TW202321726A - 磁場發射器及磁場感測器 - Google Patents

磁場發射器及磁場感測器 Download PDF

Info

Publication number
TW202321726A
TW202321726A TW110142552A TW110142552A TW202321726A TW 202321726 A TW202321726 A TW 202321726A TW 110142552 A TW110142552 A TW 110142552A TW 110142552 A TW110142552 A TW 110142552A TW 202321726 A TW202321726 A TW 202321726A
Authority
TW
Taiwan
Prior art keywords
magnetic field
planar
coil
transmitting
wire
Prior art date
Application number
TW110142552A
Other languages
English (en)
Other versions
TWI775677B (zh
Inventor
劉宗鑫
胡博期
蔡依樵
林庚達
林治中
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW110142552A priority Critical patent/TWI775677B/zh
Application granted granted Critical
Publication of TWI775677B publication Critical patent/TWI775677B/zh
Priority to CN202211145871.3A priority patent/CN116136578A/zh
Publication of TW202321726A publication Critical patent/TW202321726A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Near-Field Transmission Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Level Indicators Using A Float (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本發明實施例提供一種磁場發射器及磁場感測器。磁場發射器包括一個或更多個發射單元。發射單元包括平面式發射線圈。平面式發射線圈是由導線在平面上依據多邊形環繞所形成的螺旋線圈。這多邊形的邊數大於二。磁場感測器包括感測單元。感測單元包括平面式感測線圈。平面式感測線圈是由導線在平面上依據幾何形狀環繞所形成的螺旋線圈。導線在平面上的走線未重疊。藉此,可實現線路小型化、薄型化及/或高密度化。

Description

磁場發射器及磁場感測器
本發明是有關於一種電磁場定位技術,且特別是有關於一種適用於電磁場定位的磁場發射器及磁場感測器。
電磁定位系統可透過電磁場產生器(Field Generator,FG)(例如,發射線圈)建立可控磁場空間,以確定空間中的磁感測線圈的位置及/或方向。因此,電磁定位經常用於有精準度需求的醫療、機器人和虛擬實境應用。
值得注意的是,電磁場產生器通常採用繞線組的設計。然而,這樣的設計並不利於滿足線路小型化、薄型化及/或高密度的需求。甚至,這設計的空間磁場強度可能不均勻,且恐難以穩定磁場控制。
有鑑於此,本發明實施例提供一種磁場發射器及磁場感測器,以平面式設計滿足線路小型化、薄型化及/或高密度化的需求。
本發明實施例的磁場發射器包括一個或更多個發射單元。發射單元包括平面式發射線圈。平面式發射線圈是由導線在平面上依據多邊形環繞所形成的螺旋線圈。這多邊形的邊數大於二。
本發明實施例的磁場感測器包括感測單元。感測單元包括平面式感測線圈。平面式感測線圈是由導線在平面上依據幾何形狀環繞所形成的螺旋線圈。導線在平面上的走線未重疊。
基於上述,依據本發明實施例的磁場發射器及磁場感測器,提供平面式螺旋線圈,從而實現線路小型化、薄型化及/或高密度化。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1A~圖1C是依據本發明一實施例的系統1的示意圖。請參照圖1A至圖1C,系統1包括(但不僅限於)磁場發射器10及磁場感測器50。
在一實施例中,系統1可用於電磁場定位。例如,(S1)依據原點與線段轉折點建立磁場發射器10的虛擬空間模型;(S2)饋入電流並量測空間中任意點的磁感測強度以使磁場強度與空間位置相關聯;(S3)導入磁場感測器50以建立磁場強度與電壓(磁通量)變化的關聯;(S4)優化(S1)及(S2)的發射線圈磁場模型;(S5)透過實驗與模型磁通量最小平方誤差演算磁場感測器50的位置與方向(如圖1A所示);(S6)依據座標資訊建立可視化三維環境。藉此,基於磁場感測器50所量測的磁通量即可估測磁場感測器50的位置與姿態(如圖1B及圖1C所示)。
以圖1C為例,磁場感測器50可設於人物P的器官,電腦或其他控制器可控制磁場發射器10輻射,並透過磁場感測器50量測磁通量,並據以得出器官的位置及/或姿態。
須說明的是,實現電磁場定位的方式還有很多種,且本發明實施例不加以限制。此外,系統1還可能有其他應用情境。
值得注意的是,磁場發射器10包括一個或更多個發射單元11。各發射單元11包括一個或更多個平面式發射線圈。各發射單元11中的平面式發射線圈是由導線(例如是由銅、鋁或其他導電材料所組成)在平面(例如,水平面、垂直面或任意平面)上依據一種多邊形環繞所形成的螺旋線圈。這多邊形的邊數大於二。例如,三角形、四邊形或六邊形。平面式線圈有助於達成薄型化及高密度化的設計。此外,這設計具有高彈性,且可容易地建置磁場的空間模型。
平面式發射線圈的實施態樣有很多種。圖2A是依據本發明一實施例的平面式發射線圈11A的示意圖。請參照圖2A,平面式發射線圈11A是四邊形的螺旋線圈。圖2B是依據本發明另一實施例的發射單元的示意圖。請參照圖2B,平面式發射線圈11B是六邊形的螺旋線圈。圖2C是依據本發明再一實施例的發射單元的示意圖。請參照圖2C,平面式發射線圈11C是八邊形的螺旋線圈。須說明的是,圖2A至圖2C是以邊長相同的正多邊形為例,然依據實際需求,其邊長可再調整(例如,部分或全部的邊長不同)。
請參照圖2A~圖2C,在一實施例中,假設最大外徑d1 out,d2 out,d3 out是平面式發射線圈11A~11C所形成的最大多邊形的內徑,且最小內徑d1 in,d2 in,d3 in是平面式發射線圈11A~11C所形成的最小多邊形的內徑。平面式發射線圈11A~11C的最大外徑d1 out,d2 out,d3 out及最小內徑d1 in,d2 in,d3 in的長度比例小於10。例如,d1 out小於100公厘(mm),且d1 in大於10mm。
在一實施例中,導線的寬度w1,w2,w3介於0.15-2.5公厘。在一實施例中,導線在自身垂直方向上的間距s1,s2,s3大於0.1公厘。即,在平面上的走線未重疊。須說明的是,自身垂直方向是指與導線的走線方向垂直的方向。在一實施例中,多邊形中的相鄰線段之間的夾角θ1,θ2,θ3介於90~180度。
圖2A~圖2C所示實施例的導線環繞圈數大概是三。然而,在一些實施例中,導線環繞的圈數大於12。
在一實施例中,可堆疊多個平面式發射線圈。舉例而言,圖3A是依據本發明一實施例的發射單元11的側視圖,圖3B是圖3A的立體圖,且圖3C是圖3A的俯視圖(長度單位為公厘(mm))。請參照圖3A~圖3C,發射單元11包括兩兩堆疊的四個平面式發射線圈12。堆疊的兩個平面式發射線圈12的形狀大致相同。例如,皆為正六邊形。以俯視觀點而言,下方的平面式發射線圈12幾乎或完全被上方的平面式發射線圈12覆蓋。此外,垂直相鄰兩平面式發射線圈12的間距in大約為1.5公厘。四邊形中的相鄰線段之間的夾角為90度。在一實施例中,導線的厚度th介於35-70微米(um)。另一方面,驅動電流c可能自平面式發射線圈12的導線在靠近中心的端點饋入。
須說明的是,圖3A及圖3B以堆疊兩層為例。在一些實施例中,堆疊的層數(等同於繞組圈數)為2-16層。以相同驅動電流而言,多層數能產生更高的磁場強度。然而,層數仍可依據實際磁場強度的需求而變更。此外,圖3A所示驅動電流c的流進(以×標示)及流出(以●標示)僅是用於示意驅動電流c可能自平面式發射線圈12的導線在靠近中心的端點饋入。然而,發射線圈的電流進/出口線盡量避免直接貫穿繞組,以減少不均勻磁場且避免影響系統的精準度。
在一實施例中,下方的平面式發射線圈12的底側設有屏蔽結構13。這屏蔽結構是由屏蔽材料(例如,Mu合金或錳鋅鐵氧體(MnZn Ferrite))所組成。屏蔽材料的高電阻率及高磁導率的特點,可降低周圍鐵磁物體因感磁所誘發的二次畸變磁場,並改善周圍環境對磁場發射器10的主磁場產生的失真,進而優化磁場發射器10的磁場強度。由於高導磁合金的磁導率非常高,因此高電阻率可降低渦電流能量損耗。
須說明的是,平面式發射線圈12的導體/線內產生閉合漩渦狀感測電流(例如,渦電流),而由渦電流產生的磁場可使主磁場發生畸變,進而偏轉磁力線。平面式發射線圈12下方的鐵磁物體(或稱金屬病床)所產生的磁場畸變失真,從而增加磁場強度,進而優化感測電壓輸出,並可提升系統訊雜比(SNR)與減少位置(position)和方向(orientation)誤差。
前述結構相關參數避免操作頻率範圍LC共振並兼顧高品值因子。此外,這些結構相關參數可避免轉角磁場強度不均,進而避免頻寬縮減與響應失真。然而,依據實際需求,其他實施例可能有不同參數或其數值。例如,圖4A~圖4C是依據本發明一實施例的磁場強度分布的示意圖。請參照圖4A~圖4C,導線環繞的圈數不同,可能形成不同磁場強度分布。若圈數越高,則磁場強度分布越密集。
在一實施例中,發射單元11以積層製程方式設於基板。例如,印刷電路板(Printed Circuit Board,PCB)、軟性印刷電路(Flexible Printed Circuit,FPC)、或低溫共燒陶瓷(Low-Temperature Co-fired Ceramic,LTCC)等積層製程技術。
在一實施例中,磁場發射器10包括多個發射單元11,以形成線圈陣列。線圈陣列以積層製程方式共面設於基板,且這些發射單元11的數量大於4,且以不同頻率個別驅動,藉此獲得冗餘求解資訊並進一步用於多自由度的位置與姿態計算。
舉例而言,圖5是依據本發明一實施例的磁場發射器10B的示意圖。請參照圖5,磁場發射器10B包括八個發射單元Tx1~Tx8。這些發射單元Tx1~Tx8設在x-y軸的平面上且彼此未重疊。線圈陣列可利於形成均勻磁場。冗餘發射器的設計有效抑制雜訊並補償誤差,更能提高定位演算法的精準度。
圖6是依據本發明一實施例說明發射陣列的示意圖。請參照圖6,以軸x,y所建立的二為座標系,假設左圖的中心點的座標為(0,0)。發射單元Tx4,Tx5分別至中心點的最短水平距離ax1為0.686公尺,且發射單元Tx1,Tx3,Tx6,Tx8分別與中心點的最短水平距離ax2為0.935公尺。發射單元Tx2,Tx7分別至中心點的最短垂直距離ay1為0.686公尺,且發射單元Tx1,Tx3,Tx6,Tx8分別與中心點的最短垂直距離ay2為0.935公尺。
基板15的邊長dS1,dS2大概介於30~50公分。基板15上設有兩種不同方向的放置區域A1,A2,其中區域A2是區域A1旋轉45度。發射單元Tx1,Tx3,Tx6,Tx8設於區域A2內,且發射單元Tx2,Tx4,Tx5,Tx7設於區域A1內。區域A1的邊長dA1,dA2大概是70公厘,且區域A2的邊長dA3,dA4大概是70公厘。
須說明的是,天線陣列中的發射單元還可能有其他排列方式,且本發明實施例不加以限制。
在一實施例中,各發射單元Tx1~Tx8獨立地輸入電流(例如,交流電流)。這些發射單元Tx1~Tx8的電流的頻率皆不同且其頻率介於1-100千赫茲(kHz)。藉此,可產生複合均勻磁場。
為了優化磁場強度,線圈陣列也可能整合屏蔽封裝結構。圖7是依據本發明一實施例的磁場發射器10C的示意圖。請參照圖7,磁場發射器10C包括八個發射單元11、用於設置發射單元11的基板15、下封裝屏蔽結構17及(可選地)上方封裝結構19。下封裝屏蔽結構17設於基板底側15,且下封裝屏蔽結構17的形狀及面積大致相同於基板15。可結合下封裝屏蔽結構17及上方封裝結構19,並據以封裝發射單元11及基板15。
圖8A~圖8D是依據本發明一實施例的磁場強度的示意圖。請參照圖8A~圖8D,以30公分×30公分的基板為例,且基板上設有八個發射單元11。對這些發射單元11分別通入0.04安培的電流。圖8A是磁場強度在高度為0.0085~0.3公厘(mm)的分布圖,而圖8B~圖8D分別是磁場強度的高度在0.0085、0.02及0.05的分布圖。若高度越高,則磁場強度減緩,使整體磁場分布越均勻。例如,圖8B的磁場強度大約為6-8(安培(A)/公尺(m)),且圖8D的磁場強度大約為1-1.52(A/m)。
圖9A~圖9D是依據本發明一實施例的磁場強度的示意圖。請參照9A~圖9D,同樣以30公分×30公分的基板為例,且基板上設有八個發射單元11。對這些發射單元11分別通入0.04安培的電流。圖9A是磁場強度在高度為0.1至0.3的分布圖,而圖9B~圖9D分別是磁場強度的高度在0.1、0.2及0.3的分布圖。若高度越高,則磁場強度減緩,使整體磁場分布越均勻。例如,圖9B的磁場強度大約為0.7(A/m),且圖9D的磁場強度大約為0.12(A/m)。此外,圖9E是依據本發明一實施例的磁場強度的示意圖。請參照圖9A及圖9E,圖9E是磁場強度在高度為0.3至0.5的分布圖,因此相較於圖9A的磁場分布又更加均勻。
另一方面,針對磁場感測器50。磁場感測器50包括感測單元(包括一個或更多個平面式感測線圈)。圖10A是依據本發明一實施例的平面式感測線圈51A的示意圖,圖10B是依據本發明另一實施例的平面式感測線圈51B的示意圖,且圖10C是依據本發明再一實施例的平面式感測線圈51C的示意圖。相似於圖2A~圖2C,平面式感測線圈51A~51C是由導線(例如是由銅、鋁或其他導電材料所組成)在平面(例如,水平面、垂直面或任意平面)上依據一種幾何形狀環繞所形成的螺旋線圈。在這些實施例中,幾何形狀是多邊形,且多邊形的邊數大於二。例如,四邊形、六邊形或八邊形。即,平面式感測線圈51A是四邊形的螺旋線圈,平面式感測線圈51B是六邊形的螺旋線圈,且平面式感測線圈51C是八邊形的螺旋線圈。
在一實施例中,幾何形狀是圓形。圖10D是依據本發明又一實施例的平面式感測線圈51D的示意圖。請參照圖10D,與圖10A~圖10C不同之處在於,平面式感測線圈51D的幾何形狀是圓形。
請參照圖10A~圖10D,在一實施例中,假設最大外徑d4 out,d5 out,d6 out,d7 out是平面式感測線圈51A~51D所形成的最大幾何形狀的外徑,且最小內徑d4 in,d5 in,d6 in,d7 in是平面式感測線圈51A~51D所形成的最小幾何形狀的內徑。在一實施例中,平面式感測線圈51A~51D的最大外徑d4 out,d5 out,d6 out,d7 out小於30公厘。在一實施例中,最小內徑d4 in,d5 in,d6 in,d7 in小於1公厘。
在一實施例中,導線的寬度w4,w5,w6,w7介於大約為0.15公厘。在一實施例中,導線在自身垂直方向上的間距s4,s5,s6,s7大於0.1公厘。即,在平面上的走線未重疊。須說明的是,自身垂直方向是指與導線的走線方向垂直的方向。在一實施例中,多邊形中的相鄰線段之間的夾角θ5,θ6,θ7介於90~180度。
圖10A~圖10D所示實施例的導線環繞圈數大概是三。然而,在一些實施例中,導線環繞的圈數大於12。
在一實施例中,感測單元包括堆疊的多個平面式感測線圈,且其對疊方式可參照圖3A及圖3B。以俯視觀點而言,下方的平面式感測線圈幾乎或完全被上方的平面式感測線圈覆蓋。此外,垂直相鄰兩平面式感測線圈的間距小於1.5公厘。在一實施例中,導線的厚度介於35-70微米(um)。
須說明的是,在一些實施例中,堆疊平面式感測線圈的層數為2-16,但仍可依據實際需求而變更。
圖11是依據本發明一實施例的磁場感測器的示意圖。請參照圖11,在一實施例中,磁場感測器的感測單元51D以積層製程方式設於可撓式基板53。例如,PCB、FPC、LTCC等積層製程方法。可撓式基板53例如是PI膜或由科生物相容高分子材料所製成,以適用於黏貼於體表或體內器官。在一實施例中,導線內嵌鐵氧體芯511。鐵氧體芯511具有高磁導率的特性,可優化感測電壓輸出,從而提升系統訊雜比,並減少位置和方向誤差。
感測單元51D連接訊號處理電路55。訊號處理電路55例如是RC電路。圖12A是依據本發明一實施例的訊號處理電路55的等效電路圖。請參照圖12A,在電路中,並聯電容C1,C2,電容C2串聯電阻R2,且前述並聯的電容C1,C2串聯電源V1、電阻R1及電感L1。並聯電容C1,C2的電容值為0.05uF。圖12B是依據本發明一實施例的頻率響應圖。請參照圖12B,透過串聯的電容C2且串聯電阻R2,可抑制LC共振,並增加控制頻帶。
經實驗測試,本發明實施例的磁場發射器及磁場感測器在19.7至32.2千赫茲交流阻抗較低,且可忽略低頻線圈間的寄生電容效應。
綜上所述,在本發明實施例的磁場發射器及磁場感測器中,對平面式螺旋線圈以積層製程方式形成三維空間線圈結構,從而實現線路小型化、薄型化及高密度化。在發射端,組成共面的發射線圈陣列,並以不同頻率的交流電流驅動。此外,發射單元底側結合屏蔽結構,從而降低周圍鐵磁物體因感磁誘發二次畸變磁場,進而改善周圍環境影響發射器所產生的磁場。在感測端,透過串聯層疊線圈以加電感量,導體走線不重疊以最小化繞組寄生電容,並透過內嵌的鐵氧體芯提高感測靈敏度。本發明實施例的磁場發射器及磁場感測器應用於電磁定位技術,可解決紅外線定位系統技術於體內定位應用的限制。例如,軟組織/臟器遮蔽限制性、無法與微創器械完全整合應用等關鍵問題。此外,本發明實施例可補償患者呼吸與心臟律動定位誤差,並改善磁場失真與降低術中風險。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1:系統 P:人物 10、10B、10C:電磁發射器 11、Tx1~Tx8:發射單元 11A~11C、12:平面式發射線圈 50:磁場感測器 d1 out、d2 out、d3 out、d4 out、d5 out、d6 out、d7 out:最大外徑 d1 in、d2 in、d3 in、d4 in、d5 in、d6 in、d7 in:最小內徑 w1、w2、w3、w4、w5、w6、w7:寬度 s1、s2、s3、s4、s5、s6、s7:間距 θ1~θ3、θ5~θ7:夾角 in:間距 th:厚度 13:屏蔽結構 c:電流 x、y:軸 ax1、ax2、ay1、ay2:距離 dS1、dS2、dA1、dA2、dA3、dA4:邊長 A1、A2:區域 15:基板 17:下封裝屏蔽結構 19:上封裝屏蔽結構 51A~51D:平面式感測線圈 53:可撓式基板 511:鐵氧體芯 55:訊號處理電路 C1、C2:電容 R1、R2:電阻 V1:電源 L1:電感
圖1A~圖1C是依據本發明一實施例的系統的示意圖。 圖2A是依據本發明一實施例的平面式發射線圈的示意圖。 圖2B是依據本發明另一實施例的平面式發射線圈的示意圖。 圖2C是依據本發明再一實施例的平面式發射線圈的示意圖。 圖3A是依據本發明一實施例的發射單元的側視圖。 圖3B是圖3A的立體圖。 圖3C是圖3A的俯視圖。 圖4A~圖4C是依據本發明一實施例的磁場強度分布的示意圖。 圖5是依據本發明一實施例的磁場發射器的示意圖。 圖6是依據本發明一實施例說明發射陣列的示意圖。 圖7是依據本發明一實施例的磁場發射器的示意圖。 圖8A~圖8D是依據本發明一實施例的磁場強度的示意圖。 圖9A~圖9E是依據本發明一實施例的磁場強度的示意圖。 圖10A是依據本發明一實施例的平面式感測線圈的示意圖。 圖10B是依據本發明另一實施例的平面式感測線圈的示意圖。 圖10C是依據本發明再一實施例的平面式感測線圈的示意圖。 圖10D是依據本發明又一實施例的平面式感測線圈的示意圖。 圖11是依據本發明一實施例的磁場感測器的示意圖。 圖12A是依據本發明一實施例的訊號處理電路的等效電路圖。 圖12B是依據本發明一實施例的頻率響應圖。
10B:電磁發射器
Tx1~Tx8:發射單元

Claims (12)

  1. 一種磁場發射器,包括: 至少一發射單元,包括: 一平面式發射線圈,是由一導線在一平面上依據一多邊形環繞所形成的螺旋線圈,其中該多邊形的邊數大於二。
  2. 如請求項1所述的磁場發射器,其中該平面式發射線圈的一最大外徑及一最小內徑的長度比例小於10,該最大外徑是該平面式發射線圈所形成的最大多邊形的外徑,該最小內徑是該平面式發射線圈所形成的最小多邊形的內徑,該導線的寬度介於0.15-2.5公厘,該導線在自身垂直方向上的間距大於0.1公厘,該導線的厚度介於35-70微米,且該導線環繞的圈數大於12。
  3. 如請求項1所述的磁場發射器,其中一該發射單元包括堆疊的多個該平面式發射線圈,且相鄰二該平面式發射線圈的間距大約為1.5公厘。
  4. 如請求項1所述的磁場發射器,其中該至少一發射單元包括多個發射單元,以形成一線圈陣列,其中該線圈陣列以積層製程方式設於一基板,且該些發射單元的數量大於4。
  5. 如請求項4所述的磁場發射器,其中每一該發射單元獨立地輸入一電流,該些發射單元的該電流的頻率皆不同且其頻率介於1-100千赫茲(kHz)。
  6. 如請求項4所述的磁場發射器,其中該至少一發射單元更包括: 一屏蔽結構,設於該基板底側,並由屏蔽材料所組成。
  7. 一種磁場感測器,包括: 一感測單元,包括: 一平面式感測線圈,是由一導線在一平面上依據一幾何形狀環繞所形成的螺旋線圈,其中該導線在該平面上的走線未重疊。
  8. 如請求項7所述的磁場感測器,其中該平面式感測線圈的一最大外徑小於30公厘,該最大外徑是該平面式感測線圈所形成的最大幾何形狀的外徑,該平面式感測線圈的一最小內徑小於1公厘,該最小內徑是該平面式感測線圈所形成的最小幾何形狀的內徑,該導線的寬度大約為0.15公厘,該導線在自身垂直方向上的間距大於0.1公厘,該導線的厚度介於35-70微米,且該導線環繞的圈數大於12。
  9. 如請求項7所述的磁場感測器,其中該幾何形狀是一多邊形,且該多邊形的邊數大於二。
  10. 如請求項7所述的磁場感測器,其中該感測單元包括堆疊的多個該平面式感測線圈,且相鄰二該平面式感測線圈的間距小於1.5公厘。
  11. 如請求項7所述的磁場感測器,其中該導線內嵌鐵氧體芯。
  12. 如請求項7所述的磁場感測器,其中該感測單元以積層製程方式設於一可撓式基板。
TW110142552A 2021-11-16 2021-11-16 磁場發射器及磁場感測器 TWI775677B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110142552A TWI775677B (zh) 2021-11-16 2021-11-16 磁場發射器及磁場感測器
CN202211145871.3A CN116136578A (zh) 2021-11-16 2022-09-20 磁场发射器及磁场传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110142552A TWI775677B (zh) 2021-11-16 2021-11-16 磁場發射器及磁場感測器

Publications (2)

Publication Number Publication Date
TWI775677B TWI775677B (zh) 2022-08-21
TW202321726A true TW202321726A (zh) 2023-06-01

Family

ID=83807420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142552A TWI775677B (zh) 2021-11-16 2021-11-16 磁場發射器及磁場感測器

Country Status (2)

Country Link
CN (1) CN116136578A (zh)
TW (1) TWI775677B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
JP5182087B2 (ja) * 2006-03-29 2013-04-10 日立金属株式会社 コイル部品およびその製造方法
KR102458770B1 (ko) * 2015-07-17 2022-10-26 한국전자통신연구원 전자파 저감 장치 및 방법
CN110932416A (zh) * 2019-12-20 2020-03-27 哈尔滨理工大学 无线能量传输装置、系统及无线充电系统
CN112002532A (zh) * 2020-08-28 2020-11-27 上海万暨电子科技有限公司 一种电动汽车无线充电的发射组件和充电组件结构

Also Published As

Publication number Publication date
TWI775677B (zh) 2022-08-21
CN116136578A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
TWI438795B (zh) 平面狀感應裝置及由此裝置製成之平面狀變壓器
US9953761B2 (en) Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
JP6463594B2 (ja) 高効率の無線通信用多層ワイヤ構造
Su et al. Mutual inductance calculation of movable planar coils on parallel surfaces
US20150001950A1 (en) Apparatus for transferring electromagnetic energy
JP3226466U (ja) コイルモジュールおよびそれを用いたワイヤレス電気エネルギー送信回路
TW200910391A (en) Suspension inductor devices
JP2014175865A (ja) 高効率の無線通信用多層多巻き構造
TWI425535B (zh) 線圈裝置
TW201225120A (en) Three dimensional inductor
US10116055B2 (en) Z-shaped dual ring winding type NFC antenna and antenna system
CN105490009B (zh) 正交绕线型贴片式nfc天线及天线系统
Ho et al. Modeling and analysis of the bendable transformer
TWI775677B (zh) 磁場發射器及磁場感測器
WO1998005048A1 (en) Low radiation planar inductor/transformer and method
US11502543B2 (en) Ball and socket wireless power transfer systems
Wang et al. Design of double-layer parallel printed spiral coil for wireless power transfer applied to rotating equipment
CN205452532U (zh) 正交绕线型贴片式nfc天线及天线系统
TWM508836U (zh) 無線充電印刷電路板線圈結構
JP2020080402A (ja) 無線で電力を送受信するためのコイルプリント回路基板コイル
WO2019235436A1 (ja) 受電装置、実験動物生体情報取得装置及び実験動物生体情報取得システム
CN205319327U (zh) 基于z字形的双环绕线式nfc天线及天线系统
JP2002305121A (ja) 非接触電力伝送装置
Gao et al. Analysis of connection way of a three-dimensional receiving coil onboard a capsule robot for wireless power transmission
CN112752401B (zh) 一种印制电路板式多点可变电感线圈及其制作方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent