TW202327145A - Method of manufacturing semiconductor devices and semiconductor structure using the same - Google Patents

Method of manufacturing semiconductor devices and semiconductor structure using the same Download PDF

Info

Publication number
TW202327145A
TW202327145A TW110149413A TW110149413A TW202327145A TW 202327145 A TW202327145 A TW 202327145A TW 110149413 A TW110149413 A TW 110149413A TW 110149413 A TW110149413 A TW 110149413A TW 202327145 A TW202327145 A TW 202327145A
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
sacrificial
substrate
island
Prior art date
Application number
TW110149413A
Other languages
Chinese (zh)
Inventor
蕭長泰
任益華
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW110149413A priority Critical patent/TW202327145A/en
Publication of TW202327145A publication Critical patent/TW202327145A/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

A manufacturing method for semiconductor devices is disclosed. A sacrificial semiconductor layer is formed on a substrate. First and second semiconductor devices, separate from each other, are formed on the sacrificial semiconductor layer. The first semiconductor device has a first semiconductor island and a first passivation layer, and the second semiconductor device has a second semiconductor island and a second passivation layer. The sacrificial semiconductor layer is then decomposed, to detach the first semiconductor device from the substrate. Before being detached, both the first semiconductor island and the first passivation layer directly contact a topmost surface of the sacrificial semiconductor layer. After being detached, both the first semiconductor island and the first passivation layer are separate from the sacrificial semiconductor layer while the first passivation layer covers on the first semiconductor island.

Description

半導體元件的製造方法以及其半導體結構Manufacturing method of semiconductor element and its semiconductor structure

本發明主要是有關於一種半導體元件的製造方法,且特別是有關於一種發光二極體的製造方法與相關的產物。The present invention mainly relates to a manufacturing method of a semiconductor element, and in particular relates to a manufacturing method of a light emitting diode and related products.

發光二極體(Light-Emitting Diode,LED)為一種半導體元件,具有耗能低、低發熱、操作壽命長、防震、體積小、以及反應速度快等良好特性,因此適用於各種照明及顯示用途。Light-emitting diode (Light-Emitting Diode, LED) is a semiconductor element with good characteristics such as low energy consumption, low heat generation, long operating life, shockproof, small size, and fast response, so it is suitable for various lighting and display purposes .

當半導體製程技術不斷地突破,LED 晶粒(chip)的尺寸也不斷微縮,當低於肉眼可辨的地步之後,其用途就不再只侷限於顯示螢幕的背光源。一般而言,邊長尺寸小於100微米的LED晶粒,在業界統稱為微發光二極體(Micro LED)。R、G、B 三種顏色的 Micro LED,可以直接拼成一個像素點來使用。這也意味不再需要一般液晶面板中的濾光片和液晶層。Micro LED 本身就會發光,所以也不用額外的背光模組。相較於一般的液晶螢幕顯示器,採用Micro LED作為像素點的顯示器對比會更高,壽命更長。With continuous breakthroughs in semiconductor process technology, the size of LED chips is also shrinking, and when it is below the level of being visible to the naked eye, its use is no longer limited to the backlight of the display screen. Generally speaking, LED grains with a side length of less than 100 microns are collectively referred to as Micro LEDs (Micro LEDs) in the industry. Micro LEDs of R, G, and B colors can be directly combined into one pixel for use. This also means that the filter and liquid crystal layer in a typical liquid crystal panel are no longer needed. Micro LED emits light by itself, so there is no need for an additional backlight module. Compared with ordinary LCD screen displays, displays using Micro LED as pixels will have higher contrast and longer lifespan.

Micro LED有良好的發光效率,也需要有良好的可靠度。一個封裝好的Micro LED,往往需要經過許多嚴格的環境測試,以證明其可耐用達一定的使用壽命,也就是可靠度測試。舉例來說,經過長時間高溫高壓的環境測試後,水氣可能進入Micro LED中,與Micro LED內的半導體材料產生氧化反應,而使得Micro LED毀損。Micro LED has good luminous efficiency, but also needs to have good reliability. A packaged Micro LED often needs to go through many strict environmental tests to prove its durability for a certain service life, that is, reliability test. For example, after a long time of high-temperature and high-pressure environmental testing, water vapor may enter the Micro LED and cause an oxidation reaction with the semiconductor material in the Micro LED, resulting in damage to the Micro LED.

本發明係揭露一種半導體元件的製造方法,包括:提供一基板;形成一半導體犧牲層於該基板上;形成彼此分離的一第一半導體元件及一第二半導體元件於該半導體犧牲層上,其中,該第一半導體元件包含一第一半導體島及一第一護層,該第二半導體元件包含一第二半導體島及一第二護層;以及,分解該半導體犧牲層之至少一部份,以使該第一半導體元件與該基板彼此分離。於該分解步驟前,該第一半導體島及該第一護層皆與該半導體犧牲層之一最上表面直接接觸。於該分解步驟後,該第一半導體島及該第一護層皆與該半導體犧牲層分離,且該第一護層仍覆蓋該第一半導體島。The present invention discloses a method for manufacturing a semiconductor element, comprising: providing a substrate; forming a semiconductor sacrificial layer on the substrate; forming a first semiconductor element and a second semiconductor element separated from each other on the semiconductor sacrificial layer, wherein , the first semiconductor element includes a first semiconductor island and a first protective layer, the second semiconductor element includes a second semiconductor island and a second protective layer; and, decomposing at least a part of the semiconductor sacrificial layer, to separate the first semiconductor element from the substrate. Before the decomposing step, both the first semiconductor island and the first protective layer are in direct contact with one of the uppermost surfaces of the semiconductor sacrificial layer. After the decomposing step, both the first semiconductor island and the first protective layer are separated from the semiconductor sacrificial layer, and the first protective layer still covers the first semiconductor island.

本發明係揭露一種半導體結構,包含:一基板;一半導體犧牲層,形成於該基板上;以及,複數個彼此分離之半導體元件,形成於該半導體犧牲層上。每一該些半導體元件包含有:一半導體島,具有一側壁以及一半導體表層連接於該側壁,該半導體表層並接觸該半導體犧牲層;以及一護層,覆蓋該側壁。該半導體犧牲層與該半導體表層具有不同材料。每一該些半導體元件具有一出光表面,至少包含部分該護層與部分該半導體表層。The invention discloses a semiconductor structure, comprising: a substrate; a semiconductor sacrificial layer formed on the substrate; and a plurality of semiconductor elements separated from each other formed on the semiconductor sacrificial layer. Each of the semiconductor elements includes: a semiconductor island with a side wall and a semiconductor surface layer connected to the side wall, the semiconductor surface layer and in contact with the semiconductor sacrificial layer; and a protective layer covering the side wall. The semiconductor sacrificial layer and the semiconductor surface layer have different materials. Each of the semiconductor elements has a light emitting surface at least including part of the protective layer and part of the semiconductor surface layer.

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to drawings so that those skilled in the art of the present invention can fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some same symbols, which represent elements with the same or similar structure, function, and principle, and can be inferred by those with general knowledge in the industry based on the teaching of this specification. For the sake of brevity in the description, elements with the same symbols will not be repeated.

圖1顯示了依據本發明的製作方法所生產的Micro LED,但本發明不限於此,本發明的製作方法也可以使用於製造其他的半導體元件。FIG. 1 shows a Micro LED produced according to the manufacturing method of the present invention, but the present invention is not limited thereto, and the manufacturing method of the present invention can also be used to manufacture other semiconductor devices.

圖1中的Micro LED MLD具有正型金屬接合墊118p與負型金屬接合墊118n,可分別作為Micro LED MLD的正負外接襯墊。正型金屬接合墊118p與負型金屬接合墊118n透過一護層116中的穿孔,分別跟兩個正型導電電極114p與負型導電電極114n相接觸。一翻轉的半導體島(圖1未標示)由一圖案化的半導體疊層(圖1未標示)所構成,而該半導體疊層包含有無刻意摻雜半導體層104、n型半導體層106、主動層108、以及p型半導體層110。負型金屬接合墊118n透過負型導電電極114n電接觸n型半導體層106;正型金屬接合墊118p透過正型導電電極114p與透明導電層112電接觸p型半導體層110。當適當的電壓施加於Micro LED MLD的兩個金屬接合墊118p與118n時,n型半導體層106中的電子與p型半導體層110中的電洞,可以被驅使移動,在主動層108內相復合(recombine),進而釋放光子而發光。護層116則覆蓋了半導體島的側壁128,可以使得Micro LED MLD中所產生的光線大致朝向方向EMT放射。The Micro LED MLD in FIG. 1 has a positive metal bonding pad 118p and a negative metal bonding pad 118n, which can be respectively used as positive and negative external pads of the Micro LED MLD. The positive type metal bonding pad 118p and the negative type metal bonding pad 118n are in contact with the two positive type conductive electrodes 114p and the negative type conductive electrode 114n respectively through the perforation in the protective layer 116 . An inverted semiconductor island (not shown in FIG. 1 ) is composed of a patterned semiconductor stack (not shown in FIG. 1 ), and the semiconductor stack includes intentionally doped semiconductor layer 104, n-type semiconductor layer 106, active layer 108, and the p-type semiconductor layer 110. The negative metal bonding pad 118n electrically contacts the n-type semiconductor layer 106 through the negative conductive electrode 114n; the positive metal bonding pad 118p electrically contacts the p-type semiconductor layer 110 through the positive conductive electrode 114p and the transparent conductive layer 112 . When an appropriate voltage is applied to the two metal bonding pads 118p and 118n of the Micro LED MLD, the electrons in the n-type semiconductor layer 106 and the holes in the p-type semiconductor layer 110 can be driven to move, and they are phased in the active layer 108. Recombine (recombine), and then release photons to emit light. The protective layer 116 covers the sidewall 128 of the semiconductor island, so that the light generated in the Micro LED MLD can be radiated toward the direction EMT.

當沒有蓋層130時,Micro LED MLD有大致平整的出光表面LO,由一部分的護層116與一部份的無刻意摻雜半導體層104所構成。圖1中,蓋層130蓋在出光表面LO上。蓋層130、護層116、以及正負金屬接合墊118p與118n大致將該圖案化的半導體疊層(也就是無刻意摻雜半導體層104、n型半導體層106、主動層108、以及p型半導體層110所構成的結構)封住其中,阻絕外界環境中的水氣,可以提高Micro LED MLD的可靠度。When there is no capping layer 130 , the Micro LED MLD has a substantially flat light emitting surface LO, which is composed of a part of the protective layer 116 and a part of the unintentionally doped semiconductor layer 104 . In FIG. 1 , the cover layer 130 covers the light output surface LO. The capping layer 130, the protective layer 116, and the positive and negative metal bonding pads 118p and 118n roughly the patterned semiconductor stack (that is, the unintentionally doped semiconductor layer 104, the n-type semiconductor layer 106, the active layer 108, and the p-type semiconductor layer layer 110) to seal it and block the water vapor in the external environment, which can improve the reliability of the Micro LED MLD.

蓋層130例如可以是對於主動層108所發出的光具有穿透性的保護層。例如是環氧樹脂(Epoxy Resin)、矽樹脂(Silicone)、聚醯亞胺(Polyimide)等可透光的高分子膠材又或者是可透光的介電材料,由氮化矽、氧化矽、氧化鋁等材料或其疊層所組成。The cover layer 130 may be, for example, a protective layer that is transparent to the light emitted by the active layer 108 . For example, epoxy resin (Epoxy Resin), silicone resin (Silicone), polyimide (Polyimide) and other light-transmitting polymer adhesives or light-transmitting dielectric materials, made of silicon nitride, silicon oxide , alumina and other materials or their laminates.

圖2至圖6顯示根據本發明之一製作方法,用以生產圖1的Micro LED MLD。2 to 6 show a manufacturing method according to the present invention for producing the Micro LED MLD shown in FIG. 1 .

圖2提供了基板100,具有上表面101。舉例來說,基板100是一藍寶石基板。圖2顯示了在上表面101上依序形成有半導體犧牲層102以及半導體疊層111,連續地覆蓋於上表面101上。半導體疊層111由下而上依序形成有無刻意摻雜半導體層104、n型半導體層106、主動層108、以及p型半導體層110。舉例來說,可以用磊晶的方式,依序堆疊出連續的半導體犧牲層102、無刻意摻雜半導體層104、n型半導體層106、主動層108、以及p型半導體層110。FIG. 2 provides a substrate 100 having an upper surface 101 . For example, the substrate 100 is a sapphire substrate. FIG. 2 shows that a semiconductor sacrificial layer 102 and a semiconductor stack 111 are sequentially formed on the upper surface 101 , covering the upper surface 101 continuously. The semiconductor stack 111 is sequentially formed with the unintentionally doped semiconductor layer 104 , the n-type semiconductor layer 106 , the active layer 108 , and the p-type semiconductor layer 110 sequentially from bottom to top. For example, epitaxy can be used to sequentially stack the semiconductor sacrificial layer 102 , the unintentionally doped semiconductor layer 104 , the n-type semiconductor layer 106 , the active layer 108 , and the p-type semiconductor layer 110 .

在一實施例中,半導體犧牲層102為一氮化鋁(aluminum nitride,AlN)層,厚度可以介於10nm到1000nm,可以是300nm。根據實驗結果,若厚度在10nm以下,則無法形成一個均勻的膜層,後續無法透過分解半導體犧牲層102有效地分離Micro LED MLD與基板100;若厚度大於1000nm,則分解半導體犧牲層102將過於耗時。無刻意摻雜半導體層104可以是一氮化鎵(gallium nitride,GaN)層或一氮化鋁鎵(aluminum gallium nitride,AlGaN)層。p型半導體層106以及n型半導體層110可以是氮化鎵(gallium nitride,GaN)層或是氮化鋁鎵(aluminum gallium nitride,AlGaN)層。In one embodiment, the semiconductor sacrificial layer 102 is an aluminum nitride (AlN) layer with a thickness ranging from 10 nm to 1000 nm, and may be 300 nm. According to the experimental results, if the thickness is less than 10nm, a uniform film cannot be formed, and the Micro LED MLD and the substrate 100 cannot be effectively separated by decomposing the semiconductor sacrificial layer 102; if the thickness is greater than 1000nm, decomposing the semiconductor sacrificial layer 102 will be too time consuming. The unintentionally doped semiconductor layer 104 may be a gallium nitride (GaN) layer or an aluminum gallium nitride (AlGaN) layer. The p-type semiconductor layer 106 and the n-type semiconductor layer 110 may be a gallium nitride (GaN) layer or an aluminum gallium nitride (AlGaN) layer.

主動層108的材料,可以是無刻意摻雜的AlGaN。主動層108中,AlGaN中的鋁濃度可以變化,以便於半導體能帶中產生量子井(quantum well)。於量子井中,導電帶中的電子與價鍵帶中的電洞的復合(recombination),可以釋放出光子,讓主動層108發光。The material of the active layer 108 may be AlGaN without intentional doping. In the active layer 108, the concentration of aluminum in AlGaN can be varied to facilitate the generation of quantum wells in the semiconductor energy band. In the quantum well, the recombination of electrons in the conduction band and holes in the valence band can release photons to make the active layer 108 emit light.

圖3顯示了在半導體犧牲層102上形成了分離之半導體島ISO。舉例來說,可以用微影製程以及蝕刻製程,去除特定區域內的p型半導體層110、主動層108、與部分的n型半導體層106,所以形成了圖3中的平頂(MESA)。換言之,圖案化p型半導體層110、主動層108、與部分的n型半導體層106,來形成平頂MESA。接著,類似地用微影製程以及蝕刻製程,去除掉指定區域中的n型半導體層106以及無刻意摻雜半導體層104,所以形成了圖3中分離的半導體島ISO,並暴露了部分之半導體犧牲層102。也就是圖案化n導電型半導體層106以及無刻意摻雜半導體層104,來形成半導體島ISO。每個半導體島ISO由圖案化的半導體疊層111所構成,具有側壁128,如同圖3所示。FIG. 3 shows the formation of isolated semiconductor islands ISO on the semiconductor sacrificial layer 102 . For example, the p-type semiconductor layer 110 , the active layer 108 , and part of the n-type semiconductor layer 106 in specific regions can be removed by lithography and etching processes, thus forming the mesa (MESA) in FIG. 3 . In other words, the p-type semiconductor layer 110 , the active layer 108 , and part of the n-type semiconductor layer 106 are patterned to form a flat-top MESA. Next, the n-type semiconductor layer 106 and the unintentionally doped semiconductor layer 104 in the designated area are removed similarly by lithography process and etching process, so that the isolated semiconductor island ISO in FIG. 3 is formed and part of the semiconductor is exposed. sacrificial layer 102 . That is, the n-conductivity type semiconductor layer 106 and the unintentionally doped semiconductor layer 104 are patterned to form the semiconductor island ISO. Each semiconductor island ISO is composed of a patterned semiconductor stack 111 with sidewalls 128 as shown in FIG. 3 .

在圖3中,半導體犧牲層102連續地覆蓋於基板100上,具有最上表面103。兩個半導體島ISO分離的形成在最上表面103上。每個半導體島ISO由圖案化的半導體疊層111所構成,且具有側壁128。每個半導體島ISO中的無刻意摻雜半導體層104接觸半導體犧牲層102。In FIG. 3 , the semiconductor sacrificial layer 102 continuously covers the substrate 100 and has an uppermost surface 103 . Two semiconductor islands ISO are separately formed on the uppermost surface 103 . Each semiconductor island ISO is composed of a patterned semiconductor stack 111 and has sidewalls 128 . The unintentionally doped semiconductor layer 104 in each semiconductor island ISO contacts the semiconductor sacrificial layer 102 .

在一些實施例中,無刻意摻雜半導體層104的材料必須不同於半導體犧牲層102的材料,以實現足夠高的蝕刻選擇比。如此,在蝕刻無刻意摻雜半導體層104而形成半導體島ISO時,可以把半導體犧牲層102當作一蝕刻停止層。舉例來說,在蝕刻圖3中的無刻意摻雜半導體層104時,以對無刻意摻雜半導體層104與半導體犧牲層102的蝕刻選擇比至少大於1:100的蝕刻製程,來蝕刻無刻意摻雜半導體層104。高蝕刻選擇比一方面可以確定清除掉半導體犧牲層102上的無刻意摻雜半導體層104,另一方面也可以確保遺留下絕大部分的半導體犧牲層102,控制半導體犧牲層102殘留的厚度。在蝕刻無刻意摻雜半導體層104時,可以採用抓取蝕刻停止點的方法,當無刻意摻雜半導體層104的蝕刻反應生成物大致不再被偵測到時,認定無刻意摻雜半導體層104大致去除完畢,頂多再加上一小段固定過蝕刻(over etch)時間,就停止蝕刻無刻意摻雜半導體層104的製程。In some embodiments, the material of the unintentionally doped semiconductor layer 104 must be different from the material of the semiconductor sacrificial layer 102 to achieve a sufficiently high etching selectivity. In this way, when etching the unintentionally doped semiconductor layer 104 to form the semiconductor island ISO, the semiconductor sacrificial layer 102 can be used as an etching stop layer. For example, when etching the unintentionally doped semiconductor layer 104 in FIG. doped semiconductor layer 104 . On the one hand, the high etching selectivity can ensure that the unintentionally doped semiconductor layer 104 on the semiconductor sacrificial layer 102 is removed; When etching the unintentionally doped semiconductor layer 104, the method of grabbing the etching stop point can be used. When the etching reaction products of the unintentionally doped semiconductor layer 104 are almost no longer detected, it is determined that the unintentionally doped semiconductor layer After the 104 has been roughly removed, and at most a short period of over etch time is added, the process of etching the non-intentionally doped semiconductor layer 104 is stopped.

圖4顯示了在半導體島ISO的p型半導體層110上形成了透明導電層112、正負導電電極114p與114n、護層116、以及正負金屬接合墊118p與118n,而生成了分離之半導體元件LED1與LED2。護層116覆蓋了半導體島ISO的側壁128。部分之半導體犧牲層102被夾於護層116與基板100之間。半導體元件LED1與LED2均透過半導體犧牲層102附著於上表面101上。每個半導體元件LED1與LED2的底部,具有出光表面LO,大致由部份的護層116與部份的無刻意摻雜半導體層104所構成。4 shows that a transparent conductive layer 112, positive and negative conductive electrodes 114p and 114n, a protective layer 116, and positive and negative metal bonding pads 118p and 118n are formed on the p-type semiconductor layer 110 of the semiconductor island ISO, and a separate semiconductor element LED1 is formed. with LED2. The cladding layer 116 covers the sidewalls 128 of the semiconductor island ISO. Part of the semiconductor sacrificial layer 102 is sandwiched between the protective layer 116 and the substrate 100 . Both the semiconductor elements LED1 and LED2 are attached on the upper surface 101 through the semiconductor sacrificial layer 102 . The bottom of each semiconductor element LED1 and LED2 has a light emitting surface LO, which is roughly composed of a part of the protective layer 116 and a part of the unintentionally doped semiconductor layer 104 .

透明導電層112的材料可以是氧化銦錫(ITO),用以分散電流,同時提供光通透性。導電電極114p與114n的材料可以是鋁或銅,提供一低電阻路徑,將電流傳導到一些目的地。護層116的材料可以是二氧化矽(silicon oxide,SiO 2),也可以是具有複合層結構的一布拉格反射疊層,除了隔絕半導體島ISO於外界環境之外,也可以用以反射光線,使得主動層108所產生的光線,大致朝向方向EMT放射。正負金屬接合墊118p與118n的材料可以是鋁Al、鉻(Cr)、Au、鉑(platinum、Pt)等等,可以用來提供半導體元件LED1與LED2與外界電路的電性連接。 The material of the transparent conductive layer 112 may be Indium Tin Oxide (ITO), which is used to disperse current while providing light transparency. The material of the conductive electrodes 114p and 114n may be aluminum or copper, providing a low resistance path to conduct current to some destination. The material of the protective layer 116 can be silicon dioxide (silicon oxide, SiO 2 ), or a Bragg reflective laminate with a composite layer structure. In addition to isolating the semiconductor island ISO from the external environment, it can also be used to reflect light. The light generated by the active layer 108 is generally radiated toward the direction EMT. The material of the positive and negative metal bonding pads 118p and 118n can be aluminum Al, chromium (Cr), Au, platinum (platinum, Pt), etc., and can be used to provide electrical connection between the semiconductor elements LED1 and LED2 and external circuits.

在另一個實施例中,在圖案化護層116而形成半導體元件LED1與LED2後,可以緊接著去除掉半導體元件LED1與LED2沒有遮蔽處的半導體犧牲層102。也就是說,在另一個實施例中,圖4中半導體元件LED1與LED2所覆蓋的區域中有半導體犧牲層102,而半導體元件LED1與LED2之間的空曠區域沒有半導體犧牲層102。In another embodiment, after the semiconductor elements LED1 and LED2 are formed by patterning the protective layer 116 , the semiconductor sacrificial layer 102 where the semiconductor elements LED1 and LED2 are not shielded can be removed immediately. That is to say, in another embodiment, there is a semiconductor sacrificial layer 102 in the area covered by the semiconductor elements LED1 and LED2 in FIG. 4 , but there is no semiconductor sacrificial layer 102 in the open area between the semiconductor elements LED1 and LED2 .

圖5顯示轉移基板120貼附到圖4中的半導體元件LED1與LED2上。轉移基板120可以是表面具有黏結材料的承載基板,例如:表面具有焊錫的印刷電路板、表面具有黏著膠層的藍寶石基板、表面具有黏著膠層的玻璃基板、UV固化膠帶層…等根據後續使用目的不同可供轉移半導體元件於其上的承載基板。FIG. 5 shows that the transfer substrate 120 is attached to the semiconductor elements LED1 and LED2 in FIG. 4 . The transfer substrate 120 can be a carrier substrate with an adhesive material on its surface, such as a printed circuit board with solder on its surface, a sapphire substrate with an adhesive layer on its surface, a glass substrate with an adhesive layer on its surface, a UV curable tape layer, etc. according to subsequent use Different purposes can be used to transfer semiconductor components on the carrier substrate.

圖6顯示用雷射剝離(laser lift-off)技術,以雷射LSR分解半導體元件LED2下方的半導體犧牲層102,使得半導體元件LED2轉移到轉移基板120。舉例來說,以波長短於200nm的雷射LSR,由基板100下方朝上照射半導體元件LED2。雷射LSR穿透過基板100,大致聚焦於半導體犧牲層102,並被半導體犧牲層102吸收。半導體犧牲層102因此被加熱而分解,使半導體元件LED2可以脫離基板100。只要加熱的時間夠久,雷射LSR可能不只分解半導體犧牲層102,也可能分解少部分的無刻意摻雜半導體層104。FIG. 6 shows that the semiconductor sacrificial layer 102 under the semiconductor element LED2 is decomposed by laser LSR using laser lift-off technology, so that the semiconductor element LED2 is transferred to the transfer substrate 120 . For example, the semiconductor element LED2 is irradiated upward from the bottom of the substrate 100 with a laser LSR with a wavelength shorter than 200 nm. The laser LSR penetrates through the substrate 100 , is roughly focused on the semiconductor sacrificial layer 102 , and is absorbed by the semiconductor sacrificial layer 102 . The semiconductor sacrificial layer 102 is thus heated and decomposed, so that the semiconductor element LED2 can be detached from the substrate 100 . As long as the heating time is long enough, the laser LSR may not only decompose the sacrificial semiconductor layer 102 , but may also decompose a small portion of the unintentionally doped semiconductor layer 104 .

當半導體犧牲層102被分解後,圖6之半導體元件LED2具有出光表面LO,由一部分的護層116與一部分的無刻意摻雜半導體層104所構成。After the semiconductor sacrificial layer 102 is decomposed, the semiconductor element LED2 in FIG. 6 has a light-emitting surface LO, which is composed of a part of the protective layer 116 and a part of the unintentionally doped semiconductor layer 104 .

圖6之半導體元件LED2,之後可以在出光表面LO上,設置蓋層130,生成如同圖1所示的Micro LED MLD,其可以具有良好的可靠度。The semiconductor element LED2 in FIG. 6 can then be provided with a cover layer 130 on the light-emitting surface LO to produce a Micro LED MLD as shown in FIG. 1 , which can have good reliability.

為了介紹半導體犧牲層102的重要性,以下說明沒有半導體犧牲層102時,如何對所產生Micro LED之可靠度,可能產生的不良影響。In order to introduce the importance of the semiconductor sacrificial layer 102 , the following describes how the reliability of the produced Micro LED may be adversely affected without the semiconductor sacrificial layer 102 .

圖7與圖8分別顯示圖4與圖6沒有半導體犧牲層102時,製造一Micro LED的過程中一種可能的過程與結果。圖7跟圖4類似之處,以及圖8與圖6類似之處,可以透過先前說明得知,不再累述。簡單的說,圖7就是圖4中的半導體犧牲層102與基板100,由單一基板100而取代。因此,在圖7中沒有半導體犧牲層102,而半導體元件LED11與LED12直接黏著於基板100上。圖8顯示了雷射剝離(laser lift-off)技術,用雷射LSR加熱分解圖7中少部分的無刻意摻雜半導體層104,使得半導體元件LED12可以被剝離基板100。相較於半導體元件LED11,半導體元件LED12中的無刻意摻雜半導體層104比較薄,因為部分的無刻意摻雜半導體層104被雷射LSR加熱分解。需要特別注意的是,由於雷射LSR並不會分解護層116。在圖8中所顯示的兩個區域RK中,護層116依然黏著於基板100上。因此,當半導體元件LED12要被剝離基板100時,區域RK中的護層116因為應力,可能碎裂,之後便提供了水氣滲入半導體元件LED12內部破壞其中半導體材料的可能路徑,降低之後所形成之Micro LED的可靠度。FIG. 7 and FIG. 8 respectively show a possible process and result in the process of manufacturing a Micro LED when there is no semiconductor sacrificial layer 102 in FIG. 4 and FIG. 6 . The similarities between FIG. 7 and FIG. 4 , and the similarities between FIG. 8 and FIG. 6 can be known from the previous descriptions, and will not be repeated here. To put it simply, FIG. 7 is that the semiconductor sacrificial layer 102 and the substrate 100 in FIG. 4 are replaced by a single substrate 100 . Therefore, there is no semiconductor sacrificial layer 102 in FIG. 7 , and the semiconductor elements LED11 and LED12 are directly adhered on the substrate 100 . FIG. 8 shows a laser lift-off technology, using laser LSR to heat and decompose a small part of the unintentionally doped semiconductor layer 104 in FIG. 7 , so that the semiconductor element LED12 can be peeled off the substrate 100 . Compared with the semiconductor element LED11 , the unintentionally doped semiconductor layer 104 in the semiconductor element LED12 is thinner, because part of the unintentionally doped semiconductor layer 104 is decomposed by the laser LSR. It is important to note that the LSR does not decompose the sheath 116 due to the laser. In the two regions RK shown in FIG. 8 , the sheath 116 is still adhered to the substrate 100 . Therefore, when the semiconductor element LED12 is to be peeled off the substrate 100, the protective layer 116 in the region RK may crack due to stress, and then provides a possible path for moisture to infiltrate into the semiconductor element LED12 and destroy the semiconductor material therein, reducing the subsequent formation. The reliability of Micro LED.

圖9與圖10分別顯示圖3與圖6沒有半導體犧牲層102時,製造一Micro LED的過程中另一種可能的過程與結果。圖9跟圖3類似之處,以及圖10與圖6類似之處,可以透過先前說明得知,不再累述。簡單的說,圖9是圖3中的半導體犧牲層102是由部分之無刻意摻雜半導體層104而取代。圖10中雷射剝離技術,用雷射LSR加熱分解圖9中少部分的無刻意摻雜半導體層104,使得半導體元件LED22可以被剝離基板100。9 and 10 respectively show another possible process and result in the process of manufacturing a Micro LED without the semiconductor sacrificial layer 102 in FIGS. 3 and 6 . The similarities between FIG. 9 and FIG. 3 , and the similarities between FIG. 10 and FIG. 6 can be known from the previous descriptions, and will not be repeated here. To put it simply, FIG. 9 shows that the semiconductor sacrificial layer 102 in FIG. 3 is replaced by a part of the unintentionally doped semiconductor layer 104 . The laser lift-off technology in FIG. 10 uses laser LSR to heat and decompose a small part of the unintentionally doped semiconductor layer 104 in FIG. 9 , so that the semiconductor element LED22 can be peeled off the substrate 100 .

要形成圖9中的結果,於蝕刻無刻意摻雜半導體層104來形成半導體島ISO,將無法使用抓取蝕刻停止點的方法,只能使用固定時間模式。換言之,也就是在大約去除完n導電型半導體層106後,再以固定時間長度來蝕刻無刻意摻雜半導體層104,使半導體島ISO之外的區域一定殘留有一定厚度THK之無刻意摻雜半導體層104。為了克服蝕刻製程的變異性(stability) 與均勻性(uniformity),製程上,厚度THK往往必須相當的厚。圖9之半導體島ISO之外,帶有厚度THK的無刻意摻雜半導體層104,將於圖10雷射剝離中,非常容易在圖10中所標示的兩個區域EX中,殘留有無刻意摻雜半導體層104,無法被後續形成的蓋層130所完全保護。換言之,區域EX中裸露的無刻意摻雜半導體層104可能跟水氣產生反應,也可能會導入水氣而降低之後所形成的Micro LED的可靠度。To form the result shown in FIG. 9 , when etching the semiconductor layer 104 without deliberately doping to form the semiconductor island ISO, the method of grabbing the etching stop point cannot be used, and only the fixed time mode can be used. In other words, after the removal of the n-conductivity semiconductor layer 106, the non-intentionally doped semiconductor layer 104 is etched for a fixed period of time, so that the non-intentionally doped semiconductor layer 104 with a certain thickness of THK must remain in the area outside the semiconductor island ISO. semiconductor layer 104 . In order to overcome the variability (stability) and uniformity (uniformity) of the etching process, the thickness THK must be quite thick in the process. Outside of the semiconductor island ISO in FIG. 9 , the unintentionally doped semiconductor layer 104 with a thickness THK will be very easy to remain in the two regions EX marked in FIG. 10 in the laser lift-off of FIG. The hetero semiconductor layer 104 cannot be completely protected by the subsequently formed cap layer 130 . In other words, the exposed unintentionally doped semiconductor layer 104 in the region EX may react with moisture, or may introduce moisture to reduce the reliability of the subsequently formed Micro LED.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:基板 101:上表面 102:半導體犧牲層 103:最上表面 104:無刻意摻雜半導體層 106:n導電型半導體層 108:主動層 110:p導電型半導體層 111:半導體疊層 112:透明導電層 114n:負型導電電極 114p:正型導電電極 116:護層 118n:負型金屬接合墊 118p:正型金屬接合墊 120:膠帶層 128:側壁 130:蓋層 EMT:方向 EX:區域 ISO:半導體島 LED1、LED2、LED11、LED12、LED21、LED22:半導體元件 LO:出光表面 LSR:雷射 MESA:平頂 MLD:Micro LED RK:區域 THK:厚度 100: Substrate 101: upper surface 102: Semiconductor sacrificial layer 103: top surface 104: No intentional doping of semiconductor layers 106: n conductivity type semiconductor layer 108:Active layer 110:p conductivity type semiconductor layer 111: Semiconductor stack 112: transparent conductive layer 114n: negative conductive electrode 114p: Positive conductive electrode 116: protective layer 118n: Negative Metal Bonding Pad 118p: Positive Metal Bonding Pad 120: tape layer 128: side wall 130: cover layer EMT: Direction EX: area ISO: Semiconductor Island LED1, LED2, LED11, LED12, LED21, LED22: semiconductor components LO: light exit surface LSR: laser MESA: flat top MLD:Micro LED RK: area THK: Thickness

圖1顯示了依據本發明的製作方法所生產的Micro LED。Fig. 1 shows a Micro LED produced according to the manufacturing method of the present invention.

圖2至圖6顯示根據本發明之一製作方法,可用以生產圖1的Micro LED。2 to 6 show a manufacturing method according to the present invention, which can be used to produce the Micro LED shown in FIG. 1 .

圖7與圖8分別顯示圖4與圖6沒有半導體犧牲層102時,製造一Micro LED的過程中一種可能的過程與結果。FIG. 7 and FIG. 8 respectively show a possible process and result in the process of manufacturing a Micro LED when there is no semiconductor sacrificial layer 102 in FIG. 4 and FIG. 6 .

圖9與圖10分別顯示圖3與圖6沒有半導體犧牲層102時,製造一Micro LED的過程中另一種可能的過程與結果。9 and 10 respectively show another possible process and result in the process of manufacturing a Micro LED without the semiconductor sacrificial layer 102 in FIGS. 3 and 6 .

100:基板 100: Substrate

101:上表面 101: upper surface

102:半導體犧牲層 102: Semiconductor sacrificial layer

104:無刻意摻雜半導體層 104: No intentional doping of semiconductor layers

106:n型半導體層 106: n-type semiconductor layer

108:主動層 108:Active layer

110:p型半導體層 110: p-type semiconductor layer

112:透明導電層 112: transparent conductive layer

114n:負型導電電極 114n: negative conductive electrode

114p:正型導電電極 114p: Positive conductive electrode

116:護層 116: protective layer

118n:負型金屬接合墊 118n: Negative Metal Bonding Pad

118p:正型金屬接合墊 118p: Positive Metal Bonding Pad

128:側壁 128: side wall

EMT:方向 EMT: Direction

LED1、LED2:半導體元件 LED1, LED2: semiconductor components

Claims (10)

一種半導體元件的製造方法,包括: 提供一基板; 形成一半導體犧牲層於該基板上; 形成彼此分離的一第一半導體元件及一第二半導體元件於該半導體犧牲層上,其中,該第一半導體元件包含一第一半導體島及一第一護層,該第二半導體元件包含一第二半導體島及一第二護層;以及 分解該半導體犧牲層之至少一部份,以使該第一半導體元件與該基板彼此分離; 其中,於該分解步驟前,該第一半導體島及該第一護層皆與該半導體犧牲層之一最上表面直接接觸;以及 於該分解步驟後,該第一半導體島及該第一護層皆與該半導體犧牲層分離,且該第一護層仍覆蓋該第一半導體島。 A method of manufacturing a semiconductor device, comprising: providing a substrate; forming a semiconductor sacrificial layer on the substrate; forming a first semiconductor element and a second semiconductor element separated from each other on the semiconductor sacrificial layer, wherein the first semiconductor element includes a first semiconductor island and a first protective layer, and the second semiconductor element includes a first two semiconductor islands and a second cladding layer; and dissolving at least a portion of the semiconductor sacrificial layer to separate the first semiconductor element and the substrate from each other; Wherein, before the decomposing step, both the first semiconductor island and the first protective layer are in direct contact with one of the uppermost surfaces of the semiconductor sacrificial layer; and After the decomposing step, both the first semiconductor island and the first protective layer are separated from the semiconductor sacrificial layer, and the first protective layer still covers the first semiconductor island. 如申請專利範圍第1項所述之製造方法,其中,該半導體犧牲層為一氮化鋁層,且該第一半導體島具有一氮化鎵層接觸該氮化鋁層。The manufacturing method described in claim 1 of the patent application, wherein the semiconductor sacrificial layer is an aluminum nitride layer, and the first semiconductor island has a gallium nitride layer in contact with the aluminum nitride layer. 如申請專利範圍第1項所述之製造方法,其中,該第一護層為一布拉格反射疊層。The manufacturing method described in item 1 of the scope of the patent application, wherein the first protective layer is a Bragg reflective laminate. 如申請專利範圍第1項所述之製造方法,還包含有: 依序於該半導體犧牲層上,磊晶一無刻意摻雜半導體層、一第一導電型半導體層、一主動層、以及一第二導電型半導體層;以及 蝕刻該第二導電型半導體層以及該主動層,以形成複數個平頂;以及 蝕刻該第一導電型半導體層以及該無刻意摻雜半導體層,以曝露部分之該半導體犧牲層,並形成該第一與第二半導體島。 The manufacturing method described in Item 1 of the scope of the patent application also includes: On the semiconductor sacrificial layer in sequence, epitaxy an unintentionally doped semiconductor layer, a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer; and etching the second conductivity type semiconductor layer and the active layer to form a plurality of mesa; and Etching the first conductive type semiconductor layer and the unintentionally doped semiconductor layer to expose part of the semiconductor sacrificial layer, and forming the first and second semiconductor islands. 如申請專利範圍第4項所述之製造方法,其中,該無刻意摻雜半導體層為一氮化鎵層。The manufacturing method described in claim 4 of the patent application, wherein the unintentionally doped semiconductor layer is a gallium nitride layer. 如申請專利範圍第1項所述之製造方法,其中,分解該半導體犧牲層之該步驟,係以雷射加熱該半導體犧牲層。The manufacturing method described in claim 1, wherein the step of decomposing the sacrificial semiconductor layer is heating the sacrificial semiconductor layer with a laser. 一種半導體結構,包含: 一基板; 一半導體犧牲層,形成於該基板上;以及 複數個彼此分離之半導體元件,形成於該半導體犧牲層上,每一該些半導體元件包含有: 一半導體島,具有一側壁以及一半導體表層連接於該側壁,該半導體 表層並接觸該半導體犧牲層;以及 一護層,覆蓋該側壁; 其中,該半導體犧牲層與該半導體表層具有不同材料,且每一該些半導體元件具有一出光表面,至少包含部分該護層與該半導體表層。 A semiconductor structure comprising: a substrate; a semiconductor sacrificial layer formed on the substrate; and A plurality of semiconductor elements separated from each other are formed on the semiconductor sacrificial layer, and each of these semiconductor elements includes: A semiconductor island having a side wall and a semiconductor surface layer connected to the side wall, the semiconductor surface layer and contacts the semiconductor sacrificial layer; and a sheath covering the side wall; Wherein, the semiconductor sacrificial layer and the semiconductor surface layer have different materials, and each of the semiconductor elements has a light-emitting surface, at least partially including the protective layer and the semiconductor surface layer. 如申請專利範圍第7項所述之半導體結構,其中,該半導體島包含有一無刻意摻雜半導體層、一第一導電型半導體層、一主動層、以及一第二導電型半導體層。The semiconductor structure as described in item 7 of the scope of the patent application, wherein the semiconductor island includes an unintentionally doped semiconductor layer, a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer. 如申請專利範圍第7項所述之半導體結構,其中,該半導體犧牲層包含一氮化鋁層,該半導體表層包含一氮化鎵層,該氮化鋁層與該氮化鎵層彼此接觸。The semiconductor structure described in claim 7 of the patent application, wherein the semiconductor sacrificial layer includes an aluminum nitride layer, the semiconductor surface layer includes a gallium nitride layer, and the aluminum nitride layer and the gallium nitride layer are in contact with each other. 如申請專利範圍第7項所述之半導體結構,其中,該半導體犧牲層被夾於該護層與該基板之間。The semiconductor structure as described in claim 7, wherein the semiconductor sacrificial layer is sandwiched between the protective layer and the substrate.
TW110149413A 2021-12-29 2021-12-29 Method of manufacturing semiconductor devices and semiconductor structure using the same TW202327145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110149413A TW202327145A (en) 2021-12-29 2021-12-29 Method of manufacturing semiconductor devices and semiconductor structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110149413A TW202327145A (en) 2021-12-29 2021-12-29 Method of manufacturing semiconductor devices and semiconductor structure using the same

Publications (1)

Publication Number Publication Date
TW202327145A true TW202327145A (en) 2023-07-01

Family

ID=88147769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110149413A TW202327145A (en) 2021-12-29 2021-12-29 Method of manufacturing semiconductor devices and semiconductor structure using the same

Country Status (1)

Country Link
TW (1) TW202327145A (en)

Similar Documents

Publication Publication Date Title
JP6210800B2 (en) Light emitting element
JP5847421B2 (en) Light emitting device, light emitting device package
JP5911198B2 (en) Light emitting element
US20190051792A1 (en) Micro light emitting diode device and manufacturing method thereof
JP5858633B2 (en) Light emitting device, light emitting device package
JP5458044B2 (en) Light emitting device and method for manufacturing light emitting device
JP6239311B2 (en) Light emitting element
JP2011192999A (en) Light-emitting device
JP6239312B2 (en) Light emitting element
JP2011249411A (en) Semiconductor light-emitting element, light-emitting device, illumination device, display device, signal light unit and road information device
JP6062149B2 (en) Light emitting device and light emitting device package
JP2012028381A (en) Semiconductor light emitting device and method of manufacturing the same
TW201135978A (en) Light emitting device, method of manufacturing the same
US20140124731A1 (en) Light emitting device
US9842974B2 (en) Light emitting device including a connection wiring
JP5709949B2 (en) Light emitting element
JP6039590B2 (en) Light emitting element
KR20140106946A (en) Light emitting device, light emitting device package, and light unit
JP2014158020A (en) Light-emitting element
TW202327145A (en) Method of manufacturing semiconductor devices and semiconductor structure using the same
KR101387847B1 (en) Method for tranferring and manufacturing flexible light emitting diode using rollers and flexible lexible light emitting diode manufactured by the same
JP6265715B2 (en) Light emitting element
TWI360893B (en) Light emitting diode chip and method for fabricati
KR101976466B1 (en) Light emitting device
KR20120000974A (en) Light emitting device, method for fabricating the light emitting device, light emitting device package, and lighting system