TW202312208A - 離子源及萃取板 - Google Patents

離子源及萃取板 Download PDF

Info

Publication number
TW202312208A
TW202312208A TW111132588A TW111132588A TW202312208A TW 202312208 A TW202312208 A TW 202312208A TW 111132588 A TW111132588 A TW 111132588A TW 111132588 A TW111132588 A TW 111132588A TW 202312208 A TW202312208 A TW 202312208A
Authority
TW
Taiwan
Prior art keywords
extraction
ion source
protrusion
height
extraction hole
Prior art date
Application number
TW111132588A
Other languages
English (en)
Other versions
TWI844929B (zh
Inventor
亞歷山大 利坎斯奇
艾力克斯恩德 S 培爾
傑 T 舒爾
本雄 具
羅伯特 C 林德柏格
彼得 F 庫魯尼西
格拉漢 萊特
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202312208A publication Critical patent/TW202312208A/zh
Application granted granted Critical
Publication of TWI844929B publication Critical patent/TWI844929B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/061Construction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/083Beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明公開一種具有萃取板的離子源,所述萃取板具有可變厚度。萃取板在其接近萃取孔的內部或外部表面上具有突起。突起增加某些區中萃取孔的厚度。這增加了那些區的損失面積,其充當離子和電子的匯點。以此方式,等離子體密度在萃取孔具有較大厚度的區中更顯著地降低。可修改突起的形狀以實現所要等離子體均勻性。因此,可能有可能產生具有更均勻離子密度的所萃取離子束。在一些測試中,束電流沿寬度方向的均勻性提高了20%到50%。

Description

可變厚度離子源萃取板
本公開描述用於提高從離子源,且更特定地從間接加熱陰極(indirectly heated cathode,IHC)離子源萃取的帶狀離子束的均勻性的系統。
本申請案要求2021年9月13日提交的美國專利申請案序號17/473,096的優先權,所述申請案的公開內容以全文引用的方式併入本文中。
使用多個工藝製造半導體裝置,所述工藝中的一些將離子植入到工件中。各種離子源可用於產生離子。一個此機制為間接加熱陰極(IHC)離子源。IHC離子源包括安置於陰極後方的燈絲。陰極可維持在比燈絲更正的電壓。當電流穿過燈絲時,燈絲發射熱電子,所述熱電子朝向更加帶正電的陰極加速。這些熱電子用來加熱陰極,繼而使得陰極將電子發射到離子源的腔室中。陰極安置在腔室的一個末端處。斥拒極通常安置在腔室的與陰極相對的末端上。
在某些實施例中,離子源配置成萃取帶狀離子束,其中帶狀離子束的寬度比帶狀離子束的高度大得多。不利的是,在許多系統中,所萃取帶狀離子束的束電流沿其寬度並不均勻。此不均勻性可能導致植入到工件中的離子的濃度不均勻。在其它實施例中,可利用束線中的額外組件(諸如四極透鏡)來嘗試補償此不均勻性。這些補救措施可能增加束線系統的額外複雜性和成本。
因此,如果存在一種可提高從離子源萃取的帶狀離子束的均勻性的系統,那麼將是有益的。此外,如果此系統可方便地用於現有離子源,那麼將是有利的。
公開一種具有萃取板的離子源,所述萃取板具有可變厚度。萃取板在其接近萃取孔的內部或外部表面上具有突起。突起增加某些區中萃取孔的厚度。這增加了那些區的損失面積,其充當離子和電子的匯點。以此方式,等離子體密度在萃取孔具有較大厚度的區中更顯著地降低。可修改突起的形狀以實現所要等離子體均勻性。因此,可能有可能產生具有更均勻離子密度的所萃取離子束。在一些測試中,束電流沿寬度方向的均勻性提高了20%到50%。
根據一個實施例,公開一種離子源。離子源包括:腔室,包括第一末端、第二末端以及連接第一末端與第二末端的多個壁,其中多個壁中的一者為具有萃取孔的萃取板,所述萃取孔具有大於其高度的寬度;以及等離子體產生器,在腔室內產生等離子體;其中萃取孔的厚度隨萃取孔的寬度而變化。在一些實施例中,萃取板包括突起以改變萃取孔的厚度。在某些實施例中,突起在至少一個位置處從萃取板的內部表面延伸至少1毫米到腔室中。在某些實施例中,突起在至少一個位置處從萃取板的外部表面朝外延伸至少1毫米。在一些實施例中,突起包括從第一末端到第二末端的恒定曲率半徑。在一些實施例中,突起包括三角形形狀。在一些實施例中,突起包括梯形形狀。在一些實施例中,突起的最大厚度在寬度方向上出現在萃取孔的中心處。在一些實施例中,萃取孔穿過突起,且萃取孔的邊緣在高度方向上逐漸變窄,使得腔室內部的萃取孔的高度大於萃取板的外部表面處的萃取孔的高度。在某些實施例中,萃取孔穿過突起,且萃取孔的邊緣使得腔室內部的萃取孔的高度等於萃取板的外部表面處的萃取孔的高度。在一些實施例中,在高度方向上在萃取孔上方的突起具有與在高度方向上在萃取孔下方的突起不同的厚度。在一些實施例中,突起在高度方向上僅安置于萃取孔的一側上。在一些實施例中,等離子體產生器包括安置於第一末端處的間接加熱陰極。
根據另一實施例,公開一種與離子源一起使用的萃取板。萃取板包括適於在腔室內的內部表面、外部表面以及具有大於其高度的寬度的萃取孔;其中萃取孔的厚度隨萃取孔的寬度而變化。在某些實施例中,萃取板包括內部表面或外部表面上的突起。在一些實施例中,突起的最大厚度在寬度方向上出現在萃取孔的中心處。在一些實施例中,萃取孔穿過突起,且萃取孔的邊緣在高度方向上逐漸變窄,使得腔室內部的萃取孔的高度大於萃取板的外部表面處的萃取孔的高度。在一些實施例中,萃取孔穿過突起,且萃取孔的邊緣使得腔室內部的萃取孔的高度等於萃取板的外部表面處的萃取孔的高度。
在一些實施例中,在高度方向上在萃取孔上方的突起具有與在高度方向上在萃取孔下方的突起不同的厚度。在某些實施例中,突起在高度方向上僅安置于萃取孔的一側上。
圖1繪示可用於萃取具有提高的均勻性的帶狀離子束的IHC離子源10。IHC離子源10包含腔室100,所述腔室100包括兩個相對末端和連接到這些末端的壁101。這些壁101包含側壁、萃取板103以及與萃取板103相對的底壁。萃取板103具有高度、寬度以及厚度。萃取板103包含在厚度方向上穿過萃取板103的萃取孔140。通過萃取孔140萃取離子。萃取孔140可在寬度方向(也稱為X方向)上比在高度方向(也稱為Y方向)上大得多。Z方向沿萃取板103的厚度定義且定義為帶狀離子束的行進方向。舉例來說,萃取孔140可在寬度方向上大於3英寸且在高度方向上小於0.3英寸。
腔室100的壁101可由導電材料構成且可彼此電連通。陰極110在腔室100中安置於腔室100的第一末端104處。燈絲160安置在陰極110後方。燈絲160與燈絲電源165連通。燈絲電源165配置成使電流穿過燈絲160,使得燈絲160發射熱電子。陰極偏壓電源115使燈絲160相對於陰極110負偏壓,因此當這些熱電子撞擊陰極110的背面時,所述熱電子從燈絲160朝向陰極110加速且加熱陰極110。陰極偏壓電源115可使燈絲160偏壓,使得燈絲具有比陰極110的電壓更負的電壓,所述電壓例如在200伏到1500伏之間。陰極110接著從其前表面將熱電子發射到腔室100中。
因此,燈絲電源165將電流供應到燈絲160。陰極偏壓電源115使燈絲160偏壓,使得燈絲比陰極110更負,從而使得電子從燈絲160朝向陰極110吸引。陰極110與電弧電壓電源111連通。電弧電壓電源111相對於腔室100將電壓供應到陰極。此電弧電壓加速在陰極處發射到腔室100中的熱電子以電離惰性氣體。由此電弧電壓電源111獲取的電流為通過等離子體驅動的電流量的測量值。在某些實施例中,壁101為其它電源提供接地參考。
在此實施例中,斥拒極120在腔室100中安置於腔室100的與陰極110相對的第二末端105中。陰極110的中心和斥拒極120的中心可在腔室100的中心軸109上形成兩個點。
斥拒極120可與斥拒極電源123電連通。顧名思義,斥拒極120用於使從陰極110發射的電子朝向腔室100的中心排斥返回。舉例來說,在某些實施例中,斥拒極120可相對於腔室100在負電壓下偏壓以排斥電子。舉例來說,在某些實施例中,斥拒極120相對於腔室100在0伏與-150伏之間偏壓。在某些實施例中,斥拒極120可相對於腔室100浮動。換句話說,當浮動時,斥拒極120未電連接到斥拒極電源123或腔室100。在此實施例中,斥拒極120的電壓往往會漂移到靠近陰極110的電壓的電壓。替代地,斥拒極120可電連接到壁101。
在某些實施例中,在腔室100中產生磁場190。此磁場意圖沿一個方向限制電子。磁場190通常平行於壁101從第一末端104延伸到第二末端105。舉例來說,可將電子限制在平行於從陰極110到斥拒極120的方向(即,x方向)的列中。因此,電子並不經歷電磁力以在x方向上移動。然而,電子在其它方向上的移動可能經歷電磁力。
一或多個氣體容器108可經由氣體入口106與腔室100連通。每一氣體容器108可包含品質流量控制器(mass flow controller;MFC)以便調節來自每一氣體容器的氣流。
萃取電源170可用于相對於束線中的其餘元件而使IHC離子源10的壁101偏壓。舉例來說,壓板260(參見圖2)可處於第一電壓,諸如接地,同時將正電壓施加到IHC離子源10,使得IHC離子源10比壓板260更正地偏壓。因此,由萃取電源170供應的稱為萃取電壓的電壓確定從IHC離子源10萃取的離子的能量。此外,由萃取電源170供應的電流為總的所萃取束電流的度量。
在某些實施例中,在陰極偏壓電源115與萃取電源170之間存在反饋回路。具體地,可能需要將所萃取束電流維持在恒定值。因此,可監測從萃取電源170供應的電流,且可調節陰極偏壓電源115的輸出以維持恒定萃取電流。此反饋回路可由控制器180執行或可以另一方式執行。
控制器180可與電源中的一或多者連通,使得可監測和/或修改由這些電源供應的電壓或電流。另外,控制器180可與每一氣體容器108的MFC連通以便調節進入腔室100的每一氣體的流量。控制器180可包含處理單元,諸如微控制器、個人電腦、專用控制器或另一合適的處理單元。控制器180也可包含非暫時性記憶元件,例如半導體記憶體、磁記憶體或另一合適的記憶體。此非暫時性記憶元件可含有允許控制器180執行本文中所描述的功能的指令和其它資料。舉例來說,控制器180可與陰極偏壓電源115連通以允許IHC離子源10相對於燈絲160改變施加到陰極的電壓。控制器180也可與斥拒極電源123連通以使斥拒極偏壓。此外,控制器180可能夠監測由陰極偏壓電源115供應的電壓、電流和/或電力。
圖2繪示使用圖1的IHC離子源10的離子植入系統。安置在IHC離子源10的萃取孔外部和附近的是一或多個電極200。
位於電極200下游的是品質分析器210。品質分析器210使用磁場引導所萃取離子束1的路徑。磁場根據離子的品質和電荷影響離子的飛行路徑。具有解析孔221的品質解析裝置220安置於品質分析器210的輸出端或遠端處。通過磁場的恰當選擇,只有帶狀離子束1中具有選定品質和電荷的那些離子將被引導通過解析孔221。其它離子將撞擊品質解析裝置220或品質分析器210的壁,且將不會在系統中進一步行進。
准直器230可安置於品質解析裝置220的下游。准直器230接受來自帶狀離子束1的離子,所述離子束穿過解析孔221且產生由多個平行或幾乎平行的細束形成的帶狀離子束。品質分析器210的輸出端或遠端和准直器230的輸入端或近端可相隔固定距離。品質解析裝置220安置於這兩個元件之間的空間中。
位於准直器230下游的可以是加速/減速級240。加速/減速級240可稱為能量純度模組。能量純度模組為配置成獨立地控制離子束的偏轉、減速和聚焦的束線透鏡組件。舉例來說,能量純度模組可為豎直靜電能量篩檢程式(vertical electrostatic energy filter;VEEF)或靜電篩檢程式(electrostatic filter;EF)。位於加速/減速級240下游的是壓板260。工件在處理期間安置於壓板260上。
返回到圖1,在此實施例中,萃取板103具有變化的厚度,其中萃取板103從面向腔室100的內部表面向內突起。換句話說,突起150從萃取板103的內部表面延伸到腔室中,且使得萃取板103的厚度變化。此突起150影響萃取孔140的厚度,其又影響安置于萃取孔140中的損失面積。對於在寬度方向上的特定位置,萃取孔140的厚度定義為萃取板103的內部表面與萃取板103的外部表面之間的距離。萃取孔140的厚度可在X方向或寬度方向上變化。
突起150為導電的且與腔室100的壁電連通。因此,當通過萃取孔140從腔室100萃取離子時,突起150可增加萃取板103的充當自由電子和離子的匯點的區。萃取孔140的較厚的區(即,在Z方向上較大)可具有較大損失面積,且因此可中和比萃取孔140的較薄的區更多的離子。以此方式,與具有較薄突起或無突起的區相比,可減小接近突起150的萃取孔140中的等離子體密度。作為實例,在某些實施例中,在腔室100的中心附近的等離子體密度可為最大的。通過在此區域中引入突起150,在腔室100的中心附近的萃取孔140可比萃取孔140的其它部分更厚,且等離子體密度可在此區域中減小。
因此,在某些實施例中,突起150從萃取板103的內部表面向內延伸到腔室100中。然而,萃取板103的背離腔室100的外部表面可不變且可保持平面。更具體地,在此實施例中,突起150在Z方向上延伸。此外,突起150的厚度(在Z方向上測量)可隨寬度方向(即,X方向)上的位置而變化。舉例來說,萃取板103的厚度可在萃取孔140的中心處最厚,且隨著遠離中心朝向第一末端104和第二末端105而減小。如本文中所使用的術語“萃取孔的中心”指代在X方向或寬度方向上的萃取孔的中心。
在某些實施例中,萃取板103的最薄部分與萃取板的最厚部分之間的最大差可在1毫米與5毫米之間。換句話說,突起可延伸到腔室100中至少1毫米。當然,可在其它實施例中使用其它尺寸。換句話說,離子穿過的萃取孔140的厚度可變化。
在某些實施例中,突起150可沿X方向具有平滑曲率半徑,類似於圖1中所繪示的曲率半徑。然而,其它曲率也是可能的。舉例來說,在第一末端104與萃取孔140的中心之間可存在第一曲率半徑,且在第二末端105與萃取孔140的中心之間可存在第二曲率半徑。此外,雖然圖1繪示延伸到第一末端104和第二末端105的突起150,但在其它實施例中,突起150可在寬度方向上較小,使得突起150開始於第一末端104與萃取孔140的第一邊緣141之間的位置處,且結束于萃取孔140的第二邊緣142與第二末端105之間的位置處,如圖3A中所繪示。
此外,突起150可具有其它形狀。舉例來說,如圖3B中所繪示,突起150可呈現為三角形形狀,其中萃取板103的厚度從第一末端104到萃取孔140的中心且從第二末端105線性地增加到萃取孔140的中心線性地增加。在另一實施例中,突起150開始於第一末端104與萃取孔140的第一邊緣141之間的位置處,且結束于萃取孔140的第二邊緣142與第二末端105之間的位置處。
替代地,突起150可為梯形的,其中萃取板103的厚度從第一末端104且從第二末端105到位於萃取孔140的中心附近的平坦區線性地增加,如圖3C中所繪示。在另一實施例中,突起150開始於第一末端104與萃取孔140的第一邊緣141之間的位置處,且結束于萃取孔140的第二邊緣142與第二末端105之間的位置處。
圖4A繪示根據一個實施例的萃取板103的內部表面的透視圖。圖4B繪示沿線A-A'截取的此萃取板103的橫截面視圖。在此實施例中,突起150開始於第一末端104處且延伸到第二末端105。此外,突起150在整個寬度方向上具有恒定曲率半徑。
在此實施例中,如在圖4B中最好地看到,突起150在Y方向或高度方向上沿萃取孔140從外部表面到內部表面逐漸變窄。換句話說,萃取孔140在高度方向上在萃取孔140的內部表面145處比在外部表面146處更高。在一些實施例中,錐形的斜率沿萃取孔140的寬度恒定。在其它實施例中,錐形的斜率可隨寬度而變化。舉例來說,在圖4A中,在萃取孔140的中心附近的斜率可能比在第一邊緣141和第二邊緣142附近的斜率更小。實際上,在邊緣附近,錐形可垂直於或幾乎垂直於萃取板103的外部表面。
圖4C繪示根據另一實施例的萃取板103的內部表面的透視圖。圖4D繪示沿線B-B'截取的此萃取板103的橫截面視圖。在此實施例中,萃取孔140在Y方向上的高度沿Z方向保持恒定。換句話說,如在圖4D中最好地看到,萃取孔140的頂部邊緣和底部邊緣垂直於平面外部表面。因此,萃取孔140的在內部表面145處的高度等於萃取孔140的在外部表面146處的高度。
雖然圖4A到圖4D繪示在高度方向上存在于萃取孔140的兩側上的突起150,但其它實施例也是可能的。舉例來說,在某些實施例中,突起150在高度方向上僅安置于萃取孔的一側上,如圖5A中所繪示。圖5A到圖5B表示腔室100的橫截面視圖。換句話說,萃取孔140在高度方向上劃分萃取板103。因此,在一些實施例中,突起150安置於萃取板103的在高度方向上位於萃取孔140上方的部分上。在其它實施例中,突起150安置於萃取板103的在高度方向上位於萃取孔140下方的部分上。
在其它實施例中,諸如圖5B中所繪示的實施例中,在萃取板103的位於萃取孔140上方的部分上的突起150的厚度可不同於在萃取板103的位於萃取孔140下方的部分上的突起150的厚度。在某些實施例中,較厚突起可位於萃取孔140上方,而在其它實施例中,較厚突起可位於萃取孔140下方。
另外,圖4A到圖4D和圖5A到圖5B繪示除萃取孔140周圍的區域之外,對於特定寬度位置,萃取板103的厚度對於所有高度值為恒定的。換句話說,在X方向上的某一位置處,萃取板103的厚度對於所有Y值為恒定的,但在萃取孔140附近除外。然而,其它實施例是可能的。舉例來說,沿高度方向可存在恒定曲率半徑,如圖6A中所繪示。替代地,可存在錐形,使得在高度方向上在萃取孔140的中點處的萃取板103的厚度大於在高度方向上的其它位置。此外,在某些實施例中,突起150可塑形為鰭,如圖6B中所繪示。在此實施例中,突起150的形狀可為矩形,且突起150接近萃取孔140安置。
此外,雖然圖1和圖3A到圖3C繪示在萃取孔140的中心處出現的突起150的最大厚度,但其它實施例也是可能的。舉例來說,突起150的最大厚度可接近第一末端104和/或第二末端105出現,如圖3D中所繪示。如果離子源在末端附近產生較高等離子體密度,那麼這可能是有益的。
另外,所有圖式繪示突起150關於萃取孔140的中心對稱。然而,其它實施例也是可能的。舉例來說,離子源內的等離子體密度可分佈以使得在第一末端104附近的密度大於在第二末端105附近的密度。在此情況下,與第二末端105相比,突起的最大(或最小)厚度可更靠近第一末端104出現,如圖3E中所繪示。
此外,突起150可能不對稱。實際上,突起150的厚度可在X方向上以任何所要圖案變化。
先前實施例和圖式均將突起150繪示且描述為在萃取板103的內部表面145上。然而,其它實施例也是可能的。舉例來說,如上文所解釋,萃取板103在Z方向上的厚度確定損失面積。因此,增加萃取孔140的厚度的任何機制將影響損失面積和被萃取的離子密度。
因此,在某些實施例中,諸如圖7中所繪示的實施例中,可在萃取板103的外部表面146上公開突起。在某些實施例中,萃取板103的最薄部分與萃取板的最厚部分之間的最大差可在1毫米與5毫米之間。換句話說,突起可從外部表面向外延伸至少1毫米。當然,可在其它實施例中使用其它尺寸。在這些實施例中,離子穿過的萃取孔140的厚度可變化。
此外,雖然圖7繪示具有從第一末端104到第二末端105的恒定曲率半徑的外部突起159,但本文中所描述的形狀中的任一者可與外部突起159一起使用。舉例來說,外部突起159可為三角形或梯形,如圖3B到圖3C中所繪示。此外,外部突起159可不從第一末端104延伸到第二末端105,如圖3A中所繪示。另外,外部突起159可在寬度方向上不對稱,如圖3E中所繪示。外部突起159可在末端處更厚,如圖3D中所繪示。另外,萃取孔140可在高度方向上逐漸變窄,如圖4B中所繪示,或不逐漸變窄,如圖4D中所繪示。外部突起159可在高度方向上不對稱,如圖5A到圖5B中所繪示。外部突起159可在高度方向上具有恒定曲率半徑,如圖6A中所繪示,或可塑形為鰭,如圖6B中所繪示。
上文將離子源描述為IHC離子源。然而,其它離子源也可與此萃取板103一起使用。舉例來說,磁化DC等離子體源、管狀陰極源、伯納斯離子源(Bernas ion source)以及電感耦合等離子體(inductively coupled plasma;ICP)離子源也可使用具有突起150的萃取板103。舉例來說,如果使用電感耦合等離子體(ICP)離子源,那麼壁101中的一者可由介電材料製成,使得來自外部天線的RF能量可傳遞到腔室100中。因此,萃取板可與具有各種不同等離子體產生器的離子源一起使用。
此外,雖然將壁101描述為導電的,但應理解,可不導電的內襯可抵靠壁101的內部表面安置。
本系統和方法具有許多優點。在不受特定理論限制的情況下,相信從腔室100萃取的一些離子通過與萃取板103接觸而變得中和。換句話說,萃取孔140的表面充當萃取離子時離子的損失面積。被中和的離子的數目或百分比可隨離子行進穿過萃取孔140的距離而變化。因此,通過使萃取板103在一些區中更厚,損失面積增加,且因此,被中和的離子的數目增加。
舉例來說,接近萃取孔的較薄部分的所萃取離子束的離子密度可減小第一百分比,例如50%。然而,接近萃取孔的較厚部分的所萃取離子束的離子密度可減小大於第一百分比的第二百分比,例如75%。通過在萃取板103上引入突起,可修改離子在通過萃取孔被萃取時橫穿的距離。突起充當自由電子和離子的匯點。這減小了接近突起150的萃取孔中的離子密度。
換句話說,儘管相信等離子體密度可在萃取孔140的中心附近較大,但通過增加此區中萃取孔140的厚度,可減小從此區萃取的離子的總數目。此外,如果已知萃取電流隨寬度而變化,那麼可能有可能恰當地塑形突起150以在寬度上適當地增加沿萃取孔140的損失面積,使得所萃取離子束電流沿寬度方向幾乎恒定。
在一個測試中,在萃取孔140的中心處,在沿X方向距中心左側1英寸的第一點以及在沿X方向距中心右側1英寸的第二點處測量束電流。將砷氣體引入IHC離子源10中且使其電離。萃取電源170在35千伏下偏壓。在未修改的萃取孔的情況下,第一點處的束電流為中心處的束電流的約90%,而第二點處的束電流為中心處的束電流的約80%。
接下來,安裝具有突起150的萃取板,所述突起150具有恒定曲率半徑且延伸約4毫米到腔室100中。重複以上實驗,且第一點處的束電流幾乎與中心處的束電流相同,而第二點處的束電流為中心中的束電流的約90%。這表示約50%的均勻性的提高。
在第二測試中,將磷氣體引入IHC離子源中且使其電離。萃取電源170在35千伏下偏壓。在未修改的萃取孔的情況下,第一點處的束電流為中心處的束電流的約93%,而第二點處的束電流為中心處的束電流的約67%。
接下來,安裝上文所描述的萃取且重複以上實驗。第一點處的束電流幾乎與中心處的束電流相同,而第二點處的束電流為中心中的束電流的約75%。這表示約30%的均勻性的提高。
執行額外測試,所述額外測試展示與傳統萃取板相比,帶狀離子束均勻性提高了20%到50%。
本公開將不限於本文中所描述的特定實施例的範圍。實際上,除本文中所描述的實施例和修改以外,本公開的其它各種實施例以及對本公開的修改將根據前述描述和隨附圖式對本領域的一般技術人員顯而易見。因此,此類其它實施例和修改意圖屬於本公開的範圍內。此外,儘管已出於特定目的在特定環境下在特定實施方案的上下文中描述了本公開,但本領域的一般技術人員將認識到,其有用性不限於此,且出於任何數目的目的,本公開可有利地在任何數目的環境中實施。因此,應鑒於如本文中所描述的本公開的整個廣度和精神來解釋下文所闡述的權利要求。
1:離子束 10:IHC離子源 100:腔室 101:壁 103:萃取板 104:第一末端 105:第二末端 106:氣體入口 108:氣體容器 109:中心軸 110:陰極 111:電弧電壓電源 115:陰極偏壓電源 120:斥拒極 123:斥拒極電源 140:萃取孔 141:第一邊緣 142:第二邊緣 145:內部表面 146:外部表面 150:突起 159:外部突起 160:燈絲 165:燈絲電源 170:萃取電源 180:控制器 190:磁場 200:電極 210:品質分析器 220:品質解析裝置 221:解析孔 230:准直器 240:加速/減速級 260:壓板 A-A'、B-B':線 X、Y、Z:方向
圖1為繪示根據一個實施例的IHC離子源的框圖。 圖2為使用圖1的IHC離子源的離子植入系統的方塊。 圖3A到圖3E為根據不同實施例的IHC離子源的框圖。 圖4A到圖4B分別為根據一個實施例的萃取板的透視圖和橫截面視圖。 圖4C到圖4D分別為根據另一實施例的萃取板的透視圖和橫截面視圖。 圖5A到圖5B為根據不同實施例的IHC離子源的橫截面視圖。 圖6A到圖6B為根據不同實施例的IHC離子源的橫截面視圖。 圖7繪示突起在外部表面上的IHC離子源的框圖。
10:IHC離子源
100:腔室
101:壁
103:萃取板
104:第一末端
105:第二末端
106:氣體入口
108:氣體容器
109:中心軸
110:陰極
111:電弧電壓電源
115:陰極偏壓電源
120:斥拒極
123:斥拒極電源
140:萃取孔
141:第一邊緣
142:第二邊緣
150:突起
160:燈絲
165:燈絲電源
170:萃取電源
180:控制器
190:磁場
X、Y、Z:方向

Claims (20)

  1. 一種離子源,包括: 腔室,包括第一末端、第二末端以及連接所述第一末端與所述第二末端的多個壁,其中所述多個壁中的一者為具有萃取孔的萃取板,所述萃取孔具有大於其高度的寬度;以及 等離子體產生器,在所述腔室內產生等離子體; 其中所述萃取孔的厚度隨所述萃取孔的所述寬度而變化。
  2. 如請求項1所述的離子源,其中所述萃取板包括突起以改變所述萃取孔的所述厚度。
  3. 如請求項2所述的離子源,其中所述突起在至少一個位置處從所述萃取板的內部表面延伸至少1毫米到所述腔室中。
  4. 如請求項2所述的離子源,其中所述突起在至少一個位置處從所述萃取板的外部表面朝外延伸至少1毫米。
  5. 如請求項2所述的離子源,其中所述突起包括從所述第一末端到所述第二末端的恒定曲率半徑。
  6. 如請求項2所述的離子源,其中所述突起包括三角形形狀。
  7. 如請求項2所述的離子源,其中所述突起包括梯形形狀。
  8. 如請求項2所述的離子源,其中所述突起的最大厚度在寬度方向上出現在所述萃取孔的中心處。
  9. 如請求項2所述的離子源,其中所述萃取孔穿過所述突起,且所述萃取孔的邊緣在高度方向上逐漸變窄,使得所述腔室內部的所述萃取孔的高度大於所述萃取板的外部表面處的所述萃取孔的所述高度。
  10. 如請求項2所述的離子源,其中所述萃取孔穿過所述突起,且所述萃取孔的邊緣使得所述腔室內部的所述萃取孔的高度等於所述萃取板的外部表面處的所述萃取孔的所述高度。
  11. 如請求項2所述的離子源,其中在高度方向上在所述萃取孔上方的所述突起具有與在所述高度方向上在所述萃取孔下方的所述突起不同的厚度。
  12. 如請求項2所述的離子源,其中所述突起在高度方向上僅安置於所述萃取孔的一側上。
  13. 如請求項1所述的離子源,其中所述等離子體產生器包括安置於所述第一末端處的間接加熱陰極。
  14. 一種與離子源一起使用的萃取板,包括: 適於在腔室內的內部表面、外部表面以及具有大於其高度的寬度的萃取孔; 其中所述萃取孔的厚度隨所述萃取孔的所述寬度而變化。
  15. 如請求項14所述的與離子源一起使用的萃取板,其中所述萃取板包括所述內部表面或所述外部表面上的突起。
  16. 如請求項15所述的與離子源一起使用的萃取板,其中所述突起的最大厚度在寬度方向上出現在所述萃取孔的中心處。
  17. 如請求項15所述的與離子源一起使用的萃取板,其中所述萃取孔穿過所述突起,且所述萃取孔的邊緣在高度方向上逐漸變窄,使得所述腔室內部的所述萃取孔的高度大於所述萃取板的外部表面處的所述萃取孔的所述高度。
  18. 如請求項15所述的與離子源一起使用的萃取板,其中所述萃取孔穿過所述突起,且所述萃取孔的邊緣使得所述腔室內部的所述萃取孔的高度等於所述萃取板的所述外部表面處的所述萃取孔的所述高度。
  19. 如請求項15所述的與離子源一起使用的萃取板,其中在高度方向上在所述萃取孔上方的所述突起具有與在所述高度方向上在所述萃取孔下方的所述突起不同的厚度。
  20. 如請求項15所述的與離子源一起使用的萃取板,其中所述突起在高度方向上僅安置於所述萃取孔的一側上。
TW111132588A 2021-09-13 2022-08-30 離子源及萃取板 TWI844929B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/473,096 2021-09-13
US17/473,096 US11810746B2 (en) 2021-09-13 2021-09-13 Variable thickness ion source extraction plate

Publications (2)

Publication Number Publication Date
TW202312208A true TW202312208A (zh) 2023-03-16
TWI844929B TWI844929B (zh) 2024-06-11

Family

ID=85478060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111132588A TWI844929B (zh) 2021-09-13 2022-08-30 離子源及萃取板

Country Status (6)

Country Link
US (1) US11810746B2 (zh)
JP (1) JP2024532936A (zh)
KR (1) KR20240052081A (zh)
CN (1) CN117941023A (zh)
TW (1) TWI844929B (zh)
WO (1) WO2023038771A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026997A (en) 1989-11-13 1991-06-25 Eaton Corporation Elliptical ion beam distribution method and apparatus
JP3982402B2 (ja) * 2002-02-28 2007-09-26 東京エレクトロン株式会社 処理装置及び処理方法
WO2010065018A1 (en) * 2008-12-04 2010-06-10 Thermogenesis Corp. Apparatus and method for separating and isolating components of a biological fluid
JP6388520B2 (ja) * 2014-10-17 2018-09-12 住友重機械イオンテクノロジー株式会社 ビーム引出スリット構造、イオン源、及びイオン注入装置
US10535499B2 (en) 2017-11-03 2020-01-14 Varian Semiconductor Equipment Associates, Inc. Varied component density for thermal isolation
US10325752B1 (en) * 2018-03-27 2019-06-18 Varian Semiconductor Equipment Associates, Inc. Performance extraction set
US10714296B2 (en) * 2018-12-12 2020-07-14 Axcelis Technologies, Inc. Ion source with tailored extraction shape
US10923306B2 (en) 2019-03-13 2021-02-16 Applied Materials, Inc. Ion source with biased extraction plate

Also Published As

Publication number Publication date
KR20240052081A (ko) 2024-04-22
TWI844929B (zh) 2024-06-11
US20230080083A1 (en) 2023-03-16
WO2023038771A1 (en) 2023-03-16
CN117941023A (zh) 2024-04-26
JP2024532936A (ja) 2024-09-10
US11810746B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
KR101464484B1 (ko) 이온 비임 임플란터를 위한 플라즈마 전자 플러드
EP1721329A2 (en) Modulating ion beam current
US8183542B2 (en) Temperature controlled ion source
JP5337028B2 (ja) 装置
US9443698B2 (en) Hybrid scanning for ion implantation
KR20110119727A (ko) 이온 주입에서 강화된 저 에너지 이온 빔 이송
US6686599B2 (en) Ion production device for ion beam irradiation apparatus
JP6379187B2 (ja) 基板電荷中和用ピンチ・プラズマブリッジ・フラッドガン
JP2016534495A5 (zh)
TWI844929B (zh) 離子源及萃取板
KR20120004999A (ko) 이온 주입 시스템들에서 이용되는 전극들을 위한 단부 종단
TWI847243B (zh) 離子源
US11651932B1 (en) Mismatched optics for angular control of extracted ion beam
TWI844991B (zh) 離子源及離子植入系統
TWI850898B (zh) 環狀運動加強型離子源
US20230187165A1 (en) Toroidal motion enhanced ion source