液體調配物之 喉嚨 噴霧之實例 Bona, ShenZhen China為一家醫療封裝及配件之供應商。該公司提供一系列長頸噴霧器,其提供經設計用於喉嚨噴霧及其他需要靶向喉嚨之治療的極佳施配及給藥。施配器之臂360度擺動以易於消費者使用。噴霧適合於用藥進行之喉嚨治療以及其他局部治療,例如以保護喉嚨免於病毒感染之治療。施配器較佳由製藥級PP及PE製備,且施配器可與任何瓶子尺寸配對。當前,噴霧有多種流行的尺寸(18/410, 18/415、20/410, 24/410)且可經設定以施配220微升至50微升。
同時及依序投與 一或多種活性劑之同時投與應意謂同時投與一或多種試劑。舉例而言,在一個實施例中,AAT可與適用於治療病毒感染或與肺部發炎相關之醫學病況的其他活性劑共同投與。在其他實施例中,AAT可藉由吸入及包括經口、經鼻、非經腸(包括血管內、腹膜內或肌肉內投與)一起投與。在一些實施例中,至少一種投與根據本發明之重組AAT的途徑為所需的,較佳為吸入投與。其他投與途徑可替代地為包含人類血漿衍生之AAT或任何其他重組產生之AAT的組合物的投與。在實施例中,以同時方式施加之投與途徑亦可以依序方式施加。
一或多種活性劑之依序投與應意謂以依序方式投與治療劑。在一個實施例中,各治療劑在不同時間投與。在其他實施例中,投與兩種或更多種治療劑,其中至少兩種治療劑以依序方式投與,其實質上為同時方式。實質上同時投與可例如藉由向個體投與具有固定比率之各治療劑的單一劑量或以各治療劑的多個單一劑量來實現。依本文所述的一或多種治療劑至少包含有根據本發明的包含重組AAT蛋白的醫藥組合物。在一個實施例中,治療劑包含有包含人類血漿衍生之AAT及/或其他重組產生之AAT蛋白的其他醫藥組合物。在一較佳實施例中,治療劑包含有其他包含黃腐酚之醫藥組合物。
依本文所用,術語「同時」係指在同一時間投與一或多種藥劑。舉例而言,在某些實施例中,同時投與AAT與適用於治療病毒感染或與肺部發炎相關之醫學病況的其他活性劑的組合。同時包括同時投與,亦即,在相同時間段期間。在某些實施例中,一或多種藥劑在同一小時內同時或同一天內同時投與。依序或實質上同時投與各治療劑可藉由任何適當的途徑來實現,包括但不限於經口途徑、靜脈內途徑、皮下途徑、肌肉內途徑、經由黏膜組織(例如經鼻、口腔、經陰道及經直腸)直接吸收及經眼途徑(例如玻璃體內、眼內等)。治療劑可藉由同一途徑或藉由不同途徑投與。舉例而言,特定組合之一種組分可藉由吸入投與,而組合之其他組分可靜脈內投與。組分可以任何治療學上有效之順序投與。
同時及依序投與之決定可視疾病之嚴重程度而定。舉例而言,對於接受AAT吸入的具有Covid-19之嚴重症狀的患者,可決定同時及/或依序靜脈內投與AAT蛋白。舉例而言,對於Covid-19患者,接受AAT之吸入,其中該等AAT液滴包含黃腐酚。舉例而言,對於接受AAT之吸入的Covid-19患者,其中該AAT為單獨劑量之黃腐酚,可同時或依序投與。
圖式詳細描述 1 巴斯德畢赤酵母中重組蛋白表現之載體圖。所示第一載體為pGAPZα,包含組成型甘油醛-3-磷酸脫氫酶(GAP)啟動子。第二載體為pPICZα,包含誘導型醇氧化酶I (AOX1)啟動子。
2 藉由陰離子交換層析(antion exchange chromatography,AEX)純化包含在巴斯德畢赤酵母中產生之重組AAT之上清液。將人類血漿衍生之α1AT調配物Prolastin亦施加至SEC。將來自未經修飾之WT菌株及包含表現AAT之載體之菌株的700 ml巴斯德畢赤酵母上清液施加至管柱。以30秒時間間隔獲得溶離份。
3 對獲自陰離子交換層析(AEX)之重組AAT溶離份的西方墨點分析。上圖及下圖具有相同影像,下圖經裁剪以避免prolastin之強信號。下圖中影像之對比度增加。對於獲自AEX之各溶離份,每色帶裝載10 µg蛋白質,將2.5 µg Prolastin蛋白質裝載於對照孔中。
4 測試重組AAT之抗SARS-CoV-2活性。( A)分別用重組AAT溶離份52及53 (具有圓形及正方形之曲線)、人類血清衍生之AAT Prolastin(具有菱形之曲線)及DMSO (具有三角形之曲線)進行實驗。接種對SARS-CoV-2敏感的結腸直腸癌細胞(Caco2),且在第1天,移除培養基且將無血清培養基添加至細胞中。將重組α1AT樣品溶解於含10% DMSO之H2O中且滴定所有化合物及對照物。將化合物添加至該等細胞中,在37℃下培育1小時。細胞用慢病毒SARS-CoV-2假病毒粒子轉導。48小時後,在細胞裂解物中量測螢光素酶信號。提供之讀數表示假粒子細胞進入(y軸)相對於投與至細胞之蛋白質的增加之濃度(對數;x軸)。( B)展示(A)中所呈現之實驗資料,繪製假粒子細胞進入(y軸)相對於投與至細胞之蛋白質的增加之濃度(線性;x軸)。展示溶離份52 (三角形)及溶離份53 (圓形)與Prolastin(菱形)之比較。
實例呈現以下實例以描述本發明之特定及潛在較佳實施例,進而指示實際啟用,但該等實例在範疇上不為限制性的。
實例 1 製備重組 AAT 之例示性概述 提供以下關於重組AAT表現及製備之大體概述:
1.醱酵 經修飾以重組表現人類AAT之酵母菌培養物之醱酵通常在生物反應器中進行。刺激酵母菌培養物在就溫度、氧濃度、基質濃度及其類似條件而言之最佳條件下產生alpha-1抗胰蛋白酶。在實施例中,此過程在酵母菌培養物之合成速率降低時之時間點處結束。在實施例中,此持續約36至144小時,較佳地48至120小時,更佳地72至96小時。
2.純化 隨後,可收集反應器之內含物,較佳獲得培養物上清液且隨後對其處理。所收集之醱酵物由水、酵母菌培養物、不同基質之殘餘物及使過程穩定之輔助物質組成。純alpha-1抗胰蛋白酶必須自此混合物分離。此純化在不同步驟中進行,包括分離酵母菌培養物上清液且隨後經由層析管柱分離。在此過程結束時,alpha-1抗胰蛋白酶可以純的形式獲得。
3.保存 AAT,如所有其他蛋白質,有可能在無進一步處理的情況下經歷生物衰變過程。此可藉由在-80°下冷卻而被停止。然而,此程序在一些條件下並非最佳的。出於此原因,物質可視情況經冷凍乾燥(凍乾)且可因此在不會對穩定性有任何破壞的情況下經儲存及運輸。藉由添加水,使活性物質返回至其液態,例如在每次使用之前即刻進行。此方法為目前先進技術且用於幾乎所有蛋白質製劑。
4. 包裝 「填充及整理(fill and finish)」包括分成所需個別劑量(例如100 mg)以及無菌封裝。視最終產物而定,可考慮不同封裝形式。
實例 2 - 5 實例2-5展示在巴斯德畢赤酵母中產生人類重組AAT之詳細工作流程。工作流程由用AAT表現質體進行巴斯德畢赤酵母宿主細胞株轉型、微量培養、微量再培養及選擇主導殖株構成。研發用於重組產生人類α-抗胰蛋白酶(rhAAT)之巴斯德畢赤酵母表現菌株。
實例 2 合成 AAT 基因及載體構造之設計及接收 AAT編碼基因序列經設計用於表現巴斯德畢赤酵母。
編碼AAT蛋白之基因係根據SDEQ ID NO 4 (所插入目標基因之核苷酸序列,無側接區用於選殖目的,具有終止密碼子):
AAT之蛋白序列係根據SEQ ID NO 5:
在接收經最佳化之合成基因序列之後,目標基因經由限制酶位點,例如 XhoI/ XbaI選殖至適合表現質體中,此處採用pPICZα。
在接收供應商之質體中的合成基因之後,溶解乾燥質體且使其轉型成大腸桿菌TOP10F'細胞(NEB-5α勝任型大腸桿菌,C2987I,NEB)。大腸桿菌殖株攜帶攜帶擁有合成基因的供應商之質體。在瓊脂培養盤上再劃線轉型體且經由標準質體製備程序分離質體。
藉由用雙重限制酶消化質體來獲得來自供應商之質體之主鏈的合成基因。將經消化質體裝載在瓊脂糖凝膠上且藉由凝膠電泳分離。合成基因帶自瓊脂糖凝膠切下,純化且溶離,準備好用於接合。
將經雙重消化之合成基因接合至雙重消化酵母菌表現質體中。在瓊脂培養盤上再劃線該轉型體且經由標準質體製備程序分離質體。藉由用限制酶進行雙重消化,將合成基因與酵母菌表現質體之主鏈分離。藉由瓊脂糖凝膠電泳檢查經消化質體之帶尺寸。亦使用適合引子對所選質體進行定序。
隨後在瓊脂培養盤上再劃線陽性殖株以用於較大質體製備(用於轉型為畢赤酵母)。所製備質體隨後經膜(MCE膜,0.025µM,Millipore VSWP01300)去鹽,且藉由分光光度量測來測定DNA濃度且調節至大致1 µg/µL。
實例 3 巴斯德畢赤酵母之工作流程 在巴斯德畢赤酵母實驗中在酵母菌落之生長階段、轉型、再生階段(在轉型期間)及儲存期間所用之所有培養基組分就直接含量、直接接觸或可能的污染而言經認證為不含動物成分的。採用以下培養基:
YPhyD液體培養基(1%酵母菌提取物、2%植物蛋白腖、2%右旋糖)、YPhyD固體培養基(如上,加上2% w/v瓊脂,視需要加上補充抗生素)、BMD液體(1.34% YNB、2%右旋糖、0.2 M pH 6.0磷酸鈉緩衝液、4× 10-5% Biotine)。
針對所有轉型使用巴斯德畢赤酵母X33之勝任型表現細胞株,應用電穿孔之標準程序及標準設備,進行電穿孔。
實例 4 96 深孔培養盤中之微量培養 對於篩選,將單一菌落自轉換培養盤挑取至填充有最佳化培養基之96深孔培養盤的各個單孔中。將一些培養盤之角孔接種模擬菌株以充當用於分析之基質。
在產生生物質(BMD固體)之初始生長階段之後,藉由添加含有規定濃度之甲醇的最佳化液體混合物來誘導自AOX1-啟動子之表現。在規定之時間點,用甲醇進行進一步誘導。
在自初始甲醇誘導總計72小時之後,將所有深孔培養盤離心且將所有孔之上清液收集至儲備微量滴定盤中以用於後續分析。在自篩選結果選擇特定菌株之後,以產生每個菌株單一分離菌落之方式將此等菌株再劃線至非選擇性瓊脂培養盤上。根據在再篩選時培養之菌株,將此等個別菌落中之六者接種至填充有最佳化培養基之96深孔培養盤的單個孔中,且如上文所描述進行處理。
實例 5 對目標蛋白表現之分析 基於在SDS-PAGE凝膠上操作之樣品的分子量比較及西方墨點法,評定上清液之目標蛋白表現。製備前AAT樣品用作對照。
對於SDS-PAGE,將經稀釋或未經稀釋之樣品與4× LDS樣品緩衝液及10× Novex還原劑(均來自Thermo Scientific)混合且在70℃下培育10分鐘。隨後將樣品裝載於Bolt Bis-Tris 4-12% Gel上且在MES緩衝液下運行。SeeBlue Plus2預染色標準作為分子量標記物(均來自Thermo Scientific)包括在內。
對於西方墨點法,使用具有專用Novex PVDF轉移堆之iBlot 2 Gel轉移裝置藉由乾式墨點(dry blotting)來進行自預運行凝膠之蛋白質轉移。隨後在室溫下在平緩震盪下用PBS,0.1% Tween-20、5% BSA使膜飽和30分鐘。
對於AAT特異性偵測,在室溫下在平緩震盪下使用以1:750稀釋於PBS,0.1% Tween-20、3% BSA中之初級AAT抗體SIGMA,SAB4200196-200 μL)培育膜30分鐘。在三重洗滌步驟(在約200 rpm下在劇烈攪拌下用PBS-0.1% Tween20進行5秒、5分鐘及10分鐘)之後,添加以1:2,000稀釋於PBS,0.1% Tween-20、1% BSA中之二級抗小鼠Ab抗體(SIGMA抗小鼠IgG過氧化酶A2554-1 mL)持續20分鐘。隨後再次洗滌膜,且藉由添加TMB超基質(Thermo Scientific)顯色。
SDS-PAGE凝膠及西方墨點分析揭露了在與標準製備物相當之分子量下的AAT表現。
另外,基於微流體毛細管電泳分離來評定上清液之目標蛋白表現。
確立一種如下方法,其涉及微流體毛細管電泳分離(GXII, CaliperLS, 現為Perkin Elmer)及後續對目標蛋白基於其尺寸之鑑別。簡言之,對若干微升之所有培養物上清液進行螢光標記且根據蛋白質尺寸,使用基於微流體之電泳系統進行分析。內標(含於供應商之供應溶液中)實現以kDa為單位之大致按尺寸之分配及所偵測信號之大致濃度。牛血清白蛋白(BSA)用作在模擬菌株基質中稀釋至已知濃度之後的針對表觀分子量及濃度的校正劑。
程序:將5 µL樣品(來自去糖基化,參見下文)與8 µL含有適量還原劑(隨後pH 7.37)之樣品緩衝液(Perkin Elmer,含有LDS,pH7.58)混合,且在95℃下加熱5分鐘。隨後,添加32 µL ddH2O,且在以4,000 rpm離心3分鐘(直至集結成潛在聚集物)之後將樣品施加至mCE。
測定上清液中rhAAT之估算濃度,藉由比較特定峰面積與以已知濃度存在之BSA之峰面積來計算。各種酵母菌殖株經測試且展示2至11 mg/mL之估算rhAAT量。
實例 6 測試巴斯德畢赤酵母中產生之重組 AAT 之抗蛋白酶活性 化合物 • Prolastin:人類血清衍生之AAT • 甲磺酸卡莫司他:胰蛋白酶樣絲胺酸蛋白酶抑制劑 • rhAAT:在巴斯德畢赤酵母中產生之重組AAT
材料及方法 將各別蛋白酶(TMPRSS2或嗜中性白血球彈性蛋白酶)與rhAAT、甲磺酸卡莫司他或Prolastin之連續稀釋液混合,使得在測試化合物與蛋白酶之間形成複合物。隨後,添加螢光報導肽基質。在報導肽基質經蛋白酶裂解後,將螢光染料設定為游離的。因此,螢光強度充當其餘蛋白酶活性之信號。
TMPRSS2 活性分析 為了評定重組人類TMPRSS2之活性,將25 µl連續稀釋之Prolastin、甲磺酸卡莫司他或rhAAT與25 µl 2 µg/ml重組TMPRSS2酶(LSBio #LS-G57269)在37℃下在檢定緩衝液(50 mM Tris-HCL,0.154 mM NaCl pH 8.0) 中一起培育15分鐘。隨後,添加50 µl 20 µM BOC-Gln-Ala-Arg-AMC蛋白酶基質(Bachem #4017019)且在37℃下培育2小時。在2小時之後,在380 nm之激發波長及460 nm之發射波長下,在用Gen5 3.04軟體之Synergy TMH1微量培養盤讀取器(BioTek)中量測螢光強度。該分析係在平底96孔培養盤中進行。
嗜中性白血球彈性蛋白酶活性分析 嗜中性白血球彈性蛋白酶活性藉由以下方式量測:在37℃下在檢定緩衝液(50 mM Tris,1 M NaCl,0.05 % (w/v) Brij-35,pH 7.5)中將25 µl之連續稀釋之Prolastin、甲磺酸卡莫司他或rhAAT與25 µl 2 ng/µl重組嗜中性白血球彈性蛋白酶(Merck Millipore #324681)混合15分鐘。隨後,添加50 µl 200 µM MEOSUC-Ala-Ala-Pro-Val-AMC基質(Bachem #4005227)且在37℃下培育。在5分鐘之後,在380 nm激發波長及460 nm發射波長下,在用Gen5 3.04軟體之Synergy TMH1微量培養盤讀取器(BioTek)中量測螢光強度。該分析係在平底96孔培養盤中進行。
結果:所有三種測試化合物抑制TMPRSS2及嗜中性白血球彈性蛋白酶之活性。進行rhAAT、Prolastin及甲磺酸卡莫司他之IC50分析。rhAAT在約350 nM之IC50下以劑量依賴型方式抑制TMPRSS2蛋白水解活性。
實例 7 用假型病毒分析測試抗 SARS - CoV - 2 活性 介紹 病毒感染目標細胞係由病毒表面糖蛋白控制。病毒假粒子為在其表面上攜帶外來病毒之糖蛋白(gp)的經工程改造之病毒。舉例而言,用於此研究中之假粒子係基於以SARS-CoV-2之刺突gp或水泡性口炎病毒(VSV-G)之gp包覆的HIV-1病毒粒子。因此,其將藉由分別與SARS-CoV-2或VSV-G相同之機制進入細胞。然而,假病毒缺乏用於其複製之關鍵遺傳資訊,相反,其遞送報導基因至受感染細胞。因此,假粒子允許以安全且高產方式研究高度病原性病毒。
材料及方法 為測試rhAAT針對SARS-CoV-2假顆粒之活性,細胞用rhAAT、Prolastin及甲磺酸卡莫司他之連續稀釋液處理以允許複合形成rhAAT及TMPRSS2。接著,對細胞接種攜帶SARS-CoV-2刺突gp或VSV-G之假粒子,且病毒進入在2天後藉由量測報導基因活性定量。
慢病毒假粒子之產生 為產生慢病毒SARS‐CoV‐2 (LV(Luc)‐CoV‐2)假粒子,將900,000個HEK293T細胞接種於六孔培養盤中補充有10%胎牛血清、2 mM L-麩醯胺酸、100 U/ml青黴素及100 μg/ml鏈黴素之DMEM培養基中。次日,細胞用0.49 μg pCMVdR8_91 (編碼複製缺陷型慢病毒)、0.49 μg pSEW‐Luc2 (編碼螢光素酶報導基因,均由Prof. Christian Buchholz, Paul‐Ehrlich‐Institute, Germany友情提供)及0.02 μg的pCG1‐SARS‐2‐SΔ18 (WT)、pcDNA3_1 SARS‐CoV‐2‐Sd19B.1.617.2_4377 (B.1.617.2,δ型)或pCG1_SARS‐2‐SΔ18 (BA.4及BA.5,o型),藉由在無血清培養基中以1:3比率混合質體DNA與PEI而經轉染。
在室溫下培育20分鐘後,將轉染混合物逐滴添加至細胞中。轉染後8小時洗滌細胞且添加含有2.5% FCS之生長培養基。轉染後48小時,收集含有假粒子之上清液且藉由在450 g下離心5分鐘使其澄清。將病毒儲備液等分且在-80℃下儲存直至使用。
假粒子抑制分析 在轉導前一天,將10,000 Caco2細胞接種於96孔平底培養盤中補充有10%胎牛血清、2 mM L-麩醯胺酸、100 U/I青黴素、100 mg/ml鏈黴素、1×非必需胺基酸及1 mM丙酮酸鈉的DMEM中。次日,培養基用60 μl無血清生長培養基更換,且細胞在37℃用連續稀釋之rhAAT、Prolastin及甲磺酸卡莫司他處理1小時,接著用20 μl各別慢病毒假粒子轉導細胞。VSV-G外加慢病毒假粒子充當陰性對照。
藉由用市售套組(Luciferase Assay System, Promega)在用簡單4.2軟體之Orion II微量培養盤讀取器中在轉導後48小時量測細胞裂解物中螢光素酶活性來評定轉導率。將未處理之對照之值設定為100%轉導。
結果:rhAAT類似於Prolastin及甲磺酸卡莫司他抑制SARS-CoV-2之進入。VSV-G假粒子不受測試化合物影響且可進入細胞。rhAAT在測試濃度下對Caco-2細胞無毒。實驗展示對分別用rhAAT、Prolastin及甲磺酸卡莫司他處理之Caco2細胞中之假粒子進入之比較分析。用濃度為20 mg/ml之rhAAT處理之細胞展示幾乎無假粒子進入。
實例6及7部分地基於參考Azouz等人2021 (Pathog Immun. 2021年4月26日;6(1):55-74)的實驗設定。
實例 8 活體外用 Prolastin 及巴斯德畢赤酵母中產生之經純化重組 AAT 處理感染 SARS - CoV2 之人類呼吸道上皮細胞 . 此實例經設計以測試巴斯德畢赤酵母中產生之重組AAT是否比Prolastin更有效地抑制人類初級呼吸道上皮細胞中之SARS-CoV2複製。實驗設定參考Wettstein等人2021 (Nat Commun 12, 1726)。
在經SARS-CoV-2感染之後,分別用Prolastin及重組AAT處理小呼吸道上皮細胞(SAEC)。緊隨之後,在感染後數天移除接種物且收集上清液,且對SARS-CoV-2具有特異性的進行RT-qPCR。
人類呼吸道上皮細胞(HAEC)分別被暴露於Prolastin及重組AAT,且隨後用SARS-CoV-2接種。感染後第1天、第2天及第3天固定細胞,用DAPI、SARS-CoV-2特異性刺突抗體及α-微管蛋白-特異性抗體染色。
人類小呼吸道上皮細胞 將人類小呼吸道上皮細胞(Lonza,CC-2547,批料:18TL082942,供體:68年,女性)在SAGM™小呼吸道上皮細胞生長培養基(Lonza, CC-3118)中培養。替代地,人類呼吸道上皮細胞(HAEC)之經分化氣液界面培養物係由自呼吸道上皮分離之初級人類基底細胞產生。
細胞在T75燒瓶(Sarstedt)中在補充有呼吸道上皮細胞生長培養基SupplementPack之呼吸道上皮細胞基本培養基(均來自Promocell)中擴增。每兩天更換生長培養基。在達到90%匯合時,HAEC使用DetachKIT (Promocell)分離且接種於6.5 mm Transwell過濾器(Corning Costar)中。過濾器預塗佈有膠原蛋白溶液(StemCell Technologies)隔夜且在細胞接種之前用UV光照射30分鐘以進行膠原蛋白交聯及滅菌。將200 µl生長培養基中之3.5×10 4個細胞添加至各過濾器之頂側,且向底外側再添加600 µl生長培養基。在48小時後更換頂部培養基。在72-96小時之後,當細胞達到匯合時,移除頂部培養基且底外側培養基交換成分化培養基。分化培養基由DMEM-H及補充有呼吸道上皮細胞生長培養基SupplementPack的LHC Basal (Thermo Fisher)之1:1混合物組成,且每2天更換一次。氣液界面(ALI)培養物之第0天界定氣舉(Air-lifting) (移除頂部培養基),且細胞在ALI條件下生長直至實驗在第25-28天進行為止。為避免頂側上之黏液積聚,自第14天開始,每3天用PBS將HAEC培養物頂端洗滌30分鐘。
HAEC SARS - CoV - 2 感染 緊接在感染之前,在Transwell過濾器上生長之HAEC之頂部表面用200 µl PBS洗滌三次以移除積聚之黏液。接著,將10 µM α1AT或5 µM瑞德西韋添加至基本培養基中且放至頂部表面上。細胞用9.25×10 2個噬菌體形成單位(PFU)的SARS-CoV-2 (BetaCoV/France/IDF0372/2020)感染。在37℃下培育2小時之後,移除病毒接種物且用200 µl PBS洗滌細胞三次且再次在氣液界面培養。在感染後1、2及3天,細胞在含4%多聚甲醛之PBS中固定30分鐘,用含0.2%皂素及10% FCS之PBS滲透10分鐘,用PBS洗滌兩次,且在4℃下用以1:300至1:500分別稀釋於PBS,0.2%皂素及10% FCS中的抗SARS-CoV-2刺突蛋白(ab252690, Abcam)及抗α-微管蛋白(MA1-8007, Thermo Scientific)染色隔夜。
隨後,細胞用PBS洗滌兩次且在室溫下在分別含有AlexaFluor 488標記之抗兔及AlexaFluor 647標記之抗大鼠二級抗體(均1:500;Thermo Scientific)及DAPI + 鬼筆環肽(phalloidin) AF 405 (1:5000; Thermo Scientific)的PBS,0.2%皂素及10% FCS中培育1小時。在倒置共焦顯微鏡(Leica TCS SP5, Leica Microsystems, Leica應用程式組版本2.7.3.9723)上使用x40透鏡(Leica HC PL APO CS2 40 x 1.25 OIL)拍攝影像。藍色(DAPI)、綠色(AlexaFluor 488)及遠紅(far-red) (AlexaFluor 647)通道之影像係使用對於所有採集保持恆定之適當激發及發射設定以依序模式拍攝。對於定量,選擇各過濾器中隨機選擇之位置且獲取z堆。進行最大z投影運算且目視鑑別每個面積(0.15 mm 2)抗SARS-CoV-2陽性細胞並計數。
結果:重組AAT比Prolastin更有效地抑制人類呼吸道細胞中之SARS-CoV-2複製。在感染期間存在之重組AAT比Prolastin更降低病毒效價。SARS-CoV-2刺突表現在經感染之重組AAT處理之HAEC中比經Prolastin處理之HAEC更難偵測到。
實例 9 使用 AAT 吸入之治癒試驗 在個別自行研究的情形中,患者在知情方案之後經由吸入AAT (Prolastin, Grifols, Spain)治療。Pari Boy Pro (Pari, Starnberg, Germany)用作霧化器。由此,將100 mg AAT溶解於8 ml鹽水中且添加至霧化器之容器中。
患者 1 男性 52 風險因素為吸菸 尚未接種疫苗 .在治療過程中: 在第1天,在PCT測試下測試出患者1 Covid-19呈陽性,且具有與流感類感染類似之輕度症狀。 在第2天,患者1在快速測試下測試出Covid-19呈陰性且無症狀。其吸入100 mg Prolastin。 自第3天至第5天,在快速測試下患者1測試出Covid-19呈陰性且無症狀。
患者 2 女性 25 風險因素為吸菸 .患者2已接種Comirnaty兩次。在感染Covid-19之前3個月接受了第二次疫苗接種。 在第1天,患者2在快速測試下測試出Covid-19呈陽性,且具有發熱、喉嚨痛、疲勞及味覺下降。患者2以4小時之時間間隔吸入100 mg AAT三次。 在第2天,症狀顯著改善。患者2在第2天吸入100 mg AAT。 在第3天,患者2無症狀且吸入100 mg AAT。藉由PCR測試,患者2測試出Covid-19呈陰性。
實例 10 自巴斯德畢赤酵母產生重組 AAT 作為實例2-5之替代方案,進行巴斯德畢赤酵母中產生之重組AAT的以下實驗驗證。
用來自Eurofins之GENEius設計巴斯德畢赤酵母中表現之密碼子最佳化AAT基因,其提供於pEX-A258載體中。
編碼AAT蛋白的密碼子最佳化基因係根據SDEQ ID NO 2:
AAT之蛋白序列係根據SEQ ID NO 3:
經由限制消化及後續選殖,將AAT基因插入意欲用於巴斯德畢赤酵母中之表現的表現載體中。兩種適合表現載體展示於 1中。所示第一載體為pGAPZα,包含組成型甘油醛-3-磷酸脫氫酶(GAP)啟動子。第二載體為pPICZα,包含誘導型醇氧化酶I (AOX1)啟動子。
使用Gibson組裝將構築體選殖至各別載體pGAPzα及pPICZα中。隨後,用Phusion定點突變誘發套組(ThermoFischer)進行定向突變誘發,以便刪除33bp連接子及His-標籤,產生未標記之AAT,因此產生His-標籤AAT融合蛋白及未標記之AAT構築體兩者。
巴斯德畢赤酵母X33隨後用AAT表現載體轉型且在標準條件下培養。
在含礦物鹽培養基FM22之生物反應器中進行醱酵(Stratton等人1998, high cell-density fermentation, Methods Mol Biol.),培養基可含有不同鹽及40 g/L甘油作為主要碳源。在生物反應器中界定之環境參數為:30°,pH 6,1 vvm產氣,30%溶解氧濃度。所有參數相應地在生物反應器中調節。
為增加細胞濃度,一旦完成第一批次生長(在大致24小時後),即開始甘油饋入。接著,增加的細胞濃度使得AAT產量增加。若使用pGAPz,則AAT已經在生長期間產生(組成型),因此隨後僅需要採集(在3天之後)。若使用pPICz,則甘油饋料繼之以另一甲醇饋料以誘導啟動子並開始AAT合成。該方法相對應地花費較長時間(4天)。在一個實施例中,用pGAPz及甘油饋入進行的醱酵具有42 g/L之細胞濃度(乾重)、115 mg/L之總蛋白質含量及15 mg/L之AAT濃度。
在醱酵過程完成之後,首先藉由將細胞離心而獲得上清液。視情況,隨後藉由超過濾(10或30 kDa截止值)濃縮澄清上清液,將AAT及其他蛋白質留在保留物中。可丟棄濾液。保留物可使用任何適合方法純化,例如使用金屬親和層析、His-Tag純化(若採用His-標籤構築體)或使用陰離子交換層析。
實例 11 純化來自經轉型巴斯德畢赤酵母 X33 之上清液的 AAT 如上文所描述,巴斯德畢赤酵母X33經工程改造以將α1AT重組表現至培養物上清液(SN)中。表現α1AT (重組α1AT)之巴斯德畢赤酵母之SN及未經修飾之巴斯德畢赤酵母之SN藉由陰離子交換層析(AEX)純化。
為了獲得對α1AT之溶離概況的經歷且查看SEC是否影響α1AT之活性,亦將人類漿衍生之α1AT調配物Prolastin施加於SEC。將700 ml巴斯德畢赤酵母上清液施加至管柱,以30秒時間間隔獲得溶離份,使得能夠獲得2個溶離份/分鐘。
結果:Prolastin及來自重組α1AT之SN溶析峰不同,儘管並不清楚差異之原因。人類AAT與酵母菌AAT之間的糖基化模式可在不同溶離概況中起一定作用。WT巴斯德畢赤酵母之SN產生AEX之寬峰。具有新鮮α1AT之SN顯示在WT SN中不存在之額外峰,指示存在重組蛋白表現。溶離概況展示於 2中。假定額外峰(約溶離份52及53)含有重組α1AT且用於進一步分析。
實例 12 重組 AAT 溶離份之西方墨點分析 用西方墨點法分析重組AAT。對樣品進行BCA分析。使樣品在70℃下沸騰10分鐘且在4-12% SDS凝膠上在120 V下運行90分鐘。樣品在PVDF膜(半乾燥)上進行吸墨且在4℃用初級抗體(16382-1-AP,兔,1:1000稀釋)染色隔夜。洗滌膜之後,添加二級抗體且在室溫下培育30分鐘。在洗滌之後,使膜成像。
結果: 3中所示,重組AAT經由西方墨點分析在溶離份52-57中可見。值得注意的是,rhAAT提供明確界定帶,而Prolastin展示具有多種副產物/雜質之污跡,指示rhAAT產生在AAT之製備中展現出改善。
13 針對抗 SARS - CoV - 2 活性測試重組 AAT 化合物之溶解: 將Prolastin(不藉由CEX純化)溶解於H2O中。假定含有重組α1AT之溶離份溶解於10% DMSO中。
轉導方案: 在第0天,接種10,000個Caco2 (結腸直腸癌細胞,對SARS-CoV-2敏感)。在第1天,移除培養基且將無血清培養基添加至細胞中。將重組α1AT樣品溶解於含10% DMSO之H2O中,且滴定所有化合物及對照物。將化合物添加至細胞中,在37℃下培育1小時。細胞用慢病毒SARS-CoV-2假病毒粒子轉導。48小時後,在細胞裂解物中量測螢光素酶信號。
為進行測試,使用擁有武漢Hu-1分離株之SARS-CoV-2刺突蛋白的慢病毒假粒子。假粒子為顯示另一病毒之糖蛋白之複製缺陷型病毒粒子。其用於研究病毒進入且通常攜帶在病毒進入細胞中時表現之報告基因(此處:螢光素酶)。 表. AAT或對照投與之後抑制假粒子進入Caco2細胞之IC50值:
化合物 IC50 (mg/ml)
重組α 1AT溶離份53 3.96
重組α 1AT溶離份52 3.06
Prolastin 3.16
DMSO對照 n.a
結果:重組α1AT溶離份52及53類似於Prolastin抑制SARS-CoV-2進入,指示重組α1AT存在於此等溶離份中且具活性。如 4中所示,比較分析展示分別用重組AAT溶離份52及53 (具有圓形及方形之曲線)、人類血清衍生之AAT Prolastin(具有菱形之曲線)及DMSO (具有三角形之曲線)處理的Caco2細胞中之假粒子進入。在20 mg/ml之濃度下,用重組AAT處理之細胞展示假粒子進入之完全抑制,而在用Prolastin處理之細胞中仍發生約10%假粒子進入。 4A 4 B指示與10及20 mg/mL蛋白質濃度之Prolastin相比,藉由溶離份52及53對假粒子進入之抑制更大。
值得注意的係Prolastin及rhAAT之抑制性曲線具有不同形狀。對於Prolastin觀測到明顯較多非特異性抑制,如自曲線形狀推導出,其中在較低濃度下起始非特異性抑制,且在高劑量下未達至完全抑制。對於rhAAT可見具有明顯拐折點之較陡曲線形狀,指示rhAAT較多特異性抑制。Prolastin可為較低特異性的,或包含額外雜質,產生非特異性抑制作用。
如可自以上初始IC50值推導出,相較於Prolastin,使用自巴斯德畢赤酵母分離之AAT的溶離份53在所採用的假粒子分析中展示較大活性。使用來自各種巴斯德畢赤酵母表現系統之AAT,使用受控AAT濃度及各種純化技術且與Prolastin相比較來進行測試。
rhAAT相比於Prolastin之額外評估正在進行中,其中IC90值 (對於病毒抑制分析亦高度相關)可在評定rhAAT活性方面起作用。根據初始評定,對於Prolastin及rhAAT,當自 4推導時,IC90值似乎不同。自此分析推導出之初步研究結果揭露Prolastin之IC90估算值為20 mg/mL及rhAAT為8 mg/mL,再次指示rhAAT相對於Prolastin之改善。
呈現以下圖式以描述本發明之特定實施例,但該等圖式在範疇上不為限制性的。
1 巴斯德畢赤酵母中重組蛋白表現之載體圖。 2 藉由陰離子交換層析(antion exchange chromatography,AEX)純化包含在巴斯德畢赤酵母中產生之重組AAT之上清液。 3 對獲自陰離子交換層析(AEX)之重組AAT溶離份的西方墨點分析。上圖及下圖具有相同影像,下圖經裁剪以避免prolastin之強信號。 4 測試重組AAT之抗SARS-CoV-2活性。
TW202334430A_111149485_SEQL.xml

Claims (19)

  1. 一種表現於經遺傳修飾之酵母菌中的重組alpha1-抗胰蛋白酶(AAT)蛋白或其片段之用途,其用於製造治療病毒性呼吸道感染之藥劑。
  2. 如請求項1之用途,其中該病毒性呼吸道感染為SARS冠狀病毒感染。
  3. 如請求項2之用途,其中該病毒性呼吸道感染為SARS-CoV-2。
  4. 如請求項1之用途,其中該病毒性呼吸道感染為流感或呼吸道融合性病毒(RSV)。
  5. 如請求項1之用途,其中該AAT蛋白或其片段包含根據SEQ ID NO 3或5之序列或由SEQ ID NO 1、2或4編碼。
  6. 如請求項1之用途,其中該重組AAT或其片段具有不低於人類血漿純化之AAT的血清半衰期及/或活性。
  7. 如請求項1之用途,其中該重組AAT蛋白或其片段表現於酵母菌科(family Saccharomycetaceae),較佳酵母菌科畢赤酵母屬( Saccharomycetaceae Pichia)之酵母菌中。
  8. 如請求項7之用途,其中該重組AAT蛋白或其片段表現於巴斯德畢赤酵母( Pichia pastoris)中。
  9. 如請求項1之用途,其中該重組AAT蛋白或其片段包含轉譯後修飾。
  10. 如請求項9之用途,其中該轉譯後修飾為O-糖基化、N-糖基化、N端甲硫胺酸移除、N-乙醯化及/或磷酸化或其任何組合,較佳包含一或多個來自酵母菌中表現的特異性修飾,諸如Man3GlcNAc2。
  11. 如請求項1之用途,其中該AAT蛋白或其片段係藉由吸入投與,較佳呈適於吸入之溶液、適於吸入之可溶性粉末或適於吸入之乾粉。
  12. 如請求項1之用途,其中該AAT蛋白或其片段係藉由吸入霧化溶液投與。
  13. 如請求項1之用途,其中該病毒感染為SARS-CoV-2且該AAT蛋白或其片段係藉由吸入霧化溶液投與。
  14. 如請求項1之用途,其中該病毒感染為SARS-CoV-2、流感或RSV,且該AAT蛋白或其片段係由巴斯德畢赤酵母表現且該AAT蛋白或其片段係藉由吸入霧化溶液投與。
  15. 如請求項1之用途,其中該病毒感染為SARS-CoV-2,且該AAT蛋白或其片段係由巴斯德畢赤酵母表現且使用層析,諸如離子交換或疏水相互作用層析分離,且該AAT蛋白或其片段係藉由吸入霧化溶液投與。
  16. 如請求項1之用途,其中該AAT蛋白或其片段係在包含以下步驟之方法中由經遺傳修飾之酵母菌產生: a.培養經遺傳修飾之酵母菌,該酵母菌包含具有AAT編碼區可操作地連接至啟動子或啟動子/強化子組合之外源核酸分子,其中該酵母菌較佳屬於酵母菌科,較佳酵母菌科畢赤酵母屬,更佳巴斯德畢赤酵母, b. 使重組AAT或其片段在該培養之酵母菌中表現,其中該啟動子較佳為甘油醛-3-磷酸脫氫酶(GAP)或醇氧化酶I (AOX1),及 c.自該培養物分離重組AAT或其片段。
  17. 如請求項16之用途,其中該AAT蛋白或片段自該酵母菌分泌至培養基中,至每公升液體培養基至少1 mg蛋白質之濃度(mg/L),較佳至5-100 mg/L之濃度。
  18. 如請求項1之用途,其中該藥劑包含組合物,該組合物包含醫藥學上可接受之載劑。
  19. 如請求項18之用途,其中該組合物為適於吸入之溶液、適於吸入之可溶性粉末或適於吸入之乾粉。
TW111149485A 2021-12-22 2022-12-22 自酵母菌產生之alpha-1抗胰蛋白酶用於治療病毒感染 TW202334430A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP21216836 2021-12-22
EP21216836.3 2021-12-22
EP22166483.2 2022-04-04
EP22166483 2022-04-04

Publications (1)

Publication Number Publication Date
TW202334430A true TW202334430A (zh) 2023-09-01

Family

ID=84980906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149485A TW202334430A (zh) 2021-12-22 2022-12-22 自酵母菌產生之alpha-1抗胰蛋白酶用於治療病毒感染

Country Status (2)

Country Link
TW (1) TW202334430A (zh)
WO (1) WO2023118424A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713249A (en) 1981-11-12 1987-12-15 Schroeder Ulf Crystallized carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof
US5266333A (en) 1985-03-06 1993-11-30 American Cyanamid Company Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone
US5417982A (en) 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
WO2021191900A1 (en) 2020-03-26 2021-09-30 Kamada Ltd. Methods for treating infectious diseases caused by coronavirus

Also Published As

Publication number Publication date
WO2023118424A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
EP3325618B1 (en) Novel trypsin isoforms and their use
KR102316762B1 (ko) 건조 분말 펩티드 약제
Griese Respiratory syncytial virus and pulmonary surfactant
JP6030201B2 (ja) α‐1プロテイナーゼインヒビターのための組成物、方法およびキット
Bianchera et al. Augmentation Therapy with alpha-1 antitrypsin: present and future of production, formulation, and delivery
WO2021229577A1 (en) Collagen as a delivery tool for metal-based anti-viral agents
US20230414730A1 (en) A composition comprising extra-cellular vesicles from mesenchymal stem cells and alpha-1 antitrypsin for the treatment of viral infections
TW202334430A (zh) 自酵母菌產生之alpha-1抗胰蛋白酶用於治療病毒感染
EP3995130A1 (en) A composition comprising extra-cellular vesicles from mesenchymal stem cells and alpha-1 antitrypsin for the treatment of viral infections
WO1982003011A1 (en) Agent for treating deseases of respiratory organs
EP1896059B1 (en) Airway administration of tissue factor pathway inhibitor in inflammatory conditons affecting the respiratory tract
WO2021164576A1 (zh) 用于抗冠状病毒感染的药物及其应用
US9421243B2 (en) Therapy for influenza like illness
WO2016200916A1 (en) Treatment of human metapneumovirus
EP4248986A1 (en) Use of polypeptide having superoxide dismutase activity and extracellular vesicles for treatment or prevention of respiratory viral infection
WO2023081660A1 (en) Das181 variant compositions
MX2013003341A (es) Formulaciones para el factor estimulante de colonia de granulocito de bovino y sus variantes.
KR20220137946A (ko) 바이러스성 폐렴의 치료 방법 및 약물
WO2022207918A1 (en) COVID-19 Therapy
WO2004096852A1 (fr) Interferon$g(v) humain recombinant, son procede d'expression et ses utilisations