TW202314168A - 基於熱泵的水採集系統及其使用方法 - Google Patents

基於熱泵的水採集系統及其使用方法 Download PDF

Info

Publication number
TW202314168A
TW202314168A TW111129383A TW111129383A TW202314168A TW 202314168 A TW202314168 A TW 202314168A TW 111129383 A TW111129383 A TW 111129383A TW 111129383 A TW111129383 A TW 111129383A TW 202314168 A TW202314168 A TW 202314168A
Authority
TW
Taiwan
Prior art keywords
water
indoor
air
desorption
outdoor
Prior art date
Application number
TW111129383A
Other languages
English (en)
Inventor
尤金 A 卡普斯汀
大衛 S 郭
Original Assignee
美商水收集公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商水收集公司 filed Critical 美商水收集公司
Publication of TW202314168A publication Critical patent/TW202314168A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D22/00Control of humidity
    • G05D22/02Control of humidity characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40098Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating with other heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/008Air-humidifier with water reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Abstract

水採集系統,以及製造與使用這類水採集系統的方法,用於使用在該水採集系統中減小總能量成本且改進水採集循環效率的配置從周圍空氣捕獲水。在特定實施例中,該水採集系統可被配置用於空氣的除濕-加濕,以及該水採集系統中用於除濕-加濕的方法以控制由該水採集系統調節的空氣中的水分含量。該系統及方法使用吸附劑材料,例如金屬-有機框架,以從該空氣中吸附水。該系統及方法以水蒸氣形式解吸附此水,且可將該水蒸氣冷凝成液態水並收集,從而對由該水採集系統調節的空氣進行除濕。所收集的液態水可以噴霧以加濕由該水採集系統調節的空氣。

Description

基於熱泵的水採集系統及其使用方法
本美國非臨時專利申請案要求2021年8月23日提交的美國臨時專利申請第63/236,173號的權益,該申請案以引用的方式併入本文中。
本公開總體上涉及水採集,並且更具體地涉及用於從周圍空氣採集水的系統、設備及方法,其在水採集循環中提供降低的能量成本及改進的效率。還公開了被配置為對空氣進行除濕或加濕的水採集系統、設備及水採集方法。
通常,利用吸附劑從空氣採集水的過程包含水採集循環,其包括三個能量密集型階段:將水蒸氣從空氣吸附到吸附劑、從吸附劑解吸附水蒸氣以及將解吸附的水蒸氣冷凝成液態水。舉例來說,在吸附階段期間,潮濕環境空氣可被吹過解吸附(活化)的吸附劑床。水分子可通過吸附劑床的多孔內部擴散且由吸附劑吸附。當吸附劑床被水完全飽和時可以完成吸附階段。在吸附階段之後,可通過直接或間接加熱吸附劑床以釋放水蒸氣來起始解吸附階段。當吸附劑床的水變得不飽和時完成解吸附階段。在冷凝階段期間,可將在解吸附階段期間產生的水蒸氣引導到冷凝室,其中水蒸氣冷卻且冷凝成液態水。通過吸附、解吸附與冷凝的重複循環,基於吸附劑的水採集可提供從空氣產生水的方法。
一般來說,存在兩種加熱方法以從飽和的吸附劑床釋放水蒸氣:第一,直接加熱,其涉及從熱源直接向吸附劑床支撐結構、吸附劑床或吸附劑的表面的熱傳送;及第二,間接加熱,其涉及加熱吸附劑床支撐結構、吸附劑床或吸附劑周圍的空氣。可利用電阻加熱實現直接加熱與間接加熱。解吸附通常需要大量能量,包括與解吸附能量有關的潛熱部分以將與吸附劑相關聯的水變成水蒸氣,及與加熱吸附劑床支撐結構、吸附劑床或吸附劑中的一個或多個有關的顯能部分。潛在地,解吸附所耗費的能量可在冷凝階段期間回收,且接著再引入到系統中用於解吸附。一般來說,電阻加熱並不對解吸附所耗費的能量提供回收。
此外,空氣調節過程典型地需要對空氣進行除濕(例如降低空氣中的水蒸氣濃度)或對空氣進行加濕或再加濕(例如提高空氣中的水蒸氣濃度)。此過程可應用於來自室內空間(也稱為「室內」)的再循環空氣或來自室外環境(也稱為「室外」)的空氣。因此,通常考慮四種單獨的空氣濕度控制模式(i)-(iv):(i)對來自室外環境的空氣進行除濕;(ii)對來自室外環境的空氣進行加濕;(iii)對來自室內空間的再循環空氣進行除濕;以及(iv)對來自室內空間的再循環空氣進行加濕。來自室外環境的空氣的除濕實例,即模式(i)很常見,例如在夏季在炎熱潮濕的空氣進入辦公樓之前從其中去除水分。當來自室外環境的空氣中的水蒸氣濃度低於室內舒適水平時,可能需要對來自室外環境的空氣進行加濕,即模式(ii),這通常發生在寒冷乾燥的冬季。對來自室內空間的再循環空氣進行除濕,即模式(iii),可在室內空間實施,例如:家庭地下室以防止黴菌生長,也可用於垂直耕作。最後,對來自室內空間的再循環空氣進行加濕,即模式(iv),可以通過加熱、通風或空調系統來實施以保持濕度或溫度目標。雖然可能有常規系統單獨解決模式(i)-(iv)中的各者,但是這些常規系統並沒有通過一個系統、設備或方法解決所有四種空氣濕度控制模式(i)-(iv)。
使用製冷過程從空氣中直接冷卻及冷凝的水通常用於除濕。此種系統既可以在室內(例如小型便攜式除濕機)也可以在室外(例如典型地是中央空調單元)實施。此外,用小型除濕機去除的水可以潛在地用於對來自室內空間的再循環空氣進行加濕。然而,當將新鮮空氣從室外環境帶入室內空間時,特別是當來自室外環境的空氣所含的水分含量低於室內空間目標濕度時,使用此類系統對室內空間的空氣進行加濕可能存在很大困難。
另一種潛在的除濕-加濕系統可以是基於乾燥劑的單元(例如乾燥劑輪)。乾燥劑輪通常使用固體吸附劑(例如矽膠、多孔碳、沸石)設計,儘管液體乾燥劑是已知的(例如氯化鋰溶液、甘油)。吸附劑可以暴露在空氣中以吸附水,然後使用製冷系統的熱側加熱以將水從乾燥劑中解吸附出來。通常,所產生的解吸附水蒸氣不會冷凝成液態水。這些系統可用於對取自室外環境的空氣進行除濕及加濕。但是,它們典型地不會調節室內空氣,因為它們不會改變在室內空間再循環的空氣中存在的水分含量。
還存在許多其它濕度控制系統,例如:用於冷凝的熱電直接結露、用於解吸附的電阻加熱、用於解吸附的廢熱。然而,這些現有系統再一次沒有有效地通過一個系統、設備或方法解決所有四種空氣濕度控制模式(i)-(iv)。
因此,配置為既降低能量成本又改進水採集循環效率的水採集系統將具有明顯優勢。可以有效地解決所有四種空氣濕度控制模式(i)-(iv)的單一加濕-加濕系統、設備或方法將具有進一步的明顯優勢。
本文中提供基於熱泵的水採集系統(也稱為「系統」),其可減小水採集循環中的總能量成本及/或改進水採集循環期間的水生產效率。
本發明的特定實施例的廣泛目標可為提供一種大氣水採集系統,其包含以下中的一個或多個:熱泵;吸附單元;解吸附室;傳送機構;及冷凝室。在特定實施例中,熱泵可包含以下中的一個或多個:壓縮器、膨脹閥及熱交換器,其中熱交換器具有熱側熱交換器(典型地為「冷凝器」)與冷側熱交換器(典型地為「蒸發器」)。在特定實施例中,吸附單元包含一個或多個吸附劑模組,其中吸附劑模組含有一種或多種吸附劑,且吸附單元可以但不一定與熱泵系統物理上分離。在特定實施例中,解吸附室可連接到或定位成極為接近於熱泵的熱側熱交換器,且可配置成在平均解吸附溫度下操作。在特定實施例中,傳送機構可配置成(i)將被水至少部分飽和的吸附劑模組從吸附單元傳送到解吸附室中,及(ii)將在解吸附室中至少部分地解吸附的吸附劑模組傳送回到吸附單元。在特定實施例中,冷凝室可包圍或定位成極為接近於熱泵的冷側熱交換器,且可配置成在平均冷凝溫度下操作。在前述的特定變化形式中,水採集系統可配置成在該系統的平均解吸附溫度與平均冷凝溫度下操作以(i)實現用一種或多種吸附劑產生的每升水的最低能量,及(ii)保持足夠高的解吸附溫度以維持目標解吸附速率,及其組合。
本發明的特定實施例的另一廣泛目標可以是配置系統的特定實施例以對空氣進行除濕-加濕。因此,該系統的實施例還可以包含以下中的一個或多個:收集槽,其連接到冷凝室,被配置為收集從冷凝室冷凝的水;水泵,其連接到該收集槽,被配置為接收來自該收集槽的水;排水管,其連接到該收集槽;噴霧器,其連接到該水泵並且定位成接近於室內出口;旁路單元,其定位成接近於吸附單元,被配置為從室外入口及室內入口中的一個或兩個傳送空氣;吸附風扇,其定位成接近於吸附單元及旁路單元,用於將空氣從室外入口及室內入口中的一個或兩個傳送到吸附單元及旁路單元中;室內/室外入口風門,其被配置為控制從室外入口及室內入口中的一個或兩個進入吸附單元及旁路單元的氣流;吸附風門,其被配置為將空氣引導到吸附單元及旁路單元中的一個或兩個中;以及室內/室外出口風門,其被配置為控制從吸附單元及旁路單元流出進入室外出口及室內出口中的一個或兩個的氣流。在特定實施例中,該系統可以被配置為按以下模式操作且在其中切換:對來自室外到室內的空氣進行除濕的第一模式(i)、對從室外到室內的空氣進行加濕的第二模式(ii)、對再循環的室內空氣進行除濕的第三模式(iii)以及對再循環的室內空氣進行加濕的第四模式(iv)。
本發明的特定實施例的另一廣泛目標可為一種從周圍空氣採集水的方法,包括使用本文中所描述的大氣水採集系統中的任一個或其組合。在特定實施例中,該方法可以包含以下中的一個或多個:a)將周圍空氣抽吸到定位在吸附單元中的一個或多個吸附劑模組中,其中一個或多個吸附劑模組從周圍空氣中吸附水;b)一旦吸附劑模組飽和或飽和到目標水量及/或吸附速率,便使用傳送機構將吸附劑模組從吸附單元傳送到解吸附室;c)將空氣或空氣/水混合物吹過熱泵的熱側熱交換器通過定位在解吸附室中的吸附劑模組以促進水解吸附;d)一旦解吸附室實現目標水蒸氣濃度,就將熱水蒸氣從解吸附室傳送到熱泵的冷側熱交換器;e)任選地重複c)及d),直到解吸附室中的吸附劑模組耗盡所吸附水或達到所吸附水的目標耗盡;及f)在水解吸附之後將解吸附室中的吸附劑模組傳送到吸附單元,其可使用傳送機構實現。在前述的特定實施例中,該方法可在水採集系統的平均解吸附溫度或平均冷凝溫度或其組合下執行以(i)實現用一種或多種吸附劑產生的每升水的最低能量,及(ii)保持足夠高的解吸附溫度以維持目標解吸附速率,及其組合。
本發明的特定實施例的另一廣泛目標可以是控制空氣中水蒸氣濃度(也稱為「濕度」)的方法,包括使用本文中所描述的大氣水採集系統中的任一個或其組合。在特定實施例中,該方法可以包含以下中的一個或多個:a)將周圍空氣抽吸到該系統中;b)取決於模式(i)-(iv),調整風門的位置以引導來自室外入口或室內入口中的一個或兩個的氣流通過吸附單元及旁路單元中的一個或兩個,以當系統以除濕模式操作時對空氣進行除濕,且將除濕空氣傳送到室內出口或將除濕空氣傳送到室外出口;c)使用水泵將收集到的水從水收集槽泵送到噴霧器中,這可能在系統以加濕模式操作時發生;d)使用噴霧器對空氣進行加濕,這可能在系統以加濕模式操作時發生;e)使用排水管從水收集槽中去除全部或部分收集的水,這可能在系統以除濕模式操作時發生;f)將一個或多個吸附劑模組定位在吸附單元中,其中一個或多個吸附劑模組可以從周圍空氣中吸附水;g)一旦吸附劑模組飽和或達到目標吸附水量及/或吸附速率,便將飽和吸附劑模組從吸附單元傳送到解吸附室,這可以使用傳送機構進行協調;h)將空氣或空氣/水混合物吹過熱泵的熱側熱交換器通過定位在解吸附室中的吸附劑模組以促進水解吸附;i)一旦解吸附室實現目標水蒸氣濃度,就將熱水蒸氣從解吸附室傳送到熱泵的冷側熱交換器;j)任選地重複步驟h)及i),直到解吸附室中的吸附劑模組耗盡所吸附水或達到所吸附水的目標耗盡水平;k)在水解吸附之後將解吸附室中的吸附劑模組傳送到吸附單元,這可使用傳送機構進行協調。
本發明的特定實施例的另一廣泛目標可以是提供一種基於吸附劑的系統,該系統被設計為採用製冷系統的熱側熱交換器來從乾燥劑中解吸附水,或採用製冷系統的冷側熱交換器來冷凝水,或其組合,然後可用於加濕與除濕,以通過本文所述的一種濕度控制系統、設備或方法解決所有四種濕度控制模式(i)-(iv)。在特定實施例中,本發明提供了一種水採集系統,該系統可以使用金屬-有機框架吸附劑及高溫熱泵,其允許高效節能的水去除(除濕)及收集/噴霧(加濕)並且可以在很寬的濕度水平範圍內使用。
具體地說,在特定實施例中,該系統可以被配置為對室外空氣進行除濕(例如,通過對空氣進行除濕並產生水作為副產物)。在特定實施例中,該系統可以被配置為對室外空氣進行加濕(例如,通過捕獲水並將捕獲的水重新引入空氣中)。在特定實施例中,該系統可以被配置為對循環的室內空氣進行除濕(例如,通過對再循環的室內空氣進行除濕並產生水作為副產物)。在特定實施例中,該系統可以被配置為對循環的室內空氣進行加濕(例如,通過捕獲水並將捕獲的水重新引入再循環的室內空氣中)。
以下描述闡述基於熱泵的水採集系統(1)、製造基於熱泵的水採集系統的方法及使用基於熱泵的水採集系統的方法的說明性實例。然而,應認識到,由該描述提供的基於熱泵的水採集系統(1)的實例並不意圖限制該描述的廣度或範圍,而是實際上提供對於本領域的普通技術人員足以進行與使用本發明的完整廣度及範圍的實例。
現在,主要參考圖1到圖5,一種製造及使用本文描述的基於吸附劑的水採集系統(1)的基於吸附劑的水採集系統(1)方法。在一些實施例中,系統(1)包括吸附單元(3),例如吸附架,其容納含有至少一種吸附劑材料(5)的一個或多個吸附劑模組(4)。空氣(6)可流過一個或多個吸附劑模組(4),導致通過其中的吸附劑材料(5)從周圍空氣(6)吸附水(7)。系統(1)可以包括傳送機構(8),其在特定實施例中可為圓盤傳送帶(8a)(如圖2A的實例中所展示)或可為機械臂(8b)(如圖2B的實例中所展示)。一旦吸附劑模組(4)中的一個或多個達到目標水平及/或目標吸附速率,傳送機構(8)便可將含有所吸附水的一個或多個吸附劑模組(4)從吸附單元(3)移動到解吸附解吸附/冷凝單元(2),該解吸附解吸附/冷凝單元包括解吸附室(9),吸附劑模組(4)可以放置在解吸附室中以解吸附水(7)。在一些實施例中,解吸附室(9)包括再循環風扇(10),其將空氣或空氣/水混合物(11)吹過熱泵(2a)的熱側熱交換器(12)通過一個或多個吸附劑模組(4),以有效回收冷凝能量且將其用於解吸附來自吸附劑模組(4)的水(7)。一旦在解吸附室(9)中實現目標水濃度,在特定實施例中,系統(1)便可打開解吸附-冷凝器再循環風扇(13)以將熱水蒸氣(14)從解吸附室(9)傳送到熱泵(2)的包圍在冷凝室(16)中或定位成較接近於該冷凝室的冷側熱交換器(15)。在一些變化形式中,系統(1)的平均解吸附溫度及/或平均冷凝溫度可配置成實現用吸附劑材料(5)產生的每升水(7)的最低能量,且可保持足夠高的解吸附溫度以維持目標解吸附速率。在吸附劑模組(4)的水耗盡或達到水耗盡水平之後,傳送機構(8)可從解吸附室(9)去除一個或多個吸附劑模組(4)且將一個或多個吸附劑模組(4)放置回到吸附單元(3)中。基於吸附劑的水採集系統(1)的特定實施例可實現增加的水吸附,以及高溫下的連續解吸附與冷凝。
在特定實施例中,如圖2A中所描繪,示例系統(1)利用旋轉一個或多個吸附劑模組(4)的圓盤傳送帶(8a)。雖然在解吸附室(9)中解吸附一個或多個吸附劑模組(4),但剩餘吸附劑模組(4)可暴露於潮濕環境空氣(6)。在特定實施例中,如圖2B中所描繪,可利用機械臂(8b)將一個或多個吸附劑模組(4)從吸附架(17)傳送到解吸附室(9)。再次,參考圖1,在特定實施例中,熱泵(2a)包括具有熱側熱交換器(12)及冷側熱交換器(15)的熱交換器(18)。在一些變化形式中,熱泵(2a)可包括壓縮器(19)、膨脹閥(20)、主要「冷凝器」或熱側熱交換器(21)、次級熱側熱交換器(22)、「蒸發器」或冷側熱交換器(23)及設計成在高溫下操作的其它控制組件。舉例來說,在特定實施例中,「冷凝器」或熱側熱交換器(21)可設置為在約90℃到約160℃範圍內的溫度下操作,且「蒸發器」或冷側熱交換器(23)可設置為在約40℃到約95℃範圍內的溫度下操作。
再次,參考圖1,解吸附室(9)中的「冷凝器」或熱側熱交換器(21)及冷凝室(16)中的「蒸發器」或冷側熱交換器(23)可分別耦合到散熱器(24a、24b)以在吸附劑模組(4)移入及移出解吸附室(9)時提供基本上恒定或恒定的溫度操作。散熱器(24a、24b)在解吸附室(9)與冷凝室(16)中可為金屬塊或任何其它高熱質量材料。其在冷凝室(16)中還可為液態水(7)。
熱泵系統的性能一般可通過以下等式建模:
Figure 02_image001
Figure 02_image003
其中 W為通過壓縮器(19)輸入的功, Qc為從冷側熱交換器(23)提取的能量,COP為性能係數, Th為熱側熱交換器(21)的溫度, Tc為冷側熱交換器(23)的溫度,且 f為基於系統(1)的實際設計的經驗係數。在一些變化形式中, f在約0.4到約0.6之間。低 ThTc與高 Tc值典型地產生熱泵(2)的更高效節能的設計。
在某些實施例中,可設計系統(1)及使用系統(1)的方法以確保熱側熱交換器(21)與解吸附吸附劑模組(4)之間的有效熱耦合。可將在解吸附期間產生的熱水蒸氣(14)引導到冷凝室(16),該冷凝室含有「蒸發器」或冷側熱交換器(23),其中可將水蒸氣(14)冷凝成水(6)。接著可將液態水(7)收集在水槽(25)中。殘餘飽和及相對冷的水蒸氣(14)可再循環回到解吸附室(9)中以避免環境中的過度水損失。
在一些變化形式中,系統(1)可進一步包括電腦(26),其聯接到位於解吸附室(9)及冷凝室(16)外部的適於或配置成測量系統(1)周圍的環境的周圍空氣溫度及/或周圍空氣濕度的一個或多個周圍空氣溫度傳感器(27)及/或周圍空氣濕度傳感器(28)。電腦(26)可分別聯接到一個或多個溫度傳感器(29a、29b)及/或一個或多個濕度傳感器(30a、30b)及/或一個或多個氣流傳感器(31a、31b),其可分別位於解吸附室(9)及/或冷凝室(16)內部以測量相應解吸附室溫度及/或濕度及/或冷凝室溫度及/或濕度。基於來自解吸附室與冷凝室傳感器(29a、29b、30a、30b)的讀數的溫度及/或濕度測量值及基於來自周圍溫度與濕度傳感器(27、28)的讀數的環境溫度及/或濕度測量值可在實施水採集算法(32)的電腦(26)的控制下使用,以調節系統(1)的操作參數,例如以修改系統(1)在能量使用、水生產及熱泵(2a)操作方面的性能。
任何合適的吸附劑材料(5)可用於本文中所描述的系統(1)及方法的實施例中。在特定實施例中,吸附劑材料(5)可包括一個或多個金屬-有機框架(「MOF」)。一般來說,MOF提供需要從空氣(6)採集水(7)的獨特特性。參見例如H. Furukawa等人,《多孔金屬-有機框架與有關材料中的水吸附( Water Adsorption in Porous Metal-Organic Frameworks and Related Materials)》,美國化學學會志(J. Am. Chem. Soc.),2014, 136, 11, 4369-4381。MOF的特徵可在於高吸水量及吸水量與相對濕度(「RH」)的階梯狀特性。在一些變化形式中,包括MOF的合適吸附劑材料(5)具有此等溫線階梯,其可針對各種氣候定制。參見例如WO2020112899。由於MOF孔內部與水分子之間的氫結合,等溫線階梯典型地為溫度的弱函數。階梯等溫線使得能夠在極窄的相對濕度範圍(約3到約5% RH)中通過MOF捕獲及釋放水。
在一些變化形式中,MOF為:MOF-303: Al(OH)(HPDC),其中HPDC為1H-吡唑-3,5-二羧酸鹽;CAU-10: Al(OH)(IPA),其中IPA為間苯二甲酸酯;MOF-801: Zr 6O 4(OH) 4(富馬酸鹽) 6;MOF-841: Zr 6O 4(OH) 4(MTB) 6(HCOO) 4(H 2O) 2;富馬酸鋁: Al(OH)(富馬酸鹽);MIL-160: Al(OH)(FDA),其中FDA為2,5-呋喃二羧酸酯;MIL-53: Al(OH)(TPA),其中TPA為對苯二甲酸酯;或磷酸鋁: AlPO4-LTA。在一些變化形式中,MOF具有在約0.5 nm到約1 nm範圍內或在約0.7 nm到約0.9 nm之間的孔大小。在某些變化形式中,MOF具有親水性孔結構。在某些變化形式中,MOF具有包含酸及/或胺官能團的親水性孔結構。在某些變化形式中,MOF具有允許可逆水吸附的一維通道。還可使用本文中所描述的MOF的任何組合,或能夠進行水吸附/解吸附的其它MOF或吸附劑。在一些實施例中,MOF可與粘合劑混合以改進其粘附到襯底或支撐件的性質。
在其它變化形式中,具有高吸水能力以及上文所描述的等溫線階梯的其它吸附劑(5)可用於本文中所描述的系統及方法中。其它合適的吸附劑(5)可包括例如某些分子篩(作為一個實例,SAPO-34微孔沸石,CAS第1318-02-1號)及具有上文所描述的性質的某些沸石。
吸附劑材料(5)(包括上文所描述的MOF)中的水解吸附速率及空氣中的飽和蒸氣壓值隨著溫度按指數規律增加。另一方面,特定解吸附能量隨著溫度而減小。這三個因素都有利於在高溫下解吸附過程的設計。然而,較高解吸附溫度引發來自吸附劑材料(5)、吸附劑材料(5)內部的水(7)、支撐結構、再循環空氣(7)及水蒸氣的較高顯熱損失。冷凝溫度需要低於解吸附的熱水蒸氣(14)的露點。可通過冷凝溫度較低的冷側熱交換器(23)單遍次冷凝更多水(7),但熱泵COP值隨著 Th- Tc的增加與 Tc的減小而降低。因此,可調節水採集系統(1)的解吸附與冷凝溫度以實現用給定吸附劑材料(5)產生的每升水的最低能量。
再次,主要參考圖2A,描繪系統(1)的另一實例,其中旋轉圓盤傳送帶(8a)將含有吸附劑模組(4)的完全飽和MOF連續地移動到解吸附室(9)中用於解吸附。一旦MOF吸附劑模組(4)移動到解吸附室(9)中,對其進行加熱以釋放水(7)作為熱水蒸氣(14)。同時,其它MOF吸附劑模組(4)可暴露於吹過其的空氣(6)以起始吸附。在特定實施例中,在完成解吸附之後,具有定位控制的馬達(32)可以旋轉圓盤傳送帶(8a)以將解吸附的吸附劑模組或MOF吸附劑模組(4)移出解吸附室(9),且允許飽和MOF吸附劑模組(4)進入解吸附室(9)。
參考圖2B,描繪系統(1)的另一實例,其中多軸機械臂(8b)(或其它自動化機構)處理MOF吸附劑模組(4)在吸附架(17)與解吸附室(9)之間的切換。一旦MOF吸附劑模組(4)在解吸附室(9)中充分解吸附,其便可通過機械臂(8b)去除且放置回到吸附架(17)中。新完全吸附的MOF吸附劑模組(4)可被拾取且通過機械臂(8b)放置到解吸附室(9)中。電腦及水採集算法(32)可用於跟蹤每一模組的解吸附與吸附狀態。
現在,主要參考圖3,示意圖說明解吸附室(9)中「冷凝器」熱側熱交換器(21)與MOF吸附劑模組(4)之間的熱耦合。解吸附室(9)與具有隔熱壁(33)的環境熱隔離。再循環風扇(10)將空氣(6)吹過熱側熱交換器(21)以在足夠吸附的MOF吸附劑模組(4)放置到解吸附室(9)中時升高溫度。通過吹過熱側熱交換器(21)加熱的此空氣(6)或空氣/水混合物(11)可接著吹過MOF吸附劑模組(4)以升高MOF吸附劑模組(4)的溫度以釋放所吸附水(7)。熱水蒸氣(14)的從MOF吸附劑模組(4)釋放的一部分可接著通過再循環風扇(10)循環回到熱側主要熱交換器(21)以繼續將至少一種MOF吸附劑材料(5)溫度升高到期望的操作解吸附溫度。可將熱水蒸氣(14)的來自MOF吸附劑模組(4)的一部分引導到冷凝室(16)用於冷凝。取決於MOF吸附劑模組(4)出口處的水蒸氣條件(RH及溫度值),可使用預定算法(31)利用變速再循環風扇(10)的可變操作來調節再循環與解吸附速率以調節空氣/水混合物(11)的流量。目標是實現熱交換器的恒定能量負載且保持熱水蒸氣(14)的高水分含量以實現更有效的冷凝產率。熱側熱交換器(21)與MOF吸附劑模組(4)之間的熱耦合還可通過熱交換器與MOF吸附劑模組(4)的物理接觸來改進。
應理解,雖然圖2A、圖2B及圖3說明系統(1)中MOF吸附劑模組(4)的特定實施例,但其它合適的吸附劑模組(4)可用於本文中所描述的系統(1)的其它變化形式中。
現在,主要參考圖4,其描繪水蒸氣(14)冷凝及液態水(7)採集的說明性示意圖。在此實施例中,冷凝室(16)可圍封在隔熱壁(33)(或冷凝室隔熱的其它方式)中。熱水蒸氣(14)可從解吸附室(9)中流動且通過「蒸發器」冷側熱交換器(23),允許在到達露點之後冷卻熱水蒸氣(14)且冷凝水(7)。排氣將較冷的空氣/水混合物(11)攜帶回到解吸附室(9)中。散熱器(24b)可熱耦合到冷側熱交換器(23)以保持用於水冷凝的期望操作溫度。液態水(7)可從冷側熱交換器(23)的翅片滴下,且可收集在冷凝室(16)下方的水收集槽(25)中。解吸附-冷凝器再循環風扇(13)可用於控制與再循環熱水蒸氣(14)且排放解吸附室(9)與冷凝室(16)之間的較冷的空氣/水混合物(11)。
現在,主要參考圖5,其描繪系統(1)的特定實施例的說明性實例的組件,其中可測量循環空氣的溫度、濕度及速度值,如上文所描述。還可測量熱側熱交換器(21)與冷側熱交換器(23)的溫度。基於這些測量值,通過執行水採集算法(32)的電腦(26)可評估每一熱交換器(21、22、23)的能量負載。在一些變化形式中,可編程系統(1)中的電腦(26)以通過改變再循環風扇(10、13)的風扇速度來調節空氣流速,以保持系統(1)中包括的每一熱交換器(21、22或23)的幾乎恒定的能量負載且實現解吸附與冷凝過程的期望溫度。可在壓縮器的功輸入
Figure 02_image005
、冷側熱交換器的能量負載
Figure 02_image007
以及針對主要熱交換器及次級熱交換器分別由
Figure 02_image009
Figure 02_image011
表示的熱側熱交換器的能量負載之間獲得熱泵能量平衡,其可表達為:
Figure 02_image013
參見R. Sonntag及C. V. Wylen,《熱力學經典與統計導論( Introduction to Thermodynamics Classical and Statistical)》,第2版,約翰偉利父子(John Wylie and Sons),1982。
基於壓縮器設計及操作條件,壓縮器功輸入是恒定的。在一些變化形式中,為了再循環大部分所回收冷凝熱用於解吸附,系統配置成設定如下:
Figure 02_image015
Figure 02_image017
因此,熱側熱交換器(21)的能量負載等於冷側熱交換器(23)的能量負載。一些功輸入可由次級熱側熱交換器(22)耗散到環境。
熱側熱交換器(21)配置可通過考慮由於進入與流出氣流而產生的能量「增益」來建模,該能量「增益」應等於熱側熱交換器所耗散的能量。
Figure 02_image019
其中
Figure 02_image021
為空氣/水蒸氣混合物質量流率, C pb 為比熱容,且
Figure 02_image023
為位置b處的溫度;
Figure 02_image025
為空氣/水蒸氣混合物質量流率,
Figure 02_image027
為比熱容,且
Figure 02_image029
為位置a處的溫度。
Figure 02_image031
應大致等於
Figure 02_image033
,該
Figure 02_image033
為具有目標熱交換器設計的熱側熱交換器(21)的操作溫度。可使用熱交換器的空氣密度、空氣速度及橫截面積來估計質量流率。初始地,當完全吸附的吸附劑模組(4)(例如MOF吸附劑模組)移動到解吸附室(9)中用於解吸附時,
Figure 02_image029
較低但在解吸附過程期間快速加熱。系統(1)根據等式(6)增加解吸附再循環風扇(10)速度以保持恒定
Figure 02_image035
次級熱側熱交換器(22)的能量平衡可表達如下:
Figure 02_image037
其中
Figure 02_image039
為次級熱側熱交換器(22)的熱傳送係數,其為熱傳送幾何形狀與氣流的函數,
Figure 02_image041
為熱交換器的翅片的面積,且
Figure 02_image043
為環境溫度。系統(1)調節穿過次級熱側熱交換器(22)的氣流的速率以在環境溫度改變時保持恒定能量耗散速率。
冷側熱交換器處的能量負載的顯熱與潛熱部分都需要考慮用於冷凝過程。
Figure 02_image045
其中
Figure 02_image047
為空氣/水蒸氣混合物質量流率,
Figure 02_image049
為比熱容,
Figure 02_image051
為溫度,
Figure 02_image053
為空氣密度,且
Figure 02_image055
為位置d處的絕對濕度;
Figure 02_image057
為空氣/水蒸氣混合物質量流率,
Figure 02_image059
為比熱容,
Figure 02_image061
為溫度,
Figure 02_image063
為空氣密度,且
Figure 02_image065
為位置e處的絕對濕度,且
Figure 02_image067
為冷凝溫度下水的潛熱。
Figure 02_image069
應大致等於具有目標熱交換器設計的冷側熱交換器溫度。
在一些變化形式中,系統(1)調節解吸附-冷凝器再循環風扇(13)的速度以在進入及流出空氣/水蒸氣混合物的溫度與濕度值變化時保持冷側熱交換器(23)的恒定能量負載。
再次,總體參考圖1到9A及9B,基於吸附劑的水採集系統(1)的特定實施例可配置成用於對空氣(6)進行除濕-加濕,其採用熱泵(2a)以有效地回收冷凝能量並將其用於從吸附劑材料(5)中解吸附熱水蒸氣(14)。特定實施例提供了一種使用本文所述的任何基於吸附劑的水採集系統(1)來控制來自周圍空氣(6)的濕度水平的方法。
現在,主要參考圖1、2A及2B,系統(1)的特定實施例可以包括吸附單元(3),該吸附單元可以容納一個或多個含有至少一種吸附劑材料(5)的吸附劑模組(4)。作為第一示例性實例,吸附單元(3)可以包含如圖2A所示的旋轉圓盤傳送帶(8a),並且作為第二示例性實例,吸附單元(3)可以包含吸附架(17),在該吸附架中,可以堆疊多個吸附劑模組(4),如圖2B的實例所示。在系統(1)的特定實施例中,傳送機構(8)可用於將多個吸收劑模組(4)中的一者或各者從吸附單元(3)移動到解吸附室(9)。如圖2A的實例所示,圓盤傳送帶(8a)可以包括多個吸收模組(4),該吸收模組徑向向外放置並且圍繞中心旋轉軸線周向間隔開。圓盤傳送帶(8a)可旋轉以將多個吸附模組(4)中的各者移動到解吸附室(9)中。如圖2B的實例所示,機械臂(8b)可以操作以將多個吸收模組(4)中的各者從吸附架(17)移動到解吸附室(9)中。空氣(6)可以被推過一個或多個吸附劑模組(4),導致一個或多個吸附劑模組(4)中所含的吸附劑材料(5)從周圍空氣(6)中吸附水(7)。一旦吸附劑模組(4)達到目標吸附水平及/或速率,傳送機構(8)可以將具有所吸附水(7)的吸附劑模組(4)從吸附單元(3)移動到系統(1)的解吸附室(9)。在一些實施例中,解吸附室(9)可包括再循環風扇(10),其將空氣/水混合物(11)吹過熱泵(2)的熱側(12)通過吸附劑模組(4)以促進水(7)的解吸附。一旦在解吸附室(9)中達到目標水濃度,系統(1)可以操作解吸附室中存在的解吸附-冷凝器再循環風扇(13),以將熱水分從解吸附室(9)傳送到包圍或定位成極為接近於冷凝室(16)的熱泵(2a)的冷側(15)。
現在,主要參考圖1、6-9A及9B,被配置用於對空氣(6)進行除濕-加濕的系統(1)的特定實施例可以進一步包含以下各項中的一個或多個:水收集槽(25),其連接到冷凝室(16),被配置為收集冷凝室(16)中冷凝的水(7);水泵(34),其連接到水收集槽(25),被配置為接收來自水收集槽(25)的水(7);排水管(35),其連接到水收集槽(25);噴霧器(36),其連接到水泵(34),且定位成接近於室內出口(37);旁路單元(38),其定位成接近於吸附單元(3),被配置為將空氣(6)從室外入口(39)或室內入口(40)或其組合傳送;吸附風扇(41),其定位成接近於吸附單元(3)及旁路單元(38),以將空氣(6)從室外入口(39)或室內入口(40)或其組合傳送到吸附單元(3)及旁路單元(38);室內/室外入口風門(42),其被配置為控制空氣(6)從室外入口(39)或室內入口(40)或其組合傳送到吸附單元(3)及旁路單元(38)中;吸附風門(43),其被配置為將空氣(6)流的一部分引導到吸附單元(3)中,並將空氣(6)流的一部分引導到旁路單元(38)中;以及室內/室外出口風門(44),其被配置為控制空氣(6)從吸附單元(3)與旁路單元(38)流出進入室外出口(45)或室內出口(37)或其組合的流動。
系統(1)的特定實施例可以被配置為以多種模式(i)-(iv)操作且在其中切換,該模式包括對來自室外(46)到室內(47)的空氣(6)進行除濕的第一模式(i)、對來自室外(46)到室內(47)的空氣(6)進行加濕的第二模式(ii)、對室內(47)的再循環空氣(6)進行除濕的第三模式(iii)以及對室內(47)的再循環空氣(6)進行加濕的第四模式(iv)。
在系統(1)的特定實施例中,平均解吸附溫度或平均冷凝溫度,無論是彼此獨立還是彼此相關,都可以配置為實現用吸附劑材料(5)產生的每升水的最低能量,並且在某些實施例中,保持解吸附溫度足夠高以維持目標解吸附速率。一旦吸附劑模組(4)耗盡水(7)或耗盡到水(7)的目標耗盡水平,傳送機構(8)便可將吸附劑模組(4)從解吸附室(9)中移出並將吸附劑模組(4)返回到吸附單元(3)。
現在,主要參考圖6到9A及9B,配置用於加濕-除濕的系統(1)的說明性實例可以包括吸附單元(3)(例如吸附架(17)或圓盤傳送帶(8a),包括一個或多個吸附劑模組(4))(例如,一個或多個MOF模組)、傳送機構(8)(例如,圓盤傳送帶(8a)或機械臂(8b))、包括熱泵(2a)的離散解吸附/冷凝單元(2)。在一些實施例中,熱泵(2)包括熱交換器(18),其具有熱側(12)(「冷凝器」)與冷側(15)(「蒸發器」)。在一些變化形式中,熱泵(2a)可以包括壓縮器(19)、膨脹閥(20)、主「冷凝器」或熱側熱交換器(21)、次級熱側熱交換器(22)、「蒸發器」或冷側熱交換器(23)以及可以設計成在高溫下操作的其它控制組件。在特定實施例中,系統(1)可包括噴霧單元(48),該噴霧單元包括水收集槽(25)、排水管(35)、水泵(34)、連接到水泵(34)的水噴霧器(36)。此外,氣流系統(49)可以包含以下中的一個或多個:室內/室外入口風門(42)、室內/室外出口風門(44)及吸附風門(43)。系統(1)可以包括吸附風扇(41)及旁路單元(38)。吸附單元(3)與一組風門(42)(43)(44)可以定位成從室外(46)吸附水以按模式(i)或(ii)工作或從室內(47)吸附水以按模式(iii)及(iv)工作。這組風門(42)(43)(44)控制空氣(6)的流動方向。傳送機構(8)可以將吸附劑模組(4)傳送進與傳送出單獨的解吸附/冷凝單元(2)。水蒸氣(14)在解吸附/冷凝單元(2)中經歷解吸附與冷凝過程,然後收集在水收集槽(25)中。當系統(1)進入加濕模式時,收集的水(7)可以通過水噴霧單元(48)傳遞。當系統(1)進入除濕模式時,收集的水(7)可以被傳輸到排水管(35)中。 模式( i ):室外空氣除濕機
現在,主要參考圖6,描繪的是系統(1)的說明性實例,該系統被配置用於對來自室外(46)到室內(47)的空氣進行除濕。室內/室外入口風門(42)打開室外入口(39)並關閉室內入口(40)。來自室外(46)的空氣(6)可以通過室外入口(39),然後部分通過吸附單元(3),且部分通過旁路單元(38)。通過吸附單元(3)被除濕的來自室外(46)的空氣(6)的量與通過旁路單元(38)的來自室外(46)的空氣(6)的量可通過吸附風門(43)的操作來控制,該吸附風門可以定位成介於吸附單元(3)的打開或關閉狀態之間的範圍內與介於旁路單元(38)的打開或關閉狀態之間的範圍內。室內/室外入口風門(44)關閉室外出口(45)並打開室內出口(37)。所除濕空氣(6)可以通過室內出口(37)被引導到室內(47)。水噴霧單元(48)可以在模式(i)中保持關閉狀態。被水(7)飽和的吸附劑模組(4)可以放入解吸附/冷凝單元(2)中,解吸附的水(7)可以在解吸附室(9)中冷凝,且水(7)可以收集在水收集槽(25)。收集的水可以保存在水收集槽(25)中或通過排水管(35)移出。 模式( ii ):室外空氣加濕機
現在,主要參考圖7,描繪的是系統(1)的說明性實例,該系統被配置為將來自室外(46)到室內(47)的空氣(6)進行加濕。室內/室外入口風門(42)打開室外入口(39)並關閉室內入口(40)。吸附風門(43)關閉旁路單元(38)。來自室外(46)的空氣(6)通過室外入口(39)並且僅通過吸附單元(3)。室內/室外出口風門(44)可定位成部分打開室外出口(45)且部分打開室內出口(37)。通過室外出口(44)引導到室外(46)的除濕空氣(6)的量與通過室內出口(37)引導到室內(47)的除濕空氣(6)的量可以通過室內/室外出口風門(44)的位置來控制。水噴霧單元(48)可置於打開狀態。被水(7)飽和的吸附劑模組(4)可以放入解吸附/冷凝單元(2)中,解吸附的水(7)可以在解吸附室(9)中冷凝,且水(7)可以收集在水收集槽(25)。收集的水(7)可以使用水泵(34)泵送到水噴霧器(36)。 模式( iii ):室內空氣除濕機
現在,主要參考圖8,描繪的是系統(1)的說明性實例,該系統被配置為對再循環的室內(47)空氣(6)進行除濕。室內/室外入口風門(42)打開室內入口(40)並關閉室外入口(46)。來自室內(47)的空氣(6)可以通過室內入口(40),然後部分通過吸附單元(3)且部分通過旁路單元(38)。通過吸附單元(3)的來自室內(47)的空氣(6)的量與通過旁路單元(38)的空氣(6)的量可以通過吸附風門(43)的位置來控制,該吸附風門可以從旁路單元(38)的關閉狀態定位到吸附單元(3)的關閉狀態或者定位到旁路單元(38)及吸附單元(3)兩者的部分打開狀態。室內/室外出口風門(44)關閉室外出口(45)並打開室內出口(37)。然後可將所除濕空氣(6)通過室內出口(37)引導到室內(47)。噴霧系統可以保持關閉狀態。將被水(7)飽和的吸附劑模組(4)放入解吸附/冷凝單元(2)中,所解吸附水(7)可在解吸附室(9)中冷凝並收集在水收集槽(25)中。收集的水(7)可以保存在水收集槽(25)中或通過排水管(35)從水收集槽(25)中排出。 模式( iv ):室內空氣加濕機
現在,主要參考圖9A及9B,描繪的是系統(1)的說明性實例,該系統被配置為對再循環的室內(47)空氣(6)進行加濕。最初,在系統(1)的第一配置中(如圖9A的實例所示),室內/室外入口風門(42)打開室外入口(39)並關閉室內入口(40)。吸附風門(43)關閉旁路單元(38)。室外(46)空氣(6)可以通過室外入口(39),然後僅通過吸附單元(3)。室內/室外出口風門(44)關閉室內出口(37)並打開室外出口(44)。所除濕空氣(6)通過室外出口(45)傳到室外(46)。水噴霧單元(48)可以保持關閉狀態。被水(7)飽和的吸附劑模組(4)可以被傳送到解吸附/冷凝單元(2),所解吸附水(7)可以在解吸附室(9)中冷凝並收集在水收集槽(25)中。收集的水(7)可以保存在水收集槽(25)中。
隨後,在系統(1)的第二配置中(如圖9B的實例所示),室內/室外入口風門(42)關閉室外入口(39)並打開室內入口(40)。吸附風門(43)關閉吸附單元(3)。來自室內(47)的空氣(6)可以通過室內入口(40),然後僅通過旁路單元(38)。室內/室外出口風門(44)關閉室外出口(44)並打開室內出口(37)。來自旁路單元(38)的空氣(6)可以通過室內出口(37)被引導到室內(47)。水收集槽(25)內收集的水(7)可通過操作水泵(34)引導到噴霧器(36),從噴霧器(36)噴霧到通過室內出口(37)的空氣中以對通過室內(47)的空氣(6)進行加濕。 實例
將通過參考以下實例更好地理解當前公開的主題,該實例作為本發明的示例而非限制性地提供。 實例 1 優化解吸附與冷凝溫度
實例描述用於水採集系統的解吸附與冷凝溫度的優化。模型使用迭代程序。首先,模型設定系統的初始解吸附與冷凝溫度。基於吸附劑的等溫線階梯,在給定解吸附溫度下已知解吸附室中的絕對濕度。如果解吸附室中的水蒸氣的相對濕度及溫度已知,那麼可針對給定冷凝溫度計算冷凝產率。可利用等式(2)計算熱泵效率,假設f=0.6,且反過來使用等式(1)計算功輸入。除解吸附與冷凝能量以外,模型進一步考慮加熱吸附劑、吸附劑內部的水、空氣與蒸氣所需的顯熱值。模型還考慮再循環蒸氣的溫度與系統的指定總水採集產率。因此,在給定MOF類型下,每升採集水的系統能耗近似為解吸附與冷凝溫度的函數。最佳條件通過改變兩個變量(解吸附與冷凝溫度)來獲得。參見以下表1。 1.
MOF類型 等溫線階梯 在25°C下(RH%) 解吸附溫度(℃) 冷凝溫度(℃)
乾旱 20 136 90
中等 40 117 91
潮濕 60 107 92
表1展示三種類型的MOF的最佳解吸附與冷凝溫度。含有乾旱型MOF的水採集器最佳地在136℃的解吸附溫度及90℃的冷凝溫度下操作,該乾旱型MOF具有在25℃下20%相對濕度(RH)的等溫線階梯。具有RH 40%等溫線階梯的「中等」MOF需要分別117℃的解吸附溫度及91℃的冷凝溫度;而具有RH 60%的等溫線階梯的「潮濕」MOF需要分別107℃的解吸附溫度及92℃的冷凝溫度。
表1指示在高溫熱泵針對熱側熱交換器在90℃到160℃下操作且針對冷側熱交換器在40℃到95℃下操作的條件下,需要利用高溫熱泵來實現每升採集器水的最低能耗。
從前述可易於理解,本發明的基本概念可以各種方式體現。本發明涉及水採集系統及用於製造與使用包括最佳模式的水採集系統的多種實施例的方法的眾多與多種實施例。
因而,通過說明書公開的或在伴隨此申請的圖式與表格中所展示的本發明的特定實施例或要素並不希望是限制性的,而是本發明一般涵蓋的眾多及多種實施例或關於其任何特定要素所涵蓋的等效物的說明。另外,本發明的單個實施例或要素的具體描述可能未明確地描述所有可能的實施例或要素;說明書及圖式隱含地公開了許多替代方案。
應理解,設備的每一要素或方法的每一步驟都可由設備術語或方法術語描述。此類術語可在需要時被取代,使得本發明授權的隱含廣泛涵蓋範圍得以明確。僅作為一個實例,應理解,方法的所有步驟可被公開為動作、採取該動作的手段,或引起該動作的要素。類似地,設備的每一要素可被公開為物理要素或該物理要素所促進的動作。僅作為一個實例,「採集器」的公開內容應理解為涵蓋「採集」動作的公開內容-無論是否明確討論-並且相反地,如果有效地公開了「採集」的動作,此公開內容應理解為涵蓋「採集器」及甚至「用於採集的構件」的公開內容。用於每一要素或步驟的這些替代術語應被理解為明確地包括在說明書中。
另外,關於所使用的每一術語,應理解,除非術語在本申請中的使用與這種解譯不一致,否則常用字典定義應理解為包括在如梅裡厄姆-韋伯斯特大學辭典(Merriam-Webster's Collegiate Dictionary)中所含的每一術語的描述中,每一定義在此以引用方式併入。
假設本文中的所有數值均由術語「約」修飾,無論是否明確指示。出於本發明的目的,範圍可表達為從「約」一個特定值到「約」另一特定值。當表達這樣的範圍時,另一實施例包括從一個特定值到另一特定值。由端點表述的數值範圍包括該範圍內包含的所有數值。數值範圍一到五包括例如數值1、1.5、2、2.75、3、3.80、4、5等。應進一步理解,每一範圍的端點相對於另一端點與獨立於另一端點都是重要的。當使用前置詞「約」將值表達為近似值時,應理解,該特定值形成另一實施例。術語「約」一般是指本領域的普通技術人員認為等同於所表述數值或具有相同功能或結果的一系列數值。類似地,前置詞「大體上」意思指在很大程度上但不完全地相同的形式、方式或程度,且特定要素將具有本領域的普通技術人員認為具有相同功能或結果的一系列配置。當使用前置詞「基本上」將特定要素表達為近似要素時,應理解,該特定要素形成另一實施例。
此外,出於本發明的目的,除非另外限制,否則術語「一(a/an)」實體是指一個或多個該實體。因而,術語「一(a/an)」、「一個或多個」及「至少一個」在本文中可互換使用。
因此,申請人應理解至少主張:i)本文中公開與描述的水採集器中的各者,ii)公開與描述的相關方法,iii)這些裝置及方法中的各者的類似、等效及甚至隱含變化形式,iv)實現所展示、公開或描述的功能中的各者的那些替代實施例,v)實現如所展示功能中的各者的那些替代設計與方法隱含於實現所公開與描述的功能,vi)展示為單獨與獨立發明的每一特徵、組件及步驟,vii)由所公開的各種系統或組件增強的應用,viii)由這類系統或組件產生的所得產品,ix)基本上如上文且參考隨附實例中的任一個所描述的方法及設備,x)先前所公開要素中的各者的各種組合與排列。
本專利申請的背景部分提供本發明所涉及的領域的陳述。本部分還可併入或含有對要求保護的發明的某些美國專利、專利申請、出版物或主題的轉述,其用於敘述本發明所涉及的技術狀態的信息、問題或顧慮。本文中引用或併入的任何美國專利、專利申請、出版物、聲明或其它信息並不意圖解譯為、解釋為或視為本發明的現有技術。
本說明書中闡述的申請專利範圍(如果有的話)特此以引用方式併入作為本發明的說明書的一部分,且申請人明確地保留使用這類請求項的此併入內容的全部或部分作為附加說明的權利,從而支持任何或所有請求項或其任何元件或組件;且根據界定本申請或其任何後續申請或接續、分割或部分接續申請所要求保護的主題或獲得依據任何國家或條約的專利法規、規則或條例減少費用的任何利益或遵守任何國家或條約的專利法規、規則或條例的需要,申請人進一步明確保留將這類請求項或其任何要素或組件的任何部分或全部併入內容從說明書移動到申請專利範圍中的權利,或反之亦然;且以引用方式併入的此內容應在本申請的整個未決期間繼續存續,該申請包括其任何後續的接續、分割或部分接續申請或對其做出的任何重新頒發或延期。
另外,本說明書中闡述的申請專利範圍(如果有的話)還意圖描述本發明的有限數目的優選實施例的範圍與界限,且不應解釋為本發明的最廣泛實施例或可要求保護的本發明的實施例的完整列表。申請人基於上述描述而不放棄進一步提出申請專利範圍作為任何接續、分割或部分接續或類似申請的一部分的權利。
可參考結合包括在說明書中的隨附圖式進行的以下描述最好地理解本申請。
[圖1]描繪基於熱泵的水採集系統的特定實施例的示意圖。
[圖2A]描繪包括配置成將完全或部分飽和MOF模組連續地移動到解吸附/冷凝單元的解吸附室中用於解吸附的旋轉圓盤傳送帶的基於熱泵的水採集系統的特定實施例。
[圖2B]描繪包括配置成在吸附單元與解吸附室之間切換MOF模組的多軸機械臂的基於熱泵的水採集系統的另一特定實施例。
[圖3]描繪解吸附室中「冷凝器」熱側熱交換器與MOF模組之間的熱耦合的特定實施例的示意圖。
[圖4]描繪配置用於水蒸氣冷凝及液態水收集的基於熱泵的水採集系統的特定實施例的示意圖。
[圖5]描繪基於熱泵的水採集系統的特定實施例的部分,其中測量循環空氣的溫度、濕度或速度與其組合。
[圖6]描繪配置為對空氣進行除濕-加濕並且可以操作以對室外空氣進行除濕以解決模式(i)的水採集系統的特定實施例。
[圖7]描繪配置為對空氣進行除濕-加濕並且可以操作以對室外空氣進行加濕以解決模式(ii)的水採集系統的特定實施例。
[圖8]描繪配置為對空氣進行除濕-加濕並且可以操作以對再循環的室內空氣進行除濕以處理模式(iii)的水採集系統的特定實施例。
[圖9A]描繪水採集系統的特定實施例,該水採集系統被配置為對空氣進行除濕-加濕並且可以操作以對再循環的室內空氣進行加濕以解決模式(iv),包括從空氣中吸附水。
[圖9B]描繪水採集系統的特定實施例,該水採集系統被配置為對空氣進行除濕-加濕並且可以操作以對再循環的室內進行加濕以解決模式(iv),包括將通過吸附從空氣中收集的水引入再循環室內空氣中。

Claims (25)

  1. 一種大氣水採集系統,其包含: 熱泵,其具有熱側熱交換器及冷側熱交換器; 吸附單元,其包含吸附劑模組,該吸附劑模組含有一種或多種吸附劑,該吸附單元與該熱泵物理上分離放置; 解吸附室,其連接到或定位成極為接近於該熱泵的該熱側熱交換器,該解吸附室配置成在平均解吸附溫度下操作; 傳送機構,其配置成:(i)將被水至少部分飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,及(ii)將從該解吸附室中至少部分地解吸附該水的該吸附劑模組傳送回到該吸附單元;以及 冷凝室,其包圍或定位成極為接近於該熱泵的該冷側熱交換器,其中該冷凝室配置成在平均冷凝溫度下操作。
  2. 根據請求項1所述的系統,其進一步包含: 水收集槽,其連接到該冷凝室,該水收集槽被配置為收集從該冷凝室冷凝的水; 水泵,其連接到該水收集槽,被配置為接收來自該收集槽的該水; 排水管,其連接到該收集槽; 噴霧器,其連接到該水泵並且定位成接近於室內出口; 旁路單元,其定位成接近於該吸附單元,被配置為從室外入口或室內入口傳送空氣; 吸附風扇,其定位成接近於該吸附單元及該旁路單元,以將空氣從該室外入口或該室內入口傳送到該吸附單元及該旁路單元中; 室內/室外入口風門,其被配置為控制空氣從該室外入口或該室內入口進入該吸附單元及該旁路單元的流動; 吸附風門,其被配置為將一部分氣流引導到該吸附單元中並且將一部分氣流引導到該旁路單元中;以及 室內/室外出口風門,其被配置為控制空氣從該吸附單元及該旁路單元流出進入室外出口或室內出口的流動, 該系統適於在以下各者之間切換操作:對從該室外入口到該室內出口的該空氣進行除濕的第一模式、對從室外入口到室內出口的空氣進行加濕的第二模式、對從該室內入口再循環到該室內出口的空氣進行除濕的第三模式、以及對從該室內入口再循環到該室內出口的空氣進行加濕的第四模式。
  3. 根據請求項2所述的系統,其中在該第一模式中: 該室內/室外入口風門關閉該室內入口並打開該室外入口,以將空氣從該室外入口傳送到該吸附單元及該旁路單元中; 該吸附風門控制進入該吸附單元的該部分氣流與進入該旁路單元的該部分氣流; 該室內/室外出口風門關閉該室外出口並打開該室內出口以將來自該吸附單元的除濕空氣傳送通過該室內出口;該傳送機構將至少部分被水飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,其中水從該吸附劑模組中所含的該一種或多種吸附劑中解吸附,其中從該一種或多種吸附劑中解吸附的該水在該冷凝室中冷凝; 在該冷凝室中冷凝的該水在該水收集槽中收集,其中在該水收集槽中收集的該水的至少一部分被傳送到排水管;且 該水泵保持在關閉狀態。
  4. 根據請求項2或3所述的系統,其中在該第二模式中: 該室內/室外入口風門關閉室內入口並打開該室外入口以將空氣從該室外入口傳送到該吸附單元及該旁路單元中; 該吸附風門關閉該旁路單元並打開該吸附單元; 該室內/室外出口風門部分地打開該室外出口與該室內出口,以將來自該吸附的除濕空氣通過該室內出口與通過該室外出口傳送; 該傳送機構將至少部分被水飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,其中水從該吸附劑模組中所含的該一種或多種吸附劑中解吸附,其中從該一種或多種吸附劑中解吸附的該水在該冷凝室中冷凝;以及 在該冷凝室中冷凝的該水在該水收集槽中收集,其中在該水收集槽中收集的該水的至少一部分被傳送到排水管; 該水收集槽中的該水的至少一部分通過該水泵傳送到該噴霧器以加濕通過該室內出口傳送的空氣,該排水管保持在關閉狀態。
  5. 根據請求項2至4中任一項所述的系統,其中在該第三模式中: 該室內/室外入口風門關閉該室外入口並打開該室內入口以將空氣從該室內入口傳送到該吸附單元及該旁路單元中; 該吸附風門控制進入該吸附單元的該部分氣流與進入該旁路單元的該部分氣流; 該室內/室外出口風門關閉該室外出口並打開該室內出口,以將來自該吸附單元的除濕空氣通過該室內出口傳送; 該傳送機構將至少部分被水飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,其中水從該吸附劑模組中所含的該一種或多種吸附劑中解吸附,其中從該一種或多種吸附劑中解吸附的該水在該冷凝室中冷凝; 在該冷凝室中冷凝的該水在該水收集槽中收集,其中在該水收集槽中收集的該水的至少一部分被傳送到排水管;且 該水泵保持在關閉狀態。
  6. 根據請求項2至5中任一項所述的系統,其中在該第四模式中,該系統以第一配置操作並且隨後該系統以第二配置操作,其中該系統在第一配置中: 該室內/室外入口風門關閉該室內入口並打開該室外入口,以將空氣傳送到該吸附單元及該旁路單元中; 該吸附風門關閉該旁路單元並打開該吸附單元; 該室內/室外出口風門關閉該室內出口並打開該室外出口以將來自該吸附單元的空氣通過該室外出口傳送; 該傳送機構將至少部分被水飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,其中水從該吸附劑模組中所含的該一種或多種吸附劑中解吸附,其中從該一種或多種吸附劑中解吸附的該水在該冷凝室中冷凝; 在該冷凝室中冷凝的該水收集在該水收集槽中,該水泵保持在關閉狀態,並且 其中該系統在該第二配置中: 該室內/室外入口風門關閉該室外入口並打開該室內入口,以允許空氣傳送到該吸收劑單元及該旁路單元中; 該吸附風門關閉該吸附單元並打開該旁路單元; 該室內/室外出口風門關閉該室外出口並打開該室內出口以將來自該旁路單元的空氣通過該室內出口傳送; 該水收集槽中的該水的至少一部分通過該水泵傳送到該噴霧器以加濕通過該室內出口傳送的空氣,該排水管保持在關閉狀態。
  7. 根據請求項1至6中任一項所述的系統,其中該系統在該平均解吸附溫度與該平均冷凝溫度下操作該系統以(i)實現用該一種或多種吸附劑產生的每升水的最低能量,及(ii)保持足夠高的解吸附溫度以維持目標解吸附速率。
  8. 根據請求項1至7中任一項所述的系統,其進一步包含至少一個再循環風扇,其配置成:(i)將熱量從該熱側熱交換器傳送到該解吸附室中的該吸附劑模組,及(ii)驅動水從該吸附劑模組解吸附,以實現在該解吸附室中產生較高濃度的水。
  9. 根據請求項1至8中任一項所述的系統,其進一步包含至少一個解吸附-冷凝器再循環風扇,其配置成:(i)將在該解吸附室中從該吸附劑模組解吸附的水傳送到該冷凝室,及(ii)將在該冷凝室中從該吸附劑模組解吸附的剩餘水再循環回到該解吸附室中。
  10. 根據請求項1至9中任一項所述的系統,其中該傳送機構包含旋轉圓盤傳送帶或機械臂。
  11. 根據請求項1至10中任一項所述的系統,其進一步包含次級熱側熱交換器。
  12. 根據請求項1至11中任一項所述的系統,其進一步包含一個或多個控制組件以調節該熱泵。
  13. 根據請求項1所述的系統,其中該系統進一步包含水收集槽。
  14. 根據請求項1至13中任一項所述的系統,其中一種或多種吸附劑包含金屬-有機框架。
  15. 根據請求項14所述的系統,其中該金屬-有機框架具有在約25℃下約20%相對濕度的等溫線階梯。
  16. 根據請求項15所述的系統,其中該解吸附溫度發生在約130℃至約140℃的範圍內,並且其中該冷凝溫度發生在約85℃至約95℃的範圍內。
  17. 根據請求項14所述的系統,其中該金屬-有機框架具有在約25℃下約40%相對濕度的等溫線階梯。
  18. 根據請求項17所述的系統,其中該解吸附溫度發生在約115℃至約125℃的範圍內,並且其中該冷凝溫度發生在約85℃至約95℃的範圍內。
  19. 根據請求項14所述的系統,其中該金屬-有機框架具有在約25℃下約60%相對濕度的等溫線階梯。
  20. 根據請求項19所述的系統,其中該解吸附溫度發生在約100℃至約110℃的範圍內,並且其中該冷凝溫度發生在約85℃至約95℃的範圍內。
  21. 一種使用根據請求項1、7至21中任一項所述的大氣水採集系統從周圍空氣採集水的方法,其包含: a)將周圍空氣抽吸到定位在該吸附單元中的該吸附劑模組中,其中該吸附劑模組從該周圍空氣中吸附水; b)一旦該吸附劑模組飽和到目標水量及/或吸附速率,使用該傳送機構將該吸附劑模組從該吸附單元傳送到該解吸附室; c)將空氣/水混合物吹過該熱泵的該熱側熱交換器通過定位在該解吸附室中的該吸附劑模組,以促進水從該吸附劑模組中解吸附; d)一旦該解吸附室達到目標水濃度,便將水傳送到該熱泵的該冷側熱交換器以冷凝該水; e)任選地重複c)及d),直到該解吸附室中的該吸附劑模組耗盡所吸附水;以及 f)使用該傳送機構將該解吸附室中的該吸附劑模組傳送到該吸附單元。
  22. 一種使用根據請求項2至21中任一項所述的系統控制來自周圍空氣的水分含量的方法,其包含: a)將周圍空氣抽吸到該系統中; b)取決於該模式,調整該室內/室外入口風門及/或該室內/室外出口風門的該位置,以引導來自該室外入口或該室內入口的空氣通過該吸附單元及/或該旁路單元的流動,從而對空氣進行除濕並通過該室內出口或該室外出口傳送所除濕空氣; c)當以加濕模式操作時,使用該水泵將收集的水從該水收集槽泵送到該噴霧器; d)當該系統以該加濕模式操作時加濕空氣; e)當該系統以除濕模式操作時,使用該排水管從該水收集槽中去除一部分收集的水; f)將該吸附劑模組定位在該吸附單元中,其中該吸附劑模組從該空氣中吸附水; g)一旦該吸附劑模組飽和到目標水量及/或吸附速率,便使用該傳送機構將該吸附劑模組從該吸附單元傳送到該解吸附室; h)將空氣/水混合物吹過該熱泵的該熱側熱交換器通過定位在該解吸附室中的該吸附劑模組以促進水解吸附; i)一旦該解吸附室達到目標水濃度,便將水從該解吸附室傳送到該熱泵的該冷側熱交換器; j)任選地重複h)及i),直到該解吸附室中的該吸附劑模組耗盡所吸附水;以及 k)在解吸附之後使用該傳送機構將該解吸附室中的該至少一個吸附劑模組傳送到該吸附單元。
  23. 根據請求項22或23所述的方法,其進一步包含在該平均解吸附溫度與該平均冷凝溫度下執行該方法以(i)實現用該吸附劑模組產生的每升水的該最低能量,及(ii)保持足夠高的解吸附溫度以維持目標解吸附速率。
  24. 一種製造大氣水採集系統的方法,其包含: 提供具有熱側熱交換器及冷側熱交換器的熱泵; 放置包含吸附劑模組的吸附單元,該吸附劑模組含有一種或多種吸附劑,該吸附單元與該熱泵物理上分離; 將解吸附室連接到該熱泵的該熱側熱交換器或定位成極為接近於該熱泵的該熱側熱交換器,該解吸附室配置成在平均解吸附溫度下操作; 配置傳送機構以(i)將至少部分被水飽和的該吸附劑模組從該吸附單元傳送到該解吸附室中,及(ii)將從該解吸附室中至少部分地解吸附的該水的該吸附劑模組傳送回到該吸附單元;以及 使冷凝室包圍或定位成極為接近於該熱泵的該冷側熱交換器,其中該冷凝室被配置為在平均冷凝溫度下操作。
  25. 根據請求項24所述的方法,其進一步包含: 將水收集槽連接到該冷凝室,該水收集槽配置為收集從該冷凝室冷凝的水; 將水泵連接到該水收集槽,配置為接收來自該收集槽的該水; 將排水管連接到該收集槽; 將噴霧器連接到該水泵並且定位成接近於室內出口; 將旁路單元定位成接近於該吸附單元,配置為將空氣從室外入口或室內入口傳送; 將吸附風扇定位成接近於該吸附單元及該旁路單元,以將空氣從該室外入口或該室內入口傳送到該吸附單元及該旁路單元中; 配置室內/室外入口風門以控制空氣從該室外入口或該室內入口到該吸附單元及該旁路單元的流動; 配置吸附風門以將一部分氣流引導到該吸附單元中並且將一部分氣流引導到該旁路單元中;以及 配置室內/室外出口風門以控制空氣從該吸附單元及該旁路單元到室外出口或室內出口的流動, 在以下各者之間切換該系統的操作:對從該室外入口到該室內出口的該空氣進行除濕的第一模式、對從室外入口到室內出口的空氣進行加濕的第二模式、對從該室內入口再循環到該室內出口的空氣進行除濕的第三模式以及對從該室內入口再循環到該室內出口的空氣進行加濕的第四模式。
TW111129383A 2021-08-23 2022-08-04 基於熱泵的水採集系統及其使用方法 TW202314168A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163236173P 2021-08-23 2021-08-23
US63/236,173 2021-08-23

Publications (1)

Publication Number Publication Date
TW202314168A true TW202314168A (zh) 2023-04-01

Family

ID=85230590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129383A TW202314168A (zh) 2021-08-23 2022-08-04 基於熱泵的水採集系統及其使用方法

Country Status (4)

Country Link
US (1) US20230063572A1 (zh)
CN (2) CN219080478U (zh)
TW (1) TW202314168A (zh)
WO (1) WO2023028020A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11559762B1 (en) * 2021-04-27 2023-01-24 Water Harvesting, Inc. Heat pump-based water harvesting systems, and methods of using thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018118377A1 (en) * 2016-12-20 2018-06-28 Massachusetts Institute Of Technology Sorption-based atmospheric water harvesting device
CN111132746B (zh) * 2017-09-21 2022-04-22 伯特利济康雅科夫工业有限公司 用于低能量大气水生成的装置和方法
JP7362604B2 (ja) * 2018-08-16 2023-10-17 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション 金属有機構造体ベースの水捕捉装置
WO2020154427A1 (en) * 2019-01-22 2020-07-30 Water Harvesting Inc. Water harvesting systems, and methods of using thereof
CN115209975A (zh) * 2020-02-14 2022-10-18 水收集公司 高效率大气集水器及其使用方法

Also Published As

Publication number Publication date
US20230063572A1 (en) 2023-03-02
WO2023028020A4 (en) 2023-05-04
WO2023028020A1 (en) 2023-03-02
CN219080478U (zh) 2023-05-26
WO2023028020A9 (en) 2024-02-29
CN115710951A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US7305849B2 (en) Sorptive heat exchanger and related cooled sorption process
JP5695752B2 (ja) 除湿システム
KR101071350B1 (ko) 클린룸용 하이브리드 제습냉방 외조기 시스템
KR101749194B1 (ko) 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
JP4816267B2 (ja) 湿度調節装置
KR101782839B1 (ko) 냉방과 습도 조절이 가능한 공기조화기와 그 제어방법
JP3992051B2 (ja) 空調システム
CN103090484B (zh) 一种温湿度独立控制空调系统及其使用方法
JP5862266B2 (ja) 換気システム
CN107246681A (zh) 一种外接冷源的小型户式溶液调湿新风机组
US20080083232A1 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
KR101436613B1 (ko) 냉방과 환기 및 가습이 가능한 지역 냉방용 제습 냉방시스템
CN219080478U (zh) 基于热泵的水采集系统
CN107575967A (zh) 一种适用于全年工况的热泵空调系统及其运行方法
KR102287900B1 (ko) 공기조화기
JP5496238B2 (ja) 空気調和装置
CN217654015U (zh) 湿度调节装置
KR101452420B1 (ko) 공기조화기
KR101361099B1 (ko) 공동주택 지역냉방을 위한 환기겸용 제습냉방 시스템
CN204153867U (zh) 柜式分体溶液调湿新风空调机
JP2001182967A (ja) 除湿空調装置
US11559762B1 (en) Heat pump-based water harvesting systems, and methods of using thereof
CN217785309U (zh) 一种新风空调系统
JP2011196562A (ja) 加湿装置
TW202305222A (zh) 熱泵集水系統及其使用方法