TW202323259A - Metal organic frameworks material and method for preparing the same, and adsorption device employing the same - Google Patents

Metal organic frameworks material and method for preparing the same, and adsorption device employing the same Download PDF

Info

Publication number
TW202323259A
TW202323259A TW110145998A TW110145998A TW202323259A TW 202323259 A TW202323259 A TW 202323259A TW 110145998 A TW110145998 A TW 110145998A TW 110145998 A TW110145998 A TW 110145998A TW 202323259 A TW202323259 A TW 202323259A
Authority
TW
Taiwan
Prior art keywords
organic framework
ligand
metal
framework material
metal organic
Prior art date
Application number
TW110145998A
Other languages
Chinese (zh)
Inventor
王翰奕
周揚震
謝宗霖
陳鈞振
康育豪
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW110145998A priority Critical patent/TW202323259A/en
Priority to CN202210027404.4A priority patent/CN116253892A/en
Publication of TW202323259A publication Critical patent/TW202323259A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A metal organic frameworks material and a method for preparing the same, and an adsorption device employing are provided. The metal organic frameworks material includes a first ligand, a second ligand, and a metal ion, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2,5-dicarboxylic acid, or 2,5-furandicarboxylic acid; the second ligand is isophthalic acid, or 5-hydroxyisophthalic acid; and the metal ion is an aluminum ion, a chromium ion, or a zirconium ion. The first ligand and the second ligand are coordinated to the metal ion.

Description

金屬有機框架材料與其製備方法、以及包含其之吸附裝置Metal-organic framework material, preparation method thereof, and adsorption device comprising same

本揭露關於一種金屬有機框架材料、金屬有機框架材料的製備方法,以及包含該金屬有機框架材料的吸附裝置。The disclosure relates to a metal organic framework material, a method for preparing the metal organic framework material, and an adsorption device comprising the metal organic framework material.

水氣吸附劑目前被廣泛使用於壓縮空氣系統中的吸附式乾燥機。外界空氣經過空氣壓縮機後會處於濕度高於80%相對溼度(RH)的狀態,需先經由冷凍式乾燥機移除壓縮空氣中大部分的水分,再經由吸附式乾燥機移除壓縮空氣中的少量殘餘水分。壓縮空氣經過冷凍式乾燥機處理後,濕度會降至約30% RH以下,再經由吸附式乾燥機移除壓縮空氣中的少量殘餘水分。因此,要適用於前述設備的吸附劑必須於低相對濕度環境下仍具有高水氣吸附率,對設備的體積、建置成本、運作效率皆有很大的助益。Moisture adsorbents are currently widely used in adsorption dryers in compressed air systems. After the outside air passes through the air compressor, the humidity will be higher than 80% relative humidity (RH). It is necessary to remove most of the moisture in the compressed air through a refrigeration dryer, and then remove the moisture in the compressed air through an adsorption dryer. small amount of residual moisture. After the compressed air is treated by a refrigerated dryer, the humidity will drop below about 30% RH, and then a small amount of residual moisture in the compressed air will be removed by an adsorption dryer. Therefore, the adsorbent to be suitable for the aforementioned equipment must still have a high water vapor adsorption rate in a low relative humidity environment, which is of great benefit to the volume, construction cost, and operating efficiency of the equipment.

傳統水氣吸附劑4A沸石,在低濕環境下雖有不錯水氣吸附率,然而其高度親水性增加了水氣脫附的難度。一般而言,4A沸石需要在140~160℃或更高的溫度下才能使水氣脫附。然而,高溫脫附不僅會使吸附劑再生時產生大量的耗能,及增加使用時的不便。在此考量下,低溫脫附且可於低濕環境下的吸附劑有其需求性。Although the traditional water vapor adsorbent 4A zeolite has a good water vapor adsorption rate in a low-humidity environment, its high hydrophilicity increases the difficulty of water vapor desorption. Generally speaking, 4A zeolite needs to be desorbed at a temperature of 140~160°C or higher to desorb water vapor. However, high temperature desorption will not only consume a lot of energy during the regeneration of the adsorbent, but also increase the inconvenience of use. Under this consideration, there is a demand for adsorbents that desorb at low temperatures and can be used in low-humidity environments.

然而,目前的吸附劑侷限於在低濕下吸附量小和脫附溫度需高於140℃的現況,增加了設備建置費用與運作成本以及導致設備耗費大量的能量而造成高耗能。雖然業界已提出可在低於100℃下進行水氣脫附的水氣吸附劑,不過其關鍵合成原料價格昂貴,因此限制了該水氣吸附劑的應用。再者,若能在維持低濕之水氣吸附率的前提下,更進一步降低水氣吸附劑的水氣脫附溫度及速率,則可大幅提昇水氣吸附劑的實用性。However, the current adsorbents are limited to the current situation that the adsorption capacity is small under low humidity and the desorption temperature needs to be higher than 140°C, which increases the equipment construction cost and operation cost, and causes the equipment to consume a lot of energy, resulting in high energy consumption. Although the industry has proposed a water vapor adsorbent that can desorb water vapor below 100°C, the key synthetic raw materials are expensive, which limits the application of the water vapor adsorbent. Furthermore, if the water vapor desorption temperature and rate of the water vapor adsorbent can be further reduced under the premise of maintaining a low humidity water vapor adsorption rate, the practicability of the water vapor adsorbent can be greatly improved.

因此,業界需亟要一種新穎的金屬有機框架材料,以解決先前技術所遭遇到的問題。Therefore, the industry urgently needs a novel metal-organic framework material to solve the problems encountered by previous technologies.

根據本揭露實施例,本揭露提供一種金屬有機框架材料。該金屬有機框架材料可包括一第一配體、一第二配體、以及金屬離子,其中該第一配體係3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、或2,5-呋喃二甲酸;該第二配體係間苯二甲酸、或5-羥基間苯二甲酸;以及,該金屬離子係鋁離子、鉻離子、或鋯離子。該第一配體及該第二配體係與該金屬離子配位。According to an embodiment of the present disclosure, the present disclosure provides a metal organic framework material. The metal organic framework material may include a first ligand, a second ligand, and a metal ion, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2,5-dicarboxylic acid, or 2,5-furandicarboxylic acid; the second ligand is isophthalic acid or 5-hydroxyisophthalic acid; and the metal ion is aluminum ion, chromium ion, or zirconium ion. The first ligand and the second ligand coordinate with the metal ion.

根據本揭露某些實施例,本揭露提供一種金屬有機框架材料的製備方法。該金屬有機框架材料的製備方法,包括以下步驟。首先,提供一組合物,其中該組合物包括一第一配體、一第二配體、一金屬化合物、及一溶劑,其中該第一配體係3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、或2,5-呋喃二甲酸;第二配體係間苯二甲酸、或5-羥基間苯二甲酸;以及,該金屬化合物係鋁鹽、鉻鹽、或鋯鹽。接著,對該組合物進行一加熱步驟以使該第一配體以及第二配體與該金屬化合物反應,獲得本揭露所述金屬有機框架材料。According to some embodiments of the present disclosure, the present disclosure provides a method for preparing a metal organic framework material. The preparation method of the metal organic framework material includes the following steps. First, a composition is provided, wherein the composition includes a first ligand, a second ligand, a metal compound, and a solvent, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole -2,5-dicarboxylic acid, or 2,5-furandicarboxylic acid; the second ligand is isophthalic acid, or 5-hydroxyisophthalic acid; and, the metal compound is an aluminum salt, a chromium salt, or a zirconium salt . Next, a heating step is performed on the composition to react the first ligand and the second ligand with the metal compound to obtain the metal organic framework material of the present disclosure.

根據本揭露其他實施例,本揭露提供一種吸附裝置。該吸附裝置包括一載體;以及一吸附材料置於該載體之上。該吸附材料係本揭露所述之金屬有機框架材料。According to other embodiments of the present disclosure, the present disclosure provides an adsorption device. The adsorption device includes a carrier; and an adsorption material is placed on the carrier. The adsorption material is the metal organic framework material described in this disclosure.

以下針對本揭露之金屬有機框架材料與其製備方法、以及包含其金屬有機框架材料之吸附裝置作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式僅為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。本揭露中,用詞「約」係指所指定之量可增加或減少一本領域技藝人士可認知為一般且合理的大小的量。The metal organic framework material of the present disclosure, its preparation method, and the adsorption device comprising the metal organic framework material are described in detail below. It should be understood that the following description provides many different embodiments or examples for implementing different aspects of the present disclosure. The specific elements and arrangements described below are merely for describing the present disclosure. Of course, these are only examples rather than limitations of the present disclosure. Furthermore, repeated reference numerals or designations may be used in different embodiments. These repetitions are only for the purpose of simply and clearly describing the present disclosure, and do not represent any relationship between the different embodiments and/or structures discussed. In this disclosure, the word "about" means that the specified amount can be increased or decreased by an amount that a person skilled in the art would recognize as a normal and reasonable size.

本揭露實施例提供一種金屬有機框架材料與其製備方法、以及包含其金屬有機框架材料之吸附裝置。Embodiments of the present disclosure provide a metal organic framework material, a preparation method thereof, and an adsorption device comprising the metal organic framework material.

在金屬有機框架材料的製備過程中,本揭露利用兩種不同的配體與金屬離子進行配位反應,製備出具有多孔隙特性的複合配體金屬有機框架材料。本揭露所述金屬有機框架材料可在維持低濕之水氣吸附率的前提下,更進一步降低水氣吸附劑的水氣脫附溫度及速率,如此一來可降低金屬有機框架材料在脫附水氣時所需要的能源耗用。此外,藉由特定配體的選用以及兩種配體之間的比例調整,本揭露所述金屬有機框架材料的製備成本可被進一步降低,增加金屬有機框架材料的實用性及競爭力。In the preparation process of metal organic framework materials, the present disclosure uses two different ligands to carry out coordination reaction with metal ions to prepare complex ligand metal organic framework materials with porous properties. The metal organic framework material described in this disclosure can further reduce the water vapor desorption temperature and rate of the water vapor adsorbent under the premise of maintaining a low humidity water vapor adsorption rate, so that the metal organic framework material can be reduced in desorption. The energy consumption required for water vapor. In addition, through the selection of specific ligands and the adjustment of the ratio between the two ligands, the preparation cost of the metal-organic framework materials described in the present disclosure can be further reduced, increasing the practicability and competitiveness of the metal-organic framework materials.

本揭露所述之金屬有機框架材料在低濕下具有快速吸濕效果,且可在較低的溫度條件下快速脫附水氣。這裡所定義的「低濕條件」係指在25℃的溫度其相對濕度為15-30%RH,而「較低的溫度條件」係指在60℃至80℃的溫度。本揭露所述金屬有機框架材料可進一步被配置於一載體之上,作為吸附裝置,用於吸附式乾燥機,達到在低濕環境下快速吸濕之目的。The metal organic framework material described in this disclosure has a fast moisture absorption effect under low humidity, and can quickly desorb water vapor under low temperature conditions. The "low humidity condition" defined here refers to a temperature of 25°C with a relative humidity of 15-30%RH, and the "lower temperature condition" refers to a temperature of 60°C to 80°C. The metal-organic framework material described in this disclosure can be further configured on a carrier as an adsorption device for an adsorption dryer to achieve the purpose of rapid moisture absorption in a low-humidity environment.

根據本揭露實施例,本揭露提供一種金屬有機框架材料。所述金屬有機框架材料包括一第一配體、一第二配體、以及金屬離子。根據本揭露實施例,其中該第一配體可為3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、或2,5-呋喃二甲酸。該第二配體可為間苯二甲酸、或5-羥基間苯二甲酸。以及,該金屬離子可為鋁離子、鉻離子、或鋯離子。該第一配體及該第二配體係與該金屬離子配位。根據本揭露實施例,該金屬有機框架材料可由一第一配體、一第二配體、以及金屬離子所組成,且該第一配體及該第二配體係與該金屬離子配位。According to an embodiment of the present disclosure, the present disclosure provides a metal organic framework material. The metal organic framework material includes a first ligand, a second ligand, and metal ions. According to an embodiment of the present disclosure, the first ligand may be 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2,5-dicarboxylic acid, or 2,5-furandicarboxylic acid. The second ligand can be isophthalic acid, or 5-hydroxyisophthalic acid. And, the metal ion may be aluminum ion, chromium ion, or zirconium ion. The first ligand and the second ligand coordinate with the metal ion. According to an embodiment of the present disclosure, the metal organic framework material may be composed of a first ligand, a second ligand, and a metal ion, and the first ligand and the second ligand coordinate with the metal ion.

根據本揭露實施例,該第一配體與該第二配體的莫耳數可為約1:9至9:1,例如1:9至7:3、3:7至1:9、或3:7至7:3。若第一配體與該第二配體的莫耳數比低於1:9,則所得之金屬有機框架材料在低濕的環境下具有較差的水氣吸附速率。若第一配體與該第二配體的莫耳數比高於9:1,則所得之金屬有機框架材料在較低的溫度條件下具有較差的水氣脫附速率。根據本揭露實施例,該金屬離子的莫耳數與該第一配體及該第二配體的莫耳總數之比可為約1:2至2:1,例如3:5、2:3、3:4、4:5、1:1、5:4、4:3、3:2、或5:3。According to an embodiment of the present disclosure, the molar ratio between the first ligand and the second ligand may be about 1:9 to 9:1, such as 1:9 to 7:3, 3:7 to 1:9, or 3:7 to 7:3. If the molar ratio of the first ligand to the second ligand is lower than 1:9, the resulting metal organic framework material has a poor water vapor adsorption rate in a low humidity environment. If the molar ratio of the first ligand to the second ligand is higher than 9:1, the obtained metal organic framework material has a poor water vapor desorption rate under lower temperature conditions. According to an embodiment of the present disclosure, the ratio of the mole number of the metal ion to the total number of moles of the first ligand and the second ligand may be about 1:2 to 2:1, such as 3:5, 2:3 , 3:4, 4:5, 1:1, 5:4, 4:3, 3:2, or 5:3.

根據本揭露實施例,該金屬有機框架材料的氮鋁比大於0。若使用100%第一配體,氮鋁比為最高為0.34。根據本揭露實施例,該金屬有機框架材料的氮鋁比可大於0並小於0.34(例如0.01至0.33、或0.03至0.32)。若金屬有機框架材料的氮鋁比越低,則所得之金屬有機框架材料在低濕的環境下具有較差的水氣吸附速率。若金屬有機框架材料的氮鋁比越高,則所得之金屬有機框架材料在較低的溫度條件下具有較差的水氣脫附速率。According to an embodiment of the present disclosure, the metal-organic framework material has a nitrogen-to-aluminum ratio greater than zero. If 100% primary ligand is used, the nitrogen to aluminum ratio is up to 0.34. According to an embodiment of the present disclosure, the nitrogen-to-aluminum ratio of the MOF material may be greater than 0 and less than 0.34 (eg, 0.01 to 0.33, or 0.03 to 0.32). If the nitrogen-to-aluminum ratio of the metal-organic framework material is lower, the resulting metal-organic framework material has a poorer water vapor adsorption rate in a low-humidity environment. If the nitrogen-to-aluminum ratio of the metal-organic framework material is higher, the resulting metal-organic framework material has a poorer water vapor desorption rate under lower temperature conditions.

根據本揭露實施例,本揭露提供一種上述金屬有機框架材料的製備方法。該金屬有機框架材料的製備方法包括以下步驟。首先,提供一組合物。根據本揭露實施例,該組合物包括一第一配體、一第二配體、一金屬化合物、及一溶劑,其中該第一配體係3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、2,5-呋喃二甲酸、或上述之組合、以及第二配體係間苯二甲酸、5-羥基間苯二甲酸、或上述之組合。接著,對該組合物進行一加熱步驟以使該第一配體以及第二配體與該金屬化合物反應,獲得請求項1所述金屬有機框架材料。According to an embodiment of the present disclosure, the present disclosure provides a method for preparing the above metal organic framework material. The preparation method of the metal organic framework material includes the following steps. First, a composition is provided. According to an embodiment of the present disclosure, the composition includes a first ligand, a second ligand, a metal compound, and a solvent, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2 , 5-dicarboxylic acid, 2,5-furandicarboxylic acid, or a combination of the above, and the second ligand is isophthalic acid, 5-hydroxyisophthalic acid, or a combination of the above. Next, a heating step is performed on the composition to make the first ligand and the second ligand react with the metal compound to obtain the metal organic framework material described in Claim 1.

根據本揭露實施例,該第一配體與該第二配體的的莫耳數為1:9至9:1。根據本揭露實施例,該金屬化合物的莫耳數與該第一配體及該第二配體的莫耳總數之比為1:2至2:1。According to an embodiment of the present disclosure, the molar ratio between the first ligand and the second ligand is 1:9 to 9:1. According to an embodiment of the present disclosure, the molar ratio of the metal compound to the total molar ratio of the first ligand and the second ligand is 1:2 to 2:1.

根據本揭露實施例,該第一配體擇自由3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、及2,5-呋喃二甲酸所組成之族群;以及,該第二配體擇自由間苯二甲酸、及5-羥基間苯二甲酸所組成之族群。According to an embodiment of the present disclosure, the first ligand is selected from the group consisting of 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2,5-dicarboxylic acid, and 2,5-furandicarboxylic acid; and, the first ligand The diligand is selected from the group consisting of isophthalic acid and 5-hydroxyisophthalic acid.

根據本揭露實施例,該金屬化合物可為鋁鹽、鉻鹽、或鋯鹽。根據本揭露實施例,該鋁鹽可為硝酸鋁、硫酸鋁、氯化鋁、磷酸鋁、或上述之組合;鉻鹽可為硝酸鉻、磷酸鉻、或上述之組合;以及,鋯鹽可為硝酸鋯、磷酸鋯、氯氧化鋯、或上述之組合。根據本揭露實施例,該金屬化合物擇自由鋁鹽、鉻鹽、及鋯鹽所組成之族群。根據本揭露實施例,該金屬化合物擇自由硝酸鋁、硫酸鋁、氯化鋁、磷酸鋁、硝酸鉻、磷酸鉻、硝酸鋯、磷酸鋯、氯氧化鋯所組成之族群。According to an embodiment of the present disclosure, the metal compound may be an aluminum salt, a chromium salt, or a zirconium salt. According to an embodiment of the present disclosure, the aluminum salt can be aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum phosphate, or a combination thereof; the chromium salt can be chromium nitrate, chromium phosphate, or a combination of the above; and the zirconium salt can be Zirconium nitrate, zirconium phosphate, zirconium oxychloride, or a combination of the above. According to an embodiment of the present disclosure, the metal compound is selected from the group consisting of aluminum salts, chromium salts, and zirconium salts. According to an embodiment of the present disclosure, the metal compound is selected from the group consisting of aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum phosphate, chromium nitrate, chromium phosphate, zirconium nitrate, zirconium phosphate, and zirconium oxychloride.

根據本揭露實施例,其中該金屬化合物在該組合物中的初始濃度可為0.15 mol/L至0.66 mol/L之間(例如0.2 mol/L、0.25 mol/L、0.3 mol/L、0.4 mol/L、0.5 mol/L、或0.6 mol/L),以該溶劑的體積為基準。According to an embodiment of the present disclosure, the initial concentration of the metal compound in the composition may be between 0.15 mol/L and 0.66 mol/L (for example, 0.2 mol/L, 0.25 mol/L, 0.3 mol/L, 0.4 mol /L, 0.5 mol/L, or 0.6 mol/L), based on the volume of the solvent.

根據本揭露實施例,該加熱步驟溫度可為約100℃至150℃,例如110℃至140℃。此外,該加熱步驟的時間可為1小時至66小時,例如2小時、4小時、6小時、8小時、12小時、30小時、50小時、或60小時。According to an embodiment of the present disclosure, the temperature of the heating step may be about 100°C to 150°C, for example, 110°C to 140°C. In addition, the time of the heating step can be 1 hour to 66 hours, such as 2 hours, 4 hours, 6 hours, 8 hours, 12 hours, 30 hours, 50 hours, or 60 hours.

根據本揭露實施例,該溶劑包括有機溶劑、水、或上述之組合。根據本揭露某些實施例,該溶劑可為有機溶劑。根據本揭露某些實施例,該溶劑可為水。根據本揭露某些實施例,該溶劑可由水及有機溶劑所組成,其中有機溶劑與水的重量比可為1:99至99:1之間(例如:1:99至1:29、1:99至1:1、10:90至2:1、或1:1至99:1)。舉例來說,有機溶劑與水的重量比可為4:1、2:1、1:1、1:2、1:4、或1:8。本揭露所述的有機溶劑可為N,N-二甲基甲醯胺、N,N-二乙基甲醯胺、N,N-二甲基乙醯胺、或上述之組合。根據本揭露某些實施例,該溶劑擇自由水、N,N-二甲基甲醯胺、N,N-二乙基甲醯胺、N,N-二甲基乙醯胺所組成之族群。According to an embodiment of the present disclosure, the solvent includes an organic solvent, water, or a combination thereof. According to some embodiments of the present disclosure, the solvent may be an organic solvent. According to some embodiments of the present disclosure, the solvent may be water. According to some embodiments of the present disclosure, the solvent may be composed of water and an organic solvent, wherein the weight ratio of the organic solvent to water may be between 1:99 and 99:1 (for example: 1:99 to 1:29, 1: 99 to 1:1, 10:90 to 2:1, or 1:1 to 99:1). For example, the weight ratio of organic solvent to water can be 4:1, 2:1, 1:1, 1:2, 1:4, or 1:8. The organic solvent described in this disclosure may be N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, or a combination thereof. According to some embodiments of the present disclosure, the solvent is selected from the group consisting of water, N,N-dimethylformamide, N,N-diethylformamide, and N,N-dimethylacetamide .

根據本揭露實施例,該組合物可由第一配體、第二配體、金屬化合物、及有機溶劑所組成。根據本揭露實施例,該組合物可由第一配體、第二配體、金屬化合物、及水所組成。According to an embodiment of the present disclosure, the composition may consist of a first ligand, a second ligand, a metal compound, and an organic solvent. According to an embodiment of the present disclosure, the composition may be composed of a first ligand, a second ligand, a metal compound, and water.

根據本揭露實施例,當溶劑為水時,該組合物更包括一鹼金族氫氧化物。換言之,該組合物可由第一配體、第二配體、金屬化合物、水、以及鹼金族氫氧化物所組成。該鹼金族氫氧化物可為氫氧化鋰(lithium hydroxide)、氫氧化鈉(sodium hydroxide)、氫氧化鉀(potassium hydroxide)、或上述之組合。根據本揭露實施例,該鹼金族氫氧化物擇自由氫氧化鋰(lithium hydroxide)、氫氧化鈉(sodium hydroxide)、及氫氧化鉀(potassium hydroxide) 所組成之族群。According to an embodiment of the present disclosure, when the solvent is water, the composition further includes an alkali metal hydroxide. In other words, the composition may consist of the first ligand, the second ligand, the metal compound, water, and alkali metal hydroxide. The alkali metal hydroxide can be lithium hydroxide, sodium hydroxide, potassium hydroxide, or a combination thereof. According to an embodiment of the present disclosure, the alkali metal hydroxide is selected from the group consisting of lithium hydroxide, sodium hydroxide, and potassium hydroxide.

根據本揭露實施例,當溶劑為水時,該組合物更包括一鹼金族氫氧化物以及一鋁酸鹽,其中該鋁酸鹽與該金屬化合物不同。換言之,該組合物可由第一配體、第二配體、金屬化合物、水、鹼金族氫氧化物、以及鋁酸鹽所組成。該鋁酸鹽係鋁酸鋰(lithium aluminate)、鋁酸鈉(sodium aluminate)、鋁酸鉀(potassium aluminate)、鋁酸鎂(magnesium aluminate)、鋁酸鈣(calcium aluminate)、或上述之組合。此外,該鋁酸鹽在該組合物中的初始濃度為約0.01mol/L至0.20mol/L(例如為約0.05mol/L至0.15mol/L)之間,以水的體積為基準。According to an embodiment of the present disclosure, when the solvent is water, the composition further includes an alkali metal hydroxide and an aluminate, wherein the aluminate is different from the metal compound. In other words, the composition may consist of the first ligand, the second ligand, the metal compound, water, alkali metal hydroxide, and aluminate. The aluminate is lithium aluminate, sodium aluminate, potassium aluminate, magnesium aluminate, calcium aluminate, or a combination thereof. In addition, the initial concentration of the aluminate in the composition is between about 0.01 mol/L to 0.20 mol/L (eg, about 0.05 mol/L to 0.15 mol/L), based on the volume of water.

根據本揭露實施例,當溶劑為水時,該組合物更包括一鹼金族氫氧化物。換言之,該組合物可由第一配體、第二配體、金屬化合物、水、以及鹼金族氫氧化物所組成。According to an embodiment of the present disclosure, when the solvent is water, the composition further includes an alkali metal hydroxide. In other words, the composition may consist of the first ligand, the second ligand, the metal compound, water, and alkali metal hydroxide.

根據本揭露實施例,當溶劑為水時,加入鹼金族氫氧化物的目的在於中和組合物中的第一配體(例如3,5-吡啶二羧酸)及第二配體(例如間苯二甲酸),以維持組合物(水溶液)接近中性(即組合物的pH為6-8之間),形成一可溶於水的組合物。基於上述,該鹼金族氫氧化物與該第一配體及該第二配體的莫耳總數之比可為約1.8至2.2,例如為2。因此,當鹼金族氫氧化物與該第一配體及該第二配體的莫耳總數之比,鹼金族氫氧化物無法完全中和組合物中的第一配體與第二配體,導致所得金屬有機框架材料對水具有較差之吸附率,甚至無法得到金屬有機框架材料。According to an embodiment of the present disclosure, when the solvent is water, the purpose of adding alkali metal hydroxide is to neutralize the first ligand (such as 3,5-pyridinedicarboxylic acid) and the second ligand (such as isophthalic acid) to maintain the composition (aqueous solution) close to neutral (ie the pH of the composition is between 6-8), forming a water-soluble composition. Based on the above, the molar ratio of the alkali metal hydroxide to the total number of the first ligand and the second ligand may be about 1.8 to 2.2, for example, 2. Therefore, when the ratio of the total number of moles of the alkali metal hydroxide to the first ligand and the second ligand, the alkali metal hydroxide cannot completely neutralize the first ligand and the second ligand in the composition. As a result, the obtained metal organic framework material has a poor adsorption rate for water, and even the metal organic framework material cannot be obtained.

根據本揭露實施例,當溶劑為水時,加入鋁酸鹽或酒精於組合物中可抑制結晶狀副產物於該第一配體及該第二配體與該金屬化合物反應時生成,以避免結晶狀副產物影響所得金屬有機框架材料的吸水率。According to an embodiment of the present disclosure, when the solvent is water, adding aluminate or alcohol to the composition can inhibit the generation of crystalline by-products when the first ligand and the second ligand react with the metal compound, so as to avoid Crystalline by-products affect the water absorption of the resulting metal-organic framework materials.

根據本揭露實施例,當溶劑由水及有機溶液所組成,且有機溶液與水的重量比為1:29至1:99時,該組合物更包括鹼金族氫氧化物、鋁酸鹽、及/或酒精。根據本揭露某些實施例,當有機溶液與水的重量比為1:29至1:99時,若該組合物不包含鹼金族氫氧化物、鋁酸鹽、及/或酒精,則所得金屬有機框架材料具有較差的對水之吸附率,甚至無法得到金屬有機框架材料。According to an embodiment of the present disclosure, when the solvent is composed of water and an organic solution, and the weight ratio of the organic solution to water is 1:29 to 1:99, the composition further includes alkali metal hydroxides, aluminates, and/or alcohol. According to certain embodiments of the present disclosure, when the weight ratio of the organic solution to water is 1:29 to 1:99, if the composition does not contain alkali metal hydroxides, aluminates, and/or alcohols, the obtained Metal-organic framework materials have a poor water adsorption rate, and even metal-organic framework materials cannot be obtained.

根據本揭露實施例,請參照第1圖,本揭露提供一種吸附裝置100。所述吸附裝置100包含一載體120,以及一吸附材料140。所述吸附材料140可配置於該載體120上。根據本揭露實施例,該吸附材料可為本揭露所述金屬有機框架材料。根據本揭露實施例,該吸附裝置100在5%RH~80%RH (相對濕度)及25℃的環境,使金屬有機框架材料達到飽和吸附,例如15%RH相對濕度的水氣吸附率可達28%至31%。在此,本揭露所述水氣吸附率可由下式所決定:

Figure 02_image001
,其中W 1為吸附材料吸濕後的重量,以及W 0為吸附材料完全脫附水之後所得到的重量。根據本揭露實施例,該吸附裝置100在80℃的環境放置60分鐘後其水氣脫附率可達95%至100%。在此,本揭露所述水氣脫附率可由下式所決定:
Figure 02_image003
,其中W 0為吸附材料完全脫附水之後所得到的重量、W 2為吸附材料飽和吸水後所得到的重量,以及W 3為吸附材料進行水氣脫附後的重量。 According to an embodiment of the present disclosure, please refer to FIG. 1 , the present disclosure provides an adsorption device 100 . The adsorption device 100 includes a carrier 120 and an adsorption material 140 . The adsorption material 140 can be disposed on the carrier 120 . According to an embodiment of the present disclosure, the adsorption material may be the metal organic framework material described in the present disclosure. According to an embodiment of the present disclosure, the adsorption device 100 can achieve saturated adsorption of metal-organic framework materials in an environment of 5%RH-80%RH (relative humidity) and 25°C, for example, the adsorption rate of water vapor at a relative humidity of 15%RH can reach 28% to 31%. Here, the water vapor adsorption rate in this disclosure can be determined by the following formula:
Figure 02_image001
, where W 1 is the weight of the absorbent material after absorbing moisture, and W 0 is the weight obtained after the absorbent material has completely desorbed water. According to an embodiment of the present disclosure, the water vapor desorption rate of the adsorption device 100 can reach 95% to 100% after being placed in an environment of 80° C. for 60 minutes. Here, the moisture desorption rate described in this disclosure can be determined by the following formula:
Figure 02_image003
, where W 0 is the weight obtained after the adsorption material completely desorbs water, W 2 is the weight obtained after the adsorption material is saturated with water absorption, and W 3 is the weight of the adsorption material after desorption of water vapor.

根據本揭露實施例,所述吸附材料除了可應用於低濕環境下,更可使用在吸附式乾燥機,如高壓空氣乾燥機、塑料乾燥機中。且所述吸附材料也可作為吸附劑用以移除特定之極性有害小分子或氣體。According to an embodiment of the present disclosure, the adsorption material can be used in an adsorption dryer, such as a high-pressure air dryer or a plastic dryer, in addition to being applicable in a low-humidity environment. Moreover, the adsorbent material can also be used as an adsorbent to remove specific polar harmful small molecules or gases.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例及比較實施例,作詳細說明如下:In order to make the above and other purposes, features, and advantages of the present disclosure more obvious and understandable, the following special examples and comparative examples are described in detail as follows:

金屬有機框架材料Metal Organic Framework Materials

實施例1 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)(8.1mmol)、間苯二甲酸(isophthalic acid) (0.9mmol)、氫氧化鈉(18mmol)以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與間苯二甲酸的莫耳比為9:1。接著,將鋁酸鈉水溶液(NaAlO 2)(2.3 mmol)加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(1)。 Example 1 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4 mmol), 3,5-pyridine-3,5-dicarboxylic acid (8.1 mmol), m-benzene Diformic acid (isophthalic acid) (0.9mmol), sodium hydroxide (18mmol) and 25ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to isophthalic acid was 9:1 . Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal organic framework material (1).

實施例2 依實施例1所述方式進行,除了將3,5-吡啶二羧酸與間苯二甲酸的莫耳比為由9:1降低至7:3,得到金屬有機框架材料(2)。 Example 2 The method described in Example 1 was carried out, except that the molar ratio of 3,5-pyridinedicarboxylic acid to isophthalic acid was decreased from 9:1 to 7:3 to obtain metal organic framework material (2).

實施例3 依實施例1所述方式進行,除了將3,5-吡啶二羧酸與間苯二甲酸的莫耳比為由9:1降低至1:1,得到金屬有機框架材料(3)。 Example 3 The method described in Example 1 was carried out, except that the molar ratio of 3,5-pyridinedicarboxylic acid to isophthalic acid was decreased from 9:1 to 1:1, to obtain metal organic framework material (3).

實施例4 依實施例1所述方式進行,除了將3,5-吡啶二羧酸與間苯二甲酸的莫耳比為由9:1降低至3:7,得到金屬有機框架材料(4)。 Example 4 The method described in Example 1 was carried out, except that the molar ratio of 3,5-pyridinedicarboxylic acid to isophthalic acid was decreased from 9:1 to 3:7 to obtain metal organic framework material (4).

實施例5 依實施例1所述方式進行,除了將3,5-吡啶二羧酸與間苯二甲酸的莫耳比為由9:1降低至1:9,得到金屬有機框架材料(5)。 Example 5 The method described in Example 1 was carried out, except that the molar ratio of 3,5-pyridinedicarboxylic acid to isophthalic acid was decreased from 9:1 to 1:9 to obtain metal organic framework material (5).

比較例1 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)(9mmol)、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(6)。 Comparative Example 1 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4mmol), 3,5-pyridine-3,5-dicarboxylic acid (9mmol), sodium hydroxide (18 mmol ) and 25 ml of water were added to a reaction flask. Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal-organic framework material (6).

比較例2 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、間苯二甲酸(isophthalic acid) (9mmol) 、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(7)。 Comparative Example 2 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4mmol), isophthalic acid (9mmol), sodium hydroxide (18mmol) and 25ml of water were added to a in the reaction vial. Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the MOF (7).

氮鋁比量測 將實施例2、4及比較例1及2所述金屬有機框架材料(1)-(7)以能量色散X-射線光譜(Energy-dispersive X-ray spectroscopy,EDS)搭配穿透式電子顯微鏡(transmission electron microscope,TEM)來進行元素鑑定,計算出金屬有機框架材料中的氮鋁比,結果如表1所示。 Nitrogen-aluminum ratio measurement The metal organic framework materials (1)-(7) described in Examples 2, 4 and Comparative Examples 1 and 2 were combined with a transmission electron microscope ( transmission electron microscope, TEM) to carry out element identification, and calculate the ratio of nitrogen to aluminum in metal organic framework materials, and the results are shown in Table 1.

表1   氮鋁比(N/Al) 金屬有機框架材料(2) 0.06 金屬有機框架材料(4) 0.17 金屬有機框架材料(6) 0.34 金屬有機框架材料(7) 0 Table 1 Nitrogen to Aluminum Ratio (N/Al) Metal Organic Framework Materials (2) 0.06 Metal Organic Framework Materials (4) 0.17 Metal Organic Framework Materials (6) 0.34 Metal Organic Framework Materials (7) 0

由表1可知,不同3,5-吡啶二羧酸與間苯二甲酸的莫耳比所合成金屬有機框架材料的氮鋁比呈線性,當3,5-吡啶二羧酸的用量愈大時,所得金屬有機框架材料的金屬有機框架材料的氮鋁比愈高。It can be seen from Table 1 that the nitrogen-to-aluminum ratio of MOFs synthesized with different molar ratios of 3,5-pyridinedicarboxylic acid and isophthalic acid is linear. When the amount of 3,5-pyridinedicarboxylic acid is larger, , the higher the nitrogen-to-aluminum ratio of the metal-organic framework material of the obtained metal-organic framework material.

水氣吸附率量測 將實施例1-5及比較例1及2所述金屬有機框架材料(1)-(7)於80℃之真空環境下烘乾2小時,以將水由金屬有機框架材料完全脫附。接著,將金屬有機框架材料放置於恆溫恆濕機中,並於25℃以及不同的相對濕度下放置120分鐘,讓金屬有機框架材料吸附水氣,並量測金屬有機框架材料的水氣吸附率,結果如表2所示。 Water vapor adsorption rate measurement The metal-organic framework materials (1)-(7) described in Examples 1-5 and Comparative Examples 1 and 2 were dried in a vacuum environment at 80° C. for 2 hours to completely desorb water from the metal-organic framework materials. Next, place the metal organic framework material in a constant temperature and humidity machine, and place it at 25°C and different relative humidity for 120 minutes to allow the metal organic framework material to absorb water vapor, and measure the water vapor adsorption rate of the metal organic framework material , and the results are shown in Table 2.

表2   配體 水氣吸附率 (water adsorption ratio) (%) 15%RH 20%RH 30%RH 80%RH 金屬有機框架材料(1) 3,5-吡啶二羧酸/間苯二甲酸 (9/1) - - 31 - 金屬有機框架材料(2) 3,5-吡啶二羧酸/間苯二甲酸 (7/3) 30 31 31 33 金屬有機框架材料(3) 3,5-吡啶二羧酸/間苯二甲酸 (1/1) 29 30 31 33 金屬有機框架材料(4) 3,5-吡啶二羧酸/間苯二甲酸 (3/7) 28 30 31 36 金屬有機框架材料(5) 3,5-吡啶二羧酸/間苯二甲酸 (1/9) - - 26 - 金屬有機框架材料(6) 3,5-吡啶二羧酸 29 30 31 34 金屬有機框架材料(7) 間苯二甲酸 8 27 28 35 Table 2 Ligand Water adsorption ratio (%) 15%RH 20%RH 30%RH 80%RH Metal Organic Framework Materials (1) 3,5-pyridinedicarboxylic acid/isophthalic acid (9/1) - - 31 - Metal Organic Framework Materials (2) 3,5-pyridinedicarboxylic acid/isophthalic acid (7/3) 30 31 31 33 Metal Organic Framework Materials (3) 3,5-pyridinedicarboxylic acid/isophthalic acid (1/1) 29 30 31 33 Metal Organic Framework Materials (4) 3,5-pyridinedicarboxylic acid/isophthalic acid (3/7) 28 30 31 36 Metal Organic Framework Materials (5) 3,5-pyridinedicarboxylic acid/isophthalic acid (1/9) - - 26 - Metal Organic Framework Materials (6) 3,5-Pyridinedicarboxylic acid 29 30 31 34 Metal Organic Framework Materials (7) Isophthalic acid 8 27 28 35

由表2可得知,實施例1-5所述之金屬有機框架材料(具有不同之配體(3,5-吡啶二羧酸及間苯二甲酸)比例)於高濕(80 %RH)及低濕(15-30%RH)下均可維持高水氣吸附率。此外,僅使用間苯二甲酸作為金屬有機框架材料的配體時,可觀察到所得金屬有機框架材料在低濕(15%RH)下之水氣吸附率較差。It can be seen from Table 2 that the metal organic framework materials described in Examples 1-5 (with different proportions of ligands (3,5-pyridinedicarboxylic acid and isophthalic acid)) were exposed to high humidity (80%RH) And low humidity (15-30%RH) can maintain a high water vapor adsorption rate. In addition, when only isophthalic acid is used as the ligand of the MOF, it can be observed that the moisture adsorption rate of the obtained MOF under low humidity (15%RH) is poor.

水氣脫附率量測 將實施例2-4及比較例1所述金屬有機框架材料(2)-(4)及(6)於25℃及80% RH下吸附水氣至飽合。接著,將金屬有機框架材料置於60℃、70℃、及80℃的烘箱中,於不同時間下量測金屬有機框架材料重量,並換算出水氣吸附率,結果分別如第2-4圖所示。 Water vapor desorption rate measurement The metal organic framework materials (2)-(4) and (6) described in Examples 2-4 and Comparative Example 1 were adsorbed to saturation at 25° C. and 80% RH. Next, put the metal organic framework material in an oven at 60°C, 70°C, and 80°C, measure the weight of the metal organic framework material at different times, and convert the water vapor adsorption rate, the results are shown in Figures 2-4 respectively Show.

由第2-4圖可知,以60°C進行水氣脫附時,比較例1所述金屬有機框架材料(即僅使用3,5-吡啶二羧酸作為配體的金屬有有機框架材料)在放置120分鐘後的水氣脫附率僅達約34%。實施例2所述 金屬有機框架材料在放置120分鐘後的水氣脫附率可達約73%,且實施例3及4所述金屬有機框架材料甚至在放置120分鐘後可達到水氣完全脫附。此外,以80°C進行水氣脫附時,本揭露所述金屬有機框架材料在放置60分鐘後的水氣脫附率可達95%至100%,而比較例1所述金屬有機框架材料在放置60分鐘後的水氣脫附率僅達約85%。綜合上述,由表2及第2-4圖可得知,使用間苯二甲酸搭配3,5-吡啶二羧酸所形成的複合配體金屬有機框架材料,可在維持水氣吸附率的前提下,降低水氣脫附所需之溫度以及增加水氣脫附速率。此外,由於3,5-吡啶二羧酸的原料成本係為間苯二甲酸的90倍以上,與金屬有機框架材料(6)(即僅使用3,5-吡啶二羧酸作為配體的金屬有有機框架材料)相比,本揭露所述金屬有機框架材料的製備成本可大幅降低。It can be seen from Figures 2-4 that when moisture is desorbed at 60°C, the metal organic framework material described in Comparative Example 1 (that is, the metal organic framework material using only 3,5-pyridinedicarboxylic acid as a ligand) After standing for 120 minutes, the water vapor desorption rate is only about 34%. The moisture desorption rate of the metal organic framework material described in Example 2 can reach about 73% after being placed for 120 minutes, and the metal organic framework material described in Examples 3 and 4 can even achieve complete desorption of water vapor after being placed for 120 minutes attached. In addition, when moisture desorption is performed at 80°C, the moisture desorption rate of the metal organic framework material in this disclosure can reach 95% to 100% after standing for 60 minutes, while the metal organic framework material described in Comparative Example 1 After standing for 60 minutes, the water vapor desorption rate only reached about 85%. Based on the above, it can be seen from Table 2 and Figures 2-4 that the composite ligand metal-organic framework material formed by using isophthalic acid and 3,5-pyridinedicarboxylic acid can maintain the water vapor adsorption rate. Under this condition, the temperature required for water vapor desorption is lowered and the rate of water vapor desorption is increased. In addition, since the raw material cost of 3,5-pyridinedicarboxylic acid is more than 90 times that of isophthalic acid, the metal-organic framework material (6) (that is, a metal that only uses 3,5-pyridinedicarboxylic acid as a ligand Compared with organic framework materials), the preparation cost of metal organic framework materials described in the present disclosure can be greatly reduced.

比較例3 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)(4.5mmol)、鄰苯二甲酸(o-phthalic acid)( 4.5mmol )、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與鄰苯二甲酸的莫耳比為1:1。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol)加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(8)。 Comparative Example 3 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4mmol), 3,5-pyridine-3,5-dicarboxylic acid (4.5mmol), ortho-benzene Diformic acid (o-phthalic acid) (4.5mmol), sodium hydroxide (18mmol) and 25 ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to phthalic acid was 1 :1. Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into powder to obtain metal organic framework material (8).

比較例4 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)( 4.5mmol )、對苯二甲酸(terephthalic acid)( 4.5mmol )、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與鄰苯二甲酸的莫耳比為1:1。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(9)。 Comparative Example 4 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4mmol), 3,5-pyridine-3,5-dicarboxylic acid (4.5mmol), p-benzene Dicarboxylic acid (terephthalic acid) (4.5mmol), sodium hydroxide (18mmol) and 25ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to phthalic acid was 1:1 . Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal-organic framework material (9).

比較例5 首先,將硫酸鋁(Al(SO 4) 3‧16H 2O)(3.4mmol)、2,6-吡啶二羧酸(pyridine-2,6-dicarboxylic acid)( 4.5mmol )、間苯二甲酸(isophthalic acid)( 4.5mmol )、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與鄰苯二甲酸的莫耳比為1:1。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(10)。 Comparative Example 5 First, aluminum sulfate (Al(SO 4 ) 3 ‧16H 2 O) (3.4mmol), 2,6-pyridine-2,6-dicarboxylic acid (4.5mmol), m-benzene Dicarboxylic acid (isophthalic acid) (4.5mmol), sodium hydroxide (18mmol) and 25ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to phthalic acid was 1:1 . Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal organic framework material (10).

接著,將比較例3-5所述金屬有機框架材料(8)-(10)於80℃之真空環境下烘乾2小時,以將水由金屬有機框架材料完全脫附。接著,將金屬有機框架材料放置於恆溫恆濕機中,並於25℃以及30% RH下放置120分鐘,讓金屬有機框架材料吸附水氣,並量測金屬有機框架材料的水氣吸附率,結果如表2所示。Next, the metal-organic framework materials (8)-(10) described in Comparative Examples 3-5 were dried in a vacuum environment at 80° C. for 2 hours, so as to completely desorb water from the metal-organic framework materials. Next, the metal organic framework material was placed in a constant temperature and humidity machine, and placed at 25°C and 30% RH for 120 minutes to allow the metal organic framework material to absorb water vapor, and the water vapor adsorption rate of the metal organic framework material was measured. The results are shown in Table 2.

表2   水氣吸附率 (water adsorption ratio) (%) (30% RH) 金屬有機框架材料(3) 31 金屬有機框架材料(8) 10 金屬有機框架材料(9) 11 金屬有機框架材料(10) 6 Table 2 Water adsorption ratio (%) (30% RH) Metal Organic Framework Materials (3) 31 Metal Organic Framework Materials (8) 10 Metal Organic Framework Materials (9) 11 Metal Organic Framework Materials (10) 6

由表2可得知,將間苯二甲酸置換成鄰苯二甲酸或對苯二甲酸時,所得之金屬有機框架材料在30% RH時具有較差的水氣吸附率。此外,將3,5-吡啶二羧酸置換成2,6-吡啶二羧酸時,所得之金屬有機框架材料在30% RH時具有較差的水氣吸附率。It can be seen from Table 2 that when isophthalic acid is replaced by phthalic acid or terephthalic acid, the obtained metal organic framework material has a poor water vapor adsorption rate at 30% RH. In addition, when 3,5-pyridinedicarboxylic acid was replaced by 2,6-pyridinedicarboxylic acid, the resulting metal-organic framework material had a poor water vapor adsorption rate at 30% RH.

由前述實施例中得知,本揭露所述之複合配體金屬有機框架材料,可在維持水氣吸附率的前提下,降低水氣脫附所需之溫度以及增加水氣脫附速率,達到在低濕度環境下快速吸濕及低溫下快速脫附的功效。From the foregoing examples, it can be known that the composite ligand metal-organic framework material described in this disclosure can reduce the temperature required for water vapor desorption and increase the water vapor desorption rate under the premise of maintaining the water vapor adsorption rate, to achieve The effect of rapid moisture absorption in low humidity environment and rapid desorption at low temperature.

實施例6 首先,將二氯氧化鋯(ZrOCl 2‧8H 2O)(6.75mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)( 4.5mmol )、間苯二甲酸(isophthalic acid)( 4.5mmol )、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與鄰苯二甲酸的莫耳比為1:1。接著,將鋁酸鈉水溶液(NaAlO 2)(2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(11)。 Example 6 First, zirconium oxychloride (ZrOCl 2 ‧8H 2 O) (6.75mmol), 3,5-pyridine-3,5-dicarboxylic acid (4.5mmol), isophthalic acid (isophthalic acid) (4.5mmol), sodium hydroxide (18mmol) and 25 ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to phthalic acid was 1:1. Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal organic framework material (11).

實施例7 首先,將硝酸鉻(Cr(NO 3) 3‧9H 2O)(3.4mmol)、3,5-吡啶二羧酸(pyridine-3,5-dicarboxylic acid)( 4.5mmol )、間苯二甲酸(isophthalic acid)( 4.5mmol )、氫氧化鈉(18mmol )以及25毫升的水加入一反應瓶中,其中3,5-吡啶二羧酸與鄰苯二甲酸的莫耳比為1:1。接著,將鋁酸鈉水溶液(NaAlO 2)( 2.3 mmol )加入反應瓶中,得到一組合物。接著,將所得組合物在125℃下均勻攪拌反應20小時。接著,讓反應冷卻至室溫後,得到一沉澱物。將上述沉澱物以水清洗並過濾得到一固體。接著,將所得之固體置於一烘箱內乾燥至隔夜,乾燥溫度約為80℃。乾燥後,將固體研磨成粉狀,得到金屬有機框架材料(12)。 Example 7 First, chromium nitrate (Cr(NO 3 ) 3 ‧9H 2 O) (3.4mmol), 3,5-pyridine-3,5-dicarboxylic acid (4.5mmol), m-benzene Dicarboxylic acid (isophthalic acid) (4.5mmol), sodium hydroxide (18mmol) and 25ml of water were added to a reaction flask, wherein the molar ratio of 3,5-pyridinedicarboxylic acid to phthalic acid was 1:1 . Next, sodium aluminate aqueous solution (NaAlO 2 ) (2.3 mmol ) was added into the reaction flask to obtain a composition. Next, the obtained composition was uniformly stirred and reacted at 125° C. for 20 hours. Then, after allowing the reaction to cool to room temperature, a precipitate was obtained. The above precipitate was washed with water and filtered to obtain a solid. Then, the obtained solid was dried overnight in an oven at a drying temperature of about 80°C. After drying, the solid was ground into a powder to obtain the metal-organic framework material (12).

接著,將實施例6-7所述有機框架材料(11)及(12)於80℃之真空環境下烘乾2小時,以將水由金屬有機框架材料完全脫附。接著,將金屬有機框架材料放置於恆溫恆濕機中,並於25℃以及30% RH下放置120分鐘,讓金屬有機框架材料吸附水氣,並量測金屬有機框架材料的水氣吸附率,結果如表3所示。Next, the organic framework materials (11) and (12) described in Examples 6-7 were dried in a vacuum environment at 80° C. for 2 hours, so as to completely desorb water from the metal organic framework materials. Next, the metal organic framework material was placed in a constant temperature and humidity machine, and placed at 25°C and 30% RH for 120 minutes to allow the metal organic framework material to absorb water vapor, and the water vapor adsorption rate of the metal organic framework material was measured. The results are shown in Table 3.

表3   水氣吸附率 (water adsorption ratio) (%) (30% RH) 金屬有機框架材料(11) 9.63 金屬有機框架材料(12) 11.04 table 3 Water adsorption ratio (%) (30% RH) Metal Organic Framework Materials (11) 9.63 Metal Organic Framework Materials (12) 11.04

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之請求項所界定者為準。Although the disclosure has been disclosed above with several embodiments, it is not intended to limit the disclosure, and anyone with ordinary knowledge in the technical field may make any changes and modifications without departing from the spirit and scope of the disclosure. , so the scope of protection of this disclosure should be defined by the appended claims.

100:吸附裝置 120:載體 140:吸附材料 100: adsorption device 120: carrier 140: Adsorbent material

第1圖為本揭露實施例所述吸附裝置之示意圖; 第2圖為本揭露實施例2-4及比較例1所述金屬有機框架材料在60℃下水氣脫附率與時間的關係圖; 第3圖為本揭露實施例2-4及比較例1所述金屬有機框架材料在70℃下水氣脫附率與時間的關係圖;以及 第4圖為本揭露實施例2-4及比較例1所述金屬有機框架材料在80℃下水氣脫附率與時間的關係圖。 Figure 1 is a schematic diagram of the adsorption device described in the embodiment of the present disclosure; Figure 2 is a graph showing the relationship between the moisture desorption rate and time at 60°C for the metal-organic framework materials described in Examples 2-4 and Comparative Example 1 of the present disclosure; Figure 3 is a graph showing the relationship between the moisture desorption rate and time at 70°C for the metal organic framework materials described in Examples 2-4 and Comparative Example 1 of the present disclosure; and FIG. 4 is a graph showing the relationship between the water vapor desorption rate and time at 80° C. of the metal-organic framework materials described in Examples 2-4 and Comparative Example 1 of the present disclosure.

100:吸附裝置 100: adsorption device

120:載體 120: carrier

140:吸附材料 140: Adsorbent material

Claims (24)

一種金屬有機框架材料,包括: 一第一配體,其中該第一配體係3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、或2,5-呋喃二甲酸; 一第二配體,其中該第二配體係間苯二甲酸、或5-羥基間苯二甲酸;以及 一金屬離子,其中該金屬離子係鋁離子、鉻離子、或鋯離子,其中該第一配體及該第二配體係與該金屬離子配位。 A metal organic framework material comprising: A first ligand, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2,5-dicarboxylic acid, or 2,5-furandicarboxylic acid; A second ligand, wherein the second ligand is isophthalic acid, or 5-hydroxyisophthalic acid; and A metal ion, wherein the metal ion is aluminum ion, chromium ion, or zirconium ion, wherein the first ligand and the second ligand coordinate with the metal ion. 如請求項1所述之金屬有機框架材料,其中該第一配體與該第二配體的的莫耳數為1:9至9:1。The metal organic framework material according to claim 1, wherein the molar ratio of the first ligand and the second ligand is 1:9 to 9:1. 如請求項1所述之金屬有機框架材料,其中該金屬離子的莫耳數與該第一配體及該第二配體的莫耳總數之比為1:2至2:1。The metal organic framework material according to claim 1, wherein the molar ratio of the metal ion to the total molar ratio of the first ligand and the second ligand is 1:2 to 2:1. 如請求項1所述之金屬有機框架材料,其中該金屬有機框架材料的氮鋁比大於0並小於0.34。The metal organic framework material according to claim 1, wherein the nitrogen to aluminum ratio of the metal organic framework material is greater than 0 and less than 0.34. 一種金屬有機框架材料的製備方法,包括: 提供一組合物,其中該組合物包括一第一配體、一第二配體、一金屬化合物、及一溶劑,其中該第一配體係3,5-吡啶二羧酸、1H-吡咯-2,5-二甲酸、2,5-呋喃二甲酸、或上述之組合、以及第二配體係間苯二甲酸、5-羥基間苯二甲酸、或上述之組合;以及 對該組合物進行一加熱步驟以使該第一配體以及第二配體與該金屬化合物反應,獲得請求項1所述金屬有機框架材料。 A method for preparing a metal organic framework material, comprising: A composition is provided, wherein the composition includes a first ligand, a second ligand, a metal compound, and a solvent, wherein the first ligand is 3,5-pyridinedicarboxylic acid, 1H-pyrrole-2 , 5-dicarboxylic acid, 2,5-furandicarboxylic acid, or a combination of the above, and the second ligand system isophthalic acid, 5-hydroxyisophthalic acid, or a combination of the above; and A heating step is performed on the composition to react the first ligand and the second ligand with the metal compound to obtain the metal organic framework material described in Claim 1. 如請求項5所述之金屬有機框架材料的製備方法,其中該第一配體與該第二配體的的莫耳數為1:9至9:1。The method for preparing a metal-organic framework material according to claim 5, wherein the molar ratio between the first ligand and the second ligand is 1:9 to 9:1. 如請求項5所述之金屬有機框架材料的製備方法,其中該金屬離子的莫耳數與該第一配體及該第二配體的莫耳總數之比為1:2至2:1。The method for preparing a metal organic framework material according to claim 5, wherein the ratio of the mole number of the metal ion to the total number of moles of the first ligand and the second ligand is 1:2 to 2:1. 如請求項5所述之金屬有機框架材料的製備方法,其中該金屬化合物係鋁鹽、鉻鹽、或鋯鹽。The method for preparing a metal organic framework material according to claim 5, wherein the metal compound is an aluminum salt, a chromium salt, or a zirconium salt. 如請求項5所述之金屬有機框架材料的製備方法,其中該金屬化合物係硝酸鋁、硫酸鋁、氯化鋁、磷酸鋁、硝酸鉻、磷酸鉻、硝酸鋯、磷酸鋯、或氯氧化鋯。The method for preparing metal-organic framework materials according to claim 5, wherein the metal compound is aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum phosphate, chromium nitrate, chromium phosphate, zirconium nitrate, zirconium phosphate, or zirconium oxychloride. 如請求項5所述之金屬有機框架材料的製備方法,其中該金屬化合物在該組合物中的初始濃度為約0.05mol/L至0.20mol/L之間。The method for preparing a metal organic framework material according to claim 5, wherein the initial concentration of the metal compound in the composition is between about 0.05 mol/L and 0.20 mol/L. 如請求項5所述之金屬有機框架材料的製備方法,其中該溶劑包括有機溶劑、水、或上述之組合。The method for preparing a metal organic framework material according to claim 5, wherein the solvent includes an organic solvent, water, or a combination thereof. 如請求項11所述之金屬有機框架材料的製備方法,其中該有機溶劑包括N,N-二甲基甲醯胺、N,N-二乙基甲醯胺、N,N-二甲基乙醯胺、或上述之組合。The preparation method of the metal organic framework material as described in claim 11, wherein the organic solvent includes N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylformamide Amide, or a combination of the above. 如請求項11所述之金屬有機框架材料的製備方法,當溶劑為水時,該組合物更包括一鹼金族氫氧化物。According to the preparation method of the metal organic framework material described in claim 11, when the solvent is water, the composition further includes an alkali metal hydroxide. 如請求項13所述之金屬有機框架材料的製備方法,其中該鹼金族氫氧化物包括氫氧化鋰(lithium hydroxide)、氫氧化鈉(sodium hydroxide)、氫氧化鉀(potassium hydroxide)、或上述之組合。The method for preparing a metal organic framework material as claimed in item 13, wherein the alkali metal hydroxide comprises lithium hydroxide, sodium hydroxide, potassium hydroxide, or the above-mentioned combination. 如請求項13所述之金屬有機框架材料的製備方法,其中該鹼金族氫氧化物與該第一配體及該第二配體的莫耳總數之比為3至1。The method for preparing a metal organic framework material according to claim 13, wherein the molar ratio of the alkali metal hydroxide to the total number of the first ligand and the second ligand is 3 to 1. 如請求項5所述之金屬有機框架材料的製備方法,其中該組合物更包括一鋁酸鹽。The method for preparing a metal organic framework material as claimed in claim 5, wherein the composition further includes an aluminate. 如請求項16所述之金屬有機框架材料的製備方法,其中該鋁酸鹽包括鋁酸鋰(lithium aluminate)、鋁酸鈉(sodium aluminate)、鋁酸鉀(potassium aluminate)、鋁酸鎂(magnesium aluminate)、鋁酸鈣(calcium aluminate)、或上述之組合。The preparation method of the metal organic framework material as described in claim item 16, wherein the aluminate comprises lithium aluminate (lithium aluminate), sodium aluminate (sodium aluminate), potassium aluminate (potassium aluminate), magnesium aluminate (magnesium aluminum), calcium aluminate, or a combination of the above. 如請求項16所述之金屬有機框架材料的製備方法,其中該鋁酸鹽在該組合物中的初始濃度為約0.05 mol/L至0.20 mol/L之間。The method for preparing a metal-organic framework material according to claim 16, wherein the initial concentration of the aluminate in the composition is between about 0.05 mol/L and 0.20 mol/L. 如請求項5所述之金屬有機框架材料的製備方法,其中該組合物更包括酒精。The method for preparing a metal organic framework material according to claim 5, wherein the composition further includes alcohol. 如請求項5所述之金屬有機框架材料的製備方法,其中該加熱步驟之溫度為約100℃至150℃之間。The method for preparing a metal organic framework material as claimed in claim 5, wherein the temperature of the heating step is between about 100°C and 150°C. 如請求項5所述之金屬有機框架材料的製備方法,其中該加熱步驟之時間為約1小時至66小時之間。The preparation method of the metal organic framework material as claimed in claim 5, wherein the time of the heating step is about 1 hour to 66 hours. 一種吸附裝置,包括: 一載體;以及 一吸附材料置於該載體之上,其中該吸附材料係如請求項第1項所述之金屬有機框架材料。 An adsorption device comprising: a carrier; and An adsorption material is placed on the carrier, wherein the adsorption material is a metal organic framework material as described in item 1 of the claim. 如請求項22所述之吸附裝置,其中該吸附裝置在15%RH及25℃的環境放置120分鐘後其對水的吸附率可達28%至31%。The adsorption device as claimed in claim 22, wherein the adsorption rate of the adsorption device for water can reach 28% to 31% after being placed in an environment of 15% RH and 25°C for 120 minutes. 如請求項22所述之吸附裝置,其中該吸附裝置在80℃的環境放置60分鐘後其對水的脫附率可達95%至100%。The adsorption device according to claim 22, wherein the desorption rate of the adsorption device for water can reach 95% to 100% after being placed in an environment of 80°C for 60 minutes.
TW110145998A 2021-12-09 2021-12-09 Metal organic frameworks material and method for preparing the same, and adsorption device employing the same TW202323259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110145998A TW202323259A (en) 2021-12-09 2021-12-09 Metal organic frameworks material and method for preparing the same, and adsorption device employing the same
CN202210027404.4A CN116253892A (en) 2021-12-09 2022-01-11 Metal organic frame material, preparation method thereof and adsorption device comprising metal organic frame material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110145998A TW202323259A (en) 2021-12-09 2021-12-09 Metal organic frameworks material and method for preparing the same, and adsorption device employing the same

Publications (1)

Publication Number Publication Date
TW202323259A true TW202323259A (en) 2023-06-16

Family

ID=86681378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110145998A TW202323259A (en) 2021-12-09 2021-12-09 Metal organic frameworks material and method for preparing the same, and adsorption device employing the same

Country Status (2)

Country Link
CN (1) CN116253892A (en)
TW (1) TW202323259A (en)

Also Published As

Publication number Publication date
CN116253892A (en) 2023-06-13

Similar Documents

Publication Publication Date Title
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
Jeremias et al. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications
Waitschat et al. Synthesis of M-UiO-66 (M= Zr, Ce or Hf) employing 2, 5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties
Fröhlich et al. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H
US11224856B2 (en) Adsorbents comprising organic-inorganic hybrid nanoporous materials for sorption of water or alcohol and use thereof
Canivet et al. Water adsorption in MOFs: fundamentals and applications
Ehrenmann et al. Water adsorption characteristics of MIL‐101 for heat‐transformation applications of MOFs
EP4023656A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
Wang et al. A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption
TWI725486B (en) Metal organic frameworks material and method for preparing the same, and adsorption device employing the same
KR101253985B1 (en) Porous organic-inorganic hybrid materials, method for preparing thereof, adsorbant comprising them and application thereof
Cabello et al. A rapid microwave-assisted synthesis of a sodium–cadmium metal–organic framework having improved performance as a CO 2 adsorbent for CCS
JP6808172B2 (en) Manufacturing method of adsorbent material
US11045785B2 (en) Metal-organic framework, method for preparing the same, and adsorption device employing the same
JP7099419B2 (en) Metal-organic framework
KR20120021899A (en) Porous organic-inorganic hybrid materials, method for preparing thereof, adsorbant comprising them and application thereof
Wang et al. A new microporous metal-organic framework with a novel trinuclear nickel cluster for selective CO2 adsorption
CN106076242A (en) A kind of MOFs bimetallic adsorbing material (Fe, Co) BTC and preparation method thereof
Wang et al. N-Rich porous carbon with high CO 2 capture capacity derived from polyamine-Incorporated metal–Organic framework materials
JP3545678B2 (en) Oxygen gas absorbent, method for producing the same, and method for absorbing oxygen gas
CN111825848B (en) Metal organic structure
TW202323259A (en) Metal organic frameworks material and method for preparing the same, and adsorption device employing the same
Gandhi et al. A microporous, amino acid functionalized Zn (ii)-organic framework nanoflower for selective CO 2 capture and solvent encapsulation
Cheng et al. Two new MOFs based on 5-((4-carboxypyridin-2-yl) oxy) isophthalic acid displaying unique selective CO 2 gas adsorption and magnetic properties
KR102304623B1 (en) Porous adsorbent and method for producing the same