TW202333390A - Semiconductor stack, semiconductor device and method for manufacturing the same - Google Patents

Semiconductor stack, semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TW202333390A
TW202333390A TW112115898A TW112115898A TW202333390A TW 202333390 A TW202333390 A TW 202333390A TW 112115898 A TW112115898 A TW 112115898A TW 112115898 A TW112115898 A TW 112115898A TW 202333390 A TW202333390 A TW 202333390A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
semiconductor
dopant
concentration
layer
Prior art date
Application number
TW112115898A
Other languages
Chinese (zh)
Inventor
陳孟揚
李榮仁
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW112115898A priority Critical patent/TW202333390A/en
Publication of TW202333390A publication Critical patent/TW202333390A/en

Links

Abstract

The present disclosure provides a semiconductor stack, a semiconductor device and a method for manufacturing the same. The semiconductor device includes a first semiconductor layer and a light-emitting structure. The first semiconductor layer includes a first III-V semiconductor material, a first dopant and a second dopant. The light-emitting structure is on the first semiconductor layer and includes an active structure. In the first semiconductor layer, a concentration of the second dopant is higher than a concentration of the first dopant. The first dopant is carbon, and the second dopant is hydrogen.

Description

半導體疊層、半導體元件及其製造方法Semiconductor stack, semiconductor element and manufacturing method thereof

本揭露內容有關於一種半導體元件,尤其關於一種包含半導體疊層的發光元件。The present disclosure relates to a semiconductor device, and in particular to a light-emitting device including a semiconductor stack.

隨著科技日新月異,半導體元件在資訊傳輸及能量轉換等領域扮演非常重要的角色,相關材料的研究開發也持續進行。舉例而言,包含三族及五族元素的III-V族半導體材料可應用於各種光電元件如發光二極體(Light emitting diode,LED)、雷射二極體(Laser diode,LD)、太陽能電池(Solar cell)等,亦可應用於照明、醫療、顯示、通訊、感測、電源系統等領域。發光二極體元件適用於固態照明光源且具有耗電量低以及壽命長等優點,因此已逐漸取代傳統光源而大量被應用於交通號誌、背光模組、各式照明及醫療設備等。With the rapid advancement of science and technology, semiconductor components play a very important role in fields such as information transmission and energy conversion, and the research and development of related materials continues. For example, III-V semiconductor materials containing Group III and Group V elements can be used in various optoelectronic devices such as light emitting diodes (LEDs), laser diodes (LDs), solar Batteries (Solar cells), etc., can also be used in lighting, medical, display, communications, sensing, power supply systems and other fields. Light-emitting diode components are suitable for solid-state lighting sources and have the advantages of low power consumption and long life. Therefore, they have gradually replaced traditional light sources and are widely used in traffic signals, backlight modules, various lighting and medical equipment, etc.

本發明內容提供一種半導體元件,其包含第一半導體層、發光結構、第二半導體層以及第三半導體層。第一半導體層包含第一III-V族半導體材料。發光結構位於第一半導體層上且包含活性結構。第二半導體層位於第一半導體層下且包含第二III-V族半導體材料。第三半導體層位於第一半導體層與發光結構之間且包含第三III-V族半導體材料。第一半導體層、第二半導體層以及第三半導體層包含第一摻雜物以及第二摻雜物。第一摻雜物在第一半導體層中的濃度大於第一摻雜物在第二半導體層中的濃度。第一摻雜物在第一半導體層中的濃度大於第一摻雜物在第三半導體層中的濃度。第二摻雜物在第一半導體層中的濃度低於第二摻雜物在第二半導體層中的濃度。第二摻雜物在第一半導體層中的濃度低於第二摻雜物在第三半導體層中的濃度。SUMMARY OF THE INVENTION The present invention provides a semiconductor element, which includes a first semiconductor layer, a light-emitting structure, a second semiconductor layer and a third semiconductor layer. The first semiconductor layer includes a first III-V semiconductor material. The light emitting structure is located on the first semiconductor layer and includes an active structure. The second semiconductor layer is located under the first semiconductor layer and includes a second III-V semiconductor material. The third semiconductor layer is located between the first semiconductor layer and the light emitting structure and includes a third group III-V semiconductor material. The first semiconductor layer, the second semiconductor layer and the third semiconductor layer include first dopants and second dopants. The concentration of the first dopant in the first semiconductor layer is greater than the concentration of the first dopant in the second semiconductor layer. The concentration of the first dopant in the first semiconductor layer is greater than the concentration of the first dopant in the third semiconductor layer. The concentration of the second dopant in the first semiconductor layer is lower than the concentration of the second dopant in the second semiconductor layer. The concentration of the second dopant in the first semiconductor layer is lower than the concentration of the second dopant in the third semiconductor layer.

本發明內容另提供一種半導體元件的封裝結構 ,其包含載體、半導體元件以及封裝材料。半導體元件位於載體上。封裝材料覆蓋於半導體元件上。The present invention further provides a packaging structure of a semiconductor element, which includes a carrier, a semiconductor element and a packaging material. The semiconductor component is located on the carrier. The packaging material covers the semiconductor components.

以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之構件將使用相似或相同之標號進行說明,並且若未特別說明,圖式中各元件之形狀或尺寸僅為例示,實際上並不限於此。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。The following embodiments will illustrate the concept of the present invention along with the drawings. In the drawings or descriptions, similar or identical components will be described with similar or identical reference numerals, and unless otherwise specified, the shape of each element in the drawings or The dimensions are only examples and are not actually limited thereto. It should be noted that components not shown or described in the drawings may be in forms known to those skilled in the art.

通式InGaAsP代表In x7Ga 1-x7As 1-y2P y2,其中0<x1<1,0<y1<1;AlGaInAs代表(Al y2Ga (1-y2)) 1-x2In x2As,其中0<x2<1,0<y2<1;通式AlGaInP代表(Al y3Ga (1-y3)) 1-x3In x3P,其中0<x3<1,0<y3<1;通式InGaAs代表In x4Ga 1-x4As,其中0<x4<1;本揭露內容的半導體元件包含的各層組成及添加物、摻雜物可用任何適合的方式分析而得,例如二次離子質譜儀(secondary ion mass spectrometer,SIMS),而各層之厚度亦可用任何適合的方式分析而得,例如穿透式電子顯微鏡(transmission electron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM)。此外,本揭露內容中所提及的各摻雜物可為故意添加或非故意添加。故意添加例如是藉由在磊晶成長期間原位(in-situ)摻雜及/或藉由在磊晶成長之後使用P型或N型摻質進行佈植(implanting)。非故意添加例如是因製程的設計而產生。 The general formula InGaAsP represents In x7 Ga 1-x7 As 1-y2 P y2 , where 0<x1<1, 0<y1<1; AlGaInAs represents (Al y2 Ga (1-y2) ) 1-x2 In x2 As, where 0<x2<1, 0<y2<1; the general formula AlGaInP represents (Al y3 Ga (1-y3) ) 1-x3 In x3 P, where 0<x3<1, 0<y3<1; the general formula InGaAs represents In x4 Ga 1-x4 As, where 0 < mass spectrometer (SIMS), and the thickness of each layer can also be analyzed by any suitable method, such as transmission electron microscopy (TEM) or scanning electron microscope (SEM). In addition, each dopant mentioned in this disclosure may be intentionally added or unintentionally added. Intentional addition is, for example, by in-situ doping during epitaxial growth and/or by implanting after epitaxial growth using P-type or N-type dopants. Unintentional additions occur, for example, due to process design.

所屬領域中具通常知識者應理解,可以在以下所說明各實施例之基礎上添加其他構件。舉例來說,在未特別說明之情況下,「在第一層上形成第二層」的描述可能包含第一層與第二層直接接觸的實施例,也可能包含第一層與第二層之間具有其他層而彼此不直接接觸的實施例。另外,各層的上下關係可能隨著結構或元件在不同方位的操作或使用而改變。此外,於本揭露內容中,一層「實質上由X材料所組成」之敘述表示該層的主要組成為X材料,但並不排除包含摻雜物或不可避免的雜質。Those with ordinary skill in the art should understand that other components can be added on the basis of each embodiment described below. For example, unless otherwise specified, the description of "forming a second layer on the first layer" may include an embodiment in which the first layer is in direct contact with the second layer, or may also include an embodiment in which the first layer and the second layer are in direct contact. Embodiments with other layers in between without direct contact with each other. In addition, the upper-lower relationship of various layers may change as the structure or component is operated or used in different orientations. In addition, in this disclosure, the statement that a layer "substantially consists of material X" means that the main component of the layer is material

第1圖為本揭露內容一實施例之半導體疊層10的結構示意圖。半導體疊層10包括第一半導體層100以及第二半導體層102。第二半導體層102鄰接於第一半導體層100。於本實施例中,第一半導體層100的一表面100a與第二半導體層102的一表面102a直接接觸。第一半導體層100以及第二半導體層102之間無其他結構(例如緩衝層等)存在。FIG. 1 is a schematic structural diagram of a semiconductor stack 10 according to an embodiment of the present disclosure. The semiconductor stack 10 includes a first semiconductor layer 100 and a second semiconductor layer 102 . The second semiconductor layer 102 is adjacent to the first semiconductor layer 100 . In this embodiment, a surface 100a of the first semiconductor layer 100 is in direct contact with a surface 102a of the second semiconductor layer 102. No other structure (such as a buffer layer, etc.) exists between the first semiconductor layer 100 and the second semiconductor layer 102 .

於本實施例中,第一半導體層100包含第一III-V族半導體材料。第一III-V族半導體材料為由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鎵(Ga)或銦(In)。五族元素可為砷(As)或磷(P),且較佳為不包含氮(N)。在一實施例中,第一半導體層100實質上由第一III-V族半導體材料所組成,例如實質上由二元III-V族半導體材料所組成。在一實施例中,第一半導體層100實質上由InP所組成。第一半導體層100可包含摻雜物。在一實施例中,第一半導體層100包含第一摻雜物及第二摻雜物。在本實施例中,第一半導體層100中第二摻雜物的濃度大於第一摻雜物的濃度。第一摻雜物例如是碳(C),第二摻雜物例如是氫(H)。藉此,第一半導體層100可具有性質穩定且磊晶缺陷較少的表面,例如可作為磊晶層成長之表面。在一實施例中,第一半導體層100可包括第三摻雜物。第三摻雜物例如是矽(Si)。在一實施例中,第一半導體層100中的摻雜物可以各自獨立地具有約1×10 16cm −3至約1×10 19cm −3的摻雜濃度,例如具有約5×10 16cm −3至約5×10 17cm −3的摻雜濃度,或者6×10 17cm −3至5×10 18cm −3的摻雜濃度等。在一實施例中,第一半導體層100中的第三摻雜物之濃度小於1×10 19cm −3,例如在約6×10 16cm −3至約1×10 17cm −3的範圍。在第一半導體層100中的摻雜物具有適當摻雜濃度時,第一半導體層100可具有較佳之導電特性。在一實施例中,第一半導體層100的導電型態為N型。 In this embodiment, the first semiconductor layer 100 includes a first group III-V semiconductor material. The first III-V semiconductor materials are materials composed of elements from Groups III and V of the periodic table of chemical elements. Group III elements can be gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). In one embodiment, the first semiconductor layer 100 is substantially composed of a first III-V group semiconductor material, for example, substantially composed of a binary III-V group semiconductor material. In one embodiment, the first semiconductor layer 100 is substantially composed of InP. The first semiconductor layer 100 may include dopants. In one embodiment, the first semiconductor layer 100 includes first dopants and second dopants. In this embodiment, the concentration of the second dopant in the first semiconductor layer 100 is greater than the concentration of the first dopant. The first dopant is, for example, carbon (C), and the second dopant is, for example, hydrogen (H). Thereby, the first semiconductor layer 100 can have a surface with stable properties and fewer epitaxial defects, for example, it can be used as a surface for epitaxial layer growth. In an embodiment, the first semiconductor layer 100 may include a third dopant. The third dopant is silicon (Si), for example. In one embodiment, the dopants in the first semiconductor layer 100 may each independently have a doping concentration of about 1×10 16 cm −3 to about 1×10 19 cm −3 , for example, about 5×10 16 cm −3 to about 5×10 17 cm −3 , or 6×10 17 cm −3 to 5×10 18 cm −3 , etc. In one embodiment, the concentration of the third dopant in the first semiconductor layer 100 is less than 1×10 19 cm −3 , for example, in the range of about 6×10 16 cm −3 to about 1×10 17 cm −3 . When the dopant in the first semiconductor layer 100 has an appropriate doping concentration, the first semiconductor layer 100 may have better conductive properties. In one embodiment, the conductivity type of the first semiconductor layer 100 is N-type.

於本實施例中,第二半導體層102包含第二III-V族半導體材料。第二III-V族半導體材料為由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鎵(Ga) 或銦(In)。五族元素可為砷(As)或磷(P),較佳為不包含氮(N) 。第二III-V族半導體材料與第一III-V族半導體材料不同。在一實施例中,第二III-V族半導體材料的各組成元素與第一III-V族半導體材料的各組成元素均不相同。在一實施例中,第二半導體層102實質上由第二III-V族半導體材料所組成,例如實質上由二元III-V族半導體材料所組成。於一實施例中,第二半導體層102實質上由GaAs所組成。第二半導體層102可包含複數個摻雜物。第二半導體層102中的複數個摻雜物可以各自獨立地具有5×10 15cm −3至1×10 20cm −3的摻雜濃度,例如具有1×10 17cm −3至1×10 18cm −3的摻雜濃度,1×10 18cm −3至1×10 19cm −3的摻雜濃度,或者1×10 19cm −3至1×10 20cm −3的摻雜濃度。在第二半導體層102中的摻雜物具有適當摻雜濃度時,第二半導體層102可具有較佳之導電特性。第二半導體層102中的摻雜物可包含矽(Si)、鋅(Zn)、碳(C)或氫(H)等。在一實施例中,第二半導體層102的導電型態為N型。在一些實施例中,第一半導體層100與第二半導體層102具有相同的導電型態,例如均為P型或N型。在一實施例中,第二半導體層102之電阻係數(resistivity)在10 7Ω·cm以上且10 9Ω·cm以下的範圍內,例如在10 8Ω·cm以上。 In this embodiment, the second semiconductor layer 102 includes a second group III-V semiconductor material. The second group III-V semiconductor material is a material composed of elements from Groups III and V of the periodic table of chemical elements. Group III elements can be gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). The second III-V semiconductor material is different from the first III-V semiconductor material. In one embodiment, each component element of the second group III-V semiconductor material is different from each component element of the first group III-V semiconductor material. In one embodiment, the second semiconductor layer 102 is substantially composed of a second group III-V semiconductor material, for example, substantially composed of a binary group III-V semiconductor material. In one embodiment, the second semiconductor layer 102 is substantially composed of GaAs. The second semiconductor layer 102 may include a plurality of dopants. The plurality of dopants in the second semiconductor layer 102 may each independently have a doping concentration of 5×10 15 cm −3 to 1×10 20 cm −3 , for example, a doping concentration of 1×10 17 cm −3 to 1×10 A doping concentration of 18 cm −3 , a doping concentration of 1×10 18 cm −3 to 1×10 19 cm −3 , or a doping concentration of 1×10 19 cm −3 to 1×10 20 cm −3 . When the dopant in the second semiconductor layer 102 has an appropriate doping concentration, the second semiconductor layer 102 may have better conductive properties. The dopants in the second semiconductor layer 102 may include silicon (Si), zinc (Zn), carbon (C), hydrogen (H), etc. In one embodiment, the conductivity type of the second semiconductor layer 102 is N-type. In some embodiments, the first semiconductor layer 100 and the second semiconductor layer 102 have the same conductivity type, such as P-type or N-type. In one embodiment, the resistivity of the second semiconductor layer 102 is in the range of 10 7 Ω·cm or more and 10 9 Ω·cm or less, for example, 10 8 Ω·cm or more.

在一些實施例中,第一半導體層100與第二半導體層102中均含有第一摻雜物、第二摻雜物以及第三摻雜物。在一些實施例中,第二半導體層102中第三摻雜物之濃度高於第一半導體層100中第三摻雜物之濃度。在一些實施例中,第二半導體層102中第二摻雜物之濃度高於第一半導體層100中第二摻雜物之濃度。在一些實施例中,第二半導體層102中第一摻雜物之濃度低於第一半導體層100中第一摻雜物之濃度。上述第一摻雜物例如是碳(C),第二摻雜物例如是氫(H),第三摻雜物例如是矽(Si)。藉由含有特定摻雜物,第一半導體層100與第二半導體層102可獲得適當的導電特性與磊晶品質。In some embodiments, both the first semiconductor layer 100 and the second semiconductor layer 102 contain first dopants, second dopants, and third dopants. In some embodiments, the concentration of the third dopant in the second semiconductor layer 102 is higher than the concentration of the third dopant in the first semiconductor layer 100 . In some embodiments, the concentration of the second dopant in the second semiconductor layer 102 is higher than the concentration of the second dopant in the first semiconductor layer 100 . In some embodiments, the concentration of the first dopant in the second semiconductor layer 102 is lower than the concentration of the first dopant in the first semiconductor layer 100 . The first dopant is, for example, carbon (C), the second dopant is, for example, hydrogen (H), and the third dopant is, for example, silicon (Si). By containing specific dopants, the first semiconductor layer 100 and the second semiconductor layer 102 can obtain appropriate conductive properties and epitaxial quality.

另一方面,第一半導體層100具有第一晶格常數L1,第二半導體層102具有第二晶格常數L2。在本實施例中,第一晶格常數L1大於第二晶格常數L2,且第一晶格常數L1與第二晶格常數L2之間的差異ΔL%是2%以上,較佳為2.5%以上或3%以上,且為10%以下,較佳為5%以下。詳細而言,第一晶格常數L1與第二晶格常數L2之間的差異可由以下公式算出:ΔL%=L1-L2/L2*100%。上述晶格常數是指在溫度為300k下量測半導體材料之X光繞射圖譜所得者。在此僅列舉數種半導體化合物之晶格常數作為參考,如下表1所示。On the other hand, the first semiconductor layer 100 has a first lattice constant L1, and the second semiconductor layer 102 has a second lattice constant L2. In this embodiment, the first lattice constant L1 is greater than the second lattice constant L2, and the difference ΔL% between the first lattice constant L1 and the second lattice constant L2 is more than 2%, preferably 2.5%. More than 3% and less than 10%, preferably less than 5%. In detail, the difference between the first lattice constant L1 and the second lattice constant L2 can be calculated by the following formula: ΔL%=L1-L2/L2*100%. The above lattice constants refer to those obtained by measuring the X-ray diffraction pattern of semiconductor materials at a temperature of 300K. Here we only list the lattice constants of several semiconductor compounds for reference, as shown in Table 1 below.

表1 晶格常數(Å) GaP 5.45 AlP 5.45 GaAs 5.65 InP 5.87 GaSb 6.09 Table 1 Lattice constant (Å) GaP 5.45 PP 5.45 GaAs 5.65 iP 5.87 GaSb 6.09

第一半導體層100及第二半導體層102可藉由液相磊晶法(Liquid Phase Epitaxy,LPE)、分子束磊晶法(Molecular Beam Epitaxy,MBE)、化學束磊晶法(Chemical Beam Epitaxy,CBE)、金屬有機化學氣相沉積法(Metal Organic Chemical Vapor Deposition,MOCVD)、或氫化物氣相磊晶法(hydride vapor phase epitaxial,HVPE) 而形成。在本實施例中,第一半導體層100直接形成在作為基板(substrate)的第二半導體層102上。第一半導體層的厚度可在20 μm以下,較佳為10 μm以下,更佳為5 μm以下,且可在1 μm以上。在一實施例中,第一半導體層的厚度為2 μm。當第一半導體層100的厚度在上述範圍內,可具有較良好的結構穩定性,且能夠進一步降低因晶格不匹配所造成之影響。第二半導體層102的厚度可在約50 μm至約1000 μm的範圍內,例如是約100 μm至約400 μm或約150 μm至約350 μm等。將厚度設定於上述範圍內,可使得後續成長於上的半導體結構具有更穩定的結構。當以電子顯微鏡觀察包含第一半導體層100與第二半導體層102之半導體疊層10,可觀察到第一半導體層100表面的磊晶缺陷少。在一些實施例中,在X光繞射分析(X-ray diffraction analysis,XRD)分析下,第一半導體層100的XRD半高寬(Full width at half maximum,FWHM)可在500 arcsec以下,較佳為在350 arcsec以下,更佳為在300 arcsec以下,如在100 arcsec以上至200 arcsec以下的範圍內 。藉此,第一半導體層100表面更適用於其他磊晶層之生長。具體來說,第一半導體層100或包含第一半導體層100與第二半導體層102之半導體疊層10可作為半導體元件的成長基板使用。The first semiconductor layer 100 and the second semiconductor layer 102 can be formed by liquid phase epitaxy (LPE), molecular beam epitaxy (MBE), or chemical beam epitaxy (Chemical Beam Epitaxy). CBE), Metal Organic Chemical Vapor Deposition (MOCVD), or hydride vapor phase epitaxial (HVPE). In this embodiment, the first semiconductor layer 100 is directly formed on the second semiconductor layer 102 as a substrate. The thickness of the first semiconductor layer may be below 20 μm, preferably below 10 μm, more preferably below 5 μm, and may be above 1 μm. In one embodiment, the thickness of the first semiconductor layer is 2 μm. When the thickness of the first semiconductor layer 100 is within the above range, it can have better structural stability, and can further reduce the impact caused by lattice mismatch. The thickness of the second semiconductor layer 102 may be in the range of about 50 μm to about 1000 μm, such as about 100 μm to about 400 μm or about 150 μm to about 350 μm. Setting the thickness within the above range can make the semiconductor structure subsequently grown thereon have a more stable structure. When the semiconductor stack 10 including the first semiconductor layer 100 and the second semiconductor layer 102 is observed with an electron microscope, it can be observed that there are few epitaxial defects on the surface of the first semiconductor layer 100 . In some embodiments, under X-ray diffraction analysis (XRD) analysis, the XRD full width at half maximum (FWHM) of the first semiconductor layer 100 may be less than 500 arcsec, which is less than 500 arcsec. Preferably, it is 350 arcsec or less, more preferably, it is 300 arcsec or less, for example, it is in the range of 100 arcsec or more and 200 arcsec or less. Thereby, the surface of the first semiconductor layer 100 is more suitable for the growth of other epitaxial layers. Specifically, the first semiconductor layer 100 or the semiconductor stack 10 including the first semiconductor layer 100 and the second semiconductor layer 102 can be used as a growth substrate for semiconductor devices.

第2A圖為本揭露內容一實施例之半導體元件20的部分結構示意圖。在本實施例中,半導體元件20包括第一半導體層100、第三半導體層204以及發光結構206。關於第一半導體層100的組成等可參考前述對於第一半導體層100之說明,於此不再贅述。此外,第三半導體層204及發光結構206可藉由液相磊晶法(Liquid Phase Epitaxy,LPE)、分子束磊晶法(Molecular Beam Epitaxy,MBE)、化學束磊晶法(Chemical Beam Epitaxy,CBE)、金屬有機化學氣相沉積法(Metal Organic Chemical Vapor Deposition,MOCVD)、或氫化物氣相磊晶法(hydride vapor phase epitaxial,HVPE)而依序形成在第一半導體層100上。在一些實施例中,是藉由使第一半導體層100、第三半導體層204及發光結構206依序形成在如先前實施例中所述的第二半導體層102上,再將第二半導體層102移除而形成如第2A圖所示結構。FIG. 2A is a partial structural diagram of a semiconductor device 20 according to an embodiment of the present disclosure. In this embodiment, the semiconductor element 20 includes a first semiconductor layer 100, a third semiconductor layer 204 and a light emitting structure 206. Regarding the composition of the first semiconductor layer 100 , please refer to the foregoing description of the first semiconductor layer 100 , and will not be described again here. In addition, the third semiconductor layer 204 and the light-emitting structure 206 can be formed by liquid phase epitaxy (LPE), molecular beam epitaxy (MBE), or chemical beam epitaxy (Chemical Beam Epitaxy). CBE), Metal Organic Chemical Vapor Deposition (MOCVD), or hydride vapor phase epitaxial (HVPE) are sequentially formed on the first semiconductor layer 100. In some embodiments, the first semiconductor layer 100, the third semiconductor layer 204 and the light-emitting structure 206 are sequentially formed on the second semiconductor layer 102 as described in previous embodiments, and then the second semiconductor layer is 102 is removed to form the structure shown in Figure 2A.

如第2A圖所示,第三半導體層204位於第一半導體層100上且鄰接於第一半導體層100。於本實施例中,第一半導體層100以及第三半導體層204之間並無其他結構(例如緩衝層等)存在。第三半導體層204可包含第三III-V族半導體材料。第三III-V族半導體材料為由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鎵(Ga) 或銦(In)。五族元素可為砷(As)或磷(P),較佳為不包含氮(N)。在一些實施例中,第三III-V族半導體材料與前述第一III-V族半導體材料相同。詳細而言,在一些實施例中,第三半導體層204實質上由第三III-V族半導體材料所組成,例如實質上由二元III-V族半導體材料所組成。在一實施例中,第三半導體層204實質上由InP所組成。此外,第三半導體層204亦可包含複數個摻雜物。在一些實施例中,第三半導體層204中的複數個摻雜物可以各自獨立地具有5×10 16cm −3至5×10 18cm −3的摻雜濃度,例如具有5×10 17cm −3至2×10 18cm −3的摻雜濃度,或者5×10 16cm −3至5×10 17cm −3的摻雜濃度。在一些實施例中,第一半導體層100與第三半導體層204中均含有第一摻雜物、第二摻雜物以及第三摻雜物。第一摻雜物例如是碳(C),第二摻雜物例如是氫(H),第三摻雜物例如是矽(Si)。在一些實施例中,於第一半導體層100上形成第三半導體層204有助於進一步穩定磊晶表面品質。在一些實施例中,第三半導體層204可作為窗戶層以提升半導體元件20的發光效率,且第三半導體層204對於發光結構206所發之光為透明。此外,在一實施例中,第三半導體層204的導電型態為N型。 As shown in FIG. 2A , the third semiconductor layer 204 is located on the first semiconductor layer 100 and adjacent to the first semiconductor layer 100 . In this embodiment, no other structure (such as a buffer layer, etc.) exists between the first semiconductor layer 100 and the third semiconductor layer 204 . The third semiconductor layer 204 may include a third III-V semiconductor material. Group III-V semiconductor materials are materials composed of elements from Groups III and V of the periodic table of chemical elements. Group III elements can be gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). In some embodiments, the third III-V semiconductor material is the same as the aforementioned first III-V semiconductor material. Specifically, in some embodiments, the third semiconductor layer 204 is substantially composed of a third group III-V semiconductor material, for example, substantially composed of a binary group III-V semiconductor material. In one embodiment, the third semiconductor layer 204 is essentially composed of InP. In addition, the third semiconductor layer 204 may also include a plurality of dopants. In some embodiments, the plurality of dopants in the third semiconductor layer 204 may each independently have a doping concentration of 5×10 16 cm −3 to 5×10 18 cm −3 , for example, having a doping concentration of 5×10 17 cm Doping concentrations from −3 to 2×10 18 cm −3 , or from 5×10 16 cm −3 to 5×10 17 cm −3 . In some embodiments, both the first semiconductor layer 100 and the third semiconductor layer 204 contain first dopants, second dopants, and third dopants. The first dopant is, for example, carbon (C), the second dopant is, for example, hydrogen (H), and the third dopant is, for example, silicon (Si). In some embodiments, forming the third semiconductor layer 204 on the first semiconductor layer 100 helps further stabilize the epitaxial surface quality. In some embodiments, the third semiconductor layer 204 can be used as a window layer to improve the luminous efficiency of the semiconductor device 20 , and the third semiconductor layer 204 is transparent to the light emitted by the light emitting structure 206 . In addition, in one embodiment, the conductivity type of the third semiconductor layer 204 is N-type.

發光結構206包括活性結構210、第四半導體層208以及第五半導體層212。活性結構210可包含單異質構造(single heterostructure,SH)、雙異質構造(double heterostructure,DH)、雙側雙異質構造 (double-side double heterostructure,DDH)、或多重量子井(multiple quantum wells,MQW) 構造。當半導體元件20在操作時,活性結構210會發出一輻射。上述輻射較佳為紅外光,例如是近红外光(Near Infrared,NIR)。詳細而言,當輻射為近紅外光時,可具有介於800 nm至1700 nm之間的峰值波長(peak wavelength),如:810 nm、840 nm、910 nm、940 nm、1050nm、1070nm、1100nm、1200nm、1300nm、1400 nm、1450 nm、1550nm、1600nm、1650nm、1700nm等。活性結構110可包含第四III-V族半導體材料。第四III-V族半導體材料為由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鎵(Ga) 或銦(In)。五族元素可為砷(As)或磷(P),較佳為不包含氮(N)。第四III-V族半導體材料可為四元III-V族半導體材料。在一些實施例中,活性結構110實質上由第四III-V族半導體材料所組成。舉例而言,活性結構110可實質上由四元III-V族半導體材料(如InGaAsP或AlGaInAs)所組成。The light emitting structure 206 includes an active structure 210, a fourth semiconductor layer 208 and a fifth semiconductor layer 212. The active structure 210 may include a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or multiple quantum wells (MQW). ) construct. When the semiconductor device 20 is operating, the active structure 210 emits radiation. The above-mentioned radiation is preferably infrared light, such as near infrared light (Near Infrared, NIR). In detail, when the radiation is near-infrared light, it can have a peak wavelength (peak wavelength) between 800 nm and 1700 nm, such as: 810 nm, 840 nm, 910 nm, 940 nm, 1050nm, 1070nm, 1100nm , 1200nm, 1300nm, 1400 nm, 1450 nm, 1550nm, 1600nm, 1650nm, 1700nm, etc. Active structure 110 may include a fourth III-V semiconductor material. The fourth group III-V semiconductor materials are materials composed of Group III and Group V elements in the periodic table of chemical elements. Group III elements can be gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). The fourth III-V semiconductor material may be a quaternary III-V semiconductor material. In some embodiments, active structure 110 consists essentially of a fourth III-V semiconductor material. For example, the active structure 110 may be substantially composed of a quaternary III-V semiconductor material such as InGaAsP or AlGaInAs.

第四半導體層208以及第五半導體層212分別位於活性結構210的兩側,且第四半導體層208以及第五半導體層212可具有相反的導電型態。舉例而言,第四半導體層208以及第五半導體層212可分別為n型半導體及p型半導體,以分別提供電子和電洞。或者,第四半導體層208以及第五半導體層212可分別為p型半導體及n型半導體,以分別提供電洞和電子。第四半導體層208與第三半導體層204可具有相同的導電型態,如均為n型半導體層。此外,第四半導體層208以及第五半導體層212分別包含第五III-V族半導體材料及第六III-V族半導體材料。第五III-V族半導體材料以及第六III-V族半導體材料可分別為二元、三元或四元的III-V族半導體材料。III-V族半導體材料係指由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鎵(Ga) 或銦(In)。五族元素可為砷(As)或磷(P),較佳為不包含氮(N)。在一實施例中,第四半導體層208以及第五半導體層212實質上由四元半導體材料(如InGaAsP、AlGaInP或AlGaInAs)所組成。The fourth semiconductor layer 208 and the fifth semiconductor layer 212 are respectively located on both sides of the active structure 210, and the fourth semiconductor layer 208 and the fifth semiconductor layer 212 may have opposite conductive types. For example, the fourth semiconductor layer 208 and the fifth semiconductor layer 212 may be n-type semiconductors and p-type semiconductors respectively to provide electrons and holes respectively. Alternatively, the fourth semiconductor layer 208 and the fifth semiconductor layer 212 may be p-type semiconductors and n-type semiconductors respectively to provide holes and electrons respectively. The fourth semiconductor layer 208 and the third semiconductor layer 204 may have the same conductivity type, such as n-type semiconductor layers. In addition, the fourth semiconductor layer 208 and the fifth semiconductor layer 212 respectively include a fifth group III-V semiconductor material and a sixth group III-V semiconductor material. The fifth group III-V semiconductor material and the sixth group III-V semiconductor material may be binary, ternary or quaternary group III-V semiconductor materials respectively. Group III-V semiconductor materials refer to materials composed of Group III and Group V elements in the periodic table of chemical elements. Group III elements can be gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). In one embodiment, the fourth semiconductor layer 208 and the fifth semiconductor layer 212 are substantially composed of quaternary semiconductor materials (such as InGaAsP, AlGaInP or AlGaInAs).

第四半導體層208以及第五半導體層212是藉由添加不同的摻雜物而具有不同的導電型態。具體來說,摻雜物包含鎂(Mg)、鋅(Zn)、矽(Si)、碲(Te)等,但並不限於此。在一些實施例中,可以藉由在磊晶成長期間原位(in-situ)摻雜及/或藉由在磊晶成長之後使用P型或N型摻質進行佈植(implanting)以進行第四半導體層208以及第五半導體層212的摻雜。在一實施例中,第四半導體層208以及第五半導體層212中的摻雜物可以各自獨立地具有2×10 17cm −3至1×10 20cm −3的摻雜濃度,例如具有5×10 17cm −3至5×10 19cm −3的摻雜濃度。 The fourth semiconductor layer 208 and the fifth semiconductor layer 212 have different conductive types by adding different dopants. Specifically, the dopant includes magnesium (Mg), zinc (Zn), silicon (Si), tellurium (Te), etc., but is not limited thereto. In some embodiments, the third step may be performed by in-situ doping during epitaxial growth and/or by implanting after epitaxial growth using P-type or N-type dopants. Doping of the fourth semiconductor layer 208 and the fifth semiconductor layer 212. In one embodiment, the dopants in the fourth semiconductor layer 208 and the fifth semiconductor layer 212 may each independently have a doping concentration of 2×10 17 cm −3 to 1×10 20 cm −3 , for example, having a doping concentration of 5 Doping concentration from ×10 17 cm −3 to 5×10 19 cm −3 .

在一些實施例中,於第一半導體層100與發光結構206之間可進一步設置一蝕刻阻擋層。請參考第2A圖,舉例來說,蝕刻阻擋層(未繪示)可位在第一半導體層100與第三半導體層204之間。接著,可根據元件結構之需求而移除第一半導體層100,從而形成如第2B圖所示之半導體元件20’。藉由設置蝕刻阻擋層,可避免在移除第一半導體層100時破壞第三半導體層204及發光結構206。接下來,半導體元件20’可包含一接合層(未繪示) ,且透過接合層接合至一支撐基板,並進行後續的製程。於一實施例中,半導體元件20’僅包括如第2B圖所示之結構而未具有一支撐基板。在一些實施例中,蝕刻阻擋層包含第七III-V族半導體材料。第七III-V族半導體材料可為三元或四元的III-V族半導體材料。III-V族半導體材料為由化學元素週期表中三族和五族元素所組成的材料。三族元素可為鋁(Al)、鎵(Ga) 或銦(In)。五族元素可為砷(As)或磷(P),較佳為不包含氮(N)。蝕刻阻擋層較佳為包含與第一半導體層100組成中的五族元素不同的五族元素。在一實施例中,蝕刻阻擋層包含InGaAs的三元III-V族半導體材料。在一實施例中,蝕刻阻擋層實質上由三元半導體材料所組成,例如InGaAs。In some embodiments, an etching barrier layer may be further disposed between the first semiconductor layer 100 and the light emitting structure 206 . Referring to FIG. 2A , for example, an etch stop layer (not shown) may be located between the first semiconductor layer 100 and the third semiconductor layer 204 . Then, the first semiconductor layer 100 can be removed according to the requirements of the device structure, thereby forming the semiconductor device 20' as shown in Figure 2B. By providing the etching barrier layer, damage to the third semiconductor layer 204 and the light-emitting structure 206 can be avoided when the first semiconductor layer 100 is removed. Next, the semiconductor device 20' may include a bonding layer (not shown) and be bonded to a supporting substrate through the bonding layer, and then undergo subsequent processes. In one embodiment, the semiconductor device 20' only includes a structure as shown in FIG. 2B without a supporting substrate. In some embodiments, the etch stop layer includes a seventh III-V semiconductor material. The seventh III-V semiconductor material may be a ternary or quaternary III-V semiconductor material. Group III-V semiconductor materials are materials composed of Group III and Group V elements in the periodic table of chemical elements. Group III elements can be aluminum (Al), gallium (Ga) or indium (In). The Group 5 element may be arsenic (As) or phosphorus (P), and preferably does not include nitrogen (N). The etch stop layer preferably contains a Group 5 element different from the Group 5 element in the composition of the first semiconductor layer 100 . In one embodiment, the etch stop layer includes a ternary III-V semiconductor material of InGaAs. In one embodiment, the etch stop layer is essentially composed of a ternary semiconductor material, such as InGaAs.

基於上述,由於第一半導體層100可具有缺陷密度較低的表面,更適於作為半導體磊晶層成長之基底層(base layer)。具體來說,當在第一半導體層100上進一步形成第三半導體層204及其他半導體層時,各半導體層仍可具有良好的磊晶品質。Based on the above, since the first semiconductor layer 100 can have a surface with a lower defect density, it is more suitable as a base layer for the growth of a semiconductor epitaxial layer. Specifically, when the third semiconductor layer 204 and other semiconductor layers are further formed on the first semiconductor layer 100, each semiconductor layer can still have good epitaxial quality.

第3圖為根據本揭露內容一實施例之半導體元件的結構示意圖。於此實施例中,半導體元件30包括第一半導體層300、第三半導體層304、發光結構306、窗戶層314、第一電極318以及第二電極320。關於第一半導體層300、第三半導體層304及發光結構306的組成等可分別參考前述對於第一半導體層100、第三半導體層204及發光結構206之說明,於此不再贅述。詳細而言,發光結構306中的第四半導體層308、活性結構310以及第五半導體層312的組成等可分別參考前述對第四半導體層208、活性結構210以及第五半導體層212之說明。FIG. 3 is a schematic structural diagram of a semiconductor device according to an embodiment of the present disclosure. In this embodiment, the semiconductor device 30 includes a first semiconductor layer 300, a third semiconductor layer 304, a light emitting structure 306, a window layer 314, a first electrode 318 and a second electrode 320. Regarding the composition of the first semiconductor layer 300 , the third semiconductor layer 304 and the light-emitting structure 306 , reference may be made to the foregoing descriptions of the first semiconductor layer 100 , the third semiconductor layer 204 and the light-emitting structure 206 , respectively, and will not be described again here. In detail, for the compositions of the fourth semiconductor layer 308, the active structure 310, and the fifth semiconductor layer 312 in the light-emitting structure 306, please refer to the aforementioned descriptions of the fourth semiconductor layer 208, the active structure 210, and the fifth semiconductor layer 212 respectively.

在本實施例中,窗戶層314位於發光結構306上,鄰接於發光結構306中的第五半導體層312。此外,窗戶層314之導電型態與第三半導體層304之導電型態相反,例如當窗戶層314為P型半導體層時,第三半導體層304為N型半導體層。窗戶層314可作為光取出層,藉此進一步提升半導體元件30的發光效率。此外,窗戶層314對於發光結構306所發之光為透明。In this embodiment, the window layer 314 is located on the light-emitting structure 306 and adjacent to the fifth semiconductor layer 312 in the light-emitting structure 306 . In addition, the conductive type of the window layer 314 is opposite to the conductive type of the third semiconductor layer 304. For example, when the window layer 314 is a P-type semiconductor layer, the third semiconductor layer 304 is an N-type semiconductor layer. The window layer 314 can serve as a light extraction layer, thereby further improving the luminous efficiency of the semiconductor device 30 . In addition, the window layer 314 is transparent to the light emitted by the light emitting structure 306 .

第一電極318以及第二電極320可用於與外部電源電性連接,且第一電極318以及第二電極320與發光結構306電性連接。在此實施例中,第一電極320鄰接於窗戶層314,而第二電極318鄰接於第一半導體層300,但實際上並不限於此。此外,第一電極318以及第二電極320的材料可相同或不同,且例如包含透明導電材料、金屬或合金。透明導電材料包含金屬氧化物,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO) 等。金屬可列舉如金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、銅(Cu)或鎳(Ni)等。合金可包含選自由上述金屬元素所組成之群組中的至少兩者,例如鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)、鋅金(ZnAu)等。The first electrode 318 and the second electrode 320 can be used to be electrically connected to an external power source, and the first electrode 318 and the second electrode 320 are electrically connected to the light emitting structure 306 . In this embodiment, the first electrode 320 is adjacent to the window layer 314, and the second electrode 318 is adjacent to the first semiconductor layer 300, but it is not limited thereto. In addition, the materials of the first electrode 318 and the second electrode 320 may be the same or different, and may include, for example, transparent conductive materials, metals, or alloys. Transparent conductive materials include metal oxides, such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), oxide Zinc tin (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO), etc. Examples of the metal include gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), copper (Cu), or nickel (Ni). The alloy may include at least two selected from the group consisting of the above metal elements, such as germanium gold nickel (GeAuNi), beryllium gold (BeAu), germanium gold (GeAu), zinc gold (ZnAu), etc.

第4圖為根據本揭露內容一實施例之半導體元件的結構示意圖。於此實施例中,半導體元件40包括第一半導體層400、第二半導體層402、第三半導體層404、發光結構406、窗戶層414、接觸層416、第一電極420以及第二電極418。半導體元件40與前述半導體元件30主要之差異在於進一步包含第二半導體層402以及接觸層416。關於第一半導體層400、第二半導體層402、第三半導體層404、發光結構406、窗戶層414、第一電極420以及第二電極418的組成等可參考前述實施例之說明,於此不再贅述。詳細而言,發光結構406中的第四半導體層408、活性結構410以及第五半導體層412的組成等可分別參考前述對第四半導體層208、活性結構210以及第五半導體層212之說明。FIG. 4 is a schematic structural diagram of a semiconductor device according to an embodiment of the present disclosure. In this embodiment, the semiconductor device 40 includes a first semiconductor layer 400 , a second semiconductor layer 402 , a third semiconductor layer 404 , a light emitting structure 406 , a window layer 414 , a contact layer 416 , a first electrode 420 and a second electrode 418 . The main difference between the semiconductor device 40 and the aforementioned semiconductor device 30 is that it further includes a second semiconductor layer 402 and a contact layer 416 . Regarding the composition of the first semiconductor layer 400, the second semiconductor layer 402, the third semiconductor layer 404, the light-emitting structure 406, the window layer 414, the first electrode 420 and the second electrode 418, please refer to the description of the previous embodiments and will not be repeated here. Again. In detail, for the compositions of the fourth semiconductor layer 408, the active structure 410, and the fifth semiconductor layer 412 in the light-emitting structure 406, please refer to the aforementioned descriptions of the fourth semiconductor layer 208, the active structure 210, and the fifth semiconductor layer 212 respectively.

接觸層416位於第一電極420與窗戶層414之間,用於傳導電流。接觸層416可具有與窗戶層314相同之導電型態,例如為P型半導體層。在本實施例中,接觸層416鄰接於第一電極420。詳細而言,接觸層416例如是經摻雜或未經摻雜之半導體材料層,可包含第八III-V族半導體材料。第八III-V族半導體材料可為二元或三元III-V族半導體材料,例如GaAs或InGaAs。當第一電極420包含金屬或合金時,第一電極420與接觸層416之間可形成歐姆接觸(ohmic contact) ,使第一電極420與發光結構406間形成良好的電性接觸。The contact layer 416 is located between the first electrode 420 and the window layer 414 for conducting current. The contact layer 416 may have the same conductivity type as the window layer 314, such as a P-type semiconductor layer. In this embodiment, the contact layer 416 is adjacent to the first electrode 420 . In detail, the contact layer 416 is, for example, a doped or undoped semiconductor material layer, and may include an eighth III-V group semiconductor material. The eighth III-V semiconductor material may be a binary or ternary III-V semiconductor material, such as GaAs or InGaAs. When the first electrode 420 includes metal or alloy, an ohmic contact can be formed between the first electrode 420 and the contact layer 416, so that a good electrical contact is formed between the first electrode 420 and the light-emitting structure 406.

第5A圖至第5B圖為根據本揭露內容一實施例之半導體疊層的製造方法剖面示意圖。第5C圖為一實施例之半導體疊層之製作流程圖。上述半導體疊層例如是作為一半導體元件的部分結構。如第5A圖及第5B圖所示,首先提供第二半導體層502,並在第二半導體層502上形成第一半導體層500。第一半導體層500及第二半導體層502的相關描述可參考前述實施例中對於第一半導體層100、第二半導體層102之說明,於此不再贅述。5A to 5B are schematic cross-sectional views of a method for manufacturing a semiconductor stack according to an embodiment of the present disclosure. FIG. 5C is a flow chart of manufacturing a semiconductor stack according to an embodiment. The above-mentioned semiconductor stack is, for example, a partial structure of a semiconductor element. As shown in FIGS. 5A and 5B , the second semiconductor layer 502 is first provided, and the first semiconductor layer 500 is formed on the second semiconductor layer 502 . For related descriptions of the first semiconductor layer 500 and the second semiconductor layer 502, please refer to the description of the first semiconductor layer 100 and the second semiconductor layer 102 in the previous embodiments, and will not be described again here.

參考第5A圖至第5C圖,進行步驟S510,在第一溫度下成長第一半導體層500的一部分。第一半導體層500之成長例如是藉由液相磊晶法(Liquid Phase Epitaxy,LPE)、分子束磊晶法(Molecular Beam Epitaxy,MBE)、化學束磊晶法(Chemical Beam Epitaxy,CBE)、金屬有機化學氣相沉積法(Metal Organic Chemical Vapor Deposition,MOCVD)、或氫化物氣相磊晶法(hydride vapor phase epitaxial,HVPE) 而達成。第一溫度例如是在650°C以下且在400°C以上,較佳為不大於520°C,更佳在450°C至 510°C或420°C至500°C的範圍內。藉由在上述溫度範圍內進行第一半導體層500的成長,可進一步獲得良好磊晶品質。Referring to FIGS. 5A to 5C , step S510 is performed to grow a part of the first semiconductor layer 500 at a first temperature. The first semiconductor layer 500 is grown by, for example, liquid phase epitaxy (LPE), molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), It is achieved by Metal Organic Chemical Vapor Deposition (MOCVD) or hydride vapor phase epitaxial (HVPE). The first temperature is, for example, below 650°C and above 400°C, preferably no more than 520°C, more preferably in the range of 450°C to 510°C or 420°C to 500°C. By growing the first semiconductor layer 500 within the above temperature range, good epitaxial quality can be further obtained.

接下來,進行步驟S520,提供大於第一溫度之第二溫度。第二溫度例如是在700°C以上且在850°C以下,較佳為大於750°C,更佳在760°C至810°C或780°C至800°C的範圍內。於步驟S520中,例如是將磊晶環境溫度由第一溫度調整至第二溫度。在一些實施例中,第一溫度與第二溫度的差不小於300°C, 藉此可達到更良好的磊晶效果。此外,在第二溫度下,可不進行第一半導體層500之成長。在此步驟中,藉由將環境溫度調整至較高的第二溫度而進行高溫回火。於第二溫度下不繼續進行第一半導體層500之成長可使得先前於第一溫度下所成長的一部分第一半導體層500中的應力獲得調節,減少磊晶缺陷。Next, step S520 is performed to provide a second temperature greater than the first temperature. The second temperature is, for example, above 700°C and below 850°C, preferably above 750°C, more preferably in the range of 760°C to 810°C or 780°C to 800°C. In step S520, for example, the epitaxial environment temperature is adjusted from the first temperature to the second temperature. In some embodiments, the difference between the first temperature and the second temperature is not less than 300°C, thereby achieving a better epitaxial effect. In addition, at the second temperature, the growth of the first semiconductor layer 500 may not be performed. In this step, high temperature tempering is performed by adjusting the ambient temperature to a higher second temperature. Not continuing to grow the first semiconductor layer 500 at the second temperature can allow the stress in a portion of the first semiconductor layer 500 previously grown at the first temperature to be adjusted and reduce epitaxial defects.

然後,進入步驟S530,確認第一半導體之厚度。當第一半導體層500已達到預定厚度時,即完成第一半導體層500與第二半導體層502的製備。在一些實施例中,預定厚度可在20 μm以下,較佳為10 μm以下,更佳為5 μm以下,且可在1 μm以上。當第一半導體層500尚未達到預定厚度時,則進入步驟S540,重複進行步驟S510及步驟S520,例如至少重複進行步驟S510及步驟S520兩次以上。於一些實施例中,可重複進行步驟S510及步驟S520十次以上,以獲得適當厚度的半導體疊層及較穩定的磊晶品質。此外,重複進行步驟S510及步驟S520的次數可在三十次以下。Then, step S530 is entered to confirm the thickness of the first semiconductor. When the first semiconductor layer 500 has reached the predetermined thickness, the preparation of the first semiconductor layer 500 and the second semiconductor layer 502 is completed. In some embodiments, the predetermined thickness may be below 20 μm, preferably below 10 μm, more preferably below 5 μm, and may be above 1 μm. When the first semiconductor layer 500 has not reached the predetermined thickness, step S540 is entered, and step S510 and step S520 are repeated, for example, step S510 and step S520 are repeated at least twice. In some embodiments, step S510 and step S520 can be repeated more than ten times to obtain a semiconductor stack of appropriate thickness and relatively stable epitaxial quality. In addition, the number of times step S510 and step S520 are repeated may be less than thirty times.

基於上述,藉由前述在製備第一半導體層500的過程中進行升溫及降溫的方式,不需要透過其他緩衝結構或製程來調節如第一半導體層500與第二半導體層502間因晶格不匹配產生應力的問題,而能獲得具有良好磊晶品質的結構。Based on the above, through the above-mentioned heating and cooling methods in the process of preparing the first semiconductor layer 500, there is no need to use other buffer structures or processes to adjust the lattice differences between the first semiconductor layer 500 and the second semiconductor layer 502. Matching the problem of stress generation, a structure with good epitaxial quality can be obtained.

在一些實施例中,可以第一半導體層500與第二半導體層502的疊層作為基底層,依需求進行後續磊晶結構的成長,例如在第一半導體層500與第二半導體層502的疊層上進一步直接形成發光結構等。In some embodiments, the stack of the first semiconductor layer 500 and the second semiconductor layer 502 can be used as the base layer, and subsequent epitaxial structure growth is performed as required, for example, on the stack of the first semiconductor layer 500 and the second semiconductor layer 502 . Light-emitting structures, etc. are further directly formed on the layer.

如第5D圖所示,可在第一半導體層500與第二半導體層502上進一步形成第三半導體層504。關於第三半導體層504的相關描述可參考前述實施例中對於第三半導體層204之說明,於此不再贅述。如前所述,發光結構可形成於第三半導體層504上。第一半導體層500的一側鄰接於第二半導體層502,另一側鄰接於第三半導體層504,第一半導體層500的表面500a直接接觸第二半導體層502的表面502a,另一表面500b直接接觸第三半導體層504的表面504a。As shown in FIG. 5D , a third semiconductor layer 504 may be further formed on the first semiconductor layer 500 and the second semiconductor layer 502 . For related descriptions of the third semiconductor layer 504, please refer to the description of the third semiconductor layer 204 in the previous embodiments, and will not be described again here. As mentioned above, the light emitting structure may be formed on the third semiconductor layer 504. One side of the first semiconductor layer 500 is adjacent to the second semiconductor layer 502, and the other side is adjacent to the third semiconductor layer 504. The surface 500a of the first semiconductor layer 500 directly contacts the surface 502a of the second semiconductor layer 502, and the other surface 500b Directly contact the surface 504a of the third semiconductor layer 504.

第5E圖為根據本揭露內容一實施例之半導體元件的部分範圍之元素的濃度與厚度之關係圖。具體來說,第5E圖是對包含如第5D圖所示結構之發光元件的部分區域進行二次離子質譜法(SIMS)分析的結果。如第5E圖所示,根據半導體元件中各層厚度及順序,大致可分為第一區Z1、第二區Z2及第三區Z3。具體來說,第一區Z1對應於第二半導體層502,第二區Z2對應於第一半導體層500,第三區Z3對應於第三半導體層504,且在此實施例中,第一半導體層500及第三半導體層504均包含複數個摻雜物且實質上由InP所組成,第二半導體層502包含複數個摻雜物且實質上由GaAs所組成。上述之該些摻雜物至少包括第一摻雜物、第二摻雜物及第三摻雜物。第一摻雜物為碳(C)且由C1表示,第二摻雜物為氫(H)且由C2表示,及第三摻雜物為矽(Si) 且由C3表示。第一、第二及第三摻雜物的C1、C2及C3之濃度請參照第5E圖左方的縱軸。於此實施例中,第一摻雜物及第二摻雜物為非故意摻雜,且第三摻雜物為故意摻雜。FIG. 5E is a graph illustrating the relationship between concentration and thickness of elements in a portion of a semiconductor device according to an embodiment of the present disclosure. Specifically, Figure 5E is the result of secondary ion mass spectrometry (SIMS) analysis of a partial region of the light-emitting element containing the structure shown in Figure 5D. As shown in Figure 5E, according to the thickness and order of each layer in the semiconductor device, it can be roughly divided into a first area Z1, a second area Z2 and a third area Z3. Specifically, the first region Z1 corresponds to the second semiconductor layer 502, the second region Z2 corresponds to the first semiconductor layer 500, the third region Z3 corresponds to the third semiconductor layer 504, and in this embodiment, the first semiconductor layer The layer 500 and the third semiconductor layer 504 both contain a plurality of dopants and are substantially composed of InP. The second semiconductor layer 502 contains a plurality of dopants and are substantially composed of GaAs. The above-mentioned dopants include at least a first dopant, a second dopant and a third dopant. The first dopant is carbon (C) and is represented by C1, the second dopant is hydrogen (H) and is represented by C2, and the third dopant is silicon (Si) and is represented by C3. For the concentrations of C1, C2 and C3 of the first, second and third dopants, please refer to the left vertical axis of Figure 5E. In this embodiment, the first dopant and the second dopant are unintentionally doped, and the third dopant is intentionally doped.

藉由上述方式成長單層構造的第一半導體層500,使得非故意摻雜之第一摻雜物及第二摻雜物於第一半導體層500中具有大於10 16cm −3的摻雜濃度,且碳(C)的濃度曲線具有類似於週期性變化的模式。如第5E圖所示,在第二區Z2中,第二摻雜物的濃度高於第一摻雜物的濃度,亦即第一半導體層500中的氫(H)濃度大於碳(C)濃度。此外,在第二區Z2中的第三摻雜物濃度低於第一區Z1中的第三摻雜物濃度,也低於第三區Z3中的第三摻雜物的濃度。亦即,第一半導體層500中矽(Si) 濃度低於第二半導體層502或第三半導體層504中的矽(Si) 濃度。另一方面,在第二區Z2中,第二摻雜物的濃度高於第三摻雜物的濃度,亦即第一半導體層500中的氫(H)濃度大於矽(Si)濃度。 The first semiconductor layer 500 with a single-layer structure is grown in the above manner, so that the unintentionally doped first dopant and the second dopant have a doping concentration greater than 10 16 cm −3 in the first semiconductor layer 500 , and the concentration curve of carbon (C) has a pattern similar to periodic changes. As shown in FIG. 5E , in the second region Z2, the concentration of the second dopant is higher than the concentration of the first dopant, that is, the concentration of hydrogen (H) in the first semiconductor layer 500 is greater than that of carbon (C). concentration. Furthermore, the third dopant concentration in the second zone Z2 is lower than the third dopant concentration in the first zone Z1 and is also lower than the third dopant concentration in the third zone Z3. That is, the silicon (Si) concentration in the first semiconductor layer 500 is lower than the silicon (Si) concentration in the second semiconductor layer 502 or the third semiconductor layer 504 . On the other hand, in the second region Z2, the concentration of the second dopant is higher than the concentration of the third dopant, that is, the hydrogen (H) concentration in the first semiconductor layer 500 is greater than the silicon (Si) concentration.

第5F圖為第5E圖第二區Z2中虛線方框區域內第一摻雜物(碳(C))的濃度曲線之局部放大示意圖。如第5F圖所示,於此實施例中,第一摻雜物(碳(C))的濃度分佈至少包含i個局部最大值(如圖中所標示的濃度C L1、C L2、…、C Li)以及i個局部最小值(如圖中所標示的濃度C M1、C M2、…、C Mi), i例如為大於等於5之正整數,在如第5F圖所示的局部區域中i=8。局部最大值與局部最小值交替出現,且局部最大值中任一者大於局部最小值中任一者。如第5E圖所示,在第二區Z2的第一區塊中,第三摻雜物的濃度小於部份局部最大值;在第二區Z2的第二區塊中,第三摻雜物的濃度大於部份局部最小值。 Figure 5F is a partially enlarged schematic diagram of the concentration curve of the first dopant (carbon (C)) in the dotted box area in the second area Z2 of Figure 5E. As shown in Figure 5F, in this embodiment, the concentration distribution of the first dopant (carbon (C)) includes at least i local maxima (concentrations C L1 , C L2 , ..., marked in the figure) C Li ) and i local minima (concentrations C M1 , CM2 ,..., C Mi marked in the figure), i is, for example, a positive integer greater than or equal to 5, in the local area as shown in Figure 5F i=8. Local maxima and local minima appear alternately, and any one of the local maxima is greater than any one of the local minima. As shown in Figure 5E, in the first block of the second area Z2, the concentration of the third dopant is less than part of the local maximum; in the second block of the second area Z2, the concentration of the third dopant The concentration is greater than some local minima.

如第5E圖所示,在此實施例中,第一半導體層500中矽(Si)的摻雜濃度在1×10 17cm −3以下,且在約5×10 16cm −3至約9×10 16cm −3的範圍;碳(C)濃度在約4×10 16cm −3至約9×10 16cm −3的範圍;氫(H)濃度在約1×10 17cm −3至約5×10 17cm −3的範圍。另一方面,於一些實施例中,第一區Z1、第二區Z2及第三區Z3中還包含不可避免的雜質,例如氧(O)等,為簡化起見,於此並未示出。於一實施例中,第一區Z1、第二區Z2及第三區Z3中的氧(O)濃度分佈在3×10 15cm −3至2×10 16cm −3的範圍內,接近二次離子質譜法(SIMS)分析之偵測極限。 As shown in Figure 5E, in this embodiment, the doping concentration of silicon (Si) in the first semiconductor layer 500 is below 1×10 17 cm −3 and is between about 5×10 16 cm −3 and about 9 ×10 16 cm −3 ; the carbon (C) concentration ranges from about 4×10 16 cm −3 to about 9×10 16 cm −3 ; the hydrogen (H) concentration ranges from about 1×10 17 cm −3 to The range is about 5×10 17 cm −3 . On the other hand, in some embodiments, the first region Z1, the second region Z2 and the third region Z3 also contain unavoidable impurities, such as oxygen (O), etc., which are not shown here for the sake of simplicity. . In one embodiment, the oxygen (O) concentration in the first zone Z1, the second zone Z2 and the third zone Z3 is distributed in the range of 3×10 15 cm −3 to 2×10 16 cm −3 , which is close to 2 Detection limits of secondary ion mass spectrometry (SIMS) analysis.

第6圖為本揭露內容一實施例之半導體元件的封裝結構示意圖。請參照第6圖,封裝結構600包含半導體元件60、封裝基板61、載體63、接合線65、接觸結構66以及封裝材料68。封裝基板61可包含陶瓷或玻璃材料。封裝基板61中具有多個通孔62。通孔62中可填充有導電性材料如金屬等而有助於導電或/且散熱。載體63位於封裝基板61一側的表面上,且亦包含導電性材料,如金屬。接觸結構66位於封裝基板61另一側的表面上。在本實施例中,接觸結構66包含接觸墊66a以及接觸墊66b,且接觸墊66a以及接觸墊66b可藉由通孔62而與載體63電性連接。在一實施例中,接觸結構66可進一步包含散熱墊(thermal pad)(未繪示),例如位於接觸墊66a與接觸墊66b之間。半導體元件60位於載體63上,且可為本揭露內容任一實施例所述的半導體元件。在本實施例中,載體63包含第一部分63a及第二部分63b,半導體元件60藉由接合線65而與載體63的第二部分63b電性連接。接合線65的材質可包含金屬,例如金、銀、銅、鋁或至少包含上述任一元素之合金。封裝材料68覆蓋於半導體元件60上,具有保護半導體元件60之效果。具體來說,封裝材料68可包含樹脂材料如環氧樹脂(epoxy)、矽氧烷樹脂(silicone)等。封裝材料68更可包含複數個波長轉換粒子(圖未示)以轉換半導體元件60所發出的第一光為一第二光。第二光的波長大於第一光的波長。FIG. 6 is a schematic diagram of the packaging structure of a semiconductor device according to an embodiment of the present disclosure. Referring to FIG. 6 , the packaging structure 600 includes a semiconductor component 60 , a packaging substrate 61 , a carrier 63 , bonding wires 65 , contact structures 66 and packaging materials 68 . The packaging substrate 61 may include ceramic or glass materials. The package substrate 61 has a plurality of through holes 62 therein. The through hole 62 may be filled with conductive material such as metal to facilitate conduction and/or heat dissipation. The carrier 63 is located on the surface of one side of the packaging substrate 61 and also includes conductive material, such as metal. Contact structure 66 is located on the surface of the other side of package substrate 61 . In this embodiment, the contact structure 66 includes a contact pad 66 a and a contact pad 66 b, and the contact pad 66 a and the contact pad 66 b can be electrically connected to the carrier 63 through the through hole 62 . In one embodiment, the contact structure 66 may further include a thermal pad (not shown), for example, located between the contact pad 66a and the contact pad 66b. The semiconductor device 60 is located on the carrier 63 and may be a semiconductor device as described in any embodiment of this disclosure. In this embodiment, the carrier 63 includes a first part 63 a and a second part 63 b, and the semiconductor device 60 is electrically connected to the second part 63 b of the carrier 63 through the bonding wire 65 . The material of the bonding wire 65 may include metal, such as gold, silver, copper, aluminum or an alloy containing at least any of the above elements. The packaging material 68 covers the semiconductor element 60 and has the effect of protecting the semiconductor element 60 . Specifically, the encapsulating material 68 may include resin materials such as epoxy, silicone, etc. The encapsulation material 68 may further include a plurality of wavelength conversion particles (not shown) to convert the first light emitted by the semiconductor device 60 into a second light. The wavelength of the second light is greater than the wavelength of the first light.

本揭露之發光元件可應用於照明、醫療、顯示、通訊、感測、電源系統等領域的產品,例如燈具、監視器、手機、平板電腦、車用儀表板、電視、電腦、穿戴設備(如手錶、手環、項鍊等)、交通號誌、戶外顯示器、醫療器材等。The light-emitting components disclosed in the present disclosure can be applied to products in the fields of lighting, medical treatment, display, communication, sensing, power supply systems, etc., such as lamps, monitors, mobile phones, tablet computers, vehicle dashboards, televisions, computers, wearable devices (such as watches, bracelets, necklaces, etc.), traffic signals, outdoor displays, medical equipment, etc.

基於上述,根據本揭露內容之一些實施例,可提供一種半導體結構,其具有良好的表面磊晶品質,例如可作為半導體元件之基板使用,且有利於進一步降低半導體元件之生產成本。根據本揭露內容之一些實施例,可提供一種半導體元件及其製造方法,其在調節異質磊晶間因晶格不匹配(lattice mismatch)所產生的應力方面取得了優異的技術效果,而可避免磊晶層在介面出現缺陷的情況。Based on the above, according to some embodiments of the present disclosure, a semiconductor structure can be provided, which has good surface epitaxial quality, can be used as a substrate for semiconductor devices, and is conducive to further reducing the production cost of semiconductor devices. According to some embodiments of the present disclosure, a semiconductor element and a manufacturing method thereof can be provided, which achieve excellent technical effects in regulating the stress caused by lattice mismatch between heteroepitalized crystals, and can avoid The epitaxial layer has defects at the interface.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,所屬技術領域中具有通常知識者應理解,在不脫離本發明之精神和範圍內可作些許之修飾或變更,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。此外,上述實施例內容在適當的情況下可互相組合或替換,而非僅限於所描述之特定實施例。舉例而言,在一實施例中所揭露特定構件之相關參數或特定構件與其他構件的連接關係亦可應用於其他實施例中,且均落於本發明之權利保護範圍。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Those of ordinary skill in the art will understand that slight modifications or changes may be made without departing from the spirit and scope of the present invention. Therefore, the present invention is The protection scope of the invention shall be determined by the appended patent application scope. In addition, the above-described embodiments may be combined or replaced with each other under appropriate circumstances and are not limited to the specific embodiments described. For example, the relevant parameters of a specific component or the connection relationship between a specific component and other components disclosed in one embodiment can also be applied to other embodiments, and all fall within the scope of the present invention.

10:半導體疊層 20、20’、30、40、60:半導體元件 61:封裝基板 62:通孔 63:載體 63a:第一部分 63b:第二部分 65:接合線 66:接觸結構 66a、66b:接觸墊 68:封裝材料 100、300、400、500:第一半導體層 102、402、502:第二半導體層 204、304、404、504:第三半導體層 206、306、406:發光結構 208、308、408:第四半導體層 210、310、410:活性結構 212、312、412:第五半導體層 414:窗戶層 416:接觸層 600:封裝結構 318、418:第一電極 320、420:第二電極 S510、S520、S530、S540:步驟 C 1:第一濃度 C 2:第二濃度 C 3:第二濃度 C L1、C L2、C Li、C M1、C M2、C Mi:濃度 10: Semiconductor stack 20, 20', 30, 40, 60: Semiconductor element 61: Package substrate 62: Through hole 63: Carrier 63a: First part 63b: Second part 65: Bonding wire 66: Contact structure 66a, 66b: Contact pad 68: packaging material 100, 300, 400, 500: first semiconductor layer 102, 402, 502: second semiconductor layer 204, 304, 404, 504: third semiconductor layer 206, 306, 406: light emitting structure 208, 308, 408: fourth semiconductor layer 210, 310, 410: active structure 212, 312, 412: fifth semiconductor layer 414: window layer 416: contact layer 600: packaging structure 318, 418: first electrode 320, 420: third Two electrodes S510, S520, S530, S540: step C 1 : first concentration C 2 : second concentration C 3 : second concentration C L1 , C L2 , C Li , CM1 , CM2 , C Mi : concentration

第1圖為本揭露內容一實施例之半導體疊層的結構示意圖。FIG. 1 is a schematic structural diagram of a semiconductor stack according to an embodiment of the present disclosure.

第2A圖為本揭露內容一實施例之半導體元件的部分結構示意圖。FIG. 2A is a partial structural diagram of a semiconductor device according to an embodiment of the present disclosure.

第2B圖為本揭露內容一實施例之半導體元件的部分結構示意圖。FIG. 2B is a partial structural diagram of a semiconductor device according to an embodiment of the present disclosure.

第3圖為本揭露內容一實施例之半導體元件的結構示意圖。FIG. 3 is a schematic structural diagram of a semiconductor device according to an embodiment of the present disclosure.

第4圖為本揭露內容一實施例之半導體元件的結構示意圖。FIG. 4 is a schematic structural diagram of a semiconductor device according to an embodiment of the present disclosure.

第5A圖至第5D圖為根據本揭露內容一實施例之半導體疊層的製造方法示意圖。5A to 5D are schematic diagrams of a manufacturing method of a semiconductor stack according to an embodiment of the present disclosure.

第5E圖為本揭露內容一實施例之半導體元件的部分範圍之元素的濃度與深度之關係圖。FIG. 5E is a diagram illustrating the relationship between concentration and depth of elements in a portion of a semiconductor device according to an embodiment of the present disclosure.

第5F圖為第5E圖中表示碳(C)的濃度曲線之局部放大示意圖。Figure 5F is a partially enlarged schematic diagram showing the concentration curve of carbon (C) in Figure 5E.

第6圖為本揭露內容一實施例之半導體元件的封裝結構示意圖。FIG. 6 is a schematic diagram of the packaging structure of a semiconductor device according to an embodiment of the present disclosure.

10:半導體疊層 10: Semiconductor stack

100:第一半導體層 100: First semiconductor layer

102:第二半導體層 102: Second semiconductor layer

100a、102a:表面 100a, 102a: surface

Claims (10)

一種半導體元件,包含: 一第一半導體層,包含一第一III-V族半導體材料; 一發光結構,位於該第一半導體層上且包含一活性結構;以及 一第二半導體層,位於該第一半導體層下且包含一第二III-V族半導體材料; 一第三半導體層,位於該第一半導體層與該發光結構之間且包含一第三III-V族半導體材料; 其中,該第一半導體層、該第二半導體層以及該第三半導體層包含一第一摻雜物以及一第二摻雜物,該第一摻雜物在該第一半導體層中的濃度大於該第一摻雜物在該第二半導體層中的濃度,該第一摻雜物在該第一半導體層中的濃度大於該第一摻雜物在該第三半導體層中的濃度,該第二摻雜物在該第一半導體層中的濃度低於該第二摻雜物在該第二半導體層中的濃度,且該第二摻雜物在該第一半導體層中的濃度低於該第二摻雜物在該第三半導體層中的濃度。 A semiconductor component containing: a first semiconductor layer including a first III-V group semiconductor material; a light-emitting structure located on the first semiconductor layer and including an active structure; and a second semiconductor layer located under the first semiconductor layer and including a second III-V semiconductor material; a third semiconductor layer located between the first semiconductor layer and the light-emitting structure and including a third group III-V semiconductor material; Wherein, the first semiconductor layer, the second semiconductor layer and the third semiconductor layer include a first dopant and a second dopant, and the concentration of the first dopant in the first semiconductor layer is greater than The concentration of the first dopant in the second semiconductor layer is greater than the concentration of the first dopant in the third semiconductor layer. The concentration of the second dopant in the first semiconductor layer is lower than the concentration of the second dopant in the second semiconductor layer, and the concentration of the second dopant in the first semiconductor layer is lower than the concentration of the second dopant in the second semiconductor layer. The concentration of the second dopant in the third semiconductor layer. 如請求項1所述的半導體元件,其中該發光結構發出具有介於800 nm至1700 nm之間的峰值波長的近紅外光。The semiconductor component of claim 1, wherein the light-emitting structure emits near-infrared light with a peak wavelength between 800 nm and 1700 nm. 如請求項1所述的半導體元件,其中該第二III-V族半導體材料與該第一III-V族半導體材料不同。The semiconductor device of claim 1, wherein the second III-V group semiconductor material is different from the first III-V group semiconductor material. 如請求項1所述的半導體元件,還包含一第四半導體層,位於該第三半導體層與該發光結構之間,且包含二元、三元或四元的III-V族半導體材料。The semiconductor device according to claim 1, further comprising a fourth semiconductor layer located between the third semiconductor layer and the light-emitting structure, and comprising a binary, ternary or quaternary III-V group semiconductor material. 如請求項1所述的半導體元件,其中該第一半導體層、該第二半導體層以及該第三半導體層還包含一第三摻雜物。The semiconductor device of claim 1, wherein the first semiconductor layer, the second semiconductor layer and the third semiconductor layer further include a third dopant. 如請求項1所述之半導體元件,其中在該第一半導體層中,該第一摻雜物的濃度分佈至少包含多個局部最大值以及多個局部最小值,該些局部最大值與該些局部最小值交替出現,且該些局部最大值中任一者大於該些局部最小值中任一者。The semiconductor device of claim 1, wherein in the first semiconductor layer, the concentration distribution of the first dopant at least includes a plurality of local maxima and a plurality of local minima, and the local maxima are consistent with the local minima. Local minima occur alternately, and any one of the local maxima is larger than any one of the local minima. 如請求項1所述之半導體元件,其中該第一摻雜物的濃度分佈至少包含5個局部最大值以及5個局部最小值。The semiconductor device of claim 1, wherein the concentration distribution of the first dopant includes at least 5 local maxima and 5 local minima. 如請求項1所述之半導體元件,其中該第一摻雜物及該第二摻雜物包含矽(Si)、鋅(Zn)、碳(C)或氫(H)。The semiconductor device of claim 1, wherein the first dopant and the second dopant include silicon (Si), zinc (Zn), carbon (C) or hydrogen (H). 如請求項1所述之半導體元件,其中在該第三半導體層中,該第一摻雜物之濃度低於該第二摻雜物之濃度。The semiconductor device according to claim 1, wherein in the third semiconductor layer, the concentration of the first dopant is lower than the concentration of the second dopant. 一種半導體元件的封裝結構,包含: 一載體; 一半導體元件,位於該載體上且該為如請求項1至請求項9中任一項所述之半導體元件;以及 封裝材料,覆蓋於該半導體元件上。 A packaging structure for semiconductor components, including: a carrier; A semiconductor component located on the carrier and which is a semiconductor component as described in any one of claims 1 to 9; and Encapsulation material covers the semiconductor component.
TW112115898A 2018-12-28 2018-12-28 Semiconductor stack, semiconductor device and method for manufacturing the same TW202333390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112115898A TW202333390A (en) 2018-12-28 2018-12-28 Semiconductor stack, semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112115898A TW202333390A (en) 2018-12-28 2018-12-28 Semiconductor stack, semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW202333390A true TW202333390A (en) 2023-08-16

Family

ID=88559137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112115898A TW202333390A (en) 2018-12-28 2018-12-28 Semiconductor stack, semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW202333390A (en)

Similar Documents

Publication Publication Date Title
JPWO2011067872A1 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
US6730941B2 (en) Boron phosphide-based semiconductor light-emitting device, production method thereof, and light-emitting diode
Prabaswara et al. Direct growth of III-nitride nanowire-based yellow light-emitting diode on amorphous quartz using thin Ti interlayer
US20220367749A1 (en) Semiconductor optical device and method of producing the same
US20240047607A1 (en) Semiconductor device
US10256366B2 (en) Light-emitting diode and method of fabricating the same
US11145791B2 (en) Light-emitting device
TWI784193B (en) Semiconductor device
TWI803556B (en) Semiconductor stack, semiconductor device and method for manufacturing the same
TWI829922B (en) Semiconductor device
TW202333390A (en) Semiconductor stack, semiconductor device and method for manufacturing the same
JP2022142782A (en) Semiconductor element, semiconductor device including semiconductor element, and display panel
KR20130021931A (en) Semiconductor light emitting device and manufacturing method of the same
EP3712963B1 (en) Method of making a photoelectrode for solar water splitting
TW202038482A (en) Semiconductor device
TWI772587B (en) Semiconductor device
CN220569701U (en) Semiconductor element and semiconductor assembly
TWI780167B (en) Semiconductor substrate and semiconductor device
JP5692596B2 (en) Method for controlling conductivity of β-Ga 2 O 3 single crystal
TW202245296A (en) Semiconductor device and semiconductor component including the same
KR20120029252A (en) Semiconductor light emitting device and a method for fabricating the same
TW201841227A (en) Semiconductor device
JP2003078166A (en) Compound semiconductor element, its manufacturing method, light emitting element, lamp, and light source
JP2011086855A (en) Method of manufacturing semiconductor light-emitting element