TW202328498A - 具蒸氣產生之電解系統及操作其之方法 - Google Patents

具蒸氣產生之電解系統及操作其之方法 Download PDF

Info

Publication number
TW202328498A
TW202328498A TW111139959A TW111139959A TW202328498A TW 202328498 A TW202328498 A TW 202328498A TW 111139959 A TW111139959 A TW 111139959A TW 111139959 A TW111139959 A TW 111139959A TW 202328498 A TW202328498 A TW 202328498A
Authority
TW
Taiwan
Prior art keywords
hydrogen
processor
stack
blower
steam
Prior art date
Application number
TW111139959A
Other languages
English (en)
Inventor
大衛 威爾納
馬丁 派瑞
Original Assignee
美商博隆能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商博隆能源股份有限公司 filed Critical 美商博隆能源股份有限公司
Publication of TW202328498A publication Critical patent/TW202328498A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一種電解系統及一種燃料電池系統,其包括經組態以壓縮由該系統生成的氫氣流的氫氣鼓風機。該電解系統包括:經組態以生成蒸汽的蒸汽產生器;經組態以使用自該蒸汽產生器接收的該蒸汽產生氫氣流的固體氧化物電解池堆疊;經組態以對由該堆疊生成的該氫氣流加壓的氫氣鼓風機;以及經組態以壓縮經加壓的氫氣流的氫氣處理器。

Description

具蒸氣產生之電解系統及操作其之方法
本發明係關於包括固體氧化物電解池(solid oxide electrolyzer cell;SOEC)的電解系統及其操作方法。
固體氧化物燃料電池(solid oxide fuel cell;SOFC)可作為電解器操作以便產生氫氣及氧氣,其稱為固體氧化物電解池(SOEC)。在SOFC模式中,將氧離子自陰極側(空氣)輸送至陽極側(燃料),且驅動力為跨電解質的氧氣的分壓的化學梯度。在SOEC模式中,將正電位施加至該電解池的空氣側,且現在將氧離子自燃料側輸送至空氣側。由於陰極及陽極在SOFC與SOEC之間反轉(即,SOFC陰極為SOEC陽極,且SOFC陽極為SOEC陰極),因此從現在開始,SOFC陰極(SOEC陽極)將稱為空氣電極,而SOFC陽極(SOEC陰極)將稱為燃料電極。在SOEC模式期間,使燃料流中的水還原(H 2O + 2e→O 2-+ H 2)以形成H 2氣體及O 2-離子,將O 2-離子輸送通過固體電解質,且接著在空氣側上氧化(O 2-至O 2)以產生分子氧。由於以空氣及濕燃料(氫氣、重整天然氣)操作的SOFC的開路電壓為約.9至1 V (取決於含水量),因此在SOEC模式中施加於空氣側電極的正電壓使電解池電壓升高至1.1至1.3 V的典型操作電壓。
在各個實施例中,提供電解系統,其包含:經組態以產生蒸汽的蒸汽產生器;經組態以使用由蒸汽產生器產生的蒸汽產生氫氣流的固體氧化物電解池堆疊;經組態以對由該堆疊產生的氫氣流加壓的氫氣鼓風機;以及經組態以壓縮經加壓的氫氣流的氫氣處理器。
在各個實施例中,提供燃料電池系統,其包含:熱箱;安置於熱箱中且經組態以產生電力的固體氧化物燃料電池堆疊;安置於熱箱中的陽極尾氣氧化器(anode tail gas oxidizer;ATO);經組態以分離自該堆疊接收的陽極排氣流且輸出二氧化碳流及氫氣流的燃料排氣處理器;經組態以對氫氣流加壓的氫氣鼓風機;經組態以壓縮經加壓的氫氣流的氫氣處理器;以及經組態以壓縮二氧化碳流的二氧化碳處理器。
將參考附圖詳細描述各個實施例。在可能的情況下,在整個附圖中使用相同的附圖標記來指代相同或相似的部件。提及特定實例及實施例係出於說明性目的,而非旨在限制本發明或申請專利範圍的範圍。
在本文中,範圍可表示為自「約」一個特定值及/或至「約」另一個特定值。當表示此類範圍時,實例包括自一個特定值及/或至另一個特定值。類似地,當值藉由使用先行詞「約」或「基本上」表示為近似值時,應當理解,特定值形成另一態樣。在一些實施例中,「約X」的值可包括+/-1% X的值。應當進一步理解,每個範圍的端點在與另一端點相關以及獨立於另一端點的情況下均為有效的。
熟習此項技術者將顯而易知,可在不脫離本發明之精神及範圍的情況下對本發明作出各種修改及改變。由於熟習此項技術者可進行且有本發明之精神及主旨的所揭示的實施例的修改組合、子組合及改變,因此本發明應當解釋為包括在所附申請專利範圍及其等效物的範圍內的所有事物。
本文中,「固體氧化物電池」可以指固體氧化物電解池及/或固體氧化物燃料電池。 SOEC 系統
圖1A為固體氧化物電池堆疊100的透視圖,而圖1B係圖1A的堆疊100的一部分的側視橫截面圖。參看圖1A及1B,堆疊100包括多個固體電池1,該固體電池可為固體氧化物燃料電池或固體氧化物電解池。固體氧化物電池1藉由互連件10分隔開,該互連件亦可稱為氣流分隔板或雙極板。每個固體氧化物電池1包括空氣電極3、固體氧化物電解質5及燃料電極7。堆疊100亦包括內部燃料立管通道22。
每個互連件10電連接堆疊100中的相鄰固體氧化物電池1。特定言之,互連件10可以將一個固體氧化物電池1的燃料電極7與相鄰固體氧化物電池1的空氣電極3電連接。圖1B顯示下部固體氧化物電池1位於兩個互連件10之間。
每個互連件10包括至少部分界定燃料通道8的肋材(統稱為層9)。互連件10可作為氣體-燃料分隔件操作,該分隔件將流至堆疊100中的一個固體氧化物電池1的燃料電極7的燃料例如烴燃料與流至堆疊100中的相鄰固體氧化物電池1的空氣電極3的氧化劑例如空氣分隔開。在堆疊100的任一端處,可以存在用於分別將空氣或燃料提供至端電極的空氣端板或燃料端板(未示出)。
圖2A及2B為顯示根據本發明之各個實施例的電解系統200的製程流程的示意圖。參看圖1A、1B、2A及2B,系統200可包括電解池(SOEC)堆疊100,該堆疊包括多個固體氧化物電解池(SOEC),其可如關於圖1A及1B所描述進行組態。系統200亦可包括蒸汽產生器104、蒸汽同流換熱器108、蒸汽加熱器110、空氣同流換熱器112及空氣加熱器114。系統200亦可包括視情況選用之水預熱器102及視情況選用之混合器106。
系統200可包括用於容納各種組件例如堆疊100、蒸汽同流換熱器108、蒸汽加熱器110、空氣同流換熱器112及/或空氣加熱器114的熱箱250。在一些實施例中,熱箱250可包括多個堆疊100。水預熱器102及蒸汽產生器104可位於熱箱250外部,如圖2A及2B中所示。或者,水預熱器102及/或蒸汽產生器104可以位於熱箱250內部。
在操作期間,可以向堆疊100提供蒸汽以及來自外部電源的電流或電壓。特定言之,可以將蒸汽提供至堆疊100的電解池1的燃料電極7,且電源可以在燃料電極7與空氣電極3之間施加電壓,以便電化學分離水分子且產生氫氣(例如,H 2)及氧氣(例如,O 2)。亦可將空氣提供至空氣電極3,以便自空氣電極3吹掃氧氣。因此,堆疊100可以輸出氫氣流及富氧排氣流,例如富氧空氣流(「氧氣排氣流」)。
為了產生蒸汽,可以自水源50將水提供至系統200。水可為去離子(DI)水,該DI水儘可能實際地經去離子(例如,<0.1 µS/cm),以便在汽化期間防止結垢及/或將結垢減至最少。在一些實施例中,水源50可包括去離子床。在各個實施例中,系統200可包括水流控制裝置(未示出),例如質量流控制器、正排量泵、控制閥/水流量計等等,以便向系統200提供期望的水流速率。
若系統200包括水預熱器102,則可從水源50將水提供至水預熱器102。水預熱器102可為經組態以使用自氧氣排氣流回收的熱對水進行加熱的熱交換器。對水進行預熱可減少每個單位的所產生氫氣的系統200的總電力消耗。特定言之,水預熱器102可自氧氣排氣流回收熱,該熱無法藉由空氣同流換熱器112回收,如下文所討論。可以在高於80℃的溫度,例如高於100℃的溫度,例如約110℃至120℃的溫度下自水預熱器102輸出氧氣排氣流。
可以將自水預熱器102或水源50輸出的水提供至蒸汽產生器104。水的一部分可以在水預熱器中汽化。蒸汽產生器104可經組態以加熱未在水預熱器中汽化的水以將水轉換為蒸汽。舉例而言,蒸汽產生器104可包括用於將水汽化且產生蒸汽的加熱元件。舉例而言,蒸汽產生器104可包括AC或DC電阻加熱元件或感應加熱元件。
蒸汽產生器104可包括可以或可以不以機械方式分隔開的多個區域/元件。舉例而言,蒸汽產生器104可包括用於將水加熱至沸點或接近沸點的預熱鍋爐。蒸汽產生器104亦可包括經組態以將預沸的水轉換為蒸汽的汽化器。蒸汽產生器104亦可包括用於提供相對少的蒸汽清掃以在整體汽化之前自水移除溶解的空氣的除氣器。蒸汽產生器104亦可包括經組態以進一步升高在汽化器中產生的蒸汽的溫度的視情況選用之過熱器。蒸汽產生器104可包括位於加熱元件的下游及/或過熱器的上游的除霧墊。除霧墊可經組態以使自蒸汽產生器104輸出及/或提供至過熱器的蒸汽中液態水的夾帶減至最少。
若蒸汽產物經過熱,則由於至環境條件的熱損失,從蒸汽產生器104下游進行冷凝將不大可能。避免冷凝是較佳的,此係因為冷凝水更可能形成少量水,此可能會造成相對於時間的遞送的質量流速率顯著地改變。避免過量的過熱以便限制系統200的總電力消耗亦可為有益的。舉例而言,可使蒸汽過熱在約10℃至約100℃範圍內的量。
自蒸汽產生器104的排出可對長期操作有益,此係因為水在去離子化之後將可能含有某一量的礦化。典型的液體排出可為約1%。排出可為連續的,或可為間歇的,例如10×穩態流量,每分鐘持續6秒,5×穩態流量,每5分鐘持續1分鐘,等等。對水排放流的需求可藉由將排出物泵送至熱氧排氣中來消除。
可將自蒸汽產生器104輸出的蒸汽提供至蒸汽同流換熱器108。然而,若系統200包括視情況選用之混合器106,則可將蒸汽在提供至蒸汽同流換熱器108之前提供至混合器106。特定言之,蒸汽可包括少量溶解的空氣及/或氧氣。因此,混合器106可經組態以將蒸汽與氫氣混合,以便在堆疊100中且特定言之在燃料電極7處維持還原環境。
混合器106可經組態以將蒸汽與自氫氣儲存裝置52接收的氫氣及/或與自堆疊100輸出的氫氣流的一部分混合。可設定氫氣添加速率以提供超過與溶解於蒸汽中的氧氣量反應所需的氫氣量的氫氣量。氫氣添加速率可固定或設定為恆定的水與氫氣比。然而,若使用完全除氧的水形成蒸汽,則可視情況省去混合器106及/或氫氣添加。
在一些實施例中,可在系統啟動期間及/或在穩態操作期間藉由外部氫氣源提供氫氣。舉例而言,在啟動期間,可自氫氣儲存裝置提供氫氣,且在穩態期間,可自氫氣儲存裝置52及/或藉由將由堆疊100產生的氫氣流(即,氫氣排氣流)的一部分分流至混合器106來提供氫氣。特定言之,系統200可包括經組態以在穩態操作期間將所產生的氫氣流的一部分選擇性分流至混合器106的氫氣分流器116,例如分離器、泵、鼓風機及/或閥。
蒸汽同流換熱器108可為經組態以自輸出自堆疊100的氫氣流回收熱的熱交換器。因此,蒸汽同流換熱器108可經組態以提高系統200的效率。可在蒸汽同流換熱器108中將蒸汽加熱至至少700℃,例如720℃至780℃。
可將自蒸汽同流換熱器108輸出的蒸汽提供至位於蒸汽同流換熱器108的下游的蒸汽加熱器110,如圖2A中所示。蒸汽加熱器110可包括加熱元件,例如電阻或感應加熱元件。蒸汽加熱器110可經組態以將蒸汽加熱至高於堆疊100的操作溫度的溫度。舉例而言,取決於堆疊100的健康度、堆疊100的水利用率及流至堆疊100的空氣流速率,蒸汽加熱器110可以將蒸汽加熱至在約900℃至約1200℃,例如920℃至980℃範圍內的溫度。因此,可以向堆疊100提供處於允許高效氫氣產生的溫度下的蒸汽或蒸汽-氫氣混合物。亦可藉由輻射(即,藉由輻射熱傳遞)將熱直接自蒸汽加熱器輸送至該堆疊。
在圖2B中示出的一個替代實施例中,蒸汽同流換熱器108可以位於蒸汽加熱器110的下游,以使得離開蒸汽加熱器110的蒸汽進入蒸汽同流換熱器108,而不是反過來。在另一替代實施例中,蒸汽加熱器110可包括經組態以使用自高溫流體,例如加熱至約1200℃或更高溫度的流體提取的熱來對蒸汽進行加熱的熱交換器。可以自太陽能聚光器場或發電廠,例如核反應器發電廠提供此流體。或者,若流體為高溫蒸汽,例如自核反應器發電廠提供的蒸汽,則可將該蒸汽提供至堆疊100的燃料電極7。在此情況下,水源50可包含高溫蒸汽源,且可以省去水預熱器102、蒸汽產生器104、蒸汽同流換熱器108及/或蒸汽加熱器110中的一或多個。
在一些實施例中,蒸汽加熱器110可包括多個具有獨立功率位準的蒸汽加熱器區(垂直地或沿圓周或以以上兩種方式進行劃分),以便在一些實施例中增強熱均勻性。
在一些實施例中,蒸汽同流換熱器108及蒸汽加熱器110的操作可合併成單個組件。舉例而言,蒸汽同流換熱器108可包括電壓源,該電壓源經組態以對蒸汽同流換熱器108的熱交換鰭片施加電壓,以使得熱交換鰭片作為電阻加熱元件操作且將蒸汽加熱至足夠高以提供至堆疊100的溫度,例如在約900℃至約1200℃範圍內的溫度。可以將自蒸汽加熱器110輸出的高溫蒸汽(或視情況選用之蒸汽/氫氣混合物)提供至堆疊100的燃料電極7。
可以將自堆疊100輸出的氧氣排氣提供至空氣同流換熱器112。可以藉由空氣鼓風機118向空氣同流換熱器112提供環境空氣。空氣同流換熱器112可經組態以使用自氧氣排氣提取的熱來對空氣進行加熱。在一些實施例中,可過濾環境空氣以移除污染物,之後提供至空氣同流換熱器112或空氣鼓風機118。
可以將自空氣同流換熱器112輸出的空氣提供至空氣加熱器114。空氣加熱器可包括經組態以將空氣加熱至超過堆疊100的操作溫度的溫度的電阻或感應加熱元件。舉例而言,取決於堆疊100的健康度、堆疊100的水利用率及流至堆疊100的空氣流速率,空氣加熱器114可將空氣加熱至在約900℃至約1200℃,例如920℃至980℃範圍內的溫度。因此,可以向堆疊100提供處於允許高效氫氣產生的溫度下的空氣。亦可藉由輻射將熱直接自空氣加熱器輸送至該堆疊。
自空氣同流換熱器輸出的溫度越高,空氣加熱器114需要的功率越低。空氣同流換熱器112的任一側上增加的壓降可以與增加的空氣鼓風機118功率抵消。增加的壓降可以有助於圓周質量流均勻性,從而產生更均勻的熱傳遞環境,以及更高的從空氣同流換熱器112輸出的空氣入口流的溫度。
在替代實施例中,空氣加熱器114可包括經組態以使用自高溫流體,例如加熱至約1200℃或更高溫度的流體提取的熱來對空氣進行加熱的熱交換器。可以自例如太陽能聚光器場或核反應器提供此流體。
在一些實施例中,空氣加熱器114可包括多個具有獨立功率位準的空氣加熱器區(垂直地或沿圓周或以以上兩種方式進行劃分),以便增強熱均勻性。在一些實施例中,空氣加熱器114可安置於空氣同流換熱器112下方或堆疊100與蒸汽同流換熱器108之間。空氣加熱器114可包括擋板,該擋板在沿著擋板的不同高度處具有不同大小的狹縫,以允許空氣在沿著空氣加熱器114的所有高度處在溫度及高度兩者均近似均勻地離開空氣加熱器114。將來自空氣加熱器114的空氣提供至堆疊100的空氣電極3。
在一些實施例中,空氣同流換熱器112及空氣加熱器114可合併成單個組件。舉例而言,空氣同流換熱器112可包括電壓源,該電壓源經組態以對空氣同流換熱器112合併組件中所包括的熱交換器的熱交換鰭片施加電壓,以使得該鰭片作為電阻加熱元件操作且將空氣加熱至足夠高以提供至堆疊100的溫度,例如在約900℃至約1200℃範圍內的溫度。
根據各個實施例,系統200可包括安置於熱箱250外部的視情況選用之空氣預熱器54。特定言之,空氣預熱器54可經組態以對藉由空氣鼓風機118提供至熱箱250的空氣進行預熱。在一些實施例中,空氣預熱器54可使用電來進行操作。在其他實施例中,空氣預熱器54可使用烴燃料,例如天然氣等等來進行操作。舉例而言,若向系統200提供來自電源的電力,該電力係間歇的或提供不充分量的電力而無法操作電熱器,例如太陽能或風力發電系統,則空氣預熱器54可利用烴電源(例如,氣體加熱器)。或者,可省去空氣預熱器54。
因為空氣預熱器54位於熱箱250的外部,因此空氣預熱器54可有利地提供服務而無需接入熱箱250的內部及/或中斷堆疊100及/或位於熱箱250內部的其他組件的操作。在一些實施例中,若空氣預熱器54將空氣加熱至高於堆疊溫度,則空氣預熱器54可以允許省去空氣加熱器114。然而,在其他實施例中,系統200可包括空氣預熱器54及空氣加熱器114。
在系統啟動期間,空氣預熱器54可經組態以將提供至熱箱的空氣加熱至一定溫度,所述溫度足以將熱箱250的內部溫度及/或堆疊100的溫度升高至接近其操作溫度的溫度。在系統啟動期間,提供至空氣同流換熱器112的預熱空氣亦可操作以對藉由空氣同流換熱器112提供至水預熱器102的堆疊排氣進行預熱。由於最初可以在相對低的溫度下輸出堆疊氧氣排氣,因此空氣預熱器54可以用於間接地對自水源50提供至熱箱250的水進行預熱。
在穩態操作期間,空氣預熱器54亦可經組態以將空氣加熱至足以將熱箱250維持在穩態操作溫度例如750℃至950℃下的溫度。舉例而言,與系統啟動期間相比,穩態操作期間的空氣預熱器54的熱輸出可以更低。
在一些實施例中,系統200可在熱中性組態中操作,其中向堆疊100中的每個電解池1提供熱中性電壓。特定言之,提供至每個電解池1的電流可變化以使得藉由I 2R加熱產生的熱平衡(吸熱)反應熱。因此,可在穩態熱中性操作期間最少化或消除蒸汽加熱器110及/或空氣加熱器114的使用。
來自堆疊100的氫氣流(即,氫氣排氣流)可為含有氫氣及水的溫熱流。可以在120℃至150℃的溫度下自蒸汽同流換熱器108輸出氫氣流。可藉由輸出管道502使蒸汽同流換熱器108與氫氣處理器500流體連接。在一些實施例中,可使氫氣處理器500與氫氣儲存裝置或罐504連接。
氫氣處理器500可包括氫氣泵、冷凝器或其組合。氫氣泵可為電化學氫氣泵及/或可經組態以在高溫下操作。舉例而言,氫氣泵可經組態以在約120℃至約150℃的溫度下操作,以便自氫氣流中移除約70%至約90%的氫氣。舉例而言,壓縮器可為液環壓縮器或隔膜壓縮器。在一些實施例中,冷凝器可為經組態以將氫氣流冷卻至足以使氫氣流中的水蒸氣冷凝的溫度的空氣冷卻或水增強型、空氣冷卻型冷凝器及/或熱交換器。舉例而言,氫氣處理器500可經組態以將氫氣流壓縮至期望壓力,例如約2500至約8000 psig。壓縮可包括多個階段,伴隨階段間冷卻及除水。
在各個實施例中,氫氣處理器500可包括可以相對於氫氣流的流向串聯及/或並聯安置的一系列電化學氫氣泵以便壓縮氫氣流。來自壓縮的最終產物仍可含有痕量的水。因此,氫氣處理器500可包括脫水裝置,例如變溫吸附反應器或變壓吸附反應器,以在必要時移除此殘餘之水。最終產物可為高壓(例如約2500至約8000 psig)純化的氫氣。該產物亦可含有某些氮氣,該氮氣可為溶解於水中的空氣。可在電化學壓縮期間自動地移除氮氣。
來自氫氣處理器500的剩餘的未泵送的流出物可為完全汽化的富水流。可將此富水流饋送至鼓風機以用於再循環至混合器106或同流換熱器108中,從而消除對蒸汽產生器104中的水汽化的需要。該系統可經組態以對殘餘的水進行再純化(例如,在DI床中),且將從經壓縮的氫氣流移除的殘餘的水提供至水預熱器。電化學壓縮可在電學上比傳統壓縮更有效。
多個堆疊100的氫氣流可就地合併成單個流。可使用例如可為氫氣處理器500的一部分的空氣冷卻器或由現場冷卻水塔冷卻的熱交換器儘可能實際地冷卻此合併流。可將自氫氣處理器500輸出的氫氣提供至氫氣罐504以供儲存或使用,以便用作燃料電池發電系統中的燃料。
可藉由將氫氣泵壓力增加至例如在約20-50 psig範圍內的壓力來將進入氫氣流的蒸汽損失減至最小。此分離可在電解器模組層級、系統層級、印模層級或位點層級處進行。
水冷凝及氫氣流壓縮可能會消耗大量電力。在一些實施例中,可減少或停止流至堆疊100的空氣流,以使得堆疊100輸出純的或幾乎純的氧氣作為堆疊排氣。另外,電解池1的空氣側及燃料側可在範圍為約20 psig至約50 psig的相等壓力下操作。在一些實施例中,提供至堆疊100的空氣可在約100 slm或更低的壓力下提供。
高壓操作可允許消除與氫氣流壓縮的第一階段相關的電力及設備,由於因較高壓力帶來的較高露點而可減小初始冷凝器級的大小,及/或由於與較高壓力相關的較高密度而可減小流動通道所需的物理空間。
如上文所指出,系統200可經組態以與可由第三方在現場提供的多種不同的氫氣處理器500一起操作。因此,可能難以使自系統200輸出的氫氣流的流動及/或生產速率與特定氫氣處理器500的通量匹配。特定言之,該變化可在輸出管道502內誘導正及/或負壓力波動。舉例而言,若氫氣處理器500的通量過高(例如,氫氣處理器500在氫氣流上拉動過硬),則可在系統200內誘導負壓,或若通量過低,則可在系統200內誘導正壓。
該壓力波動可能會在系統200內造成問題。舉例而言,過度負壓力可能會導致空氣洩漏至系統200中,或可能會導致跨堆疊100的電解質的高壓變化,此可能會增加電解質損壞,例如破裂的風險。過高壓力亦可能會導致跨電解質的壓力變化且增加電解質損壞的風險。
因此,該系統可包括第一輸出管道502A、第二輸出管道502B及氫氣鼓風機510。第一輸出管道502A可使燃料電池堆疊100與氫氣鼓風機510的入口流體連接。第二輸出管道502B可使氫氣鼓風機510的出口與氫氣處理器500流體連接。氫氣鼓風機510可經組態以增加自熱箱250輸出的氫氣流的壓力。舉例而言,氫氣鼓風機510可經組態以將氫氣流的壓力增加約2至約15磅/平方吋錶壓(psig),例如約5至約10 psig。氫氣鼓風機510亦可操作以將熱箱250的組件例如堆疊100與藉由操作氫氣處理器500誘導的壓力波動分隔。
在一些實施例中,氫氣鼓風機510可經組態以接收由單個電解系統250或堆疊100產生的氫氣流,如圖2A中所示。在其他實施例中,氫氣鼓風機510可經組態以接收由多個電解系統250及/或多個堆疊100產生的氫氣流。
在各個實施例中,系統200可包括視情況選用之分水裝置530,該分水裝置經組態以自氫氣流移除冷凝水,以便減少及/或防止液態水在氫氣鼓風機510中積聚。
在一些實施例中,氫氣分流器116可用於將氫氣流分流,以使得可饋送氫氣以替換系統200中的大部分或全部蒸汽。接著,可關閉氫氣分流器116以維持堆疊100中的還原氛圍,而無任何額外的氫氣消耗。流至堆疊100的空氣流可顯著減少或消除。在一些實施例中,可存在最小空氣流以保持空氣加熱器114免於過熱。
在一些實施例中,可將冷凝水再循環至水源50中的製程饋料(饋送至DI床)中。添加至混合器106中的蒸汽的氫氣可在壓縮系列的第一階段或任何中間階段期間產生,且可在必要時經除濕。氫氣儲存裝置52可包括用於藉由混合器106提供至堆疊100的氫氣的低壓/中壓儲存罐。
根據各個實施例,系統200可包括經組態以控制系統200的操作的控制器125,例如中央處理單元。舉例而言,控制器125可以有線或無線地連接至系統200的各個元件以控制該元件。
在一些實施例中,控制器125可經組態以基於氫氣流的流速及/或由氫氣處理器500產生的入口壓力來控制氫氣鼓風機510的速度。
在一些實施例中,控制器125可經組態以控制系統200,以使得系統200可以在不產生氫氣流的備用模式中進行操作。在備用模式期間,與堆疊100相連(即,與其成熱傳遞關係定位)的電加熱器可以在將電解池1保持在期望備用溫度下所需的最小功率位準下運行。期望備用溫度可以不同於期望生產操作溫度,且可能會受到返回至期望操作溫度所需的可接受時間的影響。
從備用模式恢復至穩態操作可允許在比標準穩態操作溫度低的溫度下起始氫氣產生。在較低溫度下,電池電阻可以更高,此可以提供額外的加熱以將堆疊100升高至穩態操作溫度。水/蒸汽饋料可以顯著地減少或消除。向混合器106中的蒸汽添加氫氣亦可顯著地減少或消除。
根據各個實施例,控制器125可經組態以基於各種站點範圍控制參數控制系統200的操作。舉例而言,控制器125可經組態以基於以下中的任一個控制氫氣產生:每個SOEC堆疊的操作限制;功率可用性;瞬時平均功率成本,包括所有層次下的需量電費的影響;瞬時邊際功率成本,包括所有層次下的需量電費的影響;瞬時功率可再生含量;可用氫氣儲存容量;可供使用的所儲存能量(例如,熱儲存或電儲存);氫氣產生計劃(例如,每天、每週或每月計劃等);氫氣產生收益牽連因素(例如,銷售價格、生產水準的調整、不履行的懲罰等);維護計劃;現場所有熱箱的相對健康;壓縮/冷凝系列機械狀態;水/蒸汽/氫氣饋料可用性;天氣條件及/或預報;任何其他已知的外部約束,瞬時的或某一生產計劃週期內的(例如,僅允許每月如此多的水,或每月如此高的毫瓦-小時);及/或從備用模式開始產生氫氣的最少可接受時間(若預測備用會持續多個小時,則可能需要允許冷卻電池低於操作溫度)。
圖3為顯示根據本發明之各個實施例的替代性電解系統201中的製程流程的示意圖。電解系統201可類似於電解系統200,因此僅詳細討論其間的差異。
參看圖3,電解系統201可包括安置於熱箱250內部的空氣預熱器154。空氣預熱器154可為經組態以使用從輸出自蒸汽同流換熱器108的氫氣流提取的熱來對從空氣鼓風機118提供的空氣進行預熱的熱交換器。接著,可將預熱的空氣提供至空氣同流換熱器112。因此,位於熱箱250內部的內部空氣預熱器154替代位於熱箱250外部的外部空氣預熱器54 (示出圖2A及2B中)。在此實施例中,不需要額外的電或額外的氣體加熱器來將熱提供至空氣預熱器154。空氣預熱器亦為有益的,此係因為至氫氣分流器116的氫氣/蒸汽流基本上較冷,從而允許氫氣分隔器由更便宜的材料製成。
在一些實施例中,可週期性地或連續地自蒸汽產生器104排放少量液態水(例如,約0.5%至約2%的進水)。特定言之,所排放的液態水可包括可能在使水汽化以產生蒸汽時在蒸汽產生器104中積聚的水垢及/或其他礦物雜質。因此,不期望將此所排放的液態水從水源50再循環至水入口流中。可以將此液態排放物與從水預熱器102輸出至排氣管道的熱氧氣排氣流混合。熱氧氣排氣流可以具有高於100℃,例如110℃至130℃,例如120℃的溫度。因此,可藉由熱氧氣排氣流蒸發液態水排放物,以使得不需要自系統201排放液態水。系統201可以視情況包括經組態以泵送及調節自蒸汽產生器104輸出至從水預熱器102輸出的氧氣排氣的液態水排放物的泵124。視情況而言,除泵124之外亦可添加比例電磁閥以另外調節液態水排放物的流量。 SOFC 系統
圖4係根據本發明之各個實施例的固體氧化物燃料電池(SOFC)系統300的示意圖。參看圖4,系統300包括熱箱350及安置於其中或鄰近於其的各個組件。熱箱350可以含有至少一個燃料電池堆疊302,例如含有交替的燃料電池及互連件的固體氧化物燃料電池堆疊。該堆疊的一個固體氧化物燃料電池含有陶瓷電解質,例如氧化釔穩定的氧化鋯(YSZ)、氧化鈧穩定的氧化鋯(SSZ)、氧化鈧及二氧化鈰穩定的氧化鋯或氧化鈧、氧化釔及二氧化鈰穩定的氧化鋯;陽極電極,例如鎳-YSZ、鎳-SSZ或鎳摻雜的二氧化鈰金屬陶瓷;以及陰極電極,例如亞錳酸鍶鑭(LSM)。互連件可為金屬合金互連件,例如鉻-鐵合金互連件。堆疊302可以呈多個列彼此堆放佈置。
熱箱350亦可含有陽極同流換熱器310、陰極同流換熱器320、陽極尾氣氧化器(ATO) 330、陽極排氣冷卻器340、渦流產生器372及水噴射器360。系統300亦可包括催化部分氧化(CPOx)反應器312、混合器316、CPOx鼓風機314 (例如,空氣鼓風機)、主空氣鼓風機342 (例如,系統鼓風機)及陽極再循環鼓風機318,以上可以安置於熱箱350的外部。然而,本發明不限於每個組件相對於熱箱350的任何特定位置。
CPOx反應器312藉由燃料管道301A從燃料入口30接收燃料入口流。燃料入口30可為包括用於控制提供至CPOx反應器312的燃料的量的閥門的燃料罐或多效用天然氣管線。CPOx鼓風機314可在系統啟動期間將空氣提供至CPOx反應器202。可藉由燃料管道301B將燃料及/或空氣提供至混合器316。燃料藉由燃料管道301C自混合器316流至陽極同流換熱器310。在陽極同流換熱器310中藉由燃料排氣的一部分對燃料進行加熱,且接著燃料藉由燃料管道301D自陽極同流換熱器310流至堆疊302。
主空氣鼓風機342可經組態以藉由空氣管道302A將空氣流(例如,空氣入口流)提供至陽極排氣冷卻器340。空氣藉由空氣管道302B從陽極排氣冷卻器340流至陰極同流換熱器320。在陰極同流換熱器320中藉由ATO排氣對空氣進行加熱。空氣藉由空氣管道302C自陰極同流換熱器320流至堆疊302。
藉由陽極排氣管道306A將在堆疊302中產生的陽極排氣(例如,燃料排氣)提供至陽極同流換熱器310。陽極排氣可含有未反應之燃料且在本文中亦可稱為燃料排氣。可藉由陽極排氣管道306B將陽極排氣自陽極同流換熱器310提供至轉化反應器380,例如水煤氣變換(water gas shift;WGS)反應器。可使水噴射器360與陽極排氣管道306B流體連接。可以藉由陽極排氣管道306C將陽極排氣自轉化反應器380提供至陽極排氣冷卻器340。陽極排氣加熱陽極排氣冷卻器340中的空氣入口流,且接著可以將其自陽極排氣冷卻器340提供至燃料排氣處理器400。
特定言之,可藉由第一再循環管道308A將陽極排氣從陽極排氣冷卻器340輸出至燃料排氣處理器400。在一些實施例中,可以藉由視情況選用之第二再循環管道308B將陽極排氣提供至燃料排氣處理器400。特定言之,第二再循環管道308B可經組態以將比第一再循環管道308A更熱的陽極排氣提供至燃料排氣處理器400,此係因為陽極排氣在進入第一再循環管道308A之前在陽極排氣冷卻器340中冷卻。
轉化反應器380可為將燃料排氣的組分轉換成游離氫(H 2)及/或水的任何適合的裝置。舉例而言,轉化反應器380可包含含有催化劑的套管或管道,該催化劑藉由水煤氣轉化反應(CO + H 2O ↔ CO 2+ H 2)將燃料排氣流中的一氧化碳(CO)及水蒸氣轉化成二氧化碳及氫氣。因此,轉化反應器380增加陽極排氣中的氫氣及二氧化碳的量且減少陽極排氣中的一氧化碳的量。舉例而言,轉化反應器380可以將陽極排氣中的一氧化碳的量減少至約5體積%或更小,例如約4體積%或更小,或約3體積%或更小。催化劑可為任何適合的催化劑,例如氧化鐵或鉻促進的氧化鐵催化劑。
在堆疊302中產生的陰極排氣藉由陰極排氣管道304A流至ATO 330。渦流產生器372可以安置於陰極排氣管道304A中且可經組態以使陰極排氣渦旋。可以將渦旋的陰極排氣在提供至ATO 330之前與從燃料排氣處理器400輸出的氫氣混合。可以在ATO 330中氧化混合物以產生ATO排氣。ATO排氣藉由陰極排氣管道304B從ATO 330流至陰極同流換熱器320。排氣藉由陰極排氣管道304C從陰極同流換熱器320流動且流出熱箱350。
水藉由水管道自水源50例如水罐或水管流至水噴射器360。水噴射器360將水直接噴射至陽極排氣管道306C中提供的陽極排氣的第一部分中。來自排氣管道306C中提供的陽極排氣的第一部分(亦稱為再循環陽極排氣流)的熱使水汽化以產生蒸汽。將蒸汽與陽極排氣混合,且將所得混合物提供至陽極排氣冷卻器340。接著,藉由燃料排氣處理器400投送混合物且將其提供至混合器316。混合器316經組態以將蒸汽及陽極排氣的第一部分與新鮮燃料(即,燃料入口流)混合。接著,可將此含濕氣的燃料混合物在提供至堆疊302之前在陽極同流換熱器310中藉由陽極排氣加熱。系統300亦可包括位於陽極同流換熱器310的內部及/或下游的一或多種燃料重整催化劑。在將含濕氣的燃料混合物提供至堆疊302之前,(多種)重整催化劑對該含濕氣的燃料混合物進行重整。
系統300可以進一步包括經組態以控制系統300的各個元件的系統控制器325。系統控制器325可包括經組態以執行所儲存的指令的中央處理單元。舉例而言,系統控制器325可經組態以根據燃料組成資料來控制藉由系統300的燃料及/或空氣流。
燃料排氣處理器
圖5為顯示根據本發明之各個實施例的燃料排氣處理器400的組件的示意圖。參看圖4及5,燃料排氣處理器400可包括氫氣分隔器410、系統控制器425、分離器440、低溫轉化反應器450及熱交換器444。系統控制器425可為經組態以執行所儲存的指令的中央處理單元。舉例而言,系統控制器425可經組態以控制藉由燃料排氣處理器400的陽極排氣、氫氣及/或二氧化碳流。在一些實施例中,系統控制器425可操作地連接至SOFC系統300的系統控制器325,以使得系統控制器425可基於SOFC系統300的操作條件來控制燃料排氣處理器。
分離器440可經組態以自第一再循環管道308A接收陽極排氣。分離器440可與熱箱350及氫氣分隔器410流體連接。舉例而言,第一返回管道406A可使分離器440的出口與熱箱350流體連接,且第一分隔管道401A及第二分隔管道401B可使分離器440的出口與氫氣分隔器410流體連接。特定言之,可自分離器440輸出陽極排氣的第一部分且藉由第一分隔管道401A提供至轉化反應器450,且可以藉由第二分隔管道401B將從轉化反應器450輸出的陽極排氣供應至氫氣分隔器410。可以將陽極排氣的第二部分從分離器440的出口輸出至第一返回管道406A。可藉由陽極再循環鼓風機318移動從燃料排氣處理器400輸出的陽極排氣藉由第一返回管道406A至達SOFC系統300的混合器316。然而,陽極再循環鼓風機318可安置於任何其他適合的位置中。
轉化反應器450可為類似於轉化反應器380的WGS反應器,但可經組態以在比轉化反應器380低的溫度下進行操作。因此,轉化反應器380可稱為高溫轉化反應器,而變換450可稱為低溫轉化反應器。轉化反應器450可經組態以進一步減少提供至燃料排氣處理器400的陽極排氣的一氧化碳含量。舉例而言,轉化反應器450可經組態以將陽極排氣的一氧化碳含量減少至小於約0.3體積%,例如小於約0.2體積%,或小於約0.1體積%。
可藉由第二分隔管道401B將從轉化反應器450輸出的經純化陽極排氣(例如,低一氧化碳含量的陽極排氣)提供至氫氣分隔器410。熱交換器444可操作地連接至第二分隔管道401B且可經組態以冷卻穿過其的陽極排氣。舉例而言,熱交換器444可包括經組態以將熱傳遞至供應至其的空氣的風扇及/或冷卻鰭片。因此,熱交換器444可經組態以冷卻陽極排氣,以便防止氫氣分隔器410過熱及/或損壞。在一些實施例中,可以省去熱交換器444。舉例而言,若轉化反應器450包括內部冷卻系統,如下文關於圖4A及4B所揭示,則可以視情況省去熱交換器444。
在各個實施例中,燃料排氣處理器400可與多個燃料電池系統10流體連接。舉例而言,燃料排氣處理器400可經組態以處理自兩個或更多個燃料電池系統輸出的陽極排氣,且可經組態以使富氫氣燃料流返回至兩個燃料電池系統。
氫氣分隔器410可包括一或多個氫氣泵,該氫氣泵可各自包括電化學氫氣泵送單元420。舉例而言,如圖2中所示,氫氣分隔器410可包括第一氫氣泵414A、第二氫氣泵414B及第三氫氣泵414C,以上各自包含堆疊的氫氣泵送單元420。然而,本發明不限於任何特定數目個氫氣泵。舉例而言,在各個實施例中,第一氫氣泵414A及第二氫氣泵414B可以合併成單個堆疊的氫氣泵送單元420。在其他實施例中,第一、第二及第三氫氣泵414A、414B、414C可以合併成單個堆疊的氫氣泵送單元420。
在一些實施例中,第一氫氣泵414A可包括比第二及/或第三氫氣泵414B、414C更大數目個氫氣泵送單元420。舉例而言,第一氫氣泵414A可包括第二氫氣泵414B及/或第三氫氣泵414C的兩倍數目個氫氣泵送單元420。
在又其他實施例中,燃料排氣處理器400可僅輸出單個氫氣流。舉例而言,可省去第三氫氣泵414C。特定言之,可使用藉由ATO 330中的放熱反應產生的熱來補償因藉由使用ATO排氣對提供至陰極同流換熱器320中的燃料電池堆疊302的空氣進行加熱而在陽極同流換熱器310中發生的吸熱燃料重整反應所致的熱損失。
第二分隔管道401B可將陽極排氣提供至第一氫氣泵414A的陽極入口。第一氫氣泵414A的陽極出口可藉由第一排氣管道402A與第二氫氣泵414B的陽極入口流體連接。第二氫氣泵414B的陽極出口可藉由第二排氣管道402B與第三氫氣泵414C的陽極入口流體連接。第三氫氣泵414C的陽極出口可以藉由第三輸出管道502C及第四輸出管道502D與二氧化碳處理器520流體連接。
二氧化碳處理器520可與二氧化碳儲存裝置或罐524流體連接。二氧化碳處理器520可操作以壓縮及/或冷卻自燃料排氣處理器400接收的二氧化碳流。處理器可為經組態以自二氧化碳流移除水的冷凝器及/或乾燥器。可將二氧化碳流以蒸氣、液體、固體或超臨界二氧化碳的形式提供至二氧化碳處理器520。
可使第一氫氣管道404A與第一堆疊410A的陰極出口流體連接,可使第二氫氣管道404B與第二堆疊410B的陰極出口流體連接,且可使第三氫氣管道404C與第三堆疊410C的陰極出口流體連接。可使第一氫氣管道與第一返回管道406A流體連接,且可使第二氫氣管道404B與第一氫氣管道404A流體連接。特定言之,第一返回管道406A可經組態以藉由第一氫氣泵114A、第二氫氣泵414B及/或第三氫氣泵414C將自陽極排氣提取的氫氣提供至混合器316,以使得可使氫氣再循環至堆疊302。
可藉由第二返回管道406B使第三氫氣管道404C與燃料電池系統300流體連接。特定言之,第二返回管道406B可經組態以藉由第三堆疊114C將從陽極排氣提取的氫氣提供至第二返回管道406B,該第二返回管道可以將氫氣提供至ATO 330。
在一些實施例中,視情況選用之第四氫氣管道404D可使第三氫氣管道404C與第一氫氣管道404A流體連接。視情況選用之第五氫氣管道404E可使第二氫氣管道404B與第三氫氣管道404C流體連接。第一輸出管道502A及第二輸出管道502B可使第一氫氣管道404A與氫氣處理器500流體連接。
氫氣處理器500可包括例如冷凝器及/或壓縮器,且可與氫氣儲存罐504流體連接。冷凝器可為經組態以將自燃料排氣處理器400接收的氫氣流冷卻至足以使氫氣流中的水蒸氣冷凝的溫度的空氣冷卻或水增強型、空氣冷卻型冷凝器及/或熱交換器。壓縮器亦可經組態以壓縮氫氣,且氫氣罐504可經組態以儲存經壓縮的氫氣。
第一返回管道406A可使分離器440與燃料電池系統300的混合器316流體連接。第二返回管道406B可使第一分隔管道401A與ATO 330流體連接,且亦可與第三氫氣管道404C流體連接。在其他實施例中,第二返回管道406B可與分離器440的出口流體連接。第三返回管道406C可使第二分隔管道401B與第二返回管道406B流體連接。
在各個實施例中,燃料排氣處理器400可包括各種用於控制流體流動的閥門。舉例而言,第一分隔管道閥401V1及第二分隔管道閥401V2可以分別經組態以控制穿過第一及第二分隔管道401A、401B的陽極排氣流。第一氫氣管道閥404V1、第二氫氣管道閥404V2、第三氫氣管道閥404V3、第四氫氣管道閥404V4及第五氫氣管道閥404V5可經組態以分別控制穿過第一、第二、第三、第四及第五氫氣管道404A、404B、404C、404D、404E的氫氣流。氫氣儲存閥503例如雙向閥可經組態以控制從第一氫氣管道404A流至輸出管道502中的氫氣流。第二返回管道閥406V2及第三返回管道閥406V3可經組態以分別控制穿過第二及第三返回管道406B、406C的陽極排氣流。
在一些實施例中,燃料排氣處理器400可與多個熱箱100流體連接。舉例而言,分離器440可自多個再循環管道308A/308B接收陽極排氣,且可與多個返回管道406A、406B流體連接。舉例而言,再循環管道308A/308B及返回管道406A、406B可分支且連接至不同熱箱100。
系統300可經組態以與可由第三方在現場提供的各種不同的氫氣處理器500及/或二氧化碳處理器520一起操作。因此,可能難以使從燃料排氣處理器410輸出的氫氣及/或二氧化碳流的流動及/或生產速率與特定二氧化碳處理器520的通量匹配。特定言之,該變化可誘導正及/或負壓力波動。舉例而言,若氫氣處理器500的通量過高(例如,氫氣處理器500在氫氣流上拉動過硬),則可在系統300內誘導負壓,或若通量過低,則可在系統300內誘導正壓。
該壓力波動可能會在系統300內造成問題。舉例而言,過度負壓力可能會導致空氣洩漏至系統300中,或可能會導致跨系統300的電解質的高壓變化,此可能會增加電解質損壞,例如破裂的風險。過高壓力亦可能會導致跨電解質的壓力變化且增加電解質損壞的風險。
因此,系統300可包括與第一及第二輸出管道502A、502B流體連接的氫氣鼓風機510。第一輸出管道502A可使燃料排氣處理器400的氫氣出口與氫氣鼓風機510的入口流體連接。第二輸出管道502B可使氫氣鼓風機510的出口與氫氣處理器500流體連接。氫氣鼓風機510可經組態以增加氫氣流的壓力。舉例而言,氫氣鼓風機510可經組態以將氫氣流的壓力增加約2至約15磅/平方吋錶壓(psig),例如約5至約10 psig。氫氣鼓風機510亦可操作以將系統300的組件例如燃料排氣處理器400及/或堆疊302與由氫氣處理器500誘導的壓力波動分隔。
系統300亦可包括與第三及第四輸出管道502C、502D流體連接的二氧化碳鼓風機512。第三出口管道502C可使燃料排氣處理器400的二氧化碳出口及二氧化碳鼓風機512的入口流體連接。第二二氧化碳管道502B可使二氧化碳鼓風機512的出口與二氧化碳處理器520流體連接。二氧化碳鼓風機512可經組態以增加二氧化碳流的壓力。舉例而言,二氧化碳鼓風機512可經組態以將二氧化碳流的壓力增加約2至約15磅/平方吋錶壓(psig),例如約5至約10 psig。二氧化碳鼓風機512亦可操作以將系統300的分隔組件的組件例如燃料排氣處理器400及/或堆疊302與由二氧化碳處理器520誘導的壓力波動分隔。
在各個實施例中,系統300可包括視情況選用之分水裝置530,該分水裝置經組態以自氫氣流移除冷凝水,以便減少及/或防止液態水在氫氣鼓風機510中積聚。在其他實施例中,系統300可包括視情況選用之分水裝置532,該分水裝置經組態以自二氧化碳流移除冷凝水,以便減少及/或防止液態水在二氧化碳鼓風機512中積聚。
提供對所揭示的態樣的前述描述以使得熟習此項技術者能夠製作或使用本發明。熟習此項技術者將容易明白對此等態樣的各種修改,且在不脫離本發明的範圍的情況下,本文所定義的一般原理可應用於其他態樣。因此,本發明並不既定限於本文所示的態樣,而應符合與本文所揭示的原理及新穎特點相一致的最廣泛範圍。
1: 固體電池 3: 空氣電極 5: 固體氧化物電解質 7: 燃料電極 8: 燃料通道 9: 層 10: 互連件 22: 內部燃料立管通道 30: 燃料入口 50: 水源 52: 氫氣儲存裝置 54: 空氣預熱器 100: 固體氧化物電池堆疊 102: 水預熱器 104: 蒸汽產生器 106: 混合器 108: 蒸汽同流換熱器 110: 蒸汽加熱器 112: 空氣同流換熱器 114: 空氣加熱器 116: 氫氣分流器 118: 空氣鼓風機 124: 泵 125: 控制器 154: 空氣預熱器 200: 電解系統 201: 電解系統 250: 熱箱 300: 固體氧化物燃料電池(SOFC)系統 301A: 燃料管道 301B: 燃料管道 301C: 燃料管道 301D: 燃料管道 302: 燃料電池堆疊 302A: 空氣管道 302B: 空氣管道 302C: 空氣管道 304A: 陰極排氣管道 304B: 陰極排氣管道 304C: 陰極排氣管道 306A: 陽極排氣管道 306B: 陽極排氣管道 306C: 陽極排氣管道 308A: 第一再循環管道 308B: 第二再循環管道 310: 陽極同流換熱器 312: 催化部分氧化(CPOx)反應器 314: CPOx鼓風機314 316: 混合器 318: 陽極再循環鼓風機 320: 陰極同流換熱器 325: 系統控制器 330: 陽極尾氣氧化器(ATO) 340: 陽極排氣冷卻器 342: 主空氣鼓風機 350: 熱箱 360: 水噴射器 372: 渦流產生器 380: 轉化反應器 400: 燃料排氣處理器 401A: 第一分隔管道 401B: 第二分隔管道 401V1: 第一分隔管道閥 401V2: 第二分隔管道閥 402A: 第一排氣管道 402B: 第二排氣管道 404A: 第一氫氣管道 404B: 第二氫氣管道 404C: 第三氫氣管道 404D: 第四氫氣管道 404E: 第五氫氣管道 404V1: 第一氫氣管道閥 404V2: 第二氫氣管道閥 404V3: 第三氫氣管道閥 404V4: 第四氫氣管道閥 404V5: 第五氫氣管道閥 406A: 第一返回管道 406B: 第二返回管道 406C: 第三返回管道 406V3: 第二返回管道閥 406V3: 第三返回管道閥 410: 氫氣分隔器 414A: 第一氫氣泵 414B: 第二氫氣泵 414C: 第三氫氣泵 420: 氫氣泵送單元 425: 系統控制器 444: 熱交換器 500: 氫氣處理器 502: 輸出管道 502A: 第一輸出管道 502B: 第二輸出管道 502C: 第三輸出管道 502D: 第四輸出管道 503: 氫氣儲存閥 504: 氫氣儲存裝置或罐 510: 氫氣鼓風機 512: 二氧化碳鼓風機 520: 二氧化碳處理器 524: 二氧化碳儲存裝置或罐 530: 分水裝置
併入本文中且構成本說明書之一部分的附圖繪示本發明之例示性實施例,且與上文給出的總體描述及下文給出的詳細描述一起用於闡明本發明之特點。
圖1A為固體氧化物電解池(SOEC)堆疊的透視圖,而圖1B是圖1A的該堆疊的一部分的側視橫截面圖。
圖2A及2B為顯示根據本發明之各個實施例的電解系統中的製程流程的製程流程圖的示意圖。
圖3為顯示根據本發明之各個實施例的替代性電解系統201中的製程流程的示意圖。
圖4為根據本發明之各個實施例的固體氧化物燃料電池(SOFC)系統的示意圖。
圖5為顯示根據本發明之各個實施例的圖4的燃料電池系統的燃料處理器中的製程流程的示意圖。
50:水源
52:氫氣儲存裝置
54:空氣預熱器
100:固體氧化物電池堆疊
102:水預熱器
104:蒸汽產生器
106:混合器
108:蒸汽同流換熱器
110:蒸汽加熱器
112:空氣同流換熱器
114:空氣加熱器
116:氫氣分流器
118:空氣鼓風機
125:控制器
200:電解系統
250:熱箱
500:氫氣處理器
502:輸出管道
502A:第一輸出管道
502B:第二輸出管道
504:氫氣儲存裝置或罐
510:氫氣鼓風機
530:分水裝置

Claims (20)

  1. 一種電解系統,其包含: 經組態以生成蒸汽的蒸汽產生器; 經組態以使用由該蒸汽產生器生成的該蒸汽產生氫氣流的固體氧化物電解池堆疊; 經組態以對由該堆疊生成的該氫氣流加壓的氫氣鼓風機;以及 經組態以壓縮經加壓的氫氣流的氫氣處理器。
  2. 如請求項1之電解系統,其進一步包含控制器,該控制器經組態以控制該氫氣鼓風機的操作,以使得該經加壓的氫氣流的壓力在約2磅/平方吋錶壓(psig)至約15 psig範圍內。
  3. 如請求項1之電解系統,其進一步包含: 容納該堆疊的熱箱; 將該熱箱的氫氣出口與該氫氣鼓風機流體連接的第一輸出管道;以及 將該氫氣鼓風機的出口與該氫氣處理器的入口流體連接的第二輸出管道。
  4. 如請求項3之電解系統,其中該氫氣鼓風機經組態以防止由該氫氣處理器生成的壓力波動傳輸至該堆疊。
  5. 如請求項3之電解系統,其進一步包含與該氫氣處理器的出口流體連接的氫氣罐。
  6. 如請求項3之電解系統,其中氫氣泵從多個熱箱接收氫氣流。
  7. 如請求項3之電解系統,其進一步包含: 經組態以將氫氣與從該蒸汽產生器輸出的蒸汽混合的混合器;以及 經組態以將氫氣從該第一輸出管道分流至該混合器的氫氣分流器, 其中該混合器的出口與該堆疊的入口流體連接。
  8. 如請求項7之電解系統,其中該混合器安置於該熱箱外部。
  9. 如請求項3之電解系統,其進一步包含經組態以從該第一輸出管道移除冷凝水的分水裝置。
  10. 如請求項1之電解系統,其進一步包含: 經組態以使用提取自從該堆疊輸出的氧氣排氣的熱對提供至該蒸汽產生器的水進行預熱的水預熱器; 經組態以藉由將經預熱的水汽化而生成蒸汽的汽化器;以及 經組態以將該蒸汽的溫度升高約10℃至約100℃的過熱器。
  11. 一種燃料電池系統,其包含: 熱箱; 安置於該熱箱中且經組態以生成電力的固體氧化物燃料電池堆疊; 安置於該熱箱中的陽極尾氣氧化器ATO; 經組態以分離從該堆疊接收的陽極排氣流且輸出二氧化碳流及氫氣流的燃料排氣處理器; 經組態以對該氫氣流加壓的氫氣鼓風機; 經組態以壓縮經加壓的氫氣流的氫氣處理器;以及 經組態以壓縮該二氧化碳流的二氧化碳處理器。
  12. 如請求項11之燃料電池系統,其進一步包含控制器,該控制器經組態以控制該氫氣鼓風機的操作,以使得該經加壓的氫氣流的壓力在約2磅/平方吋錶壓(psig)至約15 psig範圍內。
  13. 如請求項11之燃料電池系統,其進一步包含 將該燃料排氣處理器的氫氣出口與該氫氣鼓風機流體連接的第一輸出管道;以及 將該氫氣鼓風機的出口與該氫氣處理器的入口流體連接的第二輸出管道。
  14. 如請求項13之燃料電池系統,其中該氫氣鼓風機經組態以防止由該氫氣處理器生成的壓力波動傳輸至該燃料排氣處理器。
  15. 如請求項11之燃料電池系統,其進一步包含與該氫氣處理器的出口流體連接的氫氣罐。
  16. 如請求項11之燃料電池系統,其進一步包含經組態以在將該二氧化碳流提供至該二氧化碳處理器之前對該二氧化碳流加壓的二氧化碳鼓風機。
  17. 如請求項16之燃料電池系統,其進一步包含 將該燃料排氣處理器的二氧化碳出口與該二氧化碳鼓風機流體連接的第三輸出管道;以及 將該二氧化碳鼓風機的出口與該二氧化碳處理器的入口流體連接的第四輸出管道。
  18. 如請求項17之燃料電池系統,其中該二氧化碳鼓風機經組態以防止由該二氧化碳處理器生成的壓力波動傳輸至該燃料排氣處理器。
  19. 如請求項17之燃料電池系統,其進一步包含與該二氧化碳處理器的出口流體連接的二氧化碳罐。
  20. 如請求項11之燃料電池系統,其中該燃料排氣處理器包含: 經組態以從接收自該堆疊的該陽極排氣流中提取氫氣且向提供至該燃料排氣處理器的第一氫氣流輸出該氫氣的第一氫氣泵; 經組態以從輸出自該第一氫氣泵的陽極排氣中提取氫氣且向該第一氫氣流輸出該氫氣的第二氫氣泵;以及 經組態以從輸出自該第二氫氣泵的陽極排氣中提取氫氣且向提供至該ATO的第二氫氣流輸出該氫氣的第三氫氣泵。
TW111139959A 2021-11-12 2022-10-21 具蒸氣產生之電解系統及操作其之方法 TW202328498A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163278741P 2021-11-12 2021-11-12
US63/278,741 2021-11-12
US17/937,364 2022-09-30
US17/937,364 US20230155214A1 (en) 2021-11-12 2022-09-30 Electrolyzer system with steam generation and method of operating same

Publications (1)

Publication Number Publication Date
TW202328498A true TW202328498A (zh) 2023-07-16

Family

ID=84331222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111139959A TW202328498A (zh) 2021-11-12 2022-10-21 具蒸氣產生之電解系統及操作其之方法

Country Status (6)

Country Link
US (1) US20230155214A1 (zh)
EP (1) EP4219793A3 (zh)
JP (1) JP2023072661A (zh)
KR (1) KR20230070163A (zh)
CA (1) CA3179072A1 (zh)
TW (1) TW202328498A (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO990812L (no) * 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
US7422810B2 (en) * 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
US7883803B2 (en) * 2007-03-30 2011-02-08 Bloom Energy Corporation SOFC system producing reduced atmospheric carbon dioxide using a molten carbonated carbon dioxide pump
US9190673B2 (en) * 2010-09-01 2015-11-17 Bloom Energy Corporation SOFC hot box components
US9190685B2 (en) * 2011-10-27 2015-11-17 Bloom Energy Corporation SOFC system with selective CO2 removal
US8916300B2 (en) * 2012-09-07 2014-12-23 Bloom Energy Corporation Ammonia fueled SOFC system
JP6573984B2 (ja) * 2015-04-08 2019-09-11 サンファイアー ゲゼルシャフト ミット ベシュレンクテル ハフツングSunFire GmbH 高温水蒸気電解[SOEC]、固体酸化物形燃料電池[SOFC]および/または可逆高温燃料電池[rSOC]の熱管理法ならびに高温水蒸気電解[SOEC]装置、固体酸化物形燃料電池[SOFC]装置および/または可逆高温燃料電池[rSOC]装置
FR3056230B1 (fr) * 2016-09-19 2020-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme d'electrolyse reversible de l'eau a haute temperature comportant un reservoir d'hydrures couple a l'electrolyseur
JP7480174B2 (ja) * 2019-04-12 2024-05-09 ブルーム エネルギー コーポレイション 一酸化炭素耐性アノードを備えた水素ポンピングセルと統合されたシフト反応器とを有する固体酸化物形燃料電池システム
EP4086370A3 (en) * 2021-05-03 2022-11-30 Bloom Energy Corporation Solid oxide electrolyzer systems containing hydrogen pump and method of operating thereof
CN113503191B (zh) * 2021-06-18 2022-08-16 华南理工大学 一种核能发电制氢综合利用系统
US20230146574A1 (en) * 2021-11-11 2023-05-11 Bloom Energy Corporation Fuel cell systems and methods with improved fuel utilization

Also Published As

Publication number Publication date
EP4219793A3 (en) 2023-10-18
KR20230070163A (ko) 2023-05-22
CA3179072A1 (en) 2023-05-12
US20230155214A1 (en) 2023-05-18
EP4219793A2 (en) 2023-08-02
JP2023072661A (ja) 2023-05-24

Similar Documents

Publication Publication Date Title
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
EP1620906B1 (en) Co-production of hydrogen and electricity in a high temperature electrochemical system
US20100266923A1 (en) Fuel cell system with electrochemical hydrogen pump and method of operating same
AU2001214452B2 (en) A hybrid electrical power system employing fluid regulating elements for controlling various operational parameters of the system
JP6124923B2 (ja) 外熱式水素製造を備える高温水蒸気電解設備(htse)
US20060188763A1 (en) Fuel cell system comprising modular design features
KR20160030281A (ko) 개량된 연료 전지 시스템 및 방법
JP4450623B2 (ja) 燃料電池システム
JP7364831B2 (ja) 縦続接続された燃料電池を用いる発電システムおよびそれに関連する方法
TW202336280A (zh) 具蒸氣產生之電解系統及其操作方法
JP2006236599A (ja) 燃料電池発電装置の水回収方法
US11309563B2 (en) High efficiency fuel cell system with hydrogen and syngas export
US20210060508A1 (en) Reformed gas consuming plant and source gas reforming method
US20230013942A1 (en) Electrolyzer system with steam generation and method of operating same
RU2327257C1 (ru) Система топливных элементов
EP4219793A2 (en) Electrolyzer system with steam generation and method of operating same
CN116445948A (zh) 伴随蒸汽生成的电解器系统和其操作方法
EP4209621A1 (en) Vaporizer and external steam for solid oxide electrolyzer
US20230378493A1 (en) Hydrogen powered fuel cell system including condenser and method of operating the same using pressure control
US11541350B2 (en) Heat recovery from an electrochemical hydrogen separation system
US20230335766A1 (en) Combined fuel cell and digestion system and method of operating thereof
JP2002056879A (ja) 水電解装置−リン酸形燃料電池系発電システム
TW202412368A (zh) 包含凝結器之氫動力燃料電池系統及使用壓力控制以操作彼之方法
CN117727981A (zh) 一种包括水蒸气换热层的燃烧重整器和可逆固体氧化物电池及应用