TW202323574A - Processes for forming metal oxide thin films on electrode for interphase control - Google Patents

Processes for forming metal oxide thin films on electrode for interphase control Download PDF

Info

Publication number
TW202323574A
TW202323574A TW111144727A TW111144727A TW202323574A TW 202323574 A TW202323574 A TW 202323574A TW 111144727 A TW111144727 A TW 111144727A TW 111144727 A TW111144727 A TW 111144727A TW 202323574 A TW202323574 A TW 202323574A
Authority
TW
Taiwan
Prior art keywords
cathode
active material
cathode active
metal oxide
lithium
Prior art date
Application number
TW111144727A
Other languages
Chinese (zh)
Inventor
克里斯汀 杜薩拉特
祥勳 金
上村直
Original Assignee
法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 filed Critical 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司
Publication of TW202323574A publication Critical patent/TW202323574A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

This invention provides a novel solution to form an artificial interphase on the electrode to protect it from fast declining electrochemical behaviors, by depositing Metal Oxides Layer, by ALD or CVD. Metals discussed here are IVA-VIA elements (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W). The film needs to be thin, possibly discontinuous, and lithium ion conductive enough, so that the addition of this thin film interface allows fast lithium ion transfer at the interface between electrode and electrolyte.

Description

在電極上形成用於介面控制的金屬氧化物薄膜之方法Method for forming metal oxide thin film for interface control on electrode

本發明係關於一種用金屬氧化物膜塗覆陰極或陰極活性材料之方法。The present invention relates to a method of coating a cathode or cathode active material with a metal oxide film.

在鋰離子電池的初始幾個循環期間,觀察到由電解質在電解質/電極介面處的分解在陽極和/或陰極上形成固體電解質介面(SEI)。鋰離子電池的初始容量損失係由於在此SEI的形成期間鋰的消耗造成的。此外,所形成的SEI層不均勻且不穩定,不能有效地鈍化電極表面以防止由於電解質的連續分解而導致的電極活性材料的降解。SEI層可能在電池循環期間出現物理裂紋,並且鋰枝晶可能出現並導致短路,進而導致熱失控。此外,SEI層還產生勢壘,該勢壘使得鋰離子在電極中的嵌入更加困難。During the first few cycles of a Li-ion battery, the formation of a solid electrolyte interface (SEI) on the anode and/or cathode by the decomposition of the electrolyte at the electrolyte/electrode interface was observed. The initial capacity loss of Li-ion cells is due to the depletion of lithium during the formation of this SEI. Moreover, the formed SEI layer is inhomogeneous and unstable, which cannot effectively passivate the electrode surface to prevent the degradation of electrode active materials due to the continuous decomposition of the electrolyte. The SEI layer may physically crack during battery cycling, and lithium dendrites may appear and cause short circuits, which in turn lead to thermal runaway. In addition, the SEI layer also creates a potential barrier that makes the intercalation of lithium ions in the electrode more difficult.

在當前的設計中,藉由濕塗、乾塗或濺射金屬氧化物或/和磷酸鹽的連續膜,鋰離子電池具有在電極和/或電極活性材料的表面處的(鋰)金屬氧化物、磷酸鹽或氟化物塗層(例如,Al xO y,Li xM yPO z,M = Nb、Zr、Al、Ti等,或AlM xF y,M = W、Y等)以便穩定電極與電解質之間的介面。含鋰薄膜因其在鋰離子電池應用中用作電極材料的表面塗覆層而眾所周知。含鋰薄膜的實例包括LiPON、磷酸鋰、硼酸鋰、硼磷酸鋰、鈮酸鋰、鈦酸鋰、鋰鋯氧化物等。藉由ALD/CVD技術對電極進行表面塗覆係形成預期的固體電解質介面薄膜的較佳的手段,因此避免了該等不穩定層的形成。然而,氣相沈積含鋰膜難以實施,因為缺乏用於大批量製造的合適的鋰先質:大多數鋰先質係不揮發的或不夠穩定,它們可能含有不希望的雜質。介面薄膜的另一個重要應用係形成在固態電池中使用的固體電解質材料。固態電池係無溶劑系統,比常規的鋰離子電池具有更長的壽命、更快的充電時間和更高的能量密度。固態電池被認為係電池發展中的下一技術階段。藉由ALD/CVD技術,甚至可以在複雜的結構像3D電池上獲得均勻且保形的電極/電解質介面薄膜。 In the current design, Li-ion cells have (lithium) metal oxides at the surface of the electrodes and/or electrode active materials by wet-coating, dry-coating, or sputtering continuous films of metal oxides or/and phosphates , phosphate or fluoride coating (for example, Al x O y , Li x My PO z , M = Nb, Zr, Al, Ti, etc., or AlM x F y , M = W, Y, etc.) to stabilize the electrode interface with the electrolyte. Lithium-containing thin films are well known for their use as surface coatings for electrode materials in Li-ion battery applications. Examples of lithium-containing thin films include LiPON, lithium phosphate, lithium borate, lithium borophosphate, lithium niobate, lithium titanate, lithium zirconium oxide, and the like. Surface coating of electrodes by ALD/CVD technique is a better means to form the expected solid electrolyte interface film, thus avoiding the formation of these unstable layers. However, vapor deposition of lithium-containing films is difficult due to the lack of suitable lithium precursors for high-volume manufacturing: most lithium precursors are not volatile or stable enough, and they may contain undesired impurities. Another important application of interfacial films is to form solid electrolyte materials used in solid-state batteries. Solid-state batteries are solvent-free systems that offer longer life, faster charge times, and higher energy densities than conventional lithium-ion batteries. Solid-state batteries are considered the next technological stage in battery development. With ALD/CVD technology, uniform and conformal electrode/electrolyte interface films can be obtained even on complex structures like 3D batteries.

矽陽極同樣在介面薄膜的應用範圍內。矽被認為係鋰離子電池開發中的下一代陽極,在與石墨陽極(相對於Li +/Li 0.05 V)相同的電勢水平(相對於Li +/Li 0.2 V)下,矽比石墨陽極(372 mAh g -1)提供更高的比容量(3600 mAh g -1)。矽陽極的主要缺點係在充電/放電期間體積膨脹最高達300%,導致SEI不穩定和電極中的物理裂紋。 Silicon anodes are also within the application range of interfacial films. Silicon is considered to be the next-generation anode in the development of Li-ion batteries. At the same potential level (0.2 V vs. Li + / Li) as the graphite anode (0.05 V vs. mAh g -1 ) provides a higher specific capacity (3600 mAh g -1 ). The main disadvantage of silicon anodes is volume expansion of up to 300% during charge/discharge, leading to SEI instability and physical cracks in the electrode.

介面薄膜的應用可以擴展到鋰金屬陽極技術。鋰金屬陽極被認為係後鋰離子電池(LIB),因為與LIB相比,它們可以提供至少3倍的理論容量。鋰金屬也因其高容量(係石墨的10倍)、電池體積減小和製程簡單而備受關注。然而,不受控制的鋰金屬表面可能導致Li枝晶的生長,造成短路,並最終引發火災。The application of interfacial films can be extended to lithium metal anode technology. Lithium metal anodes are considered as lithium-ion batteries (LIBs) because they can deliver at least 3 times the theoretical capacity compared to LIBs. Lithium metal has also attracted attention due to its high capacity (10 times that of graphite), reduced battery size and simple manufacturing process. However, an uncontrolled Li metal surface may lead to the growth of Li dendrites, causing short circuits and eventually fires.

對於下一代陰極活性材料,許多研究都集中在識別和開發金屬氧化物陰極材料上。在寬範圍的層狀氧化物中,富含Ni的陰極材料像NMC(鋰鎳錳鈷氧化物)和NCA(鋰鎳鈷鋁氧化物)係目前最有希望用於實際應用的候選材料。然而,當施加高電壓時,富含Ni的陰極材料傾向於變成無定形的。該等金屬氧化物材料的主要缺點之一係由於陰極材料與電解質的寄生反應導致過渡金屬(尤其是鎳)的連續溶解。這會導致陰極活性材料的結構降解,同時在電池充電期間電極/電解質介面處的氣體(O 2)釋放。此外,溶解的鎳離子移動到陽極側,並且其在陽極表面的沈積引發陽極處的SEI的快速分解,最終導致電池失效。 For next-generation cathode active materials, much research has focused on identifying and developing metal oxide cathode materials. Among the wide range of layered oxides, Ni-rich cathode materials like NMC (lithium nickel manganese cobalt oxide) and NCA (lithium nickel cobalt aluminum oxide) are currently the most promising candidates for practical applications. However, Ni-rich cathode materials tend to become amorphous when a high voltage is applied. One of the major disadvantages of these metal oxide materials is the continuous dissolution of transition metals, especially nickel, due to the parasitic reaction of the cathode material with the electrolyte. This leads to structural degradation of the cathode active material, with gas (O 2 ) release at the electrode/electrolyte interface during battery charging. Furthermore, dissolved nickel ions move to the anode side, and their deposition on the anode surface triggers rapid decomposition of the SEI at the anode, eventually leading to battery failure.

尖晶石陰極材料因其高倍率性能和低的或零鈷含量而受到廣泛研究。尖晶石陰極材料如LMO(鋰錳氧化物)、LNMO(鋰鎳錳氧化物)的主要問題之一係在電池充電期間錳二價離子(2 Mn 3+→ Mn 4++ Mn 2+)的溶解,這主要發生在電極/電解質介面處,然後在陽極側再沈積並藉由與富含Ni的陰極材料相同的機理破壞陽極的SEI。 Spinel cathode materials have been extensively studied due to their high rate capability and low or zero cobalt content. One of the main problems with spinel cathode materials like LMO (Lithium Manganese Oxide), LNMO (Lithium Nickel Manganese Oxide) is manganese divalent ions (2 Mn 3+ → Mn 4+ + Mn 2+ ) during battery charging The dissolution of Ni, which mainly occurs at the electrode/electrolyte interface, is then redeposited on the anode side and destroys the SEI of the anode by the same mechanism as that of Ni-rich cathode materials.

為了解決電解質與陰極電極之間的介面問題,如過渡金屬溶解、電解質過度分解,可以在陰極和/或陰極材料上施加薄膜沈積。例如,US 8535832 B2揭露了將金屬氧化物(Al 2O 3、Bi 2O 3、B 2O 3、ZrO 2、MgO、Cr 2O 3、MgAl 2O 4、Ga 2O 3、SiO 2、SnO 2、CaO、SrO、BaO、TiO 2、Fe 2O 3、MoO 3、MoO 2、CeO 2、La 2O 3、ZnO、LiAlO 2或其組合)濕塗到包含Ni、Mn和Co的陰極活性材料上。US 9543581 B2描述了將無定形Al 2O 3乾塗到包含Ni、Mn和Co元素的陰極活性材料的先質顆粒上。US 9614224 B2描述了使用濺射法在包含Mn的陰極活性材料上的Li xPO yMn z塗層。US 9837665 B2描述了使用濺射法在包含以下的陰極活性材料上的鋰磷氮氧化物(LiPON)薄膜塗層:Li、Mn、Ni和具有Ti、Fe、Ni、V、Cr、Cu和Co中的至少一種的摻雜劑的含氧化合物。US 9196901 B2描述了使用原子層沈積(ALD)法在陰極層壓體和陰極活性材料上的Al 2O 3薄膜塗層,該等陰極活性材料包含Co、Mn、V、Fe、Si或Sn並且是氧化物、磷酸鹽、矽酸鹽或其中兩種或更多種的混合物。US 10224540 B2描述了使用ALD法在多孔矽陽極上的Al 2O 3薄膜塗層。US 10177365 B2描述了使用ALD在包含LiCoO 2的陰極活性材料上的AlW xF y或AlW xF yC z薄膜塗層。US 9531004 B2描述了使用ALD法在陽極材料群組上的混合薄膜塗層,該塗層包括Al 2O 3、TiO 2、SnO 2、V 2O 5、HfO 2、ZrO 2、ZnO的第一層和基於氟化物的塗層、基於碳化物的塗層和基於氮化物的塗層的第二層,該陽極材料群組由以下組成:鈦酸鋰Li(4 + x)Ti5O12,其中0

Figure 02_image001
x
Figure 02_image001
3(LTO)、石墨、矽、含矽合金、含錫合金、及其組合。 To address interface issues between the electrolyte and the cathode electrode, such as transition metal dissolution, excessive decomposition of the electrolyte, thin film deposition can be applied on the cathode and/or cathode material. For example, US 8535832 B2 disclosed that metal oxides (Al 2 O 3 , Bi 2 O 3 , B 2 O 3 , ZrO 2 , MgO, Cr 2 O 3 , MgAl 2 O 4 , Ga 2 O 3 , SiO 2 , SnO 2 , CaO, SrO, BaO, TiO 2 , Fe 2 O 3 , MoO 3 , MoO 2 , CeO 2 , La 2 O 3 , ZnO, LiAlO 2 or combinations thereof) wet-coated to a cathode containing Ni, Mn, and Co on the active material. US 9543581 B2 describes the dry coating of amorphous Al2O3 onto precursor particles of cathode active material comprising the elements Ni, Mn and Co. US 9614224 B2 describes Li x PO y Mn z coatings on cathode active materials comprising Mn using the sputtering method. US 9837665 B2 describes thin film coatings of lithium phosphorus oxynitride (LiPON) using sputtering on cathode active materials comprising: Li, Mn, Ni and An oxygen-containing compound of at least one of the dopants. US 9196901 B2 describes Al2O3 thin film coatings using atomic layer deposition (ALD) on cathode laminates and cathode active materials comprising Co, Mn, V, Fe, Si or Sn and Is an oxide, phosphate, silicate or a mixture of two or more of them. US 10224540 B2 describes Al2O3 thin film coatings on porous silicon anodes using the ALD method . US 10177365 B2 describes AlWxFy or AlWxFyCz thin film coatings on cathode active materials comprising LiCoO2 using ALD . US 9531004 B2 describes a hybrid thin film coating on a group of anode materials using the ALD method, the coating comprising the first of Al2O3 , TiO2 , SnO2 , V2O5 , HfO2 , ZrO2 , ZnO layer and a second layer of a fluoride-based coating, a carbide-based coating, and a nitride-based coating, the group of anode materials consists of: Lithium titanate Li(4 + x)Ti5O12, where 0
Figure 02_image001
x
Figure 02_image001
3 (LTO), graphite, silicon, silicon-containing alloys, tin-containing alloys, and combinations thereof.

本發明提供了以下解決方案:藉由ALD或CVD將金屬氧化物層沈積在陰極或陰極活性材料上,在電極上形成人工介面以保護電極免受快速衰降的電化學行為。該等金屬氧化物層降低了SEI形成期間電解質在電極/電解質介面處的過度分解,減少了初始幾個循環的容量損失。這種金屬氧化物層的存在還減少了由電解質與陰極活性材料之間的寄生反應引起的陰極活性材料的過渡金屬陽離子溶解、進而減少了其在陽極上的再沈積。由此提高電池的電化學活性。如上文所討論的,已經提出了其他類型的膜,尤其是純金屬氧化物如Al 2O 3。然而,這種類型的材料表現為離子絕緣體,並且因此不能使所得陰極和電池具有最佳電化學性能。 The present invention provides a solution to deposit a metal oxide layer on the cathode or cathode active material by ALD or CVD, forming an artificial interface on the electrode to protect the electrode from rapidly degrading electrochemical behavior. These metal oxide layers reduce excessive decomposition of the electrolyte at the electrode/electrolyte interface during SEI formation, reducing capacity loss in the first few cycles. The presence of such a metal oxide layer also reduces the dissolution of the transition metal cations of the cathode active material caused by parasitic reactions between the electrolyte and the cathode active material, thereby reducing their redeposition on the anode. This increases the electrochemical activity of the battery. As discussed above, other types of membranes have been proposed, especially pure metal oxides such as Al2O3 . However, this type of material behaves as an ionic insulator and thus does not allow for optimal electrochemical performance of the resulting cathode and battery.

可以參考以下描述為所列舉語句的非限制性、示例性實施方式來進一步理解本發明: 1.  一種用金屬氧化物膜塗覆陰極或陰極活性材料之方法,該方法包括以下步驟: a1. 將該陰極或陰極活性材料暴露於包含具有式M(=NR a)(OR b) 2(NR c 2)的化學先質的化學先質蒸氣和作為氧化共反應物的氧源,其中: M選自Nb、Ta或V, Ra選自iPr、tBu、t-Am Rb各自獨立地選自Et、iPr、tBu、sBu、SPen,並且 Rc各自獨立地選自Et或Me;以及 b1. 將金屬氧化物膜沈積到該陰極或陰極活性材料上。 2.  如語句1所述之方法,其中,將該陰極或陰極活性材料暴露於化學先質蒸氣的該步驟a1.與將該陰極或陰極活性材料暴露於共反應物的該步驟a2.依次進行。 3.  如語句2所述之方法,該方法進一步包括在將該陰極或陰極活性材料暴露於共反應物的步驟a2.之前的吹掃該化學先質蒸氣的步驟a1i.。 4.  如語句3所述之方法,其中,將該金屬氧化物膜沈積到該陰極或陰極活性材料上的該步驟b1.包括原子層沈積步驟。 5.  如語句3所述之方法,其中,將該金屬氧化物膜沈積到該陰極或陰極活性材料上的該步驟b1.包括化學氣相沈積步驟。 6.  如語句1-5中任一項所述之方法,其中,該共反應物係氧源,如O2、O3、H2O、H2O2、NO、NO2、N2O或NOx;含氧矽先質,含氧錫先質,磷酸酯(phosphate)如三甲基磷酸酯、胺基磷酸二乙酯,或硫酸酯(sulfate)。 7.  如語句1-6中任一項所述之方法,其中,該先質具有式M(=NR a)(OR b) 2(NMeEt)。 8.  如語句1-7中任一項所述之方法,其中,R b中的至少一個獨立地選自sBu、SPen。 9.  如語句1-7中任一項所述之方法,其中,該先質具有式M(=NR a)(OR b) 2(NMeEt),並且其中R b中的至少一個獨立地選自sBu、SPen。 10.       如語句8或9所述之方法,其中,兩個R b都獨立地選自sBu、SPen。 11.       如語句1-10中任一項所述之方法,其中,由步驟b1.產生的該金屬氧化物膜具有的平均原子組成為Nb xO yD z,O係氧,並且D係一個或多個任何其他原子,並且其中x = 0.3-0.4,y = 0.4-0.65,並且z = 0.01-0.1。 12.       如語句1-11中任一項所述之方法,其中,該化學先質蒸氣和/或該陰極或陰極活性材料的溫度為從100°C至300°C、更較佳的是125°C至275°C、甚至更較佳的是125°C至175°C。 13.       如語句1-12中任一項所述之方法,其中,該金屬氧化物膜具有的平均厚度為0.02 nm至10 nm、較佳的是0.1 nm至5 nm、最較佳的是0.2至2 nm。 14.       如語句1-13中任一項所述之方法,其中,該陰極活性材料、或該陰極中的陰極活性材料選自由以下組成之群組:a) 層狀氧化物,如富含Ni的陰極材料像NMC(鋰鎳錳鈷氧化物)和NCA(鋰鎳鈷鋁氧化物);b) 尖晶石陰極材料,如LMO(鋰錳氧化物)、LNMO(鋰鎳錳氧化物);c) 橄欖石結構的陰極材料,特別是橄欖石磷酸鹽家族,如LCP(磷酸鈷鋰)、LFP(磷酸鐵鋰)、LNP(磷酸鎳鋰);及其組合。 15.       如語句1-14中任一項所述之方法,其中,將步驟a1.和b1.中的一個或多個進行從一至十次,較佳的是一至三次,更較佳的是僅一次。 16.       如語句1-15中任一項所述之方法,其中,a) 該化學先質蒸氣和/或該陰極或陰極活性材料的溫度為從100°C至300°C、更較佳的是125°C至275°C;b) 該金屬氧化物膜具有的平均厚度為0.02 nm至10 nm、較佳的是0.1 nm至5 nm、最較佳的是0.2至2 nm;並且c) 該金屬氧化物膜在該陰極或陰極活性材料表面上係至少50%連續的、較佳的是95%或更多連續的、更較佳的是98%或更多連續的。 The present invention may be further understood by reference to the following non-limiting, exemplary embodiments described as enumerated sentences: 1. A method of coating a cathode or cathode active material with a metal oxide film, the method comprising the steps of: a1. The cathode or cathode active material is exposed to a chemical precursor vapor comprising a chemical precursor of the formula M(=NR a )(OR b ) 2 (NR c 2 ) and a source of oxygen as an oxidizing co-reactant, wherein: M is selected from From Nb, Ta or V, Ra is selected from iPr, tBu, t-Am Rb is each independently selected from Et, iPr, tBu, sBu, SPen, and Rc is each independently selected from Et or Me; and b1. metal oxidation A film of the object is deposited onto the cathode or cathode active material. 2. The method of statement 1, wherein the step a1. of exposing the cathode or cathode active material to a chemical precursor vapor is performed sequentially with the step a2. of exposing the cathode or cathode active material to co-reactants . 3. The method of statement 2, further comprising the step a1i. of purging the chemical precursor vapor prior to the step a2. of exposing the cathode or cathode active material to co-reactants. 4. The method of statement 3, wherein the step b1. of depositing the metal oxide film onto the cathode or cathode active material comprises an atomic layer deposition step. 5. The method of statement 3, wherein the step b1. of depositing the metal oxide film onto the cathode or cathode active material comprises a chemical vapor deposition step. 6. The method of any one of statements 1-5, wherein the co-reactant is an oxygen source, such as O2, O3, H2O, H2O2, NO, NO2, N2O or NOx; an oxygen-containing silicon precursor containing Oxytin precursors, phosphates such as trimethylphosphate, diethylamidophosphate, or sulfate. 7. The method of any one of statements 1-6, wherein the precursor has the formula M(=NR a )(OR b ) 2 (NMeEt). 8. The method of any one of statements 1-7, wherein at least one of R b is independently selected from sBu, SPen. 9. The method of any one of statements 1-7, wherein the precursor has the formula M(=NR a )(OR b ) 2 (NMeEt), and wherein at least one of R b is independently selected from sBu, SPen. 10. The method of statement 8 or 9, wherein both R b are independently selected from sBu, SPen. 11. The method of any one of statements 1-10, wherein the metal oxide film resulting from step b1. has an average atomic composition of Nb x O y D z , O is oxygen, and D is a or more of any other atom, and where x = 0.3-0.4, y = 0.4-0.65, and z = 0.01-0.1. 12. The method of any one of statements 1-11, wherein the temperature of the chemical precursor vapor and/or the cathode or cathode active material is from 100°C to 300°C, more preferably 125°C °C to 275°C, even more preferably 125°C to 175°C. 13. The method of any one of clauses 1-12, wherein the metal oxide film has an average thickness of 0.02 nm to 10 nm, preferably 0.1 nm to 5 nm, most preferably 0.2 nm to 2nm. 14. The method of any one of statements 1-13, wherein the cathode active material, or the cathode active material in the cathode, is selected from the group consisting of: a) layered oxides, such as Ni-rich cathode materials like NMC (lithium nickel manganese cobalt oxide) and NCA (lithium nickel cobalt aluminum oxide); b) spinel cathode materials like LMO (lithium manganese oxide), LNMO (lithium nickel manganese oxide); c) Cathode materials of olivine structure, especially the olivine phosphate family, such as LCP (lithium cobalt phosphate), LFP (lithium iron phosphate), LNP (lithium nickel phosphate); and combinations thereof. 15. The method of any one of clauses 1-14, wherein one or more of steps a1. and b1. are performed from one to ten times, preferably one to three times, more preferably only once. 16. The method of any one of statements 1-15, wherein a) the temperature of the chemical precursor vapor and/or the cathode or cathode active material is from 100°C to 300°C, more preferably is 125°C to 275°C; b) the metal oxide film has an average thickness of 0.02 nm to 10 nm, preferably 0.1 nm to 5 nm, most preferably 0.2 to 2 nm; and c) The metal oxide film is at least 50% continuous, preferably 95% or more continuous, more preferably 98% or more continuous on the cathode or cathode active material surface.

本揭露提供了在電極上形成介面以保護其免受快速衰降的電化學行為的解決方案。電極介面在陰極活性材料結合到最終陰極之前或之後形成在該陰極活性材料上。使用揮發性化學先質屬M(=NR a)(OR b) 2(NR c 2)藉由化學氣相沈積(CVD)或原子層沈積(ALD)形成金屬氧化物層,其中: M選自Nb、Ta或V, R a選自iPr、tBu、t-Am R b各自獨立地選自Et、iPr、tBu、sBu、SPen,並且 R c各自獨立地選自Et或Me。 The present disclosure provides a solution for forming an interface on an electrode to protect it from rapidly degrading electrochemical behavior. The electrode interface is formed on the cathode active material either before or after its incorporation into the final cathode. The metal oxide layer is formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using a volatile chemical precursor M(=NR a )(OR b ) 2 (NR c 2 ), wherein: M is selected from Nb, Ta or V, R a is selected from iPr, tBu, t-Am, R b is each independently selected from Et, iPr, tBu, sBu, SPen, and R c is each independently selected from Et or Me.

該等揮發性化學先質同時、依次和/或藉由先質氣相的脈衝供應。該方法利用該屬的出乎意料的效率,在少於九個ALD沈積循環、較佳的是三個或更少的循環後實現了陰極性能的改善。這種相對少的所需ALD循環次數明顯減少了金屬(如Nb或Ta)的消耗和處理陰極或陰極活性材料所需的時間。The volatile chemical precursors are supplied simultaneously, sequentially and/or by pulses of the precursor gas phase. The method takes advantage of the unexpected efficiency of this genus to achieve improved cathode performance after less than nine ALD deposition cycles, preferably three or fewer cycles. This relatively small number of required ALD cycles significantly reduces the consumption of metals such as Nb or Ta and the time required to process the cathode or cathode active material.

如本文所使用的「金屬氧化物」和「金屬氧化物膜」意指具有一種或多種附加元素的過渡金屬氧化物膜,使得原子比為MxOyDz,其中M = 一種或多種過渡金屬的聚集部分,O係氧,並且D係其它元素如鋁、鋅、錫、碳、鋰和磷的聚集部分。通常,x在從10%至60%的範圍內,y在從10%至60%的範圍內,並且z在檢測不到的至10%的範圍內、較佳的是從0至5%。"Metal oxide" and "metal oxide film" as used herein mean a transition metal oxide film with one or more additional elements such that the atomic ratio is MxOyDz, where M = aggregated moiety of one or more transition metals, O is oxygen, and D is an aggregation moiety of other elements such as aluminum, zinc, tin, carbon, lithium, and phosphorus. Typically, x ranges from 10% to 60%, y ranges from 10% to 60%, and z ranges from undetectable to 10%, preferably from 0 to 5%.

較佳的是,M係形成一個或多個具有未完全填滿的d軌道的穩定離子的過渡金屬。特別地,M係Nb,但是可以視需要進一步包含Ti、Zr、Hf、V、Ta、Cr、Mo或W中的一種或多種。Preferably, M is a transition metal that forms one or more stable ions with incompletely filled d orbitals. In particular, M is Nb, but may further contain one or more of Ti, Zr, Hf, V, Ta, Cr, Mo or W as needed.

金屬氧化物膜藉由CVD或ALD法以在製造最終陰極的中間步驟之前、期間或在陰極活性材料結合到最終陰極之後將金屬氧化物層沈積到陰極活性材料上形成。金屬氧化物膜可以是完全塗覆陰極活性材料的連續膜,如在包含在陰極中之前藉由對粉末陰極活性材料進行粉末ALD。薄膜可以是不連續的,要麼係藉由受控沈積條件來限制膜生長,或係由於陰極活性材料被結合到陰極中,使得其表面僅有一部分暴露於CVD或ALD沈積製程。通常,金屬氧化物膜具有的平均厚度為0.125至10 nm、如0.125 nm至1.25 nm、較佳的是0.3 nm至4 nm。The metal oxide film is formed by CVD or ALD methods to deposit a metal oxide layer on the cathode active material before, during an intermediate step of manufacturing the final cathode, or after the cathode active material is bonded to the final cathode. The metal oxide film may be a continuous film that is fully coated with the cathode active material, such as by powder ALD on the powder cathode active material prior to inclusion in the cathode. The film can be discontinuous, either by controlled deposition conditions to limit film growth, or by incorporating the cathode active material into the cathode such that only a portion of its surface is exposed to the CVD or ALD deposition process. Generally, the metal oxide film has an average thickness of 0.125 to 10 nm, such as 0.125 nm to 1.25 nm, preferably 0.3 nm to 4 nm.

金屬氧化物沈積物可以沈積在電極上,如由以下構成的那些: ●  層狀結構氧化物,較佳的是「NMC」(鋰鎳錳鈷氧化物,如NMC811(Ni : Mn : Co = 8 : 1 : 1)、並且甚至是NMC955(Ni : Mn : Co = 9 : 0.5 : 0.5))、NCA(鋰鎳鈷鋁氧化物)或LNO(鋰鎳氧化物); ●  尖晶石,較佳的是LNMO(鋰鎳錳氧化物)或LMO(鋰錳氧化物); ●  橄欖石(鋰-金屬磷酸鹽,其中金屬可以是鐵、鈷、錳); ●  碳陽極形式,如石墨,摻雜或不摻雜; ●  矽陽極, ●  矽-碳陽極 ●  錫陽極, ●  矽-錫陽極,或 ●  鋰金屬。 Metal oxide deposits can be deposited on electrodes, such as those consisting of: ● Layered structure oxides, preferably "NMC" (lithium nickel manganese cobalt oxide, such as NMC811 (Ni : Mn : Co = 8 : 1 : 1), and even NMC955 (Ni : Mn : Co = 9 : 0.5 : 0.5)), NCA (lithium nickel cobalt aluminum oxide) or LNO (lithium nickel oxide); ● Spinel, preferably LNMO (lithium nickel manganese oxide) or LMO (lithium manganese oxide); ● olivine (lithium-metal phosphate, where the metal can be iron, cobalt, manganese); ● Carbon anode forms such as graphite, doped or undoped; ● silicon anode, ● Silicon-carbon anode ● tin anode, ● silicon-tin anode, or ● Lithium metal.

沈積可以在電極活性材料粉末、電極活性材料多孔材料、不同形狀的電極活性材料上、或在預先形成的電極(其中電極活性材料可能已經與導電碳和/或黏合劑締合並且可能已經被集流體箔支撐)中進行。Deposition can be on electrode active material powders, electrode active material porous materials, different shapes of electrode active materials, or on pre-formed electrodes (where the electrode active material may have been associated with conductive carbon and/or binders and may have been collected Fluid foil support).

鋰離子電池中的「 陰極」係指電化學池(電池)中的正極,其中在充電期間,陰極材料藉由電子和鋰離子的嵌入而發生還原。在放電期間,陰極材料藉由釋放電子和鋰離子而被氧化。鋰離子通過電解質在電化學池內從陰極移動到陽極,反之亦然,而電子通過外電路遷移。正極通常由正極活性材料(即鋰化的金屬層狀氧化物)和導電炭黑劑(乙炔黑Super C65、Super P)以及黏合劑(PVDF、CMC)構成 " Cathode " in a Lithium-ion battery refers to the positive electrode in an electrochemical cell (battery) where, during charging, the cathode material is reduced by intercalation of electrons and lithium ions. During discharge, the cathode material is oxidized by releasing electrons and lithium ions. Lithium ions move within the electrochemical cell through the electrolyte from the cathode to the anode and vice versa, while electrons migrate through the external circuit. The positive electrode is usually composed of positive active materials (ie, lithiated metal layered oxides), conductive carbon black agents (acetylene black Super C65, Super P), and binders (PVDF, CMC) .

陰極活性材料」係電池單元陰極(正極)組成中的主要要素。陰極材料係例如呈晶體結構如層狀結構的鈷、鎳和錳形成鋰嵌入其中的多金屬氧化物材料。陰極活性材料的實例係層狀鋰鎳錳鈷氧化物(LiNixMnyCozO2)、尖晶石鋰錳氧化物(LMn2O4)和橄欖石磷酸鐵鋰(LiFePO4)。 " Cathode active material " is the main element in the composition of the cathode (positive electrode) of a battery cell. The cathode material is, for example, cobalt, nickel and manganese in a crystal structure such as a layered structure forming a multimetal oxide material in which lithium is intercalated. Examples of cathode active materials are layered lithium nickel manganese cobalt oxide (LiNixMnyCozO2), spinel lithium manganese oxide (LMn2O4) and olivine lithium iron phosphate (LiFePO4).

關於表面上的塗層的「 連續性」意指該表面具有任何厚度的塗層材料的百分比。連續性通常藉由對所塗覆的材料成像並如藉由對表面進行網格映射量化表面是否被膜覆蓋的命題(例如以nm 2為單位)來光學評估。可以使用電子顯微鏡來使表面成像。覆蓋量可以用襯底表面面積的百分比來表示。膜上的針孔、缺口或其他不連續將意指連續性小於100%。 " Continuity " with respect to a coating on a surface means that the surface has the percentage of coating material of any thickness. Continuity is typically assessed optically by imaging the coated material and quantifying the proposition (eg in nm2 ) whether the surface is covered by a film, eg by grid mapping the surface. Electron microscopy can be used to image the surface. The amount of coverage can be expressed as a percentage of the surface area of the substrate. Pinholes, gaps or other discontinuities in the film would mean less than 100% continuity.

金屬氧化物膜藉由CVD或ALD法、使用揮發性化學先質屬M(=NR a)(OR b) 2(NR c 2)和視需要的一種或多種有助於最終膜形成的其它化學先質的蒸氣形成。可以基於它們對於形成用於其他應用的金屬氧化物的已知的適用性來選擇使用任何一種或多種額外的合適的先質。 Metal oxide films are formed by CVD or ALD methods using volatile chemical precursors of the species M(=NR a )(OR b ) 2 (NR c 2 ) and optionally one or more other chemistries that contribute to the final film formation. Precursor vapor formation. Any one or more additional suitable precursors may be selected for use based on their known suitability for forming metal oxides for other applications.

在優化的沈積條件下,寬範圍的視需要的先質可適合與Nau2一起使用,以形成金屬氧化物。Under optimized deposition conditions, a wide range of optional precursors are suitable for use with Nau2 to form metal oxides.

較佳的IVA族金屬先質有: ●  M(OR) 4,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(OMe) 4、M(OiPr) 4、M(OtBu) 4、M(OsBu) 4●  M(NR 1R 2) 4,其中每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(NMe 2) 4、M(NMeEt) 4、M(NEt 2) 4●  ML(NR 1R 2) 3,其中L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基,並且每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(NMe 2) 3、M(MeCp)(NMe 2) 3、M(EtCp)(NEt 2) 3、MCp*(NMe 2) 3、MCp(NMe 2) 3、M(MeCp)(NMe 2) 3、M(EtCp)(NEt 2) 3、MCp*(NMe 2) 3、M(iPrCp)(NMe 2) 3、M(sBuCp)(NMe 2) 3、M(tBuCp)(NMe 2) 3、N(secPenCp)(NMe 2) 3、M(nPrCp)(NMe 2) 3●  ML(OR) 3,其中L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基,並且每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(OiPr) 3、M(MeCp)(OiPr) 3、M(EtCp)(OEt) 3、MCp*(OEt) 3、M(iPrCp)(NMe 2) 3、M(sBuCp)(NMe 2) 3、M(tBuCp)(NMe 2) 3、N(secPenCp)(NMe,) 3、M(nPrCp)(NMe 2) 3 Preferred Group IVA metal precursors are: ● M(OR) 4 , where each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably M(OMe) 4 , M( OiPr) 4 , M(OtBu) 4 , M(OsBu) 4 ● M(NR 1 R 2 ) 4 , wherein each R 1 and R 2 is independently a C1-C6 carbon chain (straight or branched chain), most Preferred are M(NMe 2 ) 4 , M(NMeEt) 4 , M(NEt 2 ) 4 ● ML(NR 1 R 2 ) 3 , where L represents unsubstituted or substituted allyl, cyclopentadiene Base, pentadienyl, hexadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, and each R 1 and R 2 are independently C1-C6 carbon chains (straight chain or branched chain), most preferably MCp(NMe 2 ) 3 , M(MeCp)(NMe 2 ) 3 , M(EtCp)(NEt 2 ) 3 , MCp*(NMe 2 ) 3 , MCp(NMe 2 ) 3 , M(MeCp)(NMe 2 ) 3 , M(EtCp)(NEt 2 ) 3 , MCp*(NMe 2 ) 3 , M(iPrCp)(NMe 2 ) 3 , M(sBuCp)(NMe 2 ) 3 , M (tBuCp)(NMe 2 ) 3 , N(secPenCp)(NMe 2 ) 3 , M(nPrCp)(NMe 2 ) 3 ● ML(OR) 3 , where L represents unsubstituted or substituted allyl, cyclopentyl Dienyl, pentadienyl, hexadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, and each R is independently a C1-C6 carbon chain (straight or branched chain ), the most preferred are MCp(OiPr) 3 , M(MeCp)(OiPr) 3 , M(EtCp)(OEt) 3 , MCp*(OEt) 3 , M(iPrCp)(NMe 2 ) 3 , M( sBuCp)(NMe 2 ) 3 , M(tBuCp)(NMe 2 ) 3 , N(secPenCp)(NMe,) 3 , M(nPrCp)(NMe 2 ) 3

較佳的VA族金屬先質有: ●  M(OR) 5,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(OEt)5、M(OiPr)5、M(OtBu)5、M(OsBu)5 ●  M(NR 1R 2) 5,其中每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(NMe 2) 5、M(NMeEt) 5、M(NEt 2) 5●  ML(NR 1R 2) x,其中x = 3或4,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、或N-R形式的醯亞胺,並且每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(NMe 2) 3、M(MeCp)(NMe 2) 3、M(EtCp)(NEt 2) 3、MCp*(NMe 2) 3、M(=NtBu)(NMe 2) 3、M(=NtAm)(NMe 2) 3、M(=NtBu)(NEt 2) 3、M(=NtBu)(NEtMe) 3、M(=NiPr)(NEtMe) 3。 ●  M(=NR 1)L(NR 2R 3) x,其中x = 1或2,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基,並且每個R 1和R 2以及R 3獨立地是C1-C6碳鏈,最較佳的是MCp(=NtBu)(NMe 2) 2、M(MeCp)(N=tBu)(NMe 2) 2、M(EtCp)(N=tBu)(NMe 2) 2、MCp*(=NtBu)(NMe 2) 2、MCp(=NtBu)(NEtMe) 2、M(MeCp)(N=tBu)(NEtMe) 2、M(EtCp)(N=tBu)(NEtMe) 2。 ●  ML(OR) x,其中x = 3或4,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、或N-R形式的醯亞胺,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(OiPr) 3、M(MeCp)(OiPr) 3、M(EtCp)(OEt) 3、MCp*(OEt) 3M(=NtBu)(OiPr) 3、M(=NtAm)(OiPr) 3, ●  ML(OR) x(NR 1R 2) y,其中x和y獨立地等於1或2,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、或N-R形式的醯亞胺,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(OiPr) 2(NMe 2)、M(MeCp)(OiPr) 2(NMe 2)、M(EtCp)(OEt) 2(NMe 2)、M(=NtBu)(OiPr) 2(NMe 2)、M(=NtBu)(OiPr)(NMe 2) 2、M(=NtBu)(OiPr) 2(NMe 2)、M(=NtBu)(OiPr) 2(NEtMe)、M(=NtBu)(OiPr) 2(NEt 2)、M(=NtBu)(OEt) 2(NMe 2)、M(=NtBu)(OEt) 2(NEtMe)、M(=NtBu)(OEt) 2(NEt 2)、M(=NiPr)(OiPr) 2(NMe 2)、M(=NiPr)(OiPr) 2(NMe 2) 2、M(=NiPr)(OiPr) 2(NEtMe)、M(=NiPr)(OiPr) 2(NEt 2)、M(=NiPr)(OEt) 2(NMe 2)、M(=NiPr)(OEt) 2(NEtMe)、或M(=NiPr)(OEt) 2(NEt 2)。 Preferred VA group metal precursors are: ● M(OR) 5 , where each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably M(OEt)5, M( OiPr)5, M(OtBu)5, M(OsBu)5 ● M(NR 1 R 2 ) 5 , wherein each R 1 and R 2 is independently a C1-C6 carbon chain (straight or branched chain), most Preferred are M(NMe 2 ) 5 , M(NMeEt) 5 , M(NEt 2 ) 5 ● ML(NR 1 R 2 ) x , where x = 3 or 4, and L represents unsubstituted or substituted allyl base, cyclopentadienyl, pentadienyl, hexadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, or imide in the form of NR, and each R and R 2 is independently a C1-C6 carbon chain (straight chain or branched chain), most preferably MCp(NMe 2 ) 3 , M(MeCp)(NMe 2 ) 3 , M(EtCp)(NEt 2 ) 3 , MCp*(NMe 2 ) 3 , M(=NtBu)(NMe 2 ) 3 , M(=NtAm)(NMe 2 ) 3 , M(=NtBu)(NEt 2 ) 3 , M(=NtBu)(NEtMe) 3 , M(=NiPr)(NEtMe) 3 . ● M(=NR 1 )L(NR 2 R 3 ) x , where x = 1 or 2, L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl, hexadienyl , cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, and each R 1 and R 2 and R 3 are independently C1-C6 carbon chains, most preferably MCp(=NtBu)( NMe 2 ) 2 , M(MeCp)(N=tBu)(NMe 2 ) 2 , M(EtCp)(N=tBu)(NMe 2 ) 2 , MCp*(=NtBu)(NMe 2 ) 2 , MCp(= NtBu)(NEtMe) 2 , M(MeCp)(N=tBu)(NEtMe) 2 , M(EtCp)(N=tBu)(NEtMe) 2 . ● ML(OR) x , where x = 3 or 4, L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl, hexadienyl, cyclohexadienyl, cycloheptadienyl Dienyl, cyclooctadienyl, or imide in the form of NR, wherein each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably MCp(OiPr) 3 , M (MeCp)(OiPr) 3 , M(EtCp)(OEt) 3 , MCp*(OEt) 3 M(=NtBu)(OiPr) 3 , M(=NtAm)(OiPr) 3 , ● ML(OR) x ( NR 1 R 2 ) y , wherein x and y are independently equal to 1 or 2, and L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl, hexadienyl, cyclohexadiene group, cycloheptadienyl, cyclooctadienyl, or imide in the form of NR, wherein each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably MCp (OiPr ) 2 (NMe 2 ), M(MeCp)(OiPr) 2 (NMe 2 ), M(EtCp)(OEt) 2 (NMe 2 ), M(=NtBu)(OiPr) 2 (NMe 2 ), M(= NtBu)(OiPr)(NMe 2 ) 2 , M(=NtBu)(OiPr) 2 (NMe 2 ), M(=NtBu)(OiPr) 2 (NEtMe), M(=NtBu)(OiPr) 2 (NEt 2 ), M(=NtBu)(OEt) 2 (NMe 2 ), M(=NtBu)(OEt) 2 (NEtMe), M(=NtBu)(OEt) 2 (NEt 2 ), M(=NiPr)(OiPr ) 2 (NMe 2 ), M(=NiPr)(OiPr) 2 (NMe 2 ) 2 , M(=NiPr)(OiPr) 2 (NEtMe), M(=NiPr)(OiPr) 2 (NEt 2 ), M (=NiPr)(OEt) 2 (NMe 2 ), M(=NiPr)(OEt) 2 (NEtMe), or M(=NiPr)(OEt) 2 (NEt 2 ).

較佳的VIA族金屬先質有: ●  M(OR) 6,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(OEt)5、M(OiPr)5、M(OtBu)5、M(OsBu)5 ●  M(NR 1R 2) 6,其中每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(NMe 2) 6、M(NMeEt) 6、M(NEt 2) 6●  M(NR 1R 2) xL y,其中x和y獨立地等於1至4,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、或N-R形式的醯亞胺,並且每個R 1和R 2獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(NMe 2) 3、M(MeCp)(NMe 2) 3、M(EtCp)(NEt 2) 3、MCp*(NMe 2) 3、M(=NtBu) 2(NMe 2) 2、M(=NtAm) 2(NMe 2) 2、M(=NtBu)(NEt 2) 2●  M(OR) x(NR 1R 2) yL zML,其中x、y和z獨立地等於0至4,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、或N-R形式的醯亞胺,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是MCp(OiPr) 3、M(MeCp)(OiPr) 3、M(EtCp)(OEt) 3、M(=NtBu) 2(OiPr) 2、M(=NtAm) 2(OiPr) 2、M(=NtBu) 2(OtBu) 2、M(=NiPr) 2(OtBu) 2、M(=NtBu) 2(OiPr) 2、M(=NiPr) 2(OiPr) 2。 ●  M(=O)xLy,其中x、y和z獨立地等於0至4,L表示未取代的或取代的烯丙基、環戊二烯基、戊二烯基、己二烯基、環己二烯基、環庚二烯基、環辛二烯基、醯胺或N-R形式的醯亞胺,其中每個R獨立地是C1-C6碳鏈(直鏈或支鏈),最較佳的是M(=O) 2(OtBu) 2、M(=O) 2(OiPr) 2、M(=O) 2(OsecBu) 2、M(=O) 2(OsecPen) 2、M(=O) 2(NMe 2) 2、M(=O) 2(NEt 2) 2、M(=O) 2(NiPr 2) 2、M(=O) 2(NnPr 2) 2、M(=O) 2(NEtMe) 2、M(=O) 2(NPen 2) 2Preferred VIA group metal precursors are: ● M(OR) 6 , where each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably M(OEt)5, M( OiPr)5, M(OtBu)5, M(OsBu)5 M(NR 1 R 2 ) 6 , wherein each R 1 and R 2 is independently a C1-C6 carbon chain (straight or branched chain), most Preferred are M(NMe 2 ) 6 , M(NMeEt) 6 , M(NEt 2 ) 6 ● M(NR 1 R 2 ) x L y , wherein x and y are independently equal to 1 to 4, and L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl, hexadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, or imides in the form of NR, And each R 1 and R 2 is independently a C1-C6 carbon chain (straight chain or branched chain), most preferably MCp(NMe 2 ) 3 , M(MeCp)(NMe 2 ) 3 , M(EtCp) (NEt 2 ) 3 , MCp*(NMe 2 ) 3 , M(=NtBu) 2 (NMe 2 ) 2 , M(=NtAm) 2 (NMe 2 ) 2 , M(=NtBu)(NEt 2 ) 2 ● M (OR) x (NR 1 R 2 ) y L z ML, where x, y and z are independently equal to 0 to 4, and L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl , hexadienyl, cyclohexadienyl, cycloheptadienyl, cyclooctadienyl, or imides in the form of NR, wherein each R is independently a C1-C6 carbon chain (straight or branched chain ), the most preferred are MCp(OiPr) 3 , M(MeCp)(OiPr) 3 , M(EtCp)(OEt) 3 , M(=NtBu) 2 (OiPr) 2 , M(=NtAm) 2 (OiPr ) 2 , M(=NtBu) 2 (OtBu) 2 , M(=NiPr) 2 (OtBu) 2 , M(=NtBu) 2 (OiPr) 2 , M(=NiPr) 2 (OiPr) 2 . ● M(=O)xLy, where x, y and z are independently equal to 0 to 4, and L represents unsubstituted or substituted allyl, cyclopentadienyl, pentadienyl, hexadienyl, cyclo Hexadienyl, cycloheptadienyl, cyclooctadienyl, amide or imide in the form of NR, wherein each R is independently a C1-C6 carbon chain (straight or branched chain), most preferably M(=O) 2 (OtBu) 2 , M(=O) 2 (OiPr) 2 , M(=O) 2 (OsecBu) 2 , M(=O) 2 (OsecPen) 2 , M(=O ) 2 (NMe 2 ) 2 , M(=O) 2 (NEt 2 ) 2 , M(=O) 2 (NiPr 2 ) 2 , M(=O) 2 (NnPr 2 ) 2 , M(=O) 2 (NEtMe) 2 , M(=O) 2 (NPen 2 ) 2 .

金屬氧化物膜可以使用揮發性化學先質屬的一個成員作為單一先質或與一種或多種其它先質組合來形成,在任一種情況下,視需要與氧化共反應物(如果需要或希望的話)組合來形成。熟悉該項技術者能夠從本領域已知的那些中選擇合適的一種或多種額外的先質和共反應物,以在優化的沈積條件下使用時產生具有所希望的組成的金屬氧化物膜,從而「調整」金屬氧化物的組成。針對各種先質選項的示例性指導包括: ●  氧可以來自O源,如O 2、O 3、H 2O、H 2O 2、NO、NO2、N2O或NOx ●  氧可以來自摻雜劑源,如含氧矽先質,含氧錫先質,磷酸酯如三甲基磷酸酯、胺基磷酸二乙酯,或硫酸酯。 ●  氮可以來自N源,如N 2、NH 3、N 2H 4、含N 2H4的混合物、烷基肼、NO、NO2、N2O、或NOx ●  氮可以來自摻雜劑源,如含氮矽先質、含氮錫先質、或磷酸酯如胺基磷酸二乙酯。 ●  碳可以來自C源,如烴,含碳矽先質,含碳錫先質,含碳硼先質,含碳鋁先質,含碳磷先質,磷酸酯如三甲基磷酸酯、胺基磷酸二乙酯,或硫酸酯。 ●  矽可以來自Si源,如矽烷或含矽的有機金屬先質。 ●  錫可以來自Sn源,如錫烷或含錫的有機金屬先質。 ●  鋁可以來自Al源,如鋁烷(包括烷基鋁烷)或含鋁的有機金屬先質。 ●  磷可以來自膦,包括有機膦或磷酸酯,如三甲基磷酸酯或胺基磷酸二乙酯。 ●  硫可以來自S源,如硫、S8、H2S、H2S2、SO2、有機亞硫酸鹽、硫酸鹽、或含硫的有機金屬先質。 ●  第一行過渡金屬可以來自已知的有機金屬化合物或其他適用於氣相沈積的先質。 實例 實例 1-5 在250°C下使用Nau2/H 2O在NMC622粉末上沈積的NbO薄膜的沈積和電化學性能 沈積 / 膜形成的實驗條件: Metal oxide films can be formed using a member of the genus of volatile chemical precursors as a single precursor or in combination with one or more other precursors, in either case, optionally with an oxidizing co-reactant (if needed or desired) combination to form. Those skilled in the art are able to select suitable one or more additional precursors and co-reactants from those known in the art to produce a metal oxide film of the desired composition when used under optimized deposition conditions, Thus "tuning" the composition of the metal oxide. Exemplary guidance for various precursor options include: Oxygen can come from an O source such as O2 , O3 , H2O , H2O2 , NO, NO2, N2O, or NOx Oxygen can come from a dopant source, Such as oxygen-containing silicon precursors, oxygen-containing tin precursors, phosphates such as trimethylphosphate, diethylamidophosphate, or sulfate. ● Nitrogen can come from N sources such as N 2 , NH 3 , N 2 H 4 , mixtures containing N 2 H4 , alkylhydrazines, NO, NO2, N2O, or NOx ● Nitrogen can come from dopant sources such as nitrogen-containing Silicon precursors, nitrogen-containing tin precursors, or phosphates such as diethyl phosphoamidate. ● Carbon can come from C sources, such as hydrocarbons, carbon-silicon precursors, carbon-tin precursors, carbon-boron precursors, carbon-aluminum precursors, carbon-phosphorus precursors, phosphates such as trimethylphosphate, amines diethyl phosphate, or sulfate ester. ● Silicon can come from Si sources such as silanes or silicon-containing organometallic precursors. ● Tin can come from Sn sources such as stannanes or tin-containing organometallic precursors. ● Aluminum can come from Al sources such as alanes (including alkylalanes) or aluminum-containing organometallic precursors. • Phosphorus can be derived from phosphines, including organic phosphines, or phosphates such as trimethylphosphate or diethylamidophosphate. ● Sulfur can come from S sources, such as sulfur, S8, H2S, H2S2, SO2, organic sulfites, sulfates, or sulfur-containing organometallic precursors. ● The first row of transition metals can be derived from known organometallic compounds or other precursors suitable for vapor deposition. Examples Examples 1-5 : Deposition and electrochemical properties of NbO thin films deposited on NMC622 powder using Nau2/ H2O at 250°C Experimental conditions for deposition / film formation:

在NMC622電極或NMC粉末上的循環次數典型地限制為20個ALD循環,對應於約1.5至4埃、不足以進行膜合成的厚度。因此,此類表徵在空白矽晶圓上的300個ALD循環後對用O 3沈積的膜進行。藉由X射線光電子光譜儀(XPS),相應的生長速率和膜組成為: ●  GPC 約2.96 Å。Nb:約38.7%,O:約54.8%,C:約3%,N:約2%,Si 約1.4% ●  該等膜的折射率係2.38。 The number of cycles on NMC622 electrodes or NMC powders is typically limited to 20 ALD cycles, corresponding to about 1.5 to 4 Angstroms, insufficient thickness for film synthesis. Therefore, such characterizations were performed on films deposited with O3 after 300 ALD cycles on blank silicon wafers. By X-ray photoelectron spectroscopy (XPS), the corresponding growth rate and film composition are: ● GPC about 2.96 Å. Nb: about 38.7%, O: about 54.8%, C: about 3%, N: about 2%, Si about 1.4% ● The refractive index of these films is 2.38.

沈積在以下實驗條件下使用流化床反應器在NMC622粉末上進行: 用於ALD的ALD條件 反應器設定溫度                  250°C 反應器壓力                          約40托 循環次數                              1/2/3/9個循環 先質和氣體 Nautilus2小罐溫度              100°C Nautilus2小罐壓力              50托 在Nautilus2中的N2鼓泡      20 sccm O3 FR                                   20 sccm N2推進/吹掃                        約120 sccm 脈衝順序 Nautilus2(2 sccm)           900秒 吹掃                                      1040秒 H2O                                      180秒 吹掃                                      1040秒 負載襯底 5 g的NMC622粉末 Deposition was performed on NMC622 powder using a fluidized bed reactor under the following experimental conditions: ALD Conditions for ALD Reactor set temperature 250°C Reactor pressure About 40 Torr Number of Cycles 1/2/3/9 cycles Precursors and Gases Nautilus2 small tank temperature 100°C Nautilus2 small tank pressure 50 torr N2 bubbling 20 sccm in Nautilus2 O3 FR 20 sccm N2 push/purge Approx. 120 sccm pulse sequence Nautilus2 (2 sccm) 900 seconds Purge 1040 seconds H2O 180 seconds Purge 1040 seconds load substrate 5 g of NMC622 powder

該等實例中的化學先質係Nb(=NtBu)(NEt 2)(O- tBu) 2(「Nau2」)。 電化學表徵: 實驗條件: 電池單元條件:•  陰極材料:NMC622 o 約5 mg/cm 2載荷量 o 不進行壓延 •  塗層材料:Nb 2O 5o 先質:Nautilus2 o 共反應物:O 3或H 2O o 沈積 T= 250°C o 粉末反應器P < 40托 o 所塗覆的粉末量:5 g o 反應器填充:x% •  膜:Celgate 2400 •  純電解質:1 M LiPF 6在EC : EMC(1 : 1 wt)中 •  陽極材料:Li金屬 測量條件:•  溫度:26°C •  在0.2C下3個預循環,然後在1C下 •  電壓:3.0-4.3 V,CC The chemical precursor in these examples is Nb(=NtBu)(NEt 2 )(O− tBu ) 2 (“Nau2”). Electrochemical Characterization: Experimental Conditions: Cell Conditions: • Cathode Material: NMC622 o About 5 mg/cm 2 Loading o No Calendering • Coating Material: Nb 2 O 5 o Precursor: Nautilus2 o Co-Reactant: O 3 or H 2 O o Deposition T = 250°C o Powder reactor P < 40 Torr o Amount of powder coated: 5 g o Reactor filling: x% Membrane: Celgate 2400 Pure electrolyte: 1 M LiPF 6 in EC : In EMC (1 : 1 wt) • Anode material: Li metal Measuring conditions: • Temperature: 26°C • 3 pre-cycles at 0.2C, then at 1C • Voltage: 3.0-4.3 V, CC

如在圖1中看出,作為氧化鈮沈積的鈮的量從一個ALD循環至2-3個ALD循環而增加,並且在九個ALD循環的情況下明顯增加。該等氧化鈮沈積物的效果如圖2和3所示。與未經塗覆的對照相比,電池性能顯著增強。然而,非常出乎意料的是,單個ALD循環產生了最好的結果,但2-3個循環的結果接近。與對照相比,9個ALD循環也確實改善了性能,但不如1-3個循環。通常,為了獲得最優效益,陰極活性材料的ALD塗層需要5-20個ALD循環。Nau2出人意料地實現了少的ALD循環過程,其需要少得多的時間以及低得多的每單位的陰極活性材料的先質量。這將在工業使用中產生顯著的成本節約。As seen in Figure 1, the amount of niobium deposited as niobium oxide increased from one ALD cycle to 2-3 ALD cycles, and increased significantly in the case of nine ALD cycles. The effect of these niobium oxide deposits is shown in Figures 2 and 3 . The battery performance was significantly enhanced compared to the uncoated control. However, very unexpectedly, a single ALD cycle produced the best results, but 2-3 cycles were close. 9 ALD cycles also did improve performance compared to the control, but not as much as 1-3 cycles. Typically, ALD coating of cathode active materials requires 5-20 ALD cycles for optimal benefit. Nau2 surprisingly achieves fewer ALD cycle processes that require much less time and a much lower precursor mass per unit of cathode active material. This would yield significant cost savings in industrial use.

用臭氧代替水,使用相同的條件和測試進行ALD。臭氧的結果與水的相同,表明少循環次數沈積基本上不受所使用的氧化劑的影響。ALD was performed using the same conditions and tests using ozone instead of water. The results for ozone were the same as for water, indicating that low cycle deposition was largely unaffected by the oxidant used.

對Ta類似物Ta(=NtBu)(NEt 2)(O- tBu) 2測量了類似的TGA和DTA特性。用O 3在矽晶圓上200個循環的沈積同樣產生與如Nb(=NtBu)(NEt 2)(O- tBu) 2所看到的類似的結果。在275°C下,生長速率為4.69埃/個循環,組成為Ta:32.8%,O:56.5%,以及C:8.1%。基於該等結果,預期對於陰極或陰極材料塗層的1-9個ALD循環將在電極性能方面產生類似於以上針對Nau2所展示的益處。 Similar TGA and DTA properties were measured for the Ta analog Ta(=NtBu)(NEt 2 )(O- tBu ) 2 . Deposition with 03 on silicon wafers for 200 cycles also produced similar results as seen for Nb(=NtBu)( NEt2 )(O- tBu ) 2 . At 275°C, the growth rate was 4.69 Å/cycle, and the composition was Ta: 32.8%, O: 56.5%, and C: 8.1%. Based on these results, it is expected that 1-9 ALD cycles for the cathode or cathode material coating will yield similar benefits in electrode performance as demonstrated above for Nau2.

雖然已經結合本發明的具體實施方式描述了本發明,但顯然,鑒於前述說明,許多替代方案、修改、和變化對於熟悉該項技術者將是清楚的。因此,旨在包含落入所附請求項的精神和廣泛範圍內的所有此類替代方案、修改和變化。本發明可以適合地包括所揭露的要素、由所揭露的要素組成或基本上由所揭露的要素組成,並且可以在不存在未揭露的要素下實施。此外,如果存在涉及順序的語言,諸如第一和第二,應在示例性意義上、而不是在限制性意義上進行理解。例如,熟悉該項技術者可以認識到,可以將某些步驟組合成單一步驟。While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in view of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. The invention may suitably comprise, consist of, or consist essentially of the disclosed elements, and may be practiced in the absence of non-disclosed elements. Also, language referring to order, such as first and second, if present, should be understood in an exemplary sense, not a limiting sense. For example, those skilled in the art will recognize that certain steps may be combined into a single step.

單數形式「一個/種(a/an)」和「該(the)」包括複數指示物,除非上下文另外清楚地指出。The singular forms "a/an" and "the" include plural referents unless the context clearly dictates otherwise.

申請專利範圍中的「包括/包含(comprising)」係開放式過渡術語,其係指隨後確定的請求項要素係無排他性的清單,即,其他任何事物可以附加地被包括並且保持在「包括/包含」的範圍內。「包括」在本文被定義為必要地涵蓋更受限制的過渡術語「基本上由……組成」和「由……組成」;因此「包括/包含」可以被「基本上由……組成」或「由……組成」代替並且保持在「包括/包含」的清楚地限定的範圍內。"comprising" in the claims is an open transitional term that refers to a non-exclusive list of subsequently determined claim elements, i.e., anything else may be additionally included and kept within the scope of "comprising/ Include" range. "Comprising" is defined herein to necessarily cover the more restrictive transitional terms "consisting essentially of" and "consisting of"; thus "comprising/comprising" may be replaced by "consisting essentially of" or "Consisting of" replaces and remains within the expressly defined scope of "comprising/comprising".

請求項中的「提供」被定義為係指供給、供應、使可獲得或製備某物。該步驟可以相反地由任何行動者在請求項中沒有明確的語言的情況下執行。"Provide" in the claims is defined to mean furnishing, supplying, making available or preparing something. This step may conversely be performed by any actor in the absence of explicit language in the claim.

視需要的或視需要意指隨後描述的事件或情況可能發生或可能不發生。本說明書包括其中事件或情況發生的實例以及其中事件或情況不發生的實例。Optional or optional means that the subsequently described event or circumstance may or may not occur. The specification includes instances where the event or circumstance occurs and instances where the event or circumstance does not occur.

在本文中範圍可以表述為從約一個具體值和/或到約另一個具體值。當表述此種範圍時,應理解的是另一個實施方式係從該一個具體值和/或到該另一個具體值、連同在所述範圍內的所有組合。Ranges can be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is understood that another embodiment is from the one particular value and/or to the other particular value, as well as all combinations within the stated range.

本文中確定的所有參考文獻各自特此藉由引用以其全文併入本申請;同樣針對每個引用的具體資訊。All references identified herein are each hereby incorporated by reference into this application in their entirety; likewise for specific information for each reference.

none

為了進一步理解本發明的本質和目的,應結合附圖來參考以下詳細說明,在附圖中類似的元件被賦予相同或類似的附圖標記,並且在附圖中: [圖1]示出了使用粉末ALD(PALD)反應器、使用Nb(=NtBu)(NEt 2)(O- tBu) 2(「Nau2」)/H 2O在NMC622粉末上的NbO薄膜沈積的光電子能譜結果; [圖2]示出了在粉末ALD(PALD)反應器中使用Nb(=NtBu)(NEt 2)(O- tBu) 2/H 2O在NMC622粉末上沈積的NbO薄膜的歸一化C倍率性能(歸一化至它們在2C下的原始放電容量); [圖3]示出了在粉末ALD(PALD)反應器中使用Nb(=NtBu)(NEt 2)(O- tBu) 2/H 2O在NMC622粉末上沈積的NbO薄膜的長期循環性能;以及 [圖4]示出了使用下文實例中描述的AL條件在3次ALD循環後,塗覆有NbO層的NMC 811粉末的電子顯微照片。該層由箭頭標識,其中一部分還用橫條括起來。視覺上證實該層係連續且保形的,其中厚度大約為1.5 nm-2 nm。該層的保形覆蓋和Nb含量藉由能量色散X射線光譜圖(未示出)來進一步證實。 In order to further understand the nature and purpose of the present invention, reference should be made to the following detailed description in conjunction with the accompanying drawings, in which similar elements are given the same or similar reference numerals, and in the accompanying drawings: [Fig. 1] shows Photoelectron spectroscopy results of NbO film deposition on NMC622 powder using Nb(=NtBu)(NEt 2 )(O- t Bu) 2 (“Nau2”)/H 2 O using a powder ALD (PALD) reactor; [ Figure 2] Shows the normalized C-rates of NbO thin films deposited on NMC622 powder using Nb(=NtBu)( NEt2 )(O- tBu ) 2 / H2O in a powder ALD (PALD) reactor performance (normalized to their original discharge capacity at 2C); [Fig. 3] shows the use of Nb(=NtBu)(NEt 2 )(O- t Bu) 2 / Long-term cycling performance of NbO thin films deposited by H2O on NMC622 powder; and [Fig. micrograph. The layer is identified by an arrow, part of which is also enclosed by a horizontal bar. The layer was visually confirmed to be continuous and conformal, with a thickness of approximately 1.5 nm-2 nm. The conformal coverage and Nb content of this layer was further confirmed by energy dispersive X-ray spectroscopy (not shown).

none

Claims (17)

一種用金屬氧化物膜塗覆陰極或陰極活性材料之方法,該方法包括以下步驟: a1. 將該陰極或陰極活性材料暴露於包含具有式M(=NR a)(OR b) 2(NR c 2)的先質的化學先質蒸氣和作為氧化共反應物的氧源,和 b1. 將金屬氧化物膜沈積到該陰極或陰極活性材料上, 其中: M選自Nb、Ta或V, R a選自iPr、tBu、t-Am R b各自獨立地選自Et、iPr、tBu、sBu、SPen,並且 R c各自獨立地選自Et或Me。 A method of coating a cathode or cathode active material with a metal oxide film, the method comprising the steps of: a1. exposing the cathode or cathode active material to a compound having the formula M(=NR a )(OR b ) 2 (NR c 2 ) a precursor chemical precursor vapor and an oxygen source as an oxidizing co-reactant, and b1. depositing a metal oxide film onto the cathode or cathode active material, wherein: M is selected from Nb, Ta or V, R a is selected from iPr, tBu, t-Am, R b is each independently selected from Et, iPr, tBu, sBu, SPen, and R c is each independently selected from Et or Me. 如請求項1所述之方法,其中,該先質具有式M(=NR a)(OR b) 2(NMeEt)。 The method as claimed in claim 1, wherein the precursor has the formula M(=NR a )(OR b ) 2 (NMeEt). 如請求項1所述之方法,其中,R b中的至少一個獨立地選自sBu、SPen。 The method according to claim 1, wherein at least one of R b is independently selected from sBu and SPen. 如請求項1所述之方法,其中,該先質具有式M(=NR a)(OR b) 2(NMeEt),並且其中R b中的至少一個獨立地選自sBu、SPen。 The method of claim 1, wherein the precursor has the formula M(=NR a )(OR b ) 2 (NMeEt), and wherein at least one of R b is independently selected from sBu, SPen. 如請求項3或4所述之方法,其中,兩個R b都獨立地選自sBu、SPen。 The method according to claim 3 or 4, wherein both R b are independently selected from sBu and SPen. 如請求項1所述之方法,其中,該先質係Nb(=NtBu)(NEt 2)(O- tBu) 2、Nb(=NtBu)(NEt 2) 2(O- tBu)、Ta(=NtBu)(NEt 2)(O- tBu) 2、Ta(=NtBu)(NEt 2) 2(O- tBu)、及其混合物。 The method as described in Claim 1, wherein the precursors are Nb(=NtBu)(NEt 2 )(O- t Bu) 2 , Nb(=NtBu)(NEt 2 ) 2 (O- t Bu), Ta (=NtBu)(NEt 2 )(O- t Bu) 2 , Ta(=NtBu)(NEt 2 ) 2 (O- t Bu), and mixtures thereof. 如請求項1所述之方法,其中,將該陰極或陰極活性材料暴露於化學先質蒸氣的該步驟a1.與將該陰極或陰極活性材料暴露於共反應物的該步驟a2.依次進行。The method of claim 1, wherein the step a1. of exposing the cathode or cathode active material to chemical precursor vapor is performed sequentially with the step a2. of exposing the cathode or cathode active material to co-reactants. 如請求項2所述之方法,該方法進一步包括在將該陰極或陰極活性材料暴露於共反應物的步驟a2.之前的吹掃該化學先質蒸氣的步驟a1i.。The method of claim 2, further comprising the step a1i. of purging the chemical precursor vapor prior to the step a2. of exposing the cathode or cathode active material to co-reactants. 如請求項3所述之方法,其中,將該金屬氧化物膜沈積到該陰極或陰極活性材料上的該步驟b1.包括原子層沈積步驟。The method of claim 3, wherein the step b1 of depositing the metal oxide film onto the cathode or cathode active material comprises an atomic layer deposition step. 如請求項3所述之方法,其中,將該金屬氧化物膜沈積到該陰極或陰極活性材料上的該步驟b1.包括化學氣相沈積步驟。The method as claimed in claim 3, wherein the step bl. of depositing the metal oxide film onto the cathode or cathode active material comprises a chemical vapor deposition step. 如請求項1-5中任一項所述之方法,其中,該共反應物係氧源,如O2、O3、H2O、H2O2、NO、NO2、N2O或NOx;含氧矽先質,含氧錫先質,磷酸酯如三甲基磷酸酯、胺基磷酸二乙酯,或硫酸酯。The method as described in any one of claims 1-5, wherein the co-reactant is an oxygen source, such as O2, O3, H2O, H2O2, NO, NO2, N2O or NOx; oxygen-containing silicon precursors, oxygen-containing Tin precursors, phosphates such as trimethylphosphate, diethylphosphonoamidate, or sulfates. 如請求項1-11中任一項所述之方法,其中,由步驟b1.產生的該金屬氧化物膜具有的平均原子組成為Nb xO yD z,O係氧,並且D係一個或多個任何其他原子,並且其中x = 0.3-0.4,y = 0.4-0.65,並且z = 0.01-0.1。 The method according to any one of claims 1-11, wherein the metal oxide film produced by step b1. has an average atomic composition of Nb x O y D z , O is oxygen, and D is one or Multiples of any other atom, and where x = 0.3-0.4, y = 0.4-0.65, and z = 0.01-0.1. 如請求項1-12中任一項所述之方法,其中,該化學先質蒸氣和/或該陰極或陰極活性材料的溫度為從100°C至300°C、更較佳的是125°C至275°C、甚至更較佳的是125°C至175°C。The method according to any one of claims 1-12, wherein the temperature of the chemical precursor vapor and/or the cathode or cathode active material is from 100°C to 300°C, more preferably 125°C C to 275°C, even more preferably 125°C to 175°C. 如請求項1-13中任一項所述之方法,其中,該金屬氧化物膜具有的平均厚度為0.02 nm至10 nm、較佳的是0.1 nm至5 nm、最較佳的是0.2至2 nm。The method according to any one of claims 1-13, wherein the metal oxide film has an average thickness of 0.02 nm to 10 nm, preferably 0.1 nm to 5 nm, and most preferably 0.2 to 5 nm. 2 nm. 如請求項1-14中任一項所述之方法,其中,該陰極活性材料、或該陰極中的陰極活性材料選自由以下組成之群組:a) 層狀氧化物,如富含Ni的陰極材料像NMC(鋰鎳錳鈷氧化物)和NCA(鋰鎳鈷鋁氧化物);b) 尖晶石陰極材料,如LMO(鋰錳氧化物)、LNMO(鋰鎳錳氧化物);c) 橄欖石結構的陰極材料,特別是橄欖石磷酸鹽家族,如LCP(磷酸鈷鋰)、LNP(磷酸鎳鋰)、LFP(磷酸鐵鋰);及其組合。The method according to any one of claims 1-14, wherein the cathode active material, or the cathode active material in the cathode, is selected from the group consisting of: a) layered oxides, such as Ni-rich Cathode materials like NMC (Lithium Nickel Manganese Cobalt Oxide) and NCA (Lithium Nickel Cobalt Aluminum Oxide); b) spinel cathode materials like LMO (Lithium Manganese Oxide), LNMO (Lithium Nickel Manganese Oxide); c ) Cathode materials of olivine structure, especially the olivine phosphate family, such as LCP (lithium cobalt phosphate), LNP (lithium nickel phosphate), LFP (lithium iron phosphate); and combinations thereof. 如請求項1-15中任一項所述之方法,其中,將步驟a1.和b1.中的一個或多個進行從一至十次,較佳的是一至三次。The method according to any one of claims 1-15, wherein one or more of steps a1. and b1. are performed from one to ten times, preferably one to three times. 如請求項16所述之方法,其中,a) 該化學先質蒸氣和/或該陰極或陰極活性材料的溫度為從100°C至300°C、更較佳的是125°C至175°C;b) 該金屬氧化物膜具有的平均厚度為0.02 nm至10 nm、較佳的是0.1 nm至5 nm、最較佳的是0.2至2 nm;並且c) 該金屬氧化物膜在該陰極或陰極活性材料表面上係至少50%連續的、較佳的是95%或更多連續的、更較佳的是98%或更多連續的。The method as claimed in claim 16, wherein a) the temperature of the chemical precursor vapor and/or the cathode or cathode active material is from 100°C to 300°C, more preferably 125°C to 175°C C; b) the metal oxide film has an average thickness of 0.02 nm to 10 nm, preferably 0.1 nm to 5 nm, most preferably 0.2 to 2 nm; and c) the metal oxide film is in the The cathode or cathode active material is superficially at least 50% continuous, preferably 95% or more continuous, more preferably 98% or more continuous.
TW111144727A 2021-12-01 2022-11-23 Processes for forming metal oxide thin films on electrode for interphase control TW202323574A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163284961P 2021-12-01 2021-12-01
US63/284,961 2021-12-01

Publications (1)

Publication Number Publication Date
TW202323574A true TW202323574A (en) 2023-06-16

Family

ID=86613006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144727A TW202323574A (en) 2021-12-01 2022-11-23 Processes for forming metal oxide thin films on electrode for interphase control

Country Status (2)

Country Link
TW (1) TW202323574A (en)
WO (1) WO2023102107A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058166B (en) * 2015-04-02 2021-08-10 松下知识产权经营株式会社 Battery and positive electrode material for battery
KR101944381B1 (en) * 2015-11-30 2019-01-31 주식회사 엘지화학 Surface-treated cathode active material for a lithium secondary battery, method of preparing for the same, and a lithium secondary battery comprising the same
CN110085805B (en) * 2019-04-30 2021-10-26 国联汽车动力电池研究院有限责任公司 Composite anode and application thereof in solid polymer lithium ion battery

Also Published As

Publication number Publication date
WO2023102107A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
JP6932321B2 (en) Methods for Manufacturing Batteries Containing Nano-Processed Coatings and Nano-Processed Coatings for Anode Active Materials, Cathodic Active Materials and Solid Electrolytes
US9531004B2 (en) Multifunctional hybrid coatings for electrodes made by atomic layer deposition techniques
US9034519B2 (en) Ultrathin surface coating on negative electrodes to prevent transition metal deposition and methods for making and use thereof
Patel et al. Significant Capacity and Cycle‐Life Improvement of Lithium‐Ion Batteries through Ultrathin Conductive Film Stabilized Cathode Particles
JP5595349B2 (en) Positive electrode current collector for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and method for producing positive electrode current collector for lithium ion secondary battery
KR102640161B1 (en) Positive electrode for secondary battery, method for manufacturing the same and lithium secondary battery comprising the same
CN111033871B (en) Aqueous secondary battery
JP2008098155A (en) Manufacturing method of negative electrode for lithium secondary battery
CN110915028A (en) Amorphous LiF as artificial SEI layer for lithium batteries
KR101124492B1 (en) Method of preparing positine active material for lithium battery
JP7317435B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
US20230343935A1 (en) Processes for forming doped-metal oxides thin films on electrode for interphase control
JP7276969B2 (en) Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
EP3796428B1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
JP2023508273A (en) Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same
TW202323574A (en) Processes for forming metal oxide thin films on electrode for interphase control
TWI834042B (en) Processes for forming doped-metal oxides thin films on electrode for interphase control
CA3182665A1 (en) Processes for forming doped-metal oxides thin films on electrode for interphase control
KR20180023380A (en) Lithium ion battery and method of preparing the same
KR20220025519A (en) The method of manufacturing electrode for secondary battery, the electrode manufactured therefrom, and lithium ion battery
KR20240028954A (en) Solid electrolyte, manufacturing method thereof and all solid battery comprising the same
JP5092205B2 (en) Method for producing lithium iron phosphate thin film electrode
TW202040863A (en) Secondary battery
KR20230026863A (en) Method for preparing positive electrode, positive electrode and lithium secondary battery comprising the electrode
KR20230085885A (en) Positive electrode active material, method for preparing the active material and lithium secondary battery comprising the active material