TW202329000A - Data processing system and method thereof - Google Patents

Data processing system and method thereof Download PDF

Info

Publication number
TW202329000A
TW202329000A TW111100555A TW111100555A TW202329000A TW 202329000 A TW202329000 A TW 202329000A TW 111100555 A TW111100555 A TW 111100555A TW 111100555 A TW111100555 A TW 111100555A TW 202329000 A TW202329000 A TW 202329000A
Authority
TW
Taiwan
Prior art keywords
data
file
participants
meeting
briefing
Prior art date
Application number
TW111100555A
Other languages
Chinese (zh)
Inventor
陳冠儒
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111100555A priority Critical patent/TW202329000A/en
Publication of TW202329000A publication Critical patent/TW202329000A/en

Links

Images

Landscapes

  • Telephonic Communication Services (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present disclosure provides a data processing system and method thereof. The data processing system includes an arranging-inference model and a conference record unit. The arranging-inference model is used to receive an initial presentation file and a data set, and execute an arranging-inference operation according to the initial presentation file and the data set to generate an arranged presentation file. The conference record unit is used to record play-time of the arranged presentation file, and record voices of a plurality of participants of the conference so as to count the number of words of speeches by the participants. Furthermore, it is determined whether to re-train the arranging-inference model based on the play-time of the arranged presentation file and the number of words of speeches by the participants.

Description

資料處理系統及其方法Data processing system and method thereof

本揭示係關於一種資料處理系統及其方法,特別關於一種用於編排調整會議簡報資料之處理系統及處理方法。This disclosure relates to a data processing system and method thereof, in particular to a processing system and method for editing and adjusting meeting briefing materials.

在一場會議中,眾多參與會議者各自的背景經歷各異其趣,不同背景經歷的參與者感到興趣的主題亦不盡相同。若會議的簡報檔的內容及編排方式並未針對參與會議者的興趣導向,大多數參與會議者可能喪失興趣。In a meeting, many participants have different backgrounds and experiences, and participants with different backgrounds and experiences are interested in different topics. If the content and layout of the presentation file of the meeting are not oriented to the interests of the meeting participants, most of the meeting participants may lose interest.

當未符合參與會議者興趣的簡報檔在會議中播放時,常發生的情境為:參與會議者發言的踴躍度降低,或參與會議者催促主講者加快簡報檔的播放速度(期能盡速結束會議)。於此,主講者在會議前精心籌備的簡報資料無法在實際會議中聚焦於正確方向,將導致會議效果大打折扣。When a presentation file that does not meet the interests of the participants is played in the meeting, the situation that often occurs is: the enthusiasm of the participants to speak is reduced, or the participants urge the presenter to speed up the playback speed of the presentation file (the period can end as soon as possible Meeting). Therefore, the briefing material carefully prepared by the speaker before the meeting cannot focus on the correct direction in the actual meeting, which will greatly reduce the effect of the meeting.

針對上述技術問題,本技術領域之相關產業之技術人員係致力於以智慧方式調整編排簡報檔,俾使編排後簡報檔能夠針對參與會議者的興趣導向,以提升參與會議者融入於會議的踴躍程度。In response to the above technical problems, technical personnel in related industries in this technical field are committed to intelligently adjusting and editing the briefing files, so that the edited briefing files can be oriented to the interests of the participants, so as to enhance the participation of the participants in the meeting. degree.

於本揭示之技術方案中,係藉由編排推理模型對於會議的初始簡報檔進行調整編排,並在會議進行中紀錄編排後簡報檔的播放時間以及參與會議者的發言字數,據以判斷是否需優化編排推理模型。據此,優化後的編排推理模型能夠將簡報檔調整編排為最適合參與會議者的內容。In the technical solution disclosed in this disclosure, the initial briefing file of the meeting is adjusted and arranged by the arrangement reasoning model, and the playback time of the edited briefing file and the number of speech words of the participants are recorded during the meeting, so as to judge whether The orchestration inference model needs to be optimized. Accordingly, the optimized arrangement reasoning model can adjust and arrange the briefing file to be the most suitable content for the meeting participants.

根據本揭示之一方面,係提供一種資料處理系統,資料處理系統包括編排推理模型及會議紀錄單元。編排推理模型用於接收初始簡報檔及資料集合,並根據初始簡報檔及資料集合執行編排推理操作以產生編排後簡報檔。會議紀錄單元用於紀錄編排後簡報檔的播放時間,並紀錄多個參與會議者的語音且據以統計參與會議者的發言字數,並根據編排後簡報檔的播放時間及參與會議者的發言字數判斷是否重新訓練編排推理模型。其中,該資料集合至少相關於該初始簡報檔的類型與樣式及該些參與會議者的背景與經歷,且該資料集合用於初步訓練該編排推理模型。According to one aspect of the present disclosure, a data processing system is provided, and the data processing system includes an arrangement reasoning model and a conference minutes unit. The orchestration reasoning model is used to receive the initial briefing file and the data set, and execute the orchestration reasoning operation according to the initial briefing file and the data set to generate the arranged briefing file. The meeting record unit is used to record the playback time of the briefing file after editing, and record the voices of multiple participants in the conference and count the number of speeches of the participants, and according to the playback time of the briefing file after editing and the speeches of the participants The number of words determines whether to retrain the orchestration reasoning model. Wherein, the data set is at least related to the type and style of the initial briefing file and the background and experience of the participants, and the data set is used to initially train the arrangement reasoning model.

根據本揭示之另一方面,係提供一種資料處理方法,資料處理方法包括以下步驟。接收初始簡報檔及資料集合,其中資料集合至少相關於初始簡報檔的類型與樣式。根據資料集合初步訓練編排推理模型。藉由編排推理模型根據初始簡報檔及資料集合執行編排推理操作以產生編排後簡報檔。紀錄編排後簡報檔的播放時間。紀錄多個參與會議者的語音且據以統計參與會議者的發言字數,其中資料集合至少相關於參與會議者的背景與經歷。以及,根據編排後簡報檔的播放時間及參與會議者的發言字數判斷是否重新訓練編排推理模型。According to another aspect of the present disclosure, a data processing method is provided, and the data processing method includes the following steps. An initial presentation file and a data set are received, wherein the data set is at least related to the type and style of the initial presentation file. Preliminary training and orchestration of inference models based on data sets. The choreography reasoning operation is performed by the choreography reasoning model according to the initial briefing file and the data set to generate the choreography briefing file. Record the playback time of the presentation file after editing. Record the voices of multiple conference participants and count the number of words spoken by the conference participants, wherein the collection of data is at least related to the background and experience of the conference participants. And, it is judged whether to retrain the arrangement reasoning model according to the playback time of the arranged briefing file and the number of words spoken by the participants.

根據本揭示之上述技術方案,在會議進行前,可根據簡報檔的類型與樣式、簡報檔的播放時間、參與會議者的背景經歷、參與會議者的參與程度(發言字數、肢體動作或表情)初步訓練編排推理模型,據以對於初始簡報檔進行編排調整。在會議實際進行時,可藉由會議記錄單元實際分析編排後簡報檔的播放時間及參與會議者的實際參與程度,據以對於編排推理模型進行優化。According to the above-mentioned technical solution disclosed in this disclosure, before the meeting, according to the type and style of the briefing file, the playing time of the briefing file, the background experience of the participants, and the degree of participation of the participants (the number of speech words, body movements or expressions) ) preliminarily trains the orchestration reasoning model, based on which the initial briefing file is arranged and adjusted. When the meeting is actually going on, the meeting recording unit can actually analyze the playing time of the arranged briefing file and the actual participation degree of the meeting participants, so as to optimize the arrangement reasoning model.

透過閱讀以下圖式、詳細說明以及申請專利範圍,可見本揭示之其他方面以及優點。Other aspects and advantages of this disclosure can be seen by reading the following drawings, detailed description and claims.

本說明書的技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭露之各個實施例分別具有一或多個技術特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者選擇性地將這些實施例中部分或全部的技術特徵加以組合。The technical terms in this specification refer to the customary terms in this technical field. If some terms are explained or defined in this specification, the explanations or definitions of these terms shall prevail. Each embodiment of the disclosure has one or more technical features. On the premise of possible implementation, those skilled in the art may selectively implement some or all of the technical features in any embodiment, or selectively combine some or all of the technical features in these embodiments.

第1圖為本揭示一實施例之資料處理系統1000之方塊圖。請參見第1圖,資料處理系統1000可包括資料集合處理單元100、編排推理(inference)模型200、會議紀錄單元300以及模型優化單元400。資料處理系統1000可對於會議之初始簡報檔(presentation file) B0進行智慧調整編排,以使初始簡報檔B0滿足於參與會議者之興趣導向。FIG. 1 is a block diagram of a data processing system 1000 according to an embodiment of the present disclosure. Please refer to FIG. 1 , the data processing system 1000 may include a data set processing unit 100 , an orchestration inference model 200 , a conference record unit 300 and a model optimization unit 400 . The data processing system 1000 can intelligently adjust and arrange the initial presentation file B0 of the meeting, so that the initial presentation file B0 meets the interest orientation of the meeting participants.

對於「windows」平台而言,初始簡報檔B0可例如為微軟公司(Microsoft Inc.)之「power point」應用程式產生的「.ppt」檔或「.pptx」檔,資料處理系統1000之使用者例如為會議的主講者。在會議進行前,使用者可預先製作初始簡報檔B0,並將初始簡報檔B0提供至資料處理系統1000的資料集合處理單元100。For the "windows" platform, the initial presentation file B0 can be, for example, a ".ppt" file or a ".pptx" file generated by the "power point" application program of Microsoft Inc., and the user of the data processing system 1000 For example, the speaker of a conference. Before the meeting, the user can pre-create an initial presentation file B0 and provide the initial presentation file B0 to the data collection processing unit 100 of the data processing system 1000 .

資料集合處理單元100可根據初始簡報檔B0之內容所呈現的類型、樣式及風格而對初始簡報檔B0進行分類、命名或標示(labeling)。在一種示例中,資料集合處理單元100可將初始簡報檔B0的每一頁面轉換成圖檔(例如為「.jpg」檔、「.bmp」檔、「.png」檔,等等),並根據圖檔中的特徵(feature)分析初始簡報檔B0之類型、樣式及風格。第2A~2F圖為資料集合處理單元100對於初始簡報檔B0進行分類、命名或標示的示意圖。請先參見第2A圖之示例,當初始簡報檔B0所轉換之對應圖檔中具有數量較多的「中大型方框」之特徵F11時,資料集合處理單元100可將初始簡報檔B0分類並標示為「概述(overview)」或「高階架構(high-level architecture)」的類型;據此,可設定初始簡報檔B0的分類標示資料D1為「概述」或「高階架構」。此外,於第2B圖之示例中,當初始簡報檔B0之對應圖檔中具有數量較多的「小型框」之特徵F12時,可將初始簡報檔B0分類並標示為「系統架構(system architecture)」的類型;據此,可設定初始簡報檔B0的分類標示資料D1為「系統架構」。於第2C圖之示例中,當初始簡報檔B0之對應圖檔中具有數量較多的「簡短式文字」(並且字體較大)之特徵F13時,可設定初始簡報檔B0的分類標示資料D1為「標題(topic)」或「結論(conclusion)」。於第2D圖之示例中,當初始簡報檔B0之對應圖檔中具有數量較多而密集的「條列式文字」(並且字體較小)之特徵F14時,可設定初始簡報檔B0的分類標示資料D1為「詳細敘述(detailed description)」。於第2E圖之示例中,當初始簡報檔B0之對應圖檔中具有「表格」之特徵F15時,可設定初始簡報檔B0的分類標示資料D1為「比較資料(comparison data)」。The data set processing unit 100 can classify, name or label the initial presentation file B0 according to the type, style and style of the content of the initial presentation file B0. In one example, the data set processing unit 100 can convert each page of the initial presentation file B0 into a picture file (for example, a ".jpg" file, a ".bmp" file, a ".png" file, etc.), and Analyze the type, style and style of the initial briefing file B0 according to the features in the graphic file. 2A-2F are schematic diagrams of the data collection processing unit 100 classifying, naming or labeling the initial briefing file B0. Please refer to the example in FIG. 2A first. When the corresponding image file converted from the initial presentation file B0 has a large number of features F11 of "medium and large boxes", the data collection processing unit 100 can classify the initial presentation file B0 and The type marked as "overview" or "high-level architecture"; accordingly, the classification label data D1 of the initial presentation file B0 can be set as "overview" or "high-level architecture". In addition, in the example shown in FIG. 2B, when the initial presentation file B0 has a large number of "small frame" features F12 in the corresponding image file, the initial presentation file B0 can be classified and marked as "system architecture (system architecture) )" type; accordingly, the classification label data D1 of the initial presentation file B0 can be set as "system architecture". In the example shown in Figure 2C, when the initial presentation file B0 has a larger number of "short text" (and larger font) features F13 in the corresponding image file, the classification label data D1 of the initial presentation file B0 can be set Either "topic" or "conclusion". In the example shown in Figure 2D, when the corresponding image file of the initial presentation file B0 has the feature F14 of a large number of dense "lined text" (and the font size is small), the classification of the initial presentation file B0 can be set The marked data D1 is "detailed description". In the example shown in FIG. 2E, when the corresponding graphic file of the initial presentation file B0 has the feature F15 of "table", the classification label data D1 of the initial presentation file B0 can be set as "comparison data".

在另一種示例中,亦可從動態影像的角度分析初始簡報檔B0之類型。如第2F圖之示例,當初始簡報檔B0顯示連續動態變化之圖片F16(例如為動畫或影片)時,可設定初始簡報檔B0的分類標示資料D1為「展示(demo)」。在又一種示例中,資料集合處理單元100亦可具有文義分析能力,可對於初始簡報檔B0之文字內容進行文義分析。當初始簡報檔B0之文字的文義為廣義敘述時,可設定初始簡報檔B0的分類標示資料D1為「摘要介紹」或「高階架構」。相對的,當初始簡報檔B0之文字的文義為具體細節敘述時,可設定初始簡報檔B0的分類標示資料D1為「系統架構」或「詳細敘述」。In another example, the type of the initial briefing file B0 can also be analyzed from the perspective of dynamic images. As shown in FIG. 2F , when the initial presentation file B0 displays continuously dynamically changing pictures F16 (for example, animation or video), the classification label data D1 of the initial presentation file B0 can be set as "demo". In yet another example, the data collection processing unit 100 may also have a textual analysis capability, and may perform textual analysis on the text content of the initial briefing file B0. When the context of the text in the initial presentation file B0 is a broad description, the classification label data D1 of the initial presentation file B0 can be set as "summary introduction" or "high-level structure". In contrast, when the meaning of the text of the initial presentation file B0 is detailed description, the classification label data D1 of the initial presentation file B0 can be set as "system structure" or "detailed description".

上述為分析初始簡報檔B0的「視覺屬性」(視覺上對於圖形或文字的感知),另一方面,資料集合處理單元100亦可分析初始簡報檔B0的「時間屬性」。請參見第2G圖,其繪示資料集合處理單元100分析初始簡報檔B0的時間屬性的示意圖。例如,可分析初始簡報檔B0每一頁面各自的播放時間、初始簡報檔B0全部頁面的總播放時間,等等。據此,資料集合處理單元100可例如設定初始簡報檔B0之播放時間資料D2為「15秒/第一頁面p1、10秒/第二頁面p2、…、10秒/最末頁面p30」或「30分20秒/全部頁面p1~p30」,等等。The above is to analyze the "visual attribute" of the initial presentation file B0 (visual perception of graphics or text). On the other hand, the data set processing unit 100 can also analyze the "time attribute" of the initial presentation file B0. Please refer to FIG. 2G , which shows a schematic diagram of analyzing the time attribute of the initial briefing file B0 by the data collection processing unit 100 . For example, the individual playing time of each page of the initial presentation file B0, the total playing time of all pages of the initial presentation file B0, etc. can be analyzed. Accordingly, the data collection processing unit 100 can, for example, set the playing time data D2 of the initial briefing file B0 as "15 seconds/first page p1, 10 seconds/second page p2, ..., 10 seconds/last page p30" or " 30 minutes and 20 seconds/all pages p1~p30", etc.

除了針對初始簡報檔B0進行分析之外,資料集合處理單元100亦可針對應邀出席會議之參與會議者進行分析。第3圖為資料集合處理單元100對於參與會議者進行分析的示意圖;參與會議者例如共有六十人,分別為參與會議者A1~A60,第3圖係以其中一個參與會議者A1為例進行說明。In addition to analyzing the initial presentation file B0, the data collection processing unit 100 can also analyze the participants who are invited to attend the meeting. Figure 3 is a schematic diagram of the data collection processing unit 100 analyzing the conference participants; for example, there are sixty conference participants, which are conference participants A1~A60, and Figure 3 is based on one of the conference participants A1 as an example. illustrate.

請參見第3圖,在會議進行前,使用者可傳送會議通知N0以通知邀請參與會議者A1。會議通知N0例如為電子郵件、通訊軟體之訊息,等等。資料集合處理單元100可從會議通知N0紀載的資訊分析得到參與會議者A1之背景、所屬部門及職銜N01、參與會議者A1之專案計畫及工作經歷N02、參與會議者A1之關鍵績效指標(KPI) N03、或參與會議者A1自行輸入的資訊N04,等等。資料集合處理單元100可根據上述資訊進一步分析參與會議者A1的「背景屬性」。在一種示例中,當參與會議者A1之背景、所屬部門及職銜N01為「研發工程部-類比IC設計工程師」,且專案計畫及工作經歷N02為「藍芽無線耳機接收器晶片之設計驗證」時,資料集合處理單元100可設定參與會議者A1的背景屬性資料D3為「硬體研發工程師」。在另一種示例中,當參與會議者A1之背景、所屬部門及職銜N01為「行銷業務部-產品行銷經理」,且專案計畫及工作經歷N02為「藍芽無線耳機產品之海外市場行銷」時,資料集合處理單元100可設定參與會議者A1的背景屬性資料D3為「行銷業務主管」。Please refer to FIG. 3 , before the meeting, the user can send a meeting notice N0 to notify the invited participant A1. The meeting notice N0 is, for example, an email, a message of a communication software, and the like. The data collection processing unit 100 can analyze the information recorded in the meeting notice N0 to obtain the background, department and title N01 of the meeting participant A1, the project plan and work experience N02 of the meeting participant A1, and the key performance indicators of the meeting participant A1 (KPI) N03, or information N04 input by participant A1, etc. The data collection processing unit 100 can further analyze the "background attribute" of the participant A1 according to the above information. In one example, when participant A1's background, department and title N01 is "R&D Engineering Department - Analog IC Design Engineer", and the project plan and work experience N02 is "Design Verification of Bluetooth Wireless Headphone Receiver Chip" ”, the data collection processing unit 100 can set the background attribute data D3 of the participant A1 as “hardware R&D engineer”. In another example, when participant A1's background, department and title N01 is "Marketing Business Department - Product Marketing Manager", and the project plan and work experience N02 is "Overseas marketing of Bluetooth wireless headset products" , the data collection processing unit 100 can set the background attribute data D3 of the participant A1 as "marketing business supervisor".

另一方面,請同時參見第1、3圖,資料集合處理單元100亦可根據會議通知N0從資料庫2000擷取參與會議者A1之會議歷史資料H0,並根據會議歷史資料H0分析參與會議者A1歷來(即,過去時間)對於會議的「參與程度」(即,參與會議者A1投入於會議的專注程度或提出發言的踴躍程度,等等)。資料庫2000可內建於資料處理系統1000、或可獨立於資料處理系統1000而設置(第1圖之實施例的資料庫2000係獨立於資料處理系統1000而設置)。在一種示例中,會議歷史資料H0包括參與會議者A1歷來在會議中的發言字數A1-1的統計資訊。當發言字數A1-1較多時,表示參與會議者A1對於會議簡報內容的興趣較高且發表評論的踴躍度較高,可判斷參與會議者A1歷來對於會議的「參與程度」較高。例如,當參與會議者A1於過去每一場會議平均的發言字數A1-1大於5000字時,可設定參與會議者A1之參與程度資料D4為最高的滿級點數「100點」。相對的,當參與會議者A1平均的發言字數A1-1較少時,可判斷其「參與程度」較低;例如,當參與會議者A1平均的發言字數A1-1小於20字時,可設定參與會議者A1之參與程度資料D4為最低點數「0點」。On the other hand, please refer to Figures 1 and 3 at the same time, the data collection processing unit 100 can also retrieve the meeting history data H0 of the meeting participant A1 from the database 2000 according to the meeting notice N0, and analyze the meeting participants according to the meeting history data H0 A1's historical (ie past time) "participation" in the meeting (ie, the degree of concentration that the participant A1 devotes to the meeting or the degree of enthusiasm in making a speech, etc.). The database 2000 can be built in the data processing system 1000, or can be set independently from the data processing system 1000 (the database 2000 in the embodiment in FIG. 1 is set independently from the data processing system 1000). In one example, the conference history data H0 includes statistical information on the number of speech words A1-1 of the conference participant A1 in the conference. When the number of speech words A1-1 is large, it means that participant A1 has a higher interest in the content of the meeting briefing and is more active in commenting. It can be judged that participant A1 has always had a higher degree of "participation" in the meeting. For example, when the average number of speech words A1-1 of participant A1 in each past meeting is greater than 5000 words, the participation level data D4 of participant A1 can be set as the highest full-level point "100 points". In contrast, when the average number of speech words A1-1 of participant A1 is relatively small, it can be judged that his "participation level" is low; for example, when the average number of speech words A1-1 of participant A1 is less than 20 words, The participation level data D4 of the conference participant A1 can be set as the minimum point "0 point".

在另一種示例中,會議歷史資料H0可包括歷來會議中參與會議者A1的錄影影像。資料集合處理單元100可從錄影影像中分析參與會議者A1在會議中的肢體動作A1-2或表情A1-3以判斷其對於會議的「參與程度」。例如,當參與會議者A1之肢體動作A1-2為打嗑睡、東張西望時,或其表情A1-3為不耐煩、精神不集中時,資料處理系統1000可設定參與會議者A1之參與程度資料D4為較低點數「5點」。In another example, the meeting history data H0 may include video images of the participant A1 in previous meetings. The data collection processing unit 100 can analyze the body movements A1-2 or facial expressions A1-3 of the meeting participant A1 in the meeting from the recorded images to determine their "participation degree" in the meeting. For example, when the body movement A1-2 of the meeting participant A1 is dozing off, looking around, or his facial expression A1-3 is impatience and lack of concentration, the data processing system 1000 can set the participation level data of the meeting participant A1 D4 is the lower number of points "5 points".

由上,資料集合處理單元100亦對於其他參與會議者A2~A60的會議通知N0及其會議歷史資料H0進行分析,以得到其他參與會議者A2~A60的背景屬性資料D3及參與程度資料D4。From the above, the data collection processing unit 100 also analyzes the meeting notice N0 and the meeting history data H0 of other meeting participants A2-A60 to obtain the background attribute data D3 and participation degree data D4 of other meeting participants A2-A60.

請再次參見第1圖,資料集合處理單元100可將初始簡報檔B0之分類標示資料D1、播放時間資料D2,以及參與會議者A1~A60之背景屬性資料D3、參與程度資料D4彙整為資料集合DS,並將資料集合DS傳送至編排推理模型200。在會議進行前,可根據資料集合DS藉由神經網路(neural network,NN)演算法對於編排推理模型200進行初步訓練(pre-training)。編排推理模型200的初步訓練之一種示例為:當初始簡報檔B0的內容為硬體研發技術相關主題,而參與會議者A1~A60大多數之背景屬性資料D3為「硬體研發工程師」且參與程度資料D4為較高的點數「90點」時,表示參與會議者A1~A60大多數對於硬體研發細節描述的會議簡報內容具有高度興趣。據此,可訓練編排推理模型200以將分類標示資料D1為「系統架構」、「詳細敘述」或「比較資料」的頁面設定為較高的權重值,以將編排推理模型訓練調整為著重於硬體架構的細節敘述與比較。Please refer to FIG. 1 again, the data collection processing unit 100 can collect the classification label data D1, play time data D2 of the initial briefing file B0, and the background attribute data D3 and participation degree data D4 of the participants A1~A60 into a data collection DS, and transmit the data set DS to the orchestration reasoning model 200 . Before the meeting, pre-training can be performed on the orchestration reasoning model 200 by using a neural network (NN) algorithm according to the data set DS. An example of the preliminary training of the orchestration reasoning model 200 is: when the content of the initial briefing file B0 is related to hardware R&D technology, and the background attribute data D3 of most of the participants A1~A60 are "hardware R&D engineers" and participate When the degree data D4 is a relatively high point "90 points", it means that most of the participants A1-A60 are highly interested in the content of the meeting briefing that describes the details of hardware R&D. Accordingly, the orchestration reasoning model 200 can be trained to set a higher weight value for the page where the classification label data D1 is "system architecture", "detailed description" or "comparison data", so as to adjust the orchestration reasoning model training to focus on Detailed description and comparison of hardware architectures.

編排推理模型200的初步訓練之另一種示例為:當初始簡報檔B0為硬體研發技術相關主題,且參與會議者A1~A60大多數之背景屬性資料D3為「行銷業務主管」且參與程度資料D4為「20點」時,表示大多數的參與會議者A1~A60可能非常無感於硬體研發細節描述的簡報內容,則可訓練編排推理模型200以將分類標示資料D1為「摘要介紹」、「標題」或「結論」的頁面設定為較高的權重值,且將頁面的播放時間縮短,以將編排推理模型訓練調整為著重於硬體的簡單概述並縮短整體簡報時間。Another example of the preliminary training of the orchestration reasoning model 200 is: when the initial briefing file B0 is related to hardware research and development technology, and the background attribute data D3 of most of the participants A1~A60 is "marketing business executive" and the participation level data When D4 is "20 o'clock", it means that most of the meeting participants A1~A60 may be very indifferent to the briefing content of the detailed description of hardware development, and the reasoning model 200 can be trained to classify and mark the data D1 as "Summary Introduction" , "Title" or "Conclusion" pages are set to a higher weight value, and the playback time of the page is shortened to adjust the choreography inference model training to focus on a simple overview of the hardware and shorten the overall presentation time.

第4圖為本揭示一實施例之編排推理模型200的運作示意圖。請參見第4圖,在編排推理模型200完成初步訓練之後,可將初始簡報檔B0輸入編排推理模型200執行編排推理操作250以產生編排後簡報檔B1。FIG. 4 is a schematic diagram of the operation of the orchestration reasoning model 200 according to an embodiment of the present disclosure. Please refer to FIG. 4 , after the choreography reasoning model 200 completes the preliminary training, the initial briefing file B0 can be input into the choreography reasoning model 200 to execute the choreography reasoning operation 250 to generate the choreography briefing file B1.

在編排推理操作250的步驟S251中,可判斷初始簡報檔B0中是否有任何頁面需要調整修正。例如,初始簡報檔B0的最末頁面p30為總結評論,但編排推理模型200的推理結果分析出最末頁面p30的詳細文字敘述或詳細圖式過多而不適於總結評論,因而步驟S251的判斷結果為:至少最末頁面p30需要調整修正。而後,執行步驟S252:列出初始簡報檔B0中需要調整修正的頁面(至少包括最末頁面p30),並建議使用者對於此些頁面的內容進行調整修正。In the step S251 of the layout reasoning operation 250, it can be determined whether any page in the initial briefing file B0 needs to be adjusted or corrected. For example, the last page p30 of the initial briefing file B0 is a summary comment, but the inference result of the arrangement reasoning model 200 shows that the last page p30 has too many detailed text descriptions or detailed diagrams and is not suitable for summary comments, so the judgment result of step S251 For: At least the last page p30 needs to be adjusted and corrected. Then, execute step S252: list the pages (including at least the last page p30) in the initial briefing file B0 that need to be adjusted and amended, and suggest the user to adjust and amend the contents of these pages.

另一方面,若步驟S251的判斷結果為「否」,表示推理結果分析出初始簡報檔B0的每一頁面的內容皆無須調整修正,則執行步驟S253:自動編排調整初始簡報檔B0的全部頁面的頁面順序(換言之,不調整每一頁面的內容,僅調整頁面順序)。例如,可根據每一頁面的權重值調整順序;當權重值較大時表示參與會議者A1~A60具有較高的興趣,可將權重值較大的頁面調整至較前的頁面順序。On the other hand, if the judgment result of step S251 is "No", it means that the reasoning result analyzes that the content of each page of the initial presentation file B0 does not need to be adjusted and corrected, and then step S253 is executed: automatically arrange and adjust all pages of the initial presentation file B0 The order of the pages (in other words, the content of each page is not adjusted, only the order of the pages). For example, the order can be adjusted according to the weight value of each page; when the weight value is larger, it means that the participants A1-A60 have higher interest, and the page with the larger weight value can be adjusted to a higher page order.

而後,於會議實際進行時,使用者在會議中實際播放編排後簡報檔B1,並藉由會議紀錄單元300實際監測紀錄會議進行狀況(包括編排後簡報檔B1的實際播放狀況以及參與會議者A1~A60的實際參與狀況)。請先參見第5A圖,其繪示本揭示一實施例之會議紀錄單元300的方塊圖。會議紀錄單元300包括簡報頁數紀錄裝置310、收音裝置320、簡報播放時間紀錄裝置330、及影像擷取裝置340。其中,簡報頁數紀錄裝置310可紀錄編排後簡報檔B1目前正播放頁面的頁數(例如,目前正播放頁面p5的頁數為「第五頁」)。簡報頁數紀錄裝置310並可判斷整個編排後簡報檔B1是否已播放完畢(例如,最末頁面p30播放完畢,表示整個編排後簡報檔B1已播放完畢),此時簡報頁數紀錄裝置310可傳送控制訊號S1至收音裝置320及簡報播放時間紀錄裝置330。控制訊號S1即為播放完畢訊號。Then, when the meeting is actually going on, the user actually plays the programmed briefing file B1 in the meeting, and uses the meeting recording unit 300 to actually monitor and record the progress of the meeting (including the actual playback status of the programmed briefing file B1 and the meeting participant A1 ~A60 actual participation status). Please refer to FIG. 5A first, which shows a block diagram of a conference recording unit 300 according to an embodiment of the present disclosure. The conference recording unit 300 includes a presentation page number recording device 310 , a sound receiving device 320 , a presentation playing time recording device 330 , and an image capture device 340 . Wherein, the presentation page number recording device 310 can record the page number of the current playing page of the edited presentation file B1 (for example, the page number of the currently playing page p5 is "the fifth page"). The presentation page number recording device 310 can also judge whether the presentation file B1 has been played after the whole arrangement (for example, the last page p30 has been played, indicating that the presentation file B1 has been played after the entire arrangement), at this time, the presentation page number recording device 310 can Send the control signal S1 to the radio device 320 and the presentation time recording device 330 . The control signal S1 is the playing end signal.

接著,請先參見第5B圖,其繪示本揭示一實施例之收音裝置320與影像擷取裝置340的運作示意圖。影像擷取裝置340可擷取會議現場及/或遠端連線的複數個人員的影像並進行影像辨識,從中辨識出真正應邀出席會議的參與會議者A1~A60,並紀錄參與會議者A1~A60的影像Img(即,進行錄影)。另一方面,收音裝置320可針對於影像辨識出的真正參與會議者A1~A60接收並紀錄其語音Voc(即,進行錄音)。收音裝置320更可包括語音-文字轉換裝置321以將參與會議者A1~A60的語音Voc轉換為文字並計算其字數,據以累計參與會議者A1~A60各自的發言字數(以參與會議者A1為例,累計其發言字數A1-1)。Next, please refer to FIG. 5B , which shows a schematic diagram of the operation of the sound receiving device 320 and the image capturing device 340 according to an embodiment of the present disclosure. The image capturing device 340 can capture images of a plurality of people at the meeting site and/or remote connections and perform image recognition, thereby identifying the participants A1~A60 who are actually invited to attend the meeting, and recording the participants A1~A60 Image Img of A60 (ie, video recording is performed). On the other hand, the audio receiving device 320 can receive and record the voice Vocs of the real conference participants A1 - A60 identified from the images (that is, record them). The audio receiving device 320 can further include a voice-to-text conversion device 321 to convert the voice Voc of the participants A1~A60 into text and calculate the number of words, so as to accumulate the speech words of the participants A1~A60 (to participate in the meeting Take speaker A1 as an example, accumulatively count the number of words A1-1).

當收音裝置320收到控制訊號S1(表示整個編排後簡報檔B1已播放完畢)時,語音-文字轉換裝置321可分析參與會議者A1~A60在整個會議過程中的累計發言字數是否等於零,據以判斷參與會議者A1~A60是否為「零發言」狀態(即,在整個會議過程中並未發表任何言詞),並可統計參與會議者A1~A60中為「零發言」狀態的人數。當整個編排後簡報檔B1已播放完畢且參與會議者A1~A60中為「零發言」狀態的人數超過總人數的半數(超過半數三十人)時,語音-文字轉換裝置321可傳送控制訊號S2至簡報播放時間紀錄裝置330。控制訊號S2表示參與會議者A1~A60中超過半數的人員在整個會議過程中為「零發言」狀態,表示超過半數的人員對於編排後簡報檔B1的內容不感興趣,判斷需要對於編排推理模型200進行優化(即,重新訓練編排推理模型200)。When the sound receiving device 320 receives the control signal S1 (indicating that the entire edited briefing file B1 has been played), the voice-to-text conversion device 321 can analyze whether the accumulative number of words spoken by participants A1~A60 during the entire meeting is equal to zero, Based on this, it is judged whether the conference participants A1~A60 are in the state of "zero speech" (that is, they did not express any words during the entire conference process), and the number of the conference participants A1~A60 in the state of "zero speech" can be counted. When the briefing file B1 after the entire arrangement has been played and the number of participants A1~A60 in the state of "zero speech" exceeds half of the total number (more than half of thirty people), the voice-text conversion device 321 can transmit the control The signal S2 is sent to the presentation time recording device 330 . The control signal S2 indicates that more than half of the participants A1~A60 are in the state of "zero speech" during the entire meeting, indicating that more than half of the people are not interested in the content of the briefing file B1 after the arrangement, and the judgment needs to be based on the arrangement reasoning model 200 Optimizing (ie, retraining orchestration inference model 200 ) is performed.

接著,請先參見第5C圖,其繪示簡報播放時間紀錄裝置330與簡報頁數紀錄裝置310的協同運作示意圖。簡報播放時間紀錄裝置330根據控制訊號S1判斷編排後簡報檔B1尚未播放完畢且根據控制訊號S2判斷參與會議者A1~A60並非全部人員為「零發言」狀態,表示編排後簡報檔B1仍在播放中且仍有參與會議者曾發表言詞,則簡報播放時間紀錄裝置330進一步分析編排後簡報檔B1是否至少有連續兩個頁面各自的播放時間小於下限值,並且藉由簡報頁數紀錄裝置310分析標記上述的連續兩個頁面的頁數。例如,可分析出頁面p21(其頁數為「第二十一頁」)的播放時間為四秒且連續的次一個頁面p22(其頁數為「第二十二頁」)的播放時間為三秒,兩者的播放時間皆小於下限值「五秒」,表示參與會議者A1~A60可能對於前一個頁面p20(其頁數為「第二十頁」)的內容不感興趣,因而催促主講者(資料處理系統1000的使用者)加快播放後續頁面p21、p22而縮短播放時間。或者,參與會議者A1~A60可能對於前一頁面p20的內容提出問題時無法獲得滿意的回覆,因而催促主講者加快播放後續頁面p21、p22而縮短播放時間。Next, please refer to FIG. 5C , which shows a schematic diagram of the coordinated operation of the presentation playback time recording device 330 and the presentation page number recording device 310 . The presentation playback time recording device 330 judges according to the control signal S1 that the edited briefing file B1 has not finished playing and according to the control signal S2 judges that not all participants A1~A60 are in the state of "zero speech", indicating that the edited briefing file B1 is still playing and there are still participants in the meeting who have made speeches, then the presentation playback time recording device 330 further analyzes whether the briefing file B1 after editing has at least two consecutive pages whose respective playback times are less than the lower limit, and through the briefing page number recording device 310 Analyze the number of pages that mark the two consecutive pages above. For example, it can be analyzed that the playing time of page p21 (its page number is "page 21") is four seconds and the playing time of the next consecutive page p22 (its page number is "page 22") is Three seconds, the playback time of both is less than the lower limit "five seconds", which means that participants A1~A60 may not be interested in the content of the previous page p20 (the page number is "twentieth page"), so they urge The presenter (the user of the data processing system 1000) speeds up playing the subsequent pages p21, p22 to shorten the playing time. Alternatively, participants A1-A60 may not get satisfactory answers when they ask questions about the contents of the previous page p20, and thus urge the presenter to play the subsequent pages p21 and p22 faster to shorten the playing time.

連續兩個頁面的播放時間小於下限值的示例常見於參與會議者A1~A60中包括職銜較高的主管層級人員,此些主管層級人員對於下屬的簡報檔不感興趣(或不甚滿意)而催促加速播放。若簡報播放時間紀錄裝置330分析出至少有連續兩個頁面的播放時間小於下限值則產生控制訊號S3。控制訊號S3表示參與會議者A1~A60催促加速播放,使編排後簡報檔B1的播放時間縮短,則判斷需要對於編排推理模型200進行優化。The example where the playback time of two consecutive pages is less than the lower limit is common in the participants A1~A60 including high-ranking executives who are not interested in (or not very satisfied with) the briefing files of their subordinates. Urges to speed up playback. If the presentation playing time recording device 330 analyzes that the playing time of at least two consecutive pages is less than the lower limit, a control signal S3 is generated. The control signal S3 indicates that the conference participants A1-A60 urge to speed up the playback, so that the playback time of the edited briefing file B1 is shortened, and it is judged that the arrangement reasoning model 200 needs to be optimized.

在另一種示例中,簡報頁數紀錄裝置310可與語音-文字轉換裝置321協同運作,以分析編排後簡報檔B1中那些頁面播放時參與會議者A1~A60的發言字數為零,而此些頁面為會議者A1~A60所不感興趣的。簡報頁數紀錄裝置310可標記此些頁面的頁數,編排推理模型200進行優化時可考量此些頁面的特徵,在優化模型時可針對類似的特徵進行修正調整。In another example, the presentation page number recording device 310 can cooperate with the speech-to-text conversion device 321 to analyze those pages in the briefing file B1 after editing, when the number of words spoken by the conference participants A1-A60 is zero, and this These pages are not of interest to conference participants A1-A60. The briefing page number recording device 310 can mark the page numbers of these pages, and the layout reasoning model 200 can consider the characteristics of these pages when optimizing, and can make corrections and adjustments for similar characteristics when optimizing the model.

根據上述第5A~5C圖的示例,會議記錄單元300可紀錄分析會議進行狀況,據以判斷會議實際進行時編排後簡報檔B1是否符合參與會議者A1~A60的興趣。當判斷編排後簡報檔B1不符合興趣時,會議記錄單元300可傳送控制訊號S2、S3以使模型優化單元400對於編排推理模型200進行優化。即,控制訊號S2、S3為啟動模型優化單元400的觸發訊號。According to the above examples in FIGS. 5A-5C , the meeting recording unit 300 can record and analyze the progress of the meeting, so as to judge whether the edited briefing file B1 meets the interests of the meeting participants A1-A60 when the meeting is actually in progress. When it is judged that the compiled briefing file B1 is not of interest, the conference recording unit 300 may transmit control signals S2 and S3 to enable the model optimization unit 400 to optimize the compiled reasoning model 200 . That is, the control signals S2 and S3 are trigger signals for activating the model optimization unit 400 .

在另一種示例中,亦可藉由收音裝置320根據語音Voc分析參與會議者A1~A60的語氣、或可藉由影像擷取裝置340根據影像Img分析參與會議者A1~A60的表情,據以判斷參與會議者A1~A60是否對於編排後簡報檔B1的內容不感興趣,而判斷需要啟動模型優化單元400執行編排推理模型200的優化。In another example, the tone of the conference participants A1~A60 can also be analyzed by the audio receiving device 320 according to the voice Voc, or the facial expressions of the conference participants A1~A60 can be analyzed by the image capture device 340 according to the image Img. It is judged whether the conference participants A1 - A60 are not interested in the contents of the arranged briefing file B1 , and the model optimization unit 400 needs to be activated to optimize the arranged reasoning model 200 .

在又一種示例中,亦可藉由簡報頁數紀錄裝置310分析目前已播放過的頁數(例如,已播放了十五個頁面p1~p15),並配合簡報播放時間紀錄裝置330分析已播放頁面的總播放時間(例如,十五個頁面p1~p15的總播放時間為一小時)。若會議的預計時間為三小時且編排後簡報檔B1總共具有三十個頁面,目前已播放過十五個頁面表示編排後簡報檔B1已進行了二分之一,但十五個頁面的總播放時間僅占了會議預計時間的三分之一,表示編排後簡報檔B1的播放速度太快;參與會議者A1~A60可能對於編排後簡報檔B1的內容不感興趣而催促加快播放速度,則判斷需要啟動模型優化單元400執行編排推理模型200的優化。In yet another example, the presentation page number recording device 310 can also be used to analyze the number of pages that have been played so far (for example, fifteen pages p1~p15 have been played), and cooperate with the presentation playback time recording device 330 to analyze the number of pages that have been played. The total playing time of the pages (for example, the total playing time of the fifteen pages p1-p15 is one hour). If the expected time of the meeting is three hours and the briefing file B1 has 30 pages in total after editing, and fifteen pages have been played so far, it means that the briefing file B1 after editing has been played by half, but the total number of fifteen pages The playback time only accounts for one-third of the expected time of the meeting, which means that the playback speed of the edited briefing file B1 is too fast; participants A1~A60 may not be interested in the content of the edited briefing file B1 and urge to speed up the playback speed, then It is judged that it is necessary to start the model optimization unit 400 to perform optimization of the orchestration inference model 200 .

並且,會議紀錄單元300可將本次會議中參與會議者A1~A60的語音Voc、影像Img及參與會議者A1~A60是否為「零發言」狀態的分析結果(以參與會議者A1為例,其發言字數A1-1的分析結果),等等,彙整為會議歷史資料H1而儲存至資料庫2000。Moreover, the conference recording unit 300 can analyze the voice Voc and image Img of the participants A1-A60 in this meeting and whether the participants A1-A60 are in the state of "zero speech" (take the participant A1 as an example, The analysis results of the number of speech words A1-1), etc., are collected as meeting history data H1 and stored in the database 2000 .

由上,可根據控制訊號S2、S3判斷是否觸發或啟動模型優化單元400執行優化;其中,模型優化單元400可包括狀態控制器(status controller)以及觀測代理機制(observation agent)以執行優化。請參見第6圖,其繪示本揭示一實施例之模型優化單元400的運作的流程圖。首先,在步驟S601執行狀態控制器;狀態控制器可偵測是否存在連續兩個頁面p(n)、p(n+1)的播放時間皆小於下限值。而後,在步驟S602判斷「連續兩個頁面p(n)、p(n+1)的播放時間皆小於下限值」的偵測結果為「是」或「否」。From the above, it can be judged whether to trigger or activate the model optimization unit 400 to perform optimization according to the control signals S2 and S3; wherein, the model optimization unit 400 can include a status controller and an observation agent mechanism (observation agent) to perform optimization. Please refer to FIG. 6 , which shows a flow chart of the operation of the model optimization unit 400 according to an embodiment of the present disclosure. Firstly, the state controller is executed in step S601; the state controller can detect whether there are two consecutive pages p(n), p(n+1) whose playing time is less than the lower limit. Then, in step S602, it is judged that the detection result of "the playing time of two consecutive pages p(n) and p(n+1) are both less than the lower limit value" is "yes" or "no".

若步驟S602的判斷結果為「是」,表示偵測到連續兩個頁面p(n)、p(n+1)各自的播放時間皆小於下限值(即,連續兩個頁面p(n)、p(n+1)的播放速度加快),則判斷需要優化(即,重新訓練)編排推理模型200,則可傳送控制訊號S3以啟動模型優化單元400。If the judgment result of step S602 is "Yes", it means that it is detected that the respective play times of two consecutive pages p(n) and p(n+1) are less than the lower limit (that is, two consecutive pages p(n) , the playback speed of p(n+1) is increased), then it is judged that the arrangement reasoning model 200 needs to be optimized (ie, retrained), and the control signal S3 can be sent to activate the model optimization unit 400 .

而後,在步驟S603,狀態控制器可定位出播放時間皆小於下限值的連續兩個頁面p(n)、p(n+1)的前一個頁面p(n-1),模型優化單元400將針對前一個頁面p(n-1)進行調整優化。Then, in step S603, the state controller can locate the previous page p(n-1) of the two consecutive pages p(n) and p(n+1) whose playback time is less than the lower limit, and the model optimization unit 400 The optimization will be adjusted for the previous page p(n-1).

而後,在步驟S604執行觀測代理機制,包括:取得資料集合DS中的參與會議者A1~A60的背景屬性資料D3,並調整前一個頁面p(n-1)的權重值(例如將其權重值降低)。Then, execute the observation agent mechanism in step S604, including: obtain the background attribute data D3 of the participants A1-A60 in the data set DS, and adjust the weight value of the previous page p(n-1) (for example, set its weight value to reduce).

而後,在步驟S605,模型優化單元400藉由強化式學習對於編排推理模型200進行調整與優化(即,重新訓練)。例如,可參照參與會議者A1~A60的背景屬性資料D3對於頁面p(n-1)的內容進行調整及/或將頁面p(n-1)調整為較後的頁面順序。而後,再回到步驟S601執行狀態控制器以判斷是否需要優化編排推理模型200。Then, in step S605 , the model optimization unit 400 adjusts and optimizes (ie, retrains) the orchestration reasoning model 200 through reinforcement learning. For example, the content of the page p(n-1) can be adjusted with reference to the background attribute data D3 of the conference participants A1-A60 and/or the page p(n-1) can be adjusted to a later page sequence. Then, go back to step S601 to execute the state controller to determine whether the orchestration reasoning model 200 needs to be optimized.

另一方面,在步驟S602若狀態控制器的判斷結果為「否」,表示無須優化編排推理模型200,則執行步驟S604:在觀測代理機制中維持目前的編排推理模型200。On the other hand, if the judgment result of the state controller is "No" in step S602, which means that the orchestration reasoning model 200 does not need to be optimized, then perform step S604: maintain the current orchestration reasoning model 200 in the observation agent mechanism.

第7A、7B圖為本揭示一實施例之資料處理方法的流程圖。資料處理方法可基於第1圖~第6圖所示之資料處理系統1000的各裝置或單元而實施。請先參見第7A圖。首先,於步驟S701中,根據初始簡報檔B0的類別、樣式及風格產生初始簡報檔B0的分類標示資料D1,並分析簡報檔B0每一頁面的播放時間以產生初始簡報檔B0的播放時間資料D2。7A and 7B are flowcharts of a data processing method according to an embodiment of the present disclosure. The data processing method can be implemented based on each device or unit of the data processing system 1000 shown in FIG. 1 to FIG. 6 . Please refer to Figure 7A first. First, in step S701, according to the category, style and style of the initial presentation file B0, the classification label data D1 of the initial presentation file B0 is generated, and the playing time of each page of the presentation file B0 is analyzed to generate the playing time data of the initial presentation file B0 D2.

而後,於步驟S702中,接收會議通知N0,並根據會議通知N0紀載的資訊中分析參與會議者A1~A60的背景與經歷,據以產生參與會議者A1~A60的背景屬性資料D3。Then, in step S702, the meeting notice N0 is received, and the background and experience of the meeting participants A1-A60 are analyzed according to the information recorded in the meeting notice N0, so as to generate the background attribute data D3 of the meeting participants A1-A60.

而後,於步驟S703中,從資料庫2000中接收會議歷史資料H0,並從會議歷史資料H0中分析統計參與會議者A1~A60歷來參與會議時的發言字數、肢體動作及/或表情,據以產生參與會議者A1~A60的參與程度資料D4。並且,將上述分類標示資料D1、播放時間資料D2、背景屬性資料D3、參與程度資料D4進行彙整而組成資料集合DS。Then, in step S703, the conference history data H0 is received from the database 2000, and the number of speech words, body movements and/or expressions of the participants A1-A60 in the conferences are analyzed and counted from the conference history data H0. To generate the participation degree data D4 of the conference participants A1-A60. In addition, the above-mentioned category marking data D1, playing time data D2, background attribute data D3, and participation level data D4 are collected to form a data set DS.

而後,於步驟S704中,根據資料集合DS對於編排推理模型200進行初步訓練,以得到初步訓練完成的編排推理模型200。Then, in step S704 , preliminary training is performed on the orchestration reasoning model 200 according to the data set DS, so as to obtain the choreography reasoning model 200 after the preliminary training.

請接著參見第7B圖。於步驟S705中,以初步訓練完成的編排推理模型200對於初始簡報檔B0執行編排推理操作250。例如,可列出初始簡報檔B0中需要修正的頁面,並且調整初始簡報檔B0的頁面順序以得到編排後簡報檔B1。Please refer to Fig. 7B next. In step S705 , the choreography inference operation 250 is performed on the initial briefing file B0 with the choreography inference model 200 that has been preliminarily trained. For example, the pages that need to be corrected in the initial presentation file B0 can be listed, and the order of pages in the initial presentation file B0 can be adjusted to obtain the edited presentation file B1.

而後,於步驟S706中,在會議進行中實際播放編排後簡報檔B1,並在會議進行中實際紀錄參與會議者A1~A60的語音Voc,並將上述語音Voc傳換為文字且統計文字字數,據以統計參與會議者A1~A60在會議進行時的發言字數(例如:參與會議者A1的發言字數A1-1)。並且,在會議進行中實際紀錄編排後簡報檔B1的播放時間。Then, in step S706, the presentation file B1 after editing is actually played during the meeting, and the voice Vocs of the participants A1~A60 are actually recorded during the meeting, and the above voice Vocs are converted into text and the number of words is counted , so as to count the number of words spoken by conference participants A1~A60 during the conference (for example: the number of speech words A1-1 of conference participant A1). And, the playback time of the edited briefing file B1 is actually recorded during the meeting.

而後,於步驟S707中,根據會議進行時參與會議者A1~A60的發言字數及編排後簡報檔B1的播放時間,判斷是否需要優化(即,重新訓練)編排推理模型200。其中,可分析是否超過半數的參與會議者A1~A60的發言字數為「零」,並偵測編排後簡報檔B1是否有連續兩個頁面各自的播放時間小於下限值(例如小於五秒)。若步驟S707的判斷結果為「是」,則進行步驟S708:在會議結束後,重新訓練編排推理模型200以進行優化。Then, in step S707, according to the number of words spoken by the participants A1-A60 during the meeting and the playback time of the edited briefing file B1, it is judged whether to optimize (that is, retrain) the arrangement reasoning model 200 . Among them, it can analyze whether more than half of the conference participants A1~A60 have speech words of "zero", and detect whether there are two consecutive pages in the briefing file B1 whose playback time is less than the lower limit (for example, less than five seconds) ). If the judgment result of step S707 is "Yes", proceed to step S708: after the meeting ends, retrain the orchestration reasoning model 200 for optimization.

在步驟S708中,編排推理模型200進行優化的一種示例為:可定位出播放時間小於下限值(即,播放速度加快)的連續兩個頁面p(n)、p(n+1)的前一個頁面p(n-1),並標記頁面p(n-1)、p(n)、p(n+1)的頁數。並且,降低前一個頁面p(n-1)的權重值,以將前一個頁面p(n-1)調整為較後的頁面順序。換言之,可偵測出參與會議者A1~A60對於前一個頁面p(n-1)不感興趣而欲催促後兩個頁面p(n)、p(n+1)加速播放;因此針對於前一個頁面p(n-1)的內容與頁面順序進行調整,據以優化編排推理模型200。In step S708, an example of optimization by the arrangement reasoning model 200 is: it can locate the front page of two consecutive pages p(n) and p(n+1) whose playback time is less than the lower limit (that is, the playback speed is increased). A page p(n-1), and mark the number of pages p(n-1), p(n), p(n+1). And, reduce the weight value of the previous page p(n-1), so as to adjust the previous page p(n-1) to a later page sequence. In other words, it can be detected that the participants A1~A60 are not interested in the previous page p(n-1) and want to urge the next two pages p(n) and p(n+1) to play faster; therefore, for the previous page p(n-1) The content and page sequence of the page p(n−1) are adjusted, so as to optimize the layout reasoning model 200 .

另一方面,若步驟S707的判斷結果為「否」,則不進行優化而維持目前的編排推理模型200。On the other hand, if the determination result of step S707 is “No”, the current orchestration reasoning model 200 is maintained without optimization.

綜上所述,本揭示的資料處理系統1000與對應的資料處理方法可對於初始簡報檔B0進行調整編排以得到更符合參與會議者A1~A60興趣的編排後簡報檔B1。在會議進行前,資料處理系統1000可根據簡報檔的類型與樣式、簡報檔的播放時間、參與會議者的背景經歷、參與會議者的參與程度(發言字數、肢體動作或表情)得到資料集合DS,根據資料集合DS初步訓練編排推理模型200,並根據初步訓練完成的編排推理模型200對於初始簡報檔B0進行編排調整以得到編排後簡報檔B1。在會議實際進行時,可藉由會議記錄單元300實際分析編排後簡報檔B1的播放時間及參與會議者A1~A60的實際參與程度(例如發言字數),據以對於編排推理模型200進行優化(重新訓練)。本揭示的資料處理系統1000與對應的資料處理方法能夠以智慧方式動態調整編排推理模型200,使得編排後簡報檔B1具有最適於參與會議者A1~A60最佳內容。To sum up, the data processing system 1000 and the corresponding data processing method disclosed herein can adjust and arrange the initial presentation file B0 to obtain an edited presentation file B1 that is more in line with the interests of the conference participants A1-A60. Before the meeting, the data processing system 1000 can obtain the data set according to the type and style of the briefing file, the playing time of the briefing file, the background experience of the meeting participants, and the degree of participation of the meeting participants (number of speeches, body movements or expressions) DS: Preliminarily train the arrangement reasoning model 200 according to the data set DS, and arrange and adjust the initial briefing file B0 according to the arrangement reasoning model 200 after the preliminary training to obtain the arranged briefing file B1. When the meeting is actually going on, the meeting recording unit 300 can actually analyze the playback time of the briefing file B1 after the arrangement and the actual participation degree (such as the number of speeches) of the participants A1~A60, so as to optimize the arrangement reasoning model 200 (retraining). The disclosed data processing system 1000 and the corresponding data processing method can intelligently and dynamically adjust the arrangement reasoning model 200, so that the arranged briefing file B1 has the best content most suitable for the conference participants A1-A60.

雖然本發明已以較佳實施例及範例詳細揭露如上,可理解的是,此些範例意指說明而非限制之意義。可預期的是,所屬技術領域中具有通常知識者可想到多種修改及組合,其多種修改及組合落在本發明之精神以及後附之申請專利範圍之範圍內。Although the present invention has been disclosed above in detail with preferred embodiments and examples, it should be understood that these examples are meant to be illustrative rather than limiting. It is expected that those skilled in the art can conceive various modifications and combinations, and the various modifications and combinations fall within the spirit of the present invention and the scope of the appended patent application.

1000:資料處理系統 2000:資料庫 100:資料集合處理單元 200:編排推理模型 250:編排推理操作 300:會議紀錄單元 310:簡報頁數紀錄裝置 320:收音裝置 321:語音-文字轉換裝置 330:簡報播放時間紀錄裝置 340:影像擷取裝置 400:模型優化單元 B0:初始簡報檔 B1:編排後簡報檔 N0:會議通知 N01:背景、所屬部門及職銜 N02:專案計畫及工作經歷 N03:關鍵績效指標 N04:自行輸入的資訊 A1~A60:參與會議者 A1-1:發言字數 A1-2:肢體動作 A1-3:表情 H0,H1:會議歷史資料 D1:分類標示資料 D2:播放時間資料 D3:背景屬性資料 D4:參與程度資料 DS:資料集合 Voc:語音 Img:影像 S2,S3:控制訊號 F11,F12,F13,F14,F15,F16:特徵 p1,p2,p15,p20,p21,p22,p30,p(n-1),p(n),p(n+1):頁面 S251~S253:步驟 S601~S605:步驟 S701~S708:步驟 1000: data processing system 2000: database 100: data collection processing unit 200: layout reasoning model 250: layout reasoning operation 300: meeting record unit 310: briefing page number recording device 320: radio device 321: speech-text conversion device 330: Briefing playback time recording device 340: image capture device 400: model optimization unit B0: initial briefing file B1: edited briefing file N0: meeting notice N01: background, department and title N02: project plan and work experience N03: key Performance indicators N04: Self-input information A1~A60: Participants A1-1: Number of speech words A1-2: Body movements A1-3: Expressions H0, H1: Meeting history data D1: Classification and labeling data D2: Playing time data D3: background attribute data D4: participation level data DS: data set Voc: voice Img: image S2, S3: control signal F11, F12, F13, F14, F15, F16: feature p1, p2, p15, p20, p21, p22 , p30, p(n-1), p(n), p(n+1): pages S251~S253: steps S601~S605: steps S701~S708: steps

第1圖為本揭示一實施例之資料處理系統的方塊圖。 第2A~2F圖為資料集合處理單元對於初始簡報檔進行分類、命名或標示的示意圖。 第2G圖為資料集合處理單元分析初始簡報檔的時間屬性的示意圖。 第3圖為資料集合處理單元對於參與會議者進行分析的示意圖。 第4圖為本揭示一實施例之編排推理模型的運作示意圖。 第5A圖為本揭示一實施例之會議紀錄單元的方塊圖。 第5B圖為本揭示一實施例之收音裝置與影像擷取裝置的運作示意圖。 第5C圖為本揭示一實施例之簡報播放時間紀錄裝置與簡報頁數紀錄裝置的協同運作示意圖。 第6圖為本揭示一實施例之模型優化單元的運作的流程圖。 第7A、7B圖為本揭示一實施例之資料處理方法的流程圖。 FIG. 1 is a block diagram of a data processing system according to an embodiment of the present disclosure. Figures 2A-2F are schematic diagrams of the data collection processing unit classifying, naming or labeling the initial briefing files. FIG. 2G is a schematic diagram of analyzing the time attribute of the initial briefing file by the data collection processing unit. FIG. 3 is a schematic diagram of analyzing the meeting participants by the data collection processing unit. FIG. 4 is a schematic diagram of the operation of an orchestration reasoning model according to an embodiment of the present disclosure. FIG. 5A is a block diagram of a meeting minutes unit according to an embodiment of the present disclosure. FIG. 5B is a schematic diagram of the operation of the sound receiving device and the image capturing device according to an embodiment of the present disclosure. FIG. 5C is a schematic diagram of the coordinated operation of the presentation playback time recording device and the presentation page number recording device according to an embodiment of the present disclosure. FIG. 6 is a flowchart of the operation of the model optimization unit according to an embodiment of the present disclosure. 7A and 7B are flowcharts of a data processing method according to an embodiment of the present disclosure.

1000:資料處理系統 1000: data processing system

2000:資料庫 2000: Database

100:資料集合處理單元 100: data collection processing unit

200:編排推理模型 200: Orchestrating Inference Models

300:會議紀錄單元 300: Meeting Minutes Unit

400:模型優化單元 400: Model optimization unit

B0:初始簡報檔 B0: Initial briefing file

B1:編排後簡報檔 B1: Arranged briefing file

N0:會議通知 N0: meeting notice

H0,H1:會議歷史資料 H0, H1: Conference history data

D1:分類標示資料 D1: Classification and labeling information

D2:播放時間資料 D2: Playing time data

D3:背景屬性資料 D3: Background attribute data

D4:參與程度資料 D4: Participation level data

DS:資料集合 DS: data set

Voc:語音 Voc: Voice

Img:影像 Img: Image

S2,S3:控制訊號 S2, S3: control signal

Claims (20)

一種資料處理系統,包括: 一編排推理模型,用於接收一初始簡報檔及一資料集合,並根據該初始簡報檔及該資料集合執行一編排推理操作以產生一編排後簡報檔;以及 一會議紀錄單元,用於紀錄該編排後簡報檔的播放時間,並紀錄複數個參與會議者的語音且據以統計該些參與會議者的發言字數,並根據該編排後簡報檔的播放時間及該些參與會議者的發言字數判斷是否重新訓練該編排推理模型, 其中,該資料集合至少相關於該初始簡報檔的類型與樣式及該些參與會議者的背景與經歷,且該資料集合用於初步訓練該編排推理模型。 A data processing system comprising: an orchestration inference model for receiving an initial briefing file and a data set, and performing an orchestration inference operation based on the initial briefing file and the data set to generate an edited briefing file; and A meeting record unit, used to record the playback time of the briefing file after the arrangement, and record the voices of multiple participants in the meeting and count the number of words spoken by these participants, and according to the playback time of the briefing file after the arrangement and the number of words spoken by those participants to determine whether to retrain the arrangement reasoning model, Wherein, the data set is at least related to the type and style of the initial briefing file and the background and experience of the participants, and the data set is used to initially train the arrangement reasoning model. 如請求項1所述之資料處理系統,其中,該編排推理模型執行的該編排推理操作包括:列出該初始簡報檔中需要修正的頁面,以及調整該初始簡報檔的頁面順序。The data processing system as claimed in claim 1, wherein the arrangement reasoning operation performed by the arrangement reasoning model includes: listing the pages in the initial presentation file that need to be corrected, and adjusting the order of pages in the initial report file. 如請求項1所述之資料處理系統,更包括: 一資料集合處理單元,用於產生該初始簡報檔的一分類標示資料及一播放時間資料; 其中,該分類標示資料相關於該初始簡報檔的類型與樣式,並且該資料集合至少包括該分類標示資料及該播放時間資料。 The data processing system as described in Claim 1, further comprising: A data collection processing unit, used to generate a classification label data and a play time data of the initial briefing file; Wherein, the category marking data is related to the type and style of the initial briefing file, and the data set at least includes the category marking data and the playing time data. 如請求項3所述之資料處理系統,其中,該資料集合處理單元更用於: 接收一會議通知,並根據該會議通知產生該些參與會議者的一背景屬性資料; 其中,該背景屬性資料相關於該些參與會議者的背景與經歷,並且該資料集合更包括該背景屬性資料。 The data processing system as described in Claim 3, wherein the data collection processing unit is further used for: receiving a meeting notice, and generating a background attribute data of the meeting participants according to the meeting notice; Wherein, the background attribute information is related to the background and experiences of the conference participants, and the data set further includes the background attribute information. 如請求項4所述之資料處理系統,其中,該資料集合處理單元更用於: 從一資料庫取得一會議歷史資料,並根據該會議通知及該會議歷史資料產生該些參與會議者的一參與程度資料; 其中,該參與程度資料相關於該些參與會議者的發言字數、肢體動作及/或表情,並且該資料集合更包括該參與程度資料。 The data processing system as described in Claim 4, wherein the data collection processing unit is further used for: Obtain a meeting history data from a database, and generate a participation level data of those participants in the meeting according to the meeting notice and the meeting history data; Wherein, the participation level data is related to speech words, body movements and/or expressions of the participants, and the data set further includes the participation level data. 如請求項1所述之資料處理系統,更包括: 一模型優化單元,用於重新訓練該編排推理模型; 其中,當該編排後簡報檔的播放時間縮短及/或超過半數的該些參與會議者的發言字數為「零」時,該模型優化單元被啟動以重新訓練該編排推理模型。 The data processing system as described in Claim 1, further comprising: a model optimization unit for retraining the orchestration reasoning model; Wherein, when the playback time of the programmed briefing file is shortened and/or more than half of the conference participants have "zero" speech words, the model optimization unit is activated to retrain the programming reasoning model. 如請求項6所述之資料處理系統,其中當該編排後簡報檔的連續兩個頁面各自的播放時間皆小於一下限值時,判斷該編排後簡報檔的播放時間縮短,並且該模型優化單元被啟動以重新訓練該編排推理模型。The data processing system as described in claim 6, wherein when the playback time of two consecutive pages of the presentation file after the editing is less than a lower limit, it is judged that the playback time of the presentation file after the editing is shortened, and the model optimization unit is started to retrain the orchestrated inference model. 如請求項7所述之資料處理系統,其中,該模型優化單元包括: 一狀態控制器,用於定位出播放時間皆小於該下限值的該些連續兩個頁面的前一頁面;以及 一觀測代理機制,用於調整該前一頁面的權重值,以將該前一頁面調整為較後的頁面順序。 The data processing system as described in Claim 7, wherein the model optimization unit includes: a state controller, used to locate the previous page of the two consecutive pages whose playback time is less than the lower limit; and An observation agent mechanism is used to adjust the weight value of the previous page, so as to adjust the previous page to a lower page sequence. 如請求項8所述之資料處理系統,其中,該會議紀錄單元包括: 一收音裝置,用於紀錄該些參與會議者的語音,並將該些參與會議者的語音傳換為文字以統計該些參與會議者的發言字數;以及 一簡報播放時間紀錄裝置,用於紀錄該編排後簡報檔的播放時間,並偵測該些連續兩個頁面各自的播放時間是否皆小於該下限值。 The data processing system as described in Claim 8, wherein the meeting record unit includes: a radio device, used to record the voices of the conference participants, and convert the voices of the conference participants into text to count the number of words spoken by the conference participants; and A presentation playback time recording device is used to record the playback time of the edited briefing file, and detect whether the respective playback times of the two consecutive pages are less than the lower limit. 如請求項8所述之資料處理系統,其中,該會議紀錄單元更包括: 一簡報頁數紀錄裝置,用於紀錄該編排後簡報檔的每一頁面的頁數,並標記播放時間皆小於該下限值的該些連續兩個頁面及該前一頁面的頁數。 The data processing system as described in Claim 8, wherein the meeting record unit further includes: A briefing page number recording device is used to record the number of pages of each page of the edited briefing file, and mark the number of pages of the two consecutive pages and the previous page whose playing time is less than the lower limit. 一種資料處理方法,包括以下步驟: 接收一初始簡報檔及一資料集合,其中該資料集合至少相關於該初始簡報檔的類型與樣式; 根據該資料集合初步訓練一編排推理模型; 藉由該編排推理模型根據該初始簡報檔及該資料集合執行一編排推理操作以產生一編排後簡報檔; 紀錄該編排後簡報檔的播放時間; 紀錄複數個參與會議者的語音且據以統計該些參與會議者的發言字數,其中該資料集合至少相關於該些參與會議者的背景與經歷;以及 根據該編排後簡報檔的播放時間及該些參與會議者的發言字數判斷是否重新訓練該編排推理模型。 A data processing method, comprising the following steps: receiving an initial presentation file and a data set, wherein the data set is at least related to the type and style of the initial presentation file; initially training an orchestration inference model based on the data set; performing a choreography inference operation by the choreography inference model based on the initial profile and the data set to generate a choreography profile; Record the playing time of the briefing file after the arrangement; recording the voices of a plurality of conference participants and counting the number of words spoken by these conference participants, wherein the collection of data is at least related to the background and experience of these conference participants; and It is judged whether to retrain the arrangement reasoning model according to the playback time of the arranged briefing file and the speech words of the participants. 如請求項11所述之資料處理方法,其中,該編排推理操作包括以下步驟: 列出該初始簡報檔中需要修正的頁面;以及 調整該初始簡報檔的頁面順序。 The data processing method as described in Claim 11, wherein the orchestration and inference operation includes the following steps: List the pages in the initial briefing document that require revision; and Adjust the page order of this initial presentation file. 如請求項11所述之資料處理方法,在接收該初始簡報檔及該資料集合的步驟之前,該資料處理方法更包括以下步驟: 產生該初始簡報檔的一分類標示資料及一播放時間資料,其中該分類標示資料相關於該初始簡報檔的類型與樣式;以及 至少將該分類標示資料及該播放時間資料組成該資料集合。 For the data processing method described in Claim 11, before the step of receiving the initial briefing file and the data collection, the data processing method further includes the following steps: generating a category labeling data and a playing time data of the initial presentation file, wherein the category labeling data is related to the type and style of the initial presentation file; and At least the classification marking data and the playing time data form the data set. 如請求項13所述之資料處理方法,在接收該初始簡報檔及該資料集合的步驟之前或之後,該資料處理方法更包括以下步驟: 接收一會議通知,並根據該會議通知產生該些參與會議者的一背景屬性資料,其中該背景屬性資料相關於該些參與會議者的背景與經歷;以及 將該背景屬性資料加入該資料集合。 According to the data processing method described in Claim 13, before or after the step of receiving the initial briefing file and the data collection, the data processing method further includes the following steps: receiving a meeting notice, and generating a background attribute data of the meeting participants according to the meeting notice, wherein the background attribute data is related to the background and experience of the meeting participants; and Add the background attribute data to the data collection. 如請求項14所述之資料處理方法,在接收該初始簡報檔及該資料集合的步驟之前或之後,該資料處理方法更包括以下步驟: 取得一會議歷史資料,並根據該會議通知及該會議歷史資料產生該些參與會議者的一參與程度資料,其中該參與程度資料相關於該些參與會議者的發言字數、肢體動作及/或表情;以及 將該參與程度資料加入該資料集合。 According to the data processing method described in Claim 14, before or after the step of receiving the initial briefing file and the data collection, the data processing method further includes the following steps: Obtain a meeting history data, and generate a participation level data of those participants according to the meeting notice and the meeting history data, wherein the participation level data is related to the number of speech words, body movements and/or expressions; and Add the engagement level data to the data collection. 如請求項11所述之資料處理方法,其中,判斷是否重新訓練該編排推理模型的步驟包括: 當該編排後簡報檔的播放時間縮短及/或超過半數的該些參與會議者的發言字數為「零」時,判斷需要重新訓練該編排推理模型。 The data processing method as described in Claim 11, wherein the step of judging whether to retrain the orchestration reasoning model includes: When the playback time of the edited briefing file is shortened and/or more than half of the conference participants have "zero" speeches, it is determined that the edit reasoning model needs to be retrained. 如請求項16所述之資料處理方法,其中當該編排後簡報檔的連續兩個頁面各自的播放時間皆小於一下限值時,判斷該編排後簡報檔的播放時間縮短而執行重新訓練該編排推理模型。The data processing method as described in claim 16, wherein when the playback time of two consecutive pages of the edited briefing file is less than a lower limit, it is judged that the playback time of the edited briefing file is shortened and the arrangement is retrained reasoning model. 如請求項17所述之資料處理方法,其中,執行重新訓練該編排推理模型的步驟包括: 定位出播放時間皆小於該下限值的該些連續兩個頁面的前一頁面;以及 調整該前一頁面的權重值,以將該前一頁面調整為較後的頁面順序。 The data processing method as described in Claim 17, wherein the step of retraining the orchestration reasoning model comprises: Locating the previous page of the two consecutive pages whose playing time is less than the lower limit; and The weight value of the previous page is adjusted to adjust the previous page to a lower page order. 如請求項18所述之資料處理方法,其中,統計該些參與會議者的發言字數的步驟包括: 將該些參與會議者的語音傳換為文字;以及 統計該些文字的字數。 The data processing method as described in claim item 18, wherein the step of counting the number of words spoken by those participants in the conference includes: transcribe the speech of those meeting participants into text; and Count the number of words in these texts. 如請求項18所述之資料處理方法,更包括以下步驟: 紀錄該編排後簡報檔的每一頁面的頁數;以及 標記播放時間皆小於該下限值的該些連續兩個頁面及該前一頁面的頁數。 The data processing method described in Claim 18 further includes the following steps: record the number of pages of each page of the formatted presentation file; and The number of pages of the two consecutive pages and the previous page whose playing time is less than the lower limit value is marked.
TW111100555A 2022-01-06 2022-01-06 Data processing system and method thereof TW202329000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111100555A TW202329000A (en) 2022-01-06 2022-01-06 Data processing system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111100555A TW202329000A (en) 2022-01-06 2022-01-06 Data processing system and method thereof

Publications (1)

Publication Number Publication Date
TW202329000A true TW202329000A (en) 2023-07-16

Family

ID=88147486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111100555A TW202329000A (en) 2022-01-06 2022-01-06 Data processing system and method thereof

Country Status (1)

Country Link
TW (1) TW202329000A (en)

Similar Documents

Publication Publication Date Title
CN107993665B (en) Method for determining role of speaker in multi-person conversation scene, intelligent conference method and system
US10614829B2 (en) Method and apparatus to determine and use audience affinity and aptitude
US7043433B2 (en) Method and apparatus to determine and use audience affinity and aptitude
CN107211062A (en) Audio playback scheduling in virtual acoustic room
US20210264900A1 (en) Computationally reacting to a multiparty conversation
CN107210045A (en) The playback of search session and search result
WO2005027092A1 (en) Document creation/reading method, document creation/reading device, document creation/reading robot, and document creation/reading program
TWI795759B (en) Online meeting system
JP2011066794A (en) Meeting management device, and meeting management method
JP2022531994A (en) Generation and operation of artificial intelligence-based conversation systems
TW202329000A (en) Data processing system and method thereof
WO2022180860A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
JP2022056108A (en) Information processing device, information processing method, information processing program, and information processing system
Walther et al. Towards a conversational expert system for rhetorical and vocal quality assessment in call center talks.
CN116760942B (en) Holographic interaction teleconferencing method and system
WO2022180853A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180859A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
KR102658252B1 (en) Video education content providing method and apparatus based on artificial intelligence natural language processing using characters
WO2022180862A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180861A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180852A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180854A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180857A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180824A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program
WO2022180855A1 (en) Video session evaluation terminal, video session evaluation system, and video session evaluation program