TW202319341A - 自由基活化碳膜沉積 - Google Patents

自由基活化碳膜沉積 Download PDF

Info

Publication number
TW202319341A
TW202319341A TW111122791A TW111122791A TW202319341A TW 202319341 A TW202319341 A TW 202319341A TW 111122791 A TW111122791 A TW 111122791A TW 111122791 A TW111122791 A TW 111122791A TW 202319341 A TW202319341 A TW 202319341A
Authority
TW
Taiwan
Prior art keywords
substituted
carbon
substrate
amorphous
carbon film
Prior art date
Application number
TW111122791A
Other languages
English (en)
Inventor
巴德里 N 凡拉德拉彥
馬修 史考特 韋默
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW202319341A publication Critical patent/TW202319341A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

晶形或非晶形碳膜是使用經自由基活化的含碳前驅物而沉積在基板上。含碳前驅物包括一或更多C-C鍵及/或一或更多C-H鍵。自由基是產生在位於反應腔室上游的遠端電漿源中,而含碳前驅物流入遠端電漿源下游的反應腔室中。自由基與C-C鍵及/或C-H鍵產生交互作用,從而在與基板相鄰的環境中活化含碳前驅物。在一些實行例中,藉由經自由基活化的含碳前驅物沉積高度保形的非晶形碳膜。

Description

自由基活化碳膜沉積
本文中的實行例涉及非晶形或晶形碳膜的沉積,且更具體而言涉及藉由前驅物氣體的自由基活化所進行的非晶形或晶形碳膜的間接基於電漿沉積。
所得到的碳膜的結構從非晶形至奈米晶形及多晶形,從類鑽石至石墨。碳膜可具有各種sp3比sp2鍵結數量。其範圍也可從純碳到具有不同數量的氫。碳膜的性質可能會根據沉積方法及處理條件而改變。許多碳膜表現出優異的性質,例如與硬度、電阻率、化學穩定性、透明度、蝕刻選擇性、摩擦及腐蝕抗性有關的性質。因此,碳膜可用於許多熱、化學或機械環境。舉例而言,碳膜可作為保護塗層而應用在機械設備中,或是作為硬遮罩、塗層或其他應用而應用在電子裝置及半導體中。
此處所提供之先前技術描述係為了一般性呈現本揭露之背景的目的。本案列名發明人的工作成果、至此先前技術段落的所述範圍、以及申請時可能不適格作為先前技術的實施態樣,均不明示或暗示承認為對抗本揭露內容的先前技術。
本文提供在基板上沉積非晶形或晶形碳膜的方法。該方法包括將一或更多含碳前驅物流動至反應腔室中並且朝向該反應腔室中的基板,該等含碳前驅物的各者具有下列至少一者:一或更多C-C鍵,或是一或更多C-H鍵;以及在遠端電漿源中,從起源氣體產生該起源氣體的複數自由基,該遠端電漿源位於該一或更多含碳前驅物的上游。該方法更包括將該起源氣體的該等自由基引進該反應腔室並朝向該基板,其中該等自由基是處於一能量狀態,該能量狀態足以活化複數C-C鍵及/或複數C-H鍵,以及在與該基板相鄰的環境中產生複數經活化含碳自由基前驅物,其中該等經活化含碳自由基前驅物在該基板上沉積而形成非晶形或晶形碳膜。
在一些實行例中,該起源氣體包括氫氣,而該起源氣體的該等自由基為複數氫自由基。在一些實行例中,該等氫自由基是位於與該基板相鄰的環境中的處於基態的氫自由基。在一些實行例中,該基板包括矽氧化物、矽氮化物、矽或碳的非金屬層,而該非晶形或晶形碳膜是沉積在該非金屬層上。在一些實行例中,該基板包括銅、鈷、鉬、鎢或釕的金屬層,而該非晶形或晶形碳膜是沉積在該金屬層上。在一些實行例中,該一或更多含碳前驅物包括直鏈烯烴、直鏈炔烴、支鏈烯烴、支鏈炔烴、環狀烯烴或環狀炔烴基團的其中至少一者。在一些實行例中,該一或更多含碳前驅物包括支鏈烷烴基團或環狀烷烴基團。在一些實行例中,該一或更多含碳前驅物包括經鹵素取代烷烴、經鹵素取代烯烴或經鹵素取代炔烴基團。在一些實行例中,該一或更多含碳前驅物包括經鹵代烷基取代烷烴、經鹵代烷基取代烯烴、經鹵代烷基取代炔烴、經羧基取代烷烴、經羧基取代烯烴、經羧基取代炔烴、經氰基取代烷烴、經氰基取代烯烴、經氰基取代炔烴、經羰基取代烷烴、經羰基取代烯烴、經羰基取代炔烴、經磺醯基取代烷烴、經磺醯基取代烯烴、經磺醯基取代炔烴、經硝基取代烷烴、經硝基取代烯烴、經硝基取代炔烴、經磺醯基鹵化物取代烷烴、經磺醯基鹵化物取代烯烴、經磺醯基鹵化物取代炔烴、經磺醯胺取代烷烴、經磺醯胺取代烯烴或經磺醯胺取代炔烴基團。在一些實行例中,該一或更多含碳前驅物包括經醇取代烷烴、經醇取代烯烴、經醇取代炔烴、經醚取代烷烴、經醚取代烯烴、經醚取代炔烴、經醚取代的烷烴、經醚取代的烯烴、經醚取代的炔烴、經O-醯基取代烷烴、經O-醯基取代烯烴、經O-醯基取代炔烴、經胺基取代烷烴、經胺基取代烯烴、經胺基取代炔烴、經N-醯基取代烷烴、經N-醯基取代烯烴或經N-醯基取代炔烴。在一些實行例中,該非晶形或晶形碳膜是氫含量介於約20原子%與約70原子%之間的非晶形碳膜。在一些實行例中,該基板具有一或更多凹陷特徵部,該非晶形或晶形碳膜是沉積在該一或更多凹陷特徵部中,且具有等於或大於約90%的階梯覆蓋率。在一些實行例中,該非晶形碳膜的折射率介於約1.5與約2.5之間,而密度介於約1.1 g/cm 3與約3.5 g/cm 3之間。在一些實行例中,該非晶形碳膜是在等於或大於約4 Å/分鐘的沉積速率,介於約50°C與約550°C之間的沉積溫度下進行沉積。在一些實行例中,該非晶形或晶形碳膜中的sp3碳鍵結量是等於或大於約25%。
本文中還提供在基板上沉積非晶形氫化碳膜的方法。該方法包括將一或更多含碳前驅物流動至反應腔室中並且朝向該反應腔室中的基板,該等含碳前驅物的各者具有下列至少一者:一或更多C-C鍵,或是一或更多C-H鍵;以及在遠端電漿源中,從氫起源氣體產生複數氫自由基,該遠端電漿源位於該一或更多含碳前驅物的上游。該方法更包括將該等氫自由基引進該反應腔室並朝向該基板,其中該等自由基是處於一能量狀態,該能量狀態足以活化該一或更多C-C鍵及/或該一或更多C-H鍵,以及在與該基板相鄰的環境中產生複數經活化含碳前驅物,其中該等經活化含碳前驅物在該基板上沉積而形成非晶形氫化碳膜,氫含量介於約20原子%與約70原子%之間。
在一些實行例中,該非晶形氫化碳膜的密度介於約1.1 g/cm 3與約3.5 g/cm 3之間。在一些實行例中,該一或更多含碳前驅物包括直鏈烯烴、直鏈炔烴、支鏈烯烴、支鏈炔烴、環狀烯烴或環狀炔烴基團的其中至少一者。在一些實行例中,該一或更多含碳前驅物包括支鏈烷烴及/或環狀烷烴基團。在一些實行例中,該基板具有一或更多凹陷特徵部,該非晶形氫化碳膜是沉積在該一或更多凹陷特徵部中,且具有等於或大於約90%的階梯覆蓋率。
在本揭示中,術語「半導體晶圓」、「晶圓」、「基板」、「晶圓基板」及「部分製造積體電路」可互換使用。本發明所屬技術領域中具有通常知識者將能理解的是,術語「部分製造積體電路」可指的是積體電路製造的許多階段的任何階段期間的矽晶圓。在半導體裝置工業中使用的晶圓或基板通常具有200 mm、300 mm或450 mm的直徑。下方的實施方式係假設本揭示在晶圓上實施。然而,本揭示不受限於此。工件可為各種形狀、尺寸及材料。除了半導體晶圓之外,可利用本揭示的其他工件包括各種製品,例如印刷電路板等。
碳是用途最廣泛的元素之一,並以展現各種特性的各種同素異形體形式呈現。非晶形碳形成碳同素異形體的其中一大分類。與鑽石及石墨的晶形結構相比,非晶形碳包含某種程度的無序性或非結晶性。非晶形或晶形碳的特徵可在於材料中的sp2比sp3混成鍵(hybridized bond)比率。石墨完全由sp2混成鍵構成,而鑽石完全由sp3混成鍵構成。某些碳材料可利用氫加以穩定,使得碳材料被氫化。
碳膜中的sp2混成鍵的數量、sp3混成鍵的數量及含氫量是決定碳膜性質的重要因素。可使用任何數量的合適沉積技術來沉積碳膜,所述沉積技術例如是化學氣相沉積(CVD)、電漿增強化學氣相沉積(PECVD)及物理氣相沉積(PVD)(例如,濺鍍法)。sp2比sp3混成鍵的比例,以及氫含量可根據沉積技術及沉積參數進行控制。因此,碳膜的特性,包括其密度、硬度、壓縮應力、化學品抗性、熱穩定性、機械特性及光學特性,都會受到影響。
圖1繪示基於sp2、sp3及氫含量的非晶形碳的三相圖。該三相圖是使用於根據sp2、sp3及氫含量來對非晶形或晶形碳進行分類及特徵化。三個角對應於鑽石(純 sp3 鍵)、石墨(純 sp2 鍵)及氫。較大量的sp3鍵對應於較類似鑽石的碳,而較大量的sp2鍵對應於較類似石墨的碳。向碳膜添加氫會使碳膜轉變為較類似聚合物的結構,其顯示非晶相的等級會隨著氫含量的增加而提高。類鑽石碳(DLC)膜是具有一些或大部分 sp3混成鍵的非晶形碳膜。DLC 中的 sp3 鍵結量通常落在約 10% 至約 90% 的範圍內。 DLC 薄膜的其中一類型是四面體非晶形碳 (ta-C),其主要具有 sp3 混成鍵,且幾乎沒有氫。DLC薄膜的另一類型是四面體非晶形氫化碳(ta-C:H),它比ta-C含有較多的氫。氫化非晶形碳 (a-C:H) 的 sp3 含量通常低於 ta-C 及 ta-C:H。濺鍍的非晶形碳的sp2 鍵可能比sp3 鍵更多,而產生較類似石墨的碳。在氫含量超過約40原子%的情況下,碳膜的特徵可在於類聚合物的氫化碳(HC聚合物)。在某一點,過多的氫含量會使碳膜無法形成,而未形成膜。
如表 1 所示,可將各種類型的非晶形碳及其性質與晶形碳(即,鑽石或石墨)進行比較。鑽石的密度高達 3.53 g/cm 3,而石墨的密度約為2.27 g/cm 3。無序形式的碳的性質可能鑽石及石墨不同,特別是當sp3鍵結量或氫含量變化時。類聚合物的氫化碳膜具有約1.1 g/cm 3的低密度。較高濃度的氫通常會導致較低的密度。較多的sp3鍵結會導致較類似鑽石的性質,包括硬度增加及密度增加的性質。 [表1]
   sp3 (%) H (原子%) 密度 (g/cm 3) 硬度
鑽石 100 0 3.53 100
石墨 0 0 2.27 -
蒸鍍C 0 0 1.9 3
濺鍍C 5 0 2.2 -
ta-C 80-88 0 3.1 80
a-C:H (硬) 40 30-40 1.6-2.2 10-20
a-C:H (軟) 60 40-50 1.2-1.6 10
ta-C:H 70 30 2.4 50
碳的同素異形體(包括非晶形碳)通常是使用像是熱CVD及PECVD的沉積技術所形成。其他方法可包括電子迴旋共振(ECR)、基於電漿的離子植入及沉積,以及 PVD,其中PVD包括游離蒸鍍、濺鍍、磁控濺鍍、過濾陰極真空電弧、離子束沉積、電弧離子鍍、脈衝雷射沉積、以及雷射電弧沉積。要得到具有低氫含量的高密度碳膜通常是在非常高的溫度(例如,高於 600°C)下進行沉積或施加電漿沉積而得。較多 sp3 鍵結可能需要較高溫度及壓力;但在施加電漿的情況下,此溫度及壓力可被降低。具有較高氫含量的較低密度碳膜可能涉及較低溫度,及/或處於較低偏壓的電漿。在沉積期間增加基於烴的前驅物(例如,甲烷)的濃度亦可製造具有較高氫含量的較低密度碳膜。
熱CVD是使用高溫,使烴前驅物熱分解並吸附到基板表面上,其中烴自由基具有與基板表面產生相互作用的化學反應性。PECVD 使用電漿產生的高能電子造成烴前驅物的游離、激發及解離,其中烴前驅物的離子及自由基在基板表面處相互作用。通常是使用熱分解法(例如,熱CVD)或直接電漿法(例如,PECVD)來製造各種非晶形碳膜。許多這樣的非晶形碳膜係涵蓋在圖1所示的三相圖中,並可藉由改變沉積處理參數而形成。因此,藉由選擇合適的沉積技術及調整沉積處理參數,可達成不同sp3鍵結、氫含量、硬度、密度、折射率、消光係數及能帶間隙的各種非晶形碳膜。此外,可利用適當沉積技術及沉積處理參數而形成晶形碳膜(包括鑽石及石墨)。
使用上述沉積技術的非晶形或晶形碳膜通常缺乏保形性。原子層沉積(ALD)及電漿增強原子層沉積(PEALD)技術整體尚未建立用於沉積主體碳(bulk carbon)。在某些情況下,某些非晶形或晶形碳膜的沉積在極高的溫度下可能是禁止的。在高溫下,半導體晶圓上的各種材料(例如,半導體及金屬)可能會物理受損。在某些情況下,非晶形或晶形碳膜的沉積是使用電漿,其中該電漿具有未控制的電漿活化物種分佈。這會導致較多激發自由基及離子作為沉積物種,而該自由基及離子可緻密化、濺鍍或植入在生長中的碳膜中。電漿中的激發自由基及離子的大量分佈可能會經由高能離子的方向性而影響所沉積碳膜的保形性、組成及其他性質。
本揭示使用遠端電漿CVD技術而沉積碳膜,包括非晶形碳膜或非晶形氫化碳膜。在某些情況下,可使用遠端電漿CVD技術而沉積晶形碳膜。遠端電漿CVD技術使用自由基(例如,氫自由基)來活化含碳前驅物中的特定鍵,並且在與基板相鄰的環境中產生基於碳的自由基。基於碳的自由基是作為在基板上沉積碳膜所用的沉積物種。經自由基活化的含碳前驅物所沉積的碳膜避免與熱分解方法及直接電漿方法有關的缺點。取代使用直接電漿或原位電漿,氫自由基的遠端電漿生成是發生在含碳前驅物的上游,而該含碳前驅物被流入容納基板的反應腔室中。氫自由基在鄰近基板的環境中可處於低能量態(例如,基態),且含碳前驅物包括一或更多C-C鍵及/或一或更多C-H鍵。在一些實行例中,一或更多C-C鍵包括一或更多C-C雙鍵或一或更多C-C參鍵。在一些實行例中,含碳前驅物可更包括例如鹵化物、鹵代烷基、羧基、氰基、羰基、磺醯基、硝基、磺醯鹵化物、磺醯胺、醇、醚、O-醯基、胺及N-醯基的官能基,以在該含碳前驅物中提供可被氫自由基選擇性活化的特定鍵。在一些實行例中,可將經自由基活化的含碳前驅物所沉積的的碳膜調整至所欲氫含量,例如介於約20原子%至約70原子%之間的氫含量。在一些實行例中,經自由基活化的含碳前驅物所沉積的的碳膜可具有等於或大於約25%的sp3混成鍵結量。在一些情況下,經自由基活化的含碳前驅物所沉積的的碳膜可具有等於或大於約90%的階梯覆蓋率。碳膜可沉積在基板的金屬表面或甚至是基板的非金屬表面上。
圖2繪示根據一些實行例的在基板上沉積非晶形或晶形碳膜的示例方法的流程圖。在一些實施例中,該示例方法涉及在基板上沉積非晶形氫化碳膜的方法。處理200的操作得以不同順序及/或以不同、較少或額外的操作來執行。處理200的操作可使用圖3所示的電漿處理設備而執行。在一些實行例中,可至少部分根據在一或更多非瞬態電腦可讀媒體中所儲存的軟體來實施處理200的操作。
在處理200的方格210時,將一或更多含碳前驅物流入反應腔室,且朝向該反應腔室中的基板,其中該一或更多含碳前驅物的各者具有下列的至少一者:一或更多C-C鍵或一或更多 C-H 鍵。然而,將能理解,在一些替代實行例中,含碳前驅物可包括四鹵化碳,例如四氯化碳(CCl4)、四氟化碳(CF4)、四溴化碳(CBr4)及四碘化碳(Cl4),其不具有C-C鍵及/或C-H鍵。基板可被支撐在反應腔室中的基板支撐件或基座上。基板可為任何晶圓、半導體晶圓、經部分製造的積體電路、印刷電路板、顯示螢幕或其他合適工件。在一些實行例中,基板可包括金屬層,該金屬層包括例如銅(Cu)、鎢(W)、鉬(Mo)、鈷(Co)及釕(Ru)的金屬。在一些實行例中,基板可包括介電層,例如矽氧化物(SiO x)、矽氮化物(Si xN y)或非晶形碳。在一些實行例中,基板可包括半導體層,例如矽(Si)。碳膜可被沉積在金屬層、介電層或半導體層上。在一些實行例中,基板可包括複數基板特徵部或凹陷特徵部,其中該等凹陷特徵部的各者可具有高深寬比。舉例而言,凹陷特徵部的深寬比可等於或大於約3:1、等於或大於約5:1、等於或大於約8:1、等於或大於約 10:1,或等於或大於約 20:1。
含碳前驅物是經由前驅物供應源或前驅物氣體線流入或以其他方式引進反應腔室。含碳前驅物是繞過任何電漿源或電漿產生區域而被供應到反應腔室中。含碳前驅物進入位於遠端電漿源下游的反應腔室中的空間。遠端電漿源與反應腔室流體耦接,且位於反應腔室的上游。含碳前驅物是在沒有在電漿中游離的情況下被流動至與基板相鄰的環境中。
含碳前驅物是在氣相中進行輸送。含碳前驅物是經過選擇,使得在遠端電漿源中產生的自由基將會選擇性地活化含碳前驅物中的特定鍵。含碳前驅物中的其他鍵會被保留。在一些實行例中,含碳前驅物包括烴前驅物。含碳前驅物可具有一或更多C-C鍵及/或一或更多C-H鍵。C-C鍵可包括C-C單鍵、C-C雙鍵或C-C參鍵。含碳前驅物還可具有C-N鍵、C-O單鍵、C-O雙鍵、C-OH鍵或C-X鍵,其中X代表鹵素(例如,F、Cl、Br或I)。
在一些情況下,烴前驅物僅包括C及H原子。烴可為C xH y,其中x是1至10的整數,而y是2至24的整數。再其他的非限制性烴可包括甲烷(CH 4)、乙炔(C 2H 2)、乙烯(C 2H 4)、丙烯(C 3H 6)、丙炔(C 3H 4)、丙二烯(propadiene, C 3H 4)、丙二烯 (allene, C 3H 4)、環丙烯(C 3H 4)、環丙烷(C 3H 6)、丁烷(C 4H 10)、1,3-丁二烯(C 4H 6)、1,2-丁二烯(C 4H 6)、環丁烷(C 4H 8)、環丁烯(C 4H 6)、異戊二烯(C 5H 8)、1,3-戊二烯(piperylene, C 5H 8)、新戊烷(C 5H 12)、異戊烷(C 5H 12)、二甲基丁二烯(C 6H 10)、1,5-己二烯(C 6H 10)、環己烷(C 6H 12)、環己烯(C 6H 10)、苯(C 6H 6)、甲苯 (C 7H 8)、降冰片烯(C 7H 10)、1,7-辛二烯(C 8H 14)、環辛烷(C 8H 16)、環壬烷(C 9H 18)、環癸烷(C 10H 20)等。其他烴包括烯烴、炔烴、芳烴及環狀烴。
含碳前驅物的其他示例包括脂肪族化合物,例如烷烴、烯烴及炔烴(例如,C 1-10烷烴、C 2-10烯烴或C 2-10炔烴,包括其直鏈、支鏈或環狀形式)。在一些實施例中,烷烴是支鏈的。在特定的實施例中,烷烴包括CH 3-CR 1R 2R 3的化學式,其中R 1可為H或任選取代烷基;R 2及R 3各自獨立為任選取代烷基。具可行性的取代基可包括本文所述的任何取代基,包括拉電子基團及推電子基團(例如,孤對電子給與基團)。
在其他實施例中,前驅物是例如環脂肪族中的環狀烷烴。在特定實施例中,烷烴為環烷烴。非限制性環烷烴包括C 3、C 4或C 8-10環烷烴。在特定實施例中,環烷烴是應變環烷烴(strained cycloalkane)。因此,在一些實施例中,一或更多含碳前驅物可包含支鏈烷烴或環狀烷烴基團。
烷烴或炔烴可為直鏈、支鏈及/或環狀的。在一個實施例中,烯烴或炔烴為直鏈或支鏈的。此等直鏈及支鏈烯烴可包括一、二、三、四或更多的碳碳雙鍵。此等直鏈及支鏈烯烴可額外或替代性地包括一、二、三、四或更多的碳碳參鍵。非限制前驅物可包括C 2-10烯烴及C 2-10炔烴。在其他實施例中,烯烴包括R 1R 2C = CR 3R 4的化學式,其中R 1、R 2、R 3及R 4各自獨立為H、任選取代烷基(例如,經取代的C 1-8烷基)或任選取代烯基(例如,經取代的C 2-8烯基)。在又其他實施例中,炔烴包括R 1C≡CR 2的化學式,其中R 1及R 2各自獨立為H、任選取代烷基(例如,經取代的C 1-8烷基)、任選取代烯基(例如,經取代的C 2-8烯基)或任選取代炔基(例如,經取代的C 2-8炔基)。
在特定實施例中,前驅物是具有一或更多雙鍵的烯烴,或是具有一或更多參鍵的炔烴,其中該烯烴或該炔烴可為直鏈或支鏈的。在一些實施例中,前驅物包括直鏈烯烴、支鏈烯烴或環狀烯烴。示例烯烴包括乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯及1-壬烯,以及這些烯烴的其中任何者的二烯,以及雙鍵位置改變的位置異構物(若可能的話,例如1-丁烯的位置異構物可為2-丁烯等)。在一些實施例中,前驅物包括直鏈炔烴、支鏈炔烴或環狀炔烴。示例炔烴包括乙炔、丙炔、1-丁炔、1-戊炔、1-己炔、1-庚炔、1-辛炔及1-壬炔,以及參鍵位置改變的位置異構物(若可能的話,例如1-丁炔的位置異構物可為2-丁炔等)。在某些情況下,一或更多含碳前驅物包括直鏈烯烴、直鏈炔烴、支鏈烯烴、支鏈炔烴、環狀烯烴或環狀炔烴基團的其中至少一者。
含碳前驅物的又其他示例可包括環脂肪族化合物(例如,C 3-12環烷烴、C 3-12環烯烴或C 3-12環炔烴)或芳香族化合物(例如,苯、甲苯、萘、菲,以及上述化合物的其他多環形式)。含碳前驅物可包括飽和鍵(單鍵,例如C-C鍵或C-H鍵)及/或不飽和鍵(雙鍵或三鍵,例如C=C、C≡C或C≡N鍵)。在另一實施例中,烴化合物可為環狀烴(例如,甲基環己烷)。
在一些實施例中,環狀烯烴或炔烴為芳香化合物。在一實施例中,芳香化合物包括以一或更多官能基(例如,本文所述的官能基)取代的苯。在某些情況下,烴是未經取代的苯、經C 1烷基取代的苯(例如,甲苯、鄰二甲苯、間二甲苯、對二甲苯),或是經取代的芳香烴(例如,經鹵素取代的苯、經胺取代的苯、經C 2-8烷基取代的苯,或是經鹵素及烷基取代的苯,例如異丙苯、苯胺、N,N-二甲基苯胺等)。
在其他實施例中,環狀烯烴或環狀炔基是如本文所述的環脂肪族化合物,其具有一或更多碳碳雙鍵及/或參鍵(即,C=C及/或C≡C鍵)。在其他實施例中,前驅物為不飽和環狀烴(例如,環戊烯、環己烯、環庚烯、茀等)。
各種官能基可對含碳前驅物進行取代,其中所述官能基可作為拉電子基或推電子基(例如,孤對電子給與基團)。這些官能基可能會影響一或更多C-C鍵、C-H鍵、C-N鍵、C-O單鍵、C-O雙鍵、C-OH鍵或C-X鍵(其中X代表鹵素)中的鍵強度,使得在遠端電漿源中所產生的自由基可將此等鍵選擇性打斷,以活化該含碳前驅物。在一些實施例中,C-C鍵及/或C-H鍵的鍵強度可能會被拉電子基(例如,鹵素基團或鹵代脂肪族基團)的存在所影響。
拉電子基可包括一或更多鹵素。在一些實施例中,該一或更多含碳前驅物包括經鹵素取代的烷烴、經鹵素取代的烯烴或經鹵素取代的炔烴基團。在其他實施例中,本文中的任何前驅物皆可被一或更多鹵素基團、一或更多鹵代脂肪族基團或一或更多鹵代烷基團取代。在一非限制示例中,前驅物為烷烴、烯烴或炔烴;且該前驅物是被一或更多鹵素、鹵代脂肪族或鹵代烷基團取代。
在特定實施例中,經鹵素取代的前驅物為鹵代碳化合物,例如鹵代烷烴、鹵代烯烴或鹵代芳香烴。在又其他實施例中,鹵代碳化合物為四溴化碳(CBr 4)或四氯化碳(CCl 4)。在其他情況下,前驅物為經鹵素取代的C 1烴(例如,氯仿、二氯甲烷),或是具有一或更多鹵素的C 2-12烴。
再其他的拉電子基包括鹵脂肪族、鹵雜脂肪族、雜脂肪族、鹵素、鹵代烷基(例如,包括1、2或3個鹵素取代基的C 1鹵代烷基)、全氟代烷基、烷氧基、羧基、氰基、酯基、硝基、硝基烷基、磺醯胺、磺酸鹽、磺醯基、磺醯基鹵化物等。本文的任何前驅物皆可被一或更多拉電子基取代。
在一些實行例中,該一或更多含碳前驅物包括一或更多經鹵代烷基取代的烷烴、經鹵代烷基取代的烯烴、經鹵代烷基取代的炔烴、經羧基取代的烷烴、經羧基取代的烯烴、經羧基取代的炔烴、經氰基取代的烷烴、經氰基取代的烯烴、經氰基取代的炔烴、經羰基取代的烷烴、經羰基取代的烯烴、經羰基取代的炔烴、經磺醯基取代的烷烴、經磺醯基取代的烯烴、經磺醯基取代的炔烴、經硝基取代的烷烴、經硝基取代的烯烴、經硝基取代的炔烴、經磺醯基鹵化物取代的烷烴、經磺醯基鹵化物取代的烯烴、經磺醯基鹵化物取代的炔烴、經磺醯胺取代的烷烴、經磺醯胺取代的烯烴或經磺醯胺取代的炔烴。在其他實行例中,前驅物(例如,本文中的任何者)可被一或更多官能基所取代,其中所述官能基例如是鹵脂肪族、鹵雜脂肪族、雜脂肪族、鹵素、鹵代烷基(例如,包括1、2或3個鹵素取代基的C 1鹵代烷基)、全氟代烷基、烷基、烯基、炔基、烷氧基、醯胺、胺、胺基烷基、羧基、氰基、酯基、羥基、羥基烷基、硝基、硝基烷基、磺醯胺、磺酸鹽、磺醯基、磺醯基鹵化物等。
在一些實行例中,該一或更多含碳前驅物可包括推電子基團(例如,孤對電子給與基團)。前驅物分子中的孤對電子(例如,氧孤對電子或氮孤對電子)可向反鍵結軌道提供電子密度,以增強含碳前驅物的自由基活化。舉例而言,該一或更多含碳前驅物包括經醇取代的烷烴、經醇取代的烯烴、經醇取代的炔烴、經醚取代的烷烴、經醚取代的烯烴、經醚取代的炔烴、經醚取代的烷烴、經醚取代的烯烴、經醚取代的炔烴、經O-醯基取代的烷烴、經O-醯基取代的烯烴、經O-醯基取代的炔烴、經胺基取代的烷烴、經胺基取代的烯烴、經胺基取代的炔烴、經N-醯基取代的烷烴、經N-醯基取代的烯烴或經N-醯基取代的炔烴。孤對電子給與基團的又其他非限制性示例包括鹵雜脂肪族、雜脂肪族、烷氧基、醯胺、胺、胺基烷基、酯基、羥基、羥基烷基等。本文中的任何前驅物可被一或更多孤對電子給與基團所取代。
「脂肪族」係指具有至少一碳原子至50碳原子(C 1-50),例如1至25碳原子(C 1-25)或1至10碳原子(C 1-10)的烴基團,其中該烴基團包括烷烴(或烷基)、烯烴(或烯基)、炔烴(或炔基),包括其環狀形式,且更包括直鏈及支鏈排列,以及所有立體及位置異構物。
「烯基」係指具有至少2個碳原子至50個碳原子(C 2-50),例如2至25個碳原子(C 2-25)或2至10個碳原子(C 2-10),以及至少一碳-碳雙鍵的不飽和單價烴,其中該不飽和單價烴可衍生自將一氫原子從母烯烴的一碳原子移除。烯基團可為支鏈、直鏈、環狀(例如,環烯基)、順式或反式的(例如,E或Z)。示例性烯基包括具有一或更多雙鍵的任選取代C 2-24烷基團。透過將一或更多氫移除而形成對於母分子團的合適附接,或是在母分子團與另一取代基之間形成合適附接,烯基團可為單價或多價(例如,二價)的。烯基團亦可為經取代或未經取代的。舉例而言,烯基團可被本文中為烷基所描述的一或更多取代基所取代。
「烷氧基」係指-OR,其中R為本文所述的任選取代脂肪族基團。示例性烷氧基團包括但不限於甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、三級丁氧基、二級丁氧基、正戊氧基、三鹵烷氧基(例如,三氟甲氧基)等。烷氧基可為經取代或未經取代的。舉例來說,烷氧基團可被本文中為烷基所描述的一或更多取代基所取代。示例性未經取代烷氧基團包括C 1-3、C 1-6、C 1-12、C 1-16、C 1-18、C 1‑20或C 1-24烷氧基團。
「烷基」係指具有至少1個碳原子至50個碳原子(C 1-50),例如1至25個碳原子(C 1-25)或1至10個碳原子(C 1-10)的飽和單價烴,其中該飽和單價烴可衍生自將一氫原子從母化合物(例如,烷烴)的一碳原子移除。烷基團可為支鏈、直鏈或環狀的(例如,環烷基)。示例性烷基包括1至24個碳原子的支鏈或無支鏈的飽和烴基團,例如甲基、乙基、正丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、正戊基、異戊基、二級戊基、新戊基、己基、庚基、辛基、壬基、癸基、十二基、十四基、十六基、二十基、二十四基等。烷基團還可為經取代或未經取代的。透過將一或更多氫移除而形成對於母分子團的合適附接,或是在母分子團與另一取代基之間形成合適附接,烷基團可為單價或多價(例如,二價)的。舉例而言,烷基可被一、二、三個取代基,或在二或更多碳原子的烷基情況下被四個取代基所取代,其中所述取代基係獨立選自於下列所組成的群組:(1)C 1-6烷氧基(例如,‑O‑R,其中R為C 1-6烷基);(2)烷基亞磺醯基(例如,-S(O)-R,其中R為C 1-6烷基);(3)烷基磺醯基(例如,-SO 2-R,其中R為C 1-6烷基);(4)醯胺基(例如,-C(O)NR 1R 2或-NHCOR 1,其中R 1及R 2的各者係獨立選自氫、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合,或是R 1及R 2與其各自附接的氮原子共同形成本文所定義的雜環族);(5)芳基;(6)芳基烷氧基(例如,-O-L-R,其中L為烷基,而R為芳基);(7)芳醯基(例如,-C(O)-R,其中R為芳基);(8)疊氮基(例如,-N 3);(9)氰基(例如,-CN);(10)醛基(例如,‑C(O)H);(11)C 3-8環烷基;(12)鹵素;(13)雜環基(例如本文所定義的雜環基,例如包含一、二、三、或四個非碳雜原子的5、6、7元環);(14)雜環氧基(例如,-O-R,其中R為本文所定義的雜環基);(15)雜環醯基(例如,-C(O)-R,其中R為本文所定義的雜環基);(16)羥基(例如,-OH);(17)N-保護胺基;(18)硝基(例如,‑NO 2);(19)側氧基(例如,=O);(20)C 1-6硫代烷氧基(例如,‑S‑R,其中R為烷基);(21)硫醇(例如,-SH);(22)-CO 2R 1,其中R 1係選自於由(a)氫、(b)C 1-6烷基、(c)C 4-18芳基及(d)C 1-6烷基- C 4-18芳基(例如,-L-R,其中L為C 1-6烷基,而R為C 4-18芳基)所組成的群組;(23)‑C(O)NR 1R 2,其中R 1及R 2的各者係獨立選自於由(a)氫、(b)C 1-6烷基、(c)C 4-18芳基及(d)C 1-6烷基-C 4-18芳基(例如,-L-R,其中L為C 1-6烷基,而R為C 4-18芳基)所組成的群組;(24)‑SO 2R 1,其中R 1係選自於由(a)C 1-6烷基、(b)C 4-18芳基及(c)C 1-6烷基-C 4-18芳基(例如,-L-R,其中L為C 1-6烷基,而R為C 4-18芳基)所組成的群組;(25)‑SO 2NR 1R 2,其中R 1及R 2的各者係獨立選自於由(a)氫、(b)C 1-6烷基、(c)C 4-18芳基及(d)C 1-6烷基-C 4-18芳基(例如,-L-R,其中L為C 1-6烷基,而R為C 4-18芳基)所組成的群組;以及(26)‑NR 1R 2,其中R 1及R 2的各者係獨立選自於由(a)氫、(b)N-保護基、(c)C 1-6烷基、(d)C 2-6烯基、(e)C 2-6炔基、(f)C 4-18芳基、(g)C 1-6烷基-C 4-18芳基(例如,-L-R,其中L為C 1-6烷基,而R為C 4-18芳基)、(h)C 3-8環烷基及(i)C 1-6烷基- C 3-8環烷基(例如,-L-R,其中L為C 1-6烷基,而R為C 3-8環烷基)所組成的群組,其中在一實施例中並未有兩基團係經由羰基或磺醯基而與氮原子接合。烷基團可為被一或更多取代基(例如,一或更多鹵素或烷氧基)所取代的一級、二級或三級烷基團。在一些實施例中,未經取代的烷基為C 1-3、C 1-6、C 1-12、C 1-16、C 1-18、C 1-20或C 1-24烷基團。
「炔基」係指具有至少2個碳原子至50個碳原子(C 2-50),例如2至25個碳原子(C 2-25)或2至10個碳原子(C 2-10),以及至少一碳-碳參鍵的不飽和單價烴,其中該不飽和單價烴可衍生自將一氫原子從母炔的一碳原子移除。炔基團可為支鏈、直鏈或環狀的(例如,環炔基)。示例性炔基包括具有一或更多參鍵的任選取代C 2-24烷基團。炔基團可為環狀或非環狀的,且其示例為乙炔基、1-丙炔基等。透過將一或更多氫移除而形成對於母分子團的合適附接,或是在母分子團與另一取代基之間形成合適附接,炔基團可為單價或多價(例如,二價)的。炔基團亦可為經取代或未經取代的。舉例而言,炔基團可被本文中為烷基所描述的一或更多取代基所取代。
「醯胺基」係指-C(O)NR 1R 2或-NHCOR 1,其中R 1及R 2的各者係獨立選自氫、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合,或是R 1及R 2與其各自附接的氮原子共同形成本文所定義的雜環族。
「胺基」係指-NR 1R 2,其中R 1及R 2的各者係獨立選自氫、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合,或是R 1及R 2與其各自附接的氮原子共同形成本文所定義的雜環族。
「胺基烷基」係指本文所定義的烷基被本文所定義的胺基所取代。在一些實施例中,胺烷基為-L-NR 1R 2,其中L為本文所定義的烷基團,而R 1及R 2的各者係獨立選自氫、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合;或是R 1及R 2可與其各自附接的氮原子共同形成本文所定義的雜環族。在其他實施例中,胺烷基為-L-C(NR 1R 2)(R 3)-R 4,其中L為共價鍵或本文所定義的烷基團;R 1及R 2的各者係獨立選自氫、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合;或是R 1及R 2可與其各自附接的氮原子共同形成本文所定義的雜環族;而R 3及R 4的各者獨立為本文所定義的H或烷基。
除另有指明外,「芳香族」係指具有單一環(例如,苯基),或是複數稠合環且其中至少一環具芳香性(例如,萘基、吲哚基或吡唑吡啶基)的5至15個環原子的環狀、共軛基團或部分;亦即,至少一環及任選的複數稠合環具有連續且未定域的π電子系統。一般而言,平面外的π電子數量係對應於休克爾規則(4n+2)。對於母結構的附接點通常係透過稠合環系統的芳香性部分。
「羧基」係指-CO 2H基或其陰離子。
「氰基」係指-CN基團。
「環脂肪族」係指本文所定義的脂肪族基,其為環狀的。在特定實施例中,環脂肪族為環烯,其為具有單一C-C鍵的環狀基團。
「酯」係指-C(O)OR或-OC(O)R,其中R係選自本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合。
「鹵素」係指F、Cl、Br或I。
「鹵脂肪族」係指本文所定義的脂肪族,其中一或更多氫原子(例如,1至10個氫原子)獨立地被例如氟、溴、氯或碘的鹵素原子所取代。
「鹵雜脂肪族」係指本文所定義的雜脂肪族,其中一或更多氫原子(例如,1至10個氫原子)獨立地被例如氟、溴、氯或碘的鹵素原子所取代。
「雜脂肪族」係指本文所定義的脂肪族基團,其中在該基團內包括至少一雜原子至20個雜原子,例如1至15個雜原子或1至5個雜原子,其中所述雜原子可選自但不限於氧、氮、硫、矽、硼、硒、磷及其氧化形式。
「羥基」係指-OH。
「羥基烷基」係指本文所定義的烷基被一至三個羥基所取代,其附加條件為烷基的單一碳原子不得附接多於一個羥基,其示例為羥甲基、二羥丙基等。在一些實施例中,羥烷基團為-L-OH,其中L為本文所定義的烷基。在其他實施例中,羥烷基團為-L-C(OH)(R 1)-R 2,其中L為共價鍵或本文所定義的烷基,而R 1及R 2的各者獨立為H或本文所定義的烷基。
「硝基」係指‑NO 2基。
「硝基烷基」係指本文所定義的烷基,其被一至三個硝基團取代。在一些實施例中,硝基烷基團為-L-NO,其中L為本文所定義的烷基。在其他實施例中,硝基烷基團為-L-C(NO)(R 1)-R 2,其中L為共價鍵或本文所定義的烷基,而R 1及R 2的各者獨立為H或本文所定義的烷基。
「全氟烷基」係指本文所定義的烷基,其中各個氫原子被氟原子取代。示例性全氟烷基團包括三氟甲基、五氟乙基等。在一些實施例中,全氟烷基團為-(CF 2) nCF 3,其中n為0至10的整數。
「磺醯胺基」係指-SO 2R,其中R為本文所述的胺。
「磺酸鹽」係指-SO 3R,其中R係選自氫、鹵素、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合。
「磺醯基」係指-SO 2R,其中R係選自氫、鹵素、本文所定義的脂肪族、雜脂肪族、鹵脂肪族、鹵雜脂肪族、芳香族或其任何組合。
「磺醯基鹵化物」係指-SO 2R,其中R為鹵素。
在處理200的方格220時,在遠端電漿源中從起源氣體產生該起源氣體的自由基,其中該遠端電漿源位於一或更多含碳前驅物的上游。所述自由基可為氫的自由基,並且是產生自氫氣(H 2)的起源氣體。或者,所述自由基可為氧、氮、氨或胺的自由基。起源氣體可經由一或更多氣體線而被供應至遠端電漿源中。該遠端電漿源位於一或更多氣體出口的上游,其中所述氣體出口是用於將一或更多含碳前驅物引進反應腔室中。該一或更多含碳前驅物不會通過該遠端電漿源。該遠端電漿源可為用於產生電漿的任何合適電漿源,例如感應耦合電漿源或電容耦合電漿源。遠端電漿源中的電漿產生會製造出離子及自由基(包括處於激發態的自由基)的混合物。
在一些實施例中,起源氣體(例如,H 2)與一或更多額外氣體(例如,惰性氣體物種)一起流入遠端電漿源。供應一或更多額外氣體可支持或穩定遠端電漿源內的穩態電漿狀態。惰性氣體物種可包括氦(He)、氖(Ne)、氬(Ar)、氪(Kr)或氙(Xe)。該一或更多額外氣體可用作稀釋劑。在一些實行例中,可將氫氣伴隨氦氣一起供應。作為示例,得以約1-25%的氫或1-10%的氫濃度將氫氣提供在氦承載氣體中。因此,在某些情況下,在遠端電漿源中會產生 H 2/He電漿。
額外或替代地,該一或更多額外氣體可包括共反應氣體。共反應氣體可包括含氮試劑(例如,N 2)、含氧試劑(例如,O 2),或是其組合。在一些實施例中,共反應氣體是以相對於起源氣體的一小部分而供應。舉例而言,共反應氣體得以約0.05質量%以下或約0.01質量%以下而與起源氣體一起存在於氣體混合物中。如此,在遠端電漿源中產生的自由基主要是由起源氣體的自由基所構成。
遠端電漿源可與容納基板的反應腔室流體耦接。自由基及離子是在遠端電漿源內產生,使得氣體(包括受激發起源氣體自由基及惰性氣體自由基,以及鬆弛氣體)可流出該遠端電漿源。這些受電漿活化的物種在進入反應腔室之前可能會先碰到噴淋頭。噴淋頭可包括離子過濾器、光子過濾器或兩者。過濾離子及光子可防止基板損傷(例如,經由離子轟擊)及非所欲的分子再激發(例如,經由UV激發)。
在處理200的方格230時,將起源氣體的自由基引進反應腔室且朝向基板,其中所述自由基是處於足以活化C-C鍵及/或C-H鍵,並且在與基板相鄰的環境中形成經活化含碳自由基前驅物的能量狀態。更具體而言,所述自由基可處於足以活化 C-C 鍵、熱力學上可利用的 C-H 鍵、C-X(例如,Br及I)鍵、C-OR鍵、C-NR 2鍵及/或C-SR鍵,並且在與基板相鄰的環境中形成經活化含碳自由基前驅物的能量狀態。經活化含碳自由基前驅物會沉積在基板上而形成非晶形或晶形碳膜。與基板相鄰的環境是指基板的暴露表面正上方的空間,而在該空間中會進行經活化含碳自由基前驅物的氣相沉積。起源氣體的自由基在處理條件下被輸送到反應腔室中,使得受激發自由基躍遷為鬆弛自由基而不會重新結合。壓力、惰性氣體物種的分率(fraction)、噴淋頭的氣體端口的幾何、噴淋頭與用於輸送含碳前驅物的一或更多氣體出口之間的距離,以及其他處理參數是經過配置,使得自由基在低能量狀態(例如,基態)下碰到與基板相鄰的環境,而不會重新結合。在一些實行例中,所有或實質上所有的起源氣體自由基是處於基態的氫自由基。如此,基板被暴露至遠端氫電漿,使得表面生長的損害最小化。
當在遠端電漿源中產生起源氣體自由基時,其可處於激發能量狀態。舉例而言,處於激發能量狀態的氫可具有至少10.2 eV(第一激發態)的能量。受激發的氫自由基可能會在碳膜生長期間造成表面生長損害。在一些實行例中,當受激發的氫自由基失去其能量或鬆弛時,該等受激發的氫自由基可躍遷為實質低能態的氫自由基或基態的氫自由基。在一些實施例中,處理條件可被提供成使得受激發的氫自由基失去能量或鬆弛而形成基態的氫自由基。舉例而言,遠端電漿源及相關構件可被設計成使得從該遠端電漿源擴散到基板的自由基的滯留時間大於受激發自由基的能量鬆弛時間。受激發的氫自由基的能量鬆弛時間可等於或小於約 1x10 -3秒。
噴淋頭可將離開遠端電漿源的自由基分散及擴散到反應腔室中,同時限制或過濾掉離子。在一些實施例中,噴淋頭可為多端口氣體分配器,其具有被隔開的孔或通道的陣列。在一些實施例中,噴淋頭的孔或氣體端口的尺寸可促進自由基鬆弛到較低能量狀態,同時限制重新結合。
在一些實行例中,所有或大部分的起源氣體自由基是處於基態,例如與基板相鄰的環境中的起源氣體自由基的其中至少約90%或95%是處於基態。起源氣體自由基可為氫自由基,其中氫自由基也可被稱為「氫的自由基」或「氫原子自由基」。可藉由各種技術實現大部分的起源氣體自由基是處於基態的狀態。某些電漿設備(例如,圖 3 中描述的)的用意即在於實現此狀態。用於實現基態氫自由基的處理條件可實現無大量離子、電子或受激發自由基物種的狀態。大量離子或受激發自由基的存在會對基板造成表面生長損害。在一些實行例中,與基板相鄰的環境中的離子濃度不大於約10 7/cm 3。處於基態中的起源氣體自由基在與基板相鄰的環境中提供溫和的反應條件。
含碳前驅物是從引進自由基的遠端電漿源的噴淋頭的下游流入反應腔室。起源氣體自由基是在遠端電漿源中產生,其中該遠端電漿源是位於輸送含碳前驅物所用的一或更多氣體出口的上游。當起源氣體自由基碰上含碳前驅物時,起源氣體自由基在與含碳前驅物混合或產生相互作用後是處於低能量狀態或基態。在一些實行例中,氫自由基是在該一或更多氣體出口上方的躍遷空間中躍遷為基態,並且與該一或更多氣體出口下方的沉積空間中的含碳前驅物產生相互作用及混合。從遠端電漿源產生且與下游的含碳前驅物產生相互作用的自由基提供一種基於經活化含碳前驅物的間接基於電漿沉積技術。
該一或更多氣體出口下方的沉積空間包括與基板相鄰的環境。與基板相鄰的環境包括該基板的暴露表面,以及該暴露表面正上方的處於低能量狀態(例如,基態)的起源氣體自由基,以及含碳前驅物。在一些實行例中,基板的暴露表面上方的距離可為該基板的該暴露表面上方的高達約100 mm或高達約15 mm。實際上,低能量狀態的自由基對於含碳前驅物所進行的活化是發生在該基板的暴露表面上方的微小距離處。一般而言,與基板相鄰的環境中的反應條件在該基板的整個暴露表面各處是大致均勻的,但仍可允許一些變化。
PECVD 或其他直接式電漿沉積技術會產生使前驅物的鍵非選擇性地分裂的含碳前驅物的經電漿活化物種。這會將前驅物分解成不太穩定的分子,並且容易進行其他不穩定的反應途徑。PECVD 或其他直接式電漿沉積技術會產生離子或高反應性自由基或其他斷片類型,而這些會使碳膜的膜性質難以預測。非選擇性地打斷前驅物的鍵例如會產生具有高黏附係數的高反應性自由基或斷片類型。這會導致懸鍵,而產生階梯覆蓋率不良的碳膜。這也可能導致碳膜中的化學或形態結構不受控制。此外,直接式電漿條件會在基板的表面處產生大量離子轟擊,而這會另外造成表面生長損害。
可使用習知沉積技術在平面或毯覆式應用上達成緻密非晶形碳膜的沉積。然而,對於深寬比大於約 2:1的基板特徵而言,沉積緻密非晶形碳膜是具有挑戰性的。使用習知的基於電漿沉積技術通常將會導致一些含碳離子存在於與基板相鄰的環境中,而改變碳膜的組成及密度。若保形性受到任何程度的控制,則膜的保形性是與施加於電漿的功率相關聯。此外,藉由PECVD或其他習知沉積技術所沉積的碳膜可具有高含量的sp2鍵結,這會對光學透明度產生不利影響,並減損蝕刻選擇性。在熱力學上,控制碳的表面化學以形成 C-C 鍵而不形成其他鍵是困難的。大多數涉及含碳前驅物的沉積技術不會將C-H鍵或C-X(例如,其中 X 是鹵化物或其他官能基)鍵轉化為C-C鍵。
本揭示利用在遠端電漿源中產生的起源氣體自由基,其躍遷至低能量狀態的自由基以活化含碳前驅物,而進行碳膜沉積。低能量狀態自由基會選擇性地打斷或分裂含碳前驅物分子中的特定鍵,以產生經活化含碳前驅物。不受限於任何理論,沉積反應中的其中一種較動力學有利的反應機制可包括奪氫反應,其從烴前驅物中的 C-H 鍵中拉走氫,其會產生H 2氣體,並且在經活化的烴前驅物上產生以碳為中心的自由基。不受限於任何理論,沉積反應中的另一動力學有利的反應機制可涉及低能量狀態自由基與含碳前驅物中的烯烴或炔烴基團產生相互作用,其橫跨雙鍵或參鍵進行加成,以在經活化烷烴(對於烯烴或炔烴起始基團)或烯烴(對於炔烴起始基團)中形成新的C-H鍵及以碳為中心的自由基。不受限於任何理論,沉積反應中的另一動力學有利的反應機制可包括C-X鍵的選擇性斷鍵,其產生經活化含碳前驅物,其中X可為鹵化物或其他拉電子官能基。該機制與奪取機制類似,會形成新的X-H鍵,同時在含碳前驅物上形成以碳為中心的自由基。不受限於任何理論,沉積反應中的另一動力學有利的反應機制可包括孤對電子的給與,其中氧孤對電子、氮孤對電子或其他孤對電子會弱化C-X鍵(其中X為H、鹵化物或其他拉電子官能基),該C-X鍵接著被氫自由基奪取,而在含碳前驅物分子上產生H-X及以碳為中心的自由基。經活化含碳前驅物具有促進鍵結及交聯以形成碳-碳鍵的活性位點。在所述活性位點處的鍵結及交聯可在所得碳膜中形成主要骨架或基質。因此,在與基板相鄰的環境中的經活化烷烴、經活化烯烴、經活化炔烴或其他經活化的基於碳分子可彼此反應以沉積晶形或非晶形碳膜。在某些情況下,所沉積的是非晶形氫化碳膜。
各種官能基可對於含碳前驅物進行取代,以弱化一或更多C-C鍵、C-H鍵、C-N鍵、C-OH鍵或C-X鍵(其中 X 代表鹵素)中的鍵強度。在一些實行例中,官能基可為上述的拉電子基團或推電子基團。低能量狀態的氫自由基可選擇性地活化被弱化的C-C單鍵、被弱化的C-H鍵、被弱化的C-N鍵及/或被弱化的C-X鍵。另外地或替代地,處於低能量狀態的氫自由基可選擇性地活化C-C雙鍵及/或C-C參鍵。含碳前驅物中的弱化鍵、雙鍵或參鍵的存在會使得該含碳前驅物容易受到基於自由基的活化所影響。
含碳前驅物不作為被動旁觀者,而是對於非晶形或晶形碳膜的組成有顯著的貢獻。在一些實行例中,碳膜中實質上所有或大部分的原子是由含碳前驅物所提供,其中少量起源氣體物種、惰性氣體物種或其他化學物種提供小於約10原子%、小於約5原子%,或小於約2原子%的膜質量。在這種情況下,用於驅動沉積反應的低能量氫原子自由基對於所沉積碳膜的質量沒有顯著貢獻。因此,本揭示中的沉積物種主要是含碳前驅物。相對地,其他習知的基於電漿沉積處理是產生離子及中性物作為沉積物種。
含碳前驅物是經活化以形成碳自由基,而該碳自由基是用作基板上的沉積物種。沉積處理條件可在與基板相鄰的環境中提供相對溫和的條件,以用於含碳前驅物的自由基活化。含碳前驅物是被位於含碳前驅物的上游所產生的低能量狀態自由基活化。碳自由基與基板表面上的成核位點產生相互作用,以在該基板上沉積晶形或非晶形碳膜。在一些實施例中,所沉積的是非晶形氫化碳膜。
起源氣體自由基與含碳前驅物的相互作用不僅會產生經活化含碳前驅物,同時還會在碳膜的沉積期間對碳膜進行蝕刻。處理條件是經過控制,使得碳膜的沉積速率比碳膜的蝕刻速率更快。在一些實行例中,起源氣體自由基會對於品質較差的碳膜部分進行蝕刻。舉例而言,氫自由基會蝕刻品質較差的非晶形碳膜部分,以產生更多的晶形類鑽石碳。不受限於任何理論,氫自由基可用於減少sp2鍵且增加sp3鍵,且氫自由基可用於降低碳膜中的氫含量並且增加其密度。處理條件可經過控制,以調整與密度、氫含量、保形性、sp2比sp3的鍵結、硬度及其他膜性質相關的性質。處理條件可影響起源氣體自由基與含碳前驅物產生相互作用的行為。
在與基板的暴露表面相鄰的環境中的溫度可以是促進該沉積反應的任何合適溫度。在一些實行例中,該溫度在很大程度上可由基座的溫度所控制,其中基板是被支撐在該基座上。通常,高品質晶形碳膜,或是具有高sp2鍵結(高度為石墨)或高sp3鍵結(類鑽石)的非晶形碳膜在習知沉積溫度及/或電漿中需要極高溫度。這種高溫通常可超過約550°C或超過約650°C。在一些實行例中,在進行本揭示中的經自由基活化碳膜沉積時,運行溫度可等於或小於約550°C、等於或小於約500°C、等於或小於約450°C、等於或小於約 400°C、等於或小於約 350°C、等於或小於約300°C、介於約 50°C與約550°C之間,或是介於約200°C與約 400°C之間。此等溫度可適用於半導體應用。即使在此等溫度也可得到高品質的晶形碳膜(例如,石墨烯),或是具有高sp2鍵結或高sp3鍵結的非晶形碳膜。較高的溫度通常會增加與起源氣體自由基及所沉積碳膜的相互作用相關的蝕刻速率。舉例而言,非晶形碳膜可在高達約100°C的溫度下,使用包括烯烴的烴前驅物以合理的沉積速率進行沉積;但是非晶形碳膜也可在超過100°C的溫度下,使用包括炔烴的烴前驅物以合理的沉積速率進行沉積。在一些實行例中,碳膜的沉積速率可等於或大於約4Å/分鐘、等於或大於約8 Å/分鐘,或是等於或大於約25 Å/分鐘。與基板相鄰的環境中的溫度是經過選擇,以促進經自由基活化碳膜的沉積,同時限制對於所沉積碳膜的蝕刻。
與基板的金屬表面相鄰的環境中的壓力可為任何合適壓力,以促進反應腔室中的碳膜生長。通常,高品質晶形碳膜,或是具有高sp2鍵或高sp3鍵結的非晶形碳膜在習知沉積溫度及/或電漿中需要極高壓力。此等高壓通常可超過約10 Torr或超過約50 Torr。在一些實行例中,在進行本揭示中的經自由基活化碳膜沉積時,運行壓力可約為10 Torr以下,或約為5 Torr以下。舉例而言,運行壓力可介於約1 Torr與約2 Torr之間。
在一些實行例中,可控制在遠端電漿源中生成自由基所施加的RF功率。RF功率可足以產生電漿及供應離子與自由基,同時限制沉積期間的離子轟擊。將能理解,RF功率可取決於電漿設備的設計及類型。作為示例,RF功率源可在感應耦合電漿產生器中施加介於約1 kW與約6 kW之間的功率,以在遠端電漿源中產生氫自由基。
在一些實行例中,可控制遠端電漿源的噴淋頭與基座之間的間隙距離。該間隙距離可經過優化,以在到達與基板相鄰的環境之前提供足夠時間使起源氣體自由基從激發態躍遷至鬆弛態。此外,噴淋頭可與用於輸送含碳前驅物的一或更多氣體出口分隔足夠的距離,以防止該含碳前驅物的反向擴散或回流。在一些實行例中,該一或更多氣體出口可與噴淋頭分隔約12 mm與約150 mm之間、約15 mm與約100 mm之間,或是約20 mm與約70 mm之間的距離。
在一些實行例中,可控制前驅物氣體及起源氣體的氣體流率,以影響碳膜沉積。舉例來說,氫氣及氦氣可作為混合物流入遠端電漿源,其流率範圍介於約2至約40每分鐘標準公升(slm)之間、約5至約25 slm之間,或是約10 slm與約20 slm之間。氫及氦的混合物可處於氦氣中約1體積%與約99體積%的氫氣(about 1 vol. % and about 99 vol. % hydrogen gas in helium),或是氦氣中約1體積%與約10體積%的氫氣的穩態濃度中。在一些實行例中,含碳前驅物得以約0.5與約50每分鐘標準立方公分(sccm)之間、約1與約25 sccm之間,或是約1與約10 sccm之間的流率而被供應至反應腔室中。將能理解,在一些實行例中,氫的起源氣體可在無任何隨行惰性氣體的情況下流動,使得起源氣體以100體積%的氫氣進行輸送。
一或更多沉積處理條件可經過控制,以影響碳膜沉積(例如,沉積速率)及膜性質(例如,硬度、密度、保形性、氫含量等)的各方面。將能理解,上述沉積處理條件的用意不在於限制,且可控制不同或額外的沉積處理條件以影響碳膜沉積。
在一些實行例中,碳膜可具有等於或大於約90%、等於或大於約95%,或是等於或大於約99%的階梯覆蓋率。可在基板具有等於或大於約3:1、等於或大於約5:1、等於或大於約7:1,或是等於或大於約10:1的凹陷特徵部的情況下達成如此高的階梯覆蓋率。可藉由將在特徵部的底部、側壁或頂部上所沉積的碳膜的平均厚度與在該特徵部的另一位置(即,底部、側壁或頂部)上所沉積的碳膜的平均厚度進行比較,從而計算階梯覆蓋率。舉例而言,可藉由將側壁上所沉積的碳膜的平均厚度除以特徵部的頂部處所沉積的碳膜的平均厚度,並將該數值乘以100以得到百分比,從而計算階梯覆蓋率。因此,本揭示的經自由基活化碳膜沉積可在例如非晶形氫化碳膜的碳膜中達成類似ALD的保形性。
在一些實行例中,本揭示中的經自由基活化碳膜沉積可沉積具有所欲sp2比sp3鍵結量及氫含量的碳膜。如此,不僅可沉積高度石墨或類鑽石膜,還可沉積各種類型的非晶形碳膜。碳膜中的sp3碳鍵結量可為0%與100%之間的任何值。在一些實施例中,碳膜中的sp3碳鍵結量等於或大於約25%。在一些實行例中,碳膜中的sp3碳鍵結量等於或大於約40%。相比之下,許多習知基於電漿或基於熱的沉積技術會使碳膜主要具有sp2碳鍵結(即,低的sp3碳鍵結)。許多此等習知基於電漿或基於熱的沉積技術會使碳膜具有高的氫含量,除非施加極高溫度或施加直接電漿。本揭示的碳膜可被沉積而具有低的氫含量。在一些實施例中,碳膜中的氫含量等於或小於約70原子%、介於約10原子%與約70原子%之間,或是介於約20原子%與約70原子%之間。
在一些實行例中,經由自由基活化而沉積的碳膜的密度是被控制在所欲層級。舉例而言,碳膜的密度是介於約1.1 g/cm 3與約3.5 g/cm 3之間。在一些實行例中,經由自由基活化而沉積的碳膜的折射率是被控制在所欲層級。舉例而言,碳膜的折射率是介於約1.5與約2.5之間。在一些實行例中,經由自由基活化而沉積的碳膜的硬度是被控制在所欲層級。具體而言,碳膜的硬度是介於約1 GPa與約80 GPa之間。可藉由改變碳膜中的sp3鍵結量及/或氫含量來調整上述性質的其中一些或全部。碳膜的其他性質(例如,本質應力、消光係數、能帶間隙、蝕刻選擇性)可藉由改變sp3鍵結量及/或氫含量而加以調整。
可藉由自由基活化而沉積各種碳膜。所述碳膜為無摻雜的。具體地,本揭示的碳膜不包括金屬摻雜碳膜、氧摻雜碳膜、氮摻雜碳膜或矽摻雜碳膜。在某些情況下,可以沉積高度保形、具有低氫含量且具有大量sp3鍵結的非晶形氫化碳膜。舉例而言,非晶形氫化碳膜可在凹陷特徵部上具有至少 90%的階梯覆蓋率,其氫含量介於約20原子%與約70原子%之間,且 sp3 碳結量大於約25%。
晶形或非晶形碳膜是沉積在基板的暴露表面上。藉由自由基活化而沉積的碳膜可選擇性地形成在某些材料上。在一些實行例中,碳膜是選擇性沉積在例如銅、鈷、鉬、鎢或釕的金屬上。該金屬可作為促進碳在金屬表面上成核的催化劑。對於例如石墨烯的晶形碳膜來說,可能會發生金屬表面上的選擇性沉積。在一些實行例中,碳膜是沉積在非金屬層上。因此,非晶形碳膜可沉積在例如矽氧化物、矽氮化物、矽或碳的非金屬層上。實際上,非晶形碳膜可生長在其他碳膜(例如,高sp2含量的碳膜)上。不受限於任何理論,本揭示的非晶形碳膜可經由氣相中產生的以碳為中心的自由基而生長在非金屬層上。或者,非晶碳膜可被沉積在例如銅、鎢、鉬或釕的金屬層上。這種沉積可能會或可能不會藉由金屬與碳的相互作用而加以輔助。經由自由基活化而沉積的非晶形碳膜不限於選擇性沉積在金屬表面上,而是可沉積在各種金屬或非金屬表面上。在金屬或非金屬(例如,介電質)表面上的沉積可取決於沉積溫度。對於某些材料及在某些溫度下,起源氣體自由基(例如,氫自由基)的蝕刻可能會比沉積進行得更快。因此,溫度可能要足夠低,使得沉積可勝過對於例如矽氧化物、矽氮化物、高sp2含量碳及矽的材料的蝕刻。舉例而言,對於在矽氧化物、矽氮化物、高sp2含量碳或矽上沉積非晶形碳膜而言,溫度可等於或小於約150℃。
本揭示的其中一態樣是被配置成實現本文所述的經自由基活化碳膜沉積方法的設備。合適的設備包括用於完成處理操作的硬體,以及系統控制器,該系統控制器具有根據本揭示而控制處理操作的指令。在一些實行例中,用於執行前述處理操作的設備可包括遠端電漿源。與直接電漿相比,遠端電漿源提供溫和的反應條件。合適遠端電漿設備的示例是在2013年10月24日提出申請的美國專利申請案第14/062,648中描述,該申請案的整體是作為參考文獻且為所有目的而引入本文。
圖3繪示根據一些實行例的具有遠端電漿源的示例電漿處理設備的示意圖。電漿處理設備300包括與反應腔室304分隔開的遠端電漿源302。遠端電漿源302經由噴淋頭306而與反應腔室304流體耦接,其中噴淋頭306亦可被稱為多端口氣體分配器。自由基物質是在遠端電漿源302中產生,並且被供應到反應腔室304。一或更多含碳前驅物被供應到位於遠端電漿源302下游及噴淋頭306下游的反應腔室304。該一或更多含碳前驅物與反應腔室304的化學氣相沉積區域308中的自由基物種反應,以在基板312的前表面上沉積碳膜。
基板312被支撐在基板支撐件或基座314上。基座314可在反應腔室304內移動,以將基板312在化學氣相沉積區域308內定位。在圖 3 所示的實施例中,基座 314 是被顯示成已將基板 312升高在化學氣相沉積區域308內。在一些實施例中,基座314還可調整基板 312的溫度,這可提供對於該基板312上的熱活化表面反應的一些選擇性控制。
圖3繪示圍繞著遠端電漿源302而設置的線圈318,其中該遠端電漿源302包括外壁(例如,石英圓頂)。線圈318與電漿產生器控制器322電性耦接,其中該電漿產生器控制器322可用於經由感應耦合電漿產生而在電漿區域324內形成電漿並將其維持。在一些實行例中,電漿產生器控制器322可包括向線圈318供應功率的功率源,其中在電漿產生期間的功率可介於約1與6 kW之間。在一些實行例中,用於平行板或電容耦合電漿產生的電極或天線可被使用以經由電漿激發而不是感應耦合電漿產生,從而產生自由基的連續供應。無論用於點燃及維持電漿區域324中的電漿的機制為何,在膜沉積期間可使用電漿激發而連續產生自由基物種。在一些實行例中,在穩態膜沉積期間,氫自由基是在近似穩態狀態下產生,但在膜沉積的開始及結束時可能會產生瞬態(transient)。
在將氫氣或其他起源氣體供應至遠端電漿源302的同時,可在電漿區域324內連續地產生自由基供應。受激發的自由基可產生在遠端電漿源302中。若未再次激發或再次供應能量,或是與其他自由基再次結合,則這些受激發的自由基會失去能量或鬆弛。因此,受激發的自由基可能會鬆弛,而形成處於實質低能量狀態或基態的自由基。
氫氣(H 2)或其他起源氣體可利用一或更多額外氣體而稀釋。這些一或更多額外氣體可被供應至遠端電漿源302。在一些實行例中,氫氣或其他起源氣體是與一或更多額外氣體混合,以形成氣體混合物,其中該一或更多額外氣體可包括承載氣體。額外氣體的非限制性示例可包括氦(He)、氖(Ne)、氬(Ar)、氪(Kr)、氙(Xe)及氮(N 2)。該一或更多額外氣體可支持或穩定遠端電漿源302內的穩態電漿狀態,或是對於瞬態電漿點燃或熄滅處理有幫助。在一些實行例中,利用氦來稀釋氫氣或其他起源氣體例如可允許較高的總壓力,而不會伴隨電漿崩潰(plasma breakdown)。換言之,氫氣及氦的稀釋氣體混合物可允許較高的總氣壓,而不會增加對於遠端電漿源302的電漿功率。在某些實施例中,氫氣是被提供在例如氦的載體中。作為示例,氫氣得以約1-25%氫或約1-10%氫的濃度而被提供在氦載體中。
如圖3所示,起源氣體供應部326與遠端電漿源302流體耦接以供應氫氣或起源氣體。此外,額外氣體供應部328與遠端電漿源302流體耦接以供應一或更多額外氣體。該一或更多額外氣體還可包括共反應氣體。雖然圖3中的實施例繪示起源氣體及該一或更多額外氣體的氣體混合物是通過各自的氣體出口而引進,但將能理解的是,氣體混合物可直接被引進遠端電漿源302中。換言之,可經由單一氣體出口將預先混合的稀釋氣體混合物供應至遠端電漿源302。
氣體(例如,受激發的氫及氦自由基,以及鬆弛的氣體/自由基)流出遠端電漿源302,並經由噴淋頭306而進入反應腔室304。噴淋頭306內及反應腔室304內的氣體通常不會在其中承受持續電漿激發。在一些實行例中,噴淋頭306包括離子過濾器及/或光子過濾器。過濾離子及/或光子可減少反應腔室304內的基板損害、非所欲的分子再激發及/或烴前驅物的選擇性崩潰或分解。噴淋頭306可具有將氣流擴散到反應腔室304中的複數氣體端口334。在一些實行例中,該複數氣體端口334可被彼此隔開。在一些實行例中,該複數氣體端口334可被設置為規律間隔開的複數通道或通孔的陣列,其中該複數通道或通孔是延伸穿過將遠端電漿源302及反應腔室304分隔的板。該複數氣體端口 334 可將從遠端電漿源 302離開的自由基平穩地分散且擴散到反應腔室 304 中。
典型的遠端電漿源是遠離反應容器。因此,自由基滅絕及再次結合(例如,經由壁碰撞)可能會使活性物種大幅減少。相對地,在一些實行例中,該複數氣體端口334的尺寸可以根據在典型處理條件下的平均自由徑(mean free path)或氣流滯留時間而加以配置,而助於使自由基自由通過至反應腔室304中。在一些實行例中,對於該複數氣體端口334的開口可佔據噴淋頭306的暴露表面積的約5%至約20%。在一些實行例中,該複數氣體端口334可各自具有介於約3:1與10:1之間,或介於約6:1與約8:1之間的軸向長度比直徑的比率。此等縱橫比可使穿過該複數氣體端口334的自由基物種的壁碰撞頻率降低,同時提供足夠的時間使大多數的激發態自由基物種鬆弛成基態自由基物種。在一些實行例中,該複數氣體端口334的尺寸可被配置成使得穿過噴淋頭306的氣體的滯留時間大於激發態自由基物種的典型能量鬆弛時間。氫起源氣體的激發態自由基物種得以圖 3 中的•H*表示,而氫起源氣體的基態自由基物種得以圖 3 中的•H表示。
在一些實行例中,離開該複數氣體端口 334 的激發態自由基物種可流入反應腔室 304 內部中所含的鬆弛區域 338。鬆弛區域338是位於化學氣相沉積區域308的上游,但位於噴淋頭306的下游。離開噴淋頭306的實質所有或至少90%的激發態自由基物種將會在鬆弛區域338中躍遷為鬆弛態自由基物種。換言之,進入鬆弛區域338的幾乎所有激發態自由基物種(例如,受激發氫自由基)在離開該鬆弛區域338之前會去除激發,或是躍遷為鬆弛態自由基物種(例如,基態氫自由基)。在一些實行例中,鬆弛區域338的處理條件或幾何可經過配置,使得流經該鬆弛區域338的自由基物種的滯留時間(例如,由平均自由徑及平均分子速度所決定的時間)會形成流出該鬆弛區域338的鬆弛態自由基物質。
隨著自由基物種從噴淋頭306輸送到鬆弛區域338,可將一或更多含碳前驅物引進化學氣相沉積區域308中。該一或更多含碳前驅物可經由氣體分配器或氣體出口342而引進,其中氣體出口342可與前驅物供應源340流體耦接。鬆弛區域338可被包含在噴淋頭306與氣體出口342之間的空間內。氣體出口342可包括彼此隔開的複數開口,使得該一或更多含碳前驅物的流動可在與流動自鬆弛區域338的氣體混合物平行的方向中被引進。氣體出口 342 可位於噴淋頭306與鬆弛區域338 的下游。氣體出口342可位於化學氣相沉積區域308及基板312的上游。化學氣相沉積區域308是位於反應腔室304的內部,並且位於氣體出口342與基板312之間。
該一或更多含碳前驅物的實質所有流動可被避免與鄰近噴淋頭306的激發態自由基物種混合。鬆弛或基態自由基物種在鄰近基板312的區域中與該一或更多含碳前驅物混合。化學氣相沉積區域308包括與基板312相鄰的區域,其中鬆弛或基態自由基物種是在該區域處與該一或更多含碳前驅物混合。在石墨烯的CVD形成期間,鬆弛或基態自由基物種是在氣相中與該一或更多含碳前驅物混合。
在一些實行例中,共反應物可從噴淋頭306引進,並且與遠端電漿源302中產生的自由基物種一起流動且進入反應腔室304中。這可包括在遠端電漿源302中提供的共反應氣體的自由基及/或離子。共反應物可以由額外氣體供應部328所供應。在一些實行例中,共反應物可包括含氮試劑,例如氮氣(N 2)。舉例而言,在基板312的暴露表面的預處理期間可產生氮的自由基及/或離子,並將其與氫自由基物種一起流動。
氣體出口342可與噴淋頭306分隔足夠距離,以防止該一或更多含碳前驅物的反向擴散或回流。這可提供足夠時間使氫的自由基物種從激發態躍遷為鬆弛態(例如,基態)。在一些實行例中,氣體出口342可與該複數氣體端口334隔開約12 mm與約150 mm之間、約15 mm與約100mm之間,或是約20 mm與約70 mm之間的距離。
處理氣體可經由與幫浦(未顯示)流體耦接的出口348而從反應腔室304移除。因此,可從反應腔室304移除過量的含碳前驅物、共反應物、自由基物種及稀釋劑,以及置換氣體或吹淨氣體。在一些實行例中,系統控制器350與電漿處理設備300處於運行通信中。在一些實行例中,系統控制器350包括處理器系統352(例如,微處理器),其中該處理器系統352是被配置為執行數據系統354(例如,記憶體)中保存的指令。在一些實行例中,系統控制器350可與電漿產生器控制器322通信,以控制電漿參數及/或狀態。在一些實行例中,系統控制器350可與基座314通信,以控制基座的升高及溫度。在一些實行例中,系統控制器350可控制其他處理條件,例如RF功率設定、頻率設定、工作週期、脈衝時間、反應腔室304內的壓力、遠端電漿源302內的壓力、來自起源氣體供應部326及額外氣體供應部328的氣體流率、來自前驅物供應源340及其他源的氣體流率、基座314溫度,以及反應腔室304溫度等。
系統控制器350可包括複數指令,用於控制電漿處理設備300的操作的處理條件。系統控制器350通常將包括一或更多記憶裝置及一或更多處理器。處理器可包括CPU或電腦、類比及/或數位輸入/輸出連接件、步進馬達控制器板等。用於實施合適控制操作的指令是在處理器上執行。這些指令可被儲存在與系統控制器350相關的記憶裝置上,或是它們可經由網路而提供。
在某些實施例中,系統控制器350控制著本文所述的電漿處理設備300的所有或大多數活動。舉例而言,系統控制器350可控制著與經自由基活化碳膜沉積,以及包括該碳膜的製造流程中的其他任選操作相關的電漿處理設備300的所有或大多數活動。系統控制器350可執行系統控制軟體,其中該系統控制軟體包括用於控制時機、氣體組成、氣體流率、腔室壓力、腔室溫度、RF功率層級、基板位置及/或其他參數的指令集。在一些實施例中,可使用在與系統控制器350相關的記憶體設備上所儲存的其他電腦程式、腳本或常用程式。為了在與基板312相鄰的環境中提供相對溫和的反應狀態,可藉由系統控制器350調整及維持例如RF功率層級、往電漿區域324的氣體流率、往化學氣相沉積區域308的氣體流率,以及電漿點燃的時機的參數。此外,調整基板位置可進一步減少與基板312相鄰的環境中的高能自由基物種的存在。在多站反應器中,系統控制器350可包括用於不同設備站的不同或相同指令,從而允許該等設備站獨立或同步地運行。
在一些實施例中,系統控制器350可包括執行複數操作所用的複數指令,所述操作例如是將含碳前驅物流動經過氣體出口342而進入反應腔室304、將起源氣體提供至遠端電漿源302中、在一或更多含碳前驅物的上游處的遠端電漿源302中產生起源氣體的自由基物種、從遠端電漿源302將自由基物種引進反應腔室304以與含碳前驅物進行反應,而在基板312上沉積晶形或非晶形碳膜。含碳前驅物可包括一或更多C-C鍵及/或一或更多C-H鍵。在反應腔室304中與基板312相鄰的環境中的自由基物種可為氫自由基,所述氫自由基是處於足以活化一或更多C-C鍵及/或一或更多C-H鍵以形成經活化含碳前驅物的能量狀態。在一些實行例中,系統控制器350可包括將基板312的溫度維持在約50℃與約550℃之間的指令。在一些實行例中,含碳前驅物各自包括直鏈、支鏈或環狀烯烴或炔烴基團。在一些實行例中,含碳前驅物各自包括支鏈或環狀烷烴基團。
在一些實施例中,設備300可包括與系統控制器350相關的使用者介面。使用者介面可包括顯示螢幕、設備300及/或處理條件的圖像軟體顯示器,以及例如指向裝置、鍵盤、觸控螢幕、麥克風等的使用者輸入裝置。
用於控制上述操作的電腦程式編碼可被編寫於任何習知的電腦可讀編程語言中:例如組合語言、C、C++、Pascal、Fortran等。編譯物件編碼或腳本係藉由處理器加以執行,以執行該程式中所認證的任務。
用於監測該處理的信號可藉由該系統控制器的類比及/或數位輸入連接件而加以提供。用於控制該處理的信號係輸入於該系統的類比及數位輸出連接件上。
一般而言,本文所述的方法系統可在包括半導體處理設備的系統上執行,所述半導體處理設備例如是一或更多處理工具、一或更多腔室、一或更多處理平台,及/或特定處理構件(晶圓基座、氣體流動系統等)。這些系統可與電子元件進行整合,以在半導體晶圓或基板的處理之前、期間與之後控制它們的操作。一般而言,所述電子元件可被稱為系統控制器,其可控制一或更多系統的各種組件或子部件。取決於處理需求及/或系統類型,可將控制器進行編程以控制本文所揭露的任何處理,包括處理氣體的輸送、溫度設定(例如,加熱及/或冷卻)、壓力設定、真空設定、功率設定、RF產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、定位及操作設定、對於一工具及其他傳輸工具及/或連接至或與特定系統相互連接的傳送室之晶圓傳輸進出。
廣義來說,可將系統控制器定義成具有各種積體電路、邏輯、記憶體及/或軟體的電子設備,以接收指令、發送指令、控制操作、啟動清潔操作、啟動終點測量等。所述積體電路可包括以韌體形式儲存程式指令的晶片、數位訊號處理器(DSP)、定義為特殊應用積體電路(ASIC)的晶片,及/或一或更多執行程式指令(例如,軟體)的微處理器或微控制器。程式指令得以各種獨立設定(或程式檔案)形式而傳送至控制器的指令,而定義出用於在半導體基板上、針對半導體基板或對系統執行特定步驟的操作參數。在一些實施例中,操作參數可為由製程工程師所定義之配方的一部分,以在將一或更多層、材料(例如,矽碳化物)、表面、電路及/或晶圓的晶粒進行加工的期間完成一或更多的處理步驟。
在一些實行例中,系統控制器可為電腦的一部分或耦接至電腦,所述電腦係整合並耦接至所述系統,或以其他方式而網路連接至所述系統,或是其組合。例如,系統控制器可位於「雲端」中,或是FAB主電腦系統的全部或一部分中而可允許基板處理的遠端存取。電腦可使對系統的遠端存取能夠監控加工操作的當前進程、檢視過去加工操作的歷史、檢視來自複數加工操作的趨勢或性能度量、變更當前處理的參數、設定當前處理之後的處理步驟,或是開始新的處理。在一些示例中,遠端電腦(例如,伺服器)可透過網路向系統提供處理配方,其中該網路可包括區域網路或網際網路。遠端電腦可包括使用者介面,而能夠對參數及/或設定進行輸入或編寫,所述參數及/或設定則接著從遠端電腦傳達至系統。在一些示例中,系統控制器是接收數據形式的指令,所述指令為在一或更多操作期間待執行之每一處理步驟指定參數。應當理解的是,所述參數可特定於待執行的步驟類型,及控制器所配置以連接或控制的工具類型。因此,如上所述,控制器可例如藉由包括一或更多離散控制器而進行分佈,所述離散控制器係彼此以網路連接且朝向共同的目的(例如本文所述的步驟與控制)而運作。為此目的所分佈的控制器之示例將係位於腔室上的一或更多積體電路,其與遠端設置(例如,位於平台層或作為遠端電腦的一部分),且結合以控制腔室上之步驟的一或更多積體電路連通。
除了本文所述的晶形或非晶形碳膜沉積之外,示例性系統可包括電漿蝕刻腔室或模組、沉積腔室或模組、旋轉–清洗腔室或模組、金屬電鍍腔室或模組、清潔腔室或模組、晶邊蝕刻腔室或模組、物理氣相沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD)腔室或模組、原子層蝕刻(ALE)腔室或模組、離子植入腔室或模組、軌道腔室或模組,或可有關於或使用於半導體晶圓之加工及/或製造中的其他半導體處理系統。
如上所述,取決於工具所待執行的一或更多處理步驟,系統控制器可連通至一或更多其他工具電路或模組、其他工具構件、群集式工具、其他工具介面、相鄰工具、鄰近工具、遍布於工廠的工具、主電腦、另一控制器,或材料輸送中所使用的工具,而將基板的容器帶進及帶出半導體製造工廠的工具位置及/或裝載通口。
圖4A繪示在基板的介電質層上所沉積的示例碳膜的橫截面示意圖。非晶形碳膜402可在產生與基板400相鄰的相對溫和環境的處理條件下形成。基板400可為任何晶圓、半導體晶圓、經部分製造的積體電路、印刷電路板、顯示螢幕或其他合適工件。介電質層401a可形成在基板400上。介電質層401a可由矽氧化物或矽氮化物所構成。或者,介電質層401a可由碳層(例如,DLC膜層)所構成。如上所述,非晶形碳膜402可藉由自由基活化碳膜沉積而沉積在介電質層401a上。自由基是在遠端電漿源中產生,而基於碳前驅物是經由該遠端電漿源下游的氣體出口而流入反應腔室。所述自由基選擇性地活化該基於碳前驅物中的特定鍵,例如C-C鍵或C-H鍵,以形成碳自由基。碳自由基為非晶形碳膜402的沉積提供活性位點。處理條件及該基於碳前驅物的選擇可大幅改變非晶形碳膜402的性質。
圖4B繪示在基板的半導體層上沉積的示例碳膜的橫截面示意圖。半導體層401b可形成在基板400上。半導體層401b可由摻雜或未摻雜的矽所構成。非晶形碳膜402可藉由上述的自由基活化碳膜沉積而沉積在半導體層401b上。
圖4C繪示在基板的金屬層上沉積的示例碳膜的橫截面示意圖。金屬層401c可形成在基板400上。金屬層401c可由合適的金屬所構成,例如銅、鎢、鉬、鈷或釕。金屬層401c可作為促進主體碳(特別是具有高度sp2鍵結的較類似石墨的碳)成核的催化劑。如上所述,非晶形碳膜402可藉由上述的自由基活化碳膜沉積而沉積在金屬層401c上。
圖5A繪示作為在雙重鑲嵌結構中沉積的襯墊層的示例碳膜的橫截面示意圖。如圖5A所示,介電質層500可具有切入介電質層500的複數溝槽或通孔510。非晶形碳膜502可沿溝槽或通孔510沉積,其中非晶形碳膜502可作為雙重鑲嵌結構中的襯墊層、黏著層、蝕刻停止部及/或阻障層。溝槽或通孔510可在後續利用金屬而填充。
圖5B繪示作為基板上的沉積抑制劑的示例碳膜的橫截面示意圖。在圖5B中,非晶形碳膜530是沉積在基板520的頂表面上。基板520的頂表面可為非金屬或金屬表面。材料層532是沉積在基板520上方,但不沉積在非晶形碳膜530上。在一些實行例中,材料層532是金屬、金屬氧化物或金屬氮化物。
圖5C繪示作為凹陷特徵部中的間隙填充物的示例保形碳膜的橫截面示意圖。在圖5C中,非晶形碳膜552是作為基板550的凹陷特徵部中的間隙填充物。
藉由上述的自由基活化碳膜沉積所形成的晶形或非晶形碳膜可作為襯墊、間隙填充物、沉積抑制劑及選擇性沉積物。
在先前的敘述中,數具體細節係闡述以提供對所呈現實施例的透徹理解。所揭露實施例可在不具一些或所有這些具體細節的情況下實施。在其他實例中,並未詳細描述習知的處理操作以免不必要地模糊所揭露的實施例。雖然所揭露實施例將結合特定實施例進行描述,但將能理解的是這些特定實施例的用意並非在於限制所揭露的實施例。
雖然前述實施例已為了清楚理解的目的而描述些許細節,但將顯而易知的是,可在隨附申請專利範圍的範疇內進行某些變更及修改。應注意到,存在著所呈現實施例的處理、系統及設備的替代實施方式。因此,所呈現實施例係被視為說明性而非限制性的,且實施例並不受限於本文所給定的細節。
200:處理 210-230:方格 300:電漿處理設備 302:遠端電漿源 304:反應腔室 306:噴淋頭 308:化學氣相沉積區域 312:基板 314:基座 318:線圈 322:電漿產生器控制器 324:電漿區域 326:起源氣體供應部 328:額外氣體供應部 334:氣體端口 338:鬆弛區域 340:前驅物供應源 342:氣體出口 348:出口 350:系統控制器 352:處理器系統 354:數據系統 400:基板 401a:介電質層 401b:半導體層 401c:金屬層 402:非晶形碳膜 500:介電質層 502:非晶形碳膜 510:通孔 520:基板 530:非晶形碳膜 532:材料層 550:基板 552:非晶形碳膜
圖1繪示基於sp2、sp3及氫含量的非晶形碳的三相圖。
圖2繪示根據一些實行例的在基板上沉積非晶形或晶形碳膜的示例方法的流程圖。
圖3繪示根據一些實行例的具有遠端電漿源的示例電漿處理設備的示意圖。
圖4A繪示在基板的介電質層上所沉積的示例碳膜的橫截面示意圖。
圖4B繪示在基板的半導體層上沉積的示例碳膜的橫截面示意圖。
圖4C繪示在基板的金屬層上沉積的示例碳膜的橫截面示意圖。
圖5A繪示作為在雙重鑲嵌結構中沉積的襯墊層的示例碳膜的橫截面示意圖。
圖5B繪示作為基板上的沉積抑制劑的示例碳膜的橫截面示意圖。
圖5C繪示作為凹陷特徵部中的間隙填充物的示例保形碳膜的橫截面示意圖。

Claims (20)

  1. 一種在基板上沉積非晶形或晶形碳膜的方法,包括: 將一或更多含碳前驅物流動至反應腔室中並且朝向該反應腔室中的基板,該一或更多含碳前驅物的各者具有下列至少一者:一或更多C-C鍵,或是一或更多C-H鍵; 在遠端電漿源中,從起源氣體產生該起源氣體的複數自由基,該遠端電漿源位於該一或更多含碳前驅物的上游;以及 將該起源氣體的該等自由基引進該反應腔室並朝向該基板,其中該等自由基是處於一能量狀態,該能量狀態足以活化複數C-C鍵及/或複數C-H鍵,以及在與該基板相鄰的環境中形成複數經活化含碳自由基前驅物,其中該等經活化含碳自由基前驅物在該基板上沉積而形成非晶形或晶形碳膜。
  2. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該起源氣體包括氫氣,而該起源氣體的該等自由基為複數氫自由基。
  3. 如請求項2之在基板上沉積非晶形或晶形碳膜的方法,其中該等氫自由基是位於與該基板相鄰的環境中的處於基態的氫自由基。
  4. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該基板包括矽氧化物、矽氮化物、矽或碳的非金屬層,而該非晶形或晶形碳膜是沉積在該非金屬層上。
  5. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該基板包括銅、鈷、鉬、鎢或釕的金屬層,而該非晶形或晶形碳膜是沉積在該金屬層上。
  6. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該一或更多含碳前驅物包括直鏈烯烴、直鏈炔烴、支鏈烯烴、支鏈炔烴、環狀烯烴或環狀炔烴基團的其中至少一者。
  7. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該一或更多含碳前驅物包括支鏈烷烴基團或環狀烷烴基團。
  8. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該一或更多含碳前驅物包括經鹵素取代烷烴、經鹵素取代烯烴或經鹵素取代炔烴基團。
  9. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該一或更多含碳前驅物包括經鹵代烷基取代烷烴、經鹵代烷基取代烯烴、經鹵代烷基取代炔烴、經羧基取代烷烴、經羧基取代烯烴、經羧基取代炔烴、經氰基取代烷烴、經氰基取代烯烴、經氰基取代炔烴、經羰基取代烷烴、經羰基取代烯烴、經羰基取代炔烴、經磺醯基取代烷烴、經磺醯基取代烯烴、經磺醯基取代炔烴、經硝基取代烷烴、經硝基取代烯烴、經硝基取代炔烴、經磺醯基鹵化物取代烷烴、經磺醯基鹵化物取代烯烴、經磺醯基鹵化物取代炔烴、經磺醯胺取代烷烴、經磺醯胺取代烯烴或經磺醯胺取代炔烴基團。
  10. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該一或更多含碳前驅物包括經醇取代烷烴、經醇取代烯烴、經醇取代炔烴、經醚取代烷烴、經醚取代烯烴、經醚取代炔烴、經O-醯基取代烷烴、經O-醯基取代烯烴、經O-醯基取代炔烴、經胺基取代烷烴、經胺基取代烯烴、經胺基取代炔烴、經N-醯基取代烷烴、經N-醯基取代烯烴或經N-醯基取代炔烴基團。
  11. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該非晶形或晶形碳膜是氫含量介於約20原子%與約70原子%之間的非晶形碳膜。
  12. 如請求項11之在基板上沉積非晶形或晶形碳膜的方法,其中該基板具有一或更多凹陷特徵部,該非晶形或晶形碳膜是沉積在該一或更多凹陷特徵部中,且具有等於或大於約90%的階梯覆蓋率。
  13. 如請求項11之在基板上沉積非晶形或晶形碳膜的方法,其中該非晶形碳膜的折射率介於約1.5與約2.5之間,而密度介於約1.1 g/cm 3與約3.5 g/cm 3之間。
  14. 如請求項11之在基板上沉積非晶形或晶形碳膜的方法,其中該非晶形碳膜是在等於或大於約4 Å/分鐘的沉積速率,介於約50°C與約550°C之間的沉積溫度下進行沉積。
  15. 如請求項1之在基板上沉積非晶形或晶形碳膜的方法,其中該非晶形或晶形碳膜中的sp3碳鍵結量是等於或大於約25%。
  16. 一種在基板上沉積非晶形氫化碳膜的方法,包括: 將一或更多含碳前驅物流動至反應腔室中並且朝向該反應腔室中的基板,該一或更多含碳前驅物的各者具有下列至少一者:一或更多C-C鍵,或是一或更多C-H鍵; 在遠端電漿源中,從氫起源氣體產生複數氫自由基,該遠端電漿源位於該一或更多含碳前驅物的上游;以及 將該等氫自由基引進該反應腔室並朝向該基板,其中該等自由基是處於一能量狀態,該能量狀態足以活化該一或更多C-C鍵及/或該一或更多C-H鍵,以及在與該基板相鄰的環境中形成複數經活化含碳前驅物,其中該等經活化含碳前驅物在該基板上沉積而形成非晶形氫化碳膜,氫含量介於約20原子%與約70原子%之間。
  17. 如請求項16之在基板上沉積非晶形氫化碳膜的方法,其中該非晶形氫化碳膜的密度介於約1.1 g/cm 3與約3.5 g/cm 3之間。
  18. 如請求項16之在基板上沉積非晶形氫化碳膜的方法,其中該一或更多含碳前驅物包括直鏈烯烴、直鏈炔烴、支鏈烯烴、支鏈炔烴、環狀烯烴或環狀炔烴基團的其中至少一者。
  19. 如請求項16之在基板上沉積非晶形氫化碳膜的方法,其中該一或更多含碳前驅物包括支鏈烷烴及/或環狀烷烴基團。
  20. 如請求項16之在基板上沉積非晶形氫化碳膜的方法,其中該基板具有一或更多凹陷特徵部,該非晶形氫化碳膜是沉積在該一或更多凹陷特徵部中,且具有等於或大於約90%的階梯覆蓋率。
TW111122791A 2021-06-23 2022-06-20 自由基活化碳膜沉積 TW202319341A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163202775P 2021-06-23 2021-06-23
US63/202,775 2021-06-23

Publications (1)

Publication Number Publication Date
TW202319341A true TW202319341A (zh) 2023-05-16

Family

ID=84545813

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122791A TW202319341A (zh) 2021-06-23 2022-06-20 自由基活化碳膜沉積

Country Status (5)

Country Link
US (1) US20240282570A1 (zh)
KR (1) KR20240022392A (zh)
CN (1) CN116034183A (zh)
TW (1) TW202319341A (zh)
WO (1) WO2022271525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1027567B1 (fr) * 2019-09-11 2021-04-06 Diarotech Sa Procédé et dispositif de synthèse de diamant et toutes autres formes allotropiques de carbone par synthèse en phase liquide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120276743A1 (en) * 2011-04-26 2012-11-01 Jai-Hyung Won Methods of forming a carbon type hard mask layer using induced coupled plasma and methods of forming patterns using the same
US9721784B2 (en) * 2013-03-15 2017-08-01 Applied Materials, Inc. Ultra-conformal carbon film deposition
US20150371851A1 (en) * 2013-03-15 2015-12-24 Applied Materials, Inc. Amorphous carbon deposition process using dual rf bias frequency applications
JP2018105998A (ja) * 2016-12-26 2018-07-05 キヤノン株式会社 コロナ帯電器および電子写真装置
TWI764008B (zh) * 2018-06-19 2022-05-11 美商應用材料股份有限公司 高品質間隙填充的高偏壓沉積

Also Published As

Publication number Publication date
WO2022271525A1 (en) 2022-12-29
US20240282570A1 (en) 2024-08-22
CN116034183A (zh) 2023-04-28
KR20240022392A (ko) 2024-02-20

Similar Documents

Publication Publication Date Title
US9514932B2 (en) Flowable carbon for semiconductor processing
KR101184072B1 (ko) 밀도 및 스텝 커버리지가 개선된 비정질 탄소막 증착 방법
US8105465B2 (en) Method for depositing conformal amorphous carbon film by plasma-enhanced chemical vapor deposition (PECVD)
US8361906B2 (en) Ultra high selectivity ashable hard mask film
CN112673123B (zh) 基于远程等离子体的硼氮化物、硼碳化物和硼碳氮化物膜的沉积
US20220375722A1 (en) Selective graphene deposition using remote plasma
US20080153311A1 (en) Method for depositing an amorphous carbon film with improved density and step coverage
US20230245924A1 (en) Selective deposition using graphene as an inhibitor
TW200809002A (en) Methods to improve the in-film defectivity of PECVD amorphous carbon films
CN115428141A (zh) 石墨烯整合
TW202319341A (zh) 自由基活化碳膜沉積
WO2023056393A1 (en) Deposition and treatment of nano-graphene at low temperatures