TW202328430A - Yeast cells with improved tolerance to acrylic acid - Google Patents

Yeast cells with improved tolerance to acrylic acid Download PDF

Info

Publication number
TW202328430A
TW202328430A TW111136221A TW111136221A TW202328430A TW 202328430 A TW202328430 A TW 202328430A TW 111136221 A TW111136221 A TW 111136221A TW 111136221 A TW111136221 A TW 111136221A TW 202328430 A TW202328430 A TW 202328430A
Authority
TW
Taiwan
Prior art keywords
yeast
acrylic acid
growth medium
saccharomyces cerevisiae
medium contains
Prior art date
Application number
TW111136221A
Other languages
Chinese (zh)
Inventor
加東 周
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202328430A publication Critical patent/TW202328430A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/36Adaptation or attenuation of cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The current disclosure relates to yeast cells that are genetically modified to improve their tolerance to certain platform chemicals, such as acrylic acid, and to methods of preparing and using such yeast cells for the production of acrylic acid and other compounds.

Description

對丙烯酸具有改良耐受性之酵母細胞Yeast cells with improved tolerance to acrylic acid

本發明係關於經基因改造以改良其對某些平台化學物質,諸如丙烯酸之耐受性的酵母細胞,以及製備此類酵母細胞及將其用於產生丙烯酸及其他化合物之方法。The present invention relates to yeast cells genetically engineered to improve their tolerance to certain platform chemicals, such as acrylic acid, and methods of preparing such yeast cells and using them to produce acrylic acid and other compounds.

丙烯酸(Acrylic acid;AA)為市售重要化學物質。截至2025年,預期AA之生產能力達到900萬噸,且其市場大小為$200億。其現行生產視石油化學製程而定,其為不可持續且環境不友好的。自可再生非食物生物質產生AA已存在大量關注。Acrylic acid (AA) is an important chemical substance on the market. By 2025, AA's production capacity is expected to reach 9 million tons, and its market size is $20 billion. Its current production depends on petrochemical processes, which are unsustainable and environmentally unfriendly. There has been considerable interest in the production of AA from renewable non-food biomass.

已嘗試組合生物催化及化學催化方法。在一種方法中,首先以微生物方式產生乳酸(lactic acid;LA)。但利用LA之脫水的後續AA產生由於其抗水解性而證明為困難的。近年來,達成藉由使由微生物醱酵產生之3-羥基丙酸(3-HP)脫水來產生AA。歸因於其高能量消耗及由催化劑、純化及分離步驟引起之額外成本,此組合方法並不提供優於基於石油之產品的實質性益處。Combinations of biocatalytic and chemical catalytic approaches have been attempted. In one method, lactic acid (LA) is first produced microbially. However, subsequent AA production using dehydration of LA proves difficult due to its resistance to hydrolysis. In recent years, it has been achieved to produce AA by dehydrating 3-hydroxypropionic acid (3-HP) produced by microbial fermentation. Due to its high energy consumption and additional costs caused by catalysts, purification and separation steps, this combined approach does not provide substantial benefits over petroleum-based products.

為了研發用於由可再生資源產生大量化學物質之經濟上有吸引力的方法,考慮三個特徵:高產品產率、高生產率及高產品效價。後一特性對於使資本設備及用於產物純化之下游分離成本降至最低至關重要。經濟醱酵方法中大量化學物質之效價通常超過100 g/L。In order to develop economically attractive methods for producing large quantities of chemicals from renewable resources, three characteristics are considered: high product yield, high productivity and high product potency. This latter characteristic is critical to minimizing capital equipment and downstream separation costs for product purification. The potency of a large number of chemicals in economical fermentation methods usually exceeds 100 g/L.

一些實施例包括一種製備對丙烯酸具有改良耐受性之酵母的方法,其包含允許酵母在丙烯酸之存在下繁殖。Some embodiments include a method of preparing yeast with improved tolerance to acrylic acid, comprising allowing the yeast to propagate in the presence of acrylic acid.

一些實施例包括一種組合物,其包含酵母、丙烯酸及酵母生長培養基。Some embodiments include a composition comprising yeast, acrylic acid, and yeast growth medium.

一些實施例包括藉由一種方法製備之酵母,該方法包含允許酵母在丙烯酸之存在下繁殖。Some embodiments include yeast prepared by a method comprising allowing yeast to propagate in the presence of acrylic acid.

一些實施例包括一種對丙烯酸具有耐受性之酵母,其包含具有非天然存在之基因突變或改造的酵母,其中該酵母具有當該酵母在600 nm下於參考丙烯酸組合物中之光學密度為0.2時,該酵母繁殖以使得該酵母之光學密度在30小時內自0.2增加至0.4的特性,其中該參考丙烯酸組合物由以下組成:1.8 g/L丙烯酸、20 g/L葡萄糖、5 g/L (NH 4) 2SO 4、3 g/L KH 2PO 4、0.5 g/L MgSO 4•7H 2O、50 μg/L d-生物素、1 mg/L D-泛酸半鈣鹽、1 mg/L硫胺素-HCl、1 mg/L吡哆醇-HCl (Pyridoxin-HCl)、1 mg/L菸鹼酸、0.2 mg/L 4-胺基苯甲酸、25 mg/L m-肌醇、3 mg/L FeSO 4∙7H 2O、4.5 mg/L ZnSO 4∙7H 2O、4.5 mg/L CaCl 2∙2H 2O、1 mg/L MnCl 2∙4H 2O、0.3 mg/L CoCl 2∙6H 2O、0.3 mg/L CuSO 4∙5H 2O、0.4 mg/L Na 2MoO 4∙2H 2O、1 mg/L H 3BO 3、0.1 mg/L KI及19 mg/L Na 2EDTA∙2H 2O。 Some embodiments include a yeast tolerant to acrylic acid, comprising a yeast having a non-naturally occurring genetic mutation or modification, wherein the yeast has an optical density at 600 nm in a reference acrylic acid composition of 0.2 The characteristics of the yeast propagating such that the optical density of the yeast increases from 0.2 to 0.4 within 30 hours, wherein the reference acrylic acid composition consists of the following: 1.8 g/L acrylic acid, 20 g/L glucose, 5 g/L (NH 4 ) 2 SO 4 , 3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 •7H 2 O, 50 μg/L d-biotin, 1 mg/L D-pantothenate hemicalcium salt, 1 mg /L Thiamine-HCl, 1 mg/L Pyridoxin-HCl (Pyridoxin-HCl), 1 mg/L niacin, 0.2 mg/L 4-aminobenzoic acid, 25 mg/L m-inositol , 3 mg/L FeSO 4 ∙7H 2 O, 4.5 mg/L ZnSO 4 ∙7H 2 O, 4.5 mg/L CaCl 2 ∙2H 2 O, 1 mg/L MnCl 2 ∙4H 2 O, 0.3 mg/L CoCl 2 ∙6H 2 O, 0.3 mg/L CuSO 4 ∙5H 2 O, 0.4 mg/L Na 2 MoO 4 ∙2H 2 O, 1 mg/LH 3 BO 3 , 0.1 mg/L KI and 19 mg/L Na 2 EDTA∙ 2H2O .

一些實施例包括一種經基因改造之釀酒酵母( Saccharomyces cerevisiaeS. cerevisiae),其具有使得該釀酒酵母合成以下的對野生型之基因體之改造:經改造之ACH1、WAR1、NHA1、TRK1、ALD3、PMA1、GLG2、MIX23、ATG26、SYT1、SNF3、ARR3、TRS33、GPR1、OCT1、TPO1、MET2、RPC82或其組合。 Some embodiments include a genetically modified S. cerevisiae ( Saccharomyces cerevisiae ; S. cerevisiae ) having modifications to the wild-type genome such that the Saccharomyces cerevisiae synthesizes: modified ACH1, WAR1, NHA1, TRK1, ALD3 , PMA1, GLG2, MIX23, ATG26, SYT1, SNF3, ARR3, TRS33, GPR1, OCT1, TPO1, MET2, RPC82, or combinations thereof.

一些實施例包括一種製備丙烯酸之方法,其包含使羥基丙酸在本文所描述之經改造酵母的存在下脫水。Some embodiments include a method of preparing acrylic acid comprising dehydrating hydroxypropionic acid in the presence of engineered yeast described herein.

使用包含酵母及丙烯酸以及視情況選用之酵母生長培養基之適應性實驗室演變(Adaptive laboratory evolution;ALE)的組合物來起始酵母之ALE。ALE of yeast is initiated using a composition comprising Adaptive laboratory evolution (ALE) of yeast and acrylic acid and, optionally, a yeast growth medium.

酵母包含在丙烯酸之存在下需要改良耐受性的任何類型之酵母,諸如釀酒酵母。Yeast includes any type of yeast that requires improved tolerance in the presence of acrylic acid, such as Saccharomyces cerevisiae.

酵母生長培養基可含有酵母提取物、碳水化合物、肽及抗生素、磷酸鹽、硫酸鹽或其組合。在一些實施例中,酵母生長培養基包含酵母提取物、碳水化合物、肽及抗生素、磷酸鹽及硫酸鹽。Yeast growth medium may contain yeast extract, carbohydrates, peptides and antibiotics, phosphates, sulfates, or combinations thereof. In some embodiments, the yeast growth medium includes yeast extract, carbohydrates, peptides and antibiotics, phosphates and sulfates.

酵母生長培養基可包括任何適合之酵母提取物,例如無細胞壁之酵母之細胞內含物。The yeast growth medium may include any suitable yeast extract, such as the cell contents of yeast without cell walls.

酵母生長培養基可包括任何適合之碳水化合物,其包括單醣(諸如葡萄糖)、雙醣(諸如蔗糖)、多醣(諸如澱粉)等。在一些實施例中,碳水化合物包括瓊脂、葡萄糖或其組合。在一些實施例中,碳水化合物包括瓊脂。在一些實施例中,碳水化合物包括葡萄糖。Yeast growth medium may include any suitable carbohydrate, including monosaccharides (such as glucose), disaccharides (such as sucrose), polysaccharides (such as starch), and the like. In some embodiments, the carbohydrate includes agar, glucose, or combinations thereof. In some embodiments, the carbohydrate includes agar. In some embodiments, the carbohydrate includes glucose.

酵母生長培養基可包括任何適合之肽,諸如蛋白腖,例如蛋白質部分水解之水溶性產物。The yeast growth medium may include any suitable peptide, such as a peptide, eg, a water-soluble product of partial hydrolysis of a protein.

酵母生長培養基可包括任何適合之抗生素,諸如G418二硫酸鹽、安比西林鈉(ampicillin sodium)或其組合。The yeast growth medium may include any suitable antibiotic, such as G418 disulfate, ampicillin sodium, or combinations thereof.

酵母生長培養基可包括任何適合之磷酸鹽,諸如KH 2PO 4Yeast growth medium may include any suitable phosphate, such as KH2PO4 .

酵母生長培養基可包括任何適合之硫酸鹽,諸如(NH 4) 2SO 4、MgSO 4·7H 2O或其組合。 Yeast growth medium may include any suitable sulfate, such as ( NH4 ) 2SO4 , MgSO4.7H2O , or combinations thereof .

酵母生長培養基可包括維生素溶液,例如呈約0.1至10 mL/L、約0.1至2 mL/L、約2至4 mL/L、約4至6 mL/L、約6至8 mL/L、約8至10 mL/L或約1 mL/L之濃度的維生素溶液。The yeast growth medium may include a vitamin solution, for example, in the form of about 0.1 to 10 mL/L, about 0.1 to 2 mL/L, about 2 to 4 mL/L, about 4 to 6 mL/L, about 6 to 8 mL/L, A vitamin solution with a concentration of about 8 to 10 mL/L or about 1 mL/L.

適合之維生素溶液可含有d-生物素(例如,呈使得酵母生長培養基含有約1至100 μg/L、約40至60 μg/L或約50 μg/L之d-生物素的量)、D-泛酸(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之半鈣鹽或莫耳當量之另一形式的量)、硫胺素(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之HCl鹽或莫耳當量之另一形式的量)、吡哆醇(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之HCl鹽或莫耳當量之另一形式的量)、1 mg/L菸鹼酸(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之酸形式或莫耳當量之鹽形式的量)、4-胺基苯甲酸(例如,呈使得酵母生長培養基含有約0.05至0.5 mg/L、約0.1至0.3 mg/L或約0.2 mg/L之酸形式或莫耳當量之鹽形式的量)、m-肌醇(例如,呈使得酵母生長培養基含有約5至200 mg/L、約20至30 mg/L或約25 mg/L之量),或其組合。A suitable vitamin solution may contain d-biotin (e.g., in an amount such that the yeast growth medium contains about 1 to 100 μg/L, about 40 to 60 μg/L, or about 50 μg/L of d-biotin), D - Pantothenic acid (e.g., in an amount such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L of hemicalcium salt or another form in molar equivalents), thiamine (e.g., in an amount such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L of an HCl salt or another molar equivalent), pyridoxine ( For example, in an amount such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L of HCl salt or molar equivalents), 1 mg/L of nicotine Acid (e.g., in an amount such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L in acid form or molar equivalents in salt form), 4-aminobenzene Formic acid (e.g., in an amount such that the yeast growth medium contains about 0.05 to 0.5 mg/L, about 0.1 to 0.3 mg/L, or about 0.2 mg/L in acid form or molar equivalents in salt form), m-inositol ( For example, in an amount such that the yeast growth medium contains about 5 to 200 mg/L, about 20 to 30 mg/L, or about 25 mg/L), or a combination thereof.

一些實施例包括d-生物素(例如,呈使得酵母生長培養基含有50 μg/L之量)、D-泛酸半鈣鹽(例如,呈使得酵母生長培養基含有1 mg/L之量)、硫胺素-HCl (例如,呈使得酵母生長培養基含有1 mg/L之量)、吡哆醇-HCl (例如,呈使得酵母生長培養基含有1 mg/L之量)、菸鹼酸(例如,呈使得酵母生長培養基含有1 mg/L之量)、4-胺基苯甲酸(例如,呈使得酵母生長培養基含有0.2 mg/L之量),及m-肌醇(例如,呈使得酵母生長培養基含有25 mg/L之量)。Some examples include d-biotin (e.g., in an amount such that yeast growth medium contains 50 μg/L), D-pantothenate hemicalcium salt (e.g., in an amount such that yeast growth medium contains 1 mg/L), thiamine HCl (e.g., in an amount such that the yeast growth medium contains 1 mg/L), pyridoxine-HCl (e.g., in an amount such that the yeast growth medium contains 1 mg/L), nicotinic acid (e.g., in an amount such that the yeast growth medium contains 1 mg/L) The yeast growth medium contains 1 mg/L), 4-aminobenzoic acid (e.g., in an amount such that the yeast growth medium contains 0.2 mg/L), and m-inositol (e.g., in an amount such that the yeast growth medium contains 25 mg/L).

酵母生長培養基可包括痕量金屬溶液,例如呈約0.1至10 mL/L、約0.1至2 mL/L、約2至4 mL/L、約4至6 mL/L、約6至8 mL/L、約8至10 mL/L或約1 mL/L之濃度的痕量金屬溶液。The yeast growth medium may include a trace metal solution, for example, in the range of about 0.1 to 10 mL/L, about 0.1 to 2 mL/L, about 2 to 4 mL/L, about 4 to 6 mL/L, about 6 to 8 mL/L. L, a trace metal solution with a concentration of about 8 to 10 mL/L or about 1 mL/L.

適合的痕量金屬溶液可含有FeSO 4(例如,呈使得酵母生長培養基含有0.5至10 mg/L、約2至4 mg/L或約3 mg/L之∙7H 2O形式或莫耳當量之另一形式的量)、ZnSO 4(例如,呈使得酵母生長培養基含有約1至10 mg/L、約4至5 mg/L或約4.5 mg/L之∙7H 2O形式或莫耳當量之另一形式的量)、CaCl 2(例如,呈使得酵母生長培養基含有約1至10 mg/L、約4至5 mg/L或約4.5 mg/L之∙2H 2O形式或莫耳當量之另一形式的量)、MnCl 2(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之∙4H 2O形式或莫耳當量之另一形式的量)、CoCl 2(例如,呈使得酵母生長培養基含有約0.05至6 mg/L、約0.2至0.4 mg/L或約0.3 mg/L之∙6H 2O形式或莫耳當量之另一形式的量)、CuSO 4(例如,呈使得酵母生長培養基含有約0.05至6 mg/L、約0.2至0.4 mg/L或約0.3 mg/L之∙5H 2O形式或莫耳當量之另一形式的量)、Na 2MoO 4(例如,呈使得酵母生長培養基含有約0.05至8 mg/L、約0.3至0.5 mg/L或約0.4 mg/L之∙2H 2O形式或莫耳當量之另一形式的量)、H 3BO 3(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之H 3BO 3或莫耳當量之其鹽的量)、KI (例如,呈使得酵母生長培養基含有約0.01至1 mg/L、約0.05至0.15 mg/L或約0.1 mg/L之KI或莫耳當量之另一碘化鹽的量)及Na 2EDTA∙2H 2O (例如,呈使得酵母生長培養基含有約1至40 mg/L、約10至30 mg/L或約19 mg/L之∙2H 2O形式或莫耳當量之另一形式的量),或其組合。 Suitable trace metal solutions may contain FeSO 4 (e.g., in the form of ∙7H 2 O or molar equivalents such that the yeast growth medium contains 0.5 to 10 mg/L, about 2 to 4 mg/L, or about 3 mg/L. in another form), ZnSO 4 (e.g., in a form such that the yeast growth medium contains about 1 to 10 mg/L, about 4 to 5 mg/L, or about 4.5 mg/L of ∙7H 2 O or molar equivalents in another form), CaCl 2 (e.g., in a form such that the yeast growth medium contains about 1 to 10 mg/L, about 4 to 5 mg/L, or about 4.5 mg/L of ∙2H 2 O or molar equivalents in another form), MnCl 2 (e.g., in a form such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L ∙4H 2 O or molar equivalents in another form), CoCl 2 (e.g., in a form such that the yeast growth medium contains about 0.05 to 6 mg/L, about 0.2 to 0.4 mg/L, or about 0.3 mg/L ∙6H 2 O or molar equivalents in another form), CuSO 4 (e.g., in a form such that the yeast growth medium contains about 0.05 to 6 mg/L, about 0.2 to 0.4 mg/L, or about 0.3 mg/L ∙5H 2 O or molar equivalents an amount of another form), Na 2 MoO 4 (e.g., in the form of ∙2H 2 O such that the yeast growth medium contains about 0.05 to 8 mg/L, about 0.3 to 0.5 mg/L, or about 0.4 mg/L, or moles An amount of another form of equivalent), H 3 BO 3 (e.g., in a form such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L H 3 BO 3 or molybdenum). molar equivalents of its salt), KI (e.g., in a form such that the yeast growth medium contains about 0.01 to 1 mg/L, about 0.05 to 0.15 mg/L, or about 0.1 mg/L of KI or molar equivalents of another iodine an amount of salt) and Na 2 EDTA∙2H 2 O (e.g., in a form such that the yeast growth medium contains about 1 to 40 mg/L, about 10 to 30 mg/L, or about 19 mg/L ∙2H 2 O or molar equivalent), or a combination thereof.

在一些實施例中,痕量金屬溶液含有FeSO 4(例如,呈使得酵母生長培養基含有0.5至10 mg/L、約2至4 mg/L或約3 mg/L之∙7H 2O形式或莫耳當量之另一形式的量)、ZnSO 4(例如,呈使得酵母生長培養基含有約1至10 mg/L、約4至5 mg/L或約4.5 mg/L之∙7H 2O形式或莫耳當量之另一形式的量)、CaCl 2(例如,呈使得酵母生長培養基含有約1至10 mg/L、約4至5 mg/L或約4.5 mg/L之∙2H 2O形式或莫耳當量之另一形式的量)、MnCl 2(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之∙4H 2O形式或莫耳當量之另一形式的量)、CoCl 2(例如,呈使得酵母生長培養基含有約0.05至6 mg/L、約0.2至0.4 mg/L或約0.3 mg/L之∙6H 2O形式或莫耳當量之另一形式的量)、CuSO 4(例如,呈使得酵母生長培養基含有約0.05至6 mg/L、約0.2至0.4 mg/L或約0.3 mg/L之∙5H 2O形式或莫耳當量之另一形式的量)、Na 2MoO 4(例如,呈使得酵母生長培養基含有約0.05至8 mg/L、約0.3至0.5 mg/L或約0.4 mg/L之∙2H 2O形式或莫耳當量之另一形式的量)、H 3BO 3(例如,呈使得酵母生長培養基含有約0.1至10 mg/L、約0.5至1.5 mg/L或約1 mg/L之量)、KI (例如,呈使得酵母生長培養基含有約0.01至1 mg/L、約0.05至0.15 mg/L或約0.1 mg/L之量)及Na 2EDTA∙2H 2O (例如,呈使得酵母生長培養基含有約1至40 mg/L、約10至30 mg/L或約19 mg/L之∙2H 2O形式或莫耳當量之另一形式的量)。 In some embodiments, the trace metal solution contains FeSO 4 (e.g., in the form of ∙7H 2 O or molybdenum such that the yeast growth medium contains 0.5 to 10 mg/L, about 2 to 4 mg/L, or about 3 mg/L an amount of another form equivalent to 100 mg/L), ZnSO 4 (e.g., in the form of ∙7H 2 O such that the yeast growth medium contains about 1 to 10 mg/L, about 4 to 5 mg/L, or about 4.5 mg/L, or molybdenum). an equivalent amount of another form), CaCl 2 (e.g., in the form of ∙2H 2 O such that the yeast growth medium contains about 1 to 10 mg/L, about 4 to 5 mg/L, or about 4.5 mg/L, or Mo an amount of another form equivalent to 1 mg/L), MnCl 2 (e.g., in the form of ∙4H 2 O such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L), or MnCl 2 an amount of another form equivalent to 100 mg/L), CoCl 2 (e.g., in the form of ∙6H 2 O such that the yeast growth medium contains about 0.05 to 6 mg/L, about 0.2 to 0.4 mg/L, or about 0.3 mg/L), or Mo An amount of another form equivalent to one ear), CuSO 4 (e.g., in the form of ∙5H 2 O such that the yeast growth medium contains about 0.05 to 6 mg/L, about 0.2 to 0.4 mg/L, or about 0.3 mg/L, or molasses An amount of ∙2H 2 O in another form that is equivalent to an ear equivalent), Na 2 MoO 4 (e.g., in the form of ∙2H 2 O such that the yeast growth medium contains about 0.05 to 8 mg/L, about 0.3 to 0.5 mg/L, or about 0.4 mg/L or another form of molar equivalents), H 3 BO 3 (e.g., in an amount such that the yeast growth medium contains about 0.1 to 10 mg/L, about 0.5 to 1.5 mg/L, or about 1 mg/L), KI (e.g., in an amount such that the yeast growth medium contains about 0.01 to 1 mg/L, about 0.05 to 0.15 mg/L, or about 0.1 mg/L) and Na 2 EDTA∙2H 2 O (e.g., in an amount such that the yeast growth medium contains An amount containing about 1 to 40 mg/L, about 10 to 30 mg/L, or about 19 mg/L of ∙2H 2 O form or another form in molar equivalents).

一些實施例包括FeSO 4∙7H 2O (例如,呈使得酵母生長培養基含有3 mg/L之量)、ZnSO 4∙7H 2O (例如,呈使得酵母生長培養基含有4.5 mg/L之量)、CaCl 2∙2H 2O (例如,呈使得酵母生長培養基含有4.5 mg/L之量)、MnCl 2∙4H 2O (例如,呈使得酵母生長培養基含有1 mg/L之量)、CoCl 2∙6H 2O (例如,呈使得酵母生長培養基含有0.3 mg/L之量)、CuSO 4∙5H 2O (例如,呈使得酵母生長培養基含有0.3 mg/L之量)、Na 2MoO 4∙2H 2O (例如,呈使得酵母生長培養基含有0.4 mg/L之量)、H 3BO 3(例如,呈使得酵母生長培養基含有1 mg/L之量)、KI (例如,呈使得酵母生長培養基含有0.1 mg/L之量)、Na 2EDTA∙2H 2O (例如,呈使得酵母生長培養基含有19 mg/L之量),或其組合。 Some examples include FeSO 4 ∙7H 2 O (e.g., in an amount such that the yeast growth medium contains 3 mg/L), ZnSO 4 ∙7H 2 O (e.g., in an amount such that the yeast growth medium contains 4.5 mg/L), CaCl 2 ∙2H 2 O (for example, in an amount such that the yeast growth medium contains 4.5 mg/L), MnCl 2 ∙4H 2 O (for example, in an amount such that the yeast growth medium contains 1 mg/L), CoCl 2 ∙6H 2 O (for example, in an amount such that the yeast growth medium contains 0.3 mg/L), CuSO 4 ∙5H 2 O (for example, in an amount such that the yeast growth medium contains 0.3 mg/L), Na 2 MoO 4 ∙2H 2 O (e.g., in an amount such that the yeast growth medium contains 0.4 mg/L), H 3 BO 3 (e.g., in an amount such that the yeast growth medium contains 1 mg/L), KI (e.g., in an amount such that the yeast growth medium contains 0.1 mg /L), Na 2 EDTA∙2H 2 O (e.g., in an amount such that the yeast growth medium contains 19 mg/L), or a combination thereof.

一些實施例包括FeSO 4∙7H 2O (例如,呈使得酵母生長培養基含有3 mg/L之量)、ZnSO 4∙7H 2O (例如,呈使得酵母生長培養基含有4.5 mg/L之量)、CaCl 2∙2H 2O (例如,呈使得酵母生長培養基含有4.5 mg/L之量)、MnCl 2∙4H 2O (例如,呈使得酵母生長培養基含有1 mg/L之量)、CoCl 2∙6H 2O (例如,呈使得酵母生長培養基含有0.3 mg/L之量)、CuSO 4∙5H 2O (例如,呈使得酵母生長培養基含有0.3 mg/L之量)、Na 2MoO 4∙2H 2O (例如,呈使得酵母生長培養基含有0.4 mg/L之量)、H 3BO 3(例如,呈使得酵母生長培養基含有1 mg/L之量)、KI (例如,呈使得酵母生長培養基含有0.1 mg/L之量)及Na 2EDTA∙2H 2O (例如,呈使得酵母生長培養基含有19 mg/L之量)。 Some examples include FeSO 4 ∙7H 2 O (e.g., in an amount such that the yeast growth medium contains 3 mg/L), ZnSO 4 ∙7H 2 O (e.g., in an amount such that the yeast growth medium contains 4.5 mg/L), CaCl 2 ∙2H 2 O (for example, in an amount such that the yeast growth medium contains 4.5 mg/L), MnCl 2 ∙4H 2 O (for example, in an amount such that the yeast growth medium contains 1 mg/L), CoCl 2 ∙6H 2 O (for example, in an amount such that the yeast growth medium contains 0.3 mg/L), CuSO 4 ∙5H 2 O (for example, in an amount such that the yeast growth medium contains 0.3 mg/L), Na 2 MoO 4 ∙2H 2 O (e.g., in an amount such that the yeast growth medium contains 0.4 mg/L), H 3 BO 3 (e.g., in an amount such that the yeast growth medium contains 1 mg/L), KI (e.g., in an amount such that the yeast growth medium contains 0.1 mg /L) and Na 2 EDTA∙2H 2 O (for example, in an amount such that the yeast growth medium contains 19 mg/L).

ALE之組合物之pH可用KOH或另一鹼調節至約4-6,諸如約5,且例如用檸檬酸及/或磷酸鹽緩衝液,諸如97 mL/L 0.5 M檸檬酸及103 mL/L之1 M Na 2HPO 4緩衝。 The pH of the composition of ALE can be adjusted to about 4-6, such as about 5, with KOH or another base, and, for example, with citric acid and/or phosphate buffer, such as 97 mL/L 0.5 M citric acid and 103 mL/L of 1 M Na 2 HPO 4 buffer.

為了製備對丙烯酸具有改良耐受性之酵母,使ALE之組合物中之酵母在丙烯酸之存在下繁殖。一般而言,ALE製程以較低濃度之丙烯酸開始,且隨時間推移逐漸增加丙烯酸之濃度以促進對丙烯酸具有增加之耐受性的新酵母生物體之演變。In order to prepare yeast with improved tolerance to acrylic acid, the yeast in the composition of ALE is propagated in the presence of acrylic acid. Generally, the ALE process starts with lower concentrations of acrylic acid and gradually increases the concentration of acrylic acid over time to promote the evolution of new yeast organisms with increased tolerance to acrylic acid.

初始ALE組合物中之酵母之量可為任何適合量。酵母濃度可適宜地藉由OD600定量,該OD600為ALE組合物在600 nm波長下之光學密度。在一些實施例中,初始ALE組合物之OD600為約0.01至0.1、約0.01至0.03、約0.03至0.06、約0.06至0.1、約0.04至0.06或約0.05。The amount of yeast in the initial ALE composition can be any suitable amount. Yeast concentration may suitably be quantified by OD600, which is the optical density of the ALE composition at a wavelength of 600 nm. In some embodiments, the initial ALE composition has an OD600 of about 0.01 to 0.1, about 0.01 to 0.03, about 0.03 to 0.06, about 0.06 to 0.1, about 0.04 to 0.06, or about 0.05.

ALE製程通常以對酵母略微耐受之丙烯酸濃度開始,諸如至少約0.05 g/L、約0.05至1 g/L、約0.1至0.3 g/L、約0.3至0.6 g/L、約0.6至1 g/L、約0.05至0.1 g/L、約0.1至0.2 g/L、約0.2至0.3 g/L、約0.3至0.4 g/L、約0.4至0.5、約0.5至0.6 g/L、約0.6至0.7 g/L、約0.7至0.8 g/L、約0.8至0.9 g/L或約0.9至1 g/L。The ALE process typically begins with an acrylic acid concentration that is slightly tolerant to yeast, such as at least about 0.05 g/L, about 0.05 to 1 g/L, about 0.1 to 0.3 g/L, about 0.3 to 0.6 g/L, about 0.6 to 1 g/L, about 0.05 to 0.1 g/L, about 0.1 to 0.2 g/L, about 0.2 to 0.3 g/L, about 0.3 to 0.4 g/L, about 0.4 to 0.5, about 0.5 to 0.6 g/L, about 0.6 to 0.7 g/L, about 0.7 to 0.8 g/L, about 0.8 to 0.9 g/L, or about 0.9 to 1 g/L.

在ALE製程期間,使ALE之組合物中的酵母繁殖。此可在任何適合的溫度下發生,諸如在約1℃至200℃、約5℃至100℃、約100℃至150℃、約150℃至200℃、約1℃至10℃、約10℃至20℃、約20℃至30℃、約25℃至35℃、約30℃至40℃、約40℃至60℃、約60℃至80℃或約80℃至100℃之溫度下發生。During the ALE process, the yeast in the ALE composition is propagated. This can occur at any suitable temperature, such as at about 1°C to 200°C, about 5°C to 100°C, about 100°C to 150°C, about 150°C to 200°C, about 1°C to 10°C, about 10°C Occurs at a temperature of 20°C, about 20°C to 30°C, about 25°C to 35°C, about 30°C to 40°C, about 40°C to 60°C, about 60°C to 80°C, or about 80°C to 100°C.

丙烯酸之增加可藉由逐步連續方法(例如隨時間推移連續添加少量丙烯酸)或藉由逐步方法(例如以精密間隔添加增加量之丙烯酸)進行,但在逐步方法中,丙烯酸之間隔及量可自一種添加變化為另一種添加。The addition of acrylic acid can be done by a stepwise continuous method (e.g., adding small amounts of acrylic acid continuously over time) or by a stepwise method (e.g., adding increasing amounts of acrylic acid at precise intervals), but in a stepwise method, the intervals and amounts of acrylic acid can be varied freely. One addition changes to another.

丙烯酸濃度之增加速率可為經24小時時段之任何適合速率,諸如約0.005至0.5 g/L、約0.005至0.01 g/L、約0.01至0.02 g/L、約0.02至0.03 g/L、約0.03至0.04 g/L、約0.04至0.05 g/L、約0.05至0.06 g/L、約0.06至0.07 g/L、約0.07至0.08 g/L、約0.08至0.09 g/L、約0.09至0.1 g/L、約0.1至0.2 g/L、約0.2至0.3 g/L、約0.3至0.4 g/L或約0.4至0.5 g/L,或經較長或較短時段之等效速率。舉例而言,經24小時時段之0.005至0.5 g/L將等效於經12小時時段之0.0025至0.25 g/L或經48小時時段之0.01至1 g/L。The rate of increase in acrylic acid concentration can be any suitable rate over a 24-hour period, such as about 0.005 to 0.5 g/L, about 0.005 to 0.01 g/L, about 0.01 to 0.02 g/L, about 0.02 to 0.03 g/L, about 0.03 to 0.04 g/L, about 0.04 to 0.05 g/L, about 0.05 to 0.06 g/L, about 0.06 to 0.07 g/L, about 0.07 to 0.08 g/L, about 0.08 to 0.09 g/L, about 0.09 to 0.1 g/L, about 0.1 to 0.2 g/L, about 0.2 to 0.3 g/L, about 0.3 to 0.4 g/L, or about 0.4 to 0.5 g/L, or equivalent rates over a longer or shorter period of time. For example, 0.005 to 0.5 g/L over a 24-hour period would be equivalent to 0.0025 to 0.25 g/L over a 12-hour period or 0.01 to 1 g/L over a 48-hour period.

對於丙烯酸之連續添加,丙烯酸濃度之增加速率可為例如58至5787 ng∙L -1∙s -1、約58至116 ng∙L -1∙s -1、約116至231 ng∙L -1∙s -1、約231至347 ng∙L -1∙s -1、約347至463 ng∙L -1∙s -1、約463至579 ng∙L -1∙s -1、約579至694 ng∙L -1∙s -1、約694至810 ng∙L -1∙s -1、約810至926 ng∙L -1∙s -1、約926至1042 ng∙L -1∙s -1、約1042至1157 ng∙L -1∙s -1、約1157至2315 ng∙L -1∙s -1、約2315至3472 ng∙L -1∙s -1、約3472至4630 ng∙L -1∙s -1或約4630至5787 ng∙L -1∙s -1For the continuous addition of acrylic acid, the increase rate of acrylic acid concentration may be, for example, 58 to 5787 ng∙L -1 ∙s -1 , about 58 to 116 ng∙L -1 ∙s -1 , or about 116 to 231 ng∙L -1 ∙s -1 , about 231 to 347 ng∙L -1 ∙s -1 , about 347 to 463 ng∙L -1 ∙s -1 , about 463 to 579 ng∙L -1 ∙s -1 , about 579 to 694 ng∙L -1 ∙s -1 , approximately 694 to 810 ng∙L -1 ∙s -1 , approximately 810 to 926 ng∙L -1 ∙s -1 , approximately 926 to 1042 ng∙L -1 ∙s -1 , about 1042 to 1157 ng∙L -1 ∙s -1 , about 1157 to 2315 ng∙L -1 ∙s -1 , about 2315 to 3472 ng∙L -1 ∙s -1 , about 3472 to 4630 ng ∙L -1 ∙s -1 or approximately 4630 to 5787 ng∙L -1 ∙s -1 .

對於丙烯酸之逐步添加,丙烯酸之濃度可以任何適合之間隔增加,諸如至少1小時、約1小時至約4週、約1至200小時、約1至8小時、約8至16小時、約16至24小時、約24至30小時、約30至36小時、約36至48小時、約48至72小時、約72至96小時、約1至7天、約7至14天、約2至4週、約20至30小時或約24小時。For stepwise additions of acrylic acid, the concentration of acrylic acid can be increased at any suitable interval, such as at least 1 hour, about 1 hour to about 4 weeks, about 1 to 200 hours, about 1 to 8 hours, about 8 to 16 hours, about 16 to 24 hours, about 24 to 30 hours, about 30 to 36 hours, about 36 to 48 hours, about 48 to 72 hours, about 72 to 96 hours, about 1 to 7 days, about 7 to 14 days, about 2 to 4 weeks , about 20 to 30 hours or about 24 hours.

對於以24小時間隔添加丙烯酸,丙烯酸之增加可為任何適合量,諸如約0.005至0.5 g/L、約0.005至0.01 g/L、約0.01至0.02 g/L、約0.02至0.03 g/L、約0.03至0.04 g/L、約0.04至0.05 g/L、約0.05至0.06 g/L、約0.06至0.07 g/L、約0.07至0.08 g/L、約0.08至0.09 g/L、約0.09至0.1 g/L、約0.1至0.2 g/L、約0.2至0.3 g/L、約0.3至0.4 g/L或約0.4至0.5 g/L。對於其他間隔,丙烯酸之增加可處於上述範圍中之任一者內,適當增加或減少至等效增加速率。舉例而言,經24小時時段之0.005至0.5 g/L將等效於經12小時時段之0.0025至0.25 g/L或經48小時時段之0.01至1 g/L。For adding acrylic acid at 24 hour intervals, the increase in acrylic acid can be any suitable amount, such as about 0.005 to 0.5 g/L, about 0.005 to 0.01 g/L, about 0.01 to 0.02 g/L, about 0.02 to 0.03 g/L, About 0.03 to 0.04 g/L, about 0.04 to 0.05 g/L, about 0.05 to 0.06 g/L, about 0.06 to 0.07 g/L, about 0.07 to 0.08 g/L, about 0.08 to 0.09 g/L, about 0.09 to 0.1 g/L, about 0.1 to 0.2 g/L, about 0.2 to 0.3 g/L, about 0.3 to 0.4 g/L, or about 0.4 to 0.5 g/L. For other intervals, the increase in acrylic acid can be within any of the above ranges, appropriately increased or decreased to an equivalent increase rate. For example, 0.005 to 0.5 g/L over a 24-hour period would be equivalent to 0.0025 to 0.25 g/L over a 12-hour period or 0.01 to 1 g/L over a 48-hour period.

逐步添加丙烯酸可在一系列繁殖循環中進行。繁殖循環包含增加丙烯酸之濃度、添加額外酵母生長培養基及允許酵母再次繁殖。可進行任何適合量之繁殖循環,諸如額外1至100、1至10、10至20、20至30、30至40、40至50、50至60、60至70、70至80、80至90或90至100個繁殖循環。額外繁殖循環為丙烯酸濃度之第一次增加、額外酵母生長培養基之添加及允許酵母在已使酵母在初始條件下繁殖持續一間隔之後繁殖。繁殖循環可經任何適合之時段進行,諸如至少1小時、約1小時至約4週、約1至200小時、約1至8小時、約8至16小時、約16至24小時、約24至30小時、約30至36小時、約36至48小時、約48至72小時、約72至96小時、約1至7天、約7至14天、約2至4週、約20至30小時或約24小時。Gradual addition of acrylic can be done in a series of breeding cycles. The propagation cycle involves increasing the concentration of acrylic acid, adding additional yeast growth medium, and allowing the yeast to propagate again. Any suitable number of breeding cycles may be performed, such as additional 1 to 100, 1 to 10, 10 to 20, 20 to 30, 30 to 40, 40 to 50, 50 to 60, 60 to 70, 70 to 80, 80 to 90 Or 90 to 100 reproductive cycles. The additional propagation cycle is the first increase in acrylic acid concentration, the addition of additional yeast growth medium, and allowing the yeast to propagate after an interval in which the yeast has been allowed to propagate under initial conditions. The breeding cycle can be performed over any suitable period of time, such as at least 1 hour, about 1 hour to about 4 weeks, about 1 to 200 hours, about 1 to 8 hours, about 8 to 16 hours, about 16 to 24 hours, about 24 to 30 hours, about 30 to 36 hours, about 36 to 48 hours, about 48 to 72 hours, about 72 to 96 hours, about 1 to 7 days, about 7 to 14 days, about 2 to 4 weeks, about 20 to 30 hours Or about 24 hours.

雖然可以多種方式進行繁殖循環,但在一些實施例中,將一體積之ALE組合物例如藉由轉移而稀釋至具有較高丙烯酸濃度之新鮮培養基中,諸如丙烯酸之增加量對應於上述段落中所敍述之丙烯酸濃度之增加速率。可進行稀釋以達成某一酵母水平,諸如與OD600相關之酵母水平為約0.01至0.2、約0.01至0.05、約0.05至0.1、約0.1至0.15、約0.15至2、約0.08至0.12或約0.1。Although the propagation cycle can be performed in a variety of ways, in some embodiments, a volume of the ALE composition is diluted, such as by transfer, into fresh medium with a higher acrylic acid concentration, such as an increase in acrylic acid corresponding to that described in the above paragraph. State the rate of increase in acrylic acid concentration. Dilutions can be made to achieve a yeast level, such as a yeast level associated with an OD600 of about 0.01 to 0.2, about 0.01 to 0.05, about 0.05 to 0.1, about 0.1 to 0.15, about 0.15 to 2, about 0.08 to 0.12, or about 0.1 .

可繼續ALE直至達成所要程度之丙烯酸耐受性。在一些實施例中,在進行約5至20、約5至10、約10至15或約15至20個繁殖循環之後停止ALE而酵母生長速率無可觀測的增加。在一些實施例中,在生長速率不存在可觀測的增加持續約3至28天、約7至21天、約12至16天或約14天之後停止ALE。ALE can be continued until the desired level of acrylic tolerance is achieved. In some embodiments, ALE is discontinued after about 5 to 20, about 5 to 10, about 10 to 15, or about 15 to 20 propagation cycles without an observable increase in yeast growth rate. In some embodiments, ALE is stopped after there is no observable increase in growth rate for about 3 to 28 days, about 7 to 21 days, about 12 to 16 days, or about 14 days.

一些實施例包括一種製備對丙烯酸具有改良耐受性之酵母的方法,其包含允許酵母在丙烯酸之存在下繁殖。在一些實施例中,使酵母在存在至少0.05 g/L丙烯酸之情況下繁殖。在一些實施例中,在已使酵母在丙烯酸之存在下繁殖至少約1小時之後增加丙烯酸之濃度。關於上述實施例中之任一者,在一些實施例中,該方法進一步包含執行至少一個額外繁殖循環,其中繁殖循環包含:增加丙烯酸之濃度、添加額外酵母生長培養基及允許酵母再次繁殖。在一些實施例中,進行額外1至100個繁殖循環。在一些實施例中,進行額外30至40個繁殖循環。關於此段落中之上述任何實施例,在一些實施例中,使酵母在約5℃至約100℃之溫度下繁殖。關於此段落中之上述任何實施例,在一些實施例中,使酵母在各繁殖循環中繁殖約1小時至約200小時。關於此段落中之上述任何實施例,在一些實施例中,使酵母在各繁殖循環中繁殖約20小時至約30小時。關於此段落中之上述任何實施例,在一些實施例中,在兩週時段期間生長速率不存在可觀測的增加之後停止繁殖循環。Some embodiments include a method of preparing yeast with improved tolerance to acrylic acid, comprising allowing the yeast to propagate in the presence of acrylic acid. In some embodiments, yeast is propagated in the presence of at least 0.05 g/L acrylic acid. In some embodiments, the concentration of acrylic acid is increased after the yeast has been allowed to propagate in the presence of acrylic acid for at least about 1 hour. Regarding any of the above embodiments, in some embodiments, the method further includes performing at least one additional propagation cycle, wherein the propagation cycle includes increasing the concentration of acrylic acid, adding additional yeast growth medium, and allowing the yeast to propagate again. In some embodiments, an additional 1 to 100 breeding cycles are performed. In some embodiments, an additional 30 to 40 breeding cycles are performed. Regarding any of the above embodiments in this paragraph, in some embodiments, the yeast is propagated at a temperature of about 5°C to about 100°C. With respect to any of the above embodiments in this paragraph, in some embodiments, the yeast is propagated for about 1 hour to about 200 hours in each propagation cycle. With respect to any of the above embodiments in this paragraph, in some embodiments, the yeast is propagated for about 20 hours to about 30 hours in each propagation cycle. With regard to any of the above embodiments in this paragraph, in some embodiments, the reproduction cycle is stopped after there is no observable increase in growth rate during a two-week period.

本文所描述之方法可用於製備經改變酵母,諸如對丙烯酸具有耐受性之酵母(例如釀酒酵母)。在一些實施例中,此類酵母包含具有並非天然存在之基因突變或改造的酵母,其中該酵母具有當該酵母在600 nm下於參考丙烯酸組合物中之光學密度為0.2時,該酵母繁殖以使得該酵母之光學密度在30小時內自0.2增加至0.4的特性,其中該參考丙烯酸組合物由以下組成:1.8 g/L丙烯酸、20 g/L葡萄糖、5 g/L (NH 4) 2SO 4、3 g/L KH 2PO 4、0.5 g/L MgSO 4•7H 2O、50 μg/L d-生物素、1 mg/L D-泛酸半鈣鹽、1 mg/L硫胺素-HCl、1 mg/L吡哆醇-HCl、1 mg/L菸鹼酸、0.2 mg/L 4-胺基苯甲酸、25 mg/L m-肌醇、3 mg/L FeSO 4∙7H 2O、4.5 mg/L ZnSO 4∙7H 2O、4.5 mg/L CaCl 2∙2H 2O、1 mg/L MnCl 2∙4H 2O、0.3 mg/L CoCl 2∙6H 2O、0.3 mg/L CuSO 4∙5H 2O、0.4 mg/L Na 2MoO 4∙2H 2O、1 mg/L H 3BO 3、0.1 mg/L KI及19 mg/L Na 2EDTA∙2H 2O。 The methods described herein can be used to prepare altered yeast, such as yeast that is tolerant to acrylic acid (eg, Saccharomyces cerevisiae). In some embodiments, such yeast comprises yeast having a genetic mutation or modification that is not naturally occurring, wherein the yeast has an optical density of 0.2 in a reference acrylic composition when the yeast has an optical density of 0.2 at 600 nm. Characteristics that cause the optical density of the yeast to increase from 0.2 to 0.4 within 30 hours, wherein the reference acrylic acid composition consists of the following: 1.8 g/L acrylic acid, 20 g/L glucose, 5 g/L (NH 4 ) 2 SO 4 , 3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 •7H 2 O, 50 μg/L d-biotin, 1 mg/L D-pantothenic acid hemicalcium salt, 1 mg/L thiamine- HCl, 1 mg/L pyridoxine-HCl, 1 mg/L nicotinic acid, 0.2 mg/L 4-aminobenzoic acid, 25 mg/L m-inositol, 3 mg/L FeSO 4 ∙7H 2 O , 4.5 mg/L ZnSO 4 ∙7H 2 O, 4.5 mg/L CaCl 2 ∙2H 2 O, 1 mg/L MnCl 2 ∙4H 2 O, 0.3 mg/L CoCl 2 ∙6H 2 O, 0.3 mg/L CuSO 4 ∙5H 2 O, 0.4 mg/L Na 2 MoO 4 ∙2H 2 O, 1 mg/LH 3 BO 3 , 0.1 mg/L KI and 19 mg/L Na 2 EDTA∙2H 2 O.

本文所描述之酵母可適用於諸如藉由在酵母之存在下使羥基丙酸醱酵來製備丙烯酸。The yeast described herein may be suitable for use in the production of acrylic acid, such as by fermenting hydroxypropionic acid in the presence of yeast.

在一些實施例中,經基因改造或突變之酵母不產生式R-(C=O)-COA之醯基-CoA化合物,其中R為具有5個原子或更少之碳鏈。In some embodiments, genetically modified or mutated yeast does not produce acyl-CoA compounds of the formula R-(C=O)-COA, where R is a carbon chain of 5 atoms or less.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對下表1中之蛋白質或肽中之一者的胺基酸序列之改造。 1. 蛋白質或肽 縮寫 乙酸CoA-轉移酶及乙醯基-CoA水解酶 ACH1 PDR12之轉錄因子 WAR1 Na+/H+反向轉運蛋白 NHA1 鉀離子跨膜轉運體 TRK1 醛去氫酶 ALD3 質膜ATP酶 PMA1 肝醣核心蛋白葡萄糖基移酶 GLG2 粒線體膜間隙CX(n)C模體蛋白 MIX23 固醇3-β-葡萄糖基移酶 ATG26 Arf蛋白質之鳥嘌呤核苷酸交換因子(GEF) SYT1 質膜低葡萄糖感測器 SNF3 亞銻酸鹽及亞砷酸鹽跨膜轉運體 ARR3 轉運蛋白粒子(TRAPP)複合物I、II及IV之核心組分 TRS33 G蛋白偶聯受體 GPR1 粒線體中間肽酶 OCT1 主要易化子超家族之多元胺轉運體 TPO1 L-高絲胺酸-O-乙醯轉移酶 MET2 RNA聚合酶III亞單位C82 RPC82 In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has a modification in its genome that produces an amino acid sequence that is resistant to one of the proteins or peptides in Table 1 below. Transformation. Table 1. protein or peptide Abbreviation Acetate-CoA-transferase and acetyl-CoA hydrolase ACH1 PDR12 transcription factor WAR1 Na+/H+ antiporter NHA1 Potassium ion transmembrane transporter TRK1 aldehyde dehydrogenase ALD3 plasma membrane ATPase PMA1 glycogen core protein glucosyltransferase GLG2 Mitochondrial intermembrane space CX(n)C motif protein MIX23 Sterol 3-beta-glucosyltransferase ATG26 Arf protein guanine nucleotide exchange factor (GEF) SYT1 Plasma membrane low glucose sensor SNF3 Antimonite and arsenite transmembrane transporter ARR3 Core components of transport protein particle (TRAPP) complexes I, II and IV TRS33 G protein coupled receptor GPR1 mitochondrial intermediate peptidase OCT1 Major facilitator superfamily of polyamine transporters TPO1 L-homoserine-O-acetyltransferase MET2 RNA polymerase III subunit C82 RPC82

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1之胺基酸序列之改造,諸如:R334G、A367T、T383K、V353F、G393E、fsN137、H439Y、Q275K或其組合;或對WAR1之胺基酸序列之改造,諸如W936L。In some embodiments, the yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae having modifications to its genome that result in modifications to the amino acid sequence of ACH1, such as: R334G, A367T, T383K, V353F , G393E, fsN137, H439Y, Q275K or combinations thereof; or modification of the amino acid sequence of WAR1, such as W936L.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對NHA1之胺基酸序列之改造,諸如:H164D、E290K或其組合;或對TRK1之胺基酸序列之改造,諸如:S144F、R8975、N750K、P11635、L764F或其組合。In some embodiments, the yeast with increased tolerance to acrylic acid can be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequence of NHA1, such as: H164D, E290K, or a combination thereof; Or modification of the amino acid sequence of TRK1, such as: S144F, R8975, N750K, P11635, L764F or combinations thereof.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ALD3之胺基酸序列之改造,諸如F295L;對PMA1之胺基酸序列之改造,諸如D591V;對GLG2之胺基酸序列之改造,諸如Q144P;對MIX23之胺基酸序列之改造,諸如T17K;對ATG26之胺基酸序列之改造,諸如Y599C;對SYT1之胺基酸序列之改造,諸如E126V;或對SNF3之胺基酸序列之改造,諸如V509I。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequence of ALD3, such as F295L; to the amino acid sequence of PMA1 Sequence modification, such as D591V; modification of the amino acid sequence of GLG2, such as Q144P; modification of the amino acid sequence of MIX23, such as T17K; modification of the amino acid sequence of ATG26, such as Y599C; modification of the amine of SYT1 Modification of the amino acid sequence, such as E126V; or modification of the amino acid sequence of SNF3, such as V509I.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ARR3之胺基酸序列之改造,諸如N401K;對TRS33之胺基酸序列之改造,諸如T178K;對GPR1之胺基酸序列之改造,諸如A622E或A622P;對OCT1之胺基酸序列之改造,諸如R90P。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequence of ARR3, such as N401K; to the amino acid sequence of TRS33 Modification of the sequence, such as T178K; modification of the amino acid sequence of GPR1, such as A622E or A622P; modification of the amino acid sequence of OCT1, such as R90P.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對TPO1之胺基酸序列之改造,諸如V256F;或對MET2之胺基酸序列之改造,諸如Q343K、H372L或其組合。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequence of TPO1, such as V256F; or to the amine group of MET2 Modification of acid sequences, such as Q343K, H372L or combinations thereof.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對RPC82之胺基酸序列之改造,諸如D84G。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has a modification in its genome that results in a modification of the amino acid sequence of RPC82, such as D84G.

在對胺基酸序列之上述改造中,標號指示胺基酸變化之位置且哪個胺基酸置換原始肽中之胺基酸。舉例而言,改造R334G至ACH1意謂在ACH1中,第334胺基酸在經改造酵母中自野生型之精胺酸(R)變為甘胺酸(G)。胺基酸之符號展示於下表2中。改造fsN137至ACH1意謂自肽序列缺失第137胺基酸(其為天冬醯胺(N))。 2. 胺基酸 符號 丙胺酸 A 精胺酸 R 天冬醯胺 N 天冬胺酸 D 半胱胺酸 C 麩醯胺酸 Q 麩胺酸 E 甘胺酸 G 組胺酸 H 異白胺酸 I 白胺酸 L 離胺酸 K 甲硫胺酸 M 苯丙胺酸 F 脯胺酸 P 絲胺酸 S 蘇胺酸 T 色胺酸 W 酪胺酸 Y 纈胺酸 V In the above modifications to the amino acid sequence, the numbers indicate the position of the amino acid change and which amino acid replaced the amino acid in the original peptide. For example, modifying R334G to ACH1 means that the 334th amino acid in ACH1 is changed from wild-type arginine (R) to glycine (G) in modified yeast. The symbols of the amino acids are shown in Table 2 below. Transforming fsN137 to ACH1 means deleting amino acid 137 (which is asparagine (N)) from the peptide sequence. Table 2. amino acids symbol alanine A Arginine R asparagine N aspartic acid D cysteine C Glutamine Q glutamate E glycine G Histidine H isoleucine I Leucine L lysine K methionine M Phenylalanine F proline P serine S threonine T Tryptophan W tyrosine Y Valine V

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1或WAR1之胺基酸序列之改造;及對NHA1或TRK1之胺基酸序列之改造,諸如:S144F、R8975、N750K、P11635、L764F或其組合。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae having modifications to its genome that result in modifications to the amino acid sequence of ACH1 or WAR1; and to amines of NHA1 or TRK1 Modification of amino acid sequences, such as: S144F, R8975, N750K, P11635, L764F or combinations thereof.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1及NHA1之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1 and NHA1.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1及ALD3之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1 and ALD3.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、PMA1及ARR3之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, PMA1, and ARR3.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1及TRK1之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1 and TRK1.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、TRK1、GLG2及TR533之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, TRK1, GLG2, and TR533.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、NHA1、MIX23、GPR1、TPO1及RPC82之胺基酸序列之改造。In some embodiments, the yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae having modifications to its genome that result in modifications to the amino acid sequences of ACH1, NHA1, MIX23, GPR1, TPO1, and RPC82 .

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、TRK1及ATG26之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, TRK1, and ATG26.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、TRK1、ATG26及GPR1之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, TRK1, ATG26, and GPR1.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、NHA1及SYT1之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, NHA1, and SYT1.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對WAR1及TRK1之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of WAR1 and TRK1.

在一些實施例中,對丙烯酸具有增加之耐受性的酵母可為使其基因體具有改造之釀酒酵母,該改造產生對ACH1、TRK1、SNF3、OCT1及MET2之胺基酸序列之改造。In some embodiments, a yeast with increased tolerance to acrylic acid may be Saccharomyces cerevisiae that has modifications to its genome that result in modifications to the amino acid sequences of ACH1, TRK1, SNF3, OCT1, and MET2.

在上述實施例中,除所描述之改造以外,經改造之釀酒酵母可與野生型釀酒酵母具有至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%同源性,至多100%同源性。 3.對釀酒酵母之核酸及蛋白質改造的序列資訊 基因體基因座 改造 野生型蛋白質 改造 Chr II, 194944 (Seq. ID 1) 野生型 ACH1 (Seq. ID 2) 野生型 Chr II, 194944 A1000G ACH1 R334G Chr II, 194944 G1099A ACH1  A367T Chr II, 194944 C1148A ACH1  T383K Chr II, 194944 G1057T ACH1  V353F Chr II, 194944 G1178A ACH1  G393E Chr II, 194944 C411缺失 ACH1  fsN137 Chr II, 194944 C1315T ACH1  H439Y Chr II, 194944 C823A ACH1  Q275K Chr XIII, 112541 (Seq. ID 3) 野生型 WAR1 (Seq. ID 4) 野生型 Chr XIII, 112541 G2807T WAR1 W936L Chr XII, 419304 (Seq. ID 5) 野生型 NHA1 (Seq. ID 6) 野生型 Chr XII, 419304 C490G NHA1 H164D Chr XII, 419304 G868A NHA1 E290K Chr X, 173820 (Seq. ID 7) 野生型  TRK1 (Seq. ID 8) 野生型 Chr X, 173820 C431T TRK1 S144F Chr X, 173820 C2689A TRK1 R8975 Chr X, 173820 C2250G TRK1 N750K Chr X, 173820 C3487T TRK1 P11635 Chr X, 173820 A2292T TRK1 L764F In the above embodiments, in addition to the described modifications, the modified Saccharomyces cerevisiae may have at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least the same characteristics as wild-type Saccharomyces cerevisiae. 99% homology, up to 100% homology. Table 3. Sequence information for nucleic acid and protein modifications in Saccharomyces cerevisiae genome locus Transformation wild type protein Transformation Chr II, 194944 (Seq. ID 1) Wild type ACH1 (Seq. ID 2) Wild type Chr II, 194944 A1000G ACH1 R334G Chr II, 194944 G1099A ACH1 A367T Chr II, 194944 C1148A ACH1 T383K Chr II, 194944 G1057T ACH1 V353F Chr II, 194944 G1178A ACH1 G393E Chr II, 194944 C411 missing ACH1 fsN137 Chr II, 194944 C1315T ACH1 H439Y Chr II, 194944 C823A ACH1 Q275K Chr XIII, 112541 (Seq. ID 3) Wild type WAR1 (Seq. ID 4) Wild type Chr XIII, 112541 G2807T WAR1 W936L Chr XII, 419304 (Seq. ID 5) Wild type NHA1 (Seq. ID 6) Wild type Chr XII, 419304 C490G NHA1 H164D Chr XII, 419304 G868A NHA1 E290K Chr X, 173820 (Seq. ID 7) Wild type TRK1 (Seq. ID 8) Wild type Chr X, 173820 C431T TRK1 S144F Chr X, 173820 C2689A TRK1 R8975 Chr X, 173820 C2250G TRK1 N750K Chr X, 173820 C3487T TRK1 P11635 Chr X, 173820 A2292T TRK1 L764F

在表3中,改造標號與用於肽之標號類似。舉例而言,「A1000G」意謂腺嘌呤(A) (第1000核苷酸)經鳥嘌呤(G)置換。上表中所列之其他核苷酸為胞嘧啶(C)及胸腺嘧啶(T)。In Table 3, the engineering designations are similar to those used for peptides. For example, "A1000G" means that adenine (A) (the 1000th nucleotide) is replaced by guanine (G). The other nucleotides listed in the table above are cytosine (C) and thymine (T).

涵蓋以下實施例: 實施例 1.一種組合物,其包含酵母、丙烯酸及酵母生長培養基。 實施例 2.如實施例1之組合物,其中該酵母生長培養基包含酵母提取物。 實施例 3.如實施例1或2之組合物,其中該酵母生長培養基包含碳水化合物。 實施例 4.如實施例1、2或3之組合物,其中該酵母生長培養基包含肽。 實施例 5.如實施例1、2、3或4之組合物,其中該酵母生長培養基包含抗生素。 實施例 6.如實施例1、2、3、4或5之組合物,其中該酵母生長培養基包含磷酸鹽或硫酸鹽。 實施例 7.如實施例1、2、3、4、5或6之組合物,其中該酵母生長培養基包含緩衝液。 實施例 8.一種製備對丙烯酸具有改良耐受性之酵母的方法,其包含允許酵母在丙烯酸之存在下繁殖。 實施例 9.如實施例8之方法,其中使該酵母在存在至少0.05 g/L丙烯酸之情況下繁殖。 實施例 10.如實施例8或9之方法,其中在已使該酵母在丙烯酸之存在下繁殖至少約1小時之後增加該丙烯酸之濃度。 實施例 11.如實施例8、9或10之方法,其進一步包含進行至少一個額外繁殖循環,其中繁殖循環包含:增加丙烯酸之濃度、添加額外酵母生長培養基及允許該酵母再次繁殖。 實施例 12.如實施例11之方法,其中進行額外1至100個繁殖循環。 實施例 13.如實施例12之方法,其中進行額外30至40個繁殖循環。 實施例 14.如實施例8、9、10、11、12或13之方法,其中使該酵母在約5℃至約100℃之溫度下繁殖。 實施例 15.如實施例11、12、13或14之方法,其中使該酵母在各繁殖循環中繁殖約1小時至約200小時。 實施例 16.如實施例15之方法,其中使該酵母在各繁殖循環中繁殖約20小時至約30小時。 實施例 17.如實施例11、12、13、14、15或16之方法,其中在兩週時段期間生長速率不存在可觀測的增加之後停止該繁殖循環。 實施例 18.一種酵母,其藉由如實施例8、9、10、11、12、13、14、15、16或17之方法製備。 實施例 19.一種對丙烯酸具有耐受性之酵母,其包含具有非天然存在之基因突變或改造的酵母,其中該酵母具有當該酵母在600 nm下於參考丙烯酸組合物中之光學密度為0.2時,該酵母繁殖以使得該酵母之該光學密度在30小時內自0.2增加至0.4的特性,其中該參考丙烯酸組合物由以下組成:1.8 g/L丙烯酸、20 g/L葡萄糖、5 g/L (NH 4) 2SO 4、3 g/L KH 2PO 4、0.5 g/L MgSO 4•7H 2O、50 μg/L d-生物素、1 mg/L D-泛酸半鈣鹽、1 mg/L硫胺素-HCl、1 mg/L吡哆醇-HCl、1 mg/L菸鹼酸、0.2 mg/L 4-胺基苯甲酸、25 mg/L m-肌醇、3 mg/L FeSO 4∙7H 2O、4.5 mg/L ZnSO 4∙7H 2O、4.5 mg/L CaCl 2∙2H 2O、1 mg/L MnCl 2∙4H 2O、0.3 mg/L CoCl 2∙6H 2O、0.3 mg/L CuSO 4∙5H 2O、0.4 mg/L Na 2MoO 4∙2H 2O、1 mg/L H 3BO 3、0.1 mg/L KI及19 mg/L Na 2EDTA∙2H 2O。 實施例 20.一種經基因改造之釀酒酵母,其具有使得該釀酒酵母合成以下的對野生型之基因體之改造:經改造之ACH1、WAR1、NHA1、TRK1、ALD3、PMA1、GLG2、MIX23、ATG26、SYT1、SNF3、ARR3、TRS33、GPR1、OCT1、TPO1、MET2、RPC82或其組合。 實施例 21.如實施例20之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之ACH1的對野生型之基因體之改造。 實施例 22.如實施例21之經基因改造之釀酒酵母,其中該經改造之ACH1包含為R334G、A367T、T383K、V353F、G393E、fsN137、H439Y、Q275K或其組合之變化。 實施例 23.如實施例20、21或22之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之WAR1的對野生型之基因體之改造。 實施例 24.如實施例23之經基因改造之釀酒酵母,其中該經改造之WAR1包含為W936L之變化。 實施例 25.如實施例20、21、22、23或24之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之NHA1的對野生型之基因體之改造。 實施例 26.如實施例25之經基因改造之釀酒酵母,其中該經改造之ACH1包含為H164D、E290K或其組合之變化。 實施例 27.如實施例20、21、22、23、24、25或26之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之TRK1的對野生型之基因體之改造。 實施例 28.如實施例27之經基因改造之釀酒酵母,其中該經改造之ACH1包含為S144F、R8975、N750K、P11635、L764F或其組合之變化。 實施例 29.一種製備丙烯酸之方法,其包含在如實施例18或19之酵母或如實施例20、21、22、23、24、25、26、27或28之經基因改造之釀酒酵母的存在下使羥基丙酸脫水。 The following examples are covered: Example 1. A composition comprising yeast, acrylic acid, and yeast growth medium. Embodiment 2. The composition of embodiment 1, wherein the yeast growth medium comprises yeast extract. Embodiment 3. The composition of embodiment 1 or 2, wherein the yeast growth medium comprises carbohydrates. Embodiment 4. The composition of embodiment 1, 2 or 3, wherein the yeast growth medium comprises the peptide. Embodiment 5. The composition of embodiment 1, 2, 3 or 4, wherein the yeast growth medium contains antibiotics. Embodiment 6. The composition of embodiment 1, 2, 3, 4 or 5, wherein the yeast growth medium comprises phosphate or sulfate. Embodiment 7. The composition of embodiment 1, 2, 3, 4, 5 or 6, wherein the yeast growth medium comprises a buffer. Example 8. A method of preparing yeast with improved tolerance to acrylic acid, comprising allowing yeast to propagate in the presence of acrylic acid. Embodiment 9. The method of Embodiment 8, wherein the yeast is propagated in the presence of at least 0.05 g/L acrylic acid. Embodiment 10. The method of embodiment 8 or 9, wherein the concentration of acrylic acid is increased after the yeast has been allowed to propagate in the presence of acrylic acid for at least about 1 hour. Embodiment 11. The method of embodiment 8, 9 or 10, further comprising performing at least one additional propagation cycle, wherein the propagation cycle includes: increasing the concentration of acrylic acid, adding additional yeast growth medium and allowing the yeast to propagate again. Embodiment 12. The method of Embodiment 11, wherein an additional 1 to 100 breeding cycles are performed. Embodiment 13. The method of Embodiment 12, wherein an additional 30 to 40 breeding cycles are performed. Embodiment 14. The method of embodiment 8, 9, 10, 11, 12 or 13, wherein the yeast is propagated at a temperature of about 5°C to about 100°C. Embodiment 15. The method of embodiment 11, 12, 13 or 14, wherein the yeast is propagated in each propagation cycle for about 1 hour to about 200 hours. Embodiment 16. The method of Embodiment 15, wherein the yeast is propagated for about 20 hours to about 30 hours in each propagation cycle. Embodiment 17. The method of embodiment 11, 12, 13, 14, 15 or 16, wherein the reproduction cycle is stopped after there is no observable increase in growth rate during a two-week period. Embodiment 18. A yeast prepared by the method of embodiment 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17. Embodiment 19. A yeast tolerant to acrylic acid, comprising a yeast having a non-naturally occurring genetic mutation or modification, wherein the yeast has an optical density of 0.2 at 600 nm in a reference acrylic acid composition. When the yeast is propagated so that the optical density of the yeast increases from 0.2 to 0.4 within 30 hours, the reference acrylic acid composition is composed of the following: 1.8 g/L acrylic acid, 20 g/L glucose, 5 g/L L (NH 4 ) 2 SO 4 , 3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 •7H 2 O, 50 μg/L d-biotin, 1 mg/L D-pantothenate hemicalcium salt, 1 mg/L thiamine-HCl, 1 mg/L pyridoxine-HCl, 1 mg/L niacin, 0.2 mg/L 4-aminobenzoic acid, 25 mg/L m-inositol, 3 mg/ L FeSO 4 ∙7H 2 O, 4.5 mg/L ZnSO 4 ∙7H 2 O, 4.5 mg/L CaCl 2 ∙2H 2 O, 1 mg/L MnCl 2 ∙4H 2 O, 0.3 mg/L CoCl 2 ∙6H 2 O, 0.3 mg/L CuSO 4 ∙5H 2 O, 0.4 mg/L Na 2 MoO 4 ∙2H 2 O, 1 mg/LH 3 BO 3 , 0.1 mg/L KI and 19 mg/L Na 2 EDTA∙2H 2 O. Embodiment 20. A genetically modified Saccharomyces cerevisiae having modifications to the wild-type genome that enable the Saccharomyces cerevisiae to synthesize the following: modified ACH1, WAR1, NHA1, TRK1, ALD3, PMA1, GLG2, MIX23, ATG26 , SYT1, SNF3, ARR3, TRS33, GPR1, OCT1, TPO1, MET2, RPC82, or combinations thereof. Embodiment 21. The genetically modified Saccharomyces cerevisiae of Embodiment 20, having modifications to the wild-type genome such that the Saccharomyces cerevisiae synthesizes modified ACH1. Embodiment 22. The genetically modified Saccharomyces cerevisiae of embodiment 21, wherein the modified ACH1 comprises changes to R334G, A367T, T383K, V353F, G393E, fsN137, H439Y, Q275K, or combinations thereof. Embodiment 23. The genetically modified Saccharomyces cerevisiae of embodiment 20, 21 or 22, having modifications to the wild-type genome such that the Saccharomyces cerevisiae synthesizes modified WAR1. Embodiment 24. The genetically modified Saccharomyces cerevisiae of embodiment 23, wherein the modified WAR1 comprises the change to W936L. Embodiment 25. The genetically modified Saccharomyces cerevisiae of embodiment 20, 21, 22, 23 or 24, which has modifications to the wild-type genome such that the Saccharomyces cerevisiae synthesizes modified NHA1. Embodiment 26. The genetically modified Saccharomyces cerevisiae of embodiment 25, wherein the modified ACH1 comprises changes to H164D, E290K, or a combination thereof. Embodiment 27. The genetically modified Saccharomyces cerevisiae of Embodiment 20, 21, 22, 23, 24, 25 or 26, which has modifications to the wild-type genome such that the Saccharomyces cerevisiae synthesizes the modified TRK1. Embodiment 28. The genetically modified Saccharomyces cerevisiae of embodiment 27, wherein the modified ACH1 comprises changes to S144F, R8975, N750K, P11635, L764F, or combinations thereof. Embodiment 29. A method for preparing acrylic acid, which is contained in the yeast of embodiment 18 or 19 or the genetically modified Saccharomyces cerevisiae of embodiment 20, 21, 22, 23, 24, 25, 26, 27 or 28. Hydroxypropionic acid is dehydrated in the presence of

實例 實例 1 方法 菌株、 DNA 操縱及培養基菌株釀酒酵母CEN.PK113-7D (MATa MAL2-8c SUC2)、CEN.PK113-5D ()及CEN.PK113-1A (MATα MAL2-8c SUC2)獲自Scientific Research and Development GmbH (Oberursel, Germany)。基於CEN.PK113-7D (GL01)之菌株獲自(Pereira等人,2019),且用於ALE實驗中。大腸桿菌(Escherichia coli) DH5α用於質體分離及維持。 Examples Example 1 Methods Strains, DNA manipulations and media Strains Saccharomyces cerevisiae CEN.PK113-7D (MATa MAL2-8c SUC2), CEN.PK113-5D (MATa MAL2-8c SUC2) and CEN.PK113-1A (MATa MAL2-8c SUC2) were obtained from Scientific Research and Development GmbH (Oberursel, Germany). A strain based on CEN.PK113-7D (GL01) was obtained from (Pereira et al., 2019) and used in ALE experiments. Escherichia coli DH5α was used for plastid isolation and maintenance.

寡核苷酸購自IDT或Genscript。使用來自ThermoFisher之Platinum SuperFi II DNA聚合酶進行PCR。用來自凱傑之各別套組進行質體提取及PCR產物純化。Oligonucleotides were purchased from IDT or Genscript. PCR was performed using Platinum SuperFi II DNA polymerase from ThermoFisher. Plasmid extraction and PCR product purification were performed using respective kits from QIAGEN.

在含有10 g/L蛋白腖、10 g/L NaCl、5 g/L酵母提取物且補充有100 mg/L之安比西林鈉鹽的LB培養基進行大腸桿菌中之質體之選擇及維持。固體LB亦包括16 g/L瓊脂。Selection and maintenance of plastids in E. coli were carried out in LB medium containing 10 g/L proteinaceous, 10 g/L NaCl, 5 g/L yeast extract and supplemented with 100 mg/L ampicillin sodium salt. Solid LB also includes 16 g/L agar.

對於選擇具有KANMX標記物之釀酒酵母菌株,使用含有10 g/L酵母提取物、20 g/L蛋白腖、20 g/L葡萄糖且補充有200 mg/L G418硫酸氫鹽(SigmaAldrich)的YPD培養基。對於使用Ura標記物之選擇,在不添加尿嘧啶之情況下製備標準基本培養基。藉由添加20 g/L瓊脂來製備任一培養基之固體型式。For selection of S. cerevisiae strains with KANMX markers, YPD medium containing 10 g/L yeast extract, 20 g/L protease, 20 g/L glucose supplemented with 200 mg/L G418 bisulfate (SigmaAldrich) was used. For selection using Ura markers, standard minimal medium was prepared without the addition of uracil. Prepare a solid version of either medium by adding 20 g/L agar.

所有生長及演變實驗均在由(Verduyn等人,1992)描述之含有以下之基本培養基中進行:20 g/L葡萄糖、5 g/L (NH 4) 2SO 4、3 g/L KH 2PO 4、0.5 g/L MgSO 4·7H 2O、1 mL/L維生素溶液及1 mL/L痕量金屬溶液。用KOH將培養基之pH調節至5.0且在此pH下藉由添加97 mL/L 0.5 M檸檬酸及103 mL/L 1 M Na 2HPO 4來緩衝。 All growth and evolution experiments were performed in minimal medium as described by (Verduyn et al., 1992) containing the following: 20 g/L glucose, 5 g/L (NH 4 ) 2 SO 4 , 3 g/L KH 2 PO 4. 0.5 g/L MgSO 4 ·7H 2 O, 1 mL/L vitamin solution and 1 mL/L trace metal solution. The pH of the medium was adjusted to 5.0 with KOH and buffered at this pH by adding 97 mL/L 0.5 M citric acid and 103 mL/L 1 M Na 2 HPO 4 .

使用KH 2PO 4將AA調節至pH 5,且製成0.1 g/mL之儲備濃度。 AA was adjusted to pH 5 using KH 2 PO 4 and made to a stock concentration of 0.1 g/mL.

生長篩選所有生長測試均在生長測繪器960 (Enzyscreen)中使用96半深孔微量培養盤進行,其中培養體積為250 μL,以250 rpm攪動,溫度控制在30℃且初始OD600為0.05。藉由在OD600相對於時間之自然對數之曲線中找到最高斜率來計算各菌株之最大比生長速率。 Growth Screen All growth tests were performed in a Growth Mapper 960 (Enzyscreen) using 96 semi-deep well microplates with a culture volume of 250 μL, agitation at 250 rpm, temperature control at 30°C and an initial OD600 of 0.05. The maximum specific growth rate of each strain was calculated by finding the highest slope in the natural logarithm of OD600 versus time curve.

適應性實驗室演變 (ALE)使用於含有丙烯酸之培養基中之連續培養,以自0.3 g/L增加至2 g/L之濃度演變菌株GL01。演變六種獨立培養物。隨著釀酒酵母繁殖,其最初使用葡萄糖作為食物。此稱為葡萄糖階段。當葡萄糖耗竭時,釀酒酵母使用乙醇作為食物。此稱為乙醇階段。在此實驗中,選擇兩個初始AA濃度,使得在24小時內,六種培養物中之三者將處於乙醇階段,且其他三者將處於葡萄糖階段。將培養物在30℃振盪器中在200 rpm下於30 mL燒瓶中連續繁殖。 Adaptive laboratory evolution (ALE) evolved strain GL01 using continuous culture in media containing acrylic acid at increasing concentrations from 0.3 g/L to 2 g/L. Evolution of six independent cultures. As S. cerevisiae reproduces, it initially uses glucose as food. This is called the glucose phase. When glucose is depleted, S. cerevisiae uses ethanol as food. This is called the ethanol stage. In this experiment, two initial AA concentrations were chosen so that within 24 hours, three of the six cultures would be in the ethanol phase and the other three would be in the glucose phase. Cultures were continuously propagated in 30 mL flasks in a 30 °C shaker at 200 rpm.

每24小時量測各培養物之OD600,且計算待轉移至新鮮培養基之舊培養物之體積以使得新培養物之起始OD600將為0.1。調節新培養物中之AA濃度以使得其將在二十四小時內達到指定生長期(乙醇或葡萄糖)。記錄各燒瓶之終止OD600,且將各培養物之甘油儲備液保存於-80冷凍器中。當在兩週時段期間生長速率不存在可觀測的增加(如由終止OD600之增加所反映)時,停止演變實驗。The OD600 of each culture was measured every 24 hours and the volume of old culture to be transferred to fresh medium was calculated so that the starting OD600 of the new culture would be 0.1. Adjust the AA concentration in the new culture so that it will reach the designated growth phase (ethanol or glucose) within twenty-four hours. The end OD600 of each flask was recorded, and the glycerol stock solution of each culture was stored in a -80 freezer. The evolution experiment was stopped when there was no observable increase in growth rate during the two-week period (as reflected by an increase in termination OD600).

DNA 提取及定序將自演變群體分離之純系在YPD培養基中培養過夜。使用血液及細胞培養物DNA微型套組(Blood & Cell Culture DNA Mini Kit) (Qiagen, location),使用製造商推薦之方案自3 mL之過夜酵母培養物(約5×10 8個細胞)提取基因體DNA。在Illumina®定序平台上執行雙端定序(pair-end sequencing),其中在各端處之讀數長度為PE150 bp,且每個樣品之基因體覆蓋率為100×。 DNA Extraction and Sequencing Pure lines isolated from the evolving population were cultured overnight in YPD medium. Genes were extracted from 3 mL of overnight yeast culture (approximately 5 × 10 8 cells) using the Blood & Cell Culture DNA Mini Kit (Qiagen, location) using the manufacturer's recommended protocol. body DNA. Pair-end sequencing was performed on an Illumina® sequencing platform with read length PE150 bp at each end and 100× genome coverage for each sample.

定序資料分析經由BWA軟體將有效定序資料與參考序列(釀酒酵母S288c;R64-2-1)比對。使用SAMtools偵測SNP及InDel。使用BreakDancer偵測SV。使用CNVnator偵測CNV。使用ANNOVAR標註所有變異體。定製工具用於減去野生型(GL01)對照背景。 Sequencing data analysis The effective sequencing data was compared with the reference sequence (Saccharomyces cerevisiae S288c; R64-2-1) through BWA software. Use SAMtools to detect SNPs and InDels. Use BreakDancer to detect SV. Use CNVnator to detect CNV. Use ANNOVAR to annotate all variants. Custom tools were used to subtract wild-type (GL01) control background.

結果 演變酵母菌株之生長在ALE之35傳代之後,在各種AA濃度下在基本培養基(pH 5)中測試演變菌株(35E及35G),其中野生型菌株GL01作為對照。 表2.比較演變菌株與野生型之間的生長速率 [AA] (g/L) 菌株 μ max(h -1) 滯後時間 (h) 0 35 E 0.43 ±0.01 1 35 G 0.43 ± 0.00 1 GL01 0.41 ± 0.00 1 0.7 35 E 0.23 ± 0.04 3.3 ± 1.2 35 G 0.23 ± 0.03 2.7 ± 1.0 GL01 0.08 ± 0.00 8.8 ± 1.1 1.8 35 E 0.10 ± 0.02 9.2 ± 3.1 35 G 0.11 ± 0.03 6.7 ± 2.8 GL01 0.025 ± 0.003 22 ± 2.8 Results Growth of evolved yeast strains After 35 passages of ALE, the evolved strains (35E and 35G) were tested in minimal medium (pH 5) at various AA concentrations, with wild-type strain GLO1 as control. Table 2. Comparison of growth rates between evolved strains and wild type [AA] (g/L) strains μ max (h -1 ) Lag time (h) 0 35E 0.43 ±0.01 1 35G 0.43 ± 0.00 1 GL01 0.41±0.00 1 0.7 35E 0.23 ± 0.04 3.3 ± 1.2 35G 0.23 ± 0.03 2.7±1.0 GL01 0.08±0.00 8.8±1.1 1.8 35E 0.10 ± 0.02 9.2 ± 3.1 35G 0.11±0.03 6.7 ± 2.8 GL01 0.025 ± 0.003 22±2.8

演變酵母菌株之定序在具有葡萄糖階段轉移(phase transfer)之AA演變菌株中偵測之變異體呈現於表3中。菌株名稱以傳代次數開始,其中G指示葡萄糖階段轉移,且E指示乙醇階段轉移。對於字母之後的數字,第一數位為培養數目(1至3),且第二數位為分離數目(1至8)。 表3.所偵測變異體之實例 基因座 基因 變化          91G14       Chr I, 225859 PHO11 N134D (A-->G) Chr II, 194944 ACH1 Q275K (C-->A) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20192 DSF1 Q202X (C-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082465 COS6 V89F (G-->T) Chr XII, 419304 NHA1 E290K (G-->A) Chr XVI, 724341 SYT1 E126V (A-->T)          91G21       Chr I, 225859 PHO11 N134D (A-->G) Chr XIII, 112541 WAR1 W936L (G-->T) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20192 DSF1 Q202X (C-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082465 COS6 V89F (G-->T) Chr X, 173820 TRK1 P1163S (C-->T)          91G33       Chr I, 225859 PHO11 N134D (A-->G) Chr II, 194531 ACH1 N137fs (C411缺失) Chr IV, 113104 SNF3 V509I (G-->A) Chr XI, 191174 OCT1 R90P (G-->C) Chr XIV, 118375 MET2 Q343K (C-->A) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20125 DSF1 E179D (A-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082477 COS6 V85I (G-->A) Chr X, 175015 TRK1 L764F (A-->T) Sequencing of evolved yeast strains The variants detected in the AA evolved strain with glucose phase transfer are presented in Table 3. Strain names begin with the passage number, where G indicates glucose phase transfer and E indicates ethanol phase transfer. For numbers following letters, the first digit is the culture number (1 to 3) and the second digit is the isolation number (1 to 8). Table 3. Examples of detected variants locus Gene change 91G14 Chr I, 225859 PHO11 N134D (A-->G) Chr II, 194944 ACH1 Q275K (C-->A) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20192 DSF1 Q202X (C-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082465 COS6 V89F (G-->T) Chr XII, 419304 NHA1 E290K (G-->A) Chr XVI, 724341 SYT1 E126V (A-->T) 91G21 Chr I, 225859 PHO11 N134D (A-->G) Chr XIII, 112541 WAR1 W936L (G-->T) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20192 DSF1 Q202X (C-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082465 COS6 V89F (G-->T) Chr X, 173820 TRK1 P1163S (C-->T) 91G33 Chr I, 225859 PHO11 N134D (A-->G) Chr II, 194531 ACH1 N137fs (C411 missing) Chr IV, 113104 SNF3 V509I (G-->A) Chr XI, 191174 OCT1 R90P (G-->C) Chr XIV, 118375 MET2 Q343K (C-->A) Chr III, 270021 FIG2 T863R (C-->G) Chr V, 20125 DSF1 E179D (A-->T) Chr XI, 68366 PTK1 S619P (T-->C) Chr VII, 1082477 COS6 V85I (G-->A) Chr X, 175015 TRK1 L764F (A-->T)

實例 2 具有點突變或單一核苷酸插入/缺失之反向工程改造菌株可使用(Laughery等人,2015)中所描述之單一gRNA方法構築。基於網站之資源可用於根據與待取代之核苷酸的接近度及使用同義取代使PAM位點不活化之可能性,幫助選擇最佳gRNA位點。修復模板可經設計以引入所需突變且使PAM位點不活化,且經合成為兩個互補寡核苷酸。側接兩個50 bp序列之所需20 bp gRNA目標序列(無PAM位點)可合成為兩個互補120 bp寡核苷酸,該等兩個50 bp序列與可用質體上之gRNA位點同源。該對互補寡核苷酸可以等莫耳量混合且藉由將混合物加熱至95℃持續5 min且使其在室溫下冷卻來退火。可使用諸如Gibson Assembly之標準方法將雙股gRNA插入物選殖至能夠進行Cas9表現及gRNA表現之適合質體中。視質體上之選擇標記物而定,使用諸如(Gietz及Woods,2006)之高效率方案,可用2 μg之各別基因之雙股修復片段將100 ng之各gRNA+Cas9質體共轉型至適合菌株中。轉型混合物可視菌株及質體而定擴散於含有適合選擇藥物之培養盤上。可挑取個別群落,且可進行經改造區之PCR擴增。PCR產物之定序可允許確認成功地引入各突變。 Example 2 Reverse engineered strains with point mutations or single nucleotide insertions/deletions can be constructed using the single gRNA approach described in (Laughery et al., 2015). Web-based resources are available to help select optimal gRNA sites based on proximity to the nucleotide to be substituted and the likelihood of using synonymous substitutions to inactivate the PAM site. The repair template can be designed to introduce the desired mutation and render the PAM site inactive, and synthesized as two complementary oligonucleotides. The desired 20 bp gRNA target sequence (without PAM sites) flanked by two 50 bp sequences and the gRNA sites on the available plasmids can be synthesized into two complementary 120 bp oligonucleotides Same origin. The pair of complementary oligonucleotides can be mixed in equimolar amounts and annealed by heating the mixture to 95°C for 5 min and allowing it to cool at room temperature. Double-stranded gRNA inserts can be cloned into suitable plasmids capable of Cas9 expression and gRNA expression using standard methods such as Gibson Assembly. Depending on the selection marker on the plastid, 100 ng of each gRNA+Cas9 plastid can be co-transformed with 2 μg of the double-stranded repair fragment of the respective gene using a high-efficiency protocol such as (Gietz and Woods, 2006). Suitable for strains. Transformation mixtures can be spread on culture plates containing the appropriate drug of choice depending on the strain and plastids. Individual communities can be selected, and PCR amplification of the modified regions can be performed. Sequencing of PCR products allows confirmation of successful introduction of each mutation.

參考文獻: Xu, X., Williams, T. C., et al. 2019 Biotechnology for Biofuels 12: 97 Pereira, R., Wei, Y., et al. 2019 Metabolic Engineering 56: 130 Pereira, R., Mohamed, E. T., et al. 2020 PNAS 117: 27954 WO2002042418 Laughery, M.F., Hunter, T., et al. 2015 Yeast 32: 711 Gietz, R.D., Woods, R.A. 2006 Yeast Protocols.  Humana Press, New Jersey, pp. 107-120 References: Xu, X., Williams, T. C., et al. 2019 Biotechnology for Biofuels 12: 97 Pereira, R., Wei, Y., et al. 2019 Metabolic Engineering 56: 130 Pereira, R., Mohamed, E. T., et al. 2020 PNAS 117: 27954 WO2002042418 Laughery, M.F., Hunter, T., et al. 2015 Yeast 32: 711 Gietz, R.D., Woods, R.A. 2006 Yeast Protocols. Humana Press, New Jersey, pp. 107-120

除非另外指示,否則本文所使用之表述成分之數量、特性(諸如分子量、反應條件等)的所有數字應理解為在所有情況下均由術語「約」改造。各數值參數應至少根據所報導之有效數位之數目且藉由應用一般捨入技術來解釋。因此,除非有相反指示,否則數值參數可根據設法達成之所需特性進行修改,且因此應被視為本發明之一部分。至少,本文所展示之實例僅用於說明,而非作為限制本發明之範疇的嘗試。Unless otherwise indicated, all numbers used herein expressing amounts of ingredients, properties (such as molecular weight, reaction conditions, etc.) are to be understood as being modified in all instances by the term "about." Each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Accordingly, unless indicated to the contrary, numerical parameters may be modified according to the desired characteristics sought to be achieved, and therefore shall be considered a part of this invention. At the very least, the examples shown herein are for illustration only and are not intended to limit the scope of the invention.

除非本文另外指示或與上下文明顯矛盾,否則在描繪本發明之實施例之情形下(尤其在以下實施例之情形下)使用的術語「一(a/an)」、「該(the)」及類似指示物均解釋為涵蓋單數及複數兩者。除非本文另外指示或另外與上下文明顯矛盾,否則本文所描述之所有方法可以任何適合之次序執行。本文所提供之任何及所有實例或代表性語言(例如「諸如」)之使用僅意欲更好地說明本發明之實施例且不會對任何實施例之範疇造成限制。本說明書中之任何語言均不應理解為指示實踐本發明之實施例所必需的任何不體現之要素。Unless otherwise indicated herein or clearly contradicted by context, the terms "a/an", "the" and "an" are used in the context of describing embodiments of the invention (especially in the context of the following embodiments) Similar referents are to be construed to cover both the singular and the plural. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or representative language (eg, "such as") provided herein is intended merely to better illuminate embodiments of the invention and does not pose a limitation on the scope of any embodiment. No language in the specification should be construed as indicating any non-disclosed element necessary to practice the embodiments of the invention.

本文所揭示之替代要素或實施例之分組不應解釋為限制。可個別地或以與群組之其他成員或本文中所發現之其他要素的任何組合來參考及體現各群組成員。預期群組中之一或多個成員可出於便利性及/或專利性的原因而包括於群組中或自群組刪除。Alternative elements or groupings of embodiments disclosed herein should not be construed as limitations. Each group member may be referenced and embodied individually or in any combination with other members of the group or other elements found herein. It is contemplated that one or more members of a group may be included in or removed from the group for convenience and/or patentability reasons.

本文描述某些實施例,包括本發明人已知用於進行實施例之最佳模式。當然,此等所描述實施例之變化形式在一般熟習此項技術者閱讀前述描述後將變得顯而易見。本發明人預期熟習此項技術者適當時採用此等變化形式,且本發明人意欲以不同於本文中特定描述之方式來實踐本發明之實施例。因此,實施例包括如可適用法律所准許的實施例中所敍述之主題的所有修改及等效物。此外,除非本文另外指示或另外與上下文明顯矛盾,否則涵蓋上文所描述之要素在其所有可能變化形式中之任何組合。Certain embodiments are described herein, including the best mode known to the inventors for carrying out the embodiments. Of course, variations to the described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect those skilled in the art to employ such variations as appropriate, and the inventors intend for the embodiments of the invention to be practiced otherwise than as specifically described herein. Accordingly, the embodiments include all modifications and equivalents of the subject matter recited in the embodiments as permitted by applicable law. Furthermore, any combination of the elements described above in all possible variations thereof is encompassed unless otherwise indicated herein or otherwise clearly contradicted by context.

總之,應理解本文所揭示之實施例說明實施例之原理。可採用之其他修改在實施例之範疇內。因此,藉助於實例但非限制,可根據本文中之教示內容來利用替代性實施例。因此,實施例不限於恰好如所展示及描述之實施例。In summary, it is to be understood that the embodiments disclosed herein illustrate the principles of the embodiments. Other modifications may be employed within the scope of the embodiments. Accordingly, by way of example and not limitation, alternative embodiments may be utilized in accordance with the teachings herein. Therefore, embodiments are not limited to those exactly as shown and described.

相關申請案之交叉參考本申請案主張2021年9月24日申請之美國臨時申請案第63/261,648號之優先權,其以全文引用之方式併入本文中。 Cross-Reference to Related Applications This application claims priority to U.S. Provisional Application No. 63/261,648, filed on September 24, 2021, which is incorporated herein by reference in its entirety.

序列表本申請案含有序列表,該序列表已以ASCII格式以電子方式提交且以全文引用之方式併入本文中。2021年9月17日創建之該ASCII複本命名為N3253_10150US01_SL.txt且大小為46,904位元組。 Sequence Listing This application contains a Sequence Listing, which has been submitted electronically in ASCII format and is incorporated herein by reference in its entirety. The ASCII copy created on September 17, 2021 is named N3253_10150US01_SL.txt and is 46,904 bytes in size.

圖1為描繪野生型及演變釀酒酵母菌株在1.8 g/L丙烯酸中之生長的曲線。Figure 1 is a graph depicting the growth of wild-type and evolved Saccharomyces cerevisiae strains in 1.8 g/L acrylic acid.

TW202328430A_111136221_SEQL.xmlTW202328430A_111136221_SEQL.xml

Claims (20)

一種組合物,其包含酵母、丙烯酸及酵母生長培養基。A composition comprising yeast, acrylic acid and yeast growth medium. 如請求項1之組合物,其中該酵母生長培養基包含酵母提取物。The composition of claim 1, wherein the yeast growth medium contains yeast extract. 如請求項1或2之組合物,其中該酵母生長培養基包含碳水化合物。The composition of claim 1 or 2, wherein the yeast growth medium contains carbohydrates. 如請求項1、2或3之組合物,其中該酵母生長培養基包含肽。The composition of claim 1, 2 or 3, wherein the yeast growth medium contains the peptide. 如請求項1、2、3或4之組合物,其中該酵母生長培養基包含抗生素。The composition of claim 1, 2, 3 or 4, wherein the yeast growth medium contains antibiotics. 如請求項1、2、3、4或5之組合物,其中該酵母生長培養基包含磷酸鹽或硫酸鹽。The composition of claim 1, 2, 3, 4 or 5, wherein the yeast growth medium contains phosphate or sulfate. 如請求項1、2、3、4、5或6之組合物,其中該酵母生長培養基包含緩衝液。The composition of claim 1, 2, 3, 4, 5 or 6, wherein the yeast growth medium contains a buffer. 一種製備對丙烯酸具有改良耐受性之酵母的方法,其包含允許酵母在丙烯酸之存在下繁殖。A method of preparing yeast with improved tolerance to acrylic acid, comprising allowing the yeast to propagate in the presence of acrylic acid. 如請求項8之方法,其中使該酵母在存在至少0.05 g/L丙烯酸之情況下繁殖。The method of claim 8, wherein the yeast is propagated in the presence of at least 0.05 g/L acrylic acid. 如請求項8或9之方法,其中在已使該酵母在丙烯酸之存在下繁殖至少約1小時之後增加該丙烯酸之濃度。The method of claim 8 or 9, wherein the concentration of acrylic acid is increased after the yeast has been allowed to propagate in the presence of acrylic acid for at least about 1 hour. 如請求項8、9或10之方法,其進一步包含進行至少一個額外繁殖循環,其中繁殖循環包含:增加丙烯酸之濃度、添加額外酵母生長培養基及允許該酵母再次繁殖。The method of claim 8, 9 or 10, further comprising performing at least one additional propagation cycle, wherein the propagation cycle includes: increasing the concentration of acrylic acid, adding additional yeast growth medium and allowing the yeast to propagate again. 如請求項11之方法,其中進行額外30至40個繁殖循環。The method of claim 11, wherein an additional 30 to 40 breeding cycles are performed. 如請求項11或12之方法,其中使該酵母在各繁殖循環中繁殖約20小時至約30小時。The method of claim 11 or 12, wherein the yeast is allowed to propagate in each propagation cycle for about 20 hours to about 30 hours. 一種酵母,其藉由如請求項8、9、10、11、12或13之方法製備。A yeast prepared by the method of claim 8, 9, 10, 11, 12 or 13. 一種對丙烯酸具有耐受性之酵母,其包含具有非天然存在之基因突變或改造的酵母,其中該酵母具有當該酵母在600 nm下於參考丙烯酸組合物中之光學密度為0.2時,該酵母繁殖以使得該酵母之該光學密度在30小時內自0.2增加至0.4的特性,其中該參考丙烯酸組合物由以下組分組成:1.8 g/L丙烯酸、20 g/L葡萄糖、5 g/L (NH 4) 2SO 4、3 g/L KH 2PO 4、0.5 g/L MgSO 4•7H 2O、50 μg/L d-生物素、1 mg/L D-泛酸半鈣鹽、1 mg/L硫胺素-HCl、1 mg/L吡哆醇-HCl (Pyridoxin-HCl)、1 mg/L菸鹼酸、0.2 mg/L 4-胺基苯甲酸、25 mg/L m-肌醇、3 mg/L FeSO 4∙7H 2O、4.5 mg/L ZnSO 4∙7H 2O、4.5 mg/L CaCl 2∙2H 2O、1 mg/L MnCl 2∙4H 2O、0.3 mg/L CoCl 2∙6H 2O、0.3 mg/L CuSO 4∙5H 2O、0.4 mg/L Na 2MoO 4∙2H 2O、1 mg/L H 3BO 3、0.1 mg/L KI及19 mg/L Na 2EDTA∙2H 2O。 A yeast that is tolerant to acrylic acid, comprising a yeast having a non-naturally occurring genetic mutation or modification, wherein the yeast has an optical density of 0.2 at 600 nm in a reference acrylic acid composition. The characteristic of propagating such that the optical density of the yeast increases from 0.2 to 0.4 within 30 hours, wherein the reference acrylic acid composition consists of the following components: 1.8 g/L acrylic acid, 20 g/L glucose, 5 g/L ( NH 4 ) 2 SO 4 , 3 g/L KH 2 PO 4 , 0.5 g/L MgSO 4 •7H 2 O, 50 μg/L d-biotin, 1 mg/L D-pantothenic acid hemicalcium salt, 1 mg/ L Thiamine-HCl, 1 mg/L Pyridoxin-HCl (Pyridoxin-HCl), 1 mg/L niacin, 0.2 mg/L 4-aminobenzoic acid, 25 mg/L m-inositol, 3 mg/L FeSO 4 ∙7H 2 O, 4.5 mg/L ZnSO 4 ∙7H 2 O, 4.5 mg/L CaCl 2 ∙2H 2 O, 1 mg/L MnCl 2 ∙4H 2 O, 0.3 mg/L CoCl 2 ∙6H 2 O, 0.3 mg/L CuSO 4 ∙5H 2 O, 0.4 mg/L Na 2 MoO 4 ∙2H 2 O, 1 mg/LH 3 BO 3 , 0.1 mg/L KI and 19 mg/L Na 2 EDTA ∙2H 2 O. 一種經基因改造之釀酒酵母( S. cerevisiae),其具有使得該釀酒酵母合成以下的對野生型之基因體之改造:經改造之ACH1、WAR1、NHA1、TRK1、ALD3、PMA1、GLG2、MIX23、ATG26、SYT1、SNF3、ARR3、TRS33、GPR1、OCT1、TPO1、MET2、RPC82或其組合。 A genetically modified Saccharomyces cerevisiae ( S. cerevisiae ), which has modifications to the wild-type genome that enable the S. cerevisiae to synthesize the following: modified ACH1, WAR1, NHA1, TRK1, ALD3, PMA1, GLG2, MIX23, ATG26, SYT1, SNF3, ARR3, TRS33, GPR1, OCT1, TPO1, MET2, RPC82, or combinations thereof. 如請求項16之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之ACH1的對野生型之基因體之改造。For example, the genetically modified Saccharomyces cerevisiae of claim 16 has modifications to the wild-type genome that enable the Saccharomyces cerevisiae to synthesize the modified ACH1. 如請求項16或17之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之WAR1的對野生型之基因體之改造。For example, the genetically modified Saccharomyces cerevisiae of Claim 16 or 17 has modifications to the wild-type genome that enable the Saccharomyces cerevisiae to synthesize the modified WAR1. 如請求項16、17或18之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之NHA1的對野生型之基因體之改造。For example, the genetically modified Saccharomyces cerevisiae of claim 16, 17 or 18 has modifications to the wild-type genome that enable the Saccharomyces cerevisiae to synthesize the modified NHA1. 如請求項16、17、18或19之經基因改造之釀酒酵母,其具有使得該釀酒酵母合成經改造之TRK1的對野生型之基因體之改造。For example, the genetically modified Saccharomyces cerevisiae of claim 16, 17, 18 or 19 has modifications to the wild-type genome that enable the Saccharomyces cerevisiae to synthesize the modified TRK1.
TW111136221A 2021-09-24 2022-09-23 Yeast cells with improved tolerance to acrylic acid TW202328430A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163261648P 2021-09-24 2021-09-24
US63/261,648 2021-09-24

Publications (1)

Publication Number Publication Date
TW202328430A true TW202328430A (en) 2023-07-16

Family

ID=83995345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111136221A TW202328430A (en) 2021-09-24 2022-09-23 Yeast cells with improved tolerance to acrylic acid

Country Status (2)

Country Link
TW (1) TW202328430A (en)
WO (1) WO2023049786A2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2304039B1 (en) * 2008-06-17 2019-08-21 Genomatica, Inc. Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate
US20140342414A1 (en) * 2011-09-22 2014-11-20 Codexis, Inc. Direct biocatalytic production of acrylic acid and other carboxylic acid compounds

Also Published As

Publication number Publication date
WO2023049786A2 (en) 2023-03-30
WO2023049786A3 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
JPH0142676B2 (en)
JP2010525816A (en) Direct conversion of carbon dioxide to hydrocarbons using metabolically modified photosynthetic microorganisms
JP2009529328A (en) Expression system of orthogonal translation components in eubacterial host cells
US20230076421A1 (en) Methods and compositions for manufacturing polynucleotides
CN114207129A (en) Agents and methods for replication, transcription and translation in semi-synthetic organisms
JP7093417B2 (en) How to regulate in vitro biosynthetic activity by knocking out the nuclease system
Lim et al. Generation of ionic liquid tolerant Pseudomonas putida KT2440 strains via adaptive laboratory evolution
CN111235169A (en) GTP cyclohydrolase I gene folE and application thereof
CA1317245C (en) System for biotin synthesis
CN114657078A (en) Construction method and application of high-yield cannabidiolic acid saccharomyces cerevisiae strain
Trachsel Translation in eukaryotes
WO2019094859A1 (en) Cell-free protein synthesis platform derived from cellular extracts of vibrio natriegens
CN115960736B (en) Saccharomyces cerevisiae engineering bacteria for producing vanillyl amine and capsaicin, construction method and application thereof
CN112920984A (en) Construction is based on formic acid and CO2Method and application of growing recombinant strain
TW202328430A (en) Yeast cells with improved tolerance to acrylic acid
CA2448289A1 (en) Method of constructing host and method of producing heterologous protein
TW202323515A (en) Yeast cells with reduced propensity to degrade acrylic acid
JP2722504B2 (en) Novel microorganism and method for producing d-biotin using the same
JP5248735B2 (en) Yeast transformation method
JP2022535651A (en) Systems, methods and compositions for recombinant in vitro transcription and translation using thermophilic proteins
JPS58107192A (en) Preparation of l-histidine by fermentation
CN114196642B (en) Glutamate dehydrogenase variants and their use in the preparation of L-amino acids
US20210095243A1 (en) Genome-wide rationally-designed mutations leading to enhanced tyrosine production in s. cerevisiae
JP4198387B2 (en) Protein or peptide production method in cell-free protein synthesis system, and protein or peptide produced using the same
WO2020234215A1 (en) Biotin prototrophy