TW202314314A - 光學成像鏡頭 - Google Patents

光學成像鏡頭 Download PDF

Info

Publication number
TW202314314A
TW202314314A TW110138495A TW110138495A TW202314314A TW 202314314 A TW202314314 A TW 202314314A TW 110138495 A TW110138495 A TW 110138495A TW 110138495 A TW110138495 A TW 110138495A TW 202314314 A TW202314314 A TW 202314314A
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical
optical imaging
imaging lens
Prior art date
Application number
TW110138495A
Other languages
English (en)
Other versions
TWI766813B (zh
Inventor
陳雁斌
李建鵬
陳鋒
Original Assignee
大陸商玉晶光電(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商玉晶光電(廈門)有限公司 filed Critical 大陸商玉晶光電(廈門)有限公司
Application granted granted Critical
Publication of TWI766813B publication Critical patent/TWI766813B/zh
Publication of TW202314314A publication Critical patent/TW202314314A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一種光學成像鏡頭,包含第一透鏡到第三透鏡,各透鏡都分別具有物側面以及像側面,第一透鏡的像側面的一圓周區域為凹面,第二透鏡具有負屈光率,第三透鏡的物側面的一光軸區域為凸面,且像側面的一光軸區域為凹面,其中,光學成像鏡頭的透鏡只有三片,且滿足TL/(Gavg+BFL)≦1.400以及0.700≦V1/V2≦1.150的條件。

Description

光學成像鏡頭
本發明大致上關於一種光學成像鏡頭。具體而言,本發明特別是針對一種主要用於拍攝影像及錄影等攝影電子裝置之光學成像鏡頭,尤其在拍攝景深或微距時可以有較佳的成像效果,且可應用於例如手機、相機、平板電腦、個人數位助理(Personal Digital Assistant,PDA)或頭戴式顯示器(AR、VR、MR)等。
消費性電子產品的規格日新月異,不僅持續追求輕薄短小,光學鏡頭等電子產品的關鍵零組件的規格也持續提升,以符合消費者的需求。而除了光學鏡頭的成像品質與體積外,提升成像鏡頭的視場角度也日趨重要。另外,不同光圈大小的成像鏡頭相互搭配以達到拍攝景深或微距效果,更逐漸成為市場主流需求。因此在光學鏡頭設計領域中,除了追求鏡頭體積小型化,同時還必須兼顧成像品質及性能。
然而,光學鏡頭設計並非單純將成像品質佳的鏡頭等比例縮小就能製作出兼具成像品質與小型化的光學鏡頭,設計過程不僅牽涉到材料特性,還必須考量到製作、組裝良率等生產面的實際問題。
因此,小型化鏡頭的技術難度明顯高出傳統鏡頭,如何製作出符合消費性電子產品需求的光學鏡頭,並持續提升其成像品質,長久以來一直是本領域中持續精進的目標。
於是,本發明的各實施例提供一個提供小體積、大視場角且成像品質優良的光學成像鏡頭。本發明的光學成像鏡頭從物側至像側,在光軸上依序安排有第一透鏡、第二透鏡以及第三透鏡。第一透鏡、第二透鏡以及第三透鏡,都分別具有朝向物側且使成像光線通過的物側面,以及朝向像側且使成像光線通過的像側面。
在本發明的一實施例中,該第一透鏡的該像側面的一圓周區域為凹面,該第二透鏡具有負屈光率,該第三透鏡的該物側面的一光軸區域為凸面,且該像側面的一光軸區域為凹面,其中,該光學成像鏡頭的透鏡只有三片,且滿足TL/(Gavg+BFL)≦1.400以及0.700≦V1/V2≦1.150的條件。
在本發明的另一實施例中,該第一透鏡的該像側面的一圓周區域為凹面,該第二透鏡具有負屈光率,且該像側面的一圓周區域為凸面,該第三透鏡的該像側面的一光軸區域為凹面,其中,該光學成像鏡頭的透鏡只有三片,且滿足TL/(Gavg+BFL)≦1.400以及1.800≦V1/V2+V2/V3≦2.200的條件。
在本發明的另一實施例中,該第一透鏡的該像側面的一圓周區域為凹面,該第二透鏡的該像側面的一圓周區域為凸面,該第三透鏡的該像側面的一光軸區域為凹面,且該像側面的一圓周區域為凸面,其中,該光學成像鏡頭的透鏡只有三片,且滿足TL/(Gavg+BFL)≦1.400、1.800≦V1/V2+V2/V3≦2.200以及G23/G12≧0.500的條件。
在本發明的光學成像鏡頭中,實施例還可以進一步選擇性地滿足以下條件:
Fno/(T1+G12+T2)≧2.550毫米 -1
Fno/(T2+G23+T3)≧2.350毫米 -1
(TL+ALT)/(AAG+BFL)≦1.700;
TTL/AAG≦4.500;
(T1+T3)/T2≦3.000;
EFL/Gavg≦8.200;
(TTL+EFL)/Fno≦2.000毫米;
HFOV/Fno≧14.000 度;
(TL+EFL)/BFL≦4.000;
AAG/Tavg≧1.500;
TTL/T1≧7.500;
ALT/Gavg≦3.800;
Fno/(T1+T3)≧3.700毫米 -1
TTL/ImgH≦1.450;
EFL/BFL≦2.400;
AAG/T2≦2.250;以及
TTL/T3≧6.400。
其中,T1定義為第一透鏡在光軸上的厚度;T2定義為第二透鏡在光軸上的厚度;T3定義為第三透鏡在光軸上的厚度;G12定義為第一透鏡與第二透鏡在光軸上的空氣間隙;G23定義為第二透鏡與第三透鏡在光軸上的空氣間隙;ALT定義為第一透鏡到第三透鏡在光軸上的三個透鏡之厚度總和;TL定義為第一透鏡的物側面到第三透鏡的像側面在光軸上的距離;TTL定義為第一透鏡的物側面到成像面在光軸上的距離;BFL定義為第三透鏡的像側面至成像面在光軸上的距離;AAG定義為第一透鏡到第三透鏡在光軸上的兩個空氣間隙總和;EFL定義為光學成像鏡頭的有效焦距;ImgH定義為光學成像鏡頭的像高;Fno定義為光學成像鏡頭的光圈值。
此外,Gavg 定義為該第一透鏡至該第三透鏡在該光軸上的兩個空氣間隙的平均值,即G12、G23的平均值;Tavg定義為該第一透鏡至該第三透鏡在該光軸上的三個透鏡厚度的平均值,即T1、T2、T3的平均值。
另外,V1為第一透鏡的阿貝係數;V2為第二透鏡的阿貝係數;V3為第三透鏡的阿貝係數。
本說明書和申請專利範圍中使用的用語「光軸區域」、「圓周區域」、「凹面」和「凸面」應基於本說明書中列出的定義來解釋。
本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一個或多個中繼區域,該些區域的說明將於下方詳細闡述。
圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,透鏡100表面可能不具有轉換點或具有至少一轉換點,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。
當透鏡表面具有至少一轉換點,定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的轉換點(第N轉換點)徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。  當透鏡表面不具有轉換點,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0%~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50%~100%為圓周區域。
當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。
除此之外,參見圖1,透鏡100還可包含一由光學邊界OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。
參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。
另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。
圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。
圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。
一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。
圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。
定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。
圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0%~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50%~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。
如圖6所示,本發明光學成像鏡頭1,從放置物體(圖未示)的物側A1至成像的像側A2,沿著光軸(optical axis)I,主要由三片透鏡所構成,依序包含有光圈2、第一透鏡10、第二透鏡20、第三透鏡30濾光片3以及成像面(image plane)4。一般來說,第一透鏡10、第二透鏡20以及第三透鏡30都可以是由透明的塑膠材質所製成,但本發明不以此為限。各透鏡都有適當的屈光率。在本發明光學成像鏡頭1中,具有屈光率的透鏡總共只有第一透鏡10、第二透鏡20、第三透鏡30這三片透鏡。光軸I為整個光學成像鏡頭1的光軸,所以每個透鏡的光軸和光學成像鏡頭1的光軸都是相同的。
此外,本光學成像鏡頭1的光圈(aperture stop)2設置於適當之位置。在圖6中,光圈2是設置在物側面A1與第一透鏡10之間。當由位於物側A1之待拍攝物(圖未示)所發出的光線(圖未示)進入本發明光學成像鏡頭1時,即會依序經由光圈2、第一透鏡10、第二透鏡20、第三透鏡30與濾光片3之後,會在像側A2的成像面4上聚焦而形成清晰的影像。在本發明各實施例中,濾光片3是設於第三透鏡30與成像面4之間,其可以是具有各種合適功能之濾鏡,例如: 紅外光濾除濾光片(Infrared light cut-off filter),其用以避免紅外光傳遞至成像面4而影響成像品質。
本發明光學成像鏡頭1中之各個透鏡,都分別具有朝向物側A1且使成像光線通過的物側面,與朝向像側A2且使成像光線通過的像側面。另外,本發明光學成像鏡頭1中之各個透鏡,亦都分別具有光軸區域與圓周區域。例如,第一透鏡10具有物側面11與像側面12;第二透鏡20具有物側面21與像側面22;第三透鏡30具有物側面31與像側面32。
本發明光學成像鏡頭1中之各個透鏡,還都分別具有位在光軸I上的厚度T。例如,第一透鏡10具有第一透鏡厚度T1、第二透鏡20具有第二透鏡厚度T2、第三透鏡30具有第三透鏡厚度T3。所以,本發明光學成像鏡頭1中各透鏡的厚度在光軸I上的總和稱為ALT。也就是,ALT=T1+T2+T3。
另外,在本發明光學成像鏡頭1中,在各個透鏡之間又具有位在光軸I上的空氣間隙(air gap)。例如,第一透鏡10與第二透鏡20的空氣間隙稱為G12、第二透鏡20與第三透鏡30的空氣間隙稱為G23。所以,從第一透鏡10到第三透鏡30,位於光軸I上的兩個空氣間隙之總和即稱為AAG。亦即,AAG = G12+G23。
另外,第一透鏡10的物側面11到成像面4在光軸I上的距離,為光學成像鏡頭1的系統長度TTL。光學成像鏡頭1的有效焦距為EFL、第一透鏡10的物側面11到第三透鏡30的像側面32在光軸I上的距離為TL。HFOV為光學成像鏡頭1的半視角或稱作半視場角,即最大視場角(Field of View)的一半、ImgH (image height)為光學成像鏡頭1的像高、Fno為光學成像鏡頭1的光圈值。
當安排濾光片3介於第三透鏡30和成像面4之間時,G3F代表第三透鏡30與濾光片3在光軸I上的空氣間隙、TF代表濾光片3在光軸I上的厚度、GFP代表濾光片3與成像面4在光軸I上的空氣間隙、BFL為光學成像鏡頭 1的後焦距,即第三透鏡30的像側面32與成像面4在光軸I上的距離,即BFL=G3F+TF+GFP。
另外,再定義:f1為第一透鏡10的焦距;f2為第二透鏡20的焦距;f3為第三透鏡30的焦距;n1為第一透鏡10的折射率;n2為第二透鏡20的折射率;n3為第三透鏡30的折射率;V1為第一透鏡10的阿貝係數;V2為第二透鏡20的阿貝係數;V3為第三透鏡30的阿貝係數。
本發明中另外定義:Tavg為第一透鏡10至第三透鏡30在光軸I上的三個透鏡厚度的平均值,即T1、T2、T3的平均值;Gvag定義為第一透鏡10至第三透鏡30在光軸I上的兩個空氣間隙的平均值,即G12、G23的平均值;Tmax為第一透鏡10至第三透鏡30在光軸I上的三個透鏡厚度的最大值,即T1、T2、T3的最大值;Tmin為第一透鏡10至第三透鏡30在光軸I上的三個透鏡厚度的最小值,即T1、T2、T3的最小值。
第一實施例
請參閱圖6,例示本發明光學成像鏡頭1的第一實施例。第一實施例在成像面4上的縱向球差(longitudinal spherical aberration)請參考圖7A、弧矢(sagittal)方向的場曲(field curvature)像差請參考圖7B、子午(tangential)方向的場曲像差請參考圖7C、以及畸變像差(distortion aberration)請參考圖7D。所有實施例中各球差圖之Y軸代表視場,其最高點均為1.0,實施例中各像差圖及畸變圖之Y軸代表像高,第一實施例的像高(Image Height, ImgH)為1.600毫米。
第一實施例之光學成像鏡頭1主要由三枚透鏡、光圈2、與成像面4所構成。第一實施例之光圈2是設置在物側面A1與第一透鏡10之間。
第一透鏡10具有正屈光率。第一透鏡10的物側面11的光軸區域13為凸面以及其圓周區域14為凸面,第一透鏡10的像側面12的光軸區域16為凹面以及其圓周區域17為凹面。第一透鏡10之物側面11及像側面12均為非球面,但不以此為限。
第二透鏡20具有負屈光率。第二透鏡20的物側面21的光軸區域23為凹面以及其圓周區域24為凹面,第二透鏡20的像側面22的光軸區域26為凸面以及其圓周區域27為凸面。第二透鏡20之物側面21及像側面22均為非球面,但不以此為限。
第三透鏡30具有正屈光率,第三透鏡30的物側面31的光軸區域33為凸面以及其圓周區域34為凸面,第三透鏡30的像側面32的光軸區域36為凹面以及其圓周區域37為凸面。第三透鏡30之物側面31及像側面32均為非球面,但不以此為限。
在本發明光學成像鏡頭1中,從第一透鏡10到第三透鏡30中,物側面11、21、31與像側面12、22、32共計六個曲面均為非球面,但不以此為限。若為非球面,則此等非球面係經由下列公式所定義:
Figure 02_image001
其中:
Y表示非球面曲面上的點與光軸I的垂直距離;
Z表示非球面之深度(非球面上距離光軸I為Y的點,其與相切於非球面光軸I上頂點之切面,兩者間的垂直距離);
R表示透鏡表面近光軸I處之曲率半徑;
K為錐面係數(conic constant);
a 2i為第2i階非球面係數。
第一實施例光學成像鏡頭系統的光學數據如圖22所示,非球面數據如圖23所示。在以下實施例之光學成像鏡頭系統中,整體光學成像鏡頭的光圈值(f-number)為Fno、有效焦距為(EFL)、半視場角(Half Field of View,簡稱HFOV)為整體光學成像鏡頭中最大視場角(Field of View)的一半,其中,光學成像鏡頭的像高、曲率半徑、厚度及焦距的單位均為毫米(mm)。本實施例中,EFL=1.700 毫米;HFOV=40.631 度;TTL=2.308毫米;Fno=      2.873;ImgH=  1.600毫米。另外,在本實施例以及以下各實施例中,非球面數據表中a 2數值均為0,因此非球面數據中a 2欄的數值被省略。
第二實施例
請參閱圖8,例示本發明光學成像鏡頭1的第二實施例。請注意,從第二實施例開始,為簡化並清楚表達圖式,僅在圖上特別標示各透鏡與第一實施例不同面形的光軸區域與圓周區域,而其餘與第一實施例的透鏡相同的面形的光軸區域與圓周區域,例如凹面或是凸面則不另外標示。第二實施例在成像面4上的縱向球差請參考圖9A、弧矢方向的場曲像差請參考圖9B、子午方向的場曲像差請參考圖9C、畸變像差請參考圖9D。第二實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。
第二實施例詳細的光學數據如圖24所示,非球面數據如圖25所示。本實施例中,EFL=1.655 毫米;HFOV=41.418 度;TTL=2.320毫米;Fno=2.258;ImgH=1.600毫米。特別是:1.本實施例的半視場角HFOV大於第一實施例的半視場角HFOV。
第三實施例
請參閱圖10,例示本發明光學成像鏡頭1的第三實施例。第三實施例在成像面4上的縱向球差請參考圖11A、弧矢方向的場曲像差請參考圖11B、子午方向的場曲像差請參考圖11C、畸變像差請參考圖11D。第三實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。另外本實施例中,第三透鏡30的物側面31的圓周區域34為凹面。
第三實施例詳細的光學數據如圖26所示,非球面數據如圖27所示,本實施例中,EFL=1.968 毫米;HFOV=36.528 度;TTL=2.318毫米;Fno=2.609;ImgH= 1.600毫米。
第四實施例
請參閱圖12,例示本發明光學成像鏡頭1的第四實施例。第四實施例在成像面4上的縱向球差請參考圖13A、弧矢方向的場曲像差請參考圖13B、子午方向的場曲像差請參考圖13C、畸變像差請參考圖13D。第四實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。另外本實施例中,第三透鏡30的物側面31的圓周區域34為凹面。
第四實施例詳細的光學數據如圖28所示,非球面數據如圖29所示。本實施例中,EFL=1.627 毫米;HFOV=43.354 度;TTL=2.279毫米;Fno=3.096;ImgH= 1.600毫米。特別是: 1.本實施例的系統長度TTL小於第一實施例的系統長度TTL;2.本實施例的半視場角HFOV大於第一實施例的半視場角HFOV;3.本實施例的畸變像差小於第一實施例的畸變像差。
第五實施例
請參閱圖14,例示本發明光學成像鏡頭1的第五實施例。第五實施例在成像面4上的縱向球差請參考圖15A、弧矢方向的場曲像差請參考圖15B、子午方向的場曲像差請參考圖15C、畸變像差請參考圖15D。第五實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。另外本實施例中,第三透鏡30的物側面31的圓周區域34為凹面。
第五實施例詳細的光學數據如圖30所示,非球面數據如圖31所示,本實施例中,EFL=1.841 毫米;HFOV=40.361 度;TTL=2.189毫米;Fno=2.850;ImgH=1.600毫米。特別是:1.本實施例的系統長度TTL小於第一實施例的系統長度TTL;2.本實施例子午方向的場曲像差小於第一實施例子午方向的場曲像差;3.本實施例的畸變像差小於第一實施例的畸變像差。
第六實施例
請參閱圖16,例示本發明光學成像鏡頭1的第六實施例。第六實施例在成像面4上的縱向球差請參考圖17A、弧矢方向的場曲像差請參考圖17B、子午方向的場曲像差請參考圖17C、畸變像差請參考圖17D。第六實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。另外本實施例中,第三透鏡30的物側面31的圓周區域34為凹面。
第六實施例詳細的光學數據如圖32所示,非球面數據如圖33所示,本實施例中,EFL=1.732 毫米;HFOV=42.401 度;TTL=2.178毫米;Fno=3.007;ImgH=1.600毫米。特別是:1.本實施例的系統長度TTL小於第一實施例的系統長度TTL;2.本實施例的半視場角HFOV大於第一實施例的半視場角HFOV;3.本實施例的畸變像差小於第一實施例的畸變像差。
第七實施例
請參閱圖18,例示本發明光學成像鏡頭1的第七實施例。第七實施例在成像面4上的縱向球差請參考圖19A、弧矢方向的場曲像差請參考圖19B、子午方向的場曲像差請參考圖19C、畸變像差請參考圖19D。第七實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。此外,本實施例中,第二透鏡20具有正屈光率,第三透鏡30具有負屈光率,第三透鏡30的物側面31的圓周區域34為凹面。
第七實施例詳細的光學數據如圖34所示,非球面數據如圖35所示,本實施例中,EFL=1.770 毫米;HFOV=41.736 度;TTL=2.071毫米;Fno=2.450;ImgH=1.600毫米。特別是:1.本實施例的系統長度TTL小於第一實施例的系統長度TTL;2.本實施例的半視場角HFOV大於第一實施例的半視場角HFOV;3.本實施例的畸變像差小於第一實施例的畸變像差。此外,本實施例中當第二透鏡20的屈光率為正時,可以有效匯聚光學成像系統的光線,在成像面4上形成清晰的影像;當第三透鏡30的屈光率為負,則能修正光學成像系統的像差與球差,使具有較佳的成像品質。
第八實施例
請參閱圖20,例示本發明光學成像鏡頭1的第八實施例。第八實施例在成像面4上的縱向球差請參考圖21A、弧矢方向的場曲像差請參考圖21B、子午方向的場曲像差請參考圖21C、畸變像差請參考圖21D。第八實施例之設計與第一實施例類似,不同之處在於,透鏡屈光率、透鏡曲率半徑、透鏡厚度、透鏡非球面係數或是後焦距等相關參數有別。另外本實施例中,第三透鏡30的物側面31的圓周區域34為凹面。
第八實施例詳細的光學數據如圖36所示,非球面數據如圖37所示,本實施例中,EFL=1.680 毫米;HFOV=43.007度;TTL=    2.313毫米;Fno=2.450;ImgH=1.600毫米。特別是:1.本實施例的半視場角HFOV大於第一實施例的半視場角HFOV;2.本實施例的縱向球差小於第一實施例的縱向球差;3.本實施例的畸變像差小於第一實施例的畸變像差。
另外,各實施例之重要參數則分別整理於圖38中。
本發明具有以下功效:
1. 當滿足第一透鏡像側面的圓周區域為凹面、第二透鏡具有負屈光率、第三透鏡像側面的光軸區域為凹面、TL/(Gavg+BFL)≦1.400等條件時,藉由各透鏡之間的面形或屈光率搭配,能修正並改善光學成像鏡頭的畸變與場曲像差,在符合TL/(Gavg+BFL)的比例限制下,透過控制空氣間隙與後焦距離,使鏡頭達到縮小體積的目的,另外再藉由透鏡材料及面形的選配,進一步滿足以下(a)或(b)兩種組合時,能使光學成像鏡頭更有效的消除色差及減少不必要的雜散光。
(a)第三透鏡物側面的光軸區域為凸面、0.700≦V1/V2≦1.150。
(b)第二透鏡像側面的圓周區域為凸面、1.800≦V1/V2+V2/V3≦2.200。
其中,TL/(Gavg+BFL)較佳的範圍為1.100≦TL/(Gavg+BFL)≦1.400。
2.當第一透鏡像側面的光軸區域為凹面、第二透鏡像側面的圓周區域為凸面、第三透鏡像側面的光軸區域為凹面、第三透鏡像側面的圓周區域為凸面、TL/(Gavg+BFL)≦1.400,藉由各透鏡之間的面形搭配,能修正並改善光學成像鏡頭的畸變與場曲像差,在符合TL/(Gavg+BFL)的比例限制下,透過控制空氣間隙與後焦距離,使鏡頭達到縮小體積的目的,另外再藉由透鏡材料及個別空氣間隙的比例調配,進一步滿足1.800≦V1/V2+V2/V3≦2.200、G23/G12≧0.500時,能使光學成像鏡頭更有效的消除色差及減少不必要的雜散光。其中,G23/G12較佳的範圍為0.500≦G23/G12≦1.700。
3.當Fno滿足以下表一的比例關係式時,有利於控制光圈值以增進光學成像鏡頭的進光量,使本發明具備更優異的光學品質。
條件式 較佳範圍
Fno/(T1+G12+T2)≧2.550 毫米 -1 2.550毫米 -1≦Fno/(T1+G12+T2)≦4.500毫米 -1
Fno/(T2+G23+T3)≧2.350毫米 -1 2.350毫米 -1≦Fno/(T2+G23+T3)≦4.000毫米 -1
(TTL+EFL)/Fno≦2.000毫米 1.200毫米≦(TTL+EFL)/Fno≦2.000毫米
HFOV/Fno≧14.000 度 14.000度≦HFOV/Fno≦20.200度
Fno/(T1+T3)≧3.700毫米 -1 3.700≦Fno/(T1+T3)≦5.400毫米 -1
表一
4.為了達成縮短光學成像鏡頭系統長度及確保成像品質,同時考量製作的難易程度,將透鏡之間的空氣間隙、透鏡厚度適度的縮短或搭配有效焦距、後焦距使比例維持在一適當比值,當滿足以下表二的條件式之數值限定,能使本發明的實施例有較佳的配置。
條件式 較佳範圍
(TL+ALT)/(AAG+BFL)≦1.700 1.400≦(TL+ALT)/(AAG+BFL)≦1.700
TTL/AAG≦4.500 3.300≦TTL/AAG≦4.500
(T1+T3)/T2≦3.000 1.600≦(T1+T3)/T2≦3.000
EFL/Gavg≦8.200 4.700≦EFL/Gavg≦8.200
(TL+EFL)/BFL≦4.000 3.200≦(TL+EFL)/BFL≦4.000
AAG/Tavg≧1.500 1.500≦AAG/Tavg≦2.500
TTL/T1≧7.500 7.500≦TTL/T1≦10.000
ALT/Gavg≦3.800 2.400≦ALT/Gavg≦3.800
TTL/ImgH≦1.450 1.200≦TTL/ImgH≦1.450
EFL/BFL≦2.400 1.700≦EFL/BFL≦2.400
AAG/T2≦2.250 1.400≦AAG/T2≦2.250
TTL/T3≧6.400 6.400≦TTL/T3≦9.100
表二
本發明各實施例的三種代表波長在不同高度的離軸光線皆集中在成像點附近,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差皆獲得控制而具有良好的球差、像差、畸變抑制能力。進一步參閱成像品質數據,三種代表波長彼此間的距離亦相當接近,顯示本發明的實施例在各種狀態下對不同波長光線的集中性佳而具有優良的色散抑制能力,故透過上述可知本發明的實施例具備良好光學性能。
此外,另可選擇實施例參數之任意組合關係增加鏡頭限制,以利於本發明相同架構的鏡頭設計。
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述條件式能較佳地使本發明擴大視場角、縮短系統長度、成像品質提升,或組裝良率提升而改善先前技術的缺點,而本發明實施例透鏡採用塑膠材質更能減輕鏡頭重量及節省成本。
前述所列之示例性限定關係式,亦可任意選擇性地合併不等數量施用於本發明之實施態樣中,並不限於此。在實施本發明時,除了前述關係式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構,以加強對系統性能及/或解析度的控制。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
本發明各實施例揭露之內容包含但不限於焦距、透鏡厚度、阿貝係數等光學參數,舉例而言,本發明於各實施例揭露一光學參數A及一光學參數B,其中該些光學參數所涵蓋的範圍、光學參數互相之比較關係及多個實施例涵蓋的條件式範圍的具體解釋如下:
(1)光學參數所涵蓋的範圍,例如:α 2≦A≦α 1或β 2≦B≦β 1,α 1為光學參數A在多個實施例中的最大值,α 2為光學參數A在多個實施例中的最小值,β1為光學參數B在多個實施例中的最大值,β 2為光學參數B在多個實施例中的最小值。
(2)光學參數互相之比較關係,例如:A大於B或A小於B。
(3)多個實施例涵蓋的條件式範圍,具體來說,由同一實施例的複數個光學參數經過可能的運算所獲得之組合關係或比例關係,該些關係定義為E。E可為例如:A+B或A-B或A/B或A*B或(A*B) 1/2,而E又滿足條件式E≦γ 1或E≧γ 2或γ 2≦E≦γ 1,γ 1及γ 2為同一實施例的光學參數A與光學參數B經過運算所得到的值,且γ 1為本發明多個實施例中的最大值,γ 2為本發明多個實施例中的最小值。
上述光學參數所涵蓋的範圍、光學參數互相之比較關係及該些條件式的最大值、最小值及最大值最小值以內的數值範圍皆為本發明可據以實施之特徵,且皆屬於本發明所揭露的範圍。上述僅為舉例說明,不應以此為限。
本發明之實施例皆可實施,且可於同一實施例中擷取部分特徵組合,該特徵組合相較於先前技術而言亦能達成無法預期之本案功效,該特徵組合包括但不限於面形、屈光率及條件式等特徵之搭配。本發明實施方式之揭露為闡明本發明原則之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,實施例及其附圖僅為本發明示範之用,並不受其限囿。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
1:光學成像鏡頭 2:光圈 3:濾光片 4:成像面 11、21、31:物側面 12、22、32:像側面 13、16、23、26、33、36、Z1:光軸區域 14、17、24、27、34、37、Z2:圓周區域 10:第一透鏡 20:第二透鏡 30:第三透鏡 100、200、300、400、500:透鏡 130:組裝部 211、212:平行光線 A1:物側 A2:像側 I:光軸 CP:中心點 CP1:第一中心點 CP2:第二中心點 TP1:第一轉換點 TP2:第二轉換點 OB:光學邊界 I:光軸 Lc:主光線 Lm:邊緣光線 EL:延伸線 Z3:中繼區域 M、R:相交點
圖1至圖5繪示本發明光學成像鏡頭判斷曲率形狀方法之示意圖。 圖6繪示本發明光學成像鏡頭的第一實施例之示意圖。 圖7A繪示第一實施例在成像面上的縱向球差。 圖7B繪示第一實施例在弧矢方向的場曲像差。 圖7C繪示第一實施例在子午方向的場曲像差。 圖7D繪示第一實施例的畸變像差。 圖8繪示本發明光學成像鏡頭的第二實施例之示意圖。 圖9A繪示第二實施例在成像面上的縱向球差。 圖9B繪示第二實施例在弧矢方向的場曲像差。 圖9C繪示第二實施例在子午方向的場曲像差。 圖9D繪示第二實施例的畸變像差。 圖10繪示本發明光學成像鏡頭的第三實施例之示意圖。 圖11A繪示第三實施例在成像面上的縱向球差。 圖11B繪示第三實施例在弧矢方向的場曲像差。 圖11C繪示第三實施例在子午方向的場曲像差。 圖11D繪示第三實施例的畸變像差。 圖12繪示本發明光學成像鏡頭的第四實施例之示意圖。 圖13A繪示第四實施例在成像面上的縱向球差。 圖13B繪示第四實施例在弧矢方向的場曲像差。 圖13C繪示第四實施例在子午方向的場曲像差。 圖13D繪示第四實施例的畸變像差。 圖14繪示本發明光學成像鏡頭的第五實施例之示意圖。 圖15A繪示第五實施例在成像面上的縱向球差。 圖15B繪示第五實施例在弧矢方向的場曲像差。 圖15C繪示第五實施例在子午方向的場曲像差。 圖15D繪示第五實施例的畸變像差。 圖16繪示本發明光學成像鏡頭的第六實施例之示意圖。 圖17A繪示第六實施例在成像面上的縱向球差。 圖17B繪示第六實施例在弧矢方向的場曲像差。 圖17C繪示第六實施例在子午方向的場曲像差。 圖17D繪示第六實施例的畸變像差。 圖18繪示本發明光學成像鏡頭的第七實施例之示意圖。 圖19A繪示第七實施例在成像面上的縱向球差。 圖19B繪示第七實施例在弧矢方向的場曲像差。 圖19C繪示第七實施例在子午方向的場曲像差。 圖19D繪示第七實施例的畸變像差。 圖20繪示本發明光學成像鏡頭的第八實施例之示意圖。 圖21A繪示第八實施例在成像面上的縱向球差。 圖21B繪示第八實施例在弧矢方向的場曲像差。 圖21C繪示第八實施例在子午方向的場曲像差。 圖21D繪示第八實施例的畸變像差。 圖22表示第一實施例詳細的光學數據。 圖23表示第一實施例詳細的非球面數據。 圖24表示第二實施例詳細的光學數據。 圖25表示第二實施例詳細的非球面數據。 圖26表示第三實施例詳細的光學數據。 圖27表示第三實施例詳細的非球面數據。 圖28表示第四實施例詳細的光學數據。 圖29表示第四實施例詳細的非球面數據。 圖30表示第五實施例詳細的光學數據。 圖31表示第五實施例詳細的非球面數據。 圖32表示第六實施例詳細的光學數據。 圖33表示第六實施例詳細的非球面數據。 圖34表示第七實施例詳細的光學數據。 圖35表示第七實施例詳細的非球面數據。 圖36表示第八實施例詳細的光學數據。 圖37表示第八實施例詳細的非球面數據。 圖38表示各實施例之重要參數。
1:光學成像鏡頭
2:光圈
3:濾光片
4:成像面
11、21、31:物側面
12、22、32:像側面
13、16、23、26、33、36:光軸區域
14、17、24、27、34、37:圓周區域
10:第一透鏡
20:第二透鏡
30:第三透鏡
A1:物側
A2:像側
I:光軸

Claims (20)

  1. 一種光學成像鏡頭,由一物側至一像側沿一光軸依序包含一第一透鏡、一第二透鏡以及一第三透鏡,各透鏡都分別具朝向該物側且使成像光線通過的一物側面,以及朝向該像側且使成像光線通過的一像側面,該光學成像鏡頭包含: 該第一透鏡的該像側面的一圓周區域為凹面; 該第二透鏡具有負屈光率; 該第三透鏡的該物側面的一光軸區域為凸面,且該像側面的一光軸區域為凹面; 其中,該光學成像鏡頭的透鏡只有三片; 其中,TL定義為該第一透鏡的該物側面到該第三透鏡的該像側面在該光軸上的距離,Gavg 定義為該第一透鏡至該第三透鏡在該光軸上的兩個空氣間隙的平均值,BFL定義為該第三透鏡的該像側面到一成像面在該光軸上的距離,V1定義為該第一透鏡的阿貝係數,V2定義為該第二透鏡的阿貝係數,且滿足TL/(Gavg+BFL)≦1.400以及0.700≦V1/V2≦1.150的條件。
  2. 一種光學成像鏡頭,由一物側至一像側沿一光軸依序包含一第一透鏡、一第二透鏡以及一第三透鏡,各透鏡都分別具朝向該物側且使成像光線通過的一物側面,以及朝向該像側且使成像光線通過的一像側面,該光學成像鏡頭包含: 該第一透鏡的該像側面的一圓周區域為凹面; 該第二透鏡具有負屈光率,且該像側面的一圓周區域為凸面; 該第三透鏡的該像側面的一光軸區域為凹面; 其中,該光學成像鏡頭的透鏡只有三片; 其中,TL定義為該第一透鏡的該物側面到該第三透鏡的該像側面在該光軸上的距離,Gavg 定義為該第一透鏡至該第三透鏡在該光軸上的兩個空氣間隙的平均值,BFL定義為該第三透鏡的該像側面到一成像面在該光軸上的距離,V1定義為該第一透鏡的阿貝係數,V2定義為該第二透鏡的阿貝係數,V3定義為該第三透鏡的阿貝係數,且滿足TL/(Gavg+BFL)≦1.400以及1.800≦V1/V2+V2/V3≦2.200的條件。
  3. 如請求項1與請求項2中任一項的光學成像鏡頭,其中Fno定義為該光學成像鏡頭的光圈值,G12定義為該第一透鏡與該第二透鏡在該光軸上的空氣間隙,T1定義為該第一透鏡在該光軸上的厚度,T2定義為該第二透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:Fno/(T1+G12+T2)≧2.550毫米 -1
  4. 如請求項1與請求項2中任一項的光學成像鏡頭,其中Fno定義為該光學成像鏡頭的光圈值,G23定義為該第二透鏡與該第三透鏡在該光軸上的空氣間隙,T2定義為該第二透鏡在該光軸上的厚度,T3定義為該第三透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:Fno/(T2+G23+T3)≧2.350毫米 -1
  5. 一種光學成像鏡頭,由一物側至一像側沿一光軸依序包含一第一透鏡、一第二透鏡以及一第三透鏡,各透鏡都分別具朝向該物側且使成像光線通過的一物側面,以及朝向該像側且使成像光線通過的一像側面,該光學成像鏡頭包含: 該第一透鏡的該像側面的一圓周區域為凹面; 該第二透鏡的該像側面的一圓周區域為凸面; 該第三透鏡的該像側面的一光軸區域為凹面,且該像側面的一圓周區域為凸面; 其中,該光學成像鏡頭的透鏡只有三片; 其中,TL定義為該第一透鏡的該物側面到該第三透鏡的該像側面在該光軸上的距離,Gavg 定義為該第一透鏡至該第三透鏡在該光軸上的兩個空氣間隙的平均值,BFL定義為該第三透鏡的該像側面到一成像面在該光軸上的距離,V1定義為該第一透鏡的阿貝係數,V2定義為該第二透鏡的阿貝係數,V3定義為該第三透鏡的阿貝係數,G12定義為該第一透鏡與該第二透鏡在該光軸上的空氣間隙,G23定義為該第二透鏡與該第三透鏡在該光軸上的空氣間隙,且滿足TL/(Gavg+BFL)≦1.400、1.800≦V1/V2+V2/V3≦2.200以及G23/G12≧0.500的條件。
  6. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中ALT定義為該第一透鏡到該第三透鏡在該光軸上的三個透鏡厚度的總和,AAG定義為該第一透鏡到該第三透鏡在該光軸上的兩個空氣間隙的總和,且該光學成像鏡頭滿足以下條件:(TL+ALT)/(AAG+BFL)≦1.700。
  7. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中TTL定義為該第一透鏡的該物側面到該成像面在該光軸上的距離,AAG定義為該第一透鏡到該第三透鏡在該光軸上的兩個空氣間隙的總和,且該光學成像鏡頭滿足以下條件:TTL/AAG≦4.500。
  8. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中T1定義為該第一透鏡在該光軸上的厚度,T2定義為該第二透鏡在該光軸上的厚度,T3定義為該第三透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:(T1+T3)/T2≦3.000。
  9. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中EFL定義為該光學成像鏡頭的有效焦距,且該光學成像鏡頭滿足以下條件:EFL/Gavg≦8.200。
  10. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中TTL定義為該第一透鏡的該物側面到該成像面在該光軸上的距離,EFL定義為該光學成像鏡頭的有效焦距,Fno定義為該光學成像鏡頭的光圈值,且該光學成像鏡頭滿足以下條件:(TTL+EFL)/Fno≦2.000毫米。
  11. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中HFOV定義為該光學成像鏡頭的半視場角,Fno定義為該光學成像鏡頭的光圈值,且該光學成像鏡頭滿足以下條件:HFOV/Fno≧14.000度。
  12. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中EFL定義為該光學成像鏡頭的有效焦距,且該光學成像鏡頭滿足以下條件:(TL+EFL)/BFL≦4.000。
  13. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中AAG定義為該第一透鏡到該第三透鏡在該光軸上的兩個空氣間隙的總和,Tavg定義為該第一透鏡至該第三透鏡在該光軸上的三個透鏡厚度的平均值,且該光學成像鏡頭滿足以下條件:AAG/Tavg≧1.500。
  14. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中TTL定義為該第一透鏡的該物側面到該成像面在該光軸上的距離,T1定義為該第一透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:TTL/T1≧7.500。
  15. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中ALT定義為該第一透鏡到該第三透鏡在該光軸上的三個透鏡厚度的總和,且該光學成像鏡頭滿足以下條件:ALT/Gavg≦3.800。
  16. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中Fno定義為該光學成像鏡頭的光圈值,T1定義為該第一透鏡在該光軸上的厚度,T3定義為該第三透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:Fno/(T1+T3)≧3.700毫米 -1
  17. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中TTL定義為該第一透鏡的該物側面到該成像面在該光軸上的距離,ImgH定義為該光學成像鏡頭的像高,且該光學成像鏡頭滿足以下條件:TTL/ImgH≦1.450。
  18. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中EFL定義為該光學成像鏡頭的有效焦距,且該光學成像鏡頭滿足以下條件:EFL/BFL≦2.400。
  19. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中AAG定義為該第一透鏡到該第三透鏡在該光軸上的兩個空氣間隙的總和,T2定義為該第二透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:AAG/T2≦2.250。
  20. 如請求項1、請求項2與請求項5中任一項的光學成像鏡頭,其中TTL定義為該第一透鏡的該物側面到該成像面在該光軸上的距離,T3定義為該第三透鏡在該光軸上的厚度,且該光學成像鏡頭滿足以下條件:TTL/T3≧6.400。
TW110138495A 2021-09-28 2021-10-18 光學成像鏡頭 TWI766813B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111140368.4A CN113820827A (zh) 2021-09-28 2021-09-28 光学成像镜头
CN202111140368.4 2021-09-28

Publications (2)

Publication Number Publication Date
TWI766813B TWI766813B (zh) 2022-06-01
TW202314314A true TW202314314A (zh) 2023-04-01

Family

ID=78921566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138495A TWI766813B (zh) 2021-09-28 2021-10-18 光學成像鏡頭

Country Status (3)

Country Link
US (1) US20230096548A1 (zh)
CN (1) CN113820827A (zh)
TW (1) TWI766813B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264181A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 撮像レンズ
TW201200928A (en) * 2010-06-30 2012-01-01 E Pin Optical Industry Co Ltd Three-piece pickup lens
US9897779B2 (en) * 2015-09-30 2018-02-20 Apple Inc. Camera lens system with three lens components
EP3611552B1 (en) * 2018-08-16 2023-03-08 Jabil Optics Germany GmbH Camera lens system for an endoscope, method for producing a camera lens system and an endoscope
CN109814233A (zh) * 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头
CN112099192A (zh) * 2020-09-24 2020-12-18 玉晶光电(厦门)有限公司 光学透镜组
CN112748548B (zh) * 2021-02-02 2023-01-10 玉晶光电(厦门)有限公司 光学成像镜头

Also Published As

Publication number Publication date
TWI766813B (zh) 2022-06-01
CN113820827A (zh) 2021-12-21
US20230096548A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
TWI804033B (zh) 光學成像鏡頭
TW202240232A (zh) 光學成像鏡頭
TWI702418B (zh) 光學成像鏡頭
TWI673535B (zh) 光學成像鏡頭
TWI715319B (zh) 光學成像鏡頭
TWI805975B (zh) 光學成像鏡頭
TW201907195A (zh) 光學成像鏡頭
TWI734593B (zh) 光學成像鏡頭
TWI784313B (zh) 光學成像鏡頭
TWI792886B (zh) 光學成像鏡頭
TWI773040B (zh) 光學成像鏡頭
TW202246838A (zh) 光學成像鏡頭
TWI709781B (zh) 光學成像鏡頭
TW202206881A (zh) 光學成像鏡頭
TW202127090A (zh) 光學成像鏡頭
TWI744996B (zh) 光學成像鏡頭
TW202323914A (zh) 光學成像鏡頭
TW202328729A (zh) 光學成像鏡頭
TW202232178A (zh) 光學成像鏡頭
TWI766813B (zh) 光學成像鏡頭
TWI784857B (zh) 光學成像鏡頭
TWI806378B (zh) 光學成像鏡頭
TWI804178B (zh) 光學成像鏡頭
TWI776707B (zh) 光學成像鏡頭
TWI731793B (zh) 光學成像鏡頭