TW202322766A - Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit - Google Patents

Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit Download PDF

Info

Publication number
TW202322766A
TW202322766A TW112106166A TW112106166A TW202322766A TW 202322766 A TW202322766 A TW 202322766A TW 112106166 A TW112106166 A TW 112106166A TW 112106166 A TW112106166 A TW 112106166A TW 202322766 A TW202322766 A TW 202322766A
Authority
TW
Taiwan
Prior art keywords
ultrasonic
image
dimensional
characteristic pattern
unit
Prior art date
Application number
TW112106166A
Other languages
Chinese (zh)
Inventor
劉浩澧
崔博翔
李騏兆
Original Assignee
浩宇生醫股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩宇生醫股份有限公司 filed Critical 浩宇生醫股份有限公司
Priority to TW112106166A priority Critical patent/TW202322766A/en
Publication of TW202322766A publication Critical patent/TW202322766A/en

Links

Images

Abstract

An ultrasonic imaging system includes an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit. The processing unit is electrically connected to the storage unit, the ultrasonic probe, the image capture unit, and the display unit. The processing unit is configured to generate a three-dimensional ultrasonic image according to a plurality of two-dimensional ultrasonic images respectively obtained by the ultrasonic probe at a plurality of inclination angles, and then the three-dimensional ultrasonic image and the three-dimensional image of a test object are spatially correctly superimposed and displayed on the display unit according to the first characteristic pattern and the second characteristic pattern of a real-time image captured by the image capture unit.

Description

超音波影像系統Ultrasonic Imaging System

本發明是有關於一種影像系統,特別是指一種超音波影像系統。The present invention relates to an imaging system, in particular to an ultrasonic imaging system.

最早的醫療用途超音波是在超音波探頭內僅具有一組發射晶體及接收器,以偵測反射波振幅而獲得一個一維信號。之後,藉由晶體的線性切割,組成一維陣列的排列,而能進行一個方向性的電子相位聚焦,進而建構出一個斷面的二維影像,此即為目前普遍於臨床上進行深部組織的診斷的超音波技術。The earliest medical ultrasound has only a set of transmitting crystals and receivers in the ultrasound probe to detect the amplitude of the reflected wave and obtain a one-dimensional signal. Afterwards, through the linear cutting of the crystal, a one-dimensional array arrangement can be formed, and a directional electronic phase focusing can be performed, and then a two-dimensional image of a section can be constructed. Ultrasound technology for diagnosis.

然而,由於目前的超音波影像普遍只能產生斷面的二維影像。當要進行三維影像的重建時,習知的第一種技術是藉由機械掃描帶動超音波陣列式探頭,以依序擷取不同位置的斷面影像,再利用數值運算方法進行資訊的三維重建。習知的第二種技術是藉由一個二維切割的超音波陣列探頭,依序激發不同排的超音波探頭,以取得不同位置的斷面影像。由於第一種技術在機械設計上的高度複雜性,導致探頭的價格相當昂貴,而第二種技術的二維超音波陣列探頭的價格相較於第一種更是更加地昂貴。因此,是否存有其他更具成本優勢且設計更簡單的超音波影像系統,以將二維的超音波影像重建為三維影像便成為一個待解決的問題。此外,如何將重建的超音波影像與其他更解析度結構性影像如MRI、CT等進行空間疊合顯示,供臨床醫師做更佳的診斷,也必須在技術上能夠克服。However, the current ultrasonic images generally can only produce cross-sectional two-dimensional images. When it comes to reconstruction of 3D images, the first known technology is to use mechanical scanning to drive an ultrasonic array probe to sequentially capture cross-sectional images at different positions, and then use numerical calculation methods to perform 3D reconstruction of information . The second known technique is to use a two-dimensionally cut ultrasonic array probe to sequentially excite different rows of ultrasonic probes to obtain cross-sectional images at different positions. Due to the high complexity of the mechanical design of the first technique, the price of the probe is quite expensive, while the price of the two-dimensional ultrasonic array probe of the second technique is even more expensive than that of the first technique. Therefore, whether there are other ultrasonic imaging systems with more cost advantages and simpler design for reconstructing 2D ultrasonic images into 3D images has become a problem to be solved. In addition, how to spatially superimpose the reconstructed ultrasound image with other higher-resolution structural images such as MRI, CT, etc., so that clinicians can make a better diagnosis must also be overcome technically.

因此,本發明的目的,即在提供一種用於重建三維影像的超音波影像系統,以及與其他多種影像在空間中精確疊合顯示。Therefore, the object of the present invention is to provide an ultrasonic image system for reconstructing a three-dimensional image, and to accurately superimpose and display it with other images in space.

於是,根據本發明之一觀點,提供一種超音波影像系統,包含一超音波探頭及一處理單元。Therefore, according to an aspect of the present invention, an ultrasonic imaging system is provided, including an ultrasonic probe and a processing unit.

該超音波探頭受控制以在不同的多個傾斜角時產生多個對應的超音波發射信號,並接收對應的多個超音波反射信號,該等傾斜角是位於一個擺動平面上。The ultrasonic probe is controlled to generate a plurality of corresponding ultrasonic transmission signals and receive corresponding plurality of ultrasonic reflection signals at different inclination angles, and the inclination angles are located on a swing plane.

該處理單元電連接該超音波探頭。當該超音波探頭在每一該傾斜角時,該處理單元控制該超音波探頭產生該等超音波發射信號之其中一者,並接收對應其中該者的該超音波反射信號,以根據該超音波反射信號產生對應的一個二維超音波影像。該處理單元再根據該等二維超音波影像及對應的該等傾斜角,產生一個三維超音波影像。The processing unit is electrically connected to the ultrasonic probe. When the ultrasonic probe is at each inclination angle, the processing unit controls the ultrasonic probe to generate one of the ultrasonic transmission signals, and receives the ultrasonic reflection signal corresponding to the one of them, so as to The sound wave reflection signal generates a corresponding two-dimensional ultrasonic image. The processing unit then generates a three-dimensional ultrasonic image according to the two-dimensional ultrasonic images and the corresponding inclination angles.

在一些實施態樣中,該超音波影像系統還包含一慣性感測器,設置於該超音波探頭上,並偵測三個軸向的加速度分量,且該慣性感測器具有與該超音波探頭相同的該傾斜角。該處理單元電連接該慣性感測器,當該超音波探頭在每一該傾斜角時,該處理單元接收並儲存該三個軸向的該等加速度分量,並根據該慣性感測器所產生的該等三個軸向的加速度分量,計算分別對應的該等傾斜角。In some embodiments, the ultrasonic imaging system further includes an inertial sensor, which is arranged on the ultrasonic probe, and detects three axial acceleration components, and the inertial sensor has a The tilt angle of the probe is the same. The processing unit is electrically connected to the inertial sensor, and when the ultrasonic probe is at each inclination angle, the processing unit receives and stores the acceleration components of the three axes, and according to the acceleration components generated by the inertial sensor The acceleration components of the three axes are calculated to calculate the corresponding inclination angles respectively.

在一些實施態樣中,該超音波影像系統適用於一待測表面,該待測表面包含一法向量。其中,該三個軸向的加速度分量彼此兩兩互相垂直,且分別是一AX軸加速度分量、一AY軸加速度分量、及一AZ軸加速度分量,每一該傾斜角是一重力加速度G相對於該AZ軸加速度分量的方向的夾角。每一該傾斜角φ、該AX軸加速度分量、該AY軸加速度分量、及該AZ軸加速度分量之間的關係式如下:

Figure 02_image001
Figure 02_image003
Figure 02_image005
, 其中,G是該重力加速度,A1是該AX軸加速度分量,A2是該AY軸加速度分量,A3是該AZ軸加速度分量。 In some implementation aspects, the ultrasonic imaging system is suitable for a surface to be measured, and the surface to be measured includes a normal vector. Wherein, the acceleration components of the three axes are mutually perpendicular to each other, and are respectively an acceleration component of the AX axis, an acceleration component of the AY axis, and an acceleration component of the AZ axis, and each of the inclination angles is a gravity acceleration G relative to The included angle of the direction of the AZ-axis acceleration component. The relationship between each of the inclination angle φ, the AX-axis acceleration component, the AY-axis acceleration component, and the AZ-axis acceleration component is as follows:
Figure 02_image001
,
Figure 02_image003
,
Figure 02_image005
, wherein, G is the gravitational acceleration, A1 is the AX-axis acceleration component, A2 is the AY-axis acceleration component, and A3 is the AZ-axis acceleration component.

在一些實施態樣中,其中,分別對應該等二維超音波影像的多個實際物體平面是分別與該擺動平面呈垂直,每一該實際物體平面的延伸平面相交成一直線。In some implementation aspects, the plurality of actual object planes respectively corresponding to the equivalent two-dimensional ultrasonic images are respectively perpendicular to the swing plane, and the extension planes of each of the actual object planes intersect to form a straight line.

在一些實施態樣中,其中,該等傾斜角之其中最大者大於其中最小者,且其中最大者的絕對值與其中最小者的絕對值相等。In some implementation aspects, the largest of the inclination angles is greater than the smallest, and the absolute value of the largest is equal to the absolute value of the smallest.

在另一些實施態樣中,其中,每一該二維超音波影像包含一最大寬度W及一最大高度h,該三維超音波影像包含一最大長度L、該最大寬度W、及一最大高度H,該最大高度H、該最大長度L、及該最大高度h之間的關係式如下:

Figure 02_image007
Figure 02_image009
, R是每一該實際物體平面的延伸平面所相交成的該直線與每一該實際物體平面的距離,φ cri是該等傾斜角之其中最大者的絕對值,R大於等於0。 In other implementations, each of the two-dimensional ultrasonic images includes a maximum width W and a maximum height h, and the three-dimensional ultrasonic image includes a maximum length L, the maximum width W, and a maximum height H , the relationship between the maximum height H, the maximum length L, and the maximum height h is as follows:
Figure 02_image007
,
Figure 02_image009
, R is the distance between the straight line intersected by the extension planes of each actual object plane and each actual object plane, φ cri is the absolute value of the largest of the inclination angles, and R is greater than or equal to 0.

在一些實施態樣中,其中,每一該二維超音波影像包含一個二維座標系(x,y),在該二維座標的x方向上的影像最大寬度等於該最大寬度W,在該二維座標的y方向上的影像最大高度等於該最大高度h,該三維超音波影像包含一個三維座標系(X,Y,Z),該三維座標系(X,Y,Z)及該二維座標系(x,y)之間的關係式如下,

Figure 02_image011
Figure 02_image013
Figure 02_image015
。 In some implementation aspects, each of the two-dimensional ultrasonic images includes a two-dimensional coordinate system (x, y), and the maximum width of the image in the x direction of the two-dimensional coordinates is equal to the maximum width W, in the The maximum height of the image in the y direction of the two-dimensional coordinates is equal to the maximum height h, the three-dimensional ultrasonic image includes a three-dimensional coordinate system (X, Y, Z), the three-dimensional coordinate system (X, Y, Z) and the two-dimensional The relationship between the coordinate system (x, y) is as follows,
Figure 02_image011
,
Figure 02_image013
,
Figure 02_image015
.

在另一些實施態樣中,該超音波影像系統還包含一顯示單元,電連接該處理單元,以顯示該三維超音波影像。該處理單元還能夠根據該三維超音波影像作任意方向的剖面,以產生一斷面影像,且再根據該斷面影像作影像處理,產生至少一功能性影像,以藉由該顯示單元同時顯示該斷面影像、該至少一功能性影像、該三維超音波影像、該等二維超音波影像之其中至少一者。In other embodiments, the ultrasonic imaging system further includes a display unit electrically connected to the processing unit to display the three-dimensional ultrasonic image. The processing unit can also make a cross-section in any direction according to the three-dimensional ultrasonic image to generate a cross-sectional image, and then perform image processing according to the cross-sectional image to generate at least one functional image, which can be simultaneously displayed by the display unit At least one of the cross-sectional image, the at least one functional image, the three-dimensional ultrasound image, and the two-dimensional ultrasound images.

在另一些實施態樣中,其中,每一該二維超音波影像是一種B-Mode(Brightness Mode)影像。In some other implementation aspects, each of the two-dimensional ultrasound images is a B-Mode (Brightness Mode) image.

於是,根據本發明之另一觀點,提供一種超音波影像系統,適用於一待測物,並包含一超音波探頭、一第一特徵圖案、一第二特徵圖案、一儲存單元、一影像擷取單元、一顯示單元、及一處理單元。Therefore, according to another aspect of the present invention, an ultrasonic imaging system is provided, which is suitable for an object under test and includes an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, and an image capture unit. fetching unit, a display unit, and a processing unit.

該超音波探頭受控制以在不同的多個傾斜角時產生多個對應的超音波發射信號,並接收對應的多個超音波反射信號,該等傾斜角是位於一個擺動平面上。該第一特徵圖案設置於該超音波探頭上,且用於作影像辨識分析而產生對應該第一特徵圖案的一第一空間方位。該第二特徵圖案設置於該待測物上,並與該待測物之間保持固定的相對位置,且用於作影像辨識分析而產生對應該第二特徵圖案的一第二空間方位。The ultrasonic probe is controlled to generate a plurality of corresponding ultrasonic transmission signals and receive corresponding plurality of ultrasonic reflection signals at different inclination angles, and the inclination angles are located on a swing plane. The first characteristic pattern is set on the ultrasonic probe, and is used for image recognition and analysis to generate a first spatial orientation corresponding to the first characteristic pattern. The second characteristic pattern is arranged on the object to be tested, and maintains a fixed relative position with the object to be tested, and is used for image recognition and analysis to generate a second spatial orientation corresponding to the second characteristic pattern.

該儲存單元儲存相關於該待測物的一個三維影像、該待測物與該第二特徵圖案在空間上的一第二相對位置關係、及藉由該超音波探頭偵測所產生的一個二維超音波影像與該第一特徵圖案在空間上的一第一相對位置關係。該影像擷取單元擷取包含該待測物、該第一特徵圖案、及該第二特徵圖案的一即時影像。The storage unit stores a three-dimensional image related to the object under test, a second relative positional relationship between the object under test and the second characteristic pattern in space, and a two-dimensional image generated by the detection of the ultrasonic probe. A first relative positional relationship between the three-dimensional ultrasound image and the first characteristic pattern in space. The image capturing unit captures a real-time image including the object under test, the first characteristic pattern, and the second characteristic pattern.

該處理單元電連接該儲存單元、該超音波探頭、該影像擷取單元、及該顯示單元。當該超音波探頭在每一該傾斜角時,該處理單元控制該超音波探頭產生該等超音波發射信號之其中一者,並接收對應其中該者的該超音波反射信號,以根據該超音波反射信號產生對應的該二維超音波影像,該處理單元再根據該等二維超音波影像及對應的該等傾斜角,產生一個三維超音波影像。The processing unit is electrically connected to the storage unit, the ultrasonic probe, the image capture unit, and the display unit. When the ultrasonic probe is at each inclination angle, the processing unit controls the ultrasonic probe to generate one of the ultrasonic transmission signals, and receives the ultrasonic reflection signal corresponding to the one of them, so as to The sound wave reflection signal generates the corresponding two-dimensional ultrasonic image, and the processing unit generates a three-dimensional ultrasonic image according to the two-dimensional ultrasonic image and the corresponding inclination angles.

該處理單元根據該即時影像的該第一特徵圖案獲得該第一空間方位,再根據該第一相對位置關係,獲得該三維超音波影像在空間中的一超音波影像位置,並根據該即時影像的該第二特徵圖案獲得該第二空間方位,再根據該第二相對位置關係,獲得該待測物在空間中的一待測物位置,且根據該超音波影像位置及該待測物位置,將該三維超音波影像及該待測物的該三維影像在空間上正確疊合並顯示於該顯示單元。The processing unit obtains the first spatial orientation according to the first characteristic pattern of the real-time image, and then obtains an ultrasonic image position of the three-dimensional ultrasonic image in space according to the first relative positional relationship, and obtains an ultrasonic image position of the three-dimensional ultrasonic image according to the real-time image Obtain the second spatial orientation of the second characteristic pattern, and then obtain the position of the object under test in space according to the second relative positional relationship, and obtain the position of the object under test according to the position of the ultrasonic image and the position of the object under test , the three-dimensional ultrasonic image and the three-dimensional image of the object under test are spatially correctly superimposed and displayed on the display unit.

在一些實施態樣中,該超音波影像系統還包含一慣性感測器,設置於該超音波探頭上,並偵測三個軸向的加速度分量,且該慣性感測器具有與該超音波探頭相同的該傾斜角,該處理單元電連接該慣性感測器,當該超音波探頭在每一該傾斜角時,該處理單元接收並儲存該三個軸向的該等加速度分量,並根據該慣性感測器所產生的該等三個軸向的加速度分量,計算分別對應的該等傾斜角。In some embodiments, the ultrasonic imaging system further includes an inertial sensor, which is arranged on the ultrasonic probe, and detects three axial acceleration components, and the inertial sensor has a The same inclination angle of the probe, the processing unit is electrically connected to the inertial sensor, when the ultrasonic probe is at each inclination angle, the processing unit receives and stores the acceleration components of the three axes, and according to The acceleration components of the three axes generated by the inertial sensor are used to calculate the corresponding inclination angles respectively.

在一些實施態樣中,其中,該待測物的該三維影像是一種解剖式醫學影像,並包含電腦斷層掃描(Computerized tomography,CT)影像及磁振造影(Magnetic resonance imaging,MRI)影像之其中一者。In some embodiments, the three-dimensional image of the object under test is an anatomical medical image, and includes a computerized tomography (CT) image and a magnetic resonance imaging (MRI) image. one.

在另一些實施態樣中,其中,該第一特徵圖案及該第二特徵圖案之其中每一者包含多個一維條碼、多個二維條碼、或可供影像辨識分析以獲得方位與角度的一圖案。In other embodiments, each of the first characteristic pattern and the second characteristic pattern includes a plurality of one-dimensional barcodes, a plurality of two-dimensional barcodes, or can be used for image recognition analysis to obtain orientation and angle of a pattern.

在另一些實施態樣中,其中,該影像擷取單元設置於該超音波探頭上。In some other implementation aspects, wherein, the image capture unit is disposed on the ultrasonic probe.

於是,根據本發明之另一觀點,提供一種超音波影像系統,適用於一待測物,並包含一超音波探頭、一第一特徵圖案、一第二特徵圖案、一儲存單元、一影像擷取單元、一顯示單元、及一處理單元。Therefore, according to another aspect of the present invention, an ultrasonic imaging system is provided, which is suitable for an object under test and includes an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, and an image capture unit. fetching unit, a display unit, and a processing unit.

該超音波探頭受控制以產生多個超音波發射信號,並接收對應的多個超音波反射信號。該第一特徵圖案設置於該超音波探頭上,且用於作影像辨識分析而產生對應該第一特徵圖案的一第一空間方位。該第二特徵圖案設置於該待測物上,並與該待測物之間保持固定的相對位置,且用於作影像辨識分析而產生對應該第二特徵圖案的一第二空間方位。The ultrasonic probe is controlled to generate multiple ultrasonic transmission signals and receive corresponding multiple ultrasonic reflection signals. The first characteristic pattern is set on the ultrasonic probe, and is used for image recognition and analysis to generate a first spatial orientation corresponding to the first characteristic pattern. The second characteristic pattern is arranged on the object to be tested, and maintains a fixed relative position with the object to be tested, and is used for image recognition and analysis to generate a second spatial orientation corresponding to the second characteristic pattern.

該儲存單元儲存相關於該待測物的一個三維影像、該待測物與該第二特徵圖案在空間上的一第二相對位置關係、及藉由該超音波探頭偵測所產生的一個二維超音波影像與該第一特徵圖案在空間上的一第一相對位置關係。該影像擷取單元擷取包含該待測物、該第一特徵圖案、及該第二特徵圖案的一即時影像。The storage unit stores a three-dimensional image related to the object under test, a second relative positional relationship between the object under test and the second characteristic pattern in space, and a two-dimensional image generated by the detection of the ultrasonic probe. A first relative positional relationship between the three-dimensional ultrasound image and the first characteristic pattern in space. The image capturing unit captures a real-time image including the object under test, the first characteristic pattern, and the second characteristic pattern.

該處理單元電連接該儲存單元、該超音波探頭、該影像擷取單元、及該顯示單元,並控制該超音波探頭產生該等超音波發射信號之其中一者,且接收對應其中該者的該超音波反射信號,以根據該超音波反射信號產生對應的該二維超音波影像。The processing unit is electrically connected to the storage unit, the ultrasonic probe, the image capture unit, and the display unit, and controls the ultrasonic probe to generate one of the ultrasonic emission signals, and receives the corresponding signal The ultrasonic reflection signal is used to generate the corresponding two-dimensional ultrasonic image according to the ultrasonic reflection signal.

該處理單元根據該即時影像的該第一特徵圖案獲得該第一空間方位,再根據該第一相對位置關係,獲得該二維超音波影像在空間中的一超音波影像位置,並根據該即時影像的該第二特徵圖案獲得該第二空間方位,再根據該第二相對位置關係,獲得該待測物在空間中的一待測物位置,且根據該超音波影像位置及該待測物位置,將該二維超音波影像及該待測物的該三維影像在空間上正確疊合並顯示於該顯示單元。The processing unit obtains the first spatial orientation according to the first characteristic pattern of the real-time image, and then obtains an ultrasonic image position of the two-dimensional ultrasonic image in space according to the first relative positional relationship, and obtains an ultrasonic image position of the two-dimensional ultrasonic image according to the real-time The second characteristic pattern of the image obtains the second spatial orientation, and then obtains a position of the object under test in space according to the second relative positional relationship, and obtains a position of the object under test according to the position of the ultrasonic image and the object under test position, the two-dimensional ultrasonic image and the three-dimensional image of the object under test are spatially correctly superimposed and displayed on the display unit.

在一些實施態樣中,其中,該待測物的該三維影像是一種解剖式醫學影像,並包含電腦斷層掃描(Computerized tomography,CT)影像及磁振造影(Magnetic resonance imaging,MRI)影像之其中一者。In some embodiments, the three-dimensional image of the object under test is an anatomical medical image, and includes a computerized tomography (CT) image and a magnetic resonance imaging (MRI) image. one.

在另一些實施態樣中,其中,該第一特徵圖案及該第二特徵圖案之其中每一者包含多個一維條碼、多個二維條碼、或可供影像辨識分析以獲得方位與角度的一圖案。In other embodiments, each of the first characteristic pattern and the second characteristic pattern includes a plurality of one-dimensional barcodes, a plurality of two-dimensional barcodes, or can be used for image recognition analysis to obtain orientation and angle of a pattern.

在另一些實施態樣中,其中,該影像擷取單元設置於該超音波探頭上。In some other implementation aspects, wherein, the image capture unit is disposed on the ultrasonic probe.

本發明的功效在於:藉由該超音波探頭在不同的該等傾斜角時,使得該處理單元獲得對應的該等二維超音波影像,且該等不同的傾斜角都位於該擺動平面上。該處理單元再藉由該等二維超音波影像及對應的該等傾斜角,產生該三維超音波影像。再者,藉由該影像擷取單元所擷取的該即時影像,使得該處理單元據以獲得該待測物的該三維影像與該三維超音波影像(或與該二維超音波影像)在空間中的正確相對位置,而能夠將其正確疊合以顯示於該顯示單元,進而實現一種兼顧高解度 (即該三維影像)與即時性(即超音波影像)的疊合影像,以方便在臨床上進行治療程序的導引。The effect of the present invention is: when the ultrasonic probe is at different inclination angles, the processing unit can obtain the corresponding two-dimensional ultrasonic images, and the different inclination angles are all located on the swing plane. The processing unit generates the three-dimensional ultrasonic image by using the two-dimensional ultrasonic images and the corresponding inclination angles. Furthermore, the real-time image captured by the image capture unit enables the processing unit to obtain the 3D image of the object under test according to the distance between the 3D ultrasonic image (or the 2D ultrasonic image) The correct relative position in space can be correctly superimposed and displayed on the display unit, thereby realizing a superimposed image that takes into account both high resolution (that is, the three-dimensional image) and immediacy (that is, the ultrasonic image), so as to facilitate Guidance of therapeutic procedures performed clinically.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numerals.

參閱圖1,本發明超音波影像系統100之一第一實施例,適用於一待測表面9,並包含一超音波探頭1、一慣性感測器(Inertial measurement unit,IMU)2、一處理單元3、及一顯示單元4。該待測表面9包含一法向量91,且例如是人體或動物的皮膚表面,但不以此為限。Referring to Fig. 1, a first embodiment of an ultrasonic imaging system 100 of the present invention is applicable to a surface to be measured 9, and includes an ultrasonic probe 1, an inertial sensor (Inertial measurement unit, IMU) 2, a processing Unit 3, and a display unit 4. The surface to be measured 9 includes a normal vector 91 and is, for example, the skin surface of a human body or an animal, but not limited thereto.

該慣性感測器2設置於該超音波探頭1上,並偵測三個軸向的加速度分量,且該慣性感測器2具有與該超音波探頭1相同的一傾斜角。更詳細地說,該三個軸向的加速度分量彼此兩兩互相垂直,且分別是一A X軸加速度分量、一A Y軸加速度分量、及一A Z軸加速度分量。該傾斜角是一重力加速度G相對於該A Z軸加速度分量的方向的夾角。該傾斜角φ、該A X軸加速度分量、該A Y軸加速度分量、及該A Z軸加速度分量之間的關係式如下列公式(1)~(3),也就是說,藉由公式(1)與(2),或公式(1)與(3)即能計算出該傾斜角。

Figure 02_image001
…(1)
Figure 02_image003
…(2)
Figure 02_image005
…(3) 其中,G是該重力加速度,A 1是該A X軸加速度分量,A 2是該A Y軸加速度分量,A 3是該A Z軸加速度分量。 The inertial sensor 2 is disposed on the ultrasonic probe 1 and detects three axial acceleration components, and the inertial sensor 2 has the same inclination angle as the ultrasonic probe 1 . More specifically, the acceleration components of the three axes are perpendicular to each other two by two, and are respectively an A X- axis acceleration component, an A Y- axis acceleration component, and an A Z- axis acceleration component. The inclination angle is an included angle between a gravitational acceleration G relative to the direction of the A Z- axis acceleration component. The relationship between the inclination angle φ, the A X- axis acceleration component, the A Y- axis acceleration component, and the A Z- axis acceleration component is shown in the following formulas (1)~(3), that is to say, by the formula ( 1) and (2), or the formulas (1) and (3) can calculate the inclination angle.
Figure 02_image001
…(1)
Figure 02_image003
…(2)
Figure 02_image005
...(3) Wherein, G is the gravitational acceleration, A 1 is the A X- axis acceleration component, A 2 is the A Y- axis acceleration component, and A 3 is the A Z- axis acceleration component.

該處理單元3例如是一電腦主機的處理器、一數位信號處理器(DSP)、或其他具備電腦運算能力的處理晶片等等,但都不以此為限。該處理單元3電連接該慣性感測器2及該超音波探頭1。當該超音波探頭1在每一不同的該傾斜角時,該處理單元3接收並儲存該三個軸向的加速度分量,且控制該超音波探頭1產生一超音波發射信號,並接收對應的一超音波反射信號。該處理單元3再根據該超音波反射信號產生對應的一個二維超音波影像,該二維超音波影像即是現有的超音波探頭1所產生的一種B-Mode(Brightness Mode)影像。該處理單元3再根據所產生的該等三個軸向的加速度分量,計算分別對應的該等傾斜角,且根據該等二維超音波影像及對應的該等傾斜角,產生一個三維超音波影像。The processing unit 3 is, for example, a processor of a computer host, a digital signal processor (DSP), or other processing chips with computer computing capabilities, etc., but not limited thereto. The processing unit 3 is electrically connected to the inertial sensor 2 and the ultrasonic probe 1 . When the ultrasonic probe 1 is at each different inclination angle, the processing unit 3 receives and stores the three axial acceleration components, and controls the ultrasonic probe 1 to generate an ultrasonic transmission signal, and receives the corresponding An ultrasonic reflection signal. The processing unit 3 then generates a corresponding two-dimensional ultrasonic image according to the ultrasonic reflection signal, and the two-dimensional ultrasonic image is a B-Mode (Brightness Mode) image generated by the existing ultrasonic probe 1 . The processing unit 3 then calculates the corresponding inclination angles according to the generated acceleration components of the three axes, and generates a three-dimensional ultrasonic wave according to the two-dimensional ultrasonic images and the corresponding inclination angles. image.

參閱圖1、圖2、與圖3,圖2是一立體圖,圖3是圖2的一側視圖,都是示例性地說明該超音波探頭1在三個不同的該傾斜角時,即三個傾斜角分別等於φ min、0、φ max時,該處理單元3所產生的該三個二維超音波影像分別對應的三個實際物體平面P1、P2、P3的位置關係。另外要特別強調的是:為方便說明起見,圖2與圖3僅繪出三個實際物體平面P1、P2、P3,實際上,該超音波探頭1能夠偵測其他數量的多個實際物體平面。另外,再參閱圖4,圖4示例性地說明該二維超音波影像B1在該實際物體平面P1的示意圖,同樣地,圖4也能夠說明其他的二個二維超音波影像分別在該等實際物體平面P2、P3的示意圖。 Referring to Fig. 1, Fig. 2, and Fig. 3, Fig. 2 is a perspective view, and Fig. 3 is a side view of Fig. 2, both of which illustrate the ultrasonic probe 1 at three different inclination angles, that is, three When the inclination angles are equal to φ min , 0 and φ max respectively, the positional relationship of the three actual object planes P1 , P2 and P3 respectively corresponding to the three 2D ultrasonic images generated by the processing unit 3 . In addition, it should be emphasized that: for the convenience of explanation, only three actual object planes P1, P2, P3 are drawn in Fig. 2 and Fig. 3, in fact, the ultrasonic probe 1 can detect a plurality of other actual objects flat. In addition, referring to FIG. 4 again, FIG. 4 exemplarily illustrates the schematic diagram of the two-dimensional ultrasonic image B1 on the actual object plane P1. Similarly, FIG. Schematic illustration of the actual object planes P2, P3.

更詳細地說,該等傾斜角(即φ min、0、φ max)是位於同一個擺動平面上(如圖3的圖面的平面),且當該傾斜角等於0度時,該慣性感測器2所偵測的該A Z軸加速度分量的方向與該法向量91平行。該等傾斜角分別對應該等二維超音波影像的該等實際物體平面是分別與該擺動平面呈垂直,且每一該實際物體平面的延伸平面相交成一直線L1。更精確地說,每一該實際物體平面的延伸平面所相交成的該直線L1與每一該實際物體平面的距離都是距離R。該直線L1位於空間中的實際位置,即是該超音波探頭1在不同的該等傾斜角作偵測時,該超音波探頭1的晶體的所在位置,該晶體即是發射該等超音波發射信號的發射器。 In more detail, the inclination angles (ie φ min , 0, φ max ) are located on the same swing plane (as shown in Figure 3), and when the inclination angle is equal to 0 degrees, the inertial The direction of the A Z axis acceleration component detected by the detector 2 is parallel to the normal vector 91. The inclination angles correspond to the actual object planes of the two-dimensional ultrasonic images respectively being perpendicular to the swing plane, and the extension planes of each of the actual object planes intersect to form a straight line L1. More precisely, the distance R between the straight line L1 formed by the extension plane of each actual object plane and each actual object plane is the distance R. The actual position of the straight line L1 in space is the position of the crystal of the ultrasonic probe 1 when the ultrasonic probe 1 detects at different inclination angles, and the crystal emits the ultrasonic waves. Signal transmitter.

該等傾斜角之其中最大者大於其中最小者,且其中最大者的絕對值與其中最小者的絕對值相等。舉例來說,在本實施例中,該等傾斜角之其中最大者(即φ max)等於60度,該等傾斜角之其中最小者(即φ min)等於-60度,但不以此範圍為限。 The largest of these inclination angles is greater than the smallest, and the absolute value of the largest is equal to the absolute value of the smallest. For example, in this embodiment, the largest of these inclination angles (ie φ max ) is equal to 60 degrees, and the smallest of these inclination angles (ie φ min ) is equal to -60 degrees, but not within this range limit.

每一該二維超音波影像包含一最大寬度W及一最大高度h。該三維超音波影像包含一最大長度L、該最大寬度W、及一最大高度H。該最大高度H、該最大長度L、及該最大高度h之間的關係式如下列的公式(4)、(5)。

Figure 02_image007
…(4)
Figure 02_image017
…(5) 其中,φ cri是該等傾斜角之其中最大者的絕對值,在本實施例中為60度,R大於等於0。舉例來說,當該超音波探頭1的該晶體與該待測表面9的距離等於零時,則R等於0。 Each of the 2D ultrasound images includes a maximum width W and a maximum height h. The 3D ultrasonic image includes a maximum length L, a maximum width W, and a maximum height H. The relationship among the maximum height H, the maximum length L, and the maximum height h is as the following formulas (4) and (5).
Figure 02_image007
…(4)
Figure 02_image017
...(5) Wherein, φ cri is the absolute value of the largest of the inclination angles, which is 60 degrees in this embodiment, and R is greater than or equal to 0. For example, when the distance between the crystal of the ultrasonic probe 1 and the surface 9 to be tested is equal to zero, then R is equal to 0.

每一該二維超音波影像包含一個二維座標系(x,y),在該二維座標的x方向上的影像最大寬度等於該最大寬度W,在該二維座標的y方向上的影像最大高度等於該最大高度h。該三維超音波影像包含一個三維座標系(X,Y,Z),以圖2的該實際物體平面P2為例,該二維座標的x方向即為X2,該二維座標的y方向即為Y2,該三維座標系的三個方向分別為X1、Y1、Z1。該三維座標系(X,Y,Z)及該二維座標系(x,y)之間的關係式如下列的公式(6)~(8)。

Figure 02_image011
…(6)
Figure 02_image013
…(7)
Figure 02_image015
…(8) Each of the two-dimensional ultrasonic images includes a two-dimensional coordinate system (x, y), the maximum width of the image in the x direction of the two-dimensional coordinates is equal to the maximum width W, and the image in the y direction of the two-dimensional coordinates The maximum height is equal to this maximum height h. The three-dimensional ultrasonic image includes a three-dimensional coordinate system (X, Y, Z). Taking the actual object plane P2 in FIG. 2 as an example, the x direction of the two-dimensional coordinate is X2, and the y direction of the two-dimensional coordinate is Y2, the three directions of the three-dimensional coordinate system are X1, Y1, and Z1 respectively. The relationship between the three-dimensional coordinate system (X, Y, Z) and the two-dimensional coordinate system (x, y) is as follows formulas (6)-(8).
Figure 02_image011
...(6)
Figure 02_image013
...(7)
Figure 02_image015
…(8)

另外要特別補充說明的是:在本實施例中,該超音波探頭1是藉由一使用者手持操作而在該等傾斜角的不同位置,而在其他的實施例中,該超音波探頭1也可以是藉由某些特定設計的製具或載具來更穩定地移動於該等不同的傾斜角的位置之間。此外,在本實施例中,每一該傾斜角是藉由該處理單元3根據對應的該三個軸向的加速度分量作計算而獲得,而在其他的實施例中,每一該傾斜角也可以是藉由該慣性感測器2根據對應的該三個軸向的加速度分量作計算而獲得。In addition, it should be specially added that: in this embodiment, the ultrasonic probe 1 is operated at different positions of the inclination angles by a user, while in other embodiments, the ultrasonic probe 1 It is also possible to move more stably between positions with different inclination angles by means of certain specially designed tools or carriers. In addition, in this embodiment, each of the inclination angles is calculated by the processing unit 3 according to the corresponding acceleration components of the three axes, and in other embodiments, each of the inclination angles is also obtained It may be obtained by calculating the inertial sensor 2 according to the corresponding acceleration components of the three axes.

再者,在其他的實施例中,該超音波影像系統也可以省略該慣性感測器,而改用其他的方式偵測該超音波探頭的該傾斜角。舉例來說,該超音波系統可以還包含單一個攝影機,該超音波探頭上設置有一條碼或其他特定圖案,該攝影機利用影像辨識的技術辨識該條碼或該特定圖案,以獲得該超音波探頭的一姿態角(Euler angles,或稱歐拉角),進而獲得該傾斜角;或者,該超音波系統可以還包含二個攝影機,利用兩個攝影機之間的角度差距重建該超音波探頭在三維空間之中的位置,進而獲得該姿態角與該傾斜角;或者,該超音波影像系統還包含一電磁定位儀(Electromagnetic tracker,EM tracker),利用磁場感應的方式辨識三軸方位,進而獲得該姿態角與該傾斜角。Furthermore, in other embodiments, the ultrasonic imaging system may also omit the inertial sensor, and use other methods to detect the inclination angle of the ultrasonic probe. For example, the ultrasonic system may further include a single camera, and the ultrasonic probe is provided with a barcode or other specific patterns, and the camera uses image recognition technology to identify the barcode or the specific pattern to obtain the ultrasonic probe. An attitude angle (Euler angles, or Euler angles), and then obtain the tilt angle; or, the ultrasonic system can also include two cameras, and use the angle difference between the two cameras to reconstruct the ultrasonic probe in three-dimensional space position, and then obtain the attitude angle and the tilt angle; or, the ultrasonic imaging system also includes an electromagnetic tracker (Electromagnetic tracker, EM tracker), which uses magnetic field induction to identify the three-axis orientation, and then obtains the attitude angle and the inclination angle.

該顯示單元4例如是一螢幕,並電連接該處理單元3,以顯示該三維超音波影像,或同時顯示該三維超音波影像與該等二維超音波影像。該處理單元3還能夠根據該三維超音波影像作任意方向的剖面,以產生至少一斷面影像,且再根據該至少一斷面影像作影像處理,以藉由該顯示單元4同時顯示該斷面影像及影像處理的結果。The display unit 4 is, for example, a screen, and is electrically connected to the processing unit 3 to display the 3D ultrasound image, or simultaneously display the 3D ultrasound image and the 2D ultrasound images. The processing unit 3 can also make a cross-section in any direction according to the three-dimensional ultrasonic image to generate at least one cross-sectional image, and then perform image processing according to the at least one cross-sectional image, so as to simultaneously display the cross-sectional image through the display unit 4 Surface images and the results of image processing.

此外,該處理單元3根據所接收的該等超音波反射信號,還能夠據以計算而產生其他的功能性影像,如熵(Entropy)參數影像、都普勒(Doppler)變數影像、應變(Strain)變數影像、Nakagami變數影像等等。舉例來說,都普勒變數影像可顯示血流資訊,應變變數影像可提供組織進行楊氏係數(Young’s modulus)量化以進行組織彈性(Elasticity)鑑別,Nakagami變數以及熵參數像影像可提供組織排列結構上的規則性分析。該顯示單元4還能夠將該等功能性影像之其中至少一者,與該三維超音波影像、該等二維超音波影像、及該至少一斷面影像之其中少一種作同時顯示,以提供更豐富且有效的超音波影像資訊。In addition, the processing unit 3 can also calculate and generate other functional images based on the received ultrasonic reflection signals, such as entropy (Entropy) parameter images, Doppler (Doppler) variable images, strain (Strain) ) variable image, Nakagami variable image, etc. For example, Doppler variable images can display blood flow information, strain variable images can provide tissue for Young's modulus quantification for tissue elasticity (Elasticity) identification, Nakagami variable and entropy parameter images can provide tissue alignment Structural regularity analysis. The display unit 4 can also simultaneously display at least one of the functional images and at least one of the three-dimensional ultrasonic images, the two-dimensional ultrasonic images, and the at least one cross-sectional image, so as to provide Richer and more effective ultrasound image information.

參閱圖5,本發明超音波影像系統200之一第二實施例,適用於一待測物,並包含一超音波探頭、一第一特徵圖案81、一第二特徵圖案82、一儲存單元6、一影像擷取單元7、一顯示單元、及一處理單元5。該待測物例如是一人體的腹部。該超音波探頭受控制以產生多個超音波發射信號,並接收對應的多個超音波反射信號。Referring to FIG. 5, a second embodiment of an ultrasonic imaging system 200 of the present invention is suitable for an object to be tested and includes an ultrasonic probe, a first characteristic pattern 81, a second characteristic pattern 82, and a storage unit 6 , an image capture unit 7 , a display unit, and a processing unit 5 . The object to be tested is, for example, the abdomen of a human body. The ultrasonic probe is controlled to generate multiple ultrasonic transmission signals and receive corresponding multiple ultrasonic reflection signals.

該第一特徵圖案81設置於該超音波探頭上,且用於作影像辨識分析而產生對應該第一特徵圖案81的一第一空間方位V1。該第二特徵圖案82,設置於該待測物上,並與該待測物之間保持固定的相對位置,且用於作影像辨識分析而產生對應該第二特徵圖案82的一第二空間方位V2。在圖5中,該第一空間方位V1及該第二空間方位V2都是以一個法向量的形式作示意表示,並不是指該第一空間方位V1及該第二空間方位V2僅包括法向量的訊息。The first characteristic pattern 81 is disposed on the ultrasonic probe, and is used for image recognition analysis to generate a first spatial orientation V1 corresponding to the first characteristic pattern 81 . The second characteristic pattern 82 is arranged on the object to be tested, and maintains a fixed relative position with the object to be tested, and is used for image recognition analysis to generate a second space corresponding to the second characteristic pattern 82 Azimuth V2. In Fig. 5, the first spatial orientation V1 and the second spatial orientation V2 are schematically represented in the form of a normal vector, which does not mean that the first spatial orientation V1 and the second spatial orientation V2 only include normal vectors message.

該第一特徵圖案81及該第二特徵圖案82之其中每一者包含多個一維條碼、多個二維條碼、或可供影像辨識分析以獲得方位與角度的一圖案。參閱圖2,在本實施例中,該第一特徵圖案81是以四個正方形的二維條碼為例,該第二特徵圖案82是分別設置在兩邊且位於同一平面的八個二維條碼為例。另外,為方便說明起見,圖2中的該第一特徵圖案81及該第二特徵圖案82僅簡單分別以四個正方形及八個正方形示意表示,實際上,在每一個正方形中都具有預先設計的二維條碼。Each of the first characteristic pattern 81 and the second characteristic pattern 82 includes a plurality of one-dimensional barcodes, a plurality of two-dimensional barcodes, or a pattern that can be used for image recognition analysis to obtain orientation and angle. Referring to FIG. 2, in this embodiment, the first characteristic pattern 81 is an example of four square two-dimensional barcodes, and the second characteristic pattern 82 is eight two-dimensional barcodes respectively arranged on both sides and on the same plane. example. In addition, for convenience of description, the first characteristic pattern 81 and the second characteristic pattern 82 in FIG. Designed 2D barcode.

該影像擷取單元7擷取包含該待測物、該第一特徵圖案81、及該第二特徵圖案82的一即時影像,也就是說,該影像擷取單元7所擷取的一視野96,包含該待測物、該第一特徵圖案81、及該第二特徵圖案82。在本實施例中,該影像擷取單元7設是置於該超音波探頭上,而在其他實施例中,該影像擷取單元7也可以不設置在該超音波探頭上,只要該即時影像能夠包含該待測物、該第一特徵圖案81、及該第二特徵圖案82。此外,該影像擷取單元7所包括的攝影鏡頭的數量,是根據所對應提供的該即時影像藉由已知的影像辨識與分析技術能夠判斷該第一空間方位V1及該第二空間方位V2來決定,該第一空間方位V1及該第二空間方位V2包含該第一特徵圖案81及該第二特徵圖案82在空間中的角度及方位,即相對於該影像擷取單元7的位置與角度,或在空間中以一個預設參考點的絕對位置與角度。The image capturing unit 7 captures a real-time image including the object under test, the first characteristic pattern 81, and the second characteristic pattern 82, that is, a field of view 96 captured by the image capturing unit 7 , including the object under test, the first characteristic pattern 81 , and the second characteristic pattern 82 . In this embodiment, the image capture unit 7 is set on the ultrasonic probe, and in other embodiments, the image capture unit 7 may not be set on the ultrasonic probe, as long as the real-time image It can include the object under test, the first characteristic pattern 81 , and the second characteristic pattern 82 . In addition, the number of photographing lenses included in the image capturing unit 7 is based on the real-time images provided correspondingly, and the first spatial orientation V1 and the second spatial orientation V2 can be determined by known image recognition and analysis techniques. To determine, the first spatial orientation V1 and the second spatial orientation V2 include the angle and orientation of the first characteristic pattern 81 and the second characteristic pattern 82 in space, that is, the position and orientation relative to the image capture unit 7 Angle, or the absolute position and angle in space with a preset reference point.

再舉例來說,該即時影像包含該第一特徵圖案81及該第二特徵圖案82所包含的每一個完整的該二維條碼,每一該二維條碼包括已知的至少三個辨識點,且同樣地被包含於該即時影像中,每一該辨識點例如是在對應的該二維條碼的邊緣或邊點。當在該即時影像中每一該二維條碼的該至少三個辨識點被該處理單元5辨識成功之後,該處理單元5利用該影像擷取單元7及已知或預設的空間物理關係辨識每一該辨識點的三維空間的遠近關係,並給予對應的座標,則每一該辨識點將被賦予一特定的空間座標。For another example, the real-time image includes each complete two-dimensional barcode included in the first characteristic pattern 81 and the second characteristic pattern 82, and each two-dimensional barcode includes at least three known identification points, And also included in the real-time image, each of the recognition points is, for example, at the edge or side point of the corresponding two-dimensional barcode. After the at least three identification points of each two-dimensional barcode in the real-time image are successfully identified by the processing unit 5, the processing unit 5 uses the image capture unit 7 and the known or preset spatial physical relationship to identify The distance relationship in the three-dimensional space of each identification point, and give the corresponding coordinates, then each identification point will be given a specific spatial coordinate.

該處理單元5再根據任二個該辨識點的該空間座標,計算對應的一空間向量,且每一該二維條碼的該至少三個辨識點將對應產生只少兩個相異的該空間向量,且每一該空間向量都位在同一個該二維條碼的平面上。該處理單元5針對每一該二維條碼,計算其中的兩個該空間向量的外積,或者,計算任二個該空間向量的外積且再求取多組外積的平均值,進而獲得對應該二維條碼的一空間方位。這裡要特別補充說明的是:每一該二維條碼的其中一個該辨識點可以設置在該二維條碼的中心點,則根據對應其中該辨識點的二個該空間向量所產生的該空間方位將直接對應該二維條碼所在位置的中心點。或者,每一該二維條碼的實際面積尺寸足夠小,且該等辨識點的數量夠多(即該等空間向量的該等外積的數量夠多),使得該等外積的平均值所對應的該空間方位夠趨近於該二維條碼的中心點。該處理單元5再針對該第一特徵圖案81(或該第二特徵圖案82)的所有該二維條碼的所有該空間方位,計算其平均值,則能獲得該第一空間方位V1(或該第二空間方位V2)。The processing unit 5 then calculates a corresponding space vector according to the space coordinates of any two identification points, and the at least three identification points of each two-dimensional barcode will correspondingly produce only two different space vectors , and each space vector is located on the same plane of the two-dimensional barcode. For each two-dimensional barcode, the processing unit 5 calculates the outer product of two of the space vectors, or calculates the outer product of any two of the space vectors and calculates the average value of multiple sets of outer products to obtain the corresponding two One-dimensional orientation of the barcode. It should be specially supplemented here that one of the identification points of each two-dimensional barcode can be set at the center point of the two-dimensional barcode, then the spatial orientation generated according to the two space vectors corresponding to the identification point It will directly correspond to the center point where the 2D barcode is located. Or, the actual size of each two-dimensional barcode is small enough, and the number of the identification points is large enough (that is, the number of the outer products of the space vectors is large enough), so that the average value of the outer products corresponds to The spatial orientation is close to the central point of the two-dimensional barcode. The processing unit 5 calculates the average value of all the spatial orientations of all the two-dimensional barcodes of the first characteristic pattern 81 (or the second characteristic pattern 82), and then can obtain the first spatial orientation V1 (or the Second spatial orientation V2).

該儲存單元6儲存相關於該待測物的一個三維影像、該待測物與該第二特徵圖案82在空間上的一第二相對位置關係、及藉由該超音波探頭偵測所產生的一個二維超音波影像83與該第一特徵圖案81在空間上的一第一相對位置關係。該待測物的該三維影像是一種解剖式醫學影像,並具備高解析度的特性,例如是一種電腦斷層掃描(Computerized tomography,CT)影像、一種磁振造影(Magnetic resonance imaging,MRI)影像、或其他類似影像所組成。The storage unit 6 stores a three-dimensional image related to the object to be tested, a second relative positional relationship between the object to be tested and the second characteristic pattern 82 in space, and the detection results generated by the ultrasonic probe. A first relative positional relationship between a two-dimensional ultrasonic image 83 and the first characteristic pattern 81 in space. The three-dimensional image of the object under test is an anatomical medical image with high-resolution characteristics, such as a computerized tomography (CT) image, a magnetic resonance imaging (MRI) image, or other similar images.

由於該第一特徵圖案81是設置於該超音波探頭上,當醫療人員手持該超音波探頭移動時,該第一特徵圖案81與藉由該超音波探頭所偵測的該二維超音波影像83的相對位置都是保持不變,即該第一相對位置關係是保持固定。類似地,該第二特徵圖案82是設置於該待測物上,且與該待測物的相對位置也是保持不變,及該第二相對位置關係也是保持固定。因此,該第一相對位置關係及該第二相對位置關係能夠利用已知技術預先設計或計算而獲得。Since the first characteristic pattern 81 is set on the ultrasonic probe, when the medical staff moves with the ultrasonic probe in hand, the first characteristic pattern 81 and the two-dimensional ultrasonic image detected by the ultrasonic probe The relative positions of 83 remain unchanged, that is, the first relative position relationship remains fixed. Similarly, the second characteristic pattern 82 is disposed on the object under test, and its relative position to the object under test remains unchanged, and the second relative positional relationship also remains fixed. Therefore, the first relative positional relationship and the second relative positional relationship can be pre-designed or calculated using known techniques.

該處理單元5電連接該儲存單元6、該超音波探頭、該影像擷取單元7、及該顯示單元,並控制該超音波探頭產生該等超音波發射信號之其中一者,且接收對應其中該者的該超音波反射信號,以根據該超音波反射信號產生對應的該二維超音波影像83。The processing unit 5 is electrically connected to the storage unit 6, the ultrasonic probe, the image capture unit 7, and the display unit, and controls the ultrasonic probe to generate one of the ultrasonic transmission signals, and receives the corresponding one of them. The ultrasonic reflection signal is used to generate the corresponding two-dimensional ultrasonic image 83 according to the ultrasonic reflection signal.

該處理單元5根據該即時影像的該第一特徵圖案81獲得該第一空間方位V1,再根據該第一相對位置關係,獲得該二維超音波影像83在空間中的一超音波影像位置,並根據該即時影像的該第二特徵圖案82獲得該第二空間方位V2,再根據該第二相對位置關係,獲得該待測物在空間中的一待測物位置,且根據該超音波影像位置及該待測物位置,將該二維超音波影像83及該待測物的該三維影像在空間上正確疊合並顯示於該顯示單元。The processing unit 5 obtains the first spatial orientation V1 according to the first characteristic pattern 81 of the real-time image, and then obtains an ultrasonic image position of the two-dimensional ultrasonic image 83 in space according to the first relative positional relationship, And obtain the second spatial orientation V2 according to the second characteristic pattern 82 of the real-time image, and then obtain a position of the object under test in space according to the second relative positional relationship, and according to the ultrasonic image position and the position of the object under test, the two-dimensional ultrasonic image 83 and the three-dimensional image of the object under test are spatially correctly superimposed and displayed on the display unit.

再舉例來說,該處理單元5不但能夠辨識該第一空間方位V1及該第二空間方位V2,且還能夠辨識出該第一空間方位V1及該第二空間方位V2的一起始位置的座標。由於該第二空間方位V2是由八個二維條碼(即本實施例)所獲得,且每一該二維條碼的該空間座標(即實際距離和位置)為已知,因此,該處理單元5即能夠利用該第二空間方位V2的該等二維條碼的該等空間座標與該等空間向量的對應關係,例如是一個空間轉換矩陣或一個比例因子,而能夠獲得有關該第一空間方位V1及該第二空間方位V2的所有空間座標(即實際距離和位置)。同樣地,該處理單元5也能夠再藉由固定的該第一相對位置關係(或該第二相對位置關係),而獲得該待測物位置(或該待測物位置)。For another example, the processing unit 5 can not only identify the first spatial orientation V1 and the second spatial orientation V2, but also can identify the coordinates of a starting position of the first spatial orientation V1 and the second spatial orientation V2 . Since the second spatial orientation V2 is obtained by eight two-dimensional barcodes (i.e. this embodiment), and the spatial coordinates (i.e. actual distance and position) of each of the two-dimensional barcodes are known, therefore, the processing unit 5. That is, the corresponding relationship between the spatial coordinates of the two-dimensional barcodes of the second spatial orientation V2 and the spatial vectors, such as a spatial transformation matrix or a scaling factor, can be used to obtain information about the first spatial orientation. All spatial coordinates (ie actual distance and position) of V1 and the second spatial orientation V2. Similarly, the processing unit 5 can also obtain the position of the object under test (or the position of the object under test) through the fixed first relative position relationship (or the second relative position relationship).

再參閱圖6,圖6是一個示意圖,表示該顯示單元所顯示的在空間上正確疊合的該二維超音波影像83及該三維影像。其中,該三維影像包含該待測物(即腹部92)的肋骨93、肝臟94、及皮膚95。另外要特別說明的是:該三維影像是將所包含的多張電腦斷層掃描(CT)影像或多張磁振造影(MRI)影像,先經過影像分析及特徵擷取後,進行三維的影像呈現效果。在本實施例中,特徵擷取即是指影像中的肋骨93、肝臟94、及皮膚95的位置與三維輪廓。Referring to FIG. 6 again, FIG. 6 is a schematic diagram showing the two-dimensional ultrasonic image 83 and the three-dimensional image displayed on the display unit and correctly superimposed in space. Wherein, the three-dimensional image includes ribs 93 , liver 94 , and skin 95 of the object under test (ie, abdomen 92 ). In addition, it should be noted that the three-dimensional image is a three-dimensional image presentation of multiple computerized tomography (CT) images or multiple magnetic resonance imaging (MRI) images after image analysis and feature extraction. Effect. In this embodiment, the feature extraction refers to the positions and three-dimensional contours of the ribs 93 , the liver 94 , and the skin 95 in the image.

另外,在其他實施例中,該超音波影像系統200還能夠包含一第三特徵圖案及一手術器械,如穿刺針、電燒針等,該第三特徵圖案與該第一特徵圖案81相似,但設置於該手術器械上,則該處理單元5能夠藉由該即時影像所包含的該第三特徵圖案,獲得一第三空間方位,進而將對應該手術器械在空間上正確疊合地顯示於該顯示單元。In addition, in other embodiments, the ultrasonic imaging system 200 can also include a third characteristic pattern and a surgical instrument, such as a puncture needle, an electrocautery needle, etc., the third characteristic pattern is similar to the first characteristic pattern 81, However, if it is installed on the surgical instrument, the processing unit 5 can obtain a third spatial orientation through the third characteristic pattern included in the real-time image, and then display the corresponding surgical instrument in a spatially correct overlapping manner. the display unit.

再者,在該第二實施例中,該處理單元5藉由該超音波探頭產生該二維超音波影像83,而在其他的實施例中,該超音波探頭及該處理單元5也可以具有與該第一實施例運作方式相同的部分,或者,該超音波影像系統200還包含與該第一實施例相同的該慣性感測器,使得該處理單元5根據該第一實施例的該等二維超音波影像及對應的該等傾斜角,產生一個三維超音波影像,並將該三維超音波影像取代該二維超音波影像,以正確疊合地顯示於該顯示單元。Furthermore, in the second embodiment, the processing unit 5 generates the two-dimensional ultrasonic image 83 through the ultrasonic probe, and in other embodiments, the ultrasonic probe and the processing unit 5 may also have The parts that operate in the same way as the first embodiment, or, the ultrasonic imaging system 200 also includes the same inertial sensor as the first embodiment, so that the processing unit 5 according to the first embodiment The two-dimensional ultrasonic image and the corresponding inclination angles generate a three-dimensional ultrasonic image, and the three-dimensional ultrasonic image is replaced by the two-dimensional ultrasonic image to be displayed on the display unit correctly.

綜上所述,藉由該慣性感測器設置於該超音波探頭以偵測該超音波探頭的該傾斜角,使得該超音波探頭在不同的該等傾斜角作偵測,且該等傾斜角符合簡單地限制條件下,該處理單元能夠根據該等二維超音波影像及該等傾斜角,計算而產生該三維超音波影像。如此一來,不但能夠輕易地使用在已普及的中低階超音波影像系統上,更是實現一種設計簡單又計算快速的超音波影像系統。再者,藉由該影像擷取單元所擷取的該即時影像,使得該處理單元據以獲得該待測物的該三維影像與該三維超音波影像(或與該二維超音波影像)在空間中的正確相對位置,而能夠將其正確疊合以顯示於該顯示單元,進而實現一種兼顧高解度 (即該三維影像)與即時性(即超音波影像)的疊合影像,以方便在臨床上進行治療程序的導引,故確實能達成本發明的目的。In summary, by setting the inertial sensor on the ultrasonic probe to detect the inclination angle of the ultrasonic probe, the ultrasonic probe is detected at different inclination angles, and the inclination The processing unit can calculate and generate the three-dimensional ultrasonic image according to the two-dimensional ultrasonic images and the inclination angles if the angle meets the simple restriction condition. In this way, not only can it be easily used in the popular low-end ultrasonic imaging system, but also realize an ultrasonic imaging system with simple design and fast calculation. Furthermore, the real-time image captured by the image capture unit enables the processing unit to obtain the 3D image of the object under test according to the distance between the 3D ultrasonic image (or the 2D ultrasonic image) The correct relative position in space can be correctly superimposed and displayed on the display unit, thereby realizing a superimposed image that takes into account both high resolution (that is, the three-dimensional image) and immediacy (that is, the ultrasonic image), so as to facilitate Carry out the guidance of treatment procedure clinically, so can really reach the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

100、200:超音波影像系統 1:超音波探頭 2:慣性感測器 3:處理單元 4:顯示單元 5:處理單元 6:儲存單元 7:影像擷取單元 81:第一特徵圖案 82:第二特徵圖案 83:二維超音波影像 9:待測表面 91:法向量 92:腹部 93:肋骨 94:肝臟 95:皮膚 96:視野 H:最大高度 L:最大長度 L1:直線 B1:二維超音波影像 R:距離 P1、P2、P3:實際物體平面 X1、X2:方向 Y1、Y2:方向 Z1:方向 φ max、φ min:傾斜角 V1:第一空間方位 V2:第二空間方位 100, 200: Ultrasonic imaging system 1: Ultrasonic probe 2: Inertial sensor 3: Processing unit 4: Display unit 5: Processing unit 6: Storage unit 7: Image capture unit 81: First characteristic pattern 82: Second Two characteristic pattern 83: two-dimensional ultrasonic image 9: surface to be measured 91: normal vector 92: abdomen 93: rib 94: liver 95: skin 96: field of view H: maximum height L: maximum length L1: straight line B1: two-dimensional ultrasound Sound wave image R: distance P1, P2, P3: actual object plane X1, X2: direction Y1, Y2: direction Z1: direction φ max , φ min : tilt angle V1: first spatial orientation V2: second spatial orientation

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一示意圖,說明本發明超音波影像系統的一第一實施例; 圖2是一立體圖,說明該第一實施例的多個二維超音波影像所分別對應的多個實際物體平面; 圖3是一側視圖,輔助圖2說明該等實際物體平面之間的關係; 圖4是一示意圖,輔助圖3說明其中一個二維超音波影像; 圖5是一示意圖,說明本發明超音波影像系統的一第二實施例;及 圖6是一示意圖,說明該第二實施例的一個二維超音波影像及一個三維影像的疊合結果。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a schematic diagram illustrating a first embodiment of the ultrasonic imaging system of the present invention; FIG. 2 is a perspective view illustrating a plurality of actual object planes corresponding to a plurality of two-dimensional ultrasonic images of the first embodiment; Fig. 3 is a side view, assisting Fig. 2 to illustrate the relationship between these actual object planes; FIG. 4 is a schematic diagram, assisting FIG. 3 to illustrate one of the two-dimensional ultrasound images; Fig. 5 is a schematic diagram illustrating a second embodiment of the ultrasonic imaging system of the present invention; and FIG. 6 is a schematic diagram illustrating the superposition result of a 2D ultrasonic image and a 3D image of the second embodiment.

200:超音波影像系統 200: Ultrasonic imaging system

1:超音波探頭 1: Ultrasonic probe

4:顯示單元 4: Display unit

5:處理單元 5: Processing unit

6:儲存單元 6: storage unit

7:影像擷取單元 7: Image capture unit

81:第一特徵圖案 81: The first characteristic pattern

82:第二特徵圖案 82: Second characteristic pattern

92:腹部 92: abdomen

96:視野 96: Vision

V1:第一空間方位 V1: first space orientation

V2:第二空間方位 V2: Second space orientation

Claims (5)

一種超音波影像系統,適用於一待測物,並包含: 一超音波探頭,受控制以在不同的多個傾斜角時產生多個對應的超音波發射信號,並接收對應的多個超音波反射信號,該等傾斜角是位於一個擺動平面上; 一第一特徵圖案,設置於該超音波探頭上,且用於作影像辨識分析而產生對應該第一特徵圖案的一第一空間方位; 一第二特徵圖案,設置於該待測物上,並與該待測物之間保持固定的相對位置,且用於作影像辨識分析而產生對應該第二特徵圖案的一第二空間方位; 一儲存單元,儲存相關於該待測物的一個三維影像、該待測物與該第二特徵圖案在空間上的一第二相對位置關係、及藉由該超音波探頭偵測所產生的一個二維超音波影像與該第一特徵圖案在空間上的一第一相對位置關係; 一影像擷取單元,擷取包含該待測物、該第一特徵圖案、及該第二特徵圖案的一即時影像; 一顯示單元;及 一處理單元,電連接該儲存單元、該超音波探頭、該影像擷取單元、及該顯示單元,當該超音波探頭在每一該傾斜角時,該處理單元控制該超音波探頭產生該等超音波發射信號之其中一者,並接收對應其中該者的該超音波反射信號,以根據該超音波反射信號產生對應的該二維超音波影像,該處理單元再根據該等二維超音波影像及對應的該等傾斜角,產生一個三維超音波影像, 該處理單元根據該即時影像的該第一特徵圖案獲得該第一空間方位,再根據該第一相對位置關係,獲得該三維超音波影像在空間中的一超音波影像位置,並根據該即時影像的該第二特徵圖案獲得該第二空間方位,再根據該第二相對位置關係,獲得該待測物在空間中的一待測物位置,且根據該超音波影像位置及該待測物位置,將該三維超音波影像及該待測物的該三維影像在空間上正確疊合並顯示於該顯示單元。 An ultrasonic imaging system is suitable for an object to be tested and includes: An ultrasonic probe, controlled to generate a plurality of corresponding ultrasonic transmission signals at different multiple inclination angles, and receive a plurality of corresponding ultrasonic reflection signals, the inclination angles are located on a swing plane; A first characteristic pattern is arranged on the ultrasonic probe, and is used for image recognition and analysis to generate a first spatial orientation corresponding to the first characteristic pattern; A second characteristic pattern is arranged on the object to be tested, and maintains a fixed relative position with the object to be tested, and is used for image recognition and analysis to generate a second spatial orientation corresponding to the second characteristic pattern; A storage unit, storing a three-dimensional image related to the object under test, a second relative positional relationship between the object under test and the second characteristic pattern in space, and a A first relative positional relationship between the two-dimensional ultrasonic image and the first characteristic pattern in space; An image capturing unit, capturing a real-time image including the object under test, the first characteristic pattern, and the second characteristic pattern; a display unit; and A processing unit, electrically connected to the storage unit, the ultrasonic probe, the image capture unit, and the display unit, when the ultrasonic probe is at each inclination angle, the processing unit controls the ultrasonic probe to generate the One of the ultrasonic transmission signals, and receive the ultrasonic reflection signal corresponding to the one of them, so as to generate the corresponding two-dimensional ultrasonic image according to the ultrasonic reflection signal, and the processing unit then generates the corresponding two-dimensional ultrasonic image according to the two-dimensional ultrasonic image and the corresponding inclination angles to generate a three-dimensional ultrasonic image, The processing unit obtains the first spatial orientation according to the first characteristic pattern of the real-time image, and then obtains an ultrasonic image position of the three-dimensional ultrasonic image in space according to the first relative positional relationship, and obtains an ultrasonic image position of the three-dimensional ultrasonic image according to the real-time image Obtain the second spatial orientation of the second characteristic pattern, and then obtain the position of the object under test in space according to the second relative positional relationship, and obtain the position of the object under test according to the position of the ultrasonic image and the position of the object under test , the three-dimensional ultrasonic image and the three-dimensional image of the object under test are spatially correctly superimposed and displayed on the display unit. 如請求項1所述的超音波影像系統,還包含一慣性感測器,設置於該超音波探頭上,並偵測三個軸向的加速度分量,且該慣性感測器具有與該超音波探頭相同的該傾斜角,該處理單元電連接該慣性感測器,當該超音波探頭在每一該傾斜角時,該處理單元接收並儲存該三個軸向的該等加速度分量,並根據該慣性感測器所產生的該等三個軸向的加速度分量,計算分別對應的該等傾斜角。The ultrasonic imaging system as described in claim 1, further comprising an inertial sensor, which is arranged on the ultrasonic probe, and detects three axial acceleration components, and the inertial sensor has a The same inclination angle of the probe, the processing unit is electrically connected to the inertial sensor, when the ultrasonic probe is at each inclination angle, the processing unit receives and stores the acceleration components of the three axes, and according to The acceleration components of the three axes generated by the inertial sensor are used to calculate the corresponding inclination angles respectively. 如請求項2所述的超音波影像系統,其中,該待測物的該三維影像是一種解剖式醫學影像,並包含電腦斷層掃描(Computerized tomography,CT)影像及磁振造影(Magnetic resonance imaging,MRI)影像之其中一者。The ultrasonic imaging system according to claim 2, wherein the three-dimensional image of the object to be tested is an anatomical medical image, and includes computerized tomography (CT) images and magnetic resonance imaging (Magnetic resonance imaging, One of the MRI images. 如請求項2所述的超音波影像系統,其中,該第一特徵圖案及該第二特徵圖案之其中每一者包含多個一維條碼、多個二維條碼、或可供影像辨識分析以獲得方位與角度的一圖案。The ultrasonic imaging system according to claim 2, wherein each of the first characteristic pattern and the second characteristic pattern includes a plurality of one-dimensional barcodes, a plurality of two-dimensional barcodes, or can be used for image recognition analysis to A pattern of orientations and angles is obtained. 如請求項2所述的超音波影像系統,其中,該影像擷取單元設置於該超音波探頭上。The ultrasonic imaging system according to claim 2, wherein the image capturing unit is arranged on the ultrasonic probe.
TW112106166A 2019-09-10 2019-09-10 Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit TW202322766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112106166A TW202322766A (en) 2019-09-10 2019-09-10 Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112106166A TW202322766A (en) 2019-09-10 2019-09-10 Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit

Publications (1)

Publication Number Publication Date
TW202322766A true TW202322766A (en) 2023-06-16

Family

ID=87803887

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112106166A TW202322766A (en) 2019-09-10 2019-09-10 Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit

Country Status (1)

Country Link
TW (1) TW202322766A (en)

Similar Documents

Publication Publication Date Title
US5608849A (en) Method of visual guidance for positioning images or data in three-dimensional space
JP6430498B2 (en) System and method for mapping of ultrasonic shear wave elastography measurements
US9480456B2 (en) Image processing apparatus that simultaneously displays two regions of interest on a body mark, processing method thereof and storage medium
JP4470187B2 (en) Ultrasonic device, ultrasonic imaging program, and ultrasonic imaging method
US10251627B2 (en) Elastography measurement system and method
CN107238396A (en) The pose recovery of ultrasonic transducer
KR101504162B1 (en) Information processing apparatus for medical images, imaging system for medical images, and information processing method for medical images
CN111292277B (en) Ultrasonic fusion imaging method and ultrasonic fusion imaging navigation system
US9842379B2 (en) Method and apparatus for registering medical images
JP2018520746A (en) 3D ultrasound imaging and related methods, apparatus, and systems
JP2012213558A (en) Image processing apparatus, image processing method, and program
JP2019503268A (en) Ultrasound imaging related to position
KR20140148247A (en) Information providing method and apparatus for aligning x-ray tube and detector of mobile x-ray, and wireless detector
US9990725B2 (en) Medical image processing apparatus and medical image registration method using virtual reference point for registering images
KR20160012590A (en) Ultrasound imaging apparatus and controlling method thereof
JP6833533B2 (en) Ultrasonic diagnostic equipment and ultrasonic diagnostic support program
JP2018183448A (en) Information processing device, information processing method, and program
KR100875620B1 (en) Ultrasound Imaging Systems and Methods
JP2018521733A (en) Ultrasonic imaging device
JP7275261B2 (en) 3D ULTRASOUND IMAGE GENERATING APPARATUS, METHOD, AND PROGRAM
TW202322766A (en) Ultrasonic imaging system including an ultrasonic probe, a first characteristic pattern, a second characteristic pattern, a storage unit, an image capture unit, a display unit, and a processing unit
WO2015099835A1 (en) System and method for displaying ultrasound images
TW202110404A (en) Ultrasonic image system enables the processing unit to obtain correspondingly two-dimensional ultrasonic image when the ultrasonic probe is at different inclination angles
JP6224341B2 (en) Fixing device and ultrasonic diagnostic apparatus
KR102512104B1 (en) Apparatus and method for generating 3d ultrasound image