TW202309498A - Corrosion monitoring apparatus, method, and computer program product thereof - Google Patents
Corrosion monitoring apparatus, method, and computer program product thereof Download PDFInfo
- Publication number
- TW202309498A TW202309498A TW110131330A TW110131330A TW202309498A TW 202309498 A TW202309498 A TW 202309498A TW 110131330 A TW110131330 A TW 110131330A TW 110131330 A TW110131330 A TW 110131330A TW 202309498 A TW202309498 A TW 202309498A
- Authority
- TW
- Taiwan
- Prior art keywords
- corrosion
- characteristic
- measurement data
- variables
- characteristic variables
- Prior art date
Links
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
本發明係關於一種腐蝕監測裝置、方法及其電腦程式產品。具體而言,本發明所提供的腐蝕監測裝置、方法及其電腦程式產品係基於一芳香烴製程中的複數個選定特徵變數進行腐蝕監測。The invention relates to a corrosion monitoring device, method and computer program product thereof. Specifically, the corrosion monitoring device, method and computer program product provided by the present invention perform corrosion monitoring based on a plurality of selected characteristic variables in an aromatic hydrocarbon process.
芳香烴製程中的許多處理階段(例如:預餾、加氫、重組、再生、裂萃、重萃)會產生腐蝕因子,對執行芳香烴製程的系統造成腐蝕。不同腐蝕因子的組合會造成不同的腐蝕機制。為瞭解系統在執行芳香烴製程後的腐蝕狀況,習知技術均檢測系統低點的水份酸鹼值及總鐵含量以進行判斷。此種檢測方式未考量芳香烴製程中的各處理階段所涉的特徵變數(例如:操作條件、進料),因此難以從源頭掌握造成系統腐蝕的特徵變數,無法事先採取防範措施以避免腐蝕狀況惡化。Many processing stages in the aromatics process (for example: pre-distillation, hydrogenation, reformation, regeneration, cracking, re-extraction) generate corrosive factors that cause corrosion to the systems performing the aromatics process. The combination of different corrosion factors will result in different corrosion mechanisms. In order to understand the corrosion status of the system after the aromatic hydrocarbon process is implemented, the conventional technology detects the pH value and total iron content of the water at the lowest point of the system for judgment. This detection method does not take into account the characteristic variables involved in each treatment stage in the aromatic hydrocarbon production process (such as: operating conditions, feed), so it is difficult to grasp the characteristic variables that cause system corrosion from the source, and it is impossible to take preventive measures in advance to avoid corrosion conditions deterioration.
有鑑於此,本領域亟需一種能基於芳香烴製程中的重要特徵變數進行腐蝕監測且能找出造成腐蝕狀況的關鍵特徵變數的技術,以達到減緩腐蝕速率及預防腐蝕惡化的目的。In view of this, there is an urgent need in the field for a technology that can monitor corrosion based on important characteristic variables in the aromatic hydrocarbon process and find out the key characteristic variables that cause corrosion, so as to slow down the corrosion rate and prevent corrosion deterioration.
本發明的一目的在於提供一種腐蝕監測裝置。該腐蝕監測裝置包含一儲存器、一收發介面及一處理器,其中該處理器電性連接至該儲存器及該收發介面。該儲存器儲存經訓練的一腐蝕健康度評估模組及經訓練的一重要性分析模組。該收發介面接收執行一芳香烴製程的一系統的一當前量測資料組,其中該當前量測資料組包含複數筆當前特徵資料,且該等當前特徵資料一對一地對應至該芳香烴製程的複數個選定特徵變數。該處理器將該等當前特徵資料輸入該腐蝕健康度評估模組以得到該系統的一腐蝕健康度,且將該等當前特徵資料及該腐蝕健康度輸入該重要性分析模組以得到各該選定特徵變數對該腐蝕健康度的一貢獻程度。An object of the present invention is to provide a corrosion monitoring device. The corrosion monitoring device includes a storage, a transceiver interface and a processor, wherein the processor is electrically connected to the storage and the transceiver interface. The storage stores a trained corrosion health assessment module and a trained importance analysis module. The transceiver interface receives a current measurement data set of a system executing an aromatic hydrocarbon process, wherein the current measurement data set includes a plurality of current characteristic data, and the current characteristic data correspond to the aromatic hydrocarbon process one-to-one A plurality of selected feature variables of . The processor inputs the current characteristic data into the corrosion health evaluation module to obtain a corrosion health degree of the system, and inputs the current characteristic data and the corrosion health degree into the importance analysis module to obtain the respective A degree of contribution of selected characteristic variables to the corrosion health.
本發明的另一目的在於提供一種腐蝕監測方法,其係適用於一電子計算裝置。該腐蝕監測方法包含下列步驟:(a)接收執行一芳香烴製程的一系統的一當前量測資料組,其中該當前量測資料組包含複數筆當前特徵資料,且該等當前特徵資料一對一地對應至該芳香烴製程的複數個選定特徵變數,(b)將該等當前特徵資料輸入經訓練的一腐蝕健康度評估模組以得到該系統的一腐蝕健康度,以及(c)將該等當前特徵資料及該腐蝕健康度輸入經訓練的一重要性分析模組以得到各該選定特徵變數對該腐蝕健康度的一貢獻程度。Another object of the present invention is to provide a corrosion monitoring method applicable to an electronic computing device. The corrosion monitoring method includes the following steps: (a) receiving a current measurement data set of a system performing an aromatic hydrocarbon process, wherein the current measurement data set includes a plurality of current characteristic data, and the current characteristic data is a pair a plurality of selected characteristic variables corresponding to the aromatic hydrocarbon process, (b) inputting the current characteristic data into a trained corrosion health assessment module to obtain a corrosion health of the system, and (c) applying The current characteristic data and the corrosion health are input into a trained importance analysis module to obtain a contribution degree of each selected characteristic variable to the corrosion health.
本發明的又一目的在於提供一種電腦程式產品,其係包含複數個程式指令。一電子計算裝置載入該電腦程式產品後,該電子計算裝置執行該電腦程式產品所包含的該等程式指令以實現前段所述的腐蝕監測方法。Another object of the present invention is to provide a computer program product, which includes a plurality of program instructions. After an electronic computing device is loaded with the computer program product, the electronic computing device executes the program instructions contained in the computer program product to realize the corrosion monitoring method mentioned in the preceding paragraph.
本發明所提供的腐蝕監測技術(至少包含裝置、方法及其電腦程式產品)利用經訓練的一腐蝕健康度評估模組及經訓練的一重要性分析模組來監測執行一芳香烴製程的一系統的一腐蝕健康度(即,就腐蝕狀況而言,該系統的健康度)。具體而言,芳香烴製程中的某些特徵變數(即,前述的選定特徵變數)對於是否造成系統中的設備腐蝕有較明顯的影響,因此本發明所提供的腐蝕監測技術將一系統執行一芳香烴製程時對應至這些選定特徵變數的複數筆當前特徵資料輸入該腐蝕健康度評估模組以得到該系統的一腐蝕健康度,且將該等當前特徵資料及該腐蝕健康度輸入該重要性分析模組以得到各該選定特徵變數對該腐蝕健康度的一貢獻程度。當該腐蝕健康度低於一第一門檻值時,本發明所提供的腐蝕監測技術還可輸出該等選定特徵變數中貢獻程度高於一第二門檻值者作為至少一關鍵特徵變數(亦即,對該系統的腐蝕狀況影響最為關鍵的那一或那些特徵變數)。由於本發明所提供的腐蝕監測技術考量芳香烴製程中對於腐蝕有較明顯影響的選定特徵變數,因此能準確地評估系統的腐蝕健康度,進而在系統發生腐蝕前或腐蝕程度惡化前產生預警,讓使用者能針對關鍵特徵變數採取防範措施(例如:調整溫度、調整進料)以避免發生腐蝕或避免腐蝕狀況惡化。The corrosion monitoring technology provided by the present invention (including at least the device, the method and its computer program product) utilizes a trained corrosion health evaluation module and a trained importance analysis module to monitor an aromatic hydrocarbon process A corrosion health of the system (ie, the health of the system in terms of corrosion conditions). Specifically, some characteristic variables in the aromatic hydrocarbon production process (that is, the aforementioned selected characteristic variables) have a more obvious impact on whether the equipment in the system is corroded, so the corrosion monitoring technology provided by the present invention implements a system A plurality of pieces of current characteristic data corresponding to these selected characteristic variables in the process of aromatic hydrocarbons are input into the corrosion health degree evaluation module to obtain a corrosion health degree of the system, and the current characteristic data and the corrosion health degree are input into the importance The module is analyzed to obtain a contribution degree of each of the selected characteristic variables to the corrosion health. When the corrosion health degree is lower than a first threshold value, the corrosion monitoring technology provided by the present invention can also output those selected characteristic variables whose contribution degree is higher than a second threshold value as at least one key characteristic variable (that is, , the characteristic variable or variables most critical to the corrosion status of the system). Since the corrosion monitoring technology provided by the present invention considers the selected characteristic variables that have a significant impact on corrosion in the aromatic hydrocarbon process, it can accurately evaluate the corrosion health of the system, and then generate an early warning before the corrosion occurs in the system or before the corrosion degree deteriorates. Allows the user to take precautionary measures against key characteristic variables (e.g. adjust temperature, adjust feed) to prevent corrosion from occurring or worsening.
以下結合圖式闡述本發明的詳細技術及實施方式,俾使本發明所屬技術領域中具有通常知識者能理解所請求保護的發明的技術特徵。The detailed techniques and implementation methods of the present invention are described below in conjunction with the drawings, so that those with ordinary knowledge in the technical field of the present invention can understand the technical characteristics of the claimed invention.
以下將透過實施方式來解釋本發明所提供的腐蝕監測裝置、方法及其電腦程式產品。然而,該等實施方式並非用以限制本發明需在如該等實施方式所述的任何環境、應用或方式方能實施。因此,關於以下實施方式的說明僅在於闡釋本發明的目的,而非用以限制本發明的範圍。應理解,在以下實施方式及圖式中,與本發明非直接相關的元件已省略而未繪示。此外,圖式中各元件的尺寸以及元件間的尺寸比例僅為便於繪示及說明,而非用以限制本發明的範圍。The following will explain the corrosion monitoring device, method and computer program product provided by the present invention through the embodiments. However, these embodiments are not intended to limit the present invention to be implemented in any environment, application or manner as described in these embodiments. Therefore, the description of the following embodiments is only for the purpose of illustrating the present invention, rather than limiting the scope of the present invention. It should be understood that in the following embodiments and drawings, elements not directly related to the present invention have been omitted and not shown. In addition, the size of each element and the dimensional ratio among the elements in the drawings are only for illustration and description, and are not intended to limit the scope of the present invention.
本發明的第一實施方式為一腐蝕監測裝置1,其架構示意圖係描繪於第1A圖。腐蝕監測裝置1包含一儲存器11、一收發介面13及一處理器15,其中處理器15電性連接至儲存器11及收發介面13。儲存器11可為一記憶體、一硬碟(Hard Disk Drive;HDD)或本發明所屬技術領域中具有通常知識者所知的任何其他具有相同功能的非暫態儲存媒體、電路或裝置。收發介面13可為本發明所屬技術領域中具有通常知識者所知的一有線傳輸介面或一無線傳輸介面,且用以收送訊號及資料。處理器15可為各種處理器、中央處理單元(Central Processing Unit;CPU)、微處理器(Microprocessor Unit;MPU)、數位訊號處理器(Digital Signal Processor;DSP)或本發明所屬技術領域中具有通常知識者所知悉的其他計算裝置。The first embodiment of the present invention is a
於本實施方式中,儲存器11儲存經訓練的一腐蝕健康度評估模組M1及經訓練的一重要性分析模組M2。腐蝕監測裝置1利用腐蝕健康度評估模組M1來判斷執行一芳香烴製程的一系統(未繪示)的一腐蝕健康度(即,就腐蝕狀況而言,該系統的健康度),且利用重要性分析模組M2提供與該腐蝕健康度相關的資訊。以下詳述腐蝕監測裝置1的運作原理及細節。In this embodiment, the
一芳香烴製程具有複數個製程特徵變數(未繪示),其中各該製程特徵變數可為任何與該芳香烴製程有關的因子,例如:進料、化合物濃度、操作設定、環境因素、品質指標等等。對於執行該芳香烴製程的系統中的設備是否會發生腐蝕,這些製程特徵變數的一子集有較明顯的影響。為便於描述,可將該子集中的製程特徵變數稱之為第一選定特徵變數。本實施方式並未限定一芳香烴製程的該等第一選定特徵變數的決定方式,其可由一使用者(例如:該系統的管理者、熟悉芳香烴製程的專業人士)決定,或由基於統計分析法決定。An aromatic hydrocarbon process has a plurality of process characteristic variables (not shown), wherein each of the process characteristic variables can be any factor related to the aromatic hydrocarbon process, such as: feed, compound concentration, operating settings, environmental factors, quality indicators etc. A subset of these process characteristic variables have a significant impact on whether equipment in a system performing the aromatic hydrocarbon process will corrode. For ease of description, the process characteristic variables in the subset may be referred to as the first selected characteristic variables. This embodiment does not limit the method of determining the first selected characteristic variables of an aromatic hydrocarbon process, which can be determined by a user (for example: the manager of the system, a professional familiar with the aromatic hydrocarbon process), or by a statistical Analytical decision.
第1B圖描繪一去丁烷塔系統執行一芳香烴製程的簡要示意圖,但應理解其非用以限制本發明的範圍。於第1B圖所示的芳香烴製程中,核心輕油先經過加氫反應以去除硫及氮等不純物,再經過重組反應以將直鏈烴及環烷烴轉化為芳香烴,之後再經過脫氯槽處理,才會進入去丁烷塔。重組觸媒再生時需加入二氯乙烷以調整酸性催化功能,因此去丁烷塔的進料中含有微量的氯化氫、氯化銨及水。氯化氫、氯化銨及水進入去丁烷塔後,會在頂部濃縮累積。由於氯化氫在有水的環境下會發生解離,造成系統酸性均勻腐蝕,因此為去丁烷塔的主要腐蝕因子。至於氯化銨,因為易溶於水,所以不是去丁烷塔的主要腐蝕因子。於第1B圖所示的芳香烴製程中,各該第一選定特徵變數(即,對於執行此芳香烴製程的系統中的設備是否會發生腐蝕,有較明顯的影響的那些製程特徵變數)可與該芳香烴製程中的一加氫反應、一重組反應、一觸媒再生反應及一脫氯運作其中之一相關。舉例而言,針對第1B圖所示的芳香烴製程,該等第一選定特徵變數可包含加氫反應後的甜輕油中的總氯濃度、重組反應時的循環氫氣中的氯化氫濃度、觸媒再生反應時的二氯乙烷注入量、再生前觸媒氯濃度、再生後觸媒氯濃度、脫氯槽前總氯濃度及脫氯槽後總氯濃度。FIG. 1B depicts a schematic diagram of a debutanizer system performing an aromatics process, but it should be understood that it is not intended to limit the scope of the present invention. In the aromatic hydrocarbon production process shown in Figure 1B, the core light oil first undergoes hydrogenation to remove impurities such as sulfur and nitrogen, and then undergoes a restructuring reaction to convert linear hydrocarbons and naphthenes into aromatic hydrocarbons, and then undergoes dechlorination Tank treatment before entering the butane removal tower. When the recombinant catalyst is regenerated, dichloroethane needs to be added to adjust the acidic catalytic function, so the feed to the butanizer contains trace amounts of hydrogen chloride, ammonium chloride and water. After hydrogen chloride, ammonium chloride and water enter the butanizer, they will concentrate and accumulate at the top. Since hydrogen chloride will dissociate in the presence of water, the system will be acidic and uniformly corroded, so it is the main corrosion factor of the de-butanizer. As for ammonium chloride, because it is easily soluble in water, it is not the main corrosion factor of the debutanizer. In the aromatic hydrocarbon process shown in Figure 1B, each of the first selected characteristic variables (that is, those process characteristic variables that have a significant impact on whether the equipment in the system performing the aromatic hydrocarbon process will corrode) can be It is related to one of a hydrogenation reaction, a recombination reaction, a catalyst regeneration reaction and a dechlorination operation in the aromatic hydrocarbon production process. For example, for the aromatics process shown in Figure 1B, the first selected characteristic variables may include total chlorine concentration in sweet light oil after hydrogenation reaction, hydrogen chloride concentration in circulating hydrogen gas during recombination reaction, trigger The amount of dichloroethane injected during the catalyst regeneration reaction, the chlorine concentration of the catalyst before regeneration, the chlorine concentration of the catalyst after regeneration, the total chlorine concentration before the dechlorination tank and the total chlorine concentration after the dechlorination tank.
於本實施方式中,腐蝕監測裝置1的收發介面13會週期性地(例如:每數個小時)或非週期性地(例如:需要知道系統的腐蝕健康度及相關資訊時)接收執行該芳香烴製程的該系統的一當前量測資料組DS1。當前量測資料組DS1包含複數筆當前特徵資料,且該等當前特徵資料一對一地對應至該芳香烴製程的該等第一選定特徵變數。需說明者,本發明未限制收發介面13如何取得當前量測資料組DS1。舉例而言,系統中可配置複數個資訊錶點(例如:量測器、感測器)以量測該系統執行該芳香烴製程時的各該製程特徵變數的值,收發介面13可直接從該等第一選定特徵變數所對應的該等錶點接收該等當前特徵資料。再舉例而言,系統中可配置複數個資訊錶點(例如:量測器、感測器)以量測該系統執行該芳香烴製程時的各該製程特徵變數的值,這些值會彙整至一資料收集器(例如:一伺服器),收發介面13再從該資料收集器接收該等第一選定特徵變數所對應的值(即,該等當前特徵資料)。In this embodiment, the
處理器15再將當前量測資料組DS1中的該等當前特徵資料輸入腐蝕健康度評估模組M1以得到該系統的一腐蝕健康度HI。於本實施方式中,腐蝕健康度HI的值越高,代表該系統越健康,也就是腐蝕程度越低或是越不容易造成腐蝕。此外,處理器15會將腐蝕健康度HI以及當前量測資料組DS1中的該等當前特徵資料輸入重要性分析模組M2以得到各該第一選定特徵變數對腐蝕健康度HI的一貢獻程度。The
於某些實施方式中,腐蝕監測裝置1還可輸出腐蝕健康度HI、該等第一選定特徵變數的該等貢獻程度O1、……、Om或/及該等第一選定特徵變數目前的值(也就是該等當前特徵資料)以讓使用者知道該系統當前的腐蝕狀況。舉例而言,腐蝕監測裝置1可包含一顯示螢幕以顯示腐蝕健康度HI、該等第一選定特徵變數的該等貢獻程度O1、……、Om或/及該等第一選定特徵變數目前的值。再舉例而言,腐蝕監測裝置1可透過收發介面13或另一收發介面輸出腐蝕健康度HI、該等第一選定特徵變數的該等貢獻程度O1、……、Om或/及該等第一選定特徵變數目前的值。In some embodiments, the
於某些實施方式中,處理器15還會將腐蝕健康度評估模組M1所產生的腐蝕健康度HI與一第一門檻值(未繪示)比較。當處理器15判斷腐蝕健康度HI低於該第一門檻值時,代表該等第一選定特徵變數其中的一個或多個目前的值(也就是該等當前特徵資料其中的一個或多個)會使該系統的設備腐蝕(或使該系統的設備的腐蝕惡化)。當腐蝕健康度HI低於該第一門檻值時,腐蝕監測裝置1可透過收發介面13或另一收發介面輸出該等第一選定特徵變數中的至少一關鍵特徵變數(未繪示),其中各該至少一關鍵特徵變數所對應的該貢獻程度大於一第二門檻值(例如:貢獻程度高於30%)。換言之,該至少一關鍵特徵變數為該等第一選定特徵變數中造成該系統的設備腐蝕(或使該系統的設備的腐蝕惡化)較為關鍵者。藉由輸出該至少一關鍵特徵變數,讓使用者採取因應的措施。In some implementations, the
在某些實施方式中,腐蝕監測裝置1可作為一後端的電子設備,其可與一前端的電子設備(例如:可供使用者操作的電子計算機裝置)搭配使用。於該等實施方式中,腐蝕監測裝置1可透過收發介面13或另一收發介面將腐蝕健康度HI、該等第一選定特徵變數的該等貢獻程度O1、……、Om或/及該等第一選定特徵變數的值輸出至前端的電子設備。前端的電子設備再將腐蝕健康度HI與該第一門檻值比較。當腐蝕健康度HI低於該第一門檻值時,前端的電子設備還會輸出(例如:顯示)該等第一選定特徵變數中的至少一關鍵特徵變數,其中各該至少一關鍵特徵變數所對應的該貢獻程度大於一第二門檻值。In some embodiments, the
綜上所述,腐蝕監測裝置1係基於一芳香烴製程中對於腐蝕有較明顯影響的第一選定特徵變數來監測執行該芳香烴製程的一系統的腐蝕健康度。因此,腐蝕監測裝置1能準確地評估出系統的腐蝕健康度,進而在系統發生腐蝕前或在腐蝕程度惡化前產生預警。再者,腐蝕監測裝置1能判斷是哪些關鍵特徵變數會造成該系統的設備腐蝕(或使該系統的設備的腐蝕惡化),進而讓使用者採取防範措施以避免發生腐蝕或讓腐蝕狀況惡化。To sum up, the
本發明的第二實施方式為一腐蝕監測裝置2,其架構示意圖係描繪於第2圖。腐蝕監測裝置2亦包含儲存器11、收發介面13及處理器15,且處理器15電性連接至儲存器11及收發介面13。腐蝕監測裝置2能執行前述腐蝕監測裝置1所能執行的所有運作,因此亦具有其所具有的功能,且能達到其所能達到的技術效果。相較於腐蝕監測裝置1,腐蝕監測裝置2還會利用大數據來建置腐蝕健康度評估模組M1及重要性分析模組M2。以下敘述將著重於腐蝕監測裝置2與腐蝕監測裝置1相異之處。The second embodiment of the present invention is a
於本實施方式中,儲存器11另儲存複數筆歷史量測資料組D1、……、Dk。歷史量測資料組D1、……、Dk的每一組為該系統過去執行該芳香烴製程時的量測資料組。歷史量測資料組D1、……、Dk的每一組包含複數筆歷史特徵資料,且歷史量測資料組D1、……、Dk的每一組所包含的該等歷史特徵資料一對一地對應至該芳香烴製程的該等製程特徵變數。In this embodiment, the
處理器15利用歷史量測資料組D1、……、Dk中對應至該等第一選定特徵變數的歷史特徵資料(作為訓練資料組)以及一第一機器學習演算法,產生腐蝕健康度評估模組M1。需說明者,本發明未限制第一機器學習演算法必須為哪一機器學習演算法。舉例而言,第一機器學習演算法可為極限梯度提升(eXtreme Gradient Boosting;XGBoost)演算法、脊迴歸(Ridge regression)演算法及Lasso迴歸演算法。此外,處理器15利用歷史量測資料組D1、……、Dk中對應至該等第一選定特徵變數的歷史特徵資料(作為訓練資料組)、腐蝕健康度評估模組M1對各訓練資料組的一預測結果以及一第二機器學習演算法,產生重要性分析模組M2。需說明者,本發明未限制第二機器學習演算法必須為哪一機器學習演算法。舉例而言,第二機器學習演算法可為SHAP(SHapley Additive exPlanations)演算法、LIME(Local Interpretable Model-Agnostic Explanation)演算法。The
於某些實施方式中,在利用歷史量測資料組D1、……、Dk產生腐蝕健康度評估模組M1及重要性分析模組M2之前,腐蝕監測裝置2還會從該芳香烴製程的該等製程特徵變數中挑選出該等第一選定特徵變數。In some embodiments, before using the historical measurement data sets D1, ..., Dk to generate the corrosion health evaluation module M1 and the importance analysis module M2, the
於某些實施方式中,處理器15可根據一統計分析法分析歷史量測資料組D1、……、Dk,藉此從該等製程特徵變數中選出較為重要者作為該等第一選定特徵變數。舉例而言,該統計分析法可為變異數膨脹因子法、熱圖(heatmap)演算法及相關係數演算法。In some embodiments, the
於某些實施方式中,處理器15先根據一統計分析法(例如:變異數膨脹因子法、熱圖演算法及相關係數演算法)分析歷史量測資料組D1、……、Dk,藉此從該等製程特徵變數中選出較為重要者作為複數個第一候選特徵變數。接著,處理器15根據該等第一候選特徵變數及複數個第二候選特徵變數(例如:由熟悉芳香烴製程的專業人士從該等製程特徵變數中決定的較為重要的特徵變數)選出該等第一選定特徵變數。舉例而言,處理器15可採用該等第一候選特徵變數及該等第二候選特徵變數的聯集作為該等第一選定特徵變數。再舉例而言,處理器15可採用該等第一候選特徵變數及該等第二候選特徵變數的聯集作為複數個第三候選特徵變數,收發介面13或另一收發介面再輸出該等第三候選特徵變數供熟悉芳香烴製程的專業人士從該等第三候選特徵變數中決定出較為重要者作為該等第一選定特徵變數,收發介面13或另一收發介面再接收該等第一選定特徵變數。In some embodiments, the
綜上所述,腐蝕監測裝置2可基於歷史量測資料組D1、……、Dk訓練出腐蝕健康度評估模組M1及重要性分析模組M2。除此之外,針對任一芳香烴製程,腐蝕監測裝置2可從該芳香烴製程的複數個製程特徵變數中挑選出對於腐蝕有較明顯影響者作為第一選定特徵變數,再以該等第一選定特徵變數所對應的歷史量測資料訓練出腐蝕健康度評估模組M1及重要性分析模組M2。因此,腐蝕監測裝置2能為不同的芳香烴製程及不同的系統挑選出適當的第一選定特徵變數(即,對於執行此芳香烴製程的系統較容易造成腐蝕的那些製程特徵變數),進而訓練出能準確地評估出系統的腐蝕健康度的腐蝕健康度評估模組M1及提供相關資訊的重要性分析模組M2。To sum up, the
本發明的第三實施方式為一腐蝕監測裝置3,其架構示意圖係描繪於第3A圖。腐蝕監測裝置3亦包含儲存器11、收發介面13及處理器15,且處理器15電性連接至儲存器11及收發介面13。腐蝕監測裝置3能執行前述腐蝕監測裝置1所能執行的所有運作,因此亦具有其所具有的功能,且能達到其所能達到的技術效果。以下敘述將著重於腐蝕監測裝置3與腐蝕監測裝置1相異之處。The third embodiment of the present invention is a
於本實施方式中,儲存器11儲存經訓練的一酸鹼值預測模組M3及經訓練的一腐蝕率預測模組M4。針對執行一芳香烴製程的一系統,腐蝕監測裝置3利用酸鹼值預測模組M3及腐蝕率預測模組M4來預測該餾除塔的腐蝕率,俾該系統的管理者能基於預測出來的腐蝕率評估該系統的剩餘壽命,達到定量管理的目的。以下詳述腐蝕監測裝置3的運作原理及細節。In this embodiment, the
如前所述,一芳香烴製程具有複數個製程特徵變數(未繪示),其中各該製程特徵變數可為任何與該芳香烴製程有關的因子,例如:進料、化合物濃度、運作設定、環境因素、品質指標等等。對於執行該芳香烴製程的系統中的餾除塔是否會發生腐蝕,這些製程特徵變數的一子集有較明顯的影響。為便於描述,可將該子集中的製程特徵變數稱之為第二選定特徵變數。本實施方式並未限定一芳香烴製程的該等第二選定特徵變數的決定方式,其可由一使用者(例如:該系統的管理者、熟悉芳香烴製程的專業人士)決定,或由基於統計分析法決定。以第1B圖所示的芳香烴製程為例,各該第二選定特徵變數可與該芳香烴製程中的一脫氯運作及去丁烷塔狀態其中之一相關。舉例而言,該等第二選定特徵變數可包含脫氯槽前總氯濃度、脫氯槽後總氯濃度、去丁烷塔進料量、去丁烷塔塔頂的戊烷(C5)濃度及去丁烷塔塔底的丁烷(C4)濃度。As mentioned above, an aromatic hydrocarbon process has a plurality of process characteristic variables (not shown), wherein each of the process characteristic variables can be any factor related to the aromatic hydrocarbon process, such as: feed, compound concentration, operating settings, Environmental factors, quality indicators, etc. A subset of these process characteristic variables have a significant impact on whether corrosion occurs in the distillation column in the system performing the aromatics process. For ease of description, the process characteristic variables in the subset may be referred to as second selected characteristic variables. This embodiment does not limit the method of determining the second selected characteristic variables of an aromatic hydrocarbon process, which can be determined by a user (for example: the administrator of the system, a professional familiar with the aromatic hydrocarbon process), or by a statistical Analytical decision. Taking the aromatics process shown in FIG. 1B as an example, each of the second selected characteristic variables may be related to one of a dechlorination operation and a debutanizer state in the aromatics process. For example, such second selected characteristic variables may include total chlorine concentration before dechlorination tank, total chlorine concentration after dechlorination tank, feed to debutanizer, pentane (C5) concentration at the top of debutanizer And the butane (C4) concentration at the bottom of the butanizer.
於本實施方式中,腐蝕監測裝置3的收發介面13會週期性地(例如:每數個小時)或非週期性地(例如:需要知道系統中的餾除塔的腐蝕率時)接收執行該芳香烴製程的該系統的一當前量測資料組DS2。當前量測資料組DS2包含複數筆當前特徵資料,且該等當前特徵資料一對一地對應至該芳香烴製程的該等第二選定特徵變數。需說明者,本發明未限制收發介面13如何取得當前量測資料組DS2。舉例而言,系統中可配置複數個資訊錶點(例如:量測器、感測器)以量測該系統執行該芳香烴製程時的各該製程特徵變數的值,收發介面13可直接從該等第二選定特徵變數所對應的該等錶點接收該等當前特徵資料。再舉例而言,系統中可配置複數個資訊錶點(例如:量測器、感測器)以量測該系統執行該芳香烴製程時的各該製程特徵變數的值,這些值會彙整至一資料收集器(例如:一伺服器),收發介面13再從該資料收集器接收該等第二選定特徵變數所對應的值(即,該等當前特徵資料)。In this embodiment, the
之後,處理器15將當前量測資料組DS2中的該等當前特徵資料輸入酸鹼值預測模組M3以得到該系統的一餾除塔的一預估酸鹼值(未繪示),再將該預估酸鹼值及該餾除塔(例如:第1B圖的去丁烷塔)的一運作溫度(未繪示)輸入腐蝕率預測模組M4以得到該餾除塔的一初步預測腐蝕率(未繪示)。需說明者,由於腐蝕率預測模組M4是基於一氯化氫水溶液對碳鋼腐蝕率資料庫所包含的複數筆腐蝕率資料所訓練出來的,且該氯化氫水溶液對碳鋼腐蝕率資料庫所包含的該等腐蝕率資料所量測的環境與執行該芳香烴製程的系統的環境可能不同,因此處理器15根據能反映該二環境的差異的一修正係數,將該初步預測腐蝕率修正為一修正預測腐蝕率R。Afterwards, the
茲以採用美國石油協會所公布的API 581資料庫作為前述的氯化氫水溶液對碳鋼腐蝕率資料庫為例,詳述為何需要以一修正係數將腐蝕率預測模組M4所預測的該初步預測腐蝕率修正為修正預測腐蝕率R。應理解,若採用其他資料庫作為氯化氫水溶液對碳鋼腐蝕率資料庫,則對應的修正係數可能不同。Taking the API 581 database published by the American Petroleum Institute as an example of the corrosion rate database of carbon steel in aqueous hydrogen chloride solution, this paper explains in detail why it is necessary to use a correction factor to convert the preliminary predicted corrosion rate predicted by the corrosion rate prediction module M4 to Rate correction is the revised predicted corrosion rate R. It should be understood that if other databases are used as the database for the corrosion rate of carbon steel by aqueous hydrogen chloride solution, the corresponding correction coefficients may be different.
第3B圖呈現API 581資料庫所包含的複數筆腐蝕率資料,其中每一筆腐蝕率資料為一腐蝕率(例如:每年腐蝕幾公釐),且每一筆腐蝕率資料對應至一溫度值及一酸鹼值。進一步言, 美國石油協會係採用如第3C圖所示的運作環境來產生API 581資料庫中的每一筆腐蝕率資料。如第3C圖所示,將一碳鋼試片10放置於具有一特定酸鹼值的氯化氫水溶液12且所在環境處於一特定溫度值,氯化氫水溶液12會碳鋼試片10造成均勻腐蝕,因此可基於碳鋼試片10的均勻腐蝕程度計算出腐蝕率。然而,執行該芳香烴製程的系統的運作環境則與第3C圖所示的運作環境不同。執行該芳香烴製程的系統,其餾除塔有一對應的塔頂系統(亦即,餾除塔頂部的循環系統)。在該塔頂系統中,氯化氫水溶液16會以液滴形式分布在油相中,通過塔頂系統中的碳鋼管線14,而只有鄰近管壁的氯化氫水溶液16液滴才會對碳鋼管線14造成腐蝕,如第3D圖所示的虛線處。由前述說明可知,在不同的運作環境中,氯化氫水溶液所造成的腐蝕行為不同。因此,腐蝕監測裝置3需要根據能反映該二環境的差異的一修正係數,將腐蝕率預測模組M4所預測的該初步預測腐蝕率修正為修正預測腐蝕率R。Figure 3B presents multiple pieces of corrosion rate data contained in the API 581 database, where each piece of corrosion rate data is a corrosion rate (for example: several millimeters of corrosion per year), and each piece of corrosion rate data corresponds to a temperature value and a pH value. Furthermore, the American Petroleum Institute uses the operating environment shown in Figure 3C to generate each corrosion rate data in the API 581 database. As shown in Figure 3C, a carbon
具體而言,處理器15可根據該餾除塔對應的該塔頂系統中的一水與管壁接觸面積(例如:第3D圖所示的虛線處)及一管線內部表面積計算出該修正係數。舉例而言,處理器15可根據以下公式(1)計算出該修正係數:
(1)
Specifically, the
上述公式(1)中,變數 代表修正係數,變數 代表水與管壁接觸面積,而變數 代表管線內部表面積。需說明者,由於管線內部表面積只有一半與氯化氫水溶液接觸,因此公式(1)中需將其除以2。 In the above formula (1), the variable represents the correction factor, variable Represents the contact area between water and pipe wall, while the variable Represents the internal surface area of the pipeline. It should be noted that since only half of the internal surface area of the pipeline is in contact with the aqueous hydrogen chloride solution, it needs to be divided by 2 in the formula (1).
另外,處理器15可根據一腐蝕作用層含水量、一水密度及一水溶液膜厚計算出該水與管壁接觸面積。舉例而言,處理器15可根據以下公式(2)計算出該水與管壁接觸面積:
(2)
In addition, the
上述公式(2)中,變數 代表腐蝕作用層含水量,變數 代表水密度,而變數 代表水溶液膜厚。進一步言,關於水溶液膜厚的計算方式,可參考S. K. Alghoul等人於2010年在「Liquid Atomization and Spray Systems」年度會議中所發表的「Experimental investigation of a Single Droplet Interaction with Shear Driven Film」一文。 In the above formula (2), the variable Represents the water content of the corrosion layer, variable represents water density, while the variable represents the film thickness of the aqueous solution. Furthermore, for the calculation method of the film thickness of the aqueous solution, please refer to the article "Experimental investigation of a Single Droplet Interaction with Shear Driven Film" published by SK Alghoul et al. in the annual meeting of "Liquid Atomization and Spray Systems" in 2010.
此外,處理器15可根據該塔頂系統中的一管線容積、該餾除塔中的一流體密度、該餾除塔中的一含水濃度以及該餾除塔中的一腐蝕作用層所占截面積比例,計算出該腐蝕作用層含水量。舉例而言,處理器15可根據以下公式(3)計算出該腐蝕作用層含水量:
(3)
In addition,
上述公式(3)中,變數
代表塔頂系統中的管線容積,變數
代表該餾除塔中的一流體密度,變數
代表該餾除塔中的一含水濃度,而變數
代表腐蝕作用層所占截面積比例。進一步言,若儲存器11儲存經訓練的一水分預測模組M5,則可將當前量測資料組DS2中的該等當前特徵資料輸入水分預測模組M5,使水分預測模組M5預測出變數
所代表的含水濃度。另外,關於腐蝕作用層所占截面積比例的計算方式,可參考L.D. Paolinelli等人於2018年在「Chemical Engineering Science」期刊所發表的「Study of water wetting and water layer thickness in oil-water flow in horizontal pipes with different wettability」一文。
In the above formula (3), the variable represents the line volume in the overhead system, variable Represents the density of a fluid in the distillation column, variable represents a water concentration in the distillation tower, and the variable Represents the proportion of the cross-sectional area occupied by the corrosion layer. Further, if the
在計算出該修正係數後,針對腐蝕率預測模組M4所產生的任一初步預測腐蝕率,處理器15便能以該修正係數將該初步預測腐蝕率修正為修正預測腐蝕率R。After calculating the correction coefficient, for any preliminary predicted corrosion rate generated by the corrosion rate prediction module M4, the
綜上所述,腐蝕監測裝置3還會考量芳香烴製程中對於腐蝕有較明顯影響的複數個第二選定特徵變數,且以一能反映出系統實際的運作環境(例如:腐蝕溶液與系統中的管線的實際接觸狀況)的修正係數來將該初步預測腐蝕率修正為一修正預測腐蝕率R,因此該修正預測腐蝕率R能準確地作為該系統中的該餾除塔的實際腐蝕率。如此一來,該系統的管理者能基於較為準確的該修正預測腐蝕率瞭解的該餾除塔的腐蝕狀況,甚至據以評估系統的剩餘壽命,達到定量管理的目的。To sum up, the
本發明的第四實施方式為一腐蝕監測裝置4,其架構示意圖係描繪於第4圖。腐蝕監測裝置4亦包含儲存器11、收發介面13及處理器15,且處理器15電性連接至儲存器11及收發介面13。腐蝕監測裝置4能執行前述腐蝕監測裝置3所能執行的所有運作,因此亦具有其所具有的功能,且能達到其所能達到的技術效果。相較於腐蝕監測裝置3,腐蝕監測裝置4還會利用大數據建置酸鹼值預測模組M3、腐蝕率預測模組M4及水份預測模組M5。以下敘述將著重於腐蝕監測裝置4與腐蝕監測裝置3相異之處。The fourth embodiment of the present invention is a
於本實施方式中,儲存器11另儲存複數筆歷史量測資料組D1、……、Dk。歷史量測資料組D1、……、Dk的每一組為該系統過去執行該芳香烴製程時的量測資料組。歷史量測資料組D1、……、Dk的每一組包含複數筆歷史特徵資料,且歷史量測資料組D1、……、Dk的每一組所包含的該等歷史特徵資料一對一地對應至該芳香烴製程的該等製程特徵變數。In this embodiment, the
由於同一系統執行同一芳香烴製程所獲得的歷史量測資料組D1、……、Dk的資料筆數較少且資料變異範圍較小,因此處理器15會利用化工流程模擬軟體Aspen Plus(又稱Aspen+),從歷史量測資料組D1、……、Dk模擬出筆數較多且資料變異範圍較大的複數筆訓練資料組T1、……、Tz。具體而言,處理器15可利用化工流程模擬軟體Aspen Plus及歷史量測資料組D1、……、Dk模擬出該系統的模型(例如:模擬出第1B圖所示的去丁烷塔系統的模型),在該模型上規劃出不同的操作條件,藉此產生不同操作條件下的數據作為訓練資料組T1、……、Tz。訓練資料組T1、……、Tz的每一組包含複數筆訓練特徵資料,且訓練資料組T1、……、Tz的每一組所包含的該等訓練特徵資料一對一地對應至該芳香烴製程的該等製程特徵變數。Because the historical measurement data sets D1, ..., Dk obtained by the same aromatic hydrocarbon process in the same system have fewer records and a smaller range of data variation, the
處理器15利用訓練資料組T1、……、Tz中對應至該等第二選定特徵變數的訓練特徵資料以及一第三機器學習演算法,訓練出酸鹼值預測模組M3。應理解,為訓練出酸鹼值預測模組M3,訓練資料組T1、……、Tz的每一組所包含的該等訓練特徵資料中會有一酸鹼值。類似的,處理器15利用訓練資料組T1、……、Tz中對應至該等第二選定特徵變數的訓練特徵資料以及該第三機器學習演算法,訓練出水份預測模組M5。應理解,為訓練出水份預測模組M5,訓練資料組T1、……、Tz的每一組所包含的該等訓練特徵資料中會有一含水濃度。需說明者,本發明未限制第三機器學習演算法必須為哪一機器學習演算法。舉例而言,第三機器學習演算法可為任一種深度神經網路(Deep Neural Network;DNN)演算法。The
於某些實施方式中,在利用訓練資料組T1、……、Tz產生酸鹼值預測模組M3之前,腐蝕監測裝置4還會從該芳香烴製程的該等製程特徵變數中挑選出該等第二選定特徵變數。In some embodiments, before using the training data sets T1, ..., Tz to generate the pH value prediction module M3, the
於某些實施方式中,處理器15可根據一統計分析法分析訓練資料組T1、……、Tz,藉此從該等製程特徵變數中選出較為重要者作為該等第二選定特徵變數。舉例而言,該統計分析法可為相關係數法、逐步回歸分析法或其他類似的演算法。In some embodiments, the
於某些實施方式中,處理器15先根據一統計分析法(例如:相關係數法、逐步回歸分析法或其他類似的演算法)分析訓練資料組T1、……、Tz,藉此從該等製程特徵變數中選出較為重要者作為複數個第四候選特徵變數。接著,處理器15根據該等第四候選特徵變數及複數個第五候選特徵變數(例如:由熟悉芳香烴製程的專業人士從該等製程特徵變數中決定的較為重要的特徵變數)選出該等第二選定特徵變數。舉例而言,處理器15可採用該等第四候選特徵變數及該等第五候選特徵變數的聯集作為該等第二選定特徵變數。再舉例而言,處理器15可採用該等第四候選特徵變數及該等第五候選特徵變數的聯集作為複數個第六候選特徵變數,收發介面13或另一收發介面再輸出該等第六候選特徵變數供熟悉芳香烴製程的專業人士從該等第六候選特徵變數中決定出較為重要者作為該等第二選定特徵變數,收發介面13或另一收發介面再接收該等第二選定特徵變數。In some embodiments, the
另外,處理器15利用一氯化氫水溶液對碳鋼腐蝕率資料庫(例如:美國石油協會所公布的API 581資料庫)所包含的複數筆腐蝕率資料(作為訓練資料組)及一第四機器學習演算法產生腐蝕率預測模組M4。需說明者,本發明未限制第四機器學習演算法必須為哪一機器學習演算法。舉例而言,第四機器學習演算法可為K鄰近(K-Nearest Neighbor)演算法、梯度提升機器(Gradient Boosting Machines)演算法、高斯過程回歸(Gaussian Process Regression)演算法或其他類似的演算法。In addition, the
綜上所述,腐蝕監測裝置4還可基於歷史量測資料組D1、……、Dk產生訓練資料組T1、……、Tz,再利用訓練資料組T1、……、Tz訓練出酸鹼值預測模組M3。腐蝕監測裝置4還可基於一氯化氫水溶液對碳鋼腐蝕率資料庫訓練出腐蝕率預測模組M4。除此之外,針對任一芳香烴製程,腐蝕監測裝置4還可從該芳香烴製程的複數個製程特徵變數中挑選出對於腐蝕有較明顯影響者作為複數個第二選定特徵變數,再以該等第二選定特徵變數所對應的訓練特徵資料訓練出酸鹼值預測模組M3。因此,腐蝕監測裝置4能為不同的芳香烴製程及不同的系統挑選出適當的第二選定特徵變數(即,對於執行此芳香烴製程的系統較容易造成腐蝕的那些製程特徵變數),進而訓練出能準確地預測的酸鹼值預測模組M3供腐蝕率預測模組M4預測出準確的腐蝕率。In summary, the
本發明的第五實施方式為一腐蝕監測方法,其適用於一電子計算裝置(例如:腐蝕監測裝置1、2、3、4)。該腐蝕監測方法的主要流程圖係描繪於第4圖,其係至少包含步驟S501、步驟S503及步驟S505。The fifth embodiment of the present invention is a corrosion monitoring method, which is applicable to an electronic computing device (for example:
於步驟S501,由該電子計算裝置接收執行一芳香烴製程的一系統的一當前量測資料組,其中該當前量測資料組包含複數筆當前特徵資料,且該等當前特徵資料一對一地對應至該芳香烴製程的複數個選定特徵變數。取決於具體的芳香烴製程為何,在某些情況中,各該選定特徵變數與該芳香烴製程中的一加氫反應、一重組反應、一觸媒再生反應及一脫氯運作其中之一相關。於步驟S503,由該電子計算裝置將該等當前特徵資料輸入經訓練的一腐蝕健康度評估模組以得到該系統的一腐蝕健康度。於步驟S505,由該電子計算裝置將該等當前特徵資料及該腐蝕健康度輸入經訓練的一重要性分析模組以得到各該選定特徵變數對於腐蝕健康度的一貢獻程度。In step S501, a current measurement data set of a system performing an aromatic hydrocarbon process is received by the electronic computing device, wherein the current measurement data set includes a plurality of current characteristic data, and the current characteristic data are one-to-one A plurality of selected characteristic variables corresponding to the aromatic hydrocarbon process. Depending on the specific aromatic hydrocarbon process, in some cases, each of the selected characteristic variables is associated with one of a hydrogenation reaction, a recombination reaction, a catalyst regeneration reaction, and a dechlorination operation in the aromatic hydrocarbon process . In step S503, the electronic computing device inputs the current feature data into a trained corrosion health assessment module to obtain a corrosion health of the system. In step S505, the electronic computing device inputs the current characteristic data and the corrosion health into a trained importance analysis module to obtain a contribution degree of each selected characteristic variable to the corrosion health.
於某些實施方式中,腐蝕監測方法還包含步驟S507及步驟S509。於步驟S507,由該電子計算裝置判斷該腐蝕健康度是否低於一第一門檻值。若步驟S507的判斷結果為該腐蝕健康度低於該第一門檻值,則該電子計算裝置還會輸出該等選定特徵變數中的至少一關鍵特徵變數,其中各該至少一關鍵特徵變數所對應的該貢獻程度大於一第二門檻值。該至少一關鍵特徵變數為該等選定特徵變數中造成該系統的設備腐蝕(或使該系統的設備的腐蝕惡化)較為關鍵者。In some embodiments, the corrosion monitoring method further includes step S507 and step S509. In step S507, the electronic computing device determines whether the corrosion health is lower than a first threshold. If the judgment result of step S507 is that the corrosion health degree is lower than the first threshold value, the electronic computing device will also output at least one key characteristic variable among the selected characteristic variables, wherein each of the at least one key characteristic variable corresponds to The degree of contribution is greater than a second threshold. The at least one key characteristic variable is the more critical one among the selected characteristic variables that causes corrosion of equipment of the system (or worsens corrosion of equipment of the system).
於某些實施方式中,該電子計算裝置還儲存複數筆歷史量測資料組,且各該歷史量測資料組包含複數筆歷史特徵資料一對一地對應至該芳香烴製程的該等選定特徵變數。於該等實施方式中,腐蝕監測方法還可執行一步驟,由該電子計算裝置利用該等歷史量測資料組及一第一機器學習演算法產生該腐蝕健康度評估模組。此外,腐蝕監測方法還可執行一步驟,由該電子計算裝置利用該等歷史量測資料組、該腐蝕健康度評估模組對各該歷史量測資料組的一預測結果及一第二機器學習演算法產生該重要性分析模組。In some embodiments, the electronic computing device also stores a plurality of historical measurement data sets, and each of the historical measurement data sets includes a plurality of historical characteristic data corresponding one-to-one to the selected characteristics of the aromatic hydrocarbon process variable. In these embodiments, the corrosion monitoring method may further execute a step of generating the corrosion health assessment module by the electronic computing device using the historical measurement data sets and a first machine learning algorithm. In addition, the corrosion monitoring method can also perform a step of using the historical measurement data sets, a prediction result of the corrosion health assessment module for each of the historical measurement data sets, and a second machine learning by the electronic computing device An algorithm generates the importance analysis module.
於某些實施方式中,在產生該腐蝕健康度評估模組及該重要性分析模組之前,該腐蝕監測方法還會先決定出該等選定特徵變數。具體而言,於該等實施方式中,該電子計算裝置所儲存的各該歷史量測資料組係包含複數筆歷史特徵資料一對一地對應至該芳香烴製程的複數個製程特徵變數。該腐蝕監測方法還可執行一步驟,由該電子計算裝置根據一統計分析法分析該等歷史量測資料組,藉此從該等製程特徵變數中選出該等選定特徵變數。In some embodiments, before generating the corrosion health assessment module and the importance analysis module, the corrosion monitoring method will first determine the selected characteristic variables. Specifically, in these embodiments, each of the historical measurement data sets stored in the electronic computing device includes a plurality of pieces of historical characteristic data corresponding one-to-one to a plurality of process characteristic variables of the aromatic hydrocarbon process. The corrosion monitoring method may also perform a step of analyzing the historical measurement data sets by the electronic computing device according to a statistical analysis method, thereby selecting the selected characteristic variables from the process characteristic variables.
於某些實施方式中,該腐蝕監測方法則可採用以下步驟決定出該等選定特徵變數。該腐蝕監測方法包含一步驟,由該電子計算裝置根據一統計分析法分析該等歷史量測資料組以從該等製程特徵變數中選出複數個第一候選特徵變數,再包含另一步驟,由該電子計算裝置根據該等第一候選特徵變數及複數個第二候選特徵變數選出該等選定特徵變數。In some embodiments, the corrosion monitoring method may adopt the following steps to determine the selected characteristic variables. The corrosion monitoring method includes a step of analyzing the historical measurement data sets by the electronic computing device according to a statistical analysis method to select a plurality of first candidate characteristic variables from the process characteristic variables, and further includes another step, by The electronic computing device selects the selected characteristic variables according to the first candidate characteristic variables and a plurality of second candidate characteristic variables.
除了上述步驟,本發明的腐蝕監測方法還能執行腐蝕監測裝置1、2、3、4所能執行的所有運作及步驟,具有同樣的功能,且達到同樣的技術效果。本發明所屬技術領域中具有通常知識者可直接瞭解本發明的腐蝕監測方法如何基於上述的腐蝕監測裝置1、2、3、4以執行此等運作及步驟,具有同樣的功能,並達到同樣的技術效果,故不贅述。In addition to the above steps, the corrosion monitoring method of the present invention can also perform all the operations and steps that the
上述各實施方式中所闡述的腐蝕監測方法可由包含複數個程式指令的一電腦程式產品實現。該電腦程式產品可為能被於網路上傳輸的檔案,亦可被儲存於一非暫態電腦可讀取儲存媒體中。該電腦程式產品所包含的該等程式指令被載入一電子計算裝置(例如:腐蝕監測裝置1、2、3、4)後,該電腦程式執行如在上述各實施方式中所述的腐蝕監測方法。該非暫態電腦可讀取儲存媒體可為一電子產品,例如:一唯讀記憶體(Read Only Memory;ROM)、一快閃記憶體、一軟碟、一硬碟、一光碟(Compact Disk;CD)、一數位多功能光碟(Digital Versatile Disc;DVD)、一隨身碟、一可由網路存取的資料庫或本發明所屬技術領域中具有通常知識者所知且具有相同功能的任何其他儲存媒體。The corrosion monitoring methods described in the above embodiments can be realized by a computer program product including a plurality of program instructions. The computer program product can be a file that can be transmitted over the Internet, or can be stored in a non-transitory computer-readable storage medium. After the program instructions contained in the computer program product are loaded into an electronic computing device (for example:
需說明者,本發明專利說明書及申請專利範圍中的某些用語(包含:機器學習演算法、候選特徵變數、門檻值)前被冠以「第一」、「第二」、「第三」、「第四」、「第五」或「第六」,該等「第一」、「第二」、「第三」、「第四」、「第五」及「第六」係用來區隔該等用語彼此不同。另需說明者,於本發明專利說明書及申請專利範圍中,某些用語(包含:量測資料組、特徵資料)前被冠以「歷史」,其係用以表示該等用語所對應的資料為系統過去運作時的資料。再者,某些用語(包含:量測資料組、特徵資料)前被冠以「當前」,其係用以表示該等用語所對應的資料為系統當前運作時的資料。It should be noted that certain terms (including: machine learning algorithms, candidate feature variables, and threshold values) in the patent specification and scope of the patent application of the present invention are preceded by "first", "second", and "third" , "Fourth", "Fifth" or "Sixth", such "First", "Second", "Third", "Fourth", "Fifth" and "Sixth" are used for These terms are distinguished from each other. In addition, in the patent specification and patent application scope of the present invention, some terms (including: measurement data set, characteristic data) are preceded by "history", which is used to represent the data corresponding to these terms It is the data of the past operation of the system. Furthermore, some terms (including: measurement data group, characteristic data) are preceded by "current", which is used to indicate that the data corresponding to these terms are the data at the time of the system's current operation.
綜上所述,本發明所提供的腐蝕監測技術(至少包含裝置、方法及其電腦程式產品)利用經訓練的一腐蝕健康度評估模組及經訓練的一重要性分析模組來監測執行一芳香烴製程的一系統的一腐蝕健康度(即,就腐蝕狀況而言,該系統的健康度)。具體而言,芳香烴製程中的某些特徵變數(即,前述的選定特徵變數)對於是否造成系統中的設備腐蝕有較明顯的影響,因此本發明所提供的腐蝕監測技術將一系統執行一芳香烴製程時對應至這些選定特徵變數的複數筆當前特徵資料輸入該腐蝕健康度評估模組以得到該系統的一腐蝕健康度,且將該等當前特徵資料輸入該重要性分析模組以得到各該選定特徵變數對該腐蝕健康度的一貢獻程度。當該腐蝕健康度低於一第一門檻值時,本發明所提供的腐蝕監測技術還可輸出該等選定特徵變數中的至少一關鍵特徵變數。In summary, the corrosion monitoring technology provided by the present invention (including at least the device, the method and its computer program product) utilizes a trained corrosion health evaluation module and a trained importance analysis module to monitor and execute a Corrosion health of a system for an aromatics process (ie, the health of the system in terms of corrosion conditions). Specifically, some characteristic variables in the aromatic hydrocarbon production process (that is, the aforementioned selected characteristic variables) have a more obvious impact on whether the equipment in the system is corroded, so the corrosion monitoring technology provided by the present invention implements a system A plurality of pieces of current characteristic data corresponding to these selected characteristic variables in the process of aromatic hydrocarbons are input into the corrosion health evaluation module to obtain a corrosion health degree of the system, and the current characteristic data are input into the importance analysis module to obtain A degree of contribution of each of the selected characteristic variables to the corrosion health. When the corrosion health is lower than a first threshold, the corrosion monitoring technology provided by the present invention can also output at least one key characteristic variable among the selected characteristic variables.
本發明所提供的腐蝕監測技術還可基於複數筆歷史量測資料組訓練出該腐蝕健康度評估模組及該重要性分析模組。除此之外,針對任一芳香烴製程,本發明所提供的腐蝕監測技術還可從複數個製程特徵變數中挑選出對於腐蝕有較明顯影響者作為選定特徵變數,再以該等選定特徵變數所對應的歷史量測資料訓練出該腐蝕健康度評估模組及該重要性分析模組。因此,本發明所提供的腐蝕監測技術能為不同的芳香烴製程及不同系統訓練出能準確地評估出系統的腐蝕健康度的腐蝕健康度評估模組及提供相關資訊的重要性分析模組,也因此能準確地評估出系統的腐蝕健康度,進而在系統發生腐蝕前或腐蝕程度惡化前產生預警,讓使用者能針對關鍵特徵變數採取防範措施以避免發生腐蝕或讓腐蝕狀況惡化。The corrosion monitoring technology provided by the present invention can also train the corrosion health assessment module and the importance analysis module based on a plurality of historical measurement data sets. In addition, for any aromatic hydrocarbon process, the corrosion monitoring technology provided by the present invention can also select the one that has a significant impact on corrosion from a plurality of process characteristic variables as the selected characteristic variable, and then use the selected characteristic variable The corresponding historical measurement data trains the corrosion health evaluation module and the importance analysis module. Therefore, the corrosion monitoring technology provided by the present invention can train a corrosion health evaluation module that can accurately evaluate the corrosion health of the system and an importance analysis module that provides relevant information for different aromatic hydrocarbon processes and different systems. Therefore, the corrosion health of the system can be accurately evaluated, and then an early warning can be generated before the system corrodes or the corrosion degree deteriorates, allowing users to take preventive measures against key characteristic variables to avoid corrosion or worsen the corrosion condition.
上述各實施方式係用以例示性地說明本發明的部分實施態樣,以及闡釋本發明的技術特徵,而非用來限制本發明的保護範疇及範圍。任何本發明所屬技術領域中具有通常知識者可輕易完成的改變或均等性的安排均屬於本發明所主張的範圍,本發明的權利保護範圍以申請專利範圍為準。The above-mentioned embodiments are used to illustrate some implementation aspects of the present invention and explain the technical features of the present invention, but are not used to limit the scope and scope of the present invention. Any change or equivalence arrangement that can be easily accomplished by those with ordinary knowledge in the technical field of the present invention belongs to the scope claimed by the present invention, and the protection scope of the present invention is subject to the scope of the patent application.
1、2、3、4:腐蝕監測裝置 10:碳鋼試片 11:儲存器 12:氯化氫水溶液 13:收發介面 14:碳鋼管線 15:處理器 16:氯化氫水溶液 M1:腐蝕健康度評估模組 M2:重要性分析模組 M3:酸鹼值預測模組 M4:腐蝕率預測模組 M5:水分預測模組 D1、……、Dk:歷史量測資料組 DS1、DS2:當前量測資料組 HI:腐蝕健康度 O1、……、Om:貢獻程度 R:修正預測腐蝕率 T1、……、Tz:訓練資料組 S501、S503、S505、S507、S509:步驟 1, 2, 3, 4: Corrosion monitoring device 10: Carbon steel test piece 11: Storage 12: Hydrogen chloride aqueous solution 13: Sending and receiving interface 14: Carbon steel pipeline 15: Processor 16: Hydrogen chloride aqueous solution M1: Corrosion Health Evaluation Module M2: Importance analysis module M3: pH value prediction module M4: Corrosion Rate Prediction Module M5:Moisture prediction module D1,..., Dk: historical measurement data group DS1, DS2: current measurement data set HI: Corrosion Health O1, ..., Om: degree of contribution R: Revised predicted corrosion rate T1, ..., Tz: training data set S501, S503, S505, S507, S509: steps
第1A圖描繪第一實施方式的腐蝕監測裝置1的架構示意圖。FIG. 1A depicts a schematic structural view of the
第1B圖描繪一去丁烷塔系統執行一芳香烴製程的簡要示意圖。FIG. 1B depicts a schematic diagram of a debutanizer system performing an aromatics process.
第2圖描繪第二實施方式的腐蝕監測裝置2的架構示意圖。FIG. 2 depicts a schematic structural diagram of a
第3A圖描繪第三實施方式的腐蝕監測裝置3的架構示意圖。FIG. 3A depicts a schematic structural diagram of a
第3B圖呈現API 581資料庫所包含的複數筆腐蝕率資料。Figure 3B presents a plurality of corrosion rate data contained in the API 581 database.
第3C圖描繪用以產生API 581資料庫的每一筆腐蝕率資料的運作環境。Figure 3C depicts the operating environment used to generate each piece of corrosion rate data for the API 581 database.
第3D圖描繪在一餾除塔所對應的塔頂系統中,只有鄰近碳鋼管線14的管壁的氯化氫水溶液16液滴才會對碳鋼管線14造成腐蝕的示意圖。FIG. 3D depicts a schematic diagram of the
第4圖描繪第四實施方式的腐蝕監測裝置4的架構示意圖。FIG. 4 depicts a schematic structural diagram of a
第5圖描繪第五實施方式的腐蝕監測方法的主要流程圖。Fig. 5 depicts the main flowchart of the corrosion monitoring method of the fifth embodiment.
無none
S501、S503、S505、S507、S509:步驟 S501, S503, S505, S507, S509: steps
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131330A TWI810634B (en) | 2021-08-24 | 2021-08-24 | Corrosion monitoring apparatus, method, and computer program product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110131330A TWI810634B (en) | 2021-08-24 | 2021-08-24 | Corrosion monitoring apparatus, method, and computer program product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202309498A true TW202309498A (en) | 2023-03-01 |
TWI810634B TWI810634B (en) | 2023-08-01 |
Family
ID=86690733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131330A TWI810634B (en) | 2021-08-24 | 2021-08-24 | Corrosion monitoring apparatus, method, and computer program product thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI810634B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9150793B2 (en) * | 2008-11-03 | 2015-10-06 | Nalco Company | Method of reducing corrosion and corrosion byproduct deposition in a crude unit |
CN109313150B (en) * | 2016-04-19 | 2022-10-28 | 亚德诺半导体国际无限责任公司 | Wear monitoring device |
CN108169112B (en) * | 2017-12-25 | 2021-06-15 | 联想(北京)有限公司 | Circuit board corrosion monitoring method and device and environmental corrosion monitoring method and device |
CN113252544B (en) * | 2021-05-21 | 2022-03-18 | 北京化工大学 | Corrosion monitoring system and method for oil refining device |
-
2021
- 2021-08-24 TW TW110131330A patent/TWI810634B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI810634B (en) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6978541B2 (en) | Computer implementation method, computer system and computer equipment to reduce dynamic deviation value bias | |
US7966331B2 (en) | Method and system for assessing and optimizing crude selection | |
US7813894B2 (en) | Method and system for assessing the performance of crude oils | |
WO2007038533A2 (en) | System to predict corrosion and scaling, program product, and related methods | |
TWI787971B (en) | Corrosion rate prediction apparatus, method, and computer program product thereof | |
WO2012029154A1 (en) | Internal abnormality diagnosis method, internal abnormality diagnosis system, and decision tree generating method for internal abnormality diagnosis of oil-filled electric apparatus utilizing gas concentration in oil | |
Moghadasi et al. | Steam consumption prediction of a gas sweetening process with methyldiethanolamine solvent using machine learning approaches | |
CN105868164A (en) | Soft measurement modeling method based on monitored linear dynamic system model | |
Nguyen | Rethinking time-on-task estimation with outlier detection accounting for individual, time, and task differences | |
JP2020194320A (en) | Information processing device, prediction discrimination system, and prediction discrimination method | |
TWI810634B (en) | Corrosion monitoring apparatus, method, and computer program product thereof | |
CN105137820A (en) | Petrochemical equipment corrosion treatment method, device and system | |
US11531328B2 (en) | Monitoring and controlling an operation of a distillation column | |
CN117826606A (en) | Variable optimization method and control equipment of absorption stabilization system | |
JP2009192221A (en) | Deterioration evaluator and deterioration evaluation method | |
JP6616889B2 (en) | Window evaluation method and analyzer | |
Zhou et al. | Quantification of value of information associated with optimal observation actions within partially observable Markov decision processes | |
Ahmad et al. | Quantitative analysis of product quality of naphtha reforming process under uncertain process conditions | |
Sansana et al. | Hybrid Approach for Advanced Monitoring and Forecasting of Fouling with Application to an Ethylene Oxide Plant | |
CN111126694A (en) | Time series data prediction method, system, medium and device | |
Zheng et al. | Pipeline reliability assessment and predictive maintenance considering multi-crack dependent degradation | |
Kongkiatpaiboon | Improving Offshore Condensate Production Optimization Processes with Prediction of Reid Vapor Pressure Using Machine Learning | |
CN113449476B (en) | Stacking-based soft measurement method for butane content in debutanizer | |
WO2019213831A1 (en) | Advisory system for lng production | |
WO2024058933A1 (en) | Quantitatively estimating sulfuric acid corrosion rates from corrosion degradation fundamentals and inspection history in a broad temperature range |