TW202319659A - Auxiliary system for controlling magnetic bearing and method - Google Patents

Auxiliary system for controlling magnetic bearing and method Download PDF

Info

Publication number
TW202319659A
TW202319659A TW110140517A TW110140517A TW202319659A TW 202319659 A TW202319659 A TW 202319659A TW 110140517 A TW110140517 A TW 110140517A TW 110140517 A TW110140517 A TW 110140517A TW 202319659 A TW202319659 A TW 202319659A
Authority
TW
Taiwan
Prior art keywords
parameter value
control
current
module
magnetic bearing
Prior art date
Application number
TW110140517A
Other languages
Chinese (zh)
Other versions
TWI765838B (en
Inventor
解明潔
Original Assignee
東元電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東元電機股份有限公司 filed Critical 東元電機股份有限公司
Priority to TW110140517A priority Critical patent/TWI765838B/en
Application granted granted Critical
Publication of TWI765838B publication Critical patent/TWI765838B/en
Publication of TW202319659A publication Critical patent/TW202319659A/en

Links

Images

Abstract

An auxiliary system for controlling magnetic bearing is disclosed in the present invention. The auxiliary system includes a rule module, a controlling module, a timer, and a judging module. The auxiliary system is utilized to set a rule, and make a drive command of a magnetic bearing system increase gradually by the rule.

Description

磁浮軸承輔助控制系統及其方法Auxiliary control system and method for magnetic bearing

本發明係有關於一種系統及其方法,尤其是指一種磁浮軸承輔助控制系統及其方法。The present invention relates to a system and its method, in particular to a magnetic bearing auxiliary control system and its method.

磁浮軸承組件已廣泛地應用於各領域中,例如:航太領域、能源領域、量測領域等,通常會搭配高轉的馬達進行驅動,因此,磁浮軸承組件的控制剛性會盡量往上調整,避免磁浮軸承組件在高頻轉速下失控。請參閱第一圖至第四圖,其中,第一圖係顯示先前技術之磁浮軸承控制系統之示意圖;第二圖係顯示先前技術之磁浮軸承組件之示意圖;第三圖係顯示先前技術之驅動命令之示意圖;以及,第四圖係顯示先前技術之磁浮軸承組件之轉子中心位置之示意圖。Magnetic bearing assemblies have been widely used in various fields, such as aerospace, energy, and measurement fields, and are usually driven by high-speed motors. Therefore, the control rigidity of magnetic bearing assemblies will be adjusted as high as possible. Avoid the loss of control of the magnetic bearing assembly at high frequency rotation speed. Please refer to the first figure to the fourth figure, wherein the first figure is a schematic diagram showing a prior art magnetic bearing control system; the second figure is a schematic diagram showing a prior art magnetic bearing assembly; the third figure is a schematic diagram showing a prior art drive The schematic diagram of the command; and, the fourth diagram is a schematic diagram showing the position of the rotor center of the magnetic bearing assembly of the prior art.

如圖所示,一種磁浮軸承控制系統PA1包含一位置控制器PA11、複數個功率放大器PA12a、PA12b、一磁浮軸承組件PA13與一位置回授感測器PA14。磁浮軸承組件PA13至少包含一磁浮轉子PA131、一磁浮定子PA132、一安全軸承PA133與一感測模組PA134。As shown in the figure, a magnetic bearing control system PA1 includes a position controller PA11, a plurality of power amplifiers PA12a, PA12b, a magnetic bearing assembly PA13 and a position feedback sensor PA14. The magnetic bearing assembly PA13 at least includes a magnetic bearing rotor PA131 , a magnetic bearing stator PA132 , a safety bearing PA133 and a sensing module PA134 .

位置控制器PA11會產生一驅動命令,據以驅動磁浮轉子PA131上浮並脫離安全軸承PA133,其中,驅動命令會包含一參數值與一電流值。參數值就是控制參數(K)的數值,電流值則是偏置電流的數值,控制參數與偏置電流統稱為控制剛性,為所屬技術領域中的通常知識。實務上,驅動命令還會經由功率放大器PA12a、PA12b藉以驅動磁浮軸承組件PA13。為了避免磁浮軸承組件在高頻轉速下失控,磁浮軸承組件的控制剛性會盡量往上設定,因此,先前技術中的位置控制器PA11會直接產生磁浮軸承組件PA13所能承受的最大值M1的控制剛性,如第三圖所示。The position controller PA11 generates a driving command to drive the magnetic levitation rotor PA131 to float up and separate from the safety bearing PA133, wherein the driving command includes a parameter value and a current value. The parameter value is the value of the control parameter (K), and the current value is the value of the bias current. The control parameter and the bias current are collectively referred to as control rigidity, which is common knowledge in the technical field. In practice, the driving command is also used to drive the magnetic bearing assembly PA13 through the power amplifiers PA12a and PA12b. In order to avoid the loss of control of the magnetic bearing assembly at high-frequency rotation speed, the control rigidity of the magnetic bearing assembly will be set as high as possible. Therefore, the position controller PA11 in the prior art will directly generate the control of the maximum value M1 that the magnetic bearing assembly PA13 can bear. Rigidity, as shown in the third figure.

然而,控制剛性過高容易使得磁浮軸承組件PA13在啟動控制時不穩定,進而使得磁浮轉子PA131上浮脫離安全軸承PA133後,又因為產生過衝導致接觸甚至是撞擊到安全軸承PA133,如第四圖所示。其中,第四圖係由感測模組PA134所感測出磁浮轉子PA131的一轉子中心位置示意。舉例來說,轉子中心位置為0.4mm時,表示磁浮轉子PA131目前位於安全軸承PA133之間的一平衡中心位置,而0.2mm與0.6mm則是磁浮轉子PA131碰觸到安全軸承PA133的位置,因此,轉子中心位置到達0.2mm或0.6mm時,表示磁浮轉子PA131接觸甚至是撞擊到安全軸承PA133。However, if the control rigidity is too high, it is easy to make the magnetic bearing assembly PA13 unstable when the control is started, and then the magnetic bearing rotor PA131 floats away from the safety bearing PA133, and then touches or even hits the safety bearing PA133 due to overshoot, as shown in the fourth figure shown. Wherein, the fourth figure is a schematic representation of a rotor center position of the magnetic levitation rotor PA131 sensed by the sensing module PA134. For example, when the rotor center position is 0.4mm, it means that the magnetic levitation rotor PA131 is currently located at a balance center position between the safety bearings PA133, and 0.2mm and 0.6mm are the positions where the magnetic levitation rotor PA131 touches the safety bearing PA133. , when the rotor center position reaches 0.2mm or 0.6mm, it means that the magnetic levitation rotor PA131 touches or even hits the safety bearing PA133.

另外,實務上,位置控制器PA11還會接收一位置命令與位置回授感測器PA14所產生之一位置回授值,為所屬技術領域中的通常知識,故不多加贅述。In addition, in practice, the position controller PA11 will also receive a position command and a position feedback value generated by the position feedback sensor PA14, which is common knowledge in the technical field, so no more details are given here.

有鑒於在先前技術中,驅動命令的值過高,也就是控制剛性過高,容易造成磁浮軸承組件在啟動控制時不穩定的問題及其衍生出的磁浮轉子撞擊到安全軸承的種種問題。本發明之一主要目的係提供一種磁浮軸承輔助控制系統及其方法,用以解決先前技術中的至少一個問題。In view of the fact that in the prior art, the value of the drive command is too high, that is, the control rigidity is too high, it is easy to cause the instability of the magnetic bearing assembly when the control is started and the derived problems of the magnetic bearing rotor hitting the safety bearing. One of the main objectives of the present invention is to provide an auxiliary control system and method for magnetic bearings to solve at least one problem in the prior art.

本發明為解決先前技術之問題,所採用之必要技術手段為提供一種磁浮軸承輔助控制系統,應用於一磁浮軸承控制系統,磁浮軸承控制系統包含一位置控制器與一磁浮軸承組件,位置控制器係受操作地產生一包含一參數值與一電流值之驅動命令以驅動磁浮軸承組件,磁浮軸承輔助控制系統係包含一規則設定模組、一控制模組、一計時模組與一判斷模組。規則設定模組受操作地設定出一控制規則,控制規則具有一啟動控制參數值、一穩態控制參數值、一啟動電流參數值、一穩態電流參數值、一第一切換時距與一第二切換時距。控制模組電性連接規則設定模組,用以依據啟動控制參數值與啟動電流參數值產生一啟動控制指令與一啟動電流指令,並將啟動控制指令與啟動電流指令傳送至位置控制器,藉以使參數值等於啟動控制參數值以及使電流值等於啟動電流參數值,並使位置控制器據以驅動磁浮軸承組件之一磁浮轉子上浮並脫離磁浮軸承組件之一安全軸承。In order to solve the problems of the prior art, the necessary technical means adopted by the present invention are to provide a magnetic bearing auxiliary control system, which is applied to a magnetic bearing control system. The magnetic bearing control system includes a position controller and a magnetic bearing assembly. The position controller It is operated to generate a drive command including a parameter value and a current value to drive the magnetic bearing assembly. The magnetic bearing auxiliary control system includes a rule setting module, a control module, a timing module and a judgment module . The rule setting module is operated to set a control rule, the control rule has a start control parameter value, a steady state control parameter value, a start current parameter value, a steady state current parameter value, a first switching time interval and a The second switching interval. The electrical connection rule setting module of the control module is used to generate a start control command and a start current command according to the start control parameter value and the start current parameter value, and transmit the start control command and the start current command to the position controller, thereby Make the parameter value equal to the starting control parameter value and the current value equal to the starting current parameter value, and make the position controller drive the magnetic levitation rotor of the magnetic bearing assembly to float up and separate from the safety bearing of the magnetic bearing assembly.

計時模組電性連接該控制模組,用以在控制模組將啟動控制指令與啟動電流指令傳送至位置控制器時,開始計時,並獲得開始計時後所經歷之一啟動時間。判斷模組電性連接計時模組、控制模組與規則設定模組,用以在判斷出啟動時間大於第一切換時距時,產生一第一切換信號,並利用控制模組依據控制規則,產生一調升控制指令與一調升電流指令,藉以調升參數值與電流值;用以在判斷出啟動時間大於第二切換時距時,產生一第二切換信號,並利用控制模組依據穩態控制參數值與穩態電流參數值,產生一穩態控制指令與一穩態電流指令,藉以使參數值等於穩態控制參數值以及使電流值等於穩態電流參數值。The timing module is electrically connected to the control module, and is used to start timing when the control module transmits the start control command and the start current command to the position controller, and obtains a start time after the start of timing. The judging module is electrically connected to the timing module, the control module and the rule setting module, and is used to generate a first switching signal when it is judged that the starting time is greater than the first switching time interval, and use the control module to follow the control rule, Generate an increase control command and an increase current command, so as to increase the parameter value and current value; when it is judged that the starting time is greater than the second switching time interval, a second switching signal is generated, and the control module is used according to The steady-state control parameter value and the steady-state current parameter value generate a steady-state control command and a steady-state current command, so that the parameter value is equal to the steady-state control parameter value and the current value is equal to the steady-state current parameter value.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制系統中之規則設定模組,係包含一手動設定單元,手動設定單元受操作地設定啟動控制參數值、穩態控制參數值、啟動電流參數值、穩態電流參數值、第一切換時距與第二切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the rule setting module in the magnetic bearing auxiliary control system comprise a manual setting unit, and the manual setting unit is operated to set the start control parameter value , a steady-state control parameter value, a starting current parameter value, a steady-state current parameter value, a first switching time interval, and a second switching time interval.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制系統中之控制模組,係包含一計算單元,計算單元利用穩態控制參數值與啟動控制參數值之差值除以第二切換時距與第一切換時距之差值藉以產生調升控制指令,並利用穩態電流參數值與啟動電流參數值之差值除以第二切換時距與第一切換時距之差值藉以產生調升電流指令。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the control module in the magnetic bearing auxiliary control system include a calculation unit, and the calculation unit uses the steady-state control parameter value and the start-up control parameter value The difference between the second switching interval and the first switching interval is divided by the difference between the second switching interval and the first switching interval to generate an increase control command, and the difference between the steady-state current parameter value and the starting current parameter value is divided by the second switching interval and the first switching interval A switching time difference is used to generate a command to increase the current.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制系統中之該規則設定模組,係包含一接收單元、一比較單元與一第一設定單元。磁浮軸承控制系統更包含一感測模組,感測模組用以感測出磁浮轉子之一轉子中心位置。接收單元用以接收轉子中心位置。比較單元電性連接接收單元,用以比較轉子中心位置與安全軸承之一平衡中心位置,並在轉子中心位置等於平衡中心位置時,產生一平衡信號。第一設定單元電性連接比較單元,用以在接收到平衡信號時,將當時之該啟動時間定義為第一切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the rule setting module in the magnetic bearing auxiliary control system include a receiving unit, a comparing unit and a first setting unit. The magnetic bearing control system further includes a sensing module, which is used to sense a rotor center position of the magnetic bearing rotor. The receiving unit is used for receiving the center position of the rotor. The comparing unit is electrically connected to the receiving unit for comparing the center position of the rotor with the balance center position of one of the safety bearings, and generates a balance signal when the center position of the rotor is equal to the balance center position. The first setting unit is electrically connected to the comparing unit, and is used for defining the starting time at that time as the first switching time interval when receiving the balance signal.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制系統中之規則設定模組,更包含一第二設定單元,第二設定單元電性連接第一設定單元,用以利用第一切換時距加上兩倍之當時之啟動時間定義出第二切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the rule setting module in the magnetic bearing auxiliary control system further include a second setting unit, the second setting unit is electrically connected to the first setting A unit for defining a second switching time interval by adding twice the current starting time to the first switching time interval.

本發明為解決先前技術之問題,所採用之必要技術手段為另外提供一種磁浮軸承輔助控制方法,係利用上述之磁浮軸承輔助控制系統加以實施,並包含以下步驟:利用規則設定模組設定出控制規則;利用控制模組產生啟動控制指令與啟動電流指令,藉以使參數值等於啟動控制參數值以及使電流值等於啟動電流參數值,並使位置控制器據以驅動磁浮轉子上浮並脫離安全軸承;利用計時模組計算啟動時間;利用判斷模組判斷出啟動時間大於第一切換時距時,產生第一切換信號;利用控制模組產生調升控制指令與調升電流指令,藉以調升參數值與電流值;利用判斷模組判斷出啟動時間大於第二切換時距時,產生第二切換信號;利用控制模組產生穩態控制指令與穩態電流指令,藉以使參數值等於穩態控制參數值以及使電流值等於穩態電流參數值。In order to solve the problems of the prior art, the necessary technical means adopted by the present invention is to provide an additional magnetic bearing auxiliary control method, which is implemented by using the above magnetic bearing auxiliary control system, and includes the following steps: using the rule setting module to set the control Rules: use the control module to generate the start control command and start current command, so that the parameter value is equal to the start control parameter value and the current value is equal to the start current parameter value, and the position controller drives the magnetic levitation rotor to float up and break away from the safety bearing; Use the timing module to calculate the starting time; use the judging module to determine that the starting time is greater than the first switching time interval, and generate the first switching signal; use the control module to generate an increase control command and an increase current command, so as to increase the parameter value and the current value; when the judging module judges that the starting time is greater than the second switching time distance, a second switching signal is generated; the control module is used to generate a steady-state control command and a steady-state current command, so that the parameter value is equal to the steady-state control parameter value and make the current value equal to the steady state current parameter value.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制方法中之步驟,更包含以下步驟:利用規則設定模組之一手動設定單元設定啟動控制參數值、穩態控制參數值、啟動電流參數值、穩態電流參數值、第一切換時距與第二切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the steps in the magnetic bearing auxiliary control method further include the following steps: use one of the manual setting units of the rule setting module to set the start control parameter value, Steady-state control parameter value, starting current parameter value, steady-state current parameter value, first switching interval and second switching interval.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制方法中之步驟,更包含以下步驟:利用控制模組之一計算單元,依據穩態控制參數值與啟動控制參數值之差值除以第二切換時距與第一切換時距之差值產生調升控制指令,以及依據穩態電流參數值與啟動電流參數值之差值除以第二切換時距與第一切換時距之差值藉以產生調升電流指令。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the steps in the magnetic bearing auxiliary control method further include the following steps: using one of the calculation units of the control module, according to the steady-state control parameter value and The difference between the starting control parameter value is divided by the difference between the second switching time interval and the first switching time interval to generate an increase control command, and the difference between the steady-state current parameter value and the starting current parameter value is divided by the second switching time The difference between the time distance and the first switching time distance is used to generate a command to increase the current.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承控制系統更包含一感測模組,感測模組用以感測出該磁浮轉子之一轉子中心位置,磁浮軸承輔助控制方法中之步驟,更包含以下步驟:利用規則設定模組之一接收單元,接收轉子中心位置;利用規則設定模組之一比較單元,在比較出轉子中心位置等於平衡中心位置時,產生一平衡信號;利用規則設定模組之一第一設定單元,在接收到平衡信號時,定義當時之啟動時間為第一切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the magnetic bearing control system further include a sensing module, which is used to sense the rotor center position of the magnetic bearing rotor, The steps in the magnetic bearing auxiliary control method further include the following steps: using a receiving unit of the rule setting module to receive the center position of the rotor; using a rule setting module to compare the unit, when comparing the center position of the rotor is equal to the balance center position , to generate a balance signal; using one of the first setting units of the rule setting module, when receiving the balance signal, define the starting time at that time as the first switching time interval.

在上述必要技術手段的基礎下,本發明所衍生之一附屬技術手段為使磁浮軸承輔助控制方法中之步驟,更包含以下步驟:利用規則設定模組之一第二設定單元,將第一切換時距加上兩倍之當時之啟動時間定義出第二切換時距。On the basis of the above-mentioned necessary technical means, an auxiliary technical means derived from the present invention is to make the steps in the magnetic bearing auxiliary control method further include the following steps: using the second setting unit of the rule setting module to set the first switching The time interval plus twice the current activation time defines the second switching interval.

承上所述,本發明所提供之磁浮軸承輔助控制系統,利用規則設定模組、控制模組、計時模組與判斷模組輔助控制磁浮軸承控制系統控制磁浮轉子上浮。相較於先前技術,本發明利用控制模組依據控制規則,產生啟動控制指令與啟動電流指令,並在第一切換時距產生調升控制指令與調升電流指令,以及在第二切換時距產生穩態控制指令與穩態電流指令,藉以逐步控制參數值與電流值,因此,本發明可以平穩地控制磁浮轉子上浮,也可以在逐步調升參數值與電流值後,使磁浮軸承組件可以在高頻轉速下不會失控,避免先前技術因為參數值與電流值過大造成啟動控制時的不穩定,導致磁浮轉子振盪接觸甚至是碰觸安全軸承的問題。另外,本發明的規則設定模組更可利用接收單元、比較單元、第一設定單元與第二設定單元,自動定義出第一切換時距與第二切換時距。Based on the above, the magnetic bearing auxiliary control system provided by the present invention uses a rule setting module, a control module, a timing module and a judgment module to assist in controlling the magnetic bearing control system to control the floating of the magnetic bearing rotor. Compared with the prior art, the present invention utilizes the control module to generate start-up control commands and start-up current commands according to the control rules, and generates a step-up control command and a step-up current command at the first switching interval, and at the second switching time interval Generate steady-state control commands and steady-state current commands to gradually control parameter values and current values. Therefore, the present invention can control the magnetic levitation rotor to float smoothly, and can also make the magnetic bearing assembly after gradually increasing the parameter values and current values. It will not run out of control at high-frequency rotation speeds, avoiding the instability of start-up control caused by excessive parameter values and current values in the previous technology, resulting in the magnetic levitation rotor oscillating contact or even touching the safety bearing. In addition, the rule setting module of the present invention can further use the receiving unit, the comparing unit, the first setting unit and the second setting unit to automatically define the first switching time interval and the second switching time interval.

下面將結合示意圖對本發明的具體實施方式進行更詳細的描述。根據下列描述和申請專利範圍,本發明的優點和特徵將更清楚。需說明的是,圖式均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。The specific implementation manner of the present invention will be described in more detail below with reference to schematic diagrams. The advantages and features of the present invention will be more clear from the following description and claims. It should be noted that all the drawings are in very simplified form and use imprecise scales, which are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.

請參閱第五圖、第六圖與第十圖,其中,第五圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制系統之方塊圖;第六圖係顯示磁浮軸承組件之示意圖;以及,第十圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制方法之流程圖。如圖所示,一種磁浮軸承輔助控制系統1係應用於一磁浮軸承控制系統2,並包含一規則設定模組11、一控制模組12、一計時模組13與一判斷模組14。Please refer to the fifth figure, the sixth figure and the tenth figure, wherein, the fifth figure is a block diagram showing the magnetic bearing auxiliary control system provided by the preferred embodiment of the present invention; the sixth figure is a schematic diagram showing the magnetic bearing assembly; And, the tenth figure is a flow chart showing the auxiliary control method of the magnetic bearing provided by the preferred embodiment of the present invention. As shown in the figure, a magnetic bearing auxiliary control system 1 is applied to a magnetic bearing control system 2 and includes a rule setting module 11 , a control module 12 , a timing module 13 and a judgment module 14 .

磁浮軸承控制系統2包含一位置控制器21、複數個功率放大器22a、22b、一磁浮軸承組件23與一位置回授感測器24。磁浮軸承組件23至少包含一磁浮轉子231、一磁浮定子232、一安全軸承233與一感測模組234。其中,磁浮軸承控制系統2的架構與先前技術中磁浮軸承控制系統PA1的架構相同,故不多加贅述。The magnetic bearing control system 2 includes a position controller 21 , a plurality of power amplifiers 22 a , 22 b , a magnetic bearing assembly 23 and a position feedback sensor 24 . The maglev bearing assembly 23 at least includes a maglev rotor 231 , a maglev stator 232 , a safety bearing 233 and a sensing module 234 . Wherein, the architecture of the magnetic bearing control system 2 is the same as that of the magnetic bearing control system PA1 in the prior art, so no more details are given here.

一種磁浮軸承輔助控制方法係利用磁浮軸承輔助控制系統1加以實施,並包含以下步驟S101至步驟S111。A magnetic bearing auxiliary control method is implemented by using the magnetic bearing auxiliary control system 1, and includes the following steps S101 to S111.

步驟S101:利用規則設定模組設定出控制規則。Step S101: Use the rule setting module to set control rules.

規則設定模組11受操作地設定出一控制規則,其中,控制規則具有一啟動控制參數值、一穩態控制參數值、一啟動電流參數值、一穩態電流參數值、一第一切換時距與一第二切換時距。The rule setting module 11 is operated to set a control rule, wherein the control rule has a starting control parameter value, a steady state control parameter value, a starting current parameter value, a steady state current parameter value, a first switching time distance and a second switching time distance.

步驟S102:利用控制模組產生啟動控制指令與啟動電流指令,並傳送至位置控制器藉以使參數值與電流值分別等於啟動控制參數值與啟動電流參數值,並使位置控制器據以驅動磁浮轉子上浮。Step S102: Utilize the control module to generate the starting control command and the starting current command, and send them to the position controller so that the parameter value and the current value are equal to the starting control parameter value and the starting current parameter value respectively, and make the position controller drive the magnetic levitation accordingly The rotor floats up.

控制模組12電性連接規則設定模組11,用以依據啟動控制參數值與啟動電流參數值產生一啟動控制指令與一啟動電流指令,並將啟動控制指令與啟動電流指令傳送至位置控制器21,藉以使參數值等於啟動控制參數值以及使電流值等於啟動電流參數值,並使位置控制器21據以驅動磁浮軸承組件23的一磁浮轉子231上浮並脫離磁浮軸承組件23的一安全軸承233。The control module 12 is an electrical connection rule setting module 11, which is used to generate a start control command and a start current command according to the start control parameter value and the start current parameter value, and transmit the start control command and the start current command to the position controller 21, so that the parameter value is equal to the start control parameter value and the current value is equal to the start current parameter value, so that the position controller 21 can drive a magnetic levitation rotor 231 of the magnetic bearing assembly 23 to float up and break away from a safety bearing of the magnetic bearing assembly 23 233.

步驟S103:利用計時模組計時。Step S103: Use the timing module to time the time.

計時模組13電性連接控制模組12,用以在控制模組12將啟動控制指令與啟動電流指令傳送至位置控制器21時,開始計時,並獲得開始計時後所經歷的一啟動時間。The timing module 13 is electrically connected to the control module 12, and is used to start timing when the control module 12 transmits the startup control instruction and the startup current instruction to the position controller 21, and obtains a startup time after the timing starts.

步驟S104:利用判斷模組判斷啟動時間與第一切換時距。Step S104: Use the judging module to judge the starting time and the first switching time interval.

步驟S105:啟動時間是否大於第一切換時距。Step S105: Whether the startup time is greater than the first switching time interval.

在步驟S105判斷為是時,係進入步驟S106;並在判斷為否時,重複進行步驟S104。If it is judged yes in step S105, go to step S106; and if it is judged no, repeat step S104.

步驟S106:判斷模組產生第一切換信號。Step S106: The judging module generates a first switching signal.

判斷模組14電性連接計時模組13、控制模組12與規則設定模組11,用以在判斷出啟動時間是大於第一切換時距時,產生一第一切換信號。The judging module 14 is electrically connected to the timing module 13, the control module 12 and the rule setting module 11, and is used for generating a first switching signal when it is judged that the starting time is greater than the first switching time interval.

步驟S107:利用控制模組產生調升控制指令與調升電流指令,藉以調升參數值與電流值。Step S107: Utilize the control module to generate an increase control command and an increase current command, so as to increase the parameter value and the current value.

接著,利用控制模組12依據控制規則,產生一調升控制指令與一調升電流指令,藉以調升位置控制器21的驅動命令中的參數值與電流值。Next, use the control module 12 to generate an increase control instruction and an increase current instruction according to the control rules, so as to increase the parameter value and current value in the driving command of the position controller 21 .

步驟S108:利用判斷模組判斷啟動時間與第二切換時距。Step S108: Use the judging module to judge the starting time and the second switching time interval.

步驟S109:啟動時間是否大於第二切換時距。Step S109: Whether the startup time is greater than the second switching time interval.

在步驟S109判斷為是時,係進入步驟S110;並在判斷為否時,重複進行步驟S108。If it is judged yes in step S109, go to step S110; and if it is judged no, repeat step S108.

步驟S110:判斷模組產生第二切換信號。Step S110: The judging module generates a second switching signal.

判斷模組14會進一步判斷啟動時間是否大於第二切換時距,並在啟動時間大於第二切換時距時,產生一第二切換信號。The judging module 14 further judges whether the starting time is greater than the second switching interval, and generates a second switching signal when the starting time is greater than the second switching interval.

步驟S111:利用控制模組產生穩態控制指令與穩態電流指令,藉以使參數值與電流值分別等於穩態控制參數值與穩態電流參數值。Step S111 : Utilize the control module to generate a steady-state control command and a steady-state current command, so that the parameter value and the current value are respectively equal to the steady-state control parameter value and the steady-state current parameter value.

控制模組12依據控制規則的穩態控制參數值與穩態電流參數值,產生一穩態控制指令與一穩態電流指令,藉以使參數值與電流值分別等於穩態控制參數值與穩態電流參數值。The control module 12 generates a steady-state control command and a steady-state current command according to the steady-state control parameter value and the steady-state current parameter value of the control rule, so that the parameter value and the current value are respectively equal to the steady-state control parameter value and the steady-state Current parameter value.

接著,請一併參閱第五圖至第九圖,其中,第七圖係顯示本發明較佳實施例所提供之驅動命令之示意圖;第八圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制系統輔助控制磁浮軸承組件之示意圖;以及,第九圖係顯示本發明輔助控制磁浮軸承組件之轉子中心位置之示意圖。如圖所示,在本實施例中,規則設定模組11更包含一手動設定單元111,控制模組12更包含一計算單元121。Next, please refer to the fifth figure to the ninth figure together. Among them, the seventh figure shows the schematic diagram of the drive command provided by the preferred embodiment of the present invention; the eighth figure shows the maglev provided by the preferred embodiment of the present invention. A schematic diagram of the bearing auxiliary control system for auxiliary control of the magnetic bearing assembly; and, Figure 9 is a schematic diagram showing the position of the center of the rotor for auxiliary control of the magnetic bearing assembly of the present invention. As shown in the figure, in this embodiment, the rule setting module 11 further includes a manual setting unit 111 , and the control module 12 further includes a calculation unit 121 .

手動設定單元111用以供一使用者手動設定啟動控制參數值、穩態控制參數值、啟動電流參數值、穩態電流參數值、第一切換時距T1與第二切換時距T2,藉以形成控制規則。一般來說,使用者可以依據經驗法則、大數據分析、產品規格等來設定上述數值。The manual setting unit 111 is used for a user to manually set the starting control parameter value, the steady-state control parameter value, the starting current parameter value, the steady-state current parameter value, the first switching time interval T1 and the second switching time interval T2, so as to form control rules. Generally speaking, users can set the above values based on empirical rules, big data analysis, product specifications, etc.

控制模組12會依據啟動控制參數值與啟動電流參數值產生啟動控制指令與啟動電流指令,並傳送至位置控制器21,藉以使參數值等於啟動控制參數值以及使電流值等於啟動電流參數值。可參閱第七圖,以啟動值M0表示參數值與電流值分別等於啟動控制參數值與啟動電流參數值。The control module 12 will generate a start control command and a start current command according to the start control parameter value and the start current parameter value, and send them to the position controller 21, so that the parameter value is equal to the start control parameter value and the current value is equal to the start current parameter value . Referring to the seventh figure, the starting value M0 indicates that the parameter value and the current value are respectively equal to the starting control parameter value and the starting current parameter value.

此時,位置控制器21會驅動控制磁浮轉子231沿一移動方向D1上浮,並脫離安全軸承233,可參閱第六圖與第八圖。此外,可參閱第九圖,感測模組234所感測到磁浮轉子231的轉子中心位置,也會逐漸上升。相較於先前技術,可參閱第四圖,因為本發明利用較小的啟動控制參數值與啟動電流參數值產生啟動控制指令與啟動電流指令,使得磁浮轉子231的轉子中心位置的上升幅度較為平緩,也較為平穩,並不會產生如先前技術中的振盪情形。在此轉子中心位置以磁浮轉子231的中心軸到感測模組234之間的一距離L示意,但不以此為限。感測模組234也可以感測磁浮轉子231的邊界到感測模組234之間的一第一間隙距離,搭配磁浮轉子231的半徑、安全軸承233與磁浮轉子231之間的一第二間隙距離等,藉以感測出可以代表磁浮轉子231位置的參數。At this time, the position controller 21 will drive and control the magnetic levitation rotor 231 to float up along a moving direction D1 and disengage from the safety bearing 233 , please refer to the sixth and eighth figures. In addition, referring to FIG. 9 , the position of the rotor center of the magnetic levitation rotor 231 sensed by the sensing module 234 will gradually rise. Compared with the prior art, please refer to the fourth figure, because the present invention uses smaller starting control parameter values and starting current parameter values to generate starting control commands and starting current commands, so that the rise of the rotor center position of the magnetic levitation rotor 231 is relatively gentle , is also relatively stable, and does not produce the oscillation situation as in the prior art. The central position of the rotor is indicated by a distance L between the central axis of the magnetic levitation rotor 231 and the sensing module 234 , but it is not limited thereto. The sensing module 234 can also sense a first gap distance between the boundary of the magnetic levitation rotor 231 and the sensing module 234, and match the radius of the magnetic levitation rotor 231, a second gap between the safety bearing 233 and the magnetic levitation rotor 231 Distance, etc., so as to sense parameters that can represent the position of the magnetic levitation rotor 231 .

當判斷模組14判斷出啟動時間大於第一切換時距T1時,便會產生第一切換信號。此時,控制模組12便會依據控制規則,產生調升控制指令與調升電流指令。在本實施例中,計算單元121可以利用穩態控制參數值與啟動控制參數值的差值除以第二切換時距T2與第一切換時距T1之差值∆T藉以產生調升控制指令,並利用穩態電流參數值與啟動電流參數值之差值除以第二切換時距T2與第一切換時距T1之差值∆T藉以產生調升電流指令。When the judging module 14 judges that the starting time is longer than the first switching time interval T1, the first switching signal will be generated. At this time, the control module 12 generates an increase control instruction and an increase current instruction according to the control rule. In this embodiment, the calculation unit 121 can divide the difference between the steady-state control parameter value and the start-up control parameter value by the difference ΔT between the second switching time interval T2 and the first switching time interval T1 to generate an increase control command , and divide the difference between the steady-state current parameter value and the start-up current parameter value by the difference ΔT between the second switching time interval T2 and the first switching time interval T1 to generate an increase current command.

舉例來說,在本實施例中,當參數值與電流值為啟動值M0時,啟動值M0即為啟動控制參數值與啟動電流參數值;當參數值與電流值為最大值M1時,最大值M1即為穩態控制參數值與穩態電流參數值。因此,計算單元121可以視為是利用最大值M1與啟動值M0的差值∆M除以差值∆T,藉以分別產生調升控制指令與調升電流指令。For example, in this embodiment, when the parameter value and the current value are the starting value M0, the starting value M0 is the starting control parameter value and the starting current parameter value; when the parameter value and the current value are the maximum value M1, the maximum The value M1 is the steady-state control parameter value and the steady-state current parameter value. Therefore, the calculation unit 121 can be regarded as dividing the difference ΔM between the maximum value M1 and the starting value M0 by the difference ΔT, so as to generate an increase control instruction and an increase current instruction respectively.

因此,調升控制指令與調升電流指令便會調升參數值與電流值,如第七圖所示,在第一切換時距T1所代表的第一時間點t1與第二切換時距T2所代表的第二時間點t2之間,參數值與電流值係受操作地逐步調升。Therefore, increasing the control command and increasing the current command will increase the parameter value and current value. As shown in the seventh figure, at the first time point t1 represented by the first switching time interval T1 and the second switching time interval T2 Between the represented second time point t2, the parameter value and the current value are operatively increased step by step.

而當判斷模組14判斷出啟動時間大於第二切換時距T2時,便會產生第二切換信號。此時,控制模組12依據穩態控制參數值與穩態電流參數值,產生一穩態控制指令與一穩態電流指令,藉以使參數值等於穩態控制參數值以及使電流值等於穩態電流參數值,也就是本實施例中的最大值M1。需說明的是,本實施例中的最大值M1即為先前技術中的最大值M1。And when the judging module 14 judges that the starting time is longer than the second switching time interval T2, a second switching signal will be generated. At this time, the control module 12 generates a steady-state control command and a steady-state current command according to the steady-state control parameter value and the steady-state current parameter value, so that the parameter value is equal to the steady-state control parameter value and the current value is equal to the steady-state The current parameter value is the maximum value M1 in this embodiment. It should be noted that the maximum value M1 in this embodiment is the maximum value M1 in the prior art.

可一併比較第三圖與第七圖,相較於先前技術為了提升剛性,直接採用最大值M1作為驅動命令,本發明依照第一切換時距T1與第二切換時距T2,將驅動命令的參數值與電流值自啟動值M0(啟動控制參數值與啟動電流參數值)逐步提升至最大值M1(穩態控制參數值與穩態電流參數值)。接著,可一併比較第四圖與第九圖,經由上述逐步控制參數值與電流值,本發明的轉子中心位置上升幅度較為平緩,也較為平穩,不會出現先前技術振盪的情形,自然不會產生磁浮轉子231接觸並撞擊到安全軸承233的問題。The third and seventh figures can be compared together. Compared with the prior art, which directly uses the maximum value M1 as the driving command in order to improve the rigidity, the present invention uses the first switching time distance T1 and the second switching time distance T2 to convert the driving command The parameter value and current value gradually increase from the start-up value M0 (start-up control parameter value and start-up current parameter value) to the maximum value M1 (steady-state control parameter value and steady-state current parameter value). Next, compare the fourth figure and the ninth figure together. Through the above-mentioned gradual control of the parameter value and current value, the rotor center position of the present invention rises relatively gently and steadily, and there is no vibration in the prior art. There will be a problem that the magnetic levitation rotor 231 contacts and hits the safety bearing 233 .

此外除了手動設定單元111,在本實施例中,規則設定模組11也可包含一接收單元112、一比較單元113與一第一設定單元114。In addition to the manual setting unit 111 , in this embodiment, the rule setting module 11 may also include a receiving unit 112 , a comparing unit 113 and a first setting unit 114 .

接收單元112用以接收感測模組234所感測到的轉子中心位置。比較單元113電性連接該接收單元112,用以比較轉子中心位置與安全軸承233的一平衡中心位置,並在轉子中心位置等於平衡中心位置時,產生一平衡信號。第一設定單元114電性連接比較單元113,用以在接收到平衡信號時,將當時之啟動時間定義為第一切換時距。The receiving unit 112 is used for receiving the rotor center position sensed by the sensing module 234 . The comparing unit 113 is electrically connected to the receiving unit 112 for comparing the rotor center position with a balance center position of the safety bearing 233 , and generates a balance signal when the rotor center position is equal to the balance center position. The first setting unit 114 is electrically connected to the comparing unit 113, and is used for defining the current starting time as the first switching time interval when receiving the balance signal.

舉例來說,比較單元113在確認轉子中心位置為0.4mm時,便會產生平衡信號,第一設定單元114便會將此時的啟動時間定義為第一切換時距T1。因此,在定義完第一切換時距T1之後,啟動時間便會大於第一切換時距T1,控制模組12便會產生調升控制指令與調升電流指令。For example, when the comparing unit 113 confirms that the center position of the rotor is 0.4 mm, it will generate a balance signal, and the first setting unit 114 will define the starting time at this time as the first switching time interval T1. Therefore, after the first switching time interval T1 is defined, the start-up time will be longer than the first switching time interval T1, and the control module 12 will generate an increase control instruction and an increase current instruction.

此外,規則設定模組11更包含一第二設定單元115,第二設定單元115電性連接第一設定單元114,用以利用第一切換時距T1加上兩倍的當時的啟動時間定義出第二切換時距T2。也可以將第二切換時距T2視為是三倍的第一切換時距T1。當啟動時間大於第二切換時距T2時,控制模組12便會產生穩態控制指令與穩態電流指令。In addition, the rule setting module 11 further includes a second setting unit 115, the second setting unit 115 is electrically connected to the first setting unit 114, and is used to define The second switching time interval T2. The second switching time T2 can also be regarded as three times the first switching time T1. When the starting time is greater than the second switching time interval T2, the control module 12 will generate a steady-state control command and a steady-state current command.

利用第一切換時距T1加上兩倍的當時的啟動時間的用意在於,第一切換時距T1為磁浮轉子231自安全軸承233移動了一半的可移動距離(安全軸承233之間的距離)所花的時間,因此,在調升參數值與電流值的時間區間(可視為差值∆T所在的區間),建議要大於第一切換時距T1,甚至是第一切換時距T1的兩倍,藉以避免整個系統產生不穩定、振盪的情形。The purpose of using the first switching time interval T1 plus twice the current starting time is that the first switching time interval T1 is half the movable distance (the distance between the safety bearings 233) that the magnetic levitation rotor 231 moves from the safety bearing 233 Therefore, in the time interval between increasing the parameter value and the current value (which can be regarded as the interval where the difference ∆T is located), it is recommended to be longer than the first switching time interval T1, or even two times the first switching time interval T1. times, so as to avoid the instability and oscillation of the whole system.

綜上所述,本發明所提供之磁浮軸承輔助控制系統,利用規則設定模組、控制模組、計時模組與判斷模組輔助控制磁浮軸承控制系統控制磁浮轉子上浮。相較於先前技術,本發明利用控制模組依據控制規則,產生啟動控制指令與啟動電流指令,並在第一切換時距產生調升控制指令與調升電流指令,以及在第二切換時距產生穩態控制指令與穩態電流指令,藉以逐步控制參數值與電流值,因此,本發明可以平穩地控制磁浮轉子上浮,也可以在逐步調升參數值與電流值後,使磁浮軸承組件可以在高頻轉速下不會失控,避免先前技術因為參數值與電流值過大造成啟動控制時的不穩定,導致磁浮轉子振盪接觸甚至是碰觸安全軸承的問題。另外,本發明的規則設定模組更可利用接收單元、比較單元、第一設定單元與第二設定單元,自動定義出第一切換時距與第二切換時距。To sum up, the magnetic bearing auxiliary control system provided by the present invention uses the rule setting module, control module, timing module and judgment module to assist in controlling the magnetic bearing control system to control the floating of the magnetic bearing rotor. Compared with the prior art, the present invention utilizes the control module to generate start-up control commands and start-up current commands according to the control rules, and generates a step-up control command and a step-up current command at the first switching interval, and at the second switching time interval Generate steady-state control commands and steady-state current commands to gradually control parameter values and current values. Therefore, the present invention can control the magnetic levitation rotor to float smoothly, and can also make the magnetic bearing assembly after gradually increasing the parameter values and current values. It will not run out of control at high-frequency rotation speeds, avoiding the instability of start-up control caused by excessive parameter values and current values in the previous technology, resulting in the magnetic levitation rotor oscillating contact or even touching the safety bearing. In addition, the rule setting module of the present invention can further use the receiving unit, the comparing unit, the first setting unit and the second setting unit to automatically define the first switching time interval and the second switching time interval.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。Through the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the claimed patent scope of the present invention.

PA1,2:磁浮軸承控制系統 PA11,21:位置控制器 PA12a,PA12b,22a,22b:功率放大器 PA13,23:磁浮軸承組件 PA131,231:磁浮轉子 PA132,232:磁浮定子 PA133,233:安全軸承 PA134,234:感測模組 PA14,24:位置回授感測器 1:磁浮軸承輔助控制系統 11:規則設定模組 111:手動設定單元 112:接收單元 113:比較單元 114:第一設定單元 115:第二設定單元 12:控制模組 121:計算單元 13:計時模組 14:判斷模組 D1:移動方向 L:距離 M0:啟動值 M1:最大值 T1:第一切換時距 t1:第一時間點 T2:第二切換時距 t2:第二時間點 ∆M,∆T:差值 S101~S111:步驟 PA1,2: Magnetic bearing control system PA11,21: position controller PA12a, PA12b, 22a, 22b: power amplifier PA13,23: Magnetic Bearing Assembly PA131,231: Maglev rotor PA132,232: Maglev Stator PA133,233: Safety Bearings PA134,234: Sensing module PA14,24: position feedback sensor 1: Magnetic bearing auxiliary control system 11: Rule setting module 111: Manual setting unit 112: Receiving unit 113: Comparison unit 114: The first setting unit 115: the second setting unit 12: Control module 121: Calculation unit 13: Timing module 14: Judgment module D1: moving direction L: distance M0: start value M1: maximum value T1: first switching time interval t1: the first time point T2: second switching time interval t2: second time point ∆M,∆T: difference S101~S111: steps

第一圖係顯示先前技術之磁浮軸承控制系統之示意圖; 第二圖係顯示先前技術之磁浮軸承組件之示意圖; 第三圖係顯示先前技術之驅動命令之示意圖; 第四圖係顯示先前技術之磁浮軸承組件之轉子中心位置之示意圖; 第五圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制系統之方塊圖; 第六圖係顯示磁浮軸承組件之示意圖; 第七圖係顯示本發明較佳實施例所提供之驅動命令之示意圖; 第八圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制系統輔助控制磁浮軸承組件之示意圖; 第九圖係顯示本發明輔助控制磁浮軸承組件之轉子中心位置之示意圖;以及 第十圖係顯示本發明較佳實施例所提供之磁浮軸承輔助控制方法之流程圖。 The first figure is a schematic diagram showing a prior art magnetic bearing control system; The second figure is a schematic diagram showing a magnetic bearing assembly of the prior art; The third figure is a schematic diagram showing the drive command of the prior art; The fourth figure is a schematic diagram showing the position of the rotor center of the magnetic bearing assembly of the prior art; The fifth figure is a block diagram showing the magnetic bearing auxiliary control system provided by the preferred embodiment of the present invention; Figure 6 is a schematic diagram showing the magnetic bearing assembly; The seventh figure is a schematic diagram showing the driving commands provided by the preferred embodiment of the present invention; The eighth figure is a schematic diagram showing the auxiliary control system of the magnetic bearing auxiliary control system provided by the preferred embodiment of the present invention to assist the control of the magnetic bearing assembly; Figure 9 is a schematic diagram showing the position of the rotor center of the auxiliary control magnetic bearing assembly of the present invention; and Figure 10 is a flow chart showing the auxiliary control method for the magnetic bearing provided by the preferred embodiment of the present invention.

1:磁浮軸承輔助控制系統 1: Magnetic bearing auxiliary control system

11:規則設定模組 11: Rule setting module

111:手動設定單元 111: Manual setting unit

112:接收單元 112: Receiving unit

113:比較單元 113: Comparison unit

114:第一設定單元 114: The first setting unit

115:第二設定單元 115: the second setting unit

12:控制模組 12: Control module

121:計算單元 121: Calculation unit

13:計時模組 13: Timing module

14:判斷模組 14: Judgment module

2:磁浮軸承控制系統 2: Magnetic bearing control system

21:位置控制器 21: Position controller

22a,22b:功率放大器 22a, 22b: power amplifier

23:磁浮軸承組件 23: Magnetic bearing assembly

234:感測模組 234:Sensing module

24:位置回授感測器 24: Position feedback sensor

Claims (10)

一種磁浮軸承輔助控制系統,係應用於一磁浮軸承控制系統,該磁浮軸承控制系統包含一位置控制器與一磁浮軸承組件,該位置控制器係受操作地產生一包含一參數值與一電流值之驅動命令以驅動該磁浮軸承組件,該磁浮軸承輔助控制系統係包含: 一規則設定模組,係受操作地設定出一控制規則,該控制規則係具有一啟動控制參數值、一穩態控制參數值、一啟動電流參數值、一穩態電流參數值、一第一切換時距與一第二切換時距; 一控制模組,係電性連接該規則設定模組,用以依據該啟動控制參數值與該啟動電流參數值產生一啟動控制指令與一啟動電流指令,並將該啟動控制指令與該啟動電流指令傳送至該位置控制器,藉以使該參數值等於該啟動控制參數值以及使該電流值等於該啟動電流參數值,並使該位置控制器據以驅動該磁浮軸承組件之一磁浮轉子上浮並脫離該磁浮軸承組件之一安全軸承; 一計時模組,係電性連接該控制模組,用以在該控制模組將該啟動控制指令與該啟動電流指令傳送至該位置控制器時,開始計時,並獲得開始計時後所經歷之一啟動時間;以及 一判斷模組,係電性連接該計時模組、該控制模組與該規則設定模組,用以在判斷出該啟動時間大於該第一切換時距時,產生一第一切換信號,並利用該控制模組依據該控制規則,產生一調升控制指令與一調升電流指令,藉以調升該參數值與該電流值;用以在判斷出該啟動時間大於該第二切換時距時,產生一第二切換信號,並利用該控制模組依據該穩態控制參數值與該穩態電流參數值,產生一穩態控制指令與一穩態電流指令,藉以使該參數值等於該穩態控制參數值以及使該電流值等於該穩態電流參數值。 A magnetic bearing auxiliary control system is applied to a magnetic bearing control system, the magnetic bearing control system includes a position controller and a magnetic bearing assembly, the position controller is operated to generate a parameter value and a current value The drive command to drive the magnetic bearing assembly, the magnetic bearing auxiliary control system includes: A rule setting module is operated to set a control rule, the control rule has a starting control parameter value, a steady state control parameter value, a starting current parameter value, a steady state current parameter value, a first a switching time interval and a second switching time interval; A control module, which is electrically connected to the rule setting module, is used to generate a start control command and a start current command according to the start control parameter value and the start current parameter value, and combine the start control command and the start current The instruction is sent to the position controller, so that the parameter value is equal to the start control parameter value and the current value is equal to the start current parameter value, and the position controller drives a magnetic levitation rotor of the magnetic bearing assembly to float up and disengage one of the safety bearings of the magnetic bearing assembly; A timing module, which is electrically connected to the control module, is used to start timing when the control module transmits the starting control command and the starting current command to the position controller, and obtains the time experienced after starting timing a start time; and A judging module, which is electrically connected to the timing module, the control module and the rule setting module, is used to generate a first switching signal when it is judged that the starting time is greater than the first switching time interval, and Utilize the control module to generate an increase control instruction and an increase current instruction according to the control rule, so as to increase the parameter value and the current value; when it is judged that the starting time is greater than the second switching time interval , generate a second switching signal, and use the control module to generate a steady-state control command and a steady-state current command according to the steady-state control parameter value and the steady-state current parameter value, so that the parameter value is equal to the steady-state current parameter value State control parameter value and make the current value equal to the steady state current parameter value. 如請求項1所述之磁浮軸承輔助控制系統,其中,該規則設定模組係包含一手動設定單元,該手動設定單元係受操作地設定該啟動控制參數值、該穩態控制參數值、該啟動電流參數值、該穩態電流參數值、該第一切換時距與該第二切換時距。The magnetic bearing auxiliary control system as described in Claim 1, wherein, the rule setting module includes a manual setting unit, and the manual setting unit is operated to set the starting control parameter value, the steady state control parameter value, the The starting current parameter value, the steady state current parameter value, the first switching time interval and the second switching time interval. 如請求項2所述之磁浮軸承輔助控制系統,其中,該控制模組係包含一計算單元,該計算單元係利用該穩態控制參數值與該啟動控制參數值之差值除以該第二切換時距與該第一切換時距之差值藉以產生該調升控制指令,並利用該穩態電流參數值與該啟動電流參數值之差值除以該第二切換時距與該第一切換時距之差值藉以產生該調升電流指令。The magnetic bearing auxiliary control system as described in claim 2, wherein the control module includes a calculation unit, and the calculation unit uses the difference between the steady-state control parameter value and the start-up control parameter value divided by the second The difference between the switching time interval and the first switching time interval is used to generate the step-up control command, and the difference between the steady-state current parameter value and the starting current parameter value is divided by the second switching time interval and the first switching time interval. The difference between the switching time intervals is used to generate the command to increase the current. 如請求項1所述之磁浮軸承輔助控制系統,其中,該磁浮軸承控制系統更包含一感測模組,該感測模組係用以感測出該磁浮轉子之一轉子中心位置,該規則設定模組係包含: 一接收單元,係用以接收該轉子中心位置; 一比較單元,係電性連接該接收單元,用以比較該轉子中心位置與該安全軸承之一平衡中心位置,並在該轉子中心位置等於該平衡中心位置時,產生一平衡信號;以及 一第一設定單元,係電性連接該比較單元,用以在接收到該平衡信號時,將當時之該啟動時間定義為該第一切換時距。 The magnetic bearing auxiliary control system as described in Claim 1, wherein the magnetic bearing control system further includes a sensing module, the sensing module is used to sense a rotor center position of the magnetic bearing rotor, the rule The configuration module contains: a receiving unit for receiving the rotor center position; a comparison unit, electrically connected to the receiving unit, for comparing the rotor center position with a balance center position of the safety bearing, and generating a balance signal when the rotor center position is equal to the balance center position; and A first setting unit is electrically connected to the comparison unit, and is used for defining the current starting time as the first switching time interval when receiving the balance signal. 如請求項4所述之磁浮軸承輔助控制系統,其中,該規則設定模組更包含一第二設定單元,該第二設定單元係電性連接該第一設定單元,用以利用該第一切換時距加上兩倍之當時之該啟動時間定義出該第二切換時距。The magnetic bearing auxiliary control system as described in claim 4, wherein the rule setting module further includes a second setting unit, the second setting unit is electrically connected to the first setting unit, and is used to utilize the first switching The time interval plus twice the current activation time defines the second switching interval. 一種磁浮軸承輔助控制方法,係利用如請求項1所述之磁浮軸承輔助控制系統加以實施,並包含以下步驟: (a) 利用該規則設定模組設定出該控制規則; (b) 利用該控制模組產生該啟動控制指令與該啟動電流指令,藉以使該參數值等於該啟動控制參數值以及使該電流值等於該啟動電流參數值,並使該位置控制器據以驅動該磁浮轉子上浮並脫離該安全軸承; (c) 利用該計時模組計時; (d) 利用該判斷模組判斷出該啟動時間大於該第一切換時距時,產生該第一切換信號; (e) 利用該控制模組產生該調升控制指令與該調升電流指令,藉以調升該參數值與該電流值; (f) 利用該判斷模組判斷出該啟動時間大於該第二切換時距時,產生該第二切換信號; (g) 利用該控制模組產生該穩態控制指令與該穩態電流指令,藉以使該參數值等於該穩態控制參數值以及使該電流值等於該穩態電流參數值。 A magnetic bearing auxiliary control method is implemented using the magnetic bearing auxiliary control system described in claim 1, and includes the following steps: (a) use the rule setting module to set the control rule; (b) Utilize the control module to generate the start control command and the start current command, so as to make the parameter value equal to the start control parameter value and the current value equal to the start current parameter value, and make the position controller according to Drive the maglev rotor to float up and break away from the safety bearing; (c) use the timing module to keep time; (d) when the judging module is used to judge that the starting time is greater than the first switching time interval, the first switching signal is generated; (e) using the control module to generate the increase control command and the increase current command, so as to increase the parameter value and the current value; (f) when the judging module is used to judge that the starting time is greater than the second switching time interval, the second switching signal is generated; (g) Using the control module to generate the steady-state control command and the steady-state current command, so that the parameter value is equal to the steady-state control parameter value and the current value is equal to the steady-state current parameter value. 如請求項6所述之磁浮軸承輔助控制方法,其中,該步驟(a)更包含以下步驟: (a1) 利用該規則設定模組之一手動設定單元設定該啟動控制參數值、該穩態控制參數值、該啟動電流參數值、該穩態電流參數值、該第一切換時距與該第二切換時距。 The magnetic bearing auxiliary control method as described in Claim 6, wherein the step (a) further includes the following steps: (a1) Use one of the manual setting units of the rule setting module to set the starting control parameter value, the steady state control parameter value, the starting current parameter value, the steady state current parameter value, the first switching time interval and the second switching time interval Two switching interval. 如請求項7所述之磁浮軸承輔助控制方法,其中,該步驟(e)更包含以下步驟: (e1) 利用該控制模組之一計算單元,依據該穩態控制參數值與該啟動控制參數值之差值除以該第二切換時距與該第一切換時距之差值產生該調升控制指令,以及依據該穩態電流參數值與該啟動電流參數值之差值除以該第二切換時距與該第一切換時距之差值藉以產生該調升電流指令。 The magnetic bearing auxiliary control method as described in claim 7, wherein the step (e) further includes the following steps: (e1) using one of the calculation units of the control module to generate the adjustment according to the difference between the steady-state control parameter value and the start-up control parameter value divided by the difference between the second switching time interval and the first switching time interval an increase control command, and divide the difference between the steady-state current parameter value and the starting current parameter value by the difference between the second switching time interval and the first switching time interval to generate the current increase command. 如請求項6所述之磁浮軸承輔助控制方法,其中,該磁浮軸承控制系統更包含一感測模組,該感測模組係用以感測出該磁浮轉子之一轉子中心位置,該步驟(a)更包含以下步驟: (a1) 利用該規則設定模組之一接收單元,接收該轉子中心位置; (a2) 利用該規則設定模組之一比較單元,在比較出該轉子中心位置等於該平衡中心位置時,產生一平衡信號; (a3) 利用該規則設定模組之一第一設定單元,在接收到該平衡信號時,定義當時之該啟動時間為該第一切換時距。 The magnetic bearing auxiliary control method as described in claim 6, wherein the magnetic bearing control system further includes a sensing module, the sensing module is used to sense a rotor center position of the magnetic bearing rotor, the step (a) further includes the following steps: (a1) Use one of the receiving units of the rule setting module to receive the rotor center position; (a2) A comparison unit of the rule setting module is used to generate a balance signal when the rotor center position is equal to the balance center position; (a3) Using one of the first setting units of the rule setting module to define the start-up time as the first switching time interval when receiving the balance signal. 如請求項9所述之磁浮軸承輔助控制方法,其中,該步驟(a)更包含以下步驟: (a4) 利用該規則設定模組之一第二設定單元,將該第一切換時距加上兩倍之當時之該啟動時間定義出該第二切換時距。 The magnetic bearing auxiliary control method as described in Claim 9, wherein the step (a) further includes the following steps: (a4) Using a second setting unit of the rule setting module, adding twice the current starting time to the first switching time interval to define the second switching time interval.
TW110140517A 2021-11-01 2021-11-01 Auxiliary system for controlling magnetic bearing and method TWI765838B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110140517A TWI765838B (en) 2021-11-01 2021-11-01 Auxiliary system for controlling magnetic bearing and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110140517A TWI765838B (en) 2021-11-01 2021-11-01 Auxiliary system for controlling magnetic bearing and method

Publications (2)

Publication Number Publication Date
TWI765838B TWI765838B (en) 2022-05-21
TW202319659A true TW202319659A (en) 2023-05-16

Family

ID=82594534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140517A TWI765838B (en) 2021-11-01 2021-11-01 Auxiliary system for controlling magnetic bearing and method

Country Status (1)

Country Link
TW (1) TWI765838B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10125814B2 (en) * 2013-10-24 2018-11-13 Raymond James Walsh Passive magnetic bearing
TWM540207U (en) * 2016-11-24 2017-04-21 Nat Chin-Yi Univ Of Tech Magnetic bearing structure for machine tool spindle
CN113048148B (en) * 2019-12-28 2023-09-01 坎德拉(深圳)新能源科技有限公司 Magnetic bearing and rotating mechanism using same

Also Published As

Publication number Publication date
TWI765838B (en) 2022-05-21

Similar Documents

Publication Publication Date Title
EP2998659A1 (en) Method for controlling outdoor fan motor of air conditioner
JP4642482B2 (en) Method and apparatus for controlling electronically commutated motor
Chen et al. Automatic flux-weakening control of permanent magnet synchronous motors using a reduced-order controller
CN103929106B (en) Variable-ratio pumps up water the control device of electricity generation system and control method
JP2013034361A (en) Excitation synchronous power generation system for wind power generation and control method thereof
CN108282122A (en) A kind of permanent magnet synchronous motor weak magnetism speed expansion method of high dynamic response
CN103607149A (en) Ultrasonic motor rudder servo system and control method thereof
TW202319659A (en) Auxiliary system for controlling magnetic bearing and method
US6965188B2 (en) Ultrasonic-actuator driving apparatus and ultrasonic-actuator driving method
JP2019044681A (en) Vacuum pump and control device
WO2014193340A1 (en) Elevator motor cooling assembly
US10931218B2 (en) Vacuum pump drive with star-delta switchover
CN104196749A (en) Centrifugal fan with impeller axial gap adjusted through driving axial magnetic bearing and method for adjusting impeller axial gap
CN116085387A (en) Auxiliary control system and method for magnetic suspension bearing
JPS61173698A (en) Controller of variable speed water wheel generator
CN101834553B (en) Control device of a no sensor alternative-current motor
JP2642783B2 (en) Ultrasonic motor controller
TWI748866B (en) Fan system and fan driving method
TWI770640B (en) Fan motor controller
JP5738098B2 (en) Gas turbine system
JP2012235656A (en) Drive controller of vibration-type actuator
WO2022237894A1 (en) Electric tool and control method therefor
CN109088578B (en) Motor control method and system and air conditioner
JP4652805B2 (en) Method and apparatus for controlling rotational speed of rotating mechanism
CN114900068A (en) Driving device and method for ultrasonic motor