TW202323894A - Optical interconnection device and fabrication method thereof - Google Patents

Optical interconnection device and fabrication method thereof Download PDF

Info

Publication number
TW202323894A
TW202323894A TW111147957A TW111147957A TW202323894A TW 202323894 A TW202323894 A TW 202323894A TW 111147957 A TW111147957 A TW 111147957A TW 111147957 A TW111147957 A TW 111147957A TW 202323894 A TW202323894 A TW 202323894A
Authority
TW
Taiwan
Prior art keywords
optical
conversion unit
interconnection
electro
optical interconnection
Prior art date
Application number
TW111147957A
Other languages
Chinese (zh)
Inventor
徐葉龍
孟懷宇
沈亦晨
Original Assignee
大陸商上海曦智科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海曦智科技有限公司 filed Critical 大陸商上海曦智科技有限公司
Publication of TW202323894A publication Critical patent/TW202323894A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical interconnection device and a fabrication method thereof are provided. The optical interconnection device includes a plurality of electrical chips, which include a first electrical chip and a second electrical chip; a first optical interconnection, which has a plurality of optical waveguides; wherein the first electrical chip and the second electrical chip are connected in communication through an optical waveguide of the first optical interconnection. According to the embodiment of the present invention, a plurality of electrical chips can realize, for example, a hybrid cube network network communication interconnection topology or other complex interconnection topologies through optical interconnection, and simultaneously process information in parallel. There is a tight information interconnection between chips and chips, which can better meet the computing power and bandwidth requirements of artificial intelligence algorithms. Compared with electrical interconnection, optical interconnection has large bandwidth, low delay, low power consumption, high integration and strong anti-electromagnetic interference ability.

Description

光互連裝置及其製造方法Optical interconnection device and manufacturing method thereof

本發明關於晶片技術領域,更爲具體而言,關於一種光互連裝置及其製造方法。The present invention relates to the technical field of wafers, and more specifically, relates to an optical interconnection device and a manufacturing method thereof.

超大規模積體電路技術已經成爲支撑資訊化社會發展演進的支柱。在資訊系統中廣泛應用的各類晶片通常依賴於電晶片工藝製程的升級以實現其性能提升和功耗優化。然而,隨著晶片製程逐步逼近物理極限,摩爾定律前進的步伐正在放緩,進一步發展需要新的思路。傳統的資訊互連主要是通過銅介質進行電子傳導實現的,而電子資訊傳輸速度和距離受限於電阻電容時間常數以及電學損耗,導致所需銅線的直徑隨著傳輸速度和傳輸距離的增加而顯著增加,再加上電子資訊通道之間的訊號串擾制約了互連的能耗和帶寬密度。另一方面,晶片之間往往需要高速互連,例如隨著人工智慧領域的發展,深度學習算法應用往往對計算晶片要求大量數據在計算單元和記憶單元之間存在高速通訊。這使得傳統的電互連的功耗和帶寬密度成爲更爲嚴重的問題,從而限制了更高性能人工智慧晶片的開發。VLSI technology has become a pillar supporting the development and evolution of an information society. Various types of chips widely used in information systems usually rely on the upgrade of the chip process to achieve performance improvement and power consumption optimization. However, as the wafer manufacturing process is gradually approaching the physical limit, the pace of Moore's Law is slowing down, and further development requires new ideas. Traditional information interconnection is mainly realized by electronic conduction through copper media, and the speed and distance of electronic information transmission are limited by the time constant of resistance and capacitance and electrical loss, resulting in the diameter of the required copper wire increasing with the transmission speed and transmission distance. The significant increase, coupled with signal crosstalk between electronic information channels, constrains the power consumption and bandwidth density of interconnects. On the other hand, high-speed interconnections are often required between chips. For example, with the development of the field of artificial intelligence, the application of deep learning algorithms often requires a large amount of data on the computing chip to have high-speed communication between the computing unit and the memory unit. This makes the power consumption and bandwidth density of conventional electrical interconnects a more serious problem, limiting the development of higher-performance AI chips.

本發明提供了一種光互連裝置及其製造方法,以光互連件作爲各晶片之間互連介質,避免了電互連導致的各種缺陷。The invention provides an optical interconnection device and a manufacturing method thereof. The optical interconnection is used as an interconnection medium between chips, thereby avoiding various defects caused by electrical interconnection.

根據本發明的一方面,提供一種光互連裝置,該光互連裝置包括:複數個電晶片,其包括第一電晶片和第二電晶片;第一光互連件,其具有複數個光波導;其中,該第一電晶片和該第二電晶片通過該第一光互連件的光波導實現通訊連接。According to one aspect of the present invention, an optical interconnection device is provided, which includes: a plurality of electric chips, which include a first electric chip and a second electric chip; a first optical interconnection, which has a plurality of optical chips A waveguide; wherein, the first electronic chip and the second electronic chip are connected in communication through the optical waveguide of the first optical interconnection.

在一些實施方式中,該光互連裝置還包括:電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到光訊號中,該光訊號在該第一光互連件的光波導中傳輸; 光電轉換單元,其與該第二電晶片連接,將接收的光訊號轉換爲傳輸至該第二電晶片的電訊號;其中,該光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:該第一光互連件中的光波導。In some embodiments, the optical interconnection device further includes: an electro-optical conversion unit, which is connected to the first electronic chip, and is used to carry the information carried by the electrical signal of the first electronic chip into an optical signal, and the optical signal transmission in the optical waveguide of the first optical interconnection; a photoelectric conversion unit, which is connected to the second electronic chip, converts the received optical signal into an electrical signal transmitted to the second electronic chip; wherein, the optical signal The transmission path from the electro-optical conversion unit to the photoelectric conversion unit includes: an optical waveguide in the first optical interconnection.

在一些實施方式中,該第一光互連件設置在該承載基板上;該些電晶片設置在該第一光互連件上;其中,該第一光互連件包括光子積體電路,該光子積體電路包括該些光波導、該電光轉換單元,以及該光電轉換單元。In some embodiments, the first optical interconnect is disposed on the carrier substrate; the electric chips are disposed on the first optical interconnect; wherein the first optical interconnect includes a photonic integrated circuit, The photonic integrated circuit includes the optical waveguides, the electro-optical conversion unit, and the photoelectric conversion unit.

在一些實施方式中,該光互連裝置還包括:複數個光纖;和具有複數個光波導的第二光互連件,該第二光互連件與該第一光互連件通過該些光纖互連;其中,該光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:先後經過該第一光互連件中的光波導、該些光纖中的至少一個、以及該第二光互連件的光波導的傳輸路徑。In some embodiments, the optical interconnection device further includes: a plurality of optical fibers; and a second optical interconnection with a plurality of optical waveguides, the second optical interconnection and the first optical interconnection pass through the Optical fiber interconnection; wherein, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: successively passing through the optical waveguide in the first optical interconnection, at least one of the optical fibers, and the second The transmission path of the optical waveguide of the optical interconnect.

在一些實施方式中,該第一光互連件和第二光互連件設置在該承載基板上;該第一電晶片設置在該第一光互連件上,該第一光互連件包括光子積體電路,該光子積體電路包括該些光波導、該電光轉換單元;該第二電晶片設置在該第二光互連件上該第二光互連件包括光子積體電路,該第二光互連件的光子積體電路包括該光電轉換單元。In some embodiments, the first optical interconnection and the second optical interconnection are disposed on the carrier substrate; the first chip is disposed on the first optical interconnection, and the first optical interconnection Comprising a photonic integrated circuit, the photonic integrated circuit includes the optical waveguides and the electro-optical conversion unit; the second electric chip is arranged on the second optical interconnection, and the second optical interconnection includes a photonic integrated circuit, The photonic integrated circuit of the second optical interconnection includes the photoelectric conversion unit.

在一些實施方式中,該第一光互連件的光子積體電路還包括介電層、第一導電佈線單元、第二導電佈線單元;該光子積體電路中的複數個光波導、該電光轉換單元以及該光電轉換單元被該介電層所覆蓋;該第一導電佈線單元被配置爲將該電光轉換單元電連接至該第一電晶片;該第二導電佈線單元被配置爲將該光電轉換單元電連接至該第二電晶片;該第一導電佈線單元包括第一電連接結構,該第一電連接結構穿過至少部分該介電層;該第二導電佈線單元包括第二電連接結構,該第二電連接結構穿過至少部分該介電層。In some embodiments, the photonic integrated circuit of the first optical interconnect further includes a dielectric layer, a first conductive wiring unit, and a second conductive wiring unit; a plurality of optical waveguides in the photonic integrated circuit, the electro-optic The conversion unit and the photoelectric conversion unit are covered by the dielectric layer; the first conductive wiring unit is configured to electrically connect the electro-optical conversion unit to the first wafer; the second conductive wiring unit is configured to connect the photoelectric The conversion unit is electrically connected to the second electric chip; the first conductive wiring unit includes a first electrical connection structure, and the first electrical connection structure passes through at least part of the dielectric layer; the second conductive wiring unit includes a second electrical connection structure, the second electrical connection structure passes through at least part of the dielectric layer.

在一些實施方式中,該電光轉換單元包括調制器陣列,其將該第一電晶片的電訊號承載的資訊調製到不同波長的光訊號上並以波分復用的方式進行傳輸;該光電轉換單元包括探測器陣列,其對接收的光訊號進行波分解複用並轉化爲向該第二電晶片傳輸的電訊號。In some embodiments, the electro-optic conversion unit includes a modulator array, which modulates the information carried by the electrical signal of the first transistor into optical signals of different wavelengths and transmits them in a wavelength division multiplexing manner; the photoelectric conversion The unit includes a detector array, which performs wave division multiplexing on the received optical signal and converts it into an electrical signal transmitted to the second transistor.

在一些實施方式中,該調制器陣列包括複數個微環調制器;和/或該探測器陣列包括複數個微環濾波探測器。In some embodiments, the modulator array includes a plurality of microring modulators; and/or the detector array includes a plurality of microring filter detectors.

在一些實施方式中,該些電晶片包括一個或複數個小晶片。In some embodiments, the chips include one or more chiplets.

在一些實施方式中,在晶圓級封裝過程中安裝該第一電晶片、第二電晶片。In some embodiments, the first die and the second die are mounted during a wafer level packaging process.

根據本發明的一方面,提供一種光互連裝置,該光互連裝置包括:第一電晶片、第二電晶片;第一光互連件;該第一電晶片、第二電晶片設置於該第一光互連件上;該第一光互連件包括光子積體電路,該光子積體電路包括:複數個光波導;第一電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到第一光訊號中;第一光電轉換單元,其與該第二電晶片連接,用於將該第一光訊號轉換爲傳輸至該第二電晶片的電訊號;第二電光轉換單元,其與該第二電晶片連接,用於將該第二電晶片的電訊號承載的資訊承載到第二光訊號中;以及第二光電轉換單元,其與該第一電晶片連接,用於將該第二光訊號轉換爲傳輸至該第一電晶片的電訊號;其中,該第一光訊號從該第一電光轉換單元至該第一光電轉換單元的傳輸路徑包括:該第一光互連件中的該些光波導中的至少一個;其中,該第二光訊號從該第二電光轉換單元至該第二光電轉換單元的傳輸路徑包括:該第一光互連件中的該些光波導中的至少一個。According to one aspect of the present invention, an optical interconnection device is provided, the optical interconnection device includes: a first electric chip, a second electric chip; a first optical interconnect; the first electric chip and the second electric chip are arranged on On the first optical interconnection; the first optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes: a plurality of optical waveguides; a first electro-optical conversion unit, which is connected to the first electric chip, for Carrying the information carried by the electrical signal of the first electronic chip into the first optical signal; the first photoelectric conversion unit, which is connected to the second electronic chip, is used to convert the first optical signal into the first optical signal The electric signal of the second electric chip; the second electro-optical conversion unit, which is connected to the second electric chip, and is used to carry the information carried by the electric signal of the second electric chip into the second optical signal; and the second photoelectric conversion unit , which is connected to the first transistor for converting the second optical signal into an electrical signal transmitted to the first transistor; wherein, the first optical signal is transmitted from the first electro-optical conversion unit to the first photoelectric The transmission path of the conversion unit includes: at least one of the optical waveguides in the first optical interconnect; wherein, the transmission path of the second optical signal from the second electro-optical conversion unit to the second photoelectric conversion unit includes : at least one of the optical waveguides in the first optical interconnection.

在一些實施方式中,該光互連裝置還包括第二光互連件、第三電晶片以及複數個光纖,其中,該第三電晶片設置於該第二光互連件上,該些光纖將該第一光互連件及該第二光互連件進行光學連接;該第一光互連件的光子積體電路還包括第三電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到第三光訊號;該第二光互連件包括光子積體電路,該第二光互連件的光子積體電路包括複數個光波導,第三光電轉換單元,其與該第三電晶片連接,用於將該第三光訊號轉換爲傳輸至該第三電晶片的電訊號;其中,該第三光訊號從該第三電光轉換單元至該第三光電轉換單元的傳輸路徑包括:該第一光互連件中的光波導、該些光纖中的至少一個光纖、該第二光互連件中的光波導。In some embodiments, the optical interconnection device further includes a second optical interconnection, a third electronic chip, and a plurality of optical fibers, wherein the third electronic chip is disposed on the second optical interconnection, and the optical fibers The first optical interconnection and the second optical interconnection are optically connected; the photonic integrated circuit of the first optical interconnection also includes a third electro-optical conversion unit, which is connected to the first electric chip, and used The information carried by the electrical signal of the first chip is carried to the third optical signal; the second optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit of the second optical interconnection includes a plurality of optical waveguides , a third photoelectric conversion unit, which is connected to the third electric chip, and is used to convert the third optical signal into an electric signal transmitted to the third electric chip; wherein, the third optical signal is converted from the third electro-optic The transmission path from the unit to the third photoelectric conversion unit includes: an optical waveguide in the first optical interconnection, at least one optical fiber among the optical fibers, and an optical waveguide in the second optical interconnection.

在一些實施方式中,該第一光互連件的光子積體電路還包括:介電層、複數個導電佈線單元;該介電層覆蓋該第一光互連件的光子積體電路中的該些光波導、該第一電光轉換單元、該第一光電轉換單元、該第二電光轉換單元、該第二光電轉換單元;該些導電佈線單元中被配置爲將該第一電光轉換單元、該第一光電轉換單元、該第二電光轉換單元、該第二光電轉換單元與對應的電晶片進行電連接;該些導電佈線單元包括複數個電連接結構,該些電連接結構中的每一個均各自穿過至少部分該介電層。In some embodiments, the photonic integrated circuit of the first optical interconnection further includes: a dielectric layer and a plurality of conductive wiring units; the dielectric layer covers the photonic integrated circuit of the first optical interconnection The optical waveguides, the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optic conversion unit, the second photoelectric conversion unit; the conductive wiring units are configured to configure the first electro-optic conversion unit, The first photoelectric conversion unit, the second photoelectric conversion unit, and the second photoelectric conversion unit are electrically connected to corresponding electric chips; the conductive wiring units include a plurality of electrical connection structures, and each of the electrical connection structures Each passes through at least part of the dielectric layer.

在一些實施方式中,該第一電光轉換單元、該第二電光轉換單元均各自包括一個或複數個光調制器、該第一光電轉換單元、該第二光電轉換單元均各自包括一個或複數個光電探測器。In some embodiments, the first electro-optical conversion unit and the second electro-optic conversion unit each include one or a plurality of optical modulators, the first photoelectric conversion unit, and the second photoelectric conversion unit each include one or a plurality of Photodetector.

在一些實施方式中,該光調制器包括微環調制器;和/或該光電探測器包括微環濾波探測器。In some embodiments, the light modulator comprises a microring modulator; and/or the photodetector comprises a microring filtered detector.

在一些實施方式中,該第一電晶片、第二電晶片、第三電晶片中包括小晶片。In some embodiments, the first transistor, the second transistor, and the third transistor include chiplets.

根據本發明的一方面,提供一種光互連裝置,包括:第一光互連件,包括第一光子積體電路,該第一光子積體電路包括複數個第一電光轉換單元,複數個第一光波導,以及複數個第一光電轉換單元;第二光互連件,包括第二光子積體電路,該第二光子積體電路包括複數個第二電光轉換單元,複數個第二光波導,以及複數個第二光電轉換單元;複數個第一電晶片,設置於該第一光互連件上;複數個第二電晶片,設置於該第二光互連件上;該些第一電光轉換單元被配置爲:使該些第一電晶片中的每一個對應至少一個電光轉換單元;該些第一光電轉換單元被配置爲:使該些第一電晶片中的每一個對應至少一個光電轉換單元;該些第一光波導被配置爲:對於該些第一電晶片中的任意兩個電晶片,將其中的一個電晶片對應的一個電光轉換單元光學連接至另一個電晶片對應的一個光電轉換單元,以使得該些第一電晶片中的任意兩個電晶片實現通訊。According to one aspect of the present invention, an optical interconnection device is provided, including: a first optical interconnection, including a first photonic integrated circuit, the first photonic integrated circuit includes a plurality of first electro-optic conversion units, a plurality of first photonic integrated circuits An optical waveguide, and a plurality of first photoelectric conversion units; a second optical interconnection, including a second photonic integrated circuit, the second photonic integrated circuit includes a plurality of second electro-optical conversion units, and a plurality of second optical waveguides , and a plurality of second photoelectric conversion units; a plurality of first electric chips, arranged on the first optical interconnection; a plurality of second electric chips, arranged on the second optical interconnection; the first The electro-optical conversion unit is configured to: make each of the first electric chips correspond to at least one electro-optic conversion unit; the first photoelectric conversion units are configured to: make each of the first electric chips correspond to at least one The photoelectric conversion unit; the first optical waveguides are configured to: for any two electric chips in the first electric chips, optically connect an electric-optical conversion unit corresponding to one of the electric chips to a corresponding one of the other electric chips A photoelectric conversion unit enables any two electric chips in the first electric chips to realize communication.

在一些實施方式中,該第一光互連件與該第二光互連件光學連接;該些第一電晶片中的至少一個電晶片,通過該第一光互連件以及該第二光互連件,與該些第二電晶片中的至少一個電晶片進行通訊。In some embodiments, the first optical interconnect is optically connected to the second optical interconnect; at least one of the first chips passes through the first optical interconnect and the second optical interconnect. The interconnection communicates with at least one of the second transistors.

在一些實施方式中,該第一光互連件與該第二光互連件通過複數個光纖或者複數個光波導光學連接,以使得該些第一電晶片中的至少一個電晶片,與該些第二電晶片中的至少一個電晶片進行通訊。In some embodiments, the first optical interconnection is optically connected to the second optical interconnection through a plurality of optical fibers or a plurality of optical waveguides, so that at least one of the first transistors, and the communicate with at least one of the second transistors.

在一些實施方式中,該第一光子積體電路還包括:介電層、複數個導電佈線單元;該介電層覆蓋該第一光子積體電路中的該些光波導、該些第一電光轉換單元、該些第一光電轉換單元;該些導電佈線單元中的每一個各自與該些第一電光轉換單元中的每一個電連接,或者與該些第一光電轉換單元中的每一個進行電連接;該些導電佈線單元包括複數個電連接結構,該些電連接結構中的每一個均各自穿過至少部分所述介電層;以及該些導電佈線單元電連接至該些第一電晶片,以將該些第一電光轉換單元中的每一個電連接至對應的電晶片,或者將該些第一光電轉換單元中的每一個電連接至對應的電晶片。In some embodiments, the first photonic integrated circuit further includes: a dielectric layer and a plurality of conductive wiring units; the dielectric layer covers the optical waveguides, the first electro-optical integrated circuits in the first photonic integrated circuit conversion unit, the first photoelectric conversion units; each of the conductive wiring units is electrically connected to each of the first photoelectric conversion units, or is connected to each of the first photoelectric conversion units Electrically connected; the conductive wiring units include a plurality of electrical connection structures, each of which passes through at least part of the dielectric layer; and the conductive wiring units are electrically connected to the first electrical chip, so as to electrically connect each of the first photoelectric conversion units to a corresponding electric chip, or to electrically connect each of the first photoelectric conversion units to a corresponding electric chip.

根據本發明的一方面,提供一種光互連裝置的製造方法,其特徵在於,包括:提供晶圓;在該晶圓上形成複數個光子積體電路;其中,該些光子積體電路中的每一個可包括複數個光波導,以及電光轉換單元、光電轉換單元;在該些光子積體電路中的每一個上安裝所需的至少一個電晶片;對該晶圓進行分割,得到複數個獨立的光互連裝置。According to one aspect of the present invention, there is provided a method for manufacturing an optical interconnection device, which is characterized in that it includes: providing a wafer; forming a plurality of photonic integrated circuits on the wafer; wherein, among the photonic integrated circuits Each can include a plurality of optical waveguides, and electro-optical conversion units, photoelectric conversion units; install at least one electric chip required on each of these photonic integrated circuits; divide the wafer to obtain a plurality of independent optical interconnection device.

用光互連件連接電晶片,將不同電晶片上的資訊加載在光波上,然後讓光在光互連件中高速穿梭,完成不同晶片之間的資訊互連。對比電互連,光互連帶寬大、時延低、功耗小、積體密度高和抗電磁干擾能力强。而且晶片上或晶片間光互連傳輸資訊對距離不敏感,允許更多數據傳遞更遠距離,使得計算裝置架構的設計具有更大的靈活度。因此,用光互連件連接的電晶片不僅可以保持電晶片的高産率、低成本和快速産品迭代周期的優點,而且可以解决小晶片間互連的功耗和帶寬密度瓶頸。應用於人工智慧晶片可以實現更高的系統能效比。The optical interconnects are used to connect the electronic chips, and the information on different electronic chips is loaded on the light wave, and then the light is shuttled at high speed in the optical interconnects to complete the information interconnection between different chips. Compared with electrical interconnection, optical interconnection has large bandwidth, low delay, low power consumption, high bulk density and strong anti-electromagnetic interference ability. Moreover, the optical interconnection transmission information on a chip or between chips is not sensitive to distance, allowing more data to be transmitted over a longer distance, making the design of computing device architecture more flexible. Therefore, the electric chip connected by optical interconnects can not only maintain the advantages of high yield, low cost and fast product iteration cycle of electric chip, but also solve the power consumption and bandwidth density bottleneck of interconnection between small chips. Applying to artificial intelligence chips can achieve higher system energy efficiency ratio.

相比於通過電導線進行電訊號的傳輸,通過光波導進行光訊號的傳輸,可降低能量損耗、延遲、串擾等問題,有助於提高晶片之間的互連性能。本發明尤其爲小晶片(chiplet) 的互連提供了一種方案。通過複數個小晶片(Chiplet)替代一個多功能的單個大晶片,可以突破晶片面積的物理瓶頸,是實現更高性能晶片的一個重要途徑。由於每個裸片的面積變小,單片晶圓上可擺放的裸片數目增加從而可以提高良率和降低成本。同時,採用小晶片技術在提高系統性能時可以靈活地只升級部分模組, 因此可以加快系統升級的迭代周期。另外,上述光互連件包括光子積體電路,積體化高,可直接適用於電訊號輸入/輸出的晶片之間的互連,且從而有利於晶片封裝的小型化以及積體化。Compared with the transmission of electrical signals through electrical wires, the transmission of optical signals through optical waveguides can reduce problems such as energy loss, delay, and crosstalk, and help improve the interconnection performance between chips. In particular, the present invention provides a solution for the interconnection of chiplets. By replacing a multifunctional single large chip with multiple small chips (Chiplets), the physical bottleneck of the chip area can be broken, which is an important way to achieve higher performance chips. As the area of each die becomes smaller, the number of dies that can be placed on a single wafer increases, which can improve yield and reduce cost. At the same time, the use of small chip technology can flexibly upgrade only some modules when improving system performance, so the iterative cycle of system upgrades can be accelerated. In addition, the above-mentioned optical interconnection includes a photonic integrated circuit, which is highly integrated and can be directly applied to the interconnection between chips for input/output of electrical signals, and thus facilitates the miniaturization and integration of chip packaging.

進一步的,複數個光互連件之間還可通過光學互連,使得不同光互連件上設置的電晶片也能實現光學連接,使得光學的互連不限於同一個光互連件上。Further, the plurality of optical interconnects can also be optically interconnected, so that the transistors disposed on different optical interconnects can also realize optical connection, so that the optical interconnection is not limited to the same optical interconnect.

此外,調制器陣列採用高效率小面積的微環調制器陣列,探測器陣列採用具有波分解複用功能的微環濾波探測器,從而可以在電晶片之間進行大量的資訊傳輸而不會受功耗和帶寬密度的限制。通過排佈調制器陣列和探測器陣列在光互連件的位置,利用複數個相同的電晶片和複數個相同的光互連件可以實現混合立方體網路通訊互連拓撲結構或其他複雜的互連拓撲結構,可以讓複數個電晶片同時對資訊進行並行處理,並且電晶片之間具有緊密地資訊互連,能够更好地滿足人工智慧人工智慧演算法對計算能力和帶寬的要求。對比現有的人工智慧産品,本發明實施方式的光互連裝置能積體更多的計算單元(晶片)和記憶單元(晶片),而且利用光互連能保證他們之間有機的資訊互連,從而提供更高的系統能效比。In addition, the modulator array uses a high-efficiency and small-area micro-ring modulator array, and the detector array uses a micro-ring filter detector with wave division multiplexing function, so that a large amount of information can be transmitted between transistors without being affected. Limitations on power consumption and bandwidth density. By arranging the modulator array and the detector array at the position of the optical interconnection, a plurality of identical transistors and a plurality of identical optical interconnections can be used to realize a hybrid cube network communication interconnection topology or other complex interconnections The connection topology allows multiple chips to process information in parallel at the same time, and the chips are tightly interconnected, which can better meet the computing power and bandwidth requirements of artificial intelligence algorithms. Compared with existing artificial intelligence products, the optical interconnection device of the embodiment of the present invention can integrate more computing units (chips) and memory units (chips), and the use of optical interconnection can ensure organic information interconnection between them, Thereby providing a higher system energy efficiency ratio.

本發明實施方式的各個方面、特徵、優點等將在下文結合附圖進行具體描述。根據以下結合附圖的具體描述,本發明的上述方面、特徵、優點等將會變得更加清楚。Various aspects, features, advantages, etc. of the embodiments of the present invention will be specifically described below with reference to the accompanying drawings. According to the following detailed description in conjunction with the accompanying drawings, the above-mentioned aspects, features, advantages, etc. of the present invention will become more clear.

爲了便於理解本發明技術方案的各個方面、特徵以及優點,下面結合附圖對本發明進行具體描述。應當理解,下述的各種實施方式只用於舉例說明,而非用於限制本發明的保護範圍。In order to facilitate the understanding of various aspects, features and advantages of the technical solutions of the present invention, the present invention will be specifically described below in conjunction with the accompanying drawings. It should be understood that the various embodiments described below are only for illustration, rather than limiting the protection scope of the present invention.

在本文中提及的“包括”爲一開放式用語,故應解釋成“包括但不限定於”。“大致”是指在可接收的誤差範圍內,本領域技術人員能够在一定誤差範圍內解决該技術問題,基本達到該技術效果。"Including" mentioned in this article is an open term, so it should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and basically achieve the technical effect.

此外,“連接”一詞在此包含任何直接及間接的連接手段。因此,若文中描述一第一裝置連接於一第二裝置,則代表該第一裝置可直接連接於該第二裝置,或通過其他裝置間接地連接至該第二裝置。In addition, the term "connected" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that a first device is connected to a second device, it means that the first device may be directly connected to the second device, or indirectly connected to the second device through other devices.

本文中的“第一”、“第二”等描述,是用於區分不同的設備、模組、結構等,不代表先後順序,也不限定“第一”和“第二”是不同的類型。此外,在本申請的說明書、申請專利範圍及上述附圖中描述的一些流程中,包含了按照特定順序出現的多個操作,這些操作可以不按照其在本文中出現的順序來執行或並行執行。操作的序號如101、102等,僅僅是用於區分各個不同的操作,序號本身不代表任何的執行順序。另外,這些流程可以包括更多或更少的操作,並且這些操作可以按順序執行或並行執行。The descriptions of "first" and "second" in this article are used to distinguish different devices, modules, structures, etc. . In addition, in the description of the application, the patent scope of the application and some processes described in the above drawings, there are multiple operations that appear in a specific order, and these operations may not be performed in the order in which they appear in this document or in parallel. . The serial numbers of the operations, such as 101, 102, etc., are only used to distinguish different operations, and the serial numbers themselves do not represent any execution order. Additionally, these processes can include more or fewer operations, and these operations can be performed sequentially or in parallel.

在本發明的一種實施方式中,該光互連裝置包括複數個電晶片和光互連件,複數個電晶片中的任意兩個電晶片通過該光互連件進行資訊交互即通訊連接。該光互連件具有複數個光波導,例如,該光互連件可以採用光晶片實現。該些電晶片包括任意的第一電晶片和第二電晶片,該光互連裝置還包括電光轉換單元和光電轉換單元,其中,該電光轉換單元與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到光訊號中,該光訊號在該第一光互連件的光波導中傳輸;該光電轉換單元與該第二電晶片連接,將接收的光訊號轉換爲傳輸至該第二電晶片的電訊號;並且,該光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:該第一光互連件中的光波導。在一些實施方式中,該光互連件包括該電光轉換單元和該光電轉換單元。該電光轉換單元包括調制器,該調制器將該第一電晶片的電訊號承載的資訊調製到光訊號中,該光訊號經由該光互連件中的光波導傳輸至該光電轉換單元,該光電轉換單元將該光訊號轉換爲電訊號,該電訊號被傳輸至該第二電晶片。也就是說,光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:該光互連件中的光波導。In one embodiment of the present invention, the optical interconnection device includes a plurality of electric chips and an optical interconnection, and any two electric chips in the plurality of electric chips perform information exchange, that is, communication connection through the optical interconnection. The optical interconnection has a plurality of optical waveguides, for example, the optical interconnection can be implemented using an optical chip. The electric chips include any first electric chip and second electric chip, and the optical interconnection device further includes an electro-optic conversion unit and a photoelectric conversion unit, wherein the electro-optical conversion unit is connected with the first electric chip for connecting the The information carried by the electrical signal of the first electric chip is carried in the optical signal, and the optical signal is transmitted in the optical waveguide of the first optical interconnection; the photoelectric conversion unit is connected with the second electric chip, and receives the optical signal converted into an electrical signal transmitted to the second electronic chip; and, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: an optical waveguide in the first optical interconnection. In some embodiments, the optical interconnect includes the electro-optical conversion unit and the photoelectric conversion unit. The electro-optic conversion unit includes a modulator, the modulator modulates the information carried by the electrical signal of the first transistor into an optical signal, and the optical signal is transmitted to the photoelectric conversion unit through the optical waveguide in the optical interconnection, the The photoelectric conversion unit converts the optical signal into an electrical signal, and the electrical signal is transmitted to the second electronic chip. That is to say, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: the optical waveguide in the optical interconnection.

在本發明的另一種實施方式中,該光互連裝置包括複數個電晶片和複數個光互連件,不同的光互連件經由光纖互連,該光互連件上設有與光纖連接的光耦合結構(例如光栅耦合器或端面耦合器)。位於或鄰近同一光互連件的任意兩個電晶片通過該光互連件進行訊號傳輸即通訊連接,如上所述,在此不再贅述。位於或鄰近不同光互連件的任意兩個電晶片通過相應的光互連件和光纖進行訊號傳輸。具體而言,該些光互連件包括第一光互連件和第二光互連件,其分別具有複數個光波導。該些電晶片包括任意的位於或鄰近第一光互連件的第一電晶片和位於或鄰近第二光互連件的第二電晶片。該第一光互連件包括與該第一電晶片連接的電光轉換單元,該第二光互連件包括與該第二電晶片連接的光電轉換單元,其中,該電光轉換單元將該第一電晶片的電訊號承載的資訊承載到光訊號中,該光訊號經由該第一光互連件中的光波導傳輸至該光纖,並經由該光纖傳輸至該第二光互連件,然後經由該第二光互連件的光波導傳輸至該光電轉換單元,該光電轉換單元將該光訊號轉換爲電訊號,該電訊號被傳輸至該第二電晶片。也就是說,光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:先後經過該第一光互連件中的光波導、該光纖、以及該第二光互連件的光波導的傳輸路徑。In another embodiment of the present invention, the optical interconnect device includes a plurality of electric chips and a plurality of optical interconnects, different optical interconnects are interconnected via optical fibers, and the optical interconnects are provided with optical fibers connected to each other. optical coupling structures (such as grating couplers or end-face couplers). Any two electronic chips located at or adjacent to the same optical interconnection perform signal transmission, that is, communication connection through the optical interconnection, as described above, and will not be repeated here. Any two electronic chips located at or adjacent to different optical interconnects transmit signals through corresponding optical interconnects and optical fibers. Specifically, the optical interconnects include a first optical interconnect and a second optical interconnect, each having a plurality of optical waveguides. The dies include any first die located on or adjacent to the first optical interconnect and any second die located on or adjacent to the second optical interconnect. The first optical interconnection includes an electro-optical conversion unit connected to the first electric chip, and the second optical interconnection includes a photoelectric conversion unit connected to the second electric chip, wherein the electro-optic conversion unit connects the first The information carried by the electrical signal of the electric chip is carried into the optical signal, and the optical signal is transmitted to the optical fiber through the optical waveguide in the first optical interconnection, and is transmitted to the second optical interconnection through the optical fiber, and then passed through The optical waveguide of the second optical interconnection is transmitted to the photoelectric conversion unit, and the photoelectric conversion unit converts the optical signal into an electrical signal, and the electrical signal is transmitted to the second electric chip. That is to say, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: successively passing through the optical waveguide in the first optical interconnection, the optical fiber, and the optical waveguide of the second optical interconnection transfer path.

雖然以上實施方式以第一電晶片到第二電晶片進行光訊號傳輸進行了說明,但是,應當理解,從第二電晶片到第一電晶片的光訊號傳輸也可以採用同樣的方式進行傳輸。也就是說,對於每一個電晶片,在相應的光互連件中設有用於與另一個電晶片進行訊號傳輸的電光轉換單元和光電轉換單元。Although the above embodiments are described with the optical signal transmission from the first electronic chip to the second electronic chip, it should be understood that the optical signal transmission from the second electronic chip to the first electronic chip can also be transmitted in the same way. That is to say, for each electric chip, an electro-optical conversion unit and a photoelectric conversion unit for signal transmission with another electric chip are provided in the corresponding optical interconnection.

需要說明的是,本發明對電晶片和光互連件的數量不做特別限定。在一些實施方式中, 2個或更多個電晶片通過1個光互連件進行相互通訊。在另一些實施方式中,2個或更多個電晶片通過2個或更多個光互連件進行相互通訊。It should be noted that, the present invention does not specifically limit the number of electrical chips and optical interconnects. In some embodiments, two or more transistors communicate with each other through an optical interconnect. In other embodiments, two or more transistors communicate with each other through two or more optical interconnects.

圖1是示出根據本發明的示例性實施方式的光互連裝置的結構示意圖。在本發明的一種示例性實施方式中,該光互連裝置包括承載基板100、光互連件201、202以及複數個電晶片,該些電晶片包括電晶片A、電晶片B、電晶片C、電晶片D、電晶片E、電晶片F、電晶片G、以及電晶片H。FIG. 1 is a schematic structural view showing an optical interconnection device according to an exemplary embodiment of the present invention. In an exemplary embodiment of the present invention, the optical interconnection device includes a carrier substrate 100, optical interconnections 201, 202, and a plurality of electric chips, and these electric chips include electric chip A, electric chip B, and electric chip C , Chip D, Chip E, Chip F, Chip G, and Chip H.

在承載基板100上並排設置兩個光互連件,分別爲光互連件201和光互連件202。在一些實施方式中,該光互連件包括光子積體電路。Two optical interconnects are arranged side by side on the carrier substrate 100 , namely an optical interconnect 201 and an optical interconnect 202 . In some embodiments, the optical interconnect includes a photonic integrated circuit.

在該光互連件201上積體有四個電晶片,分別爲電晶片A、電晶片B、電晶片C、以及電晶片D。在該光互連件202上積體有四個電晶片,分別爲電晶片E、電晶片F、電晶片G、以及電晶片H。同一光互連件上的四塊電晶片中的任意一個電晶片與其他三個電晶片通過該光互連件光互連,同時與另一個光互連件上的一個電晶片光互連。圖2示例性地示出了該光互連裝置的光互連結構,以及與對應電晶片的位置。Four chips are integrated on the optical interconnect 201 , which are chip A, chip B, chip C, and chip D respectively. Four transistors are integrated on the optical interconnect 202 , which are respectively a transistor E, a transistor F, a transistor G, and a transistor H. As shown in FIG. Any one of the four electric chips on the same optical interconnection is optically interconnected with the other three electric chips through the optical interconnection, and at the same time is optically interconnected with one electric chip on another optical interconnection. FIG. 2 exemplarily shows the optical interconnection structure of the optical interconnection device and the position of the corresponding electric chips.

在具體實施方式中,光互連件包括光子積體電路,該光子積體電路包括複數個光波導、電光轉換單元和光電轉換單元。在一些實施方式中,該電光轉換單元包括一個或複數個光調制器,複數個調制器可構成調制器陣列。該光電轉換單元包括一個或複數個光電探測器,複數個探測器可構成探測器陣列。示例性的,調制器可基於電訊號可對初始光進行調製,從而産生承載資訊的光訊號,亦即,將電訊號承載的資訊承載到光訊號中。In a specific embodiment, the optical interconnect includes a photonic integrated circuit including a plurality of optical waveguides, an electro-optical conversion unit, and a photoelectric conversion unit. In some embodiments, the electro-optic conversion unit includes one or a plurality of optical modulators, and the plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or a plurality of photodetectors, and the plurality of photodetectors can form a detector array. Exemplarily, the modulator can modulate the initial light based on the electrical signal, so as to generate an optical signal carrying information, that is, carry the information carried by the electrical signal into the optical signal.

在本示例性實施方式中,光互連件201、202各自的光子積體電路中設置有複數個電光轉換單元、複數個光電轉換單元,各電光轉換單元包括調制器陣列、各光電轉換單元包括探測器陣列,如圖2所示。 在示例性的實施方式中,光互連件的光子積體電路還可包括複數個導電佈線單元(圖2未示),各調制器陣列、探測器陣列可通過他們對應的導電佈線單元實現與電晶片的電連接,從而獲得來自電晶片的承載資訊的電訊號,或者將承載資訊的電訊號發送給電晶片。In this exemplary embodiment, the respective photonic integrated circuits of the optical interconnects 201 and 202 are provided with a plurality of electro-optic conversion units and a plurality of photoelectric conversion units, each electro-optic conversion unit includes a modulator array, and each photoelectric conversion unit includes The detector array, as shown in Figure 2. In an exemplary embodiment, the photonic integrated circuit of the optical interconnection can also include a plurality of conductive wiring units (not shown in FIG. 2 ), and each modulator array and detector array can realize communication with The electrical connection of the electric chip, so as to obtain the electric signal carrying information from the electric chip, or send the electric signal carrying information to the electric chip.

在一些實施方式中,如圖2所示,對於任意一個電晶片,其對應連接光互連件中的四個調制器陣列(四個電光轉換單元)和四個探測器陣列(四個光電轉換單元),在光互連件上對應的區域設置有電晶片(圖2中電晶片A~H所指向部分,即與圖1對應的電晶片A~H)。以電晶片A爲例,光互連件中對應積體有調制器陣列M1、調制器陣列M2、調制器陣列M3、以及調制器陣列M4,並且積體有探測器陣列D1、探測器陣列D2、探測器陣列D3、以及探測器陣列D4。其中,調制器陣列M1通過光互連件201中的光波導、耦合光纖陣列中的光纖、光互連件202中的光波導與光互連件202中的對應於電晶片F的探測器陣列進行光通訊,探測器陣列D1通過光互連件201中的光波導、耦合光纖陣列中的光纖、光互連件202中的光波導與另一光互連件202上的對應於電晶片F的調制器陣列進行光通訊;調制器陣列M2通過光互連件201中的光波導與該光互連件201上的對應於電晶片B的探測器陣列進行光通訊,探測器陣列D2通過光互連件201中的光波導與該光互連件201上的對應於電晶片B的調制器陣列進行光通訊;調制器陣列M3通過光互連件201中的光波導與該光互連件201上的對應於電晶片C的探測器陣列進行光通訊,探測器陣列D3通過光互連件201中的光波導與該光互連件201上的對應於電晶片C的調制器陣列進行光通訊; 調制器陣列M4通過光互連件201中的光波導與該光互連件201上的對應於電晶片D的探測器陣列進行光通訊,探測器陣列D4通過光互連件201中的光波導與該光互連件201上的對應於電晶片D的調制器陣列進行光通訊。In some implementations, as shown in Figure 2, for any one electric chip, it corresponds to connect four modulator arrays (four electro-optical conversion units) and four detector arrays (four photoelectric conversion units) in the optical interconnection unit), and the corresponding area on the optical interconnect is provided with an electric chip (the part pointed to by the electric chip A~H in Fig. 2, that is, the electric chip A~H corresponding to Fig. 1). Taking the transistor A as an example, the corresponding integrated body of the optical interconnection has a modulator array M1, a modulator array M2, a modulator array M3, and a modulator array M4, and the integrated body has a detector array D1 and a detector array D2. , a detector array D3, and a detector array D4. Wherein, the modulator array M1 passes through the optical waveguide in the optical interconnection 201, the optical fiber in the coupling fiber array, the optical waveguide in the optical interconnection 202, and the detector array corresponding to the electric chip F in the optical interconnection 202 For optical communication, the detector array D1 passes through the optical waveguide in the optical interconnection 201, the optical fiber in the coupling fiber array, the optical waveguide in the optical interconnection 202, and the corresponding electric chip F on another optical interconnection 202 The modulator array for optical communication; the modulator array M2 performs optical communication with the detector array corresponding to the electric chip B on the optical interconnection 201 through the optical waveguide in the optical interconnection 201, and the detector array D2 passes through the optical waveguide. The optical waveguide in the interconnection 201 performs optical communication with the modulator array corresponding to the electric chip B on the optical interconnection 201; the modulator array M3 communicates with the optical interconnection through the optical waveguide in the optical interconnection 201 The detector array corresponding to the electric chip C on 201 performs optical communication, and the detector array D3 communicates optically with the modulator array corresponding to the electric chip C on the optical interconnect 201 through the optical waveguide in the optical interconnection 201. Communication; the modulator array M4 carries out optical communication with the detector array corresponding to the electric chip D on the optical interconnection 201 through the optical waveguide in the optical interconnection 201, and the detector array D4 passes through the optical interconnection 201 The optical waveguide is in optical communication with the modulator array corresponding to the transistor D on the optical interconnect 201 .

該光互連件201、202還可包括諸如光栅耦合器或端面耦合器的光耦合結構,用於將激光模組輸出的複數個波長激光耦合至光互連件中,並通過一系列分束器將激光能量平均分配到不同電晶片下方的調制器陣列輸入口。分束器可以是例如寬波段分束器。以電晶片A爲例,激光模組輸出的複數個波長激光通過光耦合結構300耦合至光互連件201中,並經由一系列分束器400將激光能量平均分配到光互連件201中與光調制器陣列M1、調制器陣列M2、調制器陣列M3、調制器陣列M4分別連通的光波導中,從而經過相應的光波導將分配的光訊號輸入到相應的調制器陣列。在一些實施方式中,可以在設置激光器模組和相關的光學元件,將該激光器模組發出的光耦合到光互連件中的光波導中。可選的,光互連件201、202之間也可以通過複數個光波導進行光學連接。The optical interconnects 201, 202 may also include an optical coupling structure such as a grating coupler or an end face coupler, which is used to couple the multiple wavelength lasers output by the laser module into the optical interconnect, and pass through a series of beam splitters The modulator distributes the laser energy evenly to the input port of the modulator array under different transistors. The beam splitter may be, for example, a broadband beam splitter. Taking the transistor A as an example, the multiple wavelength lasers output by the laser module are coupled into the optical interconnection 201 through the optical coupling structure 300, and the laser energy is evenly distributed to the optical interconnection 201 through a series of beam splitters 400 The optical waveguides respectively communicate with the optical modulator array M1, the modulator array M2, the modulator array M3, and the modulator array M4, so that the distributed optical signals are input to the corresponding modulator arrays through the corresponding optical waveguides. In some embodiments, a laser module and associated optical components may be provided to couple light emitted by the laser module into an optical waveguide in an optical interconnect. Optionally, the optical interconnections 201 and 202 may also be optically connected through a plurality of optical waveguides.

通過各調制器陣列將相應的電晶片上的資訊調製到不同波長的光訊號中並以波分復用的方式進行傳輸,通過光互連件的光波導或者附加耦合光纖陣列的光纖將該調製的光訊號傳輸到其他電晶片下方的探測器陣列,探測器陣列對調製的訊號進行波分解複用並接收轉化爲電訊號,從而完成不同電晶片間的資訊傳輸。以電晶片A爲例,調制器陣列M1將電晶片A處理輸出的資訊加載到光訊號中,該光訊號依次通過光互連件201中的光波導、耦合光纖陣列中的光纖、光互連件202中的光波導進行傳輸,並到達電晶片F下方的一探測器陣列,該探測器陣列對接收的光訊號進行波分解複用並接收轉化爲電訊號,該電訊號輸入到電晶片F中由電晶片F進行處理。調制器陣列M2將電晶片A處理輸出的資訊加載到光訊號中,該光訊號通過光互連件201中的光波導傳輸至電晶片B下方的一探測器陣列,該探測器陣列對接收的光訊號進行波分解複用並接收轉化爲電訊號,該電訊號輸入到電晶片B中由電晶片B進行處理。調制器陣列M3和調制器陣列M4進行與調制器陣列M2類似的處理。並且,探測器陣列D1、探測器陣列D2、探測器陣列D4、以及探測器陣列D4對發送至電晶片A的光訊號也進行波分解複用並接收轉化爲電訊號的處理,並將該電訊號輸入電晶片A進行處理。The information on the corresponding transistors is modulated into optical signals of different wavelengths through each modulator array and transmitted in a wavelength division multiplexing manner, and the modulation is performed through the optical waveguide of the optical interconnect or the optical fiber of the additional coupling optical fiber array The optical signal is transmitted to the detector array under other transistors. The detector array performs wave division multiplexing on the modulated signal and converts it into an electrical signal, thereby completing the information transmission between different transistors. Taking the transistor A as an example, the modulator array M1 loads the information processed and output by the transistor A into an optical signal, and the optical signal sequentially passes through the optical waveguide in the optical interconnection 201, the optical fiber in the coupling fiber array, and the optical interconnection. The optical waveguide in component 202 is transmitted and reaches a detector array under the transistor F. The detector array performs wave division and multiplexing on the received optical signal and converts it into an electrical signal. The electrical signal is input to the transistor F Processed by wafer F. The modulator array M2 loads the information processed and output by the transistor A into the optical signal, and the optical signal is transmitted to a detector array under the transistor B through the optical waveguide in the optical interconnection 201, and the detector array is sensitive to the received The optical signal undergoes wave division multiplexing and is received and converted into an electrical signal. The electrical signal is input into the electronic chip B and processed by the electronic chip B. Modulator array M3 and modulator array M4 undergo similar processing as modulator array M2. In addition, the detector array D1, the detector array D2, the detector array D4, and the detector array D4 also perform wave division multiplexing on the optical signal sent to the transistor A, receive and convert it into an electrical signal, and convert the electrical signal Number input transistor A for processing.

在示例性實施方式中,每塊光互連件上的四個電晶片通過光訊號進行近鄰和次近鄰的互連,然後通過耦合光纖陣列與另外四個電晶片進行光互連,最終構成混合立方體網路拓撲通訊互連結構,如圖3所示。該混合立方體網路拓撲結構複用了兩個光互連件和八個電晶片,提高了系統能效比。在一些實施方式中,該電晶片可以採用降低了尺寸的電晶片,從而降低了晶片設計和加工成本,並且有效提高了晶片的良率。In an exemplary embodiment, the four transistors on each optical interconnect are connected to the nearest neighbor and the next neighbor through optical signals, and then optically interconnected with the other four transistors through a coupling fiber array, finally forming a hybrid The cubic network topology communication interconnection structure is shown in Figure 3. The hybrid cube network topology multiplexes two optical interconnects and eight transistors to improve system energy efficiency. In some embodiments, the electric chip can use a reduced size electric chip, thereby reducing the cost of chip design and processing, and effectively improving the yield of the chip.

圖4示例性的示出了一個電光轉換單元,其包括調制器陣列,在一些實施方式中,該調制器陣列包括複數個微環調制器。如圖4所示,調制器陣列由一系列微環調制器401組成,該微環調制器401基於載流子耗盡效應,可以支持高調製速率,該類型的波導結構在脊形波導不同區域進行摻雜,形成橫向或縱向的PN結結構(包括橫向或縱向PN結)402。PN結工作在反偏模式,當施加反偏電壓後,PN結內的耗盡區增大,內建電場增强。耗盡區內沒有自由載流子,對應的環形波導403的折射率發生改變,導致其共振波長發生平移,共振峰附近某一特定波長的强度會發生較大的改變,從而達到强度調製的目的。微環調制器的尺寸小,功耗低,調製效率高。將來自電晶片上的電資訊數據調製時,可通過調節微環調制器上的加熱電極404而對應特定波長的載波,經調製的不同波長的光訊號在光波導407上獨立傳播,實現了多通道的波分復用的訊號傳輸。其中,複數個微環可對應複數個不同的波長。通過監測光探測器405檢測器件性能是否正常用的,例如,如果光互連件故障了,可以通過這些監測光探測器405進行分析。波導終端406可以是不耦合到外界電晶片的虛設的光探測器,其可吸收波導末端的殘餘光能量,使得不影響到其他光波導對光訊號的傳輸。應指出,調制器陣列一詞僅表示照一定位置排列,在滿足功能需求的基礎上,陣列一詞並不對各調制器排列形式、排列規律等做特別限定,也不限定爲是二維形式的陣列。FIG. 4 exemplarily shows an electro-optical conversion unit, which includes a modulator array. In some implementations, the modulator array includes a plurality of microring modulators. As shown in Figure 4, the modulator array is composed of a series of microring modulators 401, which are based on the carrier depletion effect and can support high modulation rates. This type of waveguide structure is in different regions of the ridge waveguide Doping is performed to form a horizontal or vertical PN junction structure (including a horizontal or vertical PN junction) 402 . The PN junction works in the reverse bias mode. When the reverse bias voltage is applied, the depletion region in the PN junction increases and the built-in electric field increases. There are no free carriers in the depletion region, and the corresponding refractive index of the ring waveguide 403 changes, causing its resonance wavelength to shift, and the intensity of a specific wavelength near the resonance peak will change greatly, so as to achieve the purpose of intensity modulation . The microring modulator has small size, low power consumption and high modulation efficiency. When modulating the electrical information data from the electric chip, the heating electrode 404 on the microring modulator can be adjusted to correspond to the carrier wave of a specific wavelength, and the modulated optical signals of different wavelengths propagate independently on the optical waveguide 407, realizing multiple Channel WDM signal transmission. Wherein, a plurality of microrings can correspond to a plurality of different wavelengths. The monitoring photodetectors 405 are used to detect whether the performance of the device is normal. For example, if the optical interconnection is faulty, these monitoring photodetectors 405 can be used for analysis. The waveguide terminal 406 can be a dummy photodetector not coupled to an external transistor, which can absorb residual light energy at the end of the waveguide so as not to affect the transmission of optical signals by other optical waveguides. It should be pointed out that the term modulator array only means that it is arranged in a certain position. On the basis of meeting the functional requirements, the term array does not specifically limit the arrangement form and arrangement rules of each modulator, nor is it limited to a two-dimensional form. array.

圖5示例性的示出了一個光電轉換單元,其包括探測器陣列,在一些實施方式中,如圖5所示,該探測器陣列包括複數個微環濾波探測器501,微環濾波探測器501包括加熱電極502、環形波導503、訊號光探測器504。通過調節微環濾波探測器501上的加熱電極502來調節環形波導503,從光波導507中過濾出特定波長的光訊號,下載到與電晶片耦合的訊號光探測器504上,實現光訊號到電訊號的轉換。其中,複數個微環可對應複數個不同的波長。並且,通過與光波導507、訊號光探測器504連接的波導終端505來吸收波導末端的殘餘光能量,使其不影響其他光波導的訊號傳輸。應指出,探測器陣列一詞僅表示照一定位置排列,在滿足功能需求的基礎上,陣列一詞並不對各探測器排列形式、排列規律等做特別限定,也不限定爲是二維形式的陣列。Fig. 5 exemplarily shows a photoelectric conversion unit, which includes a detector array. In some embodiments, as shown in Fig. 5, the detector array includes a plurality of microring filter detectors 501, and the microring filter detectors 501 includes a heating electrode 502 , a ring waveguide 503 , and a signal light detector 504 . By adjusting the heating electrode 502 on the microring filter detector 501 to adjust the ring waveguide 503, the optical signal of a specific wavelength is filtered from the optical waveguide 507, and downloaded to the signal optical detector 504 coupled with the electric chip to realize the optical signal to the Conversion of electrical signals. Wherein, a plurality of microrings can correspond to a plurality of different wavelengths. Moreover, the residual optical energy at the end of the waveguide is absorbed by the waveguide terminal 505 connected with the optical waveguide 507 and the signal light detector 504, so that it does not affect the signal transmission of other optical waveguides. It should be pointed out that the term detector array only means that it is arranged in a certain position. On the basis of meeting the functional requirements, the term array does not specifically limit the arrangement form and arrangement rules of each detector, nor is it limited to a two-dimensional form. array.

在一些實施方式中,該光互連裝置的電晶片可以選自CPU、GPU、記憶體晶片等,可以包括數位電路,也可以包括模擬電路。In some embodiments, the electronic chip of the optical interconnection device may be selected from CPU, GPU, memory chip, etc., and may include digital circuits or analog circuits.

本發明示例性的實施方式提供一種光互連裝置的製造方法,可用於製造前述各實施方式中的光互連裝置。該方法包括:An exemplary embodiment of the present invention provides a method for manufacturing an optical interconnection device, which can be used to manufacture the optical interconnection device in the foregoing embodiments. The method includes:

S601、提供晶圓。S601. Providing a wafer.

S602、在該晶圓上形成複數個光子積體電路。S602. Form a plurality of photonic integrated circuits on the wafer.

其中,該複數個光子積體電路中的每一個可包括複數個光波導,以及電光轉換單元、光電轉換單元,複數個光波導可用於構成光波導單元,即光波導單元包括複數個光波導。該些光子積體電路中的每一個光子積體電路還可包括複數個導電佈線單元,複數個導電佈線單元可將電光轉換單元和/或光電轉換單元連接至對應的電晶片,以接收來自電晶片的待通訊的電訊號和/或向電晶片發送用於通訊的電訊號。通常,複數個光子積體電路形成於晶圓上的複數個區域,在後續步驟中,晶圓會被切割,以形成單獨的光子積體電路,該光子積體電路用於構成光互連件,即光互連件包括該光子積體電路。Wherein, each of the plurality of photonic integrated circuits may include a plurality of optical waveguides, electro-optical conversion units, and photoelectric conversion units, and the plurality of optical waveguides may be used to form an optical waveguide unit, that is, the optical waveguide unit includes a plurality of optical waveguides. Each photonic integrated circuit in these photonic integrated circuits can also include a plurality of conductive wiring units, and a plurality of conductive wiring units can connect the electro-optical conversion unit and/or the photoelectric conversion unit to the corresponding electric chip, so as to receive signals from the The electrical signal of the chip to be communicated and/or the electrical signal sent to the chip for communication. Typically, multiple photonic integrated circuits are formed in multiple areas on the wafer, and in a subsequent step, the wafer is diced to form individual photonic integrated circuits, which are used to form optical interconnects , that is, the optical interconnect includes the photonic integrated circuit.

S603、在該些光子積體電路中的每一個上安裝所需的至少一個電晶片。例如,設置第一電晶片和第二電晶片,使該第一電晶片與該第一導電佈線單元電連接,該第二電晶片與該第二導電佈線單元電連接,第一電光轉換單元通過第一導電佈線單元接收該第一電晶片的第一電訊號,並編碼產生第一光訊號;該第一光電轉換器用於將第一光訊號轉換為電訊號並傳輸給第二導電佈線單元。S603. Install at least one required electric chip on each of the photonic integrated circuits. For example, a first electric chip and a second electric chip are arranged so that the first electric chip is electrically connected to the first conductive wiring unit, the second electric chip is electrically connected to the second conductive wiring unit, and the first electro-optical conversion unit passes through The first conductive wiring unit receives the first electrical signal of the first electronic chip, and codes to generate a first optical signal; the first photoelectric converter is used to convert the first optical signal into an electrical signal and transmit it to the second conductive wiring unit.

S604、對該晶圓進行分割,得到複數個獨立的光互連裝置。S604, dividing the wafer to obtain a plurality of independent optical interconnection devices.

在一些實施例中,單個光互連裝置中包括單個光子積體電路以及安裝(設置)在該光子積體電路上的該第一電晶片和該第二電晶片。其中,第一電晶片、第二電晶片能夠通過第一導電佈線單元、該第一電光轉換單元、複數個光波導中的至少一個光波導、第一光電轉換單元以及該第二導電佈線單元進行通訊。獨立的單個光互連裝置中具體包括一個該光子積體電路。In some embodiments, a single optical interconnect device includes a single photonic integrated circuit and the first and second dies mounted (disposed) on the photonic integrated circuit. Wherein, the first electric chip and the second electric chip can be carried out through the first conductive wiring unit, the first electro-optic conversion unit, at least one optical waveguide in the plurality of optical waveguides, the first photoelectric conversion unit and the second conductive wiring unit. communication. An independent single optical interconnection device specifically includes one photonic integrated circuit.

上述S601中,晶圓包括半導體層。在一實例中,上述晶圓可以是絕緣體上半導體晶圓,例如:SOI(Silicon-On-Insulator,絕緣基底上矽)晶圓。如圖6所示,絕緣體上半導體晶圓可包括:絕緣層602、形成在絕緣層602上的半導體層603以及位於該絕緣層602下方的背基底層601。In the above S601, the wafer includes a semiconductor layer. In an example, the above-mentioned wafer may be a semiconductor-on-insulator wafer, such as an SOI (Silicon-On-Insulator, silicon-on-insulator) wafer. As shown in FIG. 6 , the semiconductor-on-insulator wafer may include: an insulating layer 602 , a semiconductor layer 603 formed on the insulating layer 602 , and a back substrate layer 601 located below the insulating layer 602 .

上述S602中,可通過在半導體層603上進行圖形化、沉積、摻雜等製程形成光子積體電路。In the above S602, a photonic integrated circuit may be formed by performing processes such as patterning, deposition, and doping on the semiconductor layer 603 .

上述S603中,在一實例中,可通過鍵合或焊接等電連接方式將第一電晶片電連接到第一導電佈線單元上,將第二電晶片電連接到第二導電佈線單元上。In the above S603, in one example, the first electric chip can be electrically connected to the first conductive wiring unit, and the second electric chip can be electrically connected to the second conductive wiring unit by means of electrical connection such as bonding or welding.

在一具體實例中,上述步驟S602中“在該晶圓上形成複數個光子積體電路”,具體可採用如下步驟來實現:In a specific example, "forming a plurality of photonic integrated circuits on the wafer" in the above-mentioned step S602 can be specifically implemented by the following steps:

S21、在該晶圓上形成光波導單元、該第一電光轉換單元第一電光轉換單元和該第一光電轉換單元。S21. Form an optical waveguide unit, the first electro-optical conversion unit, the first electro-optic conversion unit, and the first photoelectric conversion unit on the wafer.

S22、在形成有光波導單元、該第一電光轉換單元第一電光轉換單元和該第一光電轉換單元的晶圓上沉積介電層,以覆蓋該光波導單元、該第一電光轉換單元、該第一光電轉換單元以及該晶圓。S22. Deposit a dielectric layer on the wafer formed with the optical waveguide unit, the first electro-optical conversion unit, the first electro-optical conversion unit, and the first photoelectric conversion unit, so as to cover the optical waveguide unit, the first electro-optical conversion unit, The first photoelectric conversion unit and the wafer.

S23、在該介電層中形成第一開孔和第二開孔。S23, forming a first opening and a second opening in the dielectric layer.

S24、在該第一開孔中形成第一電連接結構以及在該第二開孔中形成第二電連接結構。S24, forming a first electrical connection structure in the first opening and forming a second electrical connection structure in the second opening.

其中,該第一導電佈線單元包括該第一電連接結構;該第二導電佈線單元包括該第二電連接結構。Wherein, the first conductive wiring unit includes the first electrical connection structure; the second conductive wiring unit includes the second electrical connection structure.

上述S21,如圖6和圖7所示,可對晶圓的半導體層603進行圖形化得到光波導單元103、第一電光轉換單元104和第一光電轉換單元105對應區域。具體地,採用微影和蝕刻技術,去除並不需要的材料,以進行圖形化。在一些實施例中,上述絕緣層可以作為刻蝕停止層。在一些實施方式中,該電光轉換單元包括一個或複數個調制器,複數個調制器可構成調制器陣列。該光電轉換單元包括一個或複數個光電探測器,複數個探測器可構成探測器陣列。作為簡化,圖7中僅示出了一個調制器、一個探測器。In the above S21, as shown in FIG. 6 and FIG. 7 , the semiconductor layer 603 of the wafer can be patterned to obtain the corresponding regions of the optical waveguide unit 103 , the first electro-optical conversion unit 104 and the first photoelectric conversion unit 105 . Specifically, lithography and etching techniques are used to remove unnecessary materials for patterning. In some embodiments, the above insulating layer may serve as an etch stop layer. In some embodiments, the electro-optic conversion unit includes one or a plurality of modulators, and the plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or a plurality of photodetectors, and the plurality of photodetectors can form a detector array. For simplicity, only one modulator and one detector are shown in FIG. 7 .

上述S22中,如圖8所示,在形成有該光波導單元103、該第一電光轉換單元104和該第一光電轉換單元105的晶圓上沉積介電層106,以覆蓋該光波導單元103、該第一電光轉換單元104、該第一光電轉換單元105以及該晶圓。具體地,通過沉積,在光波導單元103、第一電光轉換單元104、第一光電轉換單元105、絕緣層602上形成介電層106。上述介電層的材料與絕緣層的材料可相同。In the above S22, as shown in FIG. 8, a dielectric layer 106 is deposited on the wafer on which the optical waveguide unit 103, the first electro-optical conversion unit 104 and the first photoelectric conversion unit 105 are formed, so as to cover the optical waveguide unit 103 , the first electro-optical conversion unit 104 , the first photoelectric conversion unit 105 and the wafer. Specifically, the dielectric layer 106 is formed on the optical waveguide unit 103 , the first electro-optical conversion unit 104 , the first photoelectric conversion unit 105 , and the insulating layer 602 by deposition. The material of the above-mentioned dielectric layer and the material of the insulating layer may be the same.

上述S23中,如圖8所示,在該介電層106中形成第一開孔和第二開孔。可採用刻蝕技術形成上述第一開孔和第二開孔,根據連接需要,第一開孔、第二開孔的個數可以為一個或複數個。In the above S23, as shown in FIG. 8 , a first opening and a second opening are formed in the dielectric layer 106 . The above-mentioned first opening and second opening may be formed by using an etching technique, and the number of the first opening and the second opening may be one or plural according to connection requirements.

在一些實施例中,介電層106是多層結構,通過複數個子介電層形成,在介電層中可形成有多層導電層,導電層之間通過開孔中的導電材料連接。例如先沉積形成第一子介電層,再形成第一導電層,然後再沉積形成第二子介電層,再形成第二導電層然後形成第三子介電層,再形成第三導電層,然後形成第四子介電層。其中,第一至第三導電層中,不同的導電層通過開孔中的導電材料進行互連,各導電層可以為圖案化的金屬材料層。In some embodiments, the dielectric layer 106 is a multi-layer structure formed by a plurality of sub-dielectric layers, multiple conductive layers may be formed in the dielectric layer, and the conductive layers are connected by conductive materials in the openings. For example, the first sub-dielectric layer is deposited first, then the first conductive layer is formed, then the second sub-dielectric layer is deposited, then the second conductive layer is formed, then the third sub-dielectric layer is formed, and the third conductive layer is formed. , and then form the fourth sub-dielectric layer. Wherein, in the first to third conductive layers, different conductive layers are interconnected through the conductive material in the opening, and each conductive layer may be a patterned metal material layer.

上述S24中,如圖8所示,可通過沉積導電材料,在該第一開孔中形成第一導電佈線單元101的第一電連接結構101a以及在該第二開孔中形成第二導電佈線單元102的第二電連接結構102a。該第一電連接結構穿過至少部分該介電層106;該第一電連接結構穿過至少部分該介電層106。In the above S24, as shown in FIG. 8, the first electrical connection structure 101a of the first conductive wiring unit 101 can be formed in the first opening and the second conductive wiring can be formed in the second opening by depositing conductive material. The second electrical connection structure 102 a of the unit 102 . The first electrical connection structure passes through at least part of the dielectric layer 106 ; the first electrical connection structure passes through at least part of the dielectric layer 106 .

沉積導電材料後,可通過化學機械拋光或機械研磨的平坦化製程以沿著介電層的安裝面去除過量的導電材料,從而使得第一電連接結構和第二電連接結構與介電層的安裝面齊平。After the conductive material is deposited, the excess conductive material can be removed along the mounting surface of the dielectric layer through a planarization process of chemical mechanical polishing or mechanical grinding, so that the first electrical connection structure and the second electrical connection structure are connected to the dielectric layer. The mounting surface is flush.

後續,在晶圓上的每一個光子積體電路上安裝第一電晶片和第二電晶片,具體地,在介電層106/光子積體電路的安裝面上對應於每一個光子積體電路的區域內安裝第一電晶片和第二電晶片,也即在介電層106/光子積體電路的安裝面上對應於每一個光子積體電路的區域,將第一電晶片和第二電晶片與該區域內的第一電連接結構和第二電連接結構進行電連接。Subsequently, the first electric chip and the second electric chip are mounted on each photonic integrated circuit on the wafer, specifically, on the mounting surface of the dielectric layer 106/photonic integrated circuit corresponding to each photonic integrated circuit The first electric chip and the second electric chip are installed in the region, that is, the area corresponding to each photonic integrated circuit on the mounting surface of the dielectric layer 106/photonic integrated circuit, the first electric chip and the second electric chip The wafer is electrically connected to the first electrical connection structure and the second electrical connection structure in the area.

後續,還可在介電層106上形成密封劑,以掩埋或覆蓋第一電晶片和第二電晶片。之後,可固化並且可以平坦化密封劑。Subsequently, an encapsulant may also be formed on the dielectric layer 106 to bury or cover the first transistor and the second transistor. Afterwards, the encapsulant can be cured and can be planarized.

在一些實施方式中,可包括對背基底層601減薄的工序。In some embodiments, a process of thinning the back base layer 601 may be included.

在一些實施例中,S604可在S603之後執行,亦即,在對光子積體電路晶圓進行分割前批量安裝第一電晶片、第二電晶片,該種方式可以在晶圓級製程中對第一電晶片、第二電晶片進行批量封裝,此時,僅需製造光子積體電路晶圓,無需將光子積體電路形成單個的晶片。In some embodiments, S604 can be performed after S603, that is, before dividing the photonic integrated circuit wafer, the first electric chip and the second electric chip are installed in batches. The first electric chip and the second electric chip are packaged in batches. At this time, only the photonic integrated circuit wafer needs to be manufactured, and the photonic integrated circuit does not need to be formed into a single chip.

另外,可選的,可先進行晶圓分割的工序,以先形成獨立的光子積體電路/獨立的包含光子積體電路的光互連件,然後再進行第一電晶片和第二電晶片的安裝工序,即將該第一電晶片、第二電晶片安裝在該獨立的光子積體電路上。In addition, optionally, the process of dividing the wafer can be carried out first, so as to first form an independent photonic integrated circuit/an independent optical interconnect including a photonic integrated circuit, and then perform the first electric chip and the second electric chip The installation process is to install the first electronic chip and the second electronic chip on the independent photonic integrated circuit.

可選的,可對複數個獨立的光子積體電路進行一定程度的封裝,以形成複數個獨立的光子積體電路晶片(包括裸晶片),光子積體電路晶片作為光互連的晶片,即光互連件可採用光子積體電路晶片。具體地,如圖10所示,該方法,包括:Optionally, a plurality of independent photonic integrated circuits can be packaged to a certain extent to form a plurality of independent photonic integrated circuit chips (including bare chips), and the photonic integrated circuit chip is used as a chip for optical interconnection, namely Optical interconnects may use photonic integrated circuit chips. Specifically, as shown in Figure 10, the method includes:

S1001、提供晶圓。S1001. Providing a wafer.

S1002、在該晶圓上形成複數個光子積體電路。S1002. Form a plurality of photonic integrated circuits on the wafer.

其中,該複數個光子積體電路中的每一個包括第一導電佈線單元、第二導電佈線單元、光波導單元以及第一電光轉換單元和第一光電轉換單元;該第一電光轉換單元和該第一光電轉換單元分別耦合至該光波導單元;該第一導電佈線單元與該第一電光轉換單元電連接;該第二導電佈線單元與該第一光電轉換單元電連接。Wherein, each of the plurality of photonic integrated circuits includes a first conductive wiring unit, a second conductive wiring unit, an optical waveguide unit, a first electro-optical conversion unit, and a first photoelectric conversion unit; the first electro-optical conversion unit and the The first photoelectric conversion unit is respectively coupled to the optical waveguide unit; the first conductive wiring unit is electrically connected to the first electro-optic conversion unit; the second conductive wiring unit is electrically connected to the first photoelectric conversion unit.

S1003、對該晶圓進行分割,得到複數個獨立的光子積體電路。S1003, dividing the wafer to obtain a plurality of independent photonic integrated circuits.

其中,複數個光子積體電路被分割獨立的光子積體電路,從而每一個該光子積體電路晶片中包括獨立的光子積體電路。Wherein, the plurality of photonic integrated circuits are divided into independent photonic integrated circuits, so that each photonic integrated circuit chip includes an independent photonic integrated circuit.

S1004、在該些獨立的光子積體電路晶片中的每一個上安裝第一電晶片和第二電晶片,以使該第一電晶片與該第一導電佈線單元電連接,該第二電晶片與該第二導電佈線單元電連接。S1004. Install a first electric chip and a second electric chip on each of the independent photonic integrated circuit chips, so that the first electric chip is electrically connected to the first conductive wiring unit, and the second electric chip It is electrically connected with the second conductive wiring unit.

作為一個示例,S1004在不在S1003之後執行。As an example, S1004 is not performed after S1003.

其中,該第一電晶片、該第二電晶片能夠通過該第一導電佈線單元、該第一電光轉換單元、該光波導單元、該第一光電轉換單元以及該第二導電佈線單元進行通訊。Wherein, the first electric chip and the second electric chip can communicate through the first conductive wiring unit, the first electro-optical conversion unit, the optical waveguide unit, the first photoelectric conversion unit and the second conductive wiring unit.

上述步驟S1002的具體實現可參見上述各實施例中相應內容,在此不在贅述。For the specific implementation of the above step S1002, reference may be made to the corresponding content in the above embodiments, and details are not repeated here.

在一些實施方式中,前文中的所述的光互連件例如第一光互連件,第二光互連件中的光子積體電路均可採用以上方法中相關光子積體電路的製造步驟形成,並按照上述提到的方法在第一光互連件設置至少一個電晶片,以及在第二光互連件上設置至少一個電晶片。In some embodiments, the optical interconnects mentioned above, such as the first optical interconnect, and the photonic integrated circuit in the second optical interconnect can all adopt the manufacturing steps of related photonic integrated circuits in the above method formed, and according to the method mentioned above, at least one transistor is disposed on the first optical interconnection, and at least one transistor is disposed on the second optical interconnection.

在一些實施方式中,還包括用使用複數個光纖將該第一光互連件與該第二光互連件進行光學連接的步驟。替換性的,該些光纖可以替換為複數個光波導,用於實現第一光互連件與第二光互連件的光學連接。In some embodiments, further comprising the step of optically connecting the first optical interconnection with the second optical interconnection using a plurality of optical fibers. Alternatively, the optical fibers may be replaced with a plurality of optical waveguides for realizing the optical connection between the first optical interconnection and the second optical interconnection.

在一些實施方式中,製造光互連件裝置的方法包括:將光互連件設置於承載基板上。示例性的,可以是將第一光互連件、第二光互連件設置於承載基板上。In some embodiments, a method of manufacturing an optical interconnect device includes disposing an optical interconnect on a carrier substrate. Exemplarily, the first optical interconnection and the second optical interconnection may be disposed on the carrier substrate.

這裡需要說明的是:本申請實施例提供的所述方法中各步驟未盡詳述的內容可參見上述實施例中的相應內容,此處不再贅述。此外,本申請實施例提供的所述方法中除了上述各步驟以外,還可包括上述各實施例中其他部分或全部步驟,具體可參見上述各實施例相應內容,在此不再贅述。What needs to be explained here is that for the details of the steps in the method provided in the embodiments of the present application that are not described in detail, refer to the corresponding contents in the above embodiments, and details are not repeated here. In addition, in addition to the above-mentioned steps, the methods provided in the embodiments of the present application may also include some or all of the other steps in the above-mentioned embodiments. For details, please refer to the corresponding content of the above-mentioned embodiments, and details will not be repeated here.

本領技術人員應當理解,以上所公開的僅爲本發明的實施方式而已,當然不能以此來限定本發明之權利範圍,依本發明實施方式所作的等同變化,仍屬本發明申請專利範圍所涵蓋的範圍。Those skilled in the art should understand that what is disclosed above is only the embodiment of the present invention, and of course the scope of rights of the present invention cannot be limited by this. The equivalent changes made according to the embodiment of the present invention still fall within the scope of the patent application of the present invention. range.

100:承載基板 101:第一導電佈線單元 101a:第一電連接結構 102:第二導電佈線單元 102a:第二電連接結構 103:半導體層603 104:第一電光轉換單元 105:第一光電轉換單元 106:介電層 201、202:光互連件 A、B、C、D、E、F、G、H:電晶片 300:光耦合結構 400:分束器 M1、M2、M3、M4:調制器陣列 D1、D2、D3、D4:探測器陣列 401:微環調制器 402:PN結結構 403:環形波導 404:加熱電極 405:光探測器 406:波導終端 407:光波導 501:微環濾波探測器 502:加熱電極 503:環形波導 504:訊號光探測器 505:波導終端 507:光波導 601:背基底層601 602:背基底層601 603:半導體層603 100: Carrier substrate 101: the first conductive wiring unit 101a: first electrical connection structure 102: the second conductive wiring unit 102a: second electrical connection structure 103: semiconductor layer 603 104: The first electro-optic conversion unit 105: The first photoelectric conversion unit 106: Dielectric layer 201, 202: optical interconnection A, B, C, D, E, F, G, H: electric chip 300: Optical coupling structure 400: beam splitter M1, M2, M3, M4: modulator array D1, D2, D3, D4: detector array 401: Microring modulator 402: PN junction structure 403: Ring waveguide 404: heating electrode 405: Light detector 406: waveguide terminal 407: Optical waveguide 501: Microring filter detector 502: heating electrode 503: Ring waveguide 504: signal light detector 505:Waveguide terminal 507: Optical waveguide 601: back base layer 601 602: back base layer 601 603: semiconductor layer 603

圖1是示出根據本發明的示例性實施方式的光互連裝置的結構示意圖。 圖2是示出圖1所示的光互連裝置的光互連示意圖。 圖3示出了圖2所示的光互連裝置中電晶片的連接拓撲結構。 圖4是示出本發明實施方式示例性的一個電光轉換單元中的調制器陣列的結構示意圖。 圖5是示出本發明實施方式示例性的一個光電轉換單元中的探測器陣列的結構示意圖。 圖6爲本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 圖7爲本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 圖8爲本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 FIG. 1 is a schematic structural view showing an optical interconnection device according to an exemplary embodiment of the present invention. FIG. 2 is a schematic diagram showing an optical interconnection of the optical interconnection device shown in FIG. 1 . FIG. 3 shows the connection topology of the transistors in the optical interconnection device shown in FIG. 2 . Fig. 4 is a schematic structural diagram showing a modulator array in an exemplary electro-optical conversion unit according to an embodiment of the present invention. FIG. 5 is a schematic structural diagram showing a detector array in an exemplary photoelectric conversion unit according to an embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application. FIG. 7 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application. FIG. 8 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application.

100:承載基板 100: Carrier substrate

201、202:光互連件 201, 202: optical interconnection

A、B、C、D、E、F、G、H:電晶片 A, B, C, D, E, F, G, H: electric chips

Claims (21)

一種光互連裝置,包括: 複數個電晶片,其包括第一電晶片和第二電晶片;以及 第一光互連件,其具有複數個光波導; 其中,該第一電晶片和該第二電晶片通過該第一光互連件的光波導實現通訊連接。 An optical interconnection device, comprising: a plurality of wafers, including a first wafer and a second wafer; and a first optical interconnect having a plurality of optical waveguides; Wherein, the first electric chip and the second electric chip realize the communication connection through the optical waveguide of the first optical interconnection. 如請求項1所述的光互連裝置,其中該光互連裝置還包括: 電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到光訊號中,該光訊號在該第一光互連件的光波導中傳輸; 以及 光電轉換單元,其與該第二電晶片連接,將接收的光訊號轉換爲傳輸至該第二電晶片的電訊號;\其中,該光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:該第一光互連件中的光波導。 The optical interconnection device as claimed in item 1, wherein the optical interconnection device further comprises: an electro-optical conversion unit, which is connected to the first electronic chip, and is used to carry the information carried by the electrical signal of the first electronic chip into an optical signal, and the optical signal is transmitted in the optical waveguide of the first optical interconnect; as well as A photoelectric conversion unit, which is connected to the second electric chip, and converts the received optical signal into an electrical signal transmitted to the second electric chip; \wherein, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit It includes: an optical waveguide in the first optical interconnection. 如請求項2所述的光互連裝置,其中該光互連裝置還包括承載基板; 該第一光互連件設置在該承載基板上;以及 該些電晶片設置在該第一光互連件上; 其中,該第一光互連件包括光子積體電路,該光子積體電路包括該些光波導、該電光轉換單元,以及該光電轉換單元。 The optical interconnection device as claimed in claim 2, wherein the optical interconnection device further includes a carrier substrate; the first optical interconnect is disposed on the carrier substrate; and The transistors are disposed on the first optical interconnect; Wherein, the first optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes the optical waveguides, the electro-optical conversion unit, and the photoelectric conversion unit. 如請求項2所述的光互連裝置,其中該光互連裝置還包括: 複數個光纖;和 具有複數個光波導的第二光互連件,該第二光互連件與該第一光互連件通過該些光纖互連; 其中,該光訊號從該電光轉換單元至該光電轉換單元的傳輸路徑包括:先後經過該第一光互連件中的光波導、該些光纖中的至少一個、以及該第二光互連件的光波導的傳輸路徑。 The optical interconnection device as claimed in item 2, wherein the optical interconnection device further comprises: a plurality of optical fibers; and A second optical interconnection having a plurality of optical waveguides, the second optical interconnection is interconnected with the first optical interconnection through the optical fibers; Wherein, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: successively passing through the optical waveguide in the first optical interconnection, at least one of the optical fibers, and the second optical interconnection The transmission path of the optical waveguide. 如請求項4所述的光互連裝置,其中該光互連裝置還包括承載基板; 該第一光互連件和第二光互連件設置在該承載基板上; 該第一電晶片設置在該第一光互連件上,該第一光互連件包括光子積體電路,該光子積體電路包括該些光波導、該電光轉換單元;以及 該第二電晶片設置在該第二光互連件上,該第二光互連件包括光子積體電路,該第二光互連件的光子積體電路包括該光電轉換單元。 The optical interconnection device as claimed in claim 4, wherein the optical interconnection device further includes a carrier substrate; The first optical interconnect and the second optical interconnect are disposed on the carrier substrate; The first electric chip is disposed on the first optical interconnection, the first optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes the optical waveguides and the electro-optical conversion unit; and The second transistor is disposed on the second optical interconnection, the second optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit of the second optical interconnection includes the photoelectric conversion unit. 如請求項3所述的光互連裝置,其中該第一光互連件的光子積體電路還包括介電層、第一導電佈線單元、第二導電佈線單元; 該光子積體電路中的複數個光波導、該電光轉換單元以及該光電轉換單元被該介電層所覆蓋; 該第一導電佈線單元被配置爲將該電光轉換單元電連接至該第一電晶片; 該第二導電佈線單元被配置爲將該光電轉換單元電連接至該第二電晶片; 該第一導電佈線單元包括第一電連接結構,該第一電連接結構穿過至少部分該介電層;以及 該第二導電佈線單元包括第二電連接結構,該第二電連接結構穿過至少部分該介電層。 The optical interconnection device as claimed in item 3, wherein the photonic integrated circuit of the first optical interconnection further includes a dielectric layer, a first conductive wiring unit, and a second conductive wiring unit; The plurality of optical waveguides, the electro-optic conversion unit and the photoelectric conversion unit in the photonic integrated circuit are covered by the dielectric layer; The first conductive wiring unit is configured to electrically connect the electro-optical conversion unit to the first electronic chip; The second conductive wiring unit is configured to electrically connect the photoelectric conversion unit to the second electronic chip; The first conductive wiring unit includes a first electrical connection structure passing through at least part of the dielectric layer; and The second conductive wiring unit includes a second electrical connection structure, and the second electrical connection structure passes through at least part of the dielectric layer. 如請求項6所述的光互連裝置,其中 該電光轉換單元包括調制器陣列,其將該第一電晶片的電訊號承載的資訊調製到不同波長的光訊號上並以波分復用的方式進行傳輸;以及 該光電轉換單元包括探測器陣列,其對接收的光訊號進行波分解複用並轉化爲向該第二電晶片傳輸的電訊號。 The optical interconnection device as claimed in claim 6, wherein The electro-optical conversion unit includes a modulator array, which modulates the information carried by the electrical signal of the first transistor into optical signals of different wavelengths and transmits them in a wavelength division multiplexing manner; and The photoelectric conversion unit includes a detector array, which performs wave division and multiplexing on the received optical signal and converts it into an electrical signal transmitted to the second electric chip. 如請求項1、6-7中任意一項所述的光互連裝置,其中該調制器陣列包括複數個微環調制器;和/或 該探測器陣列包括複數個微環濾波探測器。 The optical interconnection device as claimed in any one of claims 1, 6-7, wherein the modulator array includes a plurality of microring modulators; and/or The detector array includes a plurality of microring filter detectors. 如請求項8所述的光互連裝置,其中該些電晶片包括一個或多個小晶片。The optical interconnection device as recited in claim 8, wherein the electrical chips comprise one or more chiplets. 如請求項9所述的光互連裝置,其中在晶圓級封裝過程中安裝該第一電晶片、第二電晶片。The optical interconnection device as claimed in claim 9, wherein the first and second chips are mounted in a wafer-level packaging process. 一種光互連裝置,包括: 第一電晶片、第二電晶片; 第一光互連件; 該第一電晶片、第二電晶片設置於該第一光互連件上; 該第一光互連件包括光子積體電路,該光子積體電路包括: 複數個光波導; 第一電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到第一光訊號中; 第一光電轉換單元,其與該第二電晶片連接,用於將該第一光訊號轉換爲傳輸至該第二電晶片的電訊號; 第二電光轉換單元,其與該第二電晶片連接,用於將該第二電晶片的電訊號承載的資訊承載到第二光訊號中;以及 第二光電轉換單元,其與該第一電晶片連接,用於將該第二光訊號轉換爲傳輸至該第一電晶片的電訊號; 其中,該第一光訊號從該第一電光轉換單元至該第一光電轉換單元的傳輸路徑包括:該第一光互連件中的該些光波導中的至少一個;以及 其中,該第二光訊號從該第二電光轉換單元至該第二光電轉換單元的傳輸路徑包括:該第一光互連件中的該些光波導中的至少一個。 An optical interconnection device, comprising: The first transistor, the second transistor; a first optical interconnect; The first transistor and the second transistor are disposed on the first optical interconnect; The first optical interconnect comprises a photonic integrated circuit comprising: a plurality of optical waveguides; a first electro-optical conversion unit, which is connected to the first electric chip, and is used to carry the information carried by the electric signal of the first electric chip into the first optical signal; a first photoelectric conversion unit connected to the second transistor and used to convert the first optical signal into an electrical signal transmitted to the second transistor; a second electro-optical conversion unit, which is connected to the second electric chip, and is used to carry the information carried by the electric signal of the second electric chip into the second optical signal; and a second photoelectric conversion unit connected to the first transistor for converting the second optical signal into an electrical signal transmitted to the first transistor; Wherein, the transmission path of the first optical signal from the first electro-optical conversion unit to the first photoelectric conversion unit includes: at least one of the optical waveguides in the first optical interconnection; and Wherein, the transmission path of the second optical signal from the second electro-optical conversion unit to the second photoelectric conversion unit includes: at least one of the optical waveguides in the first optical interconnection. 如請求項11所述的光互連裝置,其中該光互連裝置還包括第二光互連件、第三電晶片以及複數個光纖,其中,該第三電晶片設置於該第二光互連件上,該些光纖將該第一光互連件及該第二光互連件進行光學連接; 該第一光互連件的光子積體電路還包括第三電光轉換單元,其與該第一電晶片連接,用於將該第一電晶片的電訊號承載的資訊承載到第三光訊號;以及 該第二光互連件包括光子積體電路,該第二光互連件的光子積體電路包括複數個光波導,第三光電轉換單元,其與該第三電晶片連接,用於將該第三光訊號轉換爲傳輸至該第三電晶片的電訊號; 其中,該第三光訊號從該第三電光轉換單元至該第三光電轉換單元的傳輸路徑包括:該第一光互連件中的光波導、該些光纖中的至少一個光纖、該第二光互連件中的光波導。 The optical interconnection device as claimed in item 11, wherein the optical interconnection device further comprises a second optical interconnection, a third transistor and a plurality of optical fibers, wherein the third transistor is arranged on the second optical interconnection On the connector, the optical fibers optically connect the first optical interconnection and the second optical interconnection; The photonic integrated circuit of the first optical interconnection further includes a third electro-optic conversion unit connected to the first electric chip, and used to carry information carried by the electric signal of the first electric chip to a third optical signal; as well as The second optical interconnection includes a photonic integrated circuit, the photonic integrated circuit of the second optical interconnection includes a plurality of optical waveguides, and a third photoelectric conversion unit, which is connected to the third transistor, is used to connect the converting the third optical signal into an electrical signal transmitted to the third transistor; Wherein, the transmission path of the third optical signal from the third electro-optical conversion unit to the third photoelectric conversion unit includes: the optical waveguide in the first optical interconnection, at least one optical fiber in the optical fibers, the second Optical waveguides in optical interconnects. 如請求項11或12所述的光互連裝置,其中該第一光互連件的光子積體電路還包括: 介電層、複數個導電佈線單元; 該介電層覆蓋該第一光互連件的光子積體電路中的該些光波導、該第一電光轉換單元、該第一光電轉換單元、該第二電光轉換單元、該第二光電轉換單元; 該些導電佈線單元中被配置爲將該第一電光轉換單元、該第一光電轉換單元、該第二電光轉換單元、該第二光電轉換單元與對應的電晶片進行電連接;以及 該些導電佈線單元包括複數個電連接結構,該些電連接結構中的每一個均各自穿過至少部分該介電層。 The optical interconnection device as claimed in claim 11 or 12, wherein the photonic integrated circuit of the first optical interconnection further includes: a dielectric layer, a plurality of conductive wiring units; The dielectric layer covers the optical waveguides, the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optic conversion unit, and the second photoelectric conversion unit in the photonic integrated circuit of the first optical interconnection unit; The conductive wiring units are configured to electrically connect the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optic conversion unit, and the second photoelectric conversion unit with corresponding electric chips; and The conductive wiring units include a plurality of electrical connection structures, and each of the electrical connection structures passes through at least part of the dielectric layer. 如請求項13所述的光互連裝置,其中該第一電光轉換單元、該第二電光轉換單元均各自包括一個或複數個光調制器、該第一光電轉換單元、該第二光電轉換單元均各自包括一個或複數個光電探測器。The optical interconnection device according to claim 13, wherein the first electro-optical conversion unit and the second electro-optic conversion unit each include one or a plurality of optical modulators, the first photoelectric conversion unit, and the second photoelectric conversion unit Each includes one or a plurality of photodetectors. 如請求項14所述的光互連裝置,其中該光調制器包括微環調制器;和/或該光電探測器包括微環濾波探測器。The optical interconnection device of claim 14, wherein the optical modulator comprises a microring modulator; and/or the photodetector comprises a microring filter detector. 如請求項14所述的光互連裝置,其中該第一電晶片、第二電晶片、第三電晶片中包括小晶片。The optical interconnection device as claimed in claim 14, wherein the first die, the second die, and the third die include chiplets. 一種光互連裝置,包括: 第一光互連件,包括第一光子積體電路,該第一光子積體電路包括第一複數個電光轉換單元,第一複數個光波導,以及第一複數個光電轉換單元; 第二光互連件,包括第二光子積體電路,該第二光子積體電路包括第二複數個電光轉換單元,第二複數個光波導,以及第二複數個光電轉換單元; 第一複數個電晶片,設置於該第一光互連件上; 第二複數個電晶片,設置於該第二光互連件上; 該些第一電光轉換單元被配置爲:使該些第一電晶片中的每一個對應至少一個電光轉換單元; 該些第一光電轉換單元被配置爲:使該些第一電晶片中的每一個對應至少一個光電轉換單元;以及 該些第一光波導被配置爲:對於該些第一電晶片中的任意兩個電晶片,將其中的一個電晶片對應的一個電光轉換單元光學連接至另一個電晶片對應的一個光電轉換單元,以使得該些第一電晶片中的任意兩個電晶片實現通訊。 An optical interconnection device, comprising: The first optical interconnection includes a first photonic integrated circuit, the first photonic integrated circuit includes a first plurality of electro-optical conversion units, a first plurality of optical waveguides, and a first plurality of photoelectric conversion units; The second optical interconnection includes a second photonic integrated circuit, the second photonic integrated circuit includes a second plurality of electro-optical conversion units, a second plurality of optical waveguides, and a second plurality of photoelectric conversion units; a first plurality of transistors disposed on the first optical interconnect; a second plurality of transistors disposed on the second optical interconnect; The first electro-optic conversion units are configured such that each of the first electro-optic chips corresponds to at least one electro-optic conversion unit; The first photoelectric conversion units are configured such that each of the first transistors corresponds to at least one photoelectric conversion unit; and The first optical waveguides are configured to: for any two electric chips among the first electric chips, optically connect an electro-optic conversion unit corresponding to one of the electric chips to a photoelectric conversion unit corresponding to another electric chip , so that any two of the first transistors can communicate. 如請求項17的光互連裝置,其中該第一光互連件與該第二光互連件光學連接;以及 該些第一電晶片中的至少一個電晶片,通過該第一光互連件以及該第二光互連件,與該些第二電晶片中的至少一個電晶片進行通訊。 The optical interconnection device of claim 17, wherein the first optical interconnection is optically connected to the second optical interconnection; and At least one of the first chips communicates with at least one of the second chips through the first optical interconnect and the second optical interconnect. 如請求項18所述的光互連裝置,其中該第一光互連件與該第二光互連件通過複數個光纖或者複數個光波導光學連接,以使得該些第一電晶片中的至少一個電晶片,與該些第二電晶片中的至少一個電晶片進行通訊。The optical interconnection device as claimed in claim 18, wherein the first optical interconnection is optically connected to the second optical interconnection through a plurality of optical fibers or a plurality of optical waveguides, so that the At least one electric chip communicates with at least one electric chip among the second electric chips. 如請求項18或19中任意一項所述的光互連裝置,其中該第一光子積體電路還包括: 介電層、複數個導電佈線單元; 該介電層覆蓋該第一光子積體電路中的該些光波導、該些第一電光轉換單元、該些第一光電轉換單元; 該些導電佈線單元中的每一個各自與該些第一電光轉換單元中的每一個電連接,或者與該些第一光電轉換單元中的每一個進行電連接;該些導電佈線單元包括多個電連接結構,該些電連接結構中的每一個均各自穿過至少部分該介電層;以及 該些導電佈線單元電連接至該第一多個電晶片,以將該些第一電光轉換單元中的每一個電連接至對應的電晶片,或者將該些第一光電轉換單元中的每一個電連接至對應的電晶片。 The optical interconnection device according to any one of claims 18 or 19, wherein the first photonic integrated circuit further comprises: a dielectric layer, a plurality of conductive wiring units; The dielectric layer covers the optical waveguides, the first electro-optical conversion units, and the first photoelectric conversion units in the first photonic integrated circuit; Each of the conductive wiring units is electrically connected to each of the first electro-optical conversion units, or is electrically connected to each of the first photoelectric conversion units; the conductive wiring units include a plurality of electrical connection structures each passing through at least part of the dielectric layer; and The conductive wiring units are electrically connected to the first plurality of electric chips, so as to electrically connect each of the first photoelectric conversion units to the corresponding electric chip, or to connect each of the first photoelectric conversion units to the corresponding electric chip. Electrically connected to the corresponding transistor. 如請求項1-20中任意一項所述的光互連裝置的製造方法,包括: 提供晶圓; 在該晶圓上形成複數個光子積體電路; 其中,該些光子積體電路中的每一個可包括複數個光波導,以及電光轉換單元、光電轉換單元; 在該些光子積體電路中的每一個上安裝所需的至少一個電晶片;以及 對所述晶圓進行分割,得到複數個獨立的光互連裝置。 The method for manufacturing an optical interconnection device according to any one of claims 1-20, comprising: provide wafers; forming a plurality of photonic integrated circuits on the wafer; Wherein, each of these photonic integrated circuits may include a plurality of optical waveguides, and an electro-optical conversion unit and a photoelectric conversion unit; mounting the required at least one die on each of the photonic integrated circuits; and The wafer is divided to obtain a plurality of independent optical interconnection devices.
TW111147957A 2021-12-14 2022-12-14 Optical interconnection device and fabrication method thereof TW202323894A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111529427.7A CN116299888A (en) 2021-12-14 2021-12-14 Optical interconnection device and method of manufacturing the same
CN20211529427.7 2021-12-14

Publications (1)

Publication Number Publication Date
TW202323894A true TW202323894A (en) 2023-06-16

Family

ID=86774899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147957A TW202323894A (en) 2021-12-14 2022-12-14 Optical interconnection device and fabrication method thereof

Country Status (3)

Country Link
CN (1) CN116299888A (en)
TW (1) TW202323894A (en)
WO (1) WO2023109692A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538984A (en) * 2024-01-09 2024-02-09 赛丽科技(苏州)有限公司 Integrated photon chip, array and testing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10114173B2 (en) * 2017-03-14 2018-10-30 Huawei Technologies Co., Ltd. Optical device
JP7192255B2 (en) * 2018-05-31 2022-12-20 富士通オプティカルコンポーネンツ株式会社 Optical device, optical module using same, and test method for optical device
KR102622409B1 (en) * 2018-10-19 2024-01-09 삼성전자주식회사 photonic integrated circuit device and method for manufacturing the same
US10962711B2 (en) * 2018-11-29 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and manufacturing method thereof
CN112558240A (en) * 2019-09-26 2021-03-26 台湾积体电路制造股份有限公司 Package assembly and method of manufacturing the same
US11700068B2 (en) * 2020-05-18 2023-07-11 Ayar Labs, Inc. Integrated CMOS photonic and electronic WDM communication system using optical frequency comb generators

Also Published As

Publication number Publication date
WO2023109692A1 (en) 2023-06-22
CN116299888A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
US11791899B2 (en) Integrated optical transceiver
US11777633B2 (en) Optical multiplexer/demultiplexer module and associated methods
US11178473B1 (en) Co-packaged light engine chiplets on switch substrate
Arakawa et al. Silicon photonics for next generation system integration platform
US20140270629A1 (en) Optical waveguide network of an interconnecting ic module
US20140270621A1 (en) Photonic multi-chip module
US20220123852A1 (en) In-packaged multi-channel light engine on single substrate
CN113759476A (en) Integrated heat sink for co-packaged optoelectronic modules
CN112687672B (en) Silicon-based photoelectron heterogeneous integrated interconnection module
US20220158736A1 (en) Optical Module and Method of Fabrication
WO2023109692A1 (en) Optical interconnection device and manufacturing method therefor
TW202208968A (en) Integrated cmos photonic and electronic wdm communication system using optical frequency comb generators
US20230308188A1 (en) Photonic communication platform and related circuits
TW202215088A (en) Teraphy chiplet optical input/output system
TWI832609B (en) Optical interconnection device and manufacturing method thereof and computing device
CN112736073B (en) Silicon-based optical computation heterogeneous integrated module
US20240149632A1 (en) Integrated Optical Transceiver
CN116184566A (en) Semiconductor packaging structure, information transmission method, manufacturing method and optical interconnection equipment
Wosinski et al. Integrated silicon nanophotonics: A solution for computer interconnects
US11837509B1 (en) Method of manufacturing and packaging silicon photonics integrated circuit dies in wafer form
US20220166533A1 (en) Low-Power Optical Input/Output Chiplet for Ethernet Switches (TeraPHYe)
GB2240682A (en) An optical interconnect assembly
CN118295089A (en) Optical module and preparation method thereof
CN116931653A (en) Photoelectric hybrid integrated operation chip
CN113900276A (en) Photoelectric computing platform