TW202314323A - Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing - Google Patents

Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing Download PDF

Info

Publication number
TW202314323A
TW202314323A TW111121066A TW111121066A TW202314323A TW 202314323 A TW202314323 A TW 202314323A TW 111121066 A TW111121066 A TW 111121066A TW 111121066 A TW111121066 A TW 111121066A TW 202314323 A TW202314323 A TW 202314323A
Authority
TW
Taiwan
Prior art keywords
image
display device
controller
phase plate
lens
Prior art date
Application number
TW111121066A
Other languages
Chinese (zh)
Inventor
羅賓 夏爾瑪
李昀翰
狄菲 齊
康斯坦丁 庫迪諾夫
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/721,760 external-priority patent/US20220404608A1/en
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202314323A publication Critical patent/TW202314323A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted

Abstract

An apparatus comprising (1) a conoscope configured to receive an image emitted by a display device through a corrective lens, (2) a variable compensation element coupled to the conoscope, wherein the variable compensation element is capable of selectively modifying the image emitted by the display device to compensate for an optical effect imparted by the corrective lens on the image, and (3) a controller coupled to the variable compensation element, wherein the controller (1) receives a compensation parameter representative of the optical effect imparted by the corrective lens on the image, (2) selects, based at least in part on the compensation parameter, a feature of the variable compensation element that compensates for the optical effect, and (3) causing the feature of the variable compensation element to be applied to the image. Various other apparatuses, systems, and methods are also disclosed.

Description

用於選擇地補償在測試期間施加至顯示裝置的矯正透鏡之設備、系統和方法Apparatus, system and method for selectively compensating a corrective lens applied to a display device during testing

本發明大體上係關於用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的設備、系統及方法。The present invention generally relates to apparatus, systems and methods for selectively compensating for corrective lenses applied to a display device during testing.

以引用之方式併入incorporated by reference

本申請案根據35 U.S.C. §119(e)主張2021年6月18日申請之美國臨時申請案第63/212,260號及2022年4月15日申請之美國非臨時申請案第17/721,760號之優先權,其內容以全文引用之方式併入本文中。This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 63/212,260, filed June 18, 2021, and U.S. Non-Provisional Application No. 17/721,760, filed April 15, 2022 rights, the content of which is incorporated herein by reference in its entirety.

在某些實例中,擴增實境及/或虛擬實境(augmented reality/virtual reality;AR/VR)裝置之顯示器可朝向使用者眼睛發射準直光。在一些AR/VR裝置中,處方透鏡可置放於使用者眼睛與AR/VR顯示器之間,以矯正使用者眼睛之缺陷及/或屈光不正。不利的是,此等處方透鏡典型地不可輕易移除。此外,此等處方透鏡可呈現困難,該困難涉及經由類似於調變傳送函數(modulation transfer function;MTF)及/或顯示色彩均勻性之度量而特色化AR/VR顯示器效能。AR/VR顯示器之MTF可表示解析度屬性及/或量化不同空間頻率下的顯示器之清晰度。In some examples, a display of an augmented reality/virtual reality (AR/VR) device may emit collimated light toward a user's eyes. In some AR/VR devices, prescription lenses may be placed between the user's eyes and the AR/VR display to correct defects and/or refractive errors in the user's eyes. Unfortunately, such prescription lenses are typically not easily removable. Furthermore, such prescription lenses can present difficulties related to characterizing AR/VR display performance through metrics like modulation transfer function (MTF) and/or display color uniformity. The MTF of an AR/VR display can represent resolution properties and/or quantify the sharpness of the display at different spatial frequencies.

在一態樣中揭露一種設備,其包含:一錐光鏡,其經組態以經由一矯正透鏡接收由一顯示裝置發射之一影像;一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及一控制器,其耦接至該可變補償元件,其中該控制器:接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之該光學效應;至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及使該可變補償元件之該特徵應用於該影像。In one aspect, an apparatus is disclosed that includes: a conoscopic lens configured to receive an image emitted by a display device through a corrective lens; a variable compensating element coupled to the conoscopic lens , wherein the variable compensating element is capable of selectively modifying the image emitted by the display device to compensate for an optical effect imparted by the corrective lens to the image; and a controller coupled to the variable compensating element, wherein the controller: receives a compensation parameter indicative of the optical effect imparted by the corrective lens to the image; selects a characteristic of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and Applying the feature of the variable compensation element to the image.

在另一態樣中揭露一種系統,其包含:一顯示裝置,其包括一矯正透鏡;及一成像攝影機裝置,其光學耦接至該顯示裝置,其中該成像攝影機裝置包含:一錐光鏡,其經組態以經由該矯正透鏡接收由該顯示裝置發射之一影像;一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及一控制器,其耦接至該可變補償元件,其中該控制器:接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之該光學效應;至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及使該可變補償元件之該特徵應用於該影像。In another aspect is disclosed a system comprising: a display device including a corrective lens; and an imaging camera device optically coupled to the display device, wherein the imaging camera device includes: a conoscopic lens, It is configured to receive an image emitted by the display device through the corrective lens; a variable compensating element coupled to the conoscopic lens, wherein the variable compensating element is capable of selectively modifying an image emitted by the display device the image to compensate for an optical effect imparted by the corrective lens to the image; and a controller coupled to the variable compensation element, wherein the controller: receives a compensation parameter representing the corrective lens imparting the optical effect to the image; selecting a feature of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and applying the feature of the variable compensation element to the image.

在又一態樣中揭露一種方法,其包含:將一顯示裝置光學耦接至一錐光鏡,該錐光鏡經組態以經由一矯正透鏡接收由該顯示裝置發射之一影像;藉由耦接至定位於該錐光鏡之一光學路徑中的一可變補償元件之一控制器接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之至少一個光學效應;藉由該控制器至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及藉由該控制器使該可變補償元件之該特徵應用於該錐光鏡中之該影像。In yet another aspect, a method is disclosed that includes: optically coupling a display device to a conoscope configured to receive an image emitted by the display device through a corrective lens; by a controller coupled to a variable compensation element positioned in an optical path of the conoscopic lens receives a compensation parameter indicative of at least one optical effect imparted by the corrective lens to the image; by the control selecting a feature of the variable compensating element that compensates for the optical effect based at least in part on the compensating parameter; and applying, by the controller, the feature of the variable compensating element to the image in the conoscope.

本發明大體上係關於用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的設備、系統及方法。如下文將更詳細地解釋,此等設備、系統及方法可提供眾多特徵及益處。The present invention generally relates to apparatus, systems and methods for selectively compensating for corrective lenses applied to a display device during testing. As will be explained in more detail below, such devices, systems and methods can provide numerous features and benefits.

在某些實例中,擴增實境及/或虛擬實境(AR/VR)裝置之顯示器可朝向使用者眼睛發射準直光。在一些AR/VR裝置中,處方透鏡可置放於使用者眼睛與AR/VR顯示器之間,以矯正使用者眼睛之缺陷及/或屈光不正。不利的是,此等處方透鏡典型地不可輕易移除。此外,此等處方透鏡可呈現困難,該困難涉及經由類似於調變傳送函數(MTF)及/或顯示色彩均勻性之度量而特色化AR/VR顯示器效能。AR/VR顯示器之MTF可表示解析度屬性及/或量化不同空間頻率下的顯示器之清晰度。In some examples, a display of an augmented reality and/or virtual reality (AR/VR) device may emit collimated light toward a user's eyes. In some AR/VR devices, prescription lenses may be placed between the user's eyes and the AR/VR display to correct defects and/or refractive errors in the user's eyes. Unfortunately, such prescription lenses are typically not easily removable. Furthermore, such prescription lenses can present difficulties related to characterizing AR/VR display performance through metrics like modulation transfer function (MTF) and/or display color uniformity. The MTF of an AR/VR display can represent resolution properties and/or quantify the sharpness of the display at different spatial frequencies.

在一些情形下,針對包括處方透鏡之AR/VR裝置特色化顯示參數(諸如MTF及/或色彩均勻性)將極其有用。然而,可能需要聚焦良好之影像用於準確評估,且處方透鏡之存在可能會使AR/VR裝置所發射之影像失真,因此使得難以獲得聚焦良好之影像。舉例而言,處方透鏡常常經定製用於特定使用者及/或特定使用者群組。因此,此處方透鏡可對來自AR/VR顯示器之光之波前引入可變修改,從而使MTF判定及/或色彩均勻性量測變得困難。Characterizing display parameters such as MTF and/or color uniformity for AR/VR devices including prescription lenses will be extremely useful in some cases. However, a well-focused image may be required for accurate evaluation, and the presence of prescription lenses may distort the image emitted by the AR/VR device, thus making it difficult to obtain a well-focused image. For example, prescription lenses are often customized for a specific user and/or a specific group of users. Thus, this square lens can introduce variable modifications to the wavefront of light from the AR/VR display, making MTF determination and/or color uniformity measurement difficult.

視覺感知可能占人類自真實世界接收及/或消耗之所有資訊之80%以上。出於此原因,創建真實及/或可信的AR/VR體驗之所有模態的絕對優先可涉及產生人眼之人工影像。為此目的之努力可使所謂的近眼顯示器(near-eye display;NED)之開發及/或生產成為必需。此類NED之開發及/或生產可為複雜科學及/或工程化努力,其不僅包括顯示器本身之開發及/或生產,而且包括以可擴展方式創建用於此類顯示器之特色化、測試及/或計量的所有必要基礎架構。Visual perception may account for over 80% of all information humans receive and/or consume from the real world. For this reason, the absolute priority of all modalities to create a realistic and/or believable AR/VR experience may involve creating artificial images of the human eye. Efforts to this end may necessitate the development and/or production of so-called near-eye displays (NEDs). The development and/or production of such NEDs can be a complex scientific and/or engineering effort that includes not only the development and/or production of the displays themselves, but also the creation of the characterization, testing and and/or all necessary infrastructure for metering.

在一些情形下,AR/VR顯示器之特色化可適用於多種品質及/或校準目的。用於特色化及/或量測裝置之應用的實例包括但不限於對顯示器原型之評估、對顯示器生產線之品質控制、關於顯示器之遵從性檢查(例如,與安全法規相關),及/或在使用之前或期間對顯示器之校準及調整、上述各者中之一或多者的組合或變化,及/或任何其他合適之應用。In some cases, the characterization of the AR/VR display may be suitable for various quality and/or calibration purposes. Examples of applications for characterization and/or measurement devices include, but are not limited to, evaluation of display prototypes, quality control of display production lines, compliance checks on displays (e.g., in relation to safety regulations), and/or in Calibration and adjustment of the display before or during use, combinations or variations of one or more of the foregoing, and/or any other suitable application.

當代AR/VR顯示器可推動光學系統設計之邊界,其目的在於增大使用者視場及/或眼框、提高顯示效率、及/或減小顯示尺寸及/或重量。為了獲得更好的效能及/或效率,可犧牲一些度量(例如,MTF及/或角度均勻性),以致力於最佳化其他參數。此類權衡可為合理的,此係因為常常在測試期間經由適當校準偵測及/或矯正顯示均勻性及/或其他不足。雖然其可減輕對顯示器開發人員之某些壓力,但此方法可對光學計量產生額外挑戰,此係因為需要收集、處理及/或儲存大量資料以促進此類測試及/或校準。此方法亦可導致極其冗長的工廠程序,其需要具有定製特徵及/或裝置之昂貴自動化機械。Contemporary AR/VR displays can push the boundaries of optical system design with the goal of increasing the user's field of view and/or eye frame, improving display efficiency, and/or reducing display size and/or weight. For better performance and/or efficiency, some metrics (eg, MTF and/or angular uniformity) may be sacrificed in favor of optimizing other parameters. Such trade-offs may be reasonable, since uniformity and/or other deficiencies are often detected and/or corrected during testing with proper calibration. While it can relieve some of the pressure on display developers, this approach can create additional challenges for optical metrology due to the large amounts of data that need to be collected, processed and/or stored to facilitate such testing and/or calibration. This approach can also result in extremely lengthy factory procedures requiring expensive automated machinery with custom features and/or devices.

AR/VR顯示器經歷之測試及校準方法之實例包括顯示器MTF及/或色彩均勻性校準。顯示器MTF測試之一個目的為在自若干不同角度檢視時確保藉由顯示器產生之虛擬影像符合所需MTF規格。在一些實例中,此MTF測試可接合及/或部署具有若干攝影機之複雜系統。在此類實例中,每一攝影機可以所定義角度觀測虛擬影像及/或執行必要資料收集。以此方式使用若干攝影機可允許及/或促進同時俘獲關於所有角度之資訊。然而,此方法可具有數個顯著缺陷,包括成本較高(例如,設備可使至多30個昂貴攝影機成為必需)、對準及/或審計程序複雜、系統大小及/或佔據面積較大、相當大的重量及/或相當不便。Examples of testing and calibration methods that AR/VR displays undergo include display MTF and/or color uniformity calibration. One purpose of display MTF testing is to ensure that virtual images generated by a display meet required MTF specifications when viewed from a number of different angles. In some examples, this MTF test can interface and/or deploy complex systems with several cameras. In such instances, each camera may observe the virtual image from defined angles and/or perform necessary data collection. Using several cameras in this manner may allow and/or facilitate capturing information about all angles simultaneously. However, this approach can have several significant drawbacks, including higher cost (eg, equipment can necessitate as many as 30 expensive cameras), complex alignment and/or audit procedures, larger system size and/or footprint, relatively Heavy weight and/or considerable inconvenience.

在一些情形下,若針對具有不同視力之使用者調整受測AR/VR裝置,則MTF量測可為進一步複雜的。舉例而言,AR/VR裝置可包括及/或併入有用於一或兩個眼睛之處方透鏡,且此等處方透鏡可不可移動地固定及/或附接至AR/VR顯示器。因此,在專業服務外,處方透鏡之移除可能並不可行。此等處方透鏡可修改由AR/VR顯示器投影之影像,類似於處方眼鏡補償近視或遠視之方式。In some cases, MTF measurements can be further complicated if the AR/VR device under test is adjusted for users with different vision. For example, an AR/VR device may include and/or incorporate prescription lenses for one or both eyes, and these prescription lenses may be non-removably fixed and/or attached to the AR/VR display. Therefore, removal of prescription lenses may not be feasible outside of professional services. These prescription lenses can modify the image projected by the AR/VR display, similar to how prescription glasses compensate for nearsightedness or farsightedness.

藉由處方透鏡判定MTF及/或量測AR/VR顯示器之色彩均勻性的要求可存在其他挑戰。針對任何給定眼睛之遠視之屈光不正矯正可包括三個主要變型,即球面(sphere;Sph)、柱面(cylinder;Cyl)及/或柱面軸(axis;Ax)。由於針對此等變型變化之值,可存在大量獨特透鏡處方(例如,500,000個不同選項)。僅就光學度數變化而言,在顯示特色化期間(例如,用於判定諸如MTF之顯示參數)可能需要大量(例如,數百或更多)處方透鏡度數。Additional challenges may exist with the requirement to determine MTF and/or measure color uniformity of AR/VR displays by prescribing lenses. Refractive error correction for hypermetropia in any given eye can include three main variants, namely sphere (Sph), cylinder (Cyl) and/or cylinder axis (Ax). Due to the varying values for these variants, there may be a large number of unique lens prescriptions (eg, 500,000 different options). In terms of optical power changes alone, a large number (eg, hundreds or more) of prescription lens powers may be required during display characterization (eg, for determining display parameters such as MTF).

在一些情形下,判定AR/VR顯示器之MTF及/或色彩均勻性可能顯得尤其具有挑戰性,該AR/VR顯示器之處方透鏡提供散光矯正。此類處方透鏡可將其他可變修改添加至自AR/VR顯示器發射之光之波前。解決此挑戰之一種方法可涉及沿著不同散光軸依序聚焦影像。不利的是,此方法可導致大規模聚焦控制、額外受測裝置及/或設備調整、複雜資料處理及/或較大量測誤差。In some cases, determining the MTF and/or color uniformity of AR/VR displays where a square lens provides astigmatism correction may prove to be particularly challenging. Such prescription lenses can add other variable modifications to the wavefront of the light emitted from the AR/VR display. One approach to address this challenge may involve sequentially focusing images along different astigmatism axes. Disadvantageously, this approach can lead to massive focus control, additional device under test and/or equipment adjustments, complex data processing and/or large measurement errors.

在一些情形下,使用單個攝影機及單個影像俘獲判定顯示器MTF及/或色彩均勻性可為極有用的。此外,在不存在補償元件之情況下,處方透鏡可能會在主導著任何MTF或色彩均勻性量測之出射光波前上引入單眼像差。因此,可能需要對此等單眼像差進行補償,以用於準確MTF及/或色彩均勻性判定。因此,本發明識別並解決用於選擇性地補償在測試期間施加至顯示裝置之處方透鏡的額外及改良設備、系統及方法的需要。In some cases, it may be very useful to determine display MTF and/or color uniformity using a single camera and single image capture. Furthermore, in the absence of compensating elements, prescription lenses may introduce monocular aberrations on the outgoing light wavefront that dominate any MTF or color uniformity measurement. Therefore, compensation for such monocular aberrations may be required for accurate MTF and/or color uniformity determinations. Accordingly, the present invention identifies and addresses the need for additional and improved apparatus, systems, and methods for selectively compensating for square lenses applied to display devices during testing.

如下文將更詳細地描述,設備及/或系統可經組態以補償許多可能處方透鏡,以便將清晰影像自受測AR/VR顯示器傳達至影像感測器上。藉此,設備及/或系統可促進及/或支援對那個AR/VR顯示器之MTF及/或色彩均勻性之準確判定。在一些實例中,設備及/或系統可經組態以獲得那個AR/VR顯示器之MTF及/或色彩均勻性。在此類實例中,MTF及/或色彩均勻性判定可指示及/或表示AR/VR顯示器上之影像清晰度。此等MTF及/或色彩均勻性判定可用於確保AR/VR顯示器在釋放及/或出貨之前符合及/或滿足某些品質標準。As will be described in more detail below, the device and/or system can be configured to compensate for many possible prescription lenses in order to convey a sharp image from the AR/VR display under test to the image sensor. Thereby, the device and/or system can facilitate and/or support accurate determination of the MTF and/or color uniformity of that AR/VR display. In some examples, the device and/or system can be configured to obtain the MTF and/or color uniformity of that AR/VR display. In such examples, MTF and/or color uniformity determinations may indicate and/or represent image clarity on AR/VR displays. These MTF and/or color uniformity determinations can be used to ensure that AR/VR displays meet and/or meet certain quality standards prior to release and/or shipment.

在一些實例中,此類設備及/或系統可包括經組態以在視角範圍內收集來自顯示器之光的光收集元件(例如,諸如錐光鏡之透鏡的光學元件)。藉由自視角範圍收集光,此設備及/或系統可減輕及/或消除配置於多個位置處之多個攝影機的習知要求以用於測試及/或校準。因此,此設備及/或系統可需要及/或包括僅單個攝影機,藉此促進降低之成本以及在測試及/或校準期間極大地簡化之對準及/或操作。In some examples, such devices and/or systems can include a light collection element (eg, an optical element such as a lens of a conoscopic lens) configured to collect light from a display over a range of viewing angles. By collecting light from a range of viewing angles, such an apparatus and/or system can alleviate and/or eliminate the conventional requirement of multiple cameras deployed at multiple locations for testing and/or calibration. Thus, such an apparatus and/or system may require and/or include only a single camera, thereby facilitating reduced cost and greatly simplified alignment and/or operation during testing and/or calibration.

在一些實例中,此類設備及/或系統可實施及/或包括補償元件(諸如相位板陣列之特徵),其有助於補償併入於受測AR/VR裝置中之處方透鏡。在一個實例中,補償元件可經定位、置放及/或位於設備及/或系統中所包括之錐光鏡的光瞳共軛區域內或附近。在此實例中,補償元件可至少部分地基於施加至AR/VR裝置之處方透鏡的屬性及/或特性,而自複數個此類元件(例如併入相位板陣列中)被選擇。此補償元件可補償及/或考慮處方透鏡對影像品質之效應。因此,此補償元件可使得設備及/或系統之光學組態能夠藉由極簡單設計(例如,包括某些固定光學特徵)達成及/或成功。In some examples, such apparatus and/or systems may implement and/or include compensation elements (such as features of phase plate arrays) that help compensate for square lenses incorporated in AR/VR devices under test. In one example, the compensating element can be positioned, placed, and/or located in or near the pupil conjugate region of a conoscopic lens included in the apparatus and/or system. In this example, the compensating element may be selected from a plurality of such elements (eg, incorporated into a phase plate array) based at least in part on the properties and/or characteristics of the square lens applied to the AR/VR device. The compensating element compensates for and/or takes into account the effect of prescription lenses on image quality. Thus, such compensating elements may enable and/or succeed in optical configurations of devices and/or systems with a very simple design (eg, including certain fixed optical features).

在一些實例中,用於併入於AR/VR裝置中的處方透鏡之調整,可涉及自配置於相位板陣列上之此類元件之陣列自動選擇及/或應用補償元件。在此類實例中,來自AR/VR顯示器之光可藉由處方透鏡修改,且補償元件可反轉處方透鏡之效應。在一個實例中,此類設備及/或系統可包括及/或表示為雙遠心的無焦光學中繼器裝置、潛在遠心的目鏡透鏡、影像感測器及/或補償板(例如,相位板陣列)。In some examples, adjustment of prescription lenses for incorporation in AR/VR devices may involve automatic selection and/or application of compensating elements from an array of such elements configured on a phase plate array. In such examples, the light from the AR/VR display can be modified by the prescription lens, and the compensating element can reverse the effect of the prescription lens. In one example, such an apparatus and/or system may include and/or represent a bi-telecentric afocal optical repeater device, a potentially telecentric eyepiece lens, an image sensor, and/or a compensating plate (e.g., a phase plate array).

在一些實例中,此類設備及/或系統可促進及/或支援對適配及/或裝備有處方透鏡之AR/VR顯示器的MTF及/或色彩均勻性或清晰度之判定及/或校準。此等處方透鏡可提供及/或賦予僅球面矯正、僅柱面矯正,或球面矯正及柱面矯正兩者。在一個實例中,此類設備及/或系統可包括及/或表示經組態以在若干視角下自AR/VR顯示器收集光的錐光鏡及/或另一光學裝置,藉此促進及/或支援使用單個攝影機之MTF及/或色彩均勻性判定。另外或替代地,此類設備及/或系統可包括及/或表示經組態以在若干視角下自AR/VR顯示器收集光的特定稜鏡及/或反射器(例如,空腔反射器)。In some examples, such devices and/or systems may facilitate and/or support determination and/or calibration of MTF and/or color uniformity or sharpness of AR/VR displays fitted and/or equipped with prescription lenses . These prescription lenses may provide and/or impart spherical correction only, cylindrical correction only, or both spherical and cylindrical correction. In one example, such an apparatus and/or system may include and/or represent a conoscope and/or another optical device configured to collect light from an AR/VR display at viewing angles, thereby facilitating and/or Or support MTF and/or color uniformity judgment using a single camera. Additionally or alternatively, such devices and/or systems may include and/or represent specific beams and/or reflectors (e.g., cavity reflectors) configured to collect light from an AR/VR display at several viewing angles .

在一些實例中,此類設備及/或系統之補償元件可包括及/或表示至少一個盤查拉特納姆-貝瑞相位(Pancharatnam-Berry phase;PBP)光學元件。在一個實例中,此類補償元件之選擇、調整、插入及/或應用可經自動化且由控制器(例如,處理裝置)引導。另外或替代地,可至少部分地基於施加至受測AR/VR顯示器之處方透鏡的一或多個調整參數及/或光學屬性選擇此類補償元件。In some examples, the compensation element of such devices and/or systems may include and/or represent at least one Pancharatnam-Berry phase (PBP) optical element. In one example, the selection, adjustment, insertion, and/or application of such compensating elements can be automated and directed by a controller (eg, a processing device). Additionally or alternatively, such compensating elements may be selected based at least in part on one or more adjustment parameters and/or optical properties of a square lens applied to the AR/VR display under test.

下文將參考圖1至圖5提供用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性裝置、系統、構件及對應實施之詳細描述。另外,結合圖6詳細描述用於選擇性補償在測試期間施加至顯示裝置之矯正透鏡的方法。對應於圖7及圖8之論述將提供可使用本文所揭示之設備、系統及/或方法中之一者進行測試及/或校準的例示性人工實境裝置、可穿戴物及/或相關聯系統之類型的詳細描述。Detailed descriptions of exemplary devices, systems, components, and corresponding implementations for selectively compensating for corrective lenses applied to a display device during testing are provided below with reference to FIGS. 1-5 . Additionally, a method for selectively compensating a corrective lens applied to a display device during testing is described in detail in conjunction with FIG. 6 . The discussion corresponding to FIGS. 7 and 8 will provide exemplary artificial reality devices, wearables, and/or associated devices that may be tested and/or calibrated using one of the devices, systems, and/or methods disclosed herein. A detailed description of the type of system.

圖1示出促進及/或支援選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性設備100。如圖1中所示出,例示性設備100可包括及/或表示錐光鏡102、可變補償元件104及/或控制器106。在一些實例中,錐光鏡102可經組態以經由矯正透鏡接收、偵測及/或接受由顯示裝置發射之影像。在此類實例中,可變補償元件104可實體地、直接地、間接地及/或光學地耦接至錐光鏡102。在一個實例中,可變補償元件104可能夠選擇性地修改由顯示裝置發射之影像,以補償矯正透鏡對影像賦予之光學效應。FIG. 1 shows an exemplary apparatus 100 that facilitates and/or supports selectively compensating for corrective lenses applied to a display device during testing. As shown in FIG. 1 , an exemplary apparatus 100 may include and/or represent a conoscopic lens 102 , a variable compensating element 104 , and/or a controller 106 . In some examples, the conoscopic lens 102 may be configured to receive, detect, and/or accept images emitted by a display device through a corrective lens. In such examples, variable compensating element 104 may be physically, directly, indirectly, and/or optically coupled to conoscope 102 . In one example, the variable compensating element 104 may be capable of selectively modifying the image emitted by the display device to compensate for the optical effect imparted by the corrective lens on the image.

在一些實例中,控制器106可實體地、直接地、間接地及/或通信地耦接至可變補償元件104。在一個實例中,控制器106可接收及/或獲得表示矯正透鏡對影像賦予之光學效應的補償參數。控制器106可以多種不同方式接收及/或獲得此補償參數。舉例而言,控制器106可自經由使用者介面進行顯示裝置之測試的技術人員,接收及/或獲得補償參數作為使用者輸入。在另一實例中,顯示裝置可用識別矯正透鏡之某些屬性的資訊進行程式化,且控制器106可通信地耦接(經由例如無線及/或有線連接)至顯示裝置。在此實例中,控制器106可經由通信耦接自顯示裝置接收及/或獲得識別矯正透鏡之那些屬性的資訊。In some examples, controller 106 may be physically, directly, indirectly, and/or communicatively coupled to variable compensation element 104 . In one example, the controller 106 may receive and/or obtain a compensation parameter representing the optical effect imparted by the corrective lens to the image. Controller 106 may receive and/or obtain this compensation parameter in a number of different ways. For example, the controller 106 may receive and/or obtain compensation parameters as user input from a technician performing a test of the display device via the user interface. In another example, the display device may be programmed with information identifying certain properties of the corrective lens, and the controller 106 may be communicatively coupled (via, eg, a wireless and/or wired connection) to the display device. In this example, the controller 106 may receive and/or obtain information identifying those properties of the corrective lens from the display device via the communicative coupling.

在一些實例中,補償參數可構成及/或表示被發射影像所經由之矯正透鏡之一或多個特徵及/或屬性。另外或替代地,補償參數可構成及/或表示矯正透鏡對影像賦予之光學效應的一或多個特徵及/或屬性。補償參數之實例包括但不限於矯正透鏡之球面度數、矯正透鏡之柱面度數、矯正透鏡之柱面軸、上述各者中之一或多者的組合或變化,及/或任何其他合適之補償參數。In some examples, the compensation parameters may constitute and/or represent one or more characteristics and/or properties of the corrective lens through which the image is transmitted. Additionally or alternatively, the compensation parameter may constitute and/or represent one or more characteristics and/or properties of the optical effect imparted by the corrective lens to the image. Examples of compensation parameters include, but are not limited to, the spherical power of the corrective lens, the cylindrical power of the corrective lens, the cylindrical axis of the corrective lens, combinations or variations of one or more of the foregoing, and/or any other suitable compensation parameter.

在一些實例中,至少部分地基於補償參數,控制器106可選擇補償及/或考慮矯正透鏡所賦予之光學效應的可變補償元件104之特徵。在一個實例中,可變補償元件104可包括及/或表示具有複數個可選擇特徵之相位板陣列。在此實例中,控制器106可將相位板陣列之可選擇特徵中之一者,識別為能夠抵消及/或反轉矯正透鏡對影像賦予之光學效應。舉例而言,當應用於影像時,相位板陣列之所選特徵可抵消及/或反轉由矯正透鏡之球面度數、柱面度數及/或柱面軸對影像賦予的光學效應。光學效應之此抵消及/或反轉可矯正及/或調節影像,以藉由設備100及/或對應影像感測器適當地測試及/或校準顯示裝置。In some examples, based at least in part on the compensation parameters, controller 106 may select features of variable compensation element 104 that compensate for and/or account for optical effects imparted by corrective lenses. In one example, variable compensation element 104 may include and/or represent a phase plate array having a plurality of selectable features. In this example, the controller 106 may identify one of the selectable features of the phase plate array as capable of canceling and/or inverting the optical effect imparted by the corrective lens on the image. For example, when applied to an image, selected features of the phase plate array can counteract and/or reverse the optical effects imparted to the image by the spherical power, cylindrical power, and/or cylindrical axis of the corrective lens. This cancellation and/or inversion of optical effects may correct and/or adjust images to properly test and/or calibrate display devices by apparatus 100 and/or corresponding image sensors.

在一些實例中,控制器106可使可變補償元件104之特徵應用於影像。在一個實例中,在選擇可變補償元件104之特徵後,控制器106可操縱及/或調整可變補償元件104,使得在影像到達影像感測器之前將所選特徵應用於影像。控制器106可以多種不同方式操縱及/或調整可變補償元件104。舉例而言,設備100可包括及/或表示相位板定位機構(未必在圖1中示出),其通信耦接至控制器106及/或經組態以使可變補償元件104在一或多個方向上移動(例如,旋轉地、橫向地、水平地、豎直地、對角地等)。在此實例中,控制器106可引導及/或指示相位板定位機構將可變補償元件104移動至一位置及/或方位,該位置及/或方位使所選特徵在影像通過錐光鏡102時應用於影像。In some examples, controller 106 may apply characteristics of variable compensating element 104 to the image. In one example, after selecting features of the variable compensating element 104, the controller 106 may manipulate and/or adjust the variable compensating element 104 such that the selected features are applied to the image before the image reaches the image sensor. The controller 106 can manipulate and/or adjust the variable compensating element 104 in a number of different ways. For example, apparatus 100 may include and/or represent a phase plate positioning mechanism (not necessarily shown in FIG. Move in multiple directions (eg, rotationally, laterally, horizontally, vertically, diagonally, etc.). In this example, the controller 106 may direct and/or instruct the phase plate positioning mechanism to move the variable compensating element 104 to a position and/or orientation that causes selected features to appear in the image through the conoscopic lens 102. when applied to images.

在一些實例中,錐光鏡102可包括及/或表示任何類型或形式之裝置及/或構件,其執行、促進及/或支援錐光鏡量測及/或觀測。在一個實例中,錐光鏡102可包括及/或表示一或多個光學構件。此類光學構件之實例包括但不限於透鏡、四分之一波片、反射器、偏光器、延遲器、部分反射器、反射偏光器、光學膜、補償器、光束分光器、對準層、彩色濾光片、保護片、玻璃構件、塑膠構件、光圈、菲涅耳透鏡、凸透鏡、凹透鏡、濾光片、球面透鏡、柱面透鏡、補償器、塗層、上述各者中之一或多者的組合或變化,及/或任何其他合適之光學構件。在一個實例中,錐光鏡102可包括及/或表示能夠執行一或多個光學功能之遠心透鏡堆疊,該一或多個光學功能包括影像縮放、透鏡矯正、偏光、反射、延遲、折射、光收集、光學像差矯正、伽瑪矯正及/或調整、多影像混合及/或覆疊、顯示過驅動補償、色差(Mura)矯正、抖動、影像解壓縮、雜訊矯正、影像失真、對比及/或銳化,以及其他功能。In some examples, conoscopic 102 may include and/or represent any type or form of device and/or component that performs, facilitates, and/or supports conoscopic measurements and/or observations. In one example, conoscope 102 may include and/or represent one or more optical components. Examples of such optical components include, but are not limited to, lenses, quarter wave plates, reflectors, polarizers, retarders, partial reflectors, reflective polarizers, optical films, compensators, beam splitters, alignment layers, Color filter, protective sheet, glass component, plastic component, aperture, Fresnel lens, convex lens, concave lens, filter, spherical lens, cylindrical lens, compensator, coating, one or more of the above Combinations or variations of these, and/or any other suitable optical components. In one example, the conoscopic lens 102 may include and/or represent a stack of telecentric lenses capable of performing one or more optical functions including image scaling, lens correction, polarization, reflection, retardation, refraction, Light collection, optical aberration correction, gamma correction and/or adjustment, multiple image mixing and/or overlay, display overdrive compensation, chromatic aberration (Mura) correction, dithering, image decompression, noise correction, image distortion, contrast and/or sharpening, among other features.

在一些實例中,錐光鏡102之光學構件可包括及/或含有多種不同材料。此類材料之實例包括但不限於塑膠、玻璃(例如,冕玻璃)、聚碳酸酯、上述各者中之一或多者的組合或變化,及/或任何其他合適之材料。光學構件可以多種形狀及/或大小來定義及/或形成。In some examples, the optical components of conoscope 102 may include and/or contain a variety of different materials. Examples of such materials include, but are not limited to, plastic, glass (eg, crown glass), polycarbonate, combinations or variations of one or more of the foregoing, and/or any other suitable material. Optical components can be defined and/or formed in a variety of shapes and/or sizes.

在一些實例中,可變補償元件104可包括及/或表示任何類型或形式之相位板陣列及/或相位補償板。在此類實例中,相位板陣列及/或相位補償板可包括及/或表示複數個可選擇特徵(諸如,相位補償元件)。在一個實例中,可選擇特徵可包括及/或表示一組PBP光學元件及/或矯正器。另外或替代地,可變補償元件104之至少一部分可經設定大小及/或設定尺寸以適配在光學托盤內,該光學托盤定位於錐光鏡102內之影像的光學路徑中。In some examples, variable compensation element 104 may include and/or represent any type or form of phase plate array and/or phase compensation plate. In such examples, the phase plate array and/or the phase compensation plate may include and/or represent a plurality of selectable features such as phase compensation elements. In one example, selectable features can include and/or represent a set of PBP optics and/or aligners. Additionally or alternatively, at least a portion of the variable compensating element 104 may be sized and/or dimensioned to fit within an optical tray positioned in the optical path of the image within the conoscope 102 .

在一些實例中,可變補償元件104可包括及/或表示一或多個球面度數特徵及/或配接器,其能夠抵消及/或反轉施加至受測顯示裝置之矯正透鏡的球面度數或效應。在其他實例中,可變補償元件104可包括及/或表示一或多個柱面度數特徵及/或配接器,其能夠抵消及/或反轉施加至受測顯示裝置之矯正透鏡的柱面度數或效應。另外或替代地,可變補償元件104可包括及/或表示一或多個柱面軸特徵及/或配接器,其能夠抵消及/或反轉施加至受測顯示裝置之矯正透鏡的柱面軸。最後,可變補償元件104可包括及/或表示一或多個像場彎曲特徵及/或配接器,其能夠抵消及/或反轉施加至受測顯示裝置之矯正透鏡的像場彎曲及/或放大效應。In some examples, variable compensating element 104 may include and/or represent one or more spherical power features and/or adapters capable of canceling and/or inverting the spherical power of a corrective lens applied to a display device under test or effect. In other examples, the variable compensating element 104 may include and/or represent one or more cylindrical power features and/or adapters capable of canceling and/or reversing the cylindrical power of the corrective lens applied to the display device under test. facet degree or effect. Additionally or alternatively, variable compensating element 104 may include and/or represent one or more cylindrical axis features and/or adapters capable of counteracting and/or reversing the cylindrical shape of the corrective lens applied to the display device under test. Face axis. Finally, the variable compensating element 104 may include and/or represent one or more field curvature features and/or adapters capable of canceling and/or inverting the field curvature and/or curvature of the corrective lens applied to the display device under test. / or magnification effects.

在一些實例中,控制器106可包括及/或表示能夠解譯及/或執行電腦可讀指令的任何類型或形式之硬體實施處理裝置及/或系統。在一個實例中,控制器106可存取及/或修改儲存於記憶體中之某些軟體模組,以促進及/或支援選擇性地補償在測試期間施加至顯示裝置之矯正透鏡。控制器106的實例包括但不限於實體處理器、中央處理單元(Central Processing Unit;CPU)、微處理器、微控制器、實施軟核處理器之場可程式化閘陣列(Field-Programmable Gate Array;FPGA)、特殊應用積體電路(Application-Specific Integrated Circuit;ASIC)、上述各者中之一或多者的部分、上述各者中之一或多者的變化或組合,及/或任何其他合適之控制器。In some examples, controller 106 may include and/or represent any type or form of hardware-implemented processing device and/or system capable of interpreting and/or executing computer-readable instructions. In one example, controller 106 may access and/or modify certain software modules stored in memory to facilitate and/or support selective compensation of corrective lenses applied to the display device during testing. Examples of the controller 106 include, but are not limited to, physical processors, central processing units (Central Processing Unit; CPU), microprocessors, microcontrollers, Field-Programmable Gate Arrays (Field-Programmable Gate Arrays) implementing soft-core processors ; FPGA), Application-Specific Integrated Circuit (ASIC), part of one or more of the foregoing, variations or combinations of one or more of the foregoing, and/or any other suitable controller.

在一些實例中,設備100可包括及/或表示未必在圖1至圖5中示出及/或標記之一或多個額外構件、裝置及/或機構。舉例而言,錐光鏡102可包括及/或表示未必在圖1至圖5中示出及/或標記之一或多個透鏡。在另一實例中,儘管在圖1至圖5中未必以此方式示出及/或標記,但設備100可包括及/或表示額外光學構件、電路系統、處理器、記憶體裝置、電纜纜線、連接器、彈簧、馬達及/或致動器,以及其他構件。在其他實例中,設備100可排除及/或省略圖1至圖5中所示出及/或標記之構件、裝置及/或機構中之一或多者。In some examples, apparatus 100 may include and/or represent one or more additional components, devices, and/or mechanisms not necessarily shown and/or labeled in FIGS. 1-5 . For example, the conoscopic lens 102 may include and/or represent one or more lenses not necessarily shown and/or labeled in FIGS. 1-5 . In another example, although not necessarily shown and/or labeled in this manner in FIGS. Wires, connectors, springs, motors and/or actuators, and other components. In other examples, apparatus 100 may exclude and/or omit one or more of the components, devices, and/or mechanisms shown and/or labeled in FIGS. 1-5 .

圖2示出促進及/或支援選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的錐光鏡102之例示性實施。如圖2中所示出,例示性錐光鏡102可包括及/或表示前端透鏡202、後端透鏡204、孔徑光闌206及/或圓形偏光器210。在一個實例中,前端透鏡202可包括及/或表示光收集及/或成像透鏡,其經組態以收集表示藉由顯示裝置發射之影像的準直光。在此實例中,當顯示裝置在視角範圍內所發射之準直光時,前端透鏡202可收集該準直光。另外或替代地,後端透鏡204可包括及/或表示影像形成透鏡,其經組態以由準直光形成影像以供呈現於影像感測器上。FIG. 2 shows an exemplary implementation of a conoscopic lens 102 that facilitates and/or supports selectively compensating for corrective lenses applied to a display device during testing. As shown in FIG. 2 , an exemplary conoscope 102 may include and/or represent a front lens 202 , a back lens 204 , an aperture stop 206 , and/or a circular polarizer 210 . In one example, front lens 202 may include and/or represent a light collection and/or imaging lens configured to collect collimated light representing an image emitted by a display device. In this example, when the collimated light emitted by the display device is within the viewing angle range, the front lens 202 can collect the collimated light. Additionally or alternatively, rear lens 204 may include and/or represent an image forming lens configured to form an image from collimated light for presentation on an image sensor.

在一些具體實例中,前端透鏡202及後端透鏡204可彼此類似及/或相同。在此類具體實例中,前端透鏡202及後端透鏡204可在錐光鏡102內相對於彼此以對位位向之方式經定位及/或經組態。In some embodiments, front lens 202 and back lens 204 can be similar and/or identical to each other. In such embodiments, front lens 202 and back lens 204 may be positioned and/or configured in an azimuthal manner relative to each other within conoscope 102 .

在一些實例中,前端透鏡202可以最接近及/或接近於受測顯示裝置之方式被定位及/或被置放。在此類實例中,孔徑光闌206可以最接近及/或接近於影像感測器之方式被定位及/或被置放。在一個實例中,圓形偏光器210及/或後端透鏡204可在前端透鏡202與孔徑光闌206之間接近於彼此而定位及/或置放。更特定言之,圓形偏光器210可經定位及/或置放於前端透鏡202與後端透鏡204之間。另外或替代地,後端透鏡204可經定位及/或置放於圓形偏光器210與孔徑光闌206之間。因此,藉由顯示裝置發射之光可在前端透鏡202處及/或經由該前端透鏡進入錐光鏡102,且接著朝向圓形偏光器210橫穿。在通過圓形偏光器210之後,光可在經由孔徑光闌206離開錐光鏡102之前朝向後端透鏡204橫穿。In some examples, front lens 202 may be positioned and/or placed proximate and/or proximate to the display device under test. In such examples, aperture stop 206 may be positioned and/or placed proximate and/or proximate to the image sensor. In one example, circular polarizer 210 and/or back lens 204 may be positioned and/or placed proximate to each other between front lens 202 and aperture stop 206 . More specifically, circular polarizer 210 may be positioned and/or placed between front lens 202 and back lens 204 . Additionally or alternatively, back end lens 204 may be positioned and/or placed between circular polarizer 210 and aperture stop 206 . Thus, light emitted by the display device may enter the conoscope 102 at and/or through the front lens 202 and then traverse towards the circular polarizer 210 . After passing through the circular polarizer 210 , the light may traverse towards the rear lens 204 before exiting the conoscope 102 through the aperture stop 206 .

圖3示出促進及/或支援選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的設備100之例示性實施。如圖3中所示出,設備100之例示性實施可包括及/或表示錐光鏡102、可變補償元件104及/或控制器106。在一些實例中,設備100可包括及/或表示通信耦接至控制器106之相位板定位機構304。另外或替代地,相位板定位機構304可實體地及/或通信地耦接至可變補償元件104。在此類實例中,相位板定位機構304可經組態以使可變補償元件104在一或多個方向上相對於錐光鏡102(例如,旋轉地、橫向地、水平地、豎直地、對角地等)移動。在一個實例中,相位板定位機構304可將可變補償元件104移動至一位置中,該位置使由控制器106選擇之特徵在影像通過錐光鏡102時應用於影像。3 shows an exemplary implementation of an apparatus 100 that facilitates and/or supports selectively compensating for corrective lenses applied to a display device during testing. As shown in FIG. 3 , an exemplary implementation of apparatus 100 may include and/or represent a conoscopic lens 102 , a variable compensating element 104 , and/or a controller 106 . In some examples, apparatus 100 may include and/or represent a phase plate positioning mechanism 304 communicatively coupled to controller 106 . Additionally or alternatively, the phase plate positioning mechanism 304 may be physically and/or communicatively coupled to the variable compensation element 104 . In such examples, the phase plate positioning mechanism 304 can be configured such that the variable compensating element 104 is relative to the conoscopic lens 102 in one or more directions (e.g., rotationally, laterally, horizontally, vertically). , diagonally, etc.) to move. In one example, phase plate positioning mechanism 304 may move variable compensating element 104 into a position that causes a feature selected by controller 106 to be applied to the image as it passes through conoscope 102 .

在一些實例中,相位板定位機構304可包括及/或表示將力施加至可變補償元件104之一或多個裝置及/或構件。藉由此類裝置及/或構件施加之力可使得及/或引導可變補償元件104移動至相對於錐光鏡102之光學路徑的某一位置中。此類裝置及/或構件之實例包括但不限於致動器、旋轉器、伺服馬達、直流(Direct Current;DC)馬達、交流(Alternating Current;AC)馬達、上述各者中之一或多者的變化或組合,及/或任何其他合適之裝置及/或構件。In some examples, phase plate positioning mechanism 304 may include and/or represent one or more devices and/or components that apply force to variable compensating element 104 . Forces applied by such devices and/or components may cause and/or guide variable compensating element 104 to move into a certain position relative to the optical path of conoscopic lens 102 . Examples of such devices and/or components include, but are not limited to, actuators, rotators, servo motors, Direct Current (DC) motors, Alternating Current (AC) motors, one or more of the foregoing Variations or combinations, and/or any other suitable devices and/or components.

在一些實例中,藉由將可變補償元件104移動至那個位置中,相位板定位機構304可使可變補償元件104之所選特徵與錐光鏡102之光學路徑對準。舉例而言,相位板定位機構304可接合一或多個致動器,以相對於錐光鏡102之光學托盤及/或在該光學托盤內移動可變補償元件104,使得在影像橫穿錐光鏡102之光學路徑時將所選特徵應用於影像。In some examples, phase plate positioning mechanism 304 may align selected features of variable compensating element 104 with the optical path of conoscopic mirror 102 by moving variable compensating element 104 into that position. For example, the phase plate positioning mechanism 304 can engage one or more actuators to move the variable compensating element 104 relative to and/or within the optical tray of the conoscopic mirror 102 such that the The optical path of light mirror 102 applies selected features to the image.

圖4示出促進及/或支援選擇性地補償在測試期間施加至顯示裝置402之矯正透鏡404的例示性系統400。如圖4中所示出,例示性系統400可包括及/或表示顯示裝置402及/或成像攝影機裝置410。在一些實例中,成像攝影機裝置410可光學地耦接至顯示裝置402。在一個實例中,成像攝影機裝置410可包括及/或表示錐光鏡102、可變補償元件104及/或控制器106。在此實例中,成像攝影機裝置410可包括及/或表示實體地、直接地、間接地及/或光學地耦接至可變補償元件104之影像感測器408。4 shows an exemplary system 400 that facilitates and/or supports selectively compensating for a corrective lens 404 applied to a display device 402 during testing. As shown in FIG. 4 , an exemplary system 400 may include and/or represent a display device 402 and/or an imaging camera device 410 . In some examples, imaging camera device 410 may be optically coupled to display device 402 . In one example, imaging camera device 410 may include and/or represent conoscopic lens 102 , variable compensating element 104 , and/or controller 106 . In this example, imaging camera device 410 may include and/or represent image sensor 408 physically, directly, indirectly, and/or optically coupled to variable compensation element 104 .

在一些實例中,顯示裝置402可包括及/或表示光源412,該光源412經由矯正透鏡404發射、投影及/或傳輸影像406作為準直光。在此類實例中,矯正透鏡404可補償及/或考慮那些使用者在視覺上之缺陷及/或不足(非常類似於處方眼鏡)。由於矯正透鏡404,影像406可經受一或多個光學效應,該一或多個光學效應以一種方式或另一方式相對於其原始形式更改準直光及/或使準直光失真。In some examples, display device 402 may include and/or represent a light source 412 that emits, projects, and/or transmits image 406 as collimated light through corrective lens 404 . In such examples, corrective lenses 404 may compensate for and/or account for those visual deficiencies and/or deficiencies of the user (much like prescription eyeglasses). Due to corrective lens 404, image 406 may be subject to one or more optical effects that alter and/or distort the collimated light in one way or another relative to its original form.

在一些實例中,矯正透鏡404可修改、更改及/或改變影像406,以補償那些使用者所經歷之屈光不正。此類屈光不正之實例包括但不限於近視、遠視、散光、老花眼、上述各者中之一或多者的組合或變化,及/或任何其他視覺缺陷及/或不足。為了在通過矯正透鏡404之後準確地測試及/或校準影像406之品質,影像406可在到達影像感測器408之前由成像攝影機裝置410中所包括之各種配接器經歷進一步修改。在某些具體實例中,矯正透鏡404可包括及/或表示由醫師及/或醫生(諸如眼科醫師及/或驗光師)開立處方之任何類型或形式之處方透鏡及/或可傳輸光學裝置。In some examples, corrective lens 404 may modify, alter, and/or alter image 406 to compensate for refractive errors experienced by those users. Examples of such refractive errors include, but are not limited to, nearsightedness, hyperopia, astigmatism, presbyopia, combinations or variations of one or more of the foregoing, and/or any other visual defect and/or deficiency. In order to accurately test and/or calibrate the quality of image 406 after passing through corrective lens 404 , image 406 may undergo further modification by various adapters included in imaging camera device 410 before reaching image sensor 408 . In some embodiments, corrective lens 404 may include and/or represent any type or form of prescription lens and/or transmittable optical device prescribed by a physician and/or medical practitioner, such as an ophthalmologist and/or optometrist .

在一個實例中,影像406可在到達影像感測器408以供評估及/或分析之前,沿光學路徑416通過、橫穿及/或行進通過錐光鏡102之各種構件(包括例如前端透鏡202、圓形偏光器210及/或後端透鏡204等)。在此實例中,影像406亦可在到達影像感測器408以供評估及/或分析之前,通過、橫穿及/或行進通過可變補償元件104之所選特徵。藉此,影像406可經受及/或經歷將準直光返回至其原始形式(例如,在由矯正透鏡404賦予之光學效應之前)的變換及/或更改。換言之,可變補償元件104之所選特徵可調節及/或處理準直光,使得影像406以先於矯正透鏡404之形式到達影像感測器408。在某些實例中,影像感測器408可偵測、感測、分析及/或評估影像406,以獲得關於及/或洞察由顯示裝置402投影及/或呈現之影像406之品質的資訊。In one example, image 406 may pass, traverse, and/or travel along optical path 416 through, through, and/or through various components of conoscope 102 (including, for example, front lens 202 ) before reaching image sensor 408 for evaluation and/or analysis. , circular polarizer 210 and/or rear lens 204, etc.). In this example, image 406 may also pass, traverse, and/or travel through selected features of variable compensation element 104 before reaching image sensor 408 for evaluation and/or analysis. As such, image 406 may undergo and/or undergo transformations and/or alterations that return collimated light to its original form (eg, prior to the optical effect imparted by corrective lens 404). In other words, selected features of variable compensating element 104 may condition and/or process collimated light such that image 406 reaches image sensor 408 before correcting lens 404 . In some examples, image sensor 408 may detect, sense, analyze, and/or evaluate image 406 to obtain information regarding and/or insight into the quality of image 406 projected and/or presented by display device 402 .

在一些實例中,錐光鏡102可包括及/或表示定位及/或設置光學托盤414,其於影像406所橫穿之光學路徑416中及/或沿著該光學路徑被定位及/或被設置。在一個實例中,可變補償元件104可插入及/或安裝至光學托盤414中。在此實例中,光學托盤414可構成、表示及/或形成可變補償元件104及/或錐光鏡102之間的介面及/或插口。另外或替代地,相位板定位機構304可接合一或多個致動器,以使可變補償元件104相對於光學托盤414移動。由於此類移動,當影像406橫穿錐光鏡102內之光學路徑416時,相位板定位機構304可有效地將可變補償元件104之可選擇特徵施加及/或對準至影像406。In some examples, conoscope 102 may include and/or represent a position and/or position optical tray 414 positioned and/or positioned in and/or along optical path 416 traversed by image 406 set up. In one example, variable compensating element 104 may be inserted and/or mounted into optical tray 414 . In this example, optical tray 414 may constitute, represent and/or form an interface and/or socket between variable compensating element 104 and/or conoscopic mirror 102 . Additionally or alternatively, phase plate positioning mechanism 304 may engage one or more actuators to move variable compensating element 104 relative to optical tray 414 . As a result of such movement, phase plate positioning mechanism 304 may effectively apply and/or align selectable features of variable compensating element 104 to image 406 as image 406 traverses optical path 416 within conoscope 102 .

在一些實例中,影像感測器408可通信耦接至控制器106,及/或可將表示影像406之資料提供至控制器106以供進一步評估及/或分析。在一個實例中,控制器106可自影像感測器408接收表示影像406之資料。在此實例中,控制器106可至少部分地基於表示影像406之資料,判定、外推及/或識別顯示裝置402之一或多個顯示參數。此類顯示參數之實例包括但不限於:顯示裝置402之MTF、顯示裝置402之色彩均勻性量測、顯示裝置402之解析度(例如,角解析度)、顯示裝置402之清晰度量測、顯示裝置402之亮度均勻性量測、上述各者中之一或多者的組合或變化,及/或任何其他合適之顯示參數。In some examples, image sensor 408 may be communicatively coupled to controller 106 and/or may provide data representing image 406 to controller 106 for further evaluation and/or analysis. In one example, controller 106 may receive data representing image 406 from image sensor 408 . In this example, controller 106 may determine, extrapolate, and/or identify one or more display parameters of display device 402 based at least in part on data representing image 406 . Examples of such display parameters include, but are not limited to: MTF of the display device 402, color uniformity measurements of the display device 402, resolution (e.g., angular resolution) of the display device 402, sharpness measurements of the display device 402, Brightness uniformity measurements of the display device 402, combinations or variations of one or more of the above, and/or any other suitable display parameters.

在一些實例中,控制器106可使用此類顯示參數來判定顯示裝置402是否符合及/或滿足某些品質標準。另外或替代地,控制器106可將此類顯示參數提供至計算裝置及/或使用者介面(例如,監視器),而負責確保用於顯示裝置402之某些品質標準的技術人員操作及/或可存取該計算裝置及/或使用者介面(例如,監視器)。在一個實例中,控制器106可設計策略,該策略用於至少部分地基於顯示參數而矯正顯示裝置402中被偵測到的一或多個不足。此外,控制器106可起始及/或執行一或多個動作,該一或多個動作經引導以矯正顯示裝置402中被偵測到之一或多個不足。舉例而言,控制器106可通知及/或告知技術人員如何矯正及/或解決在顯示裝置402中偵測到之一或多個不足。In some examples, controller 106 may use such display parameters to determine whether display device 402 complies with and/or satisfies certain quality standards. Additionally or alternatively, controller 106 may provide such display parameters to a computing device and/or a user interface (e.g., a monitor), while technicians responsible for ensuring certain quality standards for display device 402 operate and/or Or the computing device and/or user interface (eg, monitor) may be accessed. In one example, controller 106 may devise a strategy for remediating one or more deficiencies detected in display device 402 based at least in part on display parameters. Additionally, controller 106 may initiate and/or perform one or more actions directed to correct one or more deficiencies detected in display device 402 . For example, controller 106 may notify and/or inform a technician how to correct and/or resolve one or more deficiencies detected in display device 402 .

圖5示出可變補償元件104之例示性實施。在一些實例中,圖5中之可變補償元件104之例示性實施可包括及/或表示具有一組PBP光學元件及/或矯正器之相位板陣列。如圖5中所示出,可變補償元件104之此實施可包括及/或表示特徵502(1)、502(2)、502(3)、502(4)、502(5)、502(6)、502(7)、502(8)、502(9)、502(10)、502(11)、502(12)、502(13)、502(14)、502(15)、502(16)、502(17)、502(18)、502(19)、502(20)、502(21)、502(22)、502(23)、502(24)、502(25)、502(26)、502(27)、502(28)、502(29)、502(30)、502(31)及/或502(32)。在一個實例中,特徵502(1)至502(32)中之每一者可包括及/或表示不同及/或獨特PBP光學元件。在此實例中,特徵502(1)至502(32)可包括及/或表示不同球面度數及/或柱面度數之組合。FIG. 5 shows an exemplary implementation of the variable compensation element 104 . In some examples, the exemplary implementation of variable compensating element 104 in FIG. 5 may include and/or represent a phase plate array with a set of PBP optical elements and/or correctors. As shown in FIG. 5, such an implementation of variable compensating element 104 may include and/or represent features 502(1), 502(2), 502(3), 502(4), 502(5), 502( 6), 502(7), 502(8), 502(9), 502(10), 502(11), 502(12), 502(13), 502(14), 502(15), 502( 16), 502(17), 502(18), 502(19), 502(20), 502(21), 502(22), 502(23), 502(24), 502(25), 502( 26), 502(27), 502(28), 502(29), 502(30), 502(31) and/or 502(32). In one example, each of features 502(1)-502(32) can include and/or represent a different and/or unique PBP optical element. In this example, features 502(1)-502(32) may include and/or represent combinations of different spherical powers and/or cylindrical powers.

在一些實例中,控制器106可自可變補償元件104選擇特徵502(1)至502(32)中之一者以供應用於影像406。作為特定實例,特徵502(1)可包括及/或表示SPH之0屈光度與CYL之0屈光度的組合。在此實例中,特徵502(16)可包括及/或表示SPH之-4屈光度與CYL之-0.5屈光度的組合。另外或替代地,特徵502(32)可包括及/或表示SPH之-4屈光度與CYL之-1.5屈光度的組合。In some examples, controller 106 may select one of features 502 ( 1 )- 502 ( 32 ) from variable compensating element 104 to supply for image 406 . As a particular example, feature 502(1) may include and/or represent a combination of 0 diopters for SPH and 0 diopters for CYL. In this example, feature 502(16) may include and/or represent a combination of -4 diopters for SPH and -0.5 diopters for CYL. Additionally or alternatively, feature 502(32) may include and/or represent a combination of -4 diopters for SPH and -1.5 diopters for CYL.

圖6為用於製造及/或組裝成像攝影機裝置之例示性方法500的流程圖,該方法500促進選擇性地補償在測試期間施加至顯示裝置之矯正透鏡。另外或替代地,圖6中所展示之步驟可結合及/或涉及符合上文結合圖1至圖5所提供之描述的各種子步驟及/或變化。6 is a flowchart of an exemplary method 500 for fabricating and/or assembling an imaging camera device that facilitates selectively compensating for corrective lenses applied to a display device during testing. Additionally or alternatively, the steps shown in FIG. 6 may combine and/or involve various sub-steps and/or variations consistent with the descriptions provided above in connection with FIGS. 1-5 .

如圖6中所示出,方法600可包括及/或涉及將顯示裝置光學耦接至錐光鏡之步驟(610),該錐光鏡經組態以經由矯正透鏡接收由顯示裝置發射之影像。步驟610可以多種方式執行,包括上文結合圖1至圖5所描述之那些方式中之任一者。舉例而言,測試設備製造商及/或承包器可將顯示裝置光學地耦接至錐光鏡,該錐光鏡經組態以經由矯正透鏡接收由顯示裝置發射之影像。As shown in FIG. 6, method 600 may include and/or involve the step (610) of optically coupling a display device to a conoscopic lens configured to receive an image emitted by the display device through a corrective lens. . Step 610 can be performed in a variety of ways, including any of those described above in connection with FIGS. 1-5 . For example, a test equipment manufacturer and/or contractor may optically couple a display device to a conoscope configured to receive an image emitted by the display device through a corrective lens.

方法600亦可包括及/或涉及接收表示矯正透鏡對影像賦予之光學效應的補償參數之步驟(620)。步驟620可以多種方式執行,包括上文結合圖1至圖5所描述之那些方式中之任一者。舉例而言,控制器可耦接至定位於錐光鏡之光學路徑中的可變補償元件。在此實例中,控制器可接收表示矯正透鏡對影像賦予之光學效應的補償參數。Method 600 may also include and/or involve the step of receiving compensation parameters indicative of the optical effect imparted by the corrective lens on the image (620). Step 620 may be performed in a variety of ways, including any of those described above in connection with FIGS. 1-5 . For example, the controller may be coupled to a variable compensating element positioned in the optical path of the conoscopic lens. In this example, the controller may receive compensation parameters representing the optical effect imparted by the corrective lens on the image.

方法600亦可包括及/或涉及至少部分地基於補償參數而選擇補償光學效應之可變補償元件之特徵的步驟(630)。步驟630可以多種方式執行,包括上文結合圖1至圖5所描述之那些方式中之任一者。舉例而言,控制器可至少部分地基於補償參數而選擇補償光學效應之可變補償元件之特徵。Method 600 may also include and/or involve a step ( 630 ) of selecting characteristics of a variable compensation element that compensates for optical effects based at least in part on compensation parameters. Step 630 can be performed in a variety of ways, including any of those described above in connection with FIGS. 1-5 . For example, the controller may select characteristics of a variable compensation element that compensates for optical effects based at least in part on compensation parameters.

方法600亦可包括及/或涉及使可變補償元件之特徵應用於錐光鏡中之影像的步驟(640)。步驟640可以多種方式執行,包括上文結合圖1至圖5所描述之那些方式中之任一者。舉例而言,控制器可使可變補償元件之特徵應用於錐光鏡中之影像。Method 600 may also include and/or involve the step (640) of applying the characteristics of the variable compensating element to the image in the conoscopic lens. Step 640 may be performed in a variety of ways, including any of those described above in connection with FIGS. 1-5 . For example, the controller can apply the characteristics of the variable compensating element to the image in the conoscopic lens.

例示性具體實例Illustrative concrete examples

實施例1:一種設備包含:(1)一錐光鏡,其經組態以經由一矯正透鏡接收由一顯示裝置發射之一影像;(2)一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及(3)一控制器,其耦接至該可變補償元件,其中該控制器:(1)接收表示該矯正透鏡對該影像賦予之該光學效應的一補償參數;(2)至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及(3)使該可變補償元件之該特徵應用於該影像。Embodiment 1: An apparatus comprising: (1) a conoscopic lens configured to receive an image emitted by a display device through a corrective lens; (2) a variable compensating element coupled to the conoscopic lens an optical mirror, wherein the variable compensating element is capable of selectively modifying the image emitted by the display device to compensate for an optical effect imparted to the image by the correcting lens; and (3) a controller coupled to the A variable compensation element, wherein the controller: (1) receives a compensation parameter indicative of the optical effect imparted by the corrective lens to the image; (2) selects the variable compensation parameter to compensate for the optical effect based at least in part on the compensation parameter. changing a characteristic of the variable compensation element; and (3) applying the characteristic of the variable compensation element to the image.

實施例2:如實施例1之設備,其進一步包含耦接至該可變補償元件之一影像感測器,其中:(1)在該影像藉由該可變補償元件之該特徵進行補償之後,該影像感測器經組態以感測該影像;且(2)該控制器:(A)當該影像被該影像感測器感測到時,自該影像感測器接收表示該影像的資料;及(B)至少部分地基於表示該影像之該資料而判定該顯示裝置之一顯示參數。Embodiment 2: The apparatus of Embodiment 1, further comprising an image sensor coupled to the variable compensation element, wherein: (1) after the image is compensated by the characteristic of the variable compensation element , the image sensor is configured to sense the image; and (2) the controller: (A) receives from the image sensor a representation of the image when the image is sensed by the image sensor and (B) determining a display parameter of the display device based at least in part on the data representing the image.

實施例3:如實施例1或2之設備,其中該顯示參數包含以下各者中之至少一者:(1)該顯示裝置之一調變傳送函數;(2)該顯示裝置之一色彩均勻性量測;(3)該顯示裝置之一解析度;(4)該顯示裝置之一清晰度量測;或(5)該顯示裝置之一亮度均勻性量測。Embodiment 3: The device according to Embodiment 1 or 2, wherein the display parameters include at least one of the following: (1) a modulation transfer function of the display device; (2) a color uniformity of the display device (3) a resolution of the display device; (4) a definition measurement of the display device; or (5) a brightness uniformity measurement of the display device.

實施例4:如實施例1至3中任一項之設備,其中:(1)該可變補償元件包含一相位板陣列,該相位板陣列包括複數個可選擇特徵;且(2)該控制器選擇包括於該相位板陣列上之該些可選擇特徵中之一者,以供在該影像到達該影像感測器之前應用於該影像上。Embodiment 4: The apparatus of any of Embodiments 1 to 3, wherein: (1) the variable compensating element comprises a phase plate array comprising a plurality of selectable features; and (2) the control A sensor selects one of the selectable features included on the phase plate array for application to the image before the image reaches the image sensor.

實施例5:如實施例1至4中任一項之設備,其中包括於該相位板陣列上之該些可選擇特徵包含一組盤查拉特納姆-貝瑞相位光學元件中之至少一者。Embodiment 5: The apparatus of any of Embodiments 1 to 4, wherein the optional features included on the phase plate array comprise at least one of a set of interrogated Ratnam-Berry phase optical elements .

實施例6:如實施例1至5中任一項之設備,其進一步包含一相位板定位機構,該相位板定位機構通信耦接至該控制器且經組態以移動該相位板陣列,其中該控制器引導該相位板定位機構以將該相位板陣列移動至一位置,該位置使得該些可選擇特徵中之該者在該影像通過該錐光鏡時應用於該影像。Embodiment 6: The apparatus of any of Embodiments 1 to 5, further comprising a phase plate positioning mechanism communicatively coupled to the controller and configured to move the phase plate array, wherein The controller directs the phase plate positioning mechanism to move the phase plate array to a position such that the one of the selectable features is applied to the image as it passes through the conoscope.

實施例7:如實施例1至6中任一項之設備,其中:(1)該相位板定位機構包含一或多個致動器;(2)該錐光鏡包含定位於該影像之一光學路徑中之一光學托盤;及(3)該相位板定位機構接合該些致動器以相對於該光學托盤移動該相位板陣列,使得該些可選擇特徵中之該者在該影像橫穿該錐光鏡內之該光學路徑時應用於該影像。Embodiment 7: The apparatus of any one of Embodiments 1 to 6, wherein: (1) the phase plate positioning mechanism comprises one or more actuators; (2) the conoscope comprises a an optical tray in the optical path; and (3) the phase plate positioning mechanism engages the actuators to move the phase plate array relative to the optical tray such that the one of the selectable features is The optical path within the conoscope is applied to the image.

實施例8:如實施例1至7中任一項之設備,其中該控制器將表示該顯示裝置之該顯示參數提供至一使用者介面或一計算裝置以供評估。Embodiment 8: The apparatus of any one of Embodiments 1 to 7, wherein the controller provides the display parameter representing the display device to a user interface or a computing device for evaluation.

實施例9:如實施例1至8中任一項之設備,其中該補償參數包含以下各者中之至少一者:(1)該矯正透鏡之一球面度數;(2)該矯正透鏡之一柱面度數;或(3)該矯正透鏡之一柱面軸。Embodiment 9: The apparatus of any one of Embodiments 1 to 8, wherein the compensation parameter includes at least one of the following: (1) a spherical power of the corrective lens; (2) one of the corrective lenses Cylindrical power; or (3) A cylindrical axis of the corrective lens.

實施例10:如實施例1至9中任一項之設備,其中該錐光鏡包含:(1)一光收集透鏡,其經組態以收集光,該光表示由該顯示裝置發射之該影像;及(2)一影像形成透鏡,其經組態以自該光形成該影像以供呈現於該影像感測器上。Embodiment 10: The apparatus of any one of Embodiments 1 to 9, wherein the conoscope comprises: (1) a light collection lens configured to collect light representing the an image; and (2) an image forming lens configured to form the image from the light for presentation on the image sensor.

實施例11:如實施例1至10之設備,其中當該光被該顯示裝置在一視角範圍內發射時,該光收集透鏡收集該光。Embodiment 11: The apparatus of embodiments 1 to 10, wherein the light collection lens collects the light when the light is emitted by the display device within a viewing angle range.

實施例12:一種系統,其包含:(1)一顯示裝置;及(2)一成像攝影機裝置,其光學地耦接至該顯示裝置,其中該成像攝影機裝置包含:(A)一錐光鏡,其經組態以經由一矯正透鏡接收由一顯示裝置發射之一影像;(B)一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及(C)一控制器,其耦接至該可變補償元件,其中該控制器:(I)接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之該光學效應;(II)至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及(III)使該可變補償元件之該特徵應用於該影像。Embodiment 12: A system comprising: (1) a display device; and (2) an imaging camera device optically coupled to the display device, wherein the imaging camera device comprises: (A) a conoscopic lens , configured to receive an image emitted by a display device via a corrective lens; (B) a variable compensating element coupled to the conoscopic lens, wherein the variable compensating element is capable of selectively modifying the The image emitted by the display device to compensate for an optical effect imparted by the corrective lens to the image; and (C) a controller coupled to the variable compensation element, wherein the controller: (I) receives a a compensation parameter indicative of the optical effect imparted by the corrective lens to the image; (II) selecting a feature of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and (III) using The feature of the variable compensation element is applied to the image.

實施例13:如實施例12之系統,其中:(1)該成像攝影機裝置包含耦接至該可變補償元件之一影像感測器;(2)在該影像藉由該可變補償元件之該特徵進行補償之後,該影像感測器經組態以感測該影像:且(3)該控制器:(I)當該影像被該影像感測器感測到時,自該影像感測器接收表示該影像的資料;及(II)至少部分地基於表示該影像之該資料判定表示該顯示裝置之一顯示參數。Embodiment 13: The system of Embodiment 12, wherein: (1) the imaging camera device includes an image sensor coupled to the variable compensation element; (2) the image passes through the variable compensation element After the characteristic is compensated, the image sensor is configured to sense the image: and (3) the controller: (I) when the image is sensed by the image sensor, receiving data representing the image; and (II) determining a display parameter representing the display device based at least in part on the data representing the image.

實施例14:如實施例12或13之系統,其中該顯示參數包含以下各者中之至少一者:(1)該顯示裝置之一調變傳送函數;(2)該顯示裝置之一色彩均勻性量測;(3)該顯示裝置之一解析度;(4)該顯示裝置之一清晰度量測;或(5)該顯示裝置之一亮度均勻性量測。Embodiment 14: The system according to Embodiment 12 or 13, wherein the display parameters include at least one of the following: (1) a modulation transfer function of the display device; (2) a color uniformity of the display device (3) a resolution of the display device; (4) a definition measurement of the display device; or (5) a brightness uniformity measurement of the display device.

實施例15:如實施例12至14中任一項之系統,其中:(1)該可變補償元件包含一相位板陣列,該相位板陣列包括複數個可選擇特徵;且(2)該控制器選擇包括於該相位板陣列上之該些可選擇特徵中之一者,以供在該影像到達該影像感測器之前應用於該影像上。Embodiment 15: The system of any of Embodiments 12 to 14, wherein: (1) the variable compensating element comprises a phase plate array including a plurality of selectable features; and (2) the control A sensor selects one of the selectable features included on the phase plate array for application to the image before the image reaches the image sensor.

實施例16:如實施例12至15中任一項之系統,其中包括於該相位板陣列上之該些可選擇特徵包含一組盤查拉特納姆-貝瑞相位光學元件中之至少一者。Embodiment 16: The system of any of Embodiments 12 to 15, wherein the selectable features included on the phase plate array comprise at least one of a set of interlocking Ratnam-Berry phase optical elements .

實施例17:如實施例12至16中任一項之系統,其進一步包含一相位板定位機構,該相位板定位機構通信耦接至該控制器且經組態以移動該相位板陣列,其中該控制器引導該相位板定位機構以將該相位板陣列移動至一位置,該位置使得該些可選擇特徵中之該者在該影像通過該錐光鏡時應用於該影像。Embodiment 17: The system of any of Embodiments 12 to 16, further comprising a phase plate positioning mechanism communicatively coupled to the controller and configured to move the phase plate array, wherein The controller directs the phase plate positioning mechanism to move the phase plate array to a position such that the one of the selectable features is applied to the image as it passes through the conoscope.

實施例18:如實施例12至17中任一項之系統,其中:(1)該相位板定位機構包含一或多個致動器;(2)該錐光鏡包含定位於該影像之一光學路徑中之一光學托盤;及(3)該相位板定位機構接合該些致動器以相對於該光學托盤移動該相位板陣列,使得該些可選擇特徵中之該者在該影像橫穿該錐光鏡內之該光學路徑時應用於該影像。Embodiment 18: The system of any one of Embodiments 12 to 17, wherein: (1) the phase plate positioning mechanism comprises one or more actuators; (2) the conoscope comprises a an optical tray in the optical path; and (3) the phase plate positioning mechanism engages the actuators to move the phase plate array relative to the optical tray such that the one of the selectable features is The optical path within the conoscope is applied to the image.

實施例19:如實施例12至18中任一項之系統,其中該控制器將表示該顯示裝置之該顯示參數提供至一使用者介面或一計算裝置以供評估。Embodiment 19: The system of any of Embodiments 12 to 18, wherein the controller provides the display parameter representing the display device to a user interface or a computing device for evaluation.

實施例20:一種方法,其包含:(1)將一顯示裝置光學地耦接至一錐光鏡,該錐光鏡經組態以經由一矯正透鏡接收由一顯示裝置發射之一影像;(2)藉由耦接至定位於該錐光鏡之一光學路徑中之一可變補償元件的一控制器接收表示該矯正透鏡對該影像賦予之該光學效應的一補償參數;(3)藉由該控制器至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及(4)藉由該控制器使該可變補償元件之該特徵應用於該錐光鏡中之該影像。Embodiment 20: A method comprising: (1) optically coupling a display device to a conoscope configured to receive an image emitted by a display device through a corrective lens;( 2) receiving a compensation parameter indicative of the optical effect imparted by the corrective lens to the image by a controller coupled to a variable compensation element positioned in an optical path of the conoscopic lens; (3) by selecting, by the controller, a feature of the variable compensating element that compensates for the optical effect based at least in part on the compensation parameter; and (4) applying, by the controller, the feature of the variable compensating element to the conoscopic the image in the mirror.

本發明之具體實例可包括各種類型的人工實境系統或結合各種類型的人工實境系統加以實施。人工實境為在呈現給使用者之前已以某一方式調節的實境形式,其可包括例如虛擬實境、擴增實境、混合實境、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全電腦產生之內容或與所俘獲之(例如,真實世界)內容組合之電腦產生之內容。人工實境內容可包括視訊、音訊、觸覺回饋或其某一組合,其中之任一者可在單個通道中或在多個通道中呈現(諸如,對觀看者產生三維(3D)效應之立體視訊)。另外,在一些具體實例中,人工實境亦可與用以例如在人工實境中產生內容及/或另外用於人工實境中(例如,在人工實境中執行活動)之應用、產品、附件、服務或其某一組合相關聯。Embodiments of the present invention may include or be implemented in combination with various types of artificial reality systems. Artificial reality is a form of reality that has been conditioned in some way before being presented to a user, which may include, for example, virtual reality, augmented reality, mixed reality, hybrid reality, or some combination and/or derivative thereof things. Artificial reality content may include fully computer-generated content or computer-generated content combined with captured (eg, real-world) content. Artificial reality content may include video, audio, haptic feedback, or some combination thereof, any of which may be presented in a single channel or in multiple channels (such as stereoscopic video that creates a three-dimensional (3D) effect on the viewer ). Additionally, in some embodiments, an artificial reality may also be used in conjunction with, for example, applications, products, products, attachments, services, or some combination thereof.

人工實境系統可以各種不同外觀尺寸及組態來實施。一些人工實境系統可經設計以在無近眼顯示器(near-eye display;NED)之情況下起作用。其他人工實境系統可包括NED,其亦提供對真實世界(諸如例如圖7中之擴增實境系統700)之可見性、或在視覺上使使用者沉浸在人工實境(諸如例如圖8中之虛擬實境系統800)中。雖然一些人工實境裝置可為自含式系統,但其他人工實境裝置可與外部裝置通信及/或協調以向使用者提供人工實境體驗。此類外部裝置之實例包括手持型控制器、行動裝置、桌上型電腦、由使用者穿戴之裝置、由一或多個其他使用者穿戴之裝置,及/或任何其他適合之外部系統。The artificial reality system can be implemented in various form factors and configurations. Some artificial reality systems may be designed to function without a near-eye display (NED). Other artificial reality systems may include NEDs that also provide visibility into the real world (such as, for example, augmented reality system 700 in FIG. 7 ), or visually immerse the user in an artificial reality (such as, for example, FIG. 8 In the virtual reality system 800). While some artificial reality devices may be self-contained systems, other artificial reality devices may communicate and/or coordinate with external devices to provide an artificial reality experience to a user. Examples of such external devices include handheld controllers, mobile devices, desktop computers, devices worn by a user, devices worn by one or more other users, and/or any other suitable external system.

轉向圖7,擴增實境系統700可包括具有框架710之眼部穿戴物702,該框架710經組態以將左側顯示裝置715(A)及右側顯示裝置715(B)固持在使用者眼睛前方。顯示裝置715(A)及715(B)可共同地或獨立地起作用,以向使用者呈現一影像或一系列影像。雖然擴增實境系統700包括兩個顯示器,但本發明之具體實例可實施於具有單個NED或多於兩個NED之擴增實境系統中。Turning to FIG. 7 , augmented reality system 700 can include eyewear 702 having frame 710 configured to hold left display device 715 (A) and right display device 715 (B) in the user's eyes ahead. Display devices 715(A) and 715(B) may function together or independently to present an image or series of images to a user. Although augmented reality system 700 includes two displays, embodiments of the invention may be implemented in augmented reality systems with a single NED or more than two NEDs.

在一些具體實例中,擴增實境系統700可包括一或多個感測器,諸如感測器740。感測器740可回應於擴增實境系統700之運動而產生量測信號,且可位於框架710之實質上任何部分上。感測器740可表示多種不同感測機構中之一或多者,該些感測機構諸如位置感測器、慣性量測單元(inertial measurement unit;IMU)、深度攝影機組件、結構化光發射器及/或偵測器,或其任何組合。在一些具體實例中,擴增實境系統700可包括或可不包括感測器740或可包括多於一個感測器。在感測器740包括IMU之具體實例中,IMU可基於來自感測器740之量測信號而產生校準資料。感測器740之實例可包括但不限於加速計、陀螺儀、磁力計、偵測運動之其他合適類型之感測器、用於IMU之誤差矯正的感測器,或其某一組合。In some embodiments, augmented reality system 700 may include one or more sensors, such as sensor 740 . Sensor 740 may generate measurement signals in response to motion of augmented reality system 700 and may be located on substantially any portion of frame 710 . Sensor 740 may represent one or more of a variety of different sensing mechanisms, such as position sensors, inertial measurement units (IMUs), depth camera assemblies, structured light emitters and/or detectors, or any combination thereof. In some embodiments, augmented reality system 700 may or may not include sensor 740 or may include more than one sensor. In embodiments where sensor 740 includes an IMU, the IMU can generate calibration data based on measurement signals from sensor 740 . Examples of sensors 740 may include, but are not limited to, accelerometers, gyroscopes, magnetometers, other suitable types of sensors to detect motion, sensors for error correction of IMUs, or some combination thereof.

在一些實例中,擴增實境系統700亦可包括具有統稱為聲學換能器720之複數個聲學換能器720(A)至720(J)的麥克風陣列。聲學換能器720可表示偵測由聲波誘發之氣壓變化的換能器。每一聲學換能器720可經組態以偵測聲音且將經偵測聲音轉換為電子格式(例如,類比或數位格式)。圖7中之麥克風陣列可包括例如十個聲學換能器:720(A)及720(B),其可經設計以置放在使用者之對應耳朵內部;聲學換能器720(C)、720(D)、720(E)、720(F)、720(G)及720(H),其可定位於框架710上之各種位置處;及/或聲學換能器720(I)及720(J),其可定位於對應頸帶705上。In some examples, augmented reality system 700 may also include a microphone array having a plurality of acoustic transducers 720 (A)- 720 (J), collectively referred to as acoustic transducers 720 . Acoustic transducer 720 may represent a transducer that detects changes in air pressure induced by sound waves. Each acoustic transducer 720 may be configured to detect sound and convert the detected sound to an electronic format (eg, analog or digital format). The microphone array in FIG. 7 may include, for example, ten acoustic transducers: 720(A) and 720(B), which may be designed to be placed inside corresponding ears of the user; acoustic transducer 720(C), 720(D), 720(E), 720(F), 720(G), and 720(H), which may be positioned at various locations on frame 710; and/or acoustic transducers 720(1) and 720 (J), which can be positioned on the corresponding neck strap 705 .

在一些具體實例中,聲學換能器720(A)至720(J)中之一或多者可用作輸出換能器(例如,揚聲器)。舉例而言,聲學換能器720(A)及/或720(B)可為耳塞或任何其他合適類型之耳機或揚聲器。In some embodiments, one or more of acoustic transducers 720(A)-720(J) may serve as output transducers (eg, speakers). For example, acoustic transducers 720(A) and/or 720(B) may be earbuds or any other suitable type of headphones or speakers.

麥克風陣列之聲學換能器720的組態可變化。雖然擴增實境系統700在圖7中展示為具有十個聲學換能器720,但聲學換能器720之數目可大於或小於十。在一些具體實例中,使用較高數目個聲學換能器720可增加經收集音訊資訊之量及/或提高音訊資訊之敏感度及準確度。相比之下,使用較低數目個聲學換能器720可降低相關聯控制器750處理經收集音訊資訊所需之計算能力。另外,麥克風陣列之每一聲學換能器720的位置可變化。舉例而言,聲學換能器720之位置可包括關於使用者之所定義位置、關於框架710之所定義座標、與每一聲學換能器720相關聯之位向,或其某一組合。The configuration of the acoustic transducer 720 of the microphone array may vary. Although the augmented reality system 700 is shown in FIG. 7 as having ten acoustic transducers 720 , the number of acoustic transducers 720 may be greater or less than ten. In some embodiments, using a higher number of acoustic transducers 720 can increase the amount of collected audio information and/or improve the sensitivity and accuracy of the audio information. In contrast, using a lower number of acoustic transducers 720 may reduce the computational power required by the associated controller 750 to process the collected audio information. Additionally, the position of each acoustic transducer 720 of the microphone array may vary. For example, the positions of the acoustic transducers 720 may include defined positions with respect to the user, defined coordinates with respect to the frame 710, an orientation associated with each acoustic transducer 720, or some combination thereof.

聲學換能器720(A)及720(B)可定位於使用者耳朵之不同部分上,諸如耳廓後方、耳屏後方及/或在外耳或耳窩內。或者,除耳道內部之聲學換能器720之外,耳朵上或周圍亦可存在額外聲學換能器720。使聲學換能器720緊鄰使用者之耳道定位,可使得麥克風陣列能夠收集關於聲音如何到達耳道之資訊。藉由將聲學換能器720中之至少兩者定位在使用者頭部之兩側上(例如,作為雙耳麥克風),擴增實境系統700可模擬雙耳聽覺且俘獲使用者頭部周圍的3D立體聲聲場。在一些具體實例中,聲學換能器720(A)及720(B)可經由有線連接730連接至擴增實境系統700,且在其他具體實例中,聲學換能器720(A)及720(B)可經由無線連接(例如,藍牙連接)連接至擴增實境系統700。在另外其他具體實例中,聲學換能器720(A)及720(B)可能根本不結合擴增實境系統700來使用。Acoustic transducers 720(A) and 720(B) may be positioned on different parts of the user's ear, such as behind the pinna, behind the tragus, and/or within the concha or ear socket. Alternatively, there may be additional acoustic transducers 720 on or around the ear in addition to the acoustic transducers 720 inside the ear canal. Positioning the acoustic transducer 720 in close proximity to the user's ear canal enables the microphone array to gather information about how sound reaches the ear canal. By positioning at least two of the acoustic transducers 720 on either side of the user's head (e.g., as binaural microphones), the augmented reality system 700 can simulate binaural hearing and capture the surrounding area of the user's head. 3D stereo sound field. In some embodiments, acoustic transducers 720(A) and 720(B) can be connected to augmented reality system 700 via wired connection 730, and in other embodiments, acoustic transducers 720(A) and 720 (B) Can be connected to the augmented reality system 700 via a wireless connection (eg, Bluetooth connection). In yet other embodiments, acoustic transducers 720(A) and 720(B) may not be used in conjunction with augmented reality system 700 at all.

框架710上之聲學換能器720可以多種不同方式定位,包括沿著鏡腿之長度、跨越橋接件、在顯示裝置715(A)及715(B)上方或下方,或其某一組合。聲學換能器720亦可經定向,使得麥克風陣列能夠在環繞穿戴擴增實境系統700之使用者的廣泛範圍之方向上偵測聲音。在一些具體實例中,可在擴增實境系統700之製造期間執行最佳化製程,以判定每一聲學換能器720在麥克風陣列中之相對定位。Acoustic transducers 720 on frame 710 may be positioned in a number of different ways, including along the length of the temples, across bridges, above or below display devices 715(A) and 715(B), or some combination thereof. Acoustic transducer 720 may also be oriented such that the microphone array is capable of detecting sound in a wide range of directions surrounding the user wearing augmented reality system 700 . In some embodiments, an optimization process may be performed during manufacture of the augmented reality system 700 to determine the relative positioning of each acoustic transducer 720 in the microphone array.

在一些實例中,擴增實境系統700可包括或連接至外部裝置(例如,配對裝置),諸如頸帶705。頸帶705通常表示任何類型或形式之配對裝置。因此,頸帶705之以下論述亦可適用於各種其他配對裝置,諸如充電盒、智慧型手錶、智慧型手機、腕帶、其他可穿戴式裝置、手持式控制器、平板電腦、膝上型電腦、其他外部計算裝置等。In some examples, augmented reality system 700 may include or be connected to an external device (eg, a paired device), such as neckband 705 . Neckband 705 generally represents any type or form of paired device. Accordingly, the following discussion of the neckband 705 is also applicable to various other paired devices, such as charging cases, smart watches, smartphones, wristbands, other wearable devices, handheld controllers, tablets, laptops , other external computing devices, etc.

如所展示,頸帶705可經由一或多個連接器耦接至眼部穿戴物702。連接器可為有線或無線的,且可包括電及/或非電(例如,結構化)構件。在一些情況下,眼部穿戴物702及頸帶705可在其間無任何有線或無線連接之情況下獨立地操作。雖然圖7示出處於眼部穿戴物702及頸帶705上之實例位置中的眼部穿戴物702及頸帶705之構件,但該些構件可位於其他地方及/或以不同方式分佈在眼部穿戴物702及/或頸帶705上。在一些具體實例中,眼部穿戴物702及頸帶705之構件可位於與眼部穿戴物702、頸帶705或其某一組合配對的一或多個額外周邊裝置上。As shown, the neck strap 705 can be coupled to the eyewear 702 via one or more connectors. Connectors may be wired or wireless, and may include electrical and/or non-electrical (eg, structural) components. In some cases, eyewear 702 and neckband 705 may operate independently without any wired or wireless connection therebetween. Although FIG. 7 shows the components of the eyewear 702 and neckband 705 in an example location on the eyewear 702 and neckband 705, these components may be located elsewhere and/or distributed over the eyewear 702 and neckband 705 in a different manner. The upper wear 702 and/or the neckband 705. In some embodiments, the components of eyewear 702 and neckband 705 may be located on one or more additional peripheral devices paired with eyewear 702, neckband 705, or some combination thereof.

使諸如頸帶705之外部裝置與擴增實境眼部穿戴物配對,可使得眼部穿戴物能夠達成一副眼鏡之外觀尺寸,同時仍為擴展能力提供足夠的電池電力及計算能力。擴增實境系統700之電池電力、計算資源及/或額外特徵中之一些或全部可由配對裝置提供或在配對裝置與眼部穿戴物之間共用,因此整體上減小眼部穿戴物之重量、熱分佈及外觀尺寸,同時仍保持所要功能性。舉例而言,頸帶705可允許原本將包括在眼部穿戴物上之構件包括於頸帶705中,此係因為使用者可在其肩部上承受比其將在其頭部上承受的更重的重量負載。頸帶705亦可具有較大表面積,在其上將熱量擴散及分散至周圍環境。因此,頸帶705可允許比獨立眼部穿戴物上可能具有的更大的電池容量及計算能力。由於與眼部穿戴物702中所攜載之重量相比,頸帶705中所攜載之重量對於使用者之侵入性可能更小,因此使用者可承受穿戴較輕眼部穿戴物且承受攜載或穿戴配對裝置之時間長度大於使用者將承受穿戴較重的獨立式眼部穿戴物之時間長度,藉此使得使用者能夠將人工實境環境更充分地併入至其日常活動中。Pairing an external device such as the neckband 705 with the augmented reality eye wearable may enable the eye wearable to achieve the form factor of a pair of glasses while still providing sufficient battery power and computing power for expansion capabilities. Some or all of the battery power, computing resources, and/or additional features of the augmented reality system 700 may be provided by the paired device or shared between the paired device and the eyewear, thereby reducing the weight of the eyewear overall , heat distribution, and form factor while still maintaining desired functionality. For example, the neck strap 705 can allow components that would otherwise be included on the eyewear to be included in the neck strap 705 because the user can bear more on their shoulders than they would on their head. heavy weight load. The neckband 705 may also have a larger surface area on which to spread and dissipate heat to the surrounding environment. Thus, the neckband 705 may allow for greater battery capacity and computing power than is possible on a standalone eyewear. Since the weight carried in the neck strap 705 may be less intrusive to the user than the weight carried in the eyewear 702, the user can afford to wear lighter eyewear and bear the burden of carrying it. Carrying or wearing the paired device for a longer period of time than a user would endure wearing a heavier standalone eyewear, thereby enabling the user to more fully incorporate the artificial reality environment into their daily activities.

頸帶705可以通信方式與眼部穿戴物702及/或其他裝置耦接。此等其他裝置可向擴增實境系統700提供某些功能(例如,追蹤、定位、深度映射、處理、儲存等)。在圖7之具體實例中,頸帶705可包括兩個聲學換能器(例如,720(I)及720(J)),其為麥克風陣列之部分(或可能形成其自身的麥克風子陣列)。頸帶705亦可包括控制器725及電源735。Neck strap 705 may be communicatively coupled to eyewear 702 and/or other devices. These other devices may provide certain functionality to the augmented reality system 700 (eg, tracking, positioning, depth mapping, processing, storage, etc.). In the particular example of FIG. 7, neckband 705 may include two acoustic transducers (e.g., 720(I) and 720(J)) that are part of a microphone array (or may form its own microphone sub-array) . The neckband 705 may also include a controller 725 and a power supply 735 .

頸帶705之聲學換能器720(I)及720(J)可經組態以偵測聲音,且將經偵測聲音轉換為電子格式(類比或數位)。在圖7之具體實例中,聲學換能器720(I)及720(J)可定位於頸帶705上,藉此增加頸帶聲學換能器720(I)及720(J)與定位於眼部穿戴物702上之其他聲學換能器720之間的距離。在一些情況下,增加麥克風陣列之聲學換能器720之間的距離,可改良經由麥克風陣列執行之波束成形之準確度。舉例而言,若聲音係由聲學換能器720(C)及720(D)偵測到、且聲學換能器720(C)與720(D)之間的距離大於例如聲學換能器720(D)與720(E)之間的距離,則經偵測聲音之經判定源位置可比聲音已由聲學換能器720(D)及720(E)偵測到之情況更準確。Acoustic transducers 720(I) and 720(J) of neckband 705 may be configured to detect sound and convert the detected sound to an electronic format (analog or digital). In the specific example of FIG. 7, acoustic transducers 720(I) and 720(J) may be positioned on neckband 705, thereby increasing the relationship between neckband acoustic transducers 720(I) and 720(J) and positioning on the neckband 705. The distance between other acoustic transducers 720 on the eyewear 702 . In some cases, increasing the distance between the acoustic transducers 720 of the microphone arrays can improve the accuracy of beamforming performed by the microphone arrays. For example, if sound is detected by acoustic transducers 720(C) and 720(D), and the distance between acoustic transducers 720(C) and 720(D) is greater than, for example, acoustic transducer 720 (D) and 720(E), the determined source location of the detected sound can be more accurate than if the sound had been detected by acoustic transducers 720(D) and 720(E).

頸帶705之控制器725可處理由頸帶705及/或擴增實境系統700上之感測器產生的資訊。舉例而言,控制器725可處理來自麥克風陣列的描述由麥克風陣列偵測到之聲音的資訊。對於每一經偵測聲音,控制器725可執行到達方向(direction-of-arrival;DOA)估計,以估計經偵測聲音到達麥克風陣列之方向。當麥克風陣列偵測到聲音時,控制器725可用該資訊填充音訊資料集。在擴增實境系統700包括慣性量測單元之具體實例中,控制器725可自位於眼部穿戴物702上之IMU計算所有慣性及空間運算。連接器可在擴增實境系統700與頸帶705之間、及在擴增實境系統700與控制器725之間傳送資訊。該資訊可呈光學資料、電資料、無線資料或任何其他可傳輸資料形式之形式。將由擴增實境系統700產生的資訊之處理移動至頸帶705,可減少眼部穿戴物702中之重量及熱量,從而使該眼部穿戴物對於使用者而言更舒適。Controller 725 of neckband 705 may process information generated by sensors on neckband 705 and/or augmented reality system 700 . For example, controller 725 may process information from a microphone array describing sounds detected by the microphone array. For each detected sound, the controller 725 may perform a direction-of-arrival (DOA) estimation to estimate the direction from which the detected sound arrives at the microphone array. When sound is detected by the microphone array, the controller 725 may populate the audio dataset with this information. In embodiments where augmented reality system 700 includes an inertial measurement unit, controller 725 may compute all inertial and spatial operations from an IMU located on eye wearable 702 . The connectors can communicate information between the augmented reality system 700 and the neckband 705 , and between the augmented reality system 700 and the controller 725 . This information may be in the form of optical data, electrical data, wireless data or any other form of transmittable data. Moving the processing of information generated by the augmented reality system 700 to the neckband 705 reduces weight and heat in the eyewear 702, making the eyewear more comfortable for the user.

頸帶705中之電源735可向眼部穿戴物702及/或頸帶705提供電力。電源735可包括但不限於鋰離子電池、鋰聚合物電池、一次鋰電池、鹼性電池或任何其他形式之電力儲存器。在一些情況下,電源735可為有線電源。將電源735包括在頸帶705上而非眼部穿戴物702上,可有助於較佳地分配由電源735產生之重量及熱量。A power supply 735 in the neckband 705 can provide power to the eyewear 702 and/or the neckband 705 . Power source 735 may include, but is not limited to, lithium ion batteries, lithium polymer batteries, primary lithium batteries, alkaline batteries, or any other form of power storage. In some cases, power source 735 may be a wired power source. Including the power supply 735 on the neck strap 705 rather than the eyewear 702 can help to better distribute the weight and heat generated by the power supply 735 .

如所提及,代替將人工實境與實際實境摻合,一些人工實境系統可實質上用虛擬體驗來替換使用者對真實世界之感測感知中之一或多者。此類型系統之一個實例為頭戴式顯示系統,諸如圖8中之虛擬實境系統800,其主要或完全地覆蓋使用者之視場。虛擬實境系統800可包括塑形成圍繞使用者頭部適配之前部剛體802及帶804。虛擬實境系統800亦可包括輸出音訊換能器806(A)及806(B)。此外,雖然圖8中未展示,但前部剛體802可包括一或多個電子元件,其包括一或多個電子顯示器、一或多個慣性量測單元(IMU)、一或多個追蹤發射器或偵測器及/或用於產生人工實境體驗之任何其他合適的裝置或系統。As mentioned, instead of blending artificial reality with actual reality, some artificial reality systems may essentially replace one or more of the user's sensory perception of the real world with a virtual experience. An example of this type of system is a head-mounted display system, such as virtual reality system 800 in FIG. 8 , which primarily or completely covers the user's field of view. The virtual reality system 800 may include a front rigid body 802 and a belt 804 shaped to fit around a user's head. Virtual reality system 800 may also include output audio transducers 806(A) and 806(B). Additionally, although not shown in FIG. 8 , front rigid body 802 may include one or more electronic components including one or more electronic displays, one or more inertial measurement units (IMUs), one or more tracking transmitters sensor or detector and/or any other suitable device or system for generating an artificial reality experience.

人工實境系統可包括多種類型之視覺回饋機構。舉例而言,擴增實境系統700及/或虛擬實境系統800中之顯示裝置可包括一或多個液晶顯示器(liquid crystal display;LCD)、發光二極體(light emitting diode;LED)顯示器、微型LED顯示器、有機LED(organic LED;OLED)顯示器、數位光投影(digital light project;DLP)微型顯示器、矽上液晶(liquid crystal on silicon;LCoS)微型顯示器,及/或任何其他合適類型之顯示螢幕。此等人工實境系統可包括用於兩隻眼睛之單一顯示螢幕、或可為每一隻眼睛提供顯示螢幕,此可允許用於變焦調整或用於矯正使用者之屈光不正的額外靈活性。此等人工實境系統中之一些亦可包括具有一或多個透鏡(例如,凹透鏡或凸透鏡、菲涅耳透鏡、可調整液體透鏡等)之光學子系統,使用者可經由該些透鏡觀看顯示螢幕。此等光學子系統可用於多種目的,包括使光準直(例如,使物件出現在比其實體距離更大的距離處)、放大光(例如,使物件看起來比其實際大小大)及/或中繼光(將光中繼至例如檢視者之眼睛)。此等光學子系統可用於非光瞳形成架構(諸如直接使光準直但產生所謂的枕形失真之單透鏡組態)及/或光瞳形成架構(諸如產生所謂的桶形失真以消除枕形失真之多透鏡組態)中。An artificial reality system may include various types of visual feedback mechanisms. For example, the display devices in the augmented reality system 700 and/or the virtual reality system 800 may include one or more liquid crystal displays (liquid crystal display; LCD), light emitting diodes (light emitting diode; LED) displays , micro LED displays, organic LED (organic LED; OLED) displays, digital light projection (digital light project; DLP) microdisplays, liquid crystal on silicon (LCoS) microdisplays, and/or any other suitable type of Display the screen. These artificial reality systems may include a single display screen for both eyes, or may provide a display screen for each eye, which may allow additional flexibility for zoom adjustment or for correcting the user's refractive error . Some of these artificial reality systems may also include an optical subsystem with one or more lenses (e.g., concave or convex lenses, Fresnel lenses, adjustable liquid lenses, etc.) through which the user views the display screen. These optical subsystems can be used for a variety of purposes, including collimating light (e.g. making objects appear at a greater distance than they actually are), amplifying light (e.g. making objects appear larger than they really are) and/or Or relay light (relay light to, for example, the viewer's eye). These optical subsystems can be used in non-pupil-forming architectures (such as single lens configurations that directly collimate light but produce so-called pincushion distortion) and/or pupil-forming architectures (such as producing so-called barrel distortion to eliminate the pincushion distortion). Shape distortion of the multi-lens configuration).

除了使用顯示螢幕以外或代替使用顯示螢幕,本文中所描述之一些人工實境系統亦可包括一或多個投影系統。舉例而言,擴增實境系統700及/或虛擬實境系統800中之顯示裝置可包括微型LED投影儀,其(使用例如波導)將光投影至顯示裝置中,該些顯示裝置諸如允許環境光通過之清晰的組合器透鏡。顯示裝置可將經投影光朝向使用者瞳孔折射,且可使得使用者能夠同時檢視人工實境內容及真實世界兩者。顯示裝置可使用多種不同光學構件中之任一者來實現此情形,該些光學構件包括波導構件(例如,全像、平面、繞射、偏振及/或反射波導元件)、光操控表面及元件(諸如繞射、反射及折射元件以及光柵)、耦接元件等。人工實境系統亦可經組態成具有任何其他合適類型或形式之影像投影系統,諸如用於虛擬視網膜顯示器中之視網膜投影儀。Some of the artificial reality systems described herein may also include one or more projection systems in addition to or instead of using a display screen. For example, display devices in augmented reality system 700 and/or virtual reality system 800 may include micro LED projectors that project light (using, for example, waveguides) into display devices such as those that allow ambient Clear combiner lens through which light passes. The display device can refract the projected light toward the user's pupil, and can enable the user to simultaneously view both the artificial reality content and the real world. Display devices can accomplish this using any of a variety of different optical components, including waveguide components (e.g., holographic, planar, diffractive, polarizing, and/or reflective waveguide elements), light manipulating surfaces, and elements (such as diffractive, reflective and refractive elements and gratings), coupling elements, etc. The artificial reality system may also be configured with any other suitable type or form of image projection system, such as a retinal projector used in a virtual retinal display.

本文中所描述之人工實境系統亦可包括各種類型之電腦視覺構件及子系統。舉例而言,擴增實境系統700及/或虛擬實境系統800可包括一或多個光學感測器,諸如二維(two-dimensional;2D)或3D攝影機、結構化光傳輸器及偵測器、飛行時間深度感測器、單束或掃掠雷射測距儀、3D LiDAR感測器及/或任何其他合適類型或形式的光學感測器。人工實境系統可處理來自此等感測器中之一或多者之資料,以識別使用者之位置、繪製真實世界、向使用者提供關於真實世界環境之情境及/或執行多種其他功能。The artificial reality systems described herein may also include various types of computer vision components and subsystems. For example, augmented reality system 700 and/or virtual reality system 800 may include one or more optical sensors, such as two-dimensional (2D) or 3D cameras, structured light transmitters, and detectors. sensors, time-of-flight depth sensors, single-beam or swept laser rangefinders, 3D LiDAR sensors, and/or any other suitable type or form of optical sensors. An artificial reality system may process data from one or more of these sensors to identify a user's location, map the real world, provide the user with context about the real world environment, and/or perform a variety of other functions.

本文中所描述之人工實境系統亦可包括一或多個輸入及/或輸出音訊換能器。輸出音訊換能器可包括音圈揚聲器、帶式揚聲器、靜電揚聲器、壓電揚聲器、骨傳導換能器、軟骨傳導換能器、耳屏振動換能器及/或任何其他適合類型或形式的音訊換能器。類似地,輸入音訊換能器可包括電容式麥克風、動圈麥克風、帶式麥克風及/或任何其他類型或形式之輸入換能器。在一些具體實例中,單個換能器可用於音訊輸入及音訊輸出兩者。The artificial reality systems described herein may also include one or more input and/or output audio transducers. Output audio transducers may include voice coil speakers, ribbon speakers, electrostatic speakers, piezoelectric speakers, bone conduction transducers, cartilage conduction transducers, tragus vibration transducers, and/or any other suitable type or form of Audio transducer. Similarly, input audio transducers may include condenser microphones, dynamic microphones, ribbon microphones, and/or any other type or form of input transducers. In some embodiments, a single transducer can be used for both audio input and audio output.

在一些具體實例中,本文中所描述之人工實境系統亦可包括觸感(亦即,觸覺)回饋系統,該觸感回饋系統可併入至頭飾、手套、連體套裝、手持式控制器、環境裝置(例如,座椅、地墊等)及/或任何其他類型之裝置或系統中。觸覺回饋系統可提供各種類型之皮膚回饋,包括振動、力、牽引力、紋理及/或溫度。觸覺回饋系統亦可提供各種類型之動覺回饋,諸如運動及順應性。觸覺回饋可使用馬達、壓電致動器、流體系統及/或各種其他類型的回饋機構來實施。觸覺回饋系統可獨立於其他人工實境裝置、在其他人工實境裝置內及/或結合其他人工實境裝置來實施。In some embodiments, the artificial reality systems described herein can also include haptic (i.e., sense of touch) feedback systems that can be incorporated into headgear, gloves, one-piece suits, handheld controllers , environmental devices (eg, seats, floor mats, etc.) and/or any other type of device or system. Haptic feedback systems can provide various types of skin feedback, including vibration, force, traction, texture and/or temperature. Haptic feedback systems can also provide various types of kinesthetic feedback, such as motion and compliance. Haptic feedback may be implemented using motors, piezoelectric actuators, fluid systems, and/or various other types of feedback mechanisms. The haptic feedback system can be implemented independently of, within, and/or in conjunction with other VR devices.

藉由提供觸覺感覺、可聽內容及/或視覺內容,人工實境系統可在多種情境及環境中產生完整虛擬體驗或增強使用者之真實世界體驗。舉例而言,人工實境系統可輔助或擴展使用者在特定環境內之感知、記憶或認知。一些系統可增強使用者與真實世界中之其他人的互動,或可實現與虛擬世界中之其他人的更具沉浸式之互動。人工實境系統亦可用於教育目的(例如,用於在學校、醫院、政府組織、軍事組織、企業等中進行教學或訓練)、娛樂目的(例如,用於玩視訊遊戲、聽音樂、觀看視訊內容等)、及/或用於可存取性目的(例如,作為助聽器、助視器等)。本文中所揭示之具體實例可在此等情境及環境中之一或多者中及/或在其他情境及環境中實現或增強使用者之人工實境體驗。By providing tactile sensations, audible content, and/or visual content, an artificial reality system can create a complete virtual experience or enhance a user's real-world experience in a variety of situations and environments. For example, an artificial reality system can assist or extend a user's perception, memory or cognition within a specific environment. Some systems may enhance a user's interaction with others in the real world, or may enable more immersive interactions with others in a virtual world. Artificial reality systems may also be used for educational purposes (e.g., for teaching or training in schools, hospitals, government organizations, military organizations, businesses, etc.), entertainment purposes (e.g., for playing video games, listening to music, watching video content, etc.), and/or for accessibility purposes (e.g., as hearing aids, vision aids, etc.). Embodiments disclosed herein may enable or enhance a user's artificial reality experience in one or more of these contexts and environments and/or in other contexts and environments.

本文中所描述及/或說明的過程參數及步驟序列僅作為實例給出且可按需要變化。舉例而言,雖然本文中所說明及/或描述之步驟可以特定次序展示或論述,但此等步驟未必需要以所說明或論述之次序執行。本文中所描述及/或說明的各種例示性方法亦可省略本文中所描述或說明的步驟中之一或多者,或包括除了所揭示那些步驟之外的額外步驟。Process parameters and step sequences described and/or illustrated herein are given as examples only and may vary as desired. For example, although steps illustrated and/or described herein may be shown or discussed in a particular order, the steps do not necessarily need to be performed in the order illustrated or discussed. The various exemplary methods described and/or illustrated herein may also omit one or more of the steps described or illustrated herein, or include additional steps in addition to those disclosed.

先前描述已經提供以使所屬技術領域中具有通常知識者能夠最佳地利用本文中所揭示之例示性具體實例的各種態樣。此例示性描述並不意欲為詳盡的或限於所揭示之任何精確形式。在不脫離本發明之精神及範圍之情況下,許多修改及變化係可能的。本文所揭示之具體實例在全部方面應被視為例示性而非限制性的。在判定本發明之範圍時應參考所附任何申請專利範圍及其均等物。The foregoing description has been provided to enable those of ordinary skill in the art to best utilize the illustrative embodiments disclosed herein in various ways. This illustrative description is not intended to be exhaustive or to be limited to any precise form disclosed. Many modifications and variations are possible without departing from the spirit and scope of the invention. The specific examples disclosed herein are to be considered in all respects as illustrative rather than restrictive. In determining the scope of the invention, reference should be made to any appended claims and their equivalents.

除非另外指出,否則如說明書及/或申請專利範圍中所使用,術語「連接至」及「耦接至」(及其衍生詞)被解釋為准許直接及間接(亦即,經由其他元件或構件)連接兩者。另外,如說明書及/或申請專利範圍中所使用之術語「一(a或an)」應被視為意謂「中之至少一者」。最後,為易於使用,如說明書及/或申請專利範圍中所使用之術語「包括」及「具有」(及其衍生詞)可與字組「包含」互換且具有與其相同之含義。Unless otherwise indicated, as used in the specification and/or claims, the terms "connected to" and "coupled to" (and their derivatives) are to be interpreted as allowing direct and indirect (that is, via other elements or components ) to connect the two. In addition, the term "one (a or an)" as used in the specification and/or claims shall be deemed to mean "at least one of them". Finally, for ease of use, the terms "comprising" and "having" (and their derivatives) as used in the specification and/or claims are interchangeable with the word "comprising" and have the same meanings.

100:設備 102:錐光鏡 104:可變補償元件 106:控制器 202:前端透鏡 204:後端透鏡 206:孔徑光闌 210:圓形偏光器 304:相位板定位機構 400:系統 402:顯示裝置 404:矯正透鏡 406:影像 408:影像感測器 410:成像攝影機裝置 412:光源 414:光學托盤 416:光學路徑 502(1):特徵 502(2):特徵 502(3):特徵 502(4):特徵 502(5):特徵 502(6):特徵 502(7):特徵 502(8):特徵 502(9):特徵 502(10):特徵 502(11):特徵 502(12):特徵 502(13):特徵 502(14):特徵 502(15):特徵 502(16):特徵 502(17):特徵 502(18):特徵 502(19):特徵 502(20):特徵 502(21):特徵 502(22):特徵 502(23):特徵 502(24):特徵 502(25):特徵 502(26):特徵 502(27):特徵 502(28):特徵 502(29):特徵 502(30):特徵 502(31):特徵 502(32):特徵 600:方法 610:步驟 620:步驟 630:步驟 640:步驟 700:擴增實境系統 702:眼部穿戴物 705:頸帶 710:框架 715(A):左側顯示裝置 715(B):右側顯示裝置 720(A):聲學換能器 720(B):聲學換能器 720(C):聲學換能器 720(D):聲學換能器 720(E):聲學換能器 720(F):聲學換能器 720(G):聲學換能器 720(H):聲學換能器 720(I):聲學換能器 720(J):聲學換能器 725:控制器 730:有線連接 735:電源 740:感測器 750:相關聯控制器 800:虛擬實境系統 802:前部剛體 804:帶 806(A):輸出音訊換能器 806(B):輸出音訊換能器 100: Equipment 102: conoscopic mirror 104: variable compensation element 106: Controller 202: front lens 204: rear end lens 206: Aperture diaphragm 210: circular polarizer 304: Phase plate positioning mechanism 400: system 402: display device 404: Corrective lens 406: Image 408: Image sensor 410: Imaging camera device 412: light source 414: optical tray 416: Optical path 502(1): Features 502(2): Features 502(3): Features 502(4): Features 502(5): Features 502(6): Features 502(7): Features 502(8): Features 502(9): Features 502(10): Features 502(11): Characteristics 502(12): Features 502(13): Features 502(14): Features 502(15): Features 502(16): Features 502(17): Features 502(18): Features 502(19): Characteristics 502(20): Features 502(21): Features 502(22): Features 502(23): Features 502(24): Features 502(25): Features 502(26): Features 502(27): Features 502(28): Features 502(29): Features 502(30): Features 502(31): Features 502(32): Features 600: method 610: Step 620: Step 630: step 640: step 700: Augmented Reality System 702: Eyewear 705: neck strap 710: frame 715(A): left display device 715(B): Display device on the right 720(A): Acoustic transducers 720(B): Acoustic Transducers 720(C): Acoustic transducers 720(D): Acoustic Transducers 720(E): Acoustic Transducers 720(F): Acoustic transducer 720(G): Acoustic Transducer 720(H): Acoustic Transducer 720(I): Acoustic transducers 720(J): Acoustic Transducer 725: Controller 730: wired connection 735: power supply 740: sensor 750:Associated controller 800:Virtual Reality System 802: Front rigid body 804: with 806(A): Output audio transducer 806(B): Output audio transducer

隨附圖式說明數個例示性具體實例且為本說明書之部分。圖式連同以下描述一起展現並解釋本發明之各種原理。The accompanying drawings illustrate several illustrative embodiments and are a part of this specification. Together with the description below, the drawings illustrate and explain the various principles of the invention.

[圖1]為根據本發明之一或多個具體實例的用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性設備之圖示。[ FIG. 1 ] is a diagram of an exemplary apparatus for selectively compensating a corrective lens applied to a display device during testing, according to one or more embodiments of the present invention.

[圖2]為根據本發明之一或多個具體實例的併入於設備中之例示性錐光鏡的圖示,該設備有助於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡。[FIG. 2] Is a diagram of an exemplary conoscopic lens incorporated into an apparatus that facilitates selectively compensating for corrective lenses applied to a display device during testing, in accordance with one or more embodiments of the present invention .

[圖3]為根據本發明之一或多個具體實例的用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性設備之圖示。[ FIG. 3 ] is a diagram of an exemplary apparatus for selectively compensating a corrective lens applied to a display device during testing, according to one or more embodiments of the present invention.

[圖4]為根據本發明之一或多個具體實例的用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性系統之圖示。[ FIG. 4 ] is a diagram of an exemplary system for selectively compensating a corrective lens applied to a display device during testing, according to one or more embodiments of the present invention.

[圖5]為根據本發明之一或多個具體實例的例示性可變補償元件之圖示,該可變補償元件包括能夠應用於錐光鏡之各種可選擇特徵。[ FIG. 5 ] is a diagram of an exemplary variable compensating element including various optional features that can be applied to conoscopic optics, according to one or more embodiments of the present invention.

[圖6]為根據本發明之一或多個具體實例的用於選擇性地補償在測試期間施加至顯示裝置之矯正透鏡的例示性方法之流程圖。[ FIG. 6 ] is a flowchart of an exemplary method for selectively compensating a corrective lens applied to a display device during testing, according to one or more embodiments of the present invention.

[圖7]為可結合本發明之具體實例使用的例示性擴增實境眼鏡之圖示。[ FIG. 7 ] is a diagram of exemplary augmented reality glasses that may be used in conjunction with embodiments of the present invention.

[圖8]為可結合本發明之具體實例使用的例示性虛擬實境頭戴組之圖示。[ FIG. 8 ] is a diagram of an exemplary virtual reality headset that may be used in conjunction with embodiments of the present invention.

雖然本文中所描述的例示性具體實例易受各種修改及替代形式之影響,但在圖式中已以舉例方式顯示了特定具體實例,且將在本文中對其進行詳細描述。然而,本文中所描述之例示性具體實例並不意欲限於所揭示之特定形式。實情為,本發明涵蓋落入本發明內之所有修改、組合、均等物及替代例。While the illustrative embodiments described herein are susceptible to various modifications and alternative forms, certain embodiments have been shown by way of example in the drawings and will be described in detail herein. However, the illustrative embodiments described herein are not intended to be limited to the particular forms disclosed. Rather, the present invention covers all modifications, combinations, equivalents, and alternatives falling within the scope of the present invention.

100:設備 100: Equipment

102:錐光鏡 102: conoscopic mirror

104:可變補償元件 104: variable compensation element

106:控制器 106: Controller

Claims (20)

一種設備,其包含: 一錐光鏡,其經組態以經由一矯正透鏡接收由一顯示裝置發射之一影像; 一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及 一控制器,其耦接至該可變補償元件,其中該控制器: 接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之該光學效應; 至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及 使該可變補償元件之該特徵應用於該影像。 A device comprising: a conoscope configured to receive an image emitted by a display device through a corrective lens; a variable compensating element coupled to the conoscopic lens, wherein the variable compensating element is capable of selectively modifying the image emitted by the display device to compensate for an optical effect imparted to the image by the corrective lens; and a controller coupled to the variable compensation element, wherein the controller: receiving a compensation parameter representing the optical effect imparted by the corrective lens to the image; selecting a feature of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and Applying the feature of the variable compensation element to the image. 如請求項1之設備,其進一步包含耦接至該可變補償元件之一影像感測器,其中: 在該影像藉由該可變補償元件之該特徵進行補償之後,該影像感測器經組態以感測該影像;且 該控制器: 當該影像被該影像感測器感測到時,自該影像感測器接收表示該影像之資料;及 至少部分地基於表示該影像之該資料而判定該顯示裝置之一顯示參數。 The apparatus of claim 1, further comprising an image sensor coupled to the variable compensation element, wherein: the image sensor is configured to sense the image after the image is compensated by the feature of the variable compensation element; and The controller: when the image is sensed by the image sensor, receiving data representing the image from the image sensor; and A display parameter of the display device is determined based at least in part on the data representing the image. 如請求項2之設備,其中該顯示參數包含以下各者中之至少一者; 該顯示裝置之一調變傳送函數; 該顯示裝置之一色彩均勻性量測; 該顯示裝置之一解析度; 該顯示裝置之一清晰度量測;或 該顯示裝置之一亮度均勻性量測。 The device according to claim 2, wherein the display parameters include at least one of the following; a modulation transfer function of one of the display devices; A color uniformity measurement of the display device; a resolution of the display device; a measure of the clarity of the display device; or A brightness uniformity measurement of the display device. 如請求項2之設備,其中: 該可變補償元件包含一相位板陣列,該相位板陣列包括複數個可選擇特徵;且 該控制器選擇包括於該相位板陣列上之該些可選擇特徵中之一者,以供在該影像到達該影像感測器之前應用於該影像上。 Such as the equipment of claim 2, wherein: the variable compensation element includes a phase plate array including a plurality of selectable features; and The controller selects one of the selectable features included on the phase plate array for application to the image before the image reaches the image sensor. 如請求項4之設備,其中包括於該相位板陣列上之該些可選擇特徵包含一組盤查拉特納姆-貝瑞相位光學元件中之至少一者。The apparatus of claim 4, wherein the selectable features included on the phase plate array comprise at least one of a set of interlocking Ratnam-Berry phase optical elements. 如請求項4之設備,其進一步包含一相位板定位機構,該相位板定位機構通信耦接至該控制器且經組態以移動該相位板陣列;且 其中該控制器引導該相位板定位機構將該相位板陣列移動至一位置,該位置使得該些可選擇特徵中之該者在該影像通過該錐光鏡時應用於該影像。 The apparatus of claim 4, further comprising a phase plate positioning mechanism communicatively coupled to the controller and configured to move the phase plate array; and Wherein the controller directs the phase plate positioning mechanism to move the phase plate array to a position such that the one of the selectable features is applied to the image as it passes through the conoscope. 如請求項6之設備,其中: 該相位板定位機構包含一或多個致動器; 該錐光鏡包含定位於該影像之一光學路徑中的一光學托盤;且 該相位板定位機構與該些致動器接合以相對於該光學托盤移動該相位板陣列,使得該些可選擇特徵中之該者在該影像橫穿該錐光鏡內之該光學路徑時應用於該影像。 Such as the equipment of claim 6, wherein: The phase plate positioning mechanism includes one or more actuators; the conoscope includes an optical tray positioned in an optical path of the image; and The phase plate positioning mechanism engages the actuators to move the phase plate array relative to the optical tray such that the one of the selectable features is applied as the image traverses the optical path within the conoscope on the image. 如請求項2之設備,其中該控制器將表示該顯示裝置之該顯示參數提供至一使用者介面或一計算裝置以供評估。The apparatus of claim 2, wherein the controller provides the display parameter representing the display device to a user interface or a computing device for evaluation. 如請求項1之設備,其中該補償參數包含以下各者中之至少一者; 該矯正透鏡之一球面度數; 該矯正透鏡之一柱面度數;或 該矯正透鏡之一柱面軸。 The device as claimed in item 1, wherein the compensation parameter includes at least one of the following; the spherical power of one of the corrective lenses; a cylindrical power of the corrective lens; or A cylindrical axis of the correcting lens. 如請求項1之設備,其中該錐光鏡包含: 一光收集透鏡,其經組態以收集光,該光表示藉由該顯示裝置發射之該影像;及 一影像形成透鏡,其經組態以自該光形成該影像以供呈現於影像感測器上。 The device as in claim 1, wherein the conoscope includes: a light collection lens configured to collect light representing the image emitted by the display device; and An image forming lens configured to form the image from the light for presentation on the image sensor. 如請求項1之設備,其中當該光被該顯示裝置在一視角範圍內發射時,該光收集透鏡收集該光。The apparatus of claim 1, wherein the light collection lens collects the light when the light is emitted by the display device within a viewing angle range. 一種系統,其包含: 一顯示裝置,其包括一矯正透鏡;及 一成像攝影機裝置,其光學耦接至該顯示裝置,其中該成像攝影機裝置包含: 一錐光鏡,其經組態以經由該矯正透鏡接收由該顯示裝置發射之一影像; 一可變補償元件,其耦接至該錐光鏡,其中該可變補償元件能夠選擇性地修改由該顯示裝置發射之該影像,以補償該矯正透鏡對該影像賦予之一光學效應;及 一控制器,其耦接至該可變補償元件,其中該控制器: 接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之該光學效應; 至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及 使該可變補償元件之該特徵應用於該影像。 A system comprising: a display device including a corrective lens; and An imaging camera device, which is optically coupled to the display device, wherein the imaging camera device comprises: a conoscope configured to receive an image emitted by the display device through the corrective lens; a variable compensating element coupled to the conoscopic lens, wherein the variable compensating element is capable of selectively modifying the image emitted by the display device to compensate for an optical effect imparted to the image by the corrective lens; and a controller coupled to the variable compensation element, wherein the controller: receiving a compensation parameter representing the optical effect imparted by the corrective lens to the image; selecting a feature of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and Applying the feature of the variable compensation element to the image. 如請求項12之系統,其中: 該成像攝影機裝置包含耦接至該可變補償元件之一影像感測器; 在該影像藉由該可變補償元件之該特徵進行補償之後,該影像感測器經組態以感測該影像;且 該控制器: 當該影像被該影像感測器感測到時,自該影像感測器接收表示該影像之資料;及 至少部分地基於表示該影像之該資料而判定該顯示裝置之一顯示參數。 The system of claim 12, wherein: the imaging camera device includes an image sensor coupled to the variable compensation element; the image sensor is configured to sense the image after the image is compensated by the feature of the variable compensation element; and The controller: when the image is sensed by the image sensor, receiving data representing the image from the image sensor; and A display parameter of the display device is determined based at least in part on the data representing the image. 如請求項13之系統,其中該顯示參數包含以下各者中之至少一者; 該顯示裝置之一調變傳送函數; 該顯示裝置之一色彩均勻性量測; 該顯示裝置之一解析度; 該顯示裝置之一清晰度量測;或 該顯示裝置之一亮度均勻性量測。 The system according to claim 13, wherein the display parameters include at least one of the following; a modulation transfer function of one of the display devices; A color uniformity measurement of the display device; a resolution of the display device; a measure of the clarity of the display device; or A brightness uniformity measurement of the display device. 如請求項13之系統,其中: 該可變補償元件包含一相位板陣列,該相位板陣列包括複數個可選擇特徵;且 該控制器選擇包括於該相位板陣列上之該些可選擇特徵中之一者,以供在該影像到達該影像感測器之前應用於該影像上。 The system of claim 13, wherein: the variable compensation element includes a phase plate array including a plurality of selectable features; and The controller selects one of the selectable features included on the phase plate array for application to the image before the image reaches the image sensor. 如請求項15之系統,其中包括於該相位板陣列上之該些可選擇特徵包含一組盤查拉特納姆-貝瑞相位光學元件中之至少一者。The system of claim 15, wherein the selectable features included on the phase plate array comprise at least one of a set of interrogated Ratnam-Berry phase optical elements. 如請求項15之系統,其進一步包含一相位板定位機構,該相位板定位機構通信耦接至該控制器且經組態以移動該相位板陣列;且 其中該控制器引導該相位板定位機構將該相位板陣列移動至一位置,該位置使得該些可選擇特徵中之該者在該影像通過該錐光鏡時應用於該影像。 The system of claim 15, further comprising a phase plate positioning mechanism communicatively coupled to the controller and configured to move the phase plate array; and Wherein the controller directs the phase plate positioning mechanism to move the phase plate array to a position such that the one of the selectable features is applied to the image as it passes through the conoscope. 如請求項17之系統,其中: 該相位板定位機構包含一或多個致動器; 該錐光鏡包含定位於該影像之一光學路徑中的一光學托盤;且 該相位板定位機構與該些致動器接合以相對於該光學托盤移動該相位板陣列,使得該些可選擇特徵中之該者在該影像橫穿該錐光鏡內之該光學路徑時應用於該影像。 The system of claim 17, wherein: The phase plate positioning mechanism includes one or more actuators; the conoscope includes an optical tray positioned in an optical path of the image; and The phase plate positioning mechanism engages the actuators to move the phase plate array relative to the optical tray such that the one of the selectable features is applied as the image traverses the optical path within the conoscope on the image. 如請求項12之系統,其中該控制器將表示該顯示裝置之顯示參數提供一使用者介面或一計算裝置以供評估。The system according to claim 12, wherein the controller provides a user interface or a computing device with display parameters representing the display device for evaluation. 一種方法,其包含: 將一顯示裝置光學耦接至一錐光鏡,該錐光鏡經組態以經由一矯正透鏡接收由該顯示裝置發射之一影像; 藉由耦接至定位於該錐光鏡之一光學路徑中的一可變補償元件之一控制器接收一補償參數,該補償參數表示該矯正透鏡對該影像賦予之至少一個光學效應; 藉由該控制器至少部分地基於該補償參數而選擇補償該光學效應的該可變補償元件之一特徵;及 藉由該控制器使該可變補償元件之該特徵應用於該錐光鏡中之該影像。 A method comprising: optically coupling a display device to a conoscope configured to receive an image emitted by the display device through a corrective lens; receiving a compensation parameter indicative of at least one optical effect imparted by the corrective lens to the image via a controller coupled to a variable compensation element positioned in an optical path of the conoscope; selecting, by the controller, a feature of the variable compensation element that compensates for the optical effect based at least in part on the compensation parameter; and The characteristic of the variable compensation element is applied to the image in the conoscopic mirror by the controller.
TW111121066A 2021-06-18 2022-06-07 Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing TW202314323A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163212260P 2021-06-18 2021-06-18
US63/212,260 2021-06-18
US17/721,760 US20220404608A1 (en) 2021-06-18 2022-04-15 Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing
US17/721,760 2022-04-15

Publications (1)

Publication Number Publication Date
TW202314323A true TW202314323A (en) 2023-04-01

Family

ID=82558127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121066A TW202314323A (en) 2021-06-18 2022-06-07 Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing

Country Status (3)

Country Link
EP (1) EP4356094A1 (en)
TW (1) TW202314323A (en)
WO (1) WO2022266380A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890767B1 (en) * 2017-09-27 2021-01-12 United Services Automobile Association (Usaa) System and method for automatic vision correction in near-to-eye displays
KR102467882B1 (en) * 2017-11-28 2022-11-16 엘지디스플레이 주식회사 Personal immersion display device and driving method thereof

Also Published As

Publication number Publication date
EP4356094A1 (en) 2024-04-24
WO2022266380A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6923552B2 (en) Augmented reality systems and methods with varifocal lens elements
CN109922707B (en) Method for determining an eye parameter of a user of a display device
US11360313B1 (en) System and method for automatic vision correction in near-to-eye displays
TW202307823A (en) Ultrasound devices for making eye measurements
US20220404608A1 (en) Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing
TW202317771A (en) Compact imaging optics using spatially located, free form optical components for distortion compensation and image clarity enhancement
TW202315423A (en) Systems and methods for wireless charging using a speaker coil
TW202314323A (en) Apparatus, system, and method for selectively compensating for corrective lenses applied to display devices during testing
CN117501084A (en) Apparatus, system, and method for selectively compensating corrective lenses applied to a display device during testing
CN114303118A (en) Display panel uniformity calibration system
US20240094552A1 (en) Geometrical waveguide with partial-coverage beam splitters
US11947125B2 (en) Mounting mechanisms for optical assemblies
US20240036328A1 (en) Display system including curved diffuser
EP4345514A1 (en) Stacked gradient-index liquid crystal lens assembly
US20230341812A1 (en) Multi-layered polarization volume hologram
US20230418070A1 (en) Optical assemblies, head-mounted displays, and related methods
EP4310567A1 (en) Systems and methods for alignment of optical components
US20240012255A1 (en) Optical assemblies, head-mounted displays, and related methods
US20240012449A1 (en) Systems and methods for alignment of optical components
US20230411932A1 (en) Tunable laser array
EP4336246A1 (en) Apparatuses, systems, and methods for aligning display projector assemblies included in head-mounted displays
US11613090B1 (en) Lens casting with deformable molds
TW202403388A (en) Systems and methods for alignment of optical components
CN117784493A (en) Stacked graded index liquid crystal lens assembly
TW202409646A (en) Geometrical waveguide with partial-coverage beam splitters