TW202311891A - 時脈產生裝置、控制器以及儲存裝置 - Google Patents

時脈產生裝置、控制器以及儲存裝置 Download PDF

Info

Publication number
TW202311891A
TW202311891A TW110133524A TW110133524A TW202311891A TW 202311891 A TW202311891 A TW 202311891A TW 110133524 A TW110133524 A TW 110133524A TW 110133524 A TW110133524 A TW 110133524A TW 202311891 A TW202311891 A TW 202311891A
Authority
TW
Taiwan
Prior art keywords
clock
correction
signal
calibration
counter
Prior art date
Application number
TW110133524A
Other languages
English (en)
Inventor
王蘭豐
Original Assignee
韓商愛思開海力士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓商愛思開海力士有限公司 filed Critical 韓商愛思開海力士有限公司
Priority to TW110133524A priority Critical patent/TW202311891A/zh
Priority to US17/559,337 priority patent/US20230073160A1/en
Publication of TW202311891A publication Critical patent/TW202311891A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • G06F13/1689Synchronisation and timing concerns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0307Stabilisation of output, e.g. using crystal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/64Generators producing trains of pulses, i.e. finite sequences of pulses
    • H03K3/66Generators producing trains of pulses, i.e. finite sequences of pulses by interrupting the output of a generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Electrotherapy Devices (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

時脈產生裝置、控制器以及儲存裝置。時脈產生裝置包括:時脈產生計數器,用以依據參考時脈的每一參考數的時脈週期來輸出時脈觸發訊號;校正計數器模組,用於輸出校正訊號,且包含用以依據該參考時脈的每一大於參考數的第一校正數的時脈週期來輸出第一校正時脈的第一校正計數器,校正訊號包含第一校正時脈;以及時脈產生器,在校正訊號處於第一狀態時依據時脈觸發訊號產生目標時脈訊號,在校正訊號處於第二狀態時依據校正訊號將時脈觸發訊號中相對應的脈波取消以產生目標時脈訊號。時脈產生裝置可實現於控制器或儲存裝置中。

Description

時脈產生裝置、控制器以及儲存裝置
本發明係關於一種時脈產生器,尤其是關於時脈產生裝置、控制器以及儲存裝置,可適用於互連協定的裝置。
現今行動裝置(如智慧型手機、平板電腦、多媒體裝置、穿戴式裝置之類的運算裝置)中產生和處理的資料量不斷增加,行動裝置內部的晶片對晶片的或受行動裝置影響的互連介面技術需要進一步的演進,從而達至能夠滿足更高的傳輸速度、低功耗運作、具可擴充性、支援多工處理、易於採用等目標。
為此,行動產業處理器介面(Mobile Industry Processor Interface, MIPI)聯盟開發出能夠符合上述目標的互連介面技術,例如關於實體層的MIPI M-PHY規範以及關於統一協定(Unified Protocol, UniPro)的MIPI UniPro規範。另一方面,聯合電子裝置工程委員會(Joint Electron Device Engineering Council, JEDEC)利用MIPI M-PHY規範及通用傳輸協定MIPI UniPro規範推出下一代高性能非揮發性記憶體標準,稱為通用快閃儲存(Universal Flash Storage, UFS),其可實現每秒十億位元等級的高速傳輸及低功耗運作,並具有高階行動系統所需的功能和可擴展性,從而有助於為業界快速的採用。
UFS標準利用UniPro規範來定義鏈接層中多個協定層,該等協定層包含有實體配接器層、資料鏈路層、網路層及傳輸層。由於UniPro規範主要定義各協定層的功能並且定義概念性的服務存取點(service access point)模型來規範各協定層所提供的服務的介面以供實現時作為依據,研發人員在符合UniPro規範的要求下,需要利用各自的技術方案,可能利用硬體、靭體或軟體作具體的實現。
在UniPro規範中,定義了許多閾值計時器(threshold timer)並與特定運作相關聯。例如:(1)鏈路啟動(link start)計時器用於防止鏈路啟動順序(sequence)中出現錯誤,當鏈路啟動順序在指定時間內未完成時,計時器發送超時訊號(timeout signal)以停止該順序。(2)休眠退出(hibernate exit)超時計時器用於防止休眠退出順序期間發生的錯誤。(3)實體配接器層控制協定(PHY Adapter Control Protocol,PACP)超時計時器用於防止在電源模式更改或休眠進入順序期間發生錯誤。
在依據UniPro規範的系統中,大多數閾值計時器的最小解析度為1微秒(10 -6s或1 μs)。1微秒的時脈(clock tick)通常可以由參考時脈產生。依據習知做法,例如參考時脈為19.2 MHz,則每經過19個參考時脈可產生1個接近於1 μs的時脈,這個產生的時脈的實際間隙時間為989.583333 ns,而不是 1000 ns。也就是說,在上述示例中產生的時脈相較於所欲得到的1微秒的時脈的偏差時間約為10.42 ns。隨著每個時脈,偏差時間會不斷的累積。最後,累積的偏差時間可能太大而無法管理,它會影響那些依靠這個產生的時脈的計時器的運作。
實施方式提供了一種時脈產生技術,適用於能夠依據互連協定鏈接一第二裝置的一第一裝置中。藉此技術,可以增強該互連協定中所用的計時器的準確度。
以下依據該技術提出各種實施方式,如用於互連協定的時脈產生裝置、控制器以及儲存裝置。
實施方式提供一種時脈產生裝置,其包括:一時脈產生計數器、一校正計數器模組、一時脈產生器。該時脈產生計數器,用以依據一參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號。該校正計數器模組,用於輸出一校正訊號。該校正計數器模組包含一第一校正計數器,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈,其中該第一校正數大於該參考數,該校正訊號包含該第一校正時脈。該時脈產生器,用以接收該時脈觸發訊號及該校正訊號以產生一目標時脈訊號,其中該時脈產生器在該校正訊號處於一第一狀態時,依據該時脈觸發訊號產生該目標時脈訊號;該時脈產生器在該校正訊號處於一第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
在一些實施例中,該校正計數器模組更包含一第二校正計數器,用以依據該參考時脈的每一第二校正數的時脈週期來輸出一第二校正時脈,其中該第二校正數大於該第一校正數,該校正訊號更包含該第二校正時脈。
在一些實施例中,該時脈產生器在該校正訊號包含的該第一校正時脈及該第二校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
在一些實施例中,該校正計數器模組更包含一第三校正計數器,用以依據該參考時脈的每一第三校正數的時脈週期來輸出一第三校正時脈,其中該第三校正數大於該第二校正數,該校正訊號更包含該第三校正時脈。
在一些實施例中,該時脈產生器在該校正訊號包含的該第一校正時脈、該第二校正時脈、該第三校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
在一些實施例中,該校正計數器模組包含:N個校正計數器,該N個校正計數器包含該第一校正計數器,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號更包含該第k校正時脈,N大於或等於4的整數,k為2至N中任一整數。
在一些實施例中,該時脈產生器在該校正訊號包含的該第一校正時脈至該第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
實施方式提供一種控制器,適用於能夠依據該互連協定鏈接一第二裝置的一第一裝置中,該控制器包括:一處理單元以及一時脈產生裝置。該時脈產生裝置與該處理單元耦接且包括:一時脈產生計數器、一校正計數器模組、一時脈產生器。該時脈產生計數器,用以依據一參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號。該校正計數器模組,用於輸出一校正訊號。該校正計數器模組包含一第一校正計數器,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈,其中該第一校正數大於該參考數,該校正訊號包含該第一校正時脈。該時脈產生器,用以接收該時脈觸發訊號及該校正訊號以產生一目標時脈訊號,其中該時脈產生器在該校正訊號處於一第一狀態時,依據該時脈觸發訊號產生該目標時脈訊號;該時脈產生器在該校正訊號處於一第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。其中當該處理單元啟動該時脈產生裝置時,該處理單元將該參考數的數值傳送至該時脈產生計數器及至少將該第一校正數的數值傳送至該第一校正計數器。
在控制器的一些實施例中,該校正計數器模組包含:N個校正計數器,該N個校正計數器包含該第一校正計數器,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號更包含該第k校正時脈,N大於或等於2的整數,k為2至N中任一整數。
在控制器的一些實施例中,該時脈產生器在該校正訊號包含的該第一校正時脈至該第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
實施方式提供一種儲存裝置,能夠依據一互連協定鏈接一主機,該儲存裝置包括:一介面電路以及一裝置控制器。該介面電路,用於實現該互連協定的一實體層以鏈接該主機。該裝置控制器,用於耦接到該介面電路和一儲存模組,其中該裝置控制器包括:一處理單元以及一如前述任一實施例中的時脈產生裝置。其中當該處理單元啟動該時脈產生裝置時,該處理單元將該參考數的數值傳送至該時脈產生計數器及至少將該第一校正數的數值傳送至該第一校正計數器。
在一些實施例中,該互連協定是通用快閃儲存(Universal Flash Storage, UFS)標準。
為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做詳細說明,說明如後。
以下實施方式提供了一種時脈產生技術,可以增強該互連協定中所用的計時器的準確度。以下的時脈產生的電路架構提供了一種靈活的方式,透過減少累積偏差時間來提高產生的目標時脈訊號的精確度,適合於依據UniPro規範的系統的使用。
請參考圖1,其為依據本發明之一實施方式的時脈產生裝置的示意方塊圖。如圖1所示,時脈產生裝置1包括:一時脈產生計數器10、一校正計數器模組20、一時脈產生器30。時脈產生裝置1用以依據一參考時脈來產生一目標時脈訊號STA,例如是在依據UniPro規範的系統中,大多數閾值計時器的最小解析度為1微秒(10 -6s或1 μs)的時脈訊號。誠然,本發明的實現並不受限於示例。
該時脈產生計數器10用以依據該參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號ST。參考時脈可以是時脈產生計數器10內建的時脈或是來自外部的時脈;參考時脈例如時市售振盪電路或計數器電路所能產生的時脈,如頻率為19.2 MHz、26 MHz、38.4 MHz、52 MHz中的一種或其他。時脈產生計數器可以為各種計數器電路來實現,或可程式化的計數器來實現。
該校正計數器模組20用於輸出校正訊號SA。該校正計數器模組20至少包含一個或多個校正計數器(即N=1或N>1)。例如,第一校正計數器21_1,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈SA_1,其中該第一校正數大於該參考數,該校正訊號SA包含該第一校正時脈SA_1。在一些實施例中,若校正計數器模組20包含N個校正計數器,該N個校正計數器除了包含該第一校正計數器21_1,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號SA更包含該第k校正時脈,N大於或等於2的整數,k為2至N中任一整數。校正計數器可以為各種計數器電路來實現,或可程式化的計數器來實現。又舉例而言,校正計數器的校正數可取決於對於該目標時脈訊號STA所需要的精確度。
該時脈產生器30,用以接收該時脈觸發訊號ST及該校正訊號SA以產生一目標時脈訊號STA,其中該時脈產生器30在該校正訊號SA處於一第一狀態(如低位準,表示不用校正)時,依據該時脈觸發訊號ST產生該目標時脈訊號STA;該時脈產生器30在該校正訊號SA處於一第二狀態(如高位準,表示需要校正)時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
在一些實施例中,該校正計數器模組20包含N個校正計數器時,該時脈產生器30可配置為在該校正訊號SA包含的第一校正時脈至第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
舉例而言,例如參考時脈為19.2 MHz,則時脈產生計數器10每經過19個參考時脈(此例中參考數為19)可產生1個接近欲得到的時脈(如1 μs)的時脈觸發訊號ST。時脈觸發訊號ST的實際每兩個脈波之間隙時間(gap time)或週期為989.583333 ns,而不是 1000 ns。也就是說,在此示例中產生的時脈相較於所欲得到的1微秒的時脈的偏差時間約為10.42 ns。隨著每個時脈,偏差時間會不斷的累積。
為了克服使用時脈產生計數器10所產生的時脈觸發訊號ST所造成的累積偏差並容忍參考時脈的不精確性,本發明藉由上述圖1的實施例提出了基於額外的計數器以得出更高準確度的目標時脈訊號STA的一種電路架構。依據 此架構,在實現時,目標時脈訊號STA可以依據時脈觸發訊號ST來產生,時脈觸發訊號ST可選取適當的參考時脈及參考數使時脈的脈波之間的差距較小,但最接近理想的欲得到的時脈(如1 μs)。為便於討論,將此時脈產生計數器10所產生的時脈觸發訊號ST的間隙時間(gap time)或週期命名為Tg。時脈觸發訊號ST與理想的欲得到的時脈(如1 μs)的最大偏差時間小於1個參考時脈週期時間,命名為Tr。
隨著時間的推移,偏差時間於每個時脈Tr會被累積。校正計數器模組20在累計偏差時間大於Tg時,所輸出的校正訊號SA會由第一狀態改變為第二狀態,並藉由時脈產生器30將1個已產生的脈波取消以校正累計偏差。
在一些實例中,時脈產生器30可以邏輯運算來對時脈觸發訊號ST的偏差作出校正,校正後的時脈觸發訊號ST可作為利用目標時脈訊號STA而輸出。例如,以校正訊號僅包含一個校正時脈(如以SA_1表示)的情況下,可以利用STA=ST∙SA_1’的邏輯運算來實現時脈產生器30。校正訊號包含多個校正時脈(如以SA_1、SA­_2表示)的情況下,可以利用STA=ST∙(SA_1+SA_2)’= ST∙SA_1’∙SA_2’的邏輯運算來實現時脈產生器30。請參考圖2的一個示例中,利用邏輯和及邏輯否的邏輯閘以STA=ST∙SA_1’∙SA_2’的邏輯運算來實現時脈產生器30。誠然,時脈產生器30當可以利用其他任何合適的邏輯電路的形式來實現,如STA=ST∙(SA_1+SA_2)’或其他,故並不受限於此上述示例。至於校正時脈的數量為3以上時,可參考上述實施例而如此類推。
在一些實例中,為克服累積偏差時間,校正計數器模組20可以包含N個校正計數器,相當於有N級的校正(或可稱補償)的邏輯,以在特定時間段內實現產生的理想欲得到的時脈(如1 μs)的目標精確度。
在一些實例中,當要啟動時脈產生裝置時,可以利用處理單元(如靭體方式)將參考數的數值傳送至時脈產生計數器10,及至少將該第一校正數的數值傳送至第一校正計數器21_1。若校正計數器模組20包含N個校正計數器,該處理單元(如靭體方式)可以將N個對應至校正計數器21_1~21_N的用來產生對應的校正時脈的第1校正數至第N校正數的數值分別傳送至校正計數器21_1~21_N中,例如是校正計數器的暫存器中。藉此,時脈產生計數器10以及該等校正計數器21_1~21_N將以運作。
舉例而言,請參考圖2,其顯示時脈產生計數器10的一種實施例。如圖2的實施例中,時脈產生計數器10例如可包含計數器110及比較器120。計數器110例如為遞增計數器,計數器110接收一參考時脈。比較器120接收計數器110的輸出訊號以及代表一參考數的參考數訊號130來進行比較。當比較器120判斷該輸出訊號滿足該參考數,則輸出時脈觸發訊號ST的一個脈波,從而實現時脈產生計數器10依據該參考時脈的每一參考數的時脈週期來輸出時脈觸發訊號ST。此外,時脈觸發訊號ST的脈波亦可作為重置訊號,用來重置計數器110。
舉例而言,圖2所示的時脈產生計數器10亦可配置為能夠接收從前述實施例中的處理單元(如靭體方式)所傳送來的參考數訊號130。在一些實施例中,可以設置記憶單元(如暫存器或任何合適的記憶元件)於時脈產生計數器10中或以外來儲存該參考數訊號130且該記憶單元用以提供參考數給比較器120。在另一實施例中,時脈產生計數器10可配置為具有參考數訊號130為數值而不必依靠外部的裝置來提供參考數。
舉例而言,校正計數器模組20中的校正計數器(如第一校正計數器21_1~第N校正計數器21_N)亦可依據前述時脈產生計數器10的任何一種實施例或其組合而加以實現。例如,校正計數器(如第一校正計數器21_1或第二校正計數器21_2)包含一計數器及一比較器;該比較器接收該計數器的輸出訊號以及代表一校正數的校正數訊號來進行比較。當該比較器判斷該輸出訊號滿足該校正數,則輸出校正時脈(如SA_1或SA_2)的一個脈波,從而實現校正計數器依據該參考時脈的每一校正數的時脈週期來輸出一校正時脈(如SA_1或SA_2)。誠然,時脈產生計數器10或校正計數器模組20當可以利用其他任何合適的計數器及/或邏輯電路來實現,故並不受限於此上述示例。
透過圖1的電路架構所使用機制,可以突破習知計時器電路對時脈準確度的限制,促進對參考時脈週期更高精確度的要求能夠得以實現。圖1的電路架構用於實現互連協定中的計時器,例如,可以產生精確的微秒級(如1 μs、2 μs或以上,或小於1 μs)的時脈(clock tick)。透過增加或減少校正計數器模組20中的校正計數器的個數(或稱級別),可以靈活地在特定時間段內以適當的硬體資源實現目標偏差。
以下利用校正計數器模組具有3個校正計數器為例,說明依據圖1的電路架構。請參考圖3A,其為依據本發明之一實施方式的時脈產生裝置的示意方塊圖。
如圖3A所示,時脈產生裝置1A包括:一時脈產生計數器10、一校正計數器模組20A、一時脈產生器30A。在圖3A中,時脈產生計數器10與圖1中的相同,故不再贅述。
如圖3A所示,校正計數器模組20A,用於輸出一校正訊號SA。該校正計數器模組20包含第一校正計數器21_1,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈SA_1,其中該第一校正數大於該參考數,該校正訊號SA包含該第一校正時脈SA_1。該校正計數器模組20A更包含一第二校正計數器21_2,用以依據該參考時脈的每一第二校正數的時脈週期來輸出一第二校正時脈SA_1,其中該第二校正數大於該第一校正數,該校正訊號SA更包含該第二校正時脈SA_2。該校正計數器模組20A更包含一第三校正計數器21_3,用以依據該參考時脈的每一第三校正數的時脈週期來輸出一第三校正時脈SA_3,其中該第三校正數大於該第二校正數,該校正訊號SA更包含該第三校正時脈SA_3。
該時脈產生器30A,用以接收該時脈觸發訊號ST及該校正訊號SA以產生一目標時脈訊號STA,其中該時脈產生器30A在該校正訊號SA處於一第一狀態(如低位準,表示不用校正)時,依據該時脈觸發訊號ST產生該目標時脈訊號STA;該時脈產生器30A在該校正訊號SA處於一第二狀態(如高位準,表示需要校正)時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
在一些實施例中,該時脈產生器30A在該校正訊號SA包含的該第一校正時脈SA_1及該第二校正時脈SA_2中任一校正時脈處於該第二狀態時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
在一些實施例中,該時脈產生器30在該校正訊號SA包含的該第一校正時脈、該第二校正時脈、該第三校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
請參考圖3B,上方的脈波示意時脈觸發訊號ST,其中當校正訊號SA中任一校正時脈處於該第二狀態(如高位準或邏輯1),該時脈產生器30A將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。在圖3B中,該時脈觸發訊號ST中被取消的脈波以虛線來示意,而該目標時脈訊號STA中對應於被取消的脈波的位置則是處於第一狀態(如低位準或邏輯0)。
以上提及透過增加或減少校正計數器模組20中的校正計數器的個數(或稱級別),可以靈活地在特定時間段內以適當的硬體資源實現目標偏差。故以下舉一些實施例以詳細說明,依據圖1的電路架構,實現多個(或稱級別)校正計數器以滿足不同精確度的需求。
在以下一些實施例中,假設:(1)物理參考時脈的週期時間為 52.08 ns(參考時脈頻率為 19.2 MHz);(2)目標是要產生1微秒的時脈(clock tick);(3)目標是使偏差時間在24小時內小於 1 ppb。此外,利用圖1的時脈產生裝置1的架構,可透過以下步驟1~6來計算多個(或稱級別)校正計數器的參數。
步驟 1 :計算時脈產生計數器10的參考數的值。目標是產生1微秒的時脈。由於1000/52.08=19.20122887864823,取其商數,故取參考數為19。藉此,時脈產生計數器10所產生的時脈觸發訊號ST的物理的週期是 19*52.08 = 989.52 ns。每個產生的時脈與理想 1 μs 的偏差時間為 1000 – 989.52 = 10.48 ns。
步驟 2:計算第一校正計數器21_1的第一校正數的值。時脈產生計數器10的偏差時間會隨著時間的推移而累積。故計算產生多少個時脈的脈波後,累計偏差時間會超過時脈觸發訊號ST的一個脈波:989.52/10.48 = 94.4198。此表示產生95個脈波後,累計偏差時間超過時脈觸發訊號ST的一個脈波的時間。這種偏差可以透過取消時脈觸發訊號ST的第 95 個產生的脈波來校正,則取第一校正數為19。在取消動作後,當目標時脈訊號STA的下一個脈波處於作用狀態(asserted)時,即目標時脈訊號STA的實際的第95個脈波輸出時,其對應的實際時間間隔為: 989.52*95 + 989.52 = 94993.92 ns。在 95 個產生的脈波之後,利用第一校正計數器21_1來作校正(或稱第一級校正)的偏差時間為:95000 – 94993.92 = 6.08 ns。
步驟 3:計算第二校正計數器21_2的第二校正數的值。第一級校正的偏差時間6.08 ns將會累積。計算累積偏差時間將超過一個實際產生的脈波時間的輪數(每輪 95個脈波):989.52/6.08 = 162.75,即每產生95*163個脈波,就需要取消1個脈波,以校正由於第一級校正的偏差時間(如6.08 ns)所引入的累積偏差時間,故取第二校正數為95*163。這個95*163個脈波的實際時間間隔是:94993.92*163 + 989.52 = 15484995.48 ns。那麼在95*163個產生的脈波後,利用第二校正計數器21_2來作校正(或稱第二級校正)的偏差時間為:15484500 - 15484995.48 = 4.52 ns。
步驟 4:計算第三校正計數器21_3的第三校正數的值。同樣,第二級校正的偏差時間4.52 ns將會累積。計算累積的第二級校正的偏差時間會超過一個實際產生的脈波時間有多少輪(每輪95*163個脈波):989.52/4.52=218.920。即每產生95*163*219個脈波,就需要取消1個產生的脈波,以校正由於第二級校正的偏差時間(如4.52ns)所引入的偏差時間,故取第三校正數為95*163*219。這95*163*219個脈波的實際時間間隔是:15484995.48*219 + 989.52 = 3391214999.64 ns。在95*163*219個脈波之後,利用第三校正計數器21_3來作校正(或稱第三級校正)的偏差時間為: 3391215000 – 3391214999.64 = 0.36 ns。3391215000 ns 大約是 3.391 秒。
步驟 5:計算第四校正計數器21_4的第四校正數的值。第三級校正的偏差時間0.36 ns將會累積。計算累積的第三級校正的偏差時間將超過一個實際產生的脈波時間有多少輪:989.52/0.36=2748.66667。那麼每產生95*163*219*2749個脈波,就需要取消1個產生的脈波,以校正由於第三級校正的偏差時間(如0.36 ns)所引入的偏差時間,故取第四校正數為95*163*219*2749。這95*163*219*2749個脈波的實際時間間隔是:3391214999.64*2749 + 989.52 = 9322450034999.88 ns。在95*163*219*2749個脈波之後,利用第四校正計數器21_4來作校正(或稱第四級校正)的偏差時間為:9322450035000 - 9322450034999.88 = 0.12 ns。9322450035000 ns 約為 9322.450 秒(2.589 小時),而偏差時間為 0.12 ns。
步驟 6:計算第五校正計數器21_5的第五校正數的值。第四級校正的偏差時間0.12 ns將會累積。計算累積的第四級校正的偏差時間將超過一個實際產生的脈波時間有多少輪:989.52/0.12=8246。那麼每產生95*163*219*2749*8246個脈波,就需要取消1個產生的脈波,以校正由於第四級校正的偏差時間(如0.12 ns)所引入的偏差時間,故取第五校正數為95*163*219*2749*8246。這95*163*219*2749*8246個脈波的實際時間間隔是:9322450034999.88*8246 + 989.52 = 76872922988610000 ns。在95*163*219*2749*8246個脈波之後,利用第五校正計數器21_5來作校正(或稱第五級校正)的偏差時間為:76872922988610000 - 76872922988610000 = 0 ns。76872922988610000 ns 約為 76872922.98 秒(21353.589 小時),而偏差時間為0 ns。
由上述實施例的步驟1~6可見,透過增加或減少校正計數器模組20中的校正計數器的個數(或稱級別),並可確定每個校正計數器的參數,故可以靈活地在特定時間段內以適當的硬體資源實現目標偏差。例如,可以依據設計對精確度的要求,取多個級別的校正中的一種級別,並依據圖1的架構來實現時脈產生裝置。又上述步驟1~6所涉及的計算參數方式亦可利用運算裝置或處理單元來自動執行。
在實現時,更可利用處理單元(如靭體方式)或可程式化的方式來實現時脈產生裝置。以下利用一儲存系統的電路架構的實施方式來加以說明。
為便於理解及說明,以下更依據該技術提供一種電路架構的實施方式,這種電路架構具足夠彈性及能夠有效率地被配置來滿足不同產品的需求,以適應各種廠商的設計而有助於產品開發。如圖4所示,這種電路架構應用於儲存系統1000時,儲存系統1000的主機1010的控制器(如主機控制器1012)或儲存系統1001的儲存裝置1020的控制器(如裝置控制器1022)可分別實現為包括硬體協定引擎及處理單元的電路架構,其中該控制器的處理單元為可選的。又依據用於互連協定的資訊配置的技術的方法將揭示於圖3A。
請參考圖4,其為依據本發明之一實施方式的儲存系統的示意方塊圖。如圖4所示,儲存系統1000包括主機1010及儲存裝置1020。主機1010及儲存裝置1020之間透過一種互連協定來通訊,從而讓主機1010對儲存裝置1020進行資料的存取。該互連協定例如是通用快閃儲存(Universal Flash Storage, UFS)標準。主機1010例如是智慧型手機、平板電腦、多媒體裝置之類的運算裝置。儲存裝置1020例如是該運算裝置內部或外部的儲存裝置,例如是基於非揮發性記憶體的儲存裝置。儲存裝置1020可以在主機1010的控制下寫入資料或向主機1010提供被寫入資料。儲存裝置1020可以被實現為固態儲存裝置(SSD),多媒體卡(MMC),嵌入式MMC(eMMC)、安全數位(SD)卡或通用快閃儲存(UFS)裝置,然而本揭露內容的實現並不受限於上述示例。
主機1010包括主機介面1011、主機控制器1012及應用處理器1016。
主機介面1011用於實現該互連協定的一實體層以鏈接該儲存裝置1020。例如,主機介面1011用以實現UFS標準的實體(M-PHY)層。
主機控制器1012耦接於主機介面1011與應用處理器1016之間。當應用處理器1016需要對儲存裝置1020進行資料的存取時,發出代表對應的存取動作指令至主機控制器1012,透過該互連協定與儲存裝置1020溝通,從而達成對儲存裝置1020進行資料的存取。
主機控制器1012包括硬體協定引擎1013及處理單元1014。其中處理單元1014為可選的。
硬體協定引擎1013用於實現該互連協定的一鏈接層。就以該互連協定為UFS標準為例,該鏈接層為統一協定(Unified Protocol, UniPro)層。硬體協定引擎1013依據該鏈接層的規範來與主機介面1011及處理單元1014進行溝通及資訊的轉換。
處理單元1014,其與該硬體協定引擎1013耦接,用以與應用處理器1016進行通訊。處理單元1014可執行一個或多個韌體。例如應用處理器1016所執行的作業系統、驅動程式或應用程式所發出的存取動作指令透過處理單元1014所執行的韌體轉換為符合該互連協定的鏈接層的指令格式,並繼而發送至硬體協定引擎1013以依據該鏈接層的規範來進行處理。韌體例如可儲存於處理單元1014的內部記憶體,或儲存於主機控制器1012的內部記憶體,其中內部記憶體可包括揮發性記憶體及非揮發性記憶體。
儲存裝置1020包括裝置介面1021、裝置控制器1022及儲存模組1026。
裝置介面1021用於實現該互連協定的一實體層以鏈接該主機1010。例如,主機介面1021用以實現UFS標準的實體(M-PHY)層。
裝置控制器1022耦接於裝置介面1021與儲存模組1026之間。裝置控制器1022可以控制儲存模組1026的寫入運作、讀取運作或抹除運作。裝置控制器1022可以透過地址匯流排或資料匯流排與儲存模組1026交換資料。儲存模組1026例如包含一個或多個非揮發性記憶體的記憶體晶片。
裝置控制器1022包括硬體協定引擎1023及處理單元1024。其中處理單元1024為可選的。
硬體協定引擎1023用於實現該互連協定的一鏈接層。就以該互連協定為UFS標準為例,該鏈接層為UniPro層。硬體協定引擎1013依據該鏈接層的規範來與裝置介面1021及處理單元1024進行溝通及資訊的轉換。
處理單元1024,其與該硬體協定引擎1023耦接,用以透過裝置介面1021而與主機1010進行通訊。處理單元1024可執行一個或多個韌體。例如處理單元1024執行一個或多個韌體來控制或指示儲存模組1026的寫入運作、讀取運作或抹除運作,對來自硬體協定引擎1023的訊息作處理或將訊息發送至硬體協定引擎1023。韌體例如可儲存於處理單元1024的內部記憶體、裝置控制器1022的內部記憶體,或儲存模組1026的特定儲存區域,其中內部記憶體可包括揮發性記憶體及非揮發性記憶體。
如圖4所示,主機介面1011能夠透過用於發送/接收資料的資料線Din和Dout、用於發送硬體重置訊號的重置線RST、用於發送資料的時脈線CLK而與裝置介面1021耦接。資料線Din和Dout可以被實現為多對,其中一對的資料線Din或Dout可稱為一個通道(lane)。主機介面1011可以使用至少一種介面協定與裝置介面1021行通信,介面協定諸如移動工業處理器介面(MIPI)、通用快閃儲存(UFS)、小型計算機系統介面(SCSI)或串行連接的SCSI(SAS),然而本揭露內容的實現並不受限於上述示例。
基於圖4所示的控制器(如主機控制器12或裝置控制器22)可分別實現為包括硬體協定引擎及處理單元的電路架構。
在依據如圖4的一些實施方式中,提供一種控制器(如圖4的主機控制器1012或裝置控制器1022),適用於能夠依據互連協定(如UFS標準)鏈接一第二裝置的一第一裝置中,該控制器包括:一處理單元(如圖4的1014或1024);以及一時脈產生裝置(如圖1的1)。該時脈產生裝置1與該處理單元耦接。其中當該處理單元啟動該時脈產生裝置1時,該處理單元將該參考數的數值傳送至該時脈產生計數器10及至少將該第一校正數的數值傳送至該第一校正計數器。
在控制器的一些實施例中,該校正計數器模組20包含:N個校正計數器,該N個校正計數器包含該第一校正計數器,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號SA更包含該第k校正時脈,N大於或等於2的整數,k為2至N中任一整數。
在控制器的一些實施例中,該時脈產生器30在該校正訊號SA包含的該第一校正時脈至該第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號SA將該時脈觸發訊號ST中相對應的脈波取消以產生該目標時脈訊號STA。
在依據如圖4的實施方式,提供一種儲存裝置(如圖4的1020),能夠依據一互連協定(如UFS標準)鏈接一主機(如圖4的1010),該儲存裝置包括:一介面電路(如圖4的1021)以及一裝置控制器(如圖4的1022)。該介面電路,用於實現該互連協定的一實體層以鏈接該主機。該裝置控制器,用於耦接到該介面電路和一儲存模組,其中該裝置控制器包括:一處理單元(如圖4的1024)以及一如前述任一實施例中的時脈產生裝置1。其中當該處理單元啟動該時脈產生裝置1時,該處理單元將該參考數的數值傳送至該時脈產生計數器10及至少將該第一校正數的數值傳送至該第一校正計數器。
舉例而言,時脈產生裝置(如圖1的1)可設置或實現於圖4的控制器(如主機控制器1012或裝置控制器1022)之中。例如,時脈產生裝置(如圖1的1)可實現於圖4的硬體協定引擎1013或硬體協定引擎1023之中。又例如,時脈產生裝置(如圖1的1)可設置或實現於圖4的控制器(如主機控制器1012或裝置控制器1022)之中,且在圖4的硬體協定引擎(如1013或1023)以外。又例如,時脈產生裝置(如圖1的1)可設置或實現於圖4的控制器(如主機控制器1012或裝置控制器1022)的處理單元(如圖4的1014或1024)中。
此外,前述實施例提出可以依據設計對精確度的要求,取多個級別的校正中的一種級別,並依據圖1的架構來實現時脈產生裝置,亦可應用於前述基於圖4的實施例中。又前述實施例的多個級別的校正的計算參數方式(如步驟1~6)亦可利用處理單元(如圖4的1014或1024)來自動執行以產生(如參考數、多個校正數中至少一者)。在另一些實施例中,處理單元(如圖4的1014或1024)亦可儲存參數(如參考數、多個校正數中至少一者)而不必進行計算。誠然,本發明的實現並不受上述示例的限制;各種實施例在合適的情況下可作各種結合。
此外,在上述關於主機和儲存裝置的實施例中,主機控制器或裝置控制器中的硬體協定引擎是可以基於使用硬體描述語言(HDL)如Verilog語言或本領域技術人員所熟悉的數位電路的任何其他設計方法的技術進行設計,並且可以基於使用現場可程式邏輯閘陣列(field programmable gate array, FPGA)、或特定積體電路(application specific integrated circuit,ASIC)或複雜可編程邏輯器件(CPLD)之類的電路中之一個或多個電路來實現,亦可使用專屬的電路或模組來實現。主機控制器或裝置控制器(或其中的處理單元或硬體協定引擎)也可以基於微控制器、處理器、或數位訊號處理器來實現。
本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。
1、1A:時脈產生裝置 10:時脈產生計數器 20、20A:校正計數器模組 21_1、21_2、21_3~21_N:第一校正計數器、第二校正計數器、第三校正計數器~第N校正計數器 30、30A:時脈產生器 110:計數器 120:比較器 130:參考數訊號 1000:儲存系統 1010:主機 1011:主機介面 1012:主機控制器 1013:硬體協定引擎 1014:處理單元 1016:應用處理器 1020:儲存裝置 1021:裝置介面 1022:裝置控制器 1023:硬體協定引擎 1024:處理單元 1026:儲存模組 CLK:時脈線 Din、Dout:資料線 RST:重置線 ST:時脈觸發訊號 STA:目標時脈訊號 SA:校正訊號 SA_1:第一校正時脈 SA_2:第二校正時脈 SA_3:第三校正時脈 SA_N:第N校正時脈
圖1為依據本發明之一實施方式的時脈產生裝置的示意方塊圖。 圖2為時脈產生裝置的一種實施例的示意方塊圖。 圖3A為依據本發明之一實施方式的時脈產生裝置的示意方塊圖。 圖3B為依據本發明之一實施方式的時脈產生裝置的波形的示意圖。 圖4為依據本發明之一實施方式的儲存系統的示意方塊圖。
1:時脈產生裝置
10:時脈產生計數器
20:校正計數器模組
21_1:第一校正計數器
21_N:第N校正計數器
30:時脈產生器
ST:時脈觸發訊號
STA:目標時脈訊號
SA:校正訊號
SA_1:第一校正時脈
SA_N:第N校正時脈

Claims (14)

  1. 一種時脈產生裝置,其包括: 一時脈產生計數器,用以依據一參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號; 一校正計數器模組,用於輸出一校正訊號,該校正計數器模組包含: 一第一校正計數器,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈,其中該第一校正數大於該參考數,該校正訊號包含該第一校正時脈;以及 一時脈產生器,用以接收該時脈觸發訊號及該校正訊號以產生一目標時脈訊號,其中 該時脈產生器在該校正訊號處於一第一狀態時,依據該時脈觸發訊號產生該目標時脈訊號; 該時脈產生器在該校正訊號處於一第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
  2. 如請求項1所述之時脈產生裝置,其中該校正計數器模組更包含: 一第二校正計數器,用以依據該參考時脈的每一第二校正數的時脈週期來輸出一第二校正時脈,其中該第二校正數大於該第一校正數,該校正訊號更包含該第二校正時脈。
  3. 如請求項2所述之時脈產生裝置,其中該時脈產生器在該校正訊號包含的該第一校正時脈及該第二校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
  4. 如請求項2所述之時脈產生裝置,其中該校正計數器模組更包含: 一第三校正計數器,用以依據該參考時脈的每一第三校正數的時脈週期來輸出一第三校正時脈,其中該第三校正數大於該第二校正數,該校正訊號更包含該第三校正時脈。
  5. 如請求項4所述之時脈產生裝置,其中該時脈產生器在該校正訊號包含的該第一校正時脈、該第二校正時脈、該第三校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
  6. 如請求項1所述之時脈產生裝置,其中該校正計數器模組包含: N個校正計數器,該N個校正計數器包含該第一校正計數器,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號更包含該第k校正時脈,N大於或等於4的整數,k為2至N中任一整數。
  7. 如請求項6所述之時脈產生裝置,其中該時脈產生器在該校正訊號包含的該第一校正時脈至該第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
  8. 如請求項1所述之時脈產生裝置,其中該互連協定是通用快閃儲存(Universal Flash Storage, UFS)標準。
  9. 一種控制器,適用於能夠依據該互連協定鏈接一第二裝置的一第一裝置中,該控制器包括: 一處理單元;以及 一時脈產生裝置,該時脈產生裝置與該處理單元耦接且包括: 一時脈產生計數器,用以依據一參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號; 一校正計數器模組,用於輸出一校正訊號,該校正計數器模組包含: 一第一校正計數器,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈,其中該第一校正數大於該參考數,該校正訊號包含該第一校正時脈;以及 一時脈產生器,用以接收該時脈觸發訊號及該校正訊號以產生一目標時脈訊號,其中 該時脈產生器在該校正訊號處於一第一狀態時,依據該時脈觸發訊號產生該目標時脈訊號; 該時脈產生器在該校正訊號處於一第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號; 其中當該處理單元啟動該時脈產生裝置時,該處理單元將該參考數的數值傳送至該時脈產生計數器及至少將該第一校正數的數值傳送至該第一校正計數器。
  10. 如請求項9所述之控制器,其中該校正計數器模組包含: N個校正計數器,該N個校正計數器包含該第一校正計數器,該N個校正計數器中的一第k校正計數器用以依據該參考時脈的對應的一第k個校正數的時脈週期來輸出一第k校正時脈,其中該第k個校正數大於第k-1校正數,該校正訊號更包含該第k校正時脈,N大於或等於2的整數,k為2至N中任一整數。
  11. 如請求項10所述之控制器,其中該時脈產生器在該校正訊號包含的該第一校正時脈至該第N校正時脈中任一校正時脈處於該第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號。
  12. 如請求項9所述之控制器,其中該互連協定是通用快閃儲存(Universal Flash Storage, UFS)標準。
  13. 一種儲存裝置,能夠依據一互連協定鏈接一主機,該儲存裝置包括: 一介面電路,用於實現該互連協定的一實體層以鏈接該主機;以及 一裝置控制器,用於耦接到該介面電路和一儲存模組,其中該裝置控制器包括: 一處理單元;以及 一時脈產生裝置,該時脈產生裝置與該處理單元耦接且包括: 一時脈產生計數器,用以依據一參考時脈的每一參考數的時脈週期來輸出一時脈觸發訊號; 一校正計數器模組,用於輸出一校正訊號,該校正計數器模組包含: 一第一校正計數器,用以依據該參考時脈的每一第一校正數的時脈週期來輸出一第一校正時脈,其中該第一校正數大於該參考數,該校正訊號包含該第一校正時脈;以及 一時脈產生器,用以接收該時脈觸發訊號及該校正訊號以產生一目標時脈訊號,其中 該時脈產生器在該校正訊號處於一第一狀態時,依據該時脈觸發訊號產生該目標時脈訊號; 該時脈產生器在該校正訊號處於一第二狀態時,依據該校正訊號將該時脈觸發訊號中相對應的脈波取消以產生該目標時脈訊號; 其中當該處理單元啟動該時脈產生裝置時,該處理單元將該參考數的數值傳送至該時脈產生計數器及至少將該第一校正數的數值傳送至該第一校正計數器。
  14. 如請求項13所述之儲存裝置,其中該互連協定是通用快閃儲存(Universal Flash Storage, UFS)標準。
TW110133524A 2021-09-09 2021-09-09 時脈產生裝置、控制器以及儲存裝置 TW202311891A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110133524A TW202311891A (zh) 2021-09-09 2021-09-09 時脈產生裝置、控制器以及儲存裝置
US17/559,337 US20230073160A1 (en) 2021-09-09 2021-12-22 Clock generating device, controller, and storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110133524A TW202311891A (zh) 2021-09-09 2021-09-09 時脈產生裝置、控制器以及儲存裝置

Publications (1)

Publication Number Publication Date
TW202311891A true TW202311891A (zh) 2023-03-16

Family

ID=85385672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133524A TW202311891A (zh) 2021-09-09 2021-09-09 時脈產生裝置、控制器以及儲存裝置

Country Status (2)

Country Link
US (1) US20230073160A1 (zh)
TW (1) TW202311891A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843263A (en) * 1986-01-10 1989-06-27 Nec Corporation Clock timing controller for a plurality of LSI chips
KR20080101495A (ko) * 2007-05-18 2008-11-21 (주)코아리버 클럭 스위칭 회로
KR101400695B1 (ko) * 2007-08-14 2014-06-27 삼성전자주식회사 안정된 클럭 신호를 생성할 수 있는 클럭 신호 발생기,상기 클럭 신호 발생기를 구비하는 반도체 메모리 장치 및그 방법
US10924125B2 (en) * 2018-10-23 2021-02-16 Taiwan Semiconductor Manufacturing Company Ltd. Frequency divider circuit, method and compensation circuit for frequency divider circuit

Also Published As

Publication number Publication date
US20230073160A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US10496332B2 (en) Data path training and timing signal compensation for non-volatile memory device interface
US20190272252A1 (en) Method of processing deadlock of i2c bus, electronic device and communication system
US20080192645A1 (en) Methods and Arrangements to Model an Asynchronous Interface
TWI489482B (zh) 取樣電路模組、記憶體控制電路單元及資料取樣方法
EP2126919A1 (en) Memory system and method having volatile and non-volatile memory devices at same hierarchical level
KR102138110B1 (ko) 플래시 메모리를 기반으로 하는 저장 장치 및 그것의 동작 방법
US9535607B2 (en) Semiconductor system performing status read for semiconductor device and operating method thereof
KR20130070251A (ko) 브릿지 칩셋 및 그것을 포함하는 데이터 저장 시스템
US7139965B2 (en) Bus device that concurrently synchronizes source synchronous data while performing error detection and correction
US11829626B2 (en) Storage device and operating method of storage device
TW202001902A (zh) 在記憶裝置中進行省電控制的方法、相關記憶裝置及其記憶體控制器、以及相關電子裝置
US10541897B2 (en) Mismatch compensation at differential signal receiver
US20060236084A1 (en) Method and system for providing an auxiliary bios code in an auxiliary bios memory utilizing time expiry control
CN112530484A (zh) 存储器模块及其操作方法
US9747246B2 (en) Electronic device for communicating between a microcontroller unit (MCU) and a host processor and related methods
US10657009B2 (en) System and method to dynamically increase memory channel robustness at high transfer rates
TWI750118B (zh) 時脈管理電路系統、系統單晶片以及時脈管理方法
TW202311891A (zh) 時脈產生裝置、控制器以及儲存裝置
CN116560902A (zh) 处理系统、相关集成电路和方法
US8826061B2 (en) Timer, method of implementing system time using a timer, and integrated circuit device including the same
US10127107B2 (en) Method for performing data transaction that selectively enables memory bank cuts and memory device therefor
US9378782B1 (en) Apparatus with write-back buffer and associated methods
US20240089886A1 (en) Method for lane synchronization for an interconnection protocol, controller, and storage device
US20240202142A1 (en) Method for handling configuration data for an interconnection protocol within hibernate operation, controller, and electronic device
US9442788B2 (en) Bus protocol checker, system on chip including the same, bus protocol checking method