TW202309037A - Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof - Google Patents

Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof Download PDF

Info

Publication number
TW202309037A
TW202309037A TW111114784A TW111114784A TW202309037A TW 202309037 A TW202309037 A TW 202309037A TW 111114784 A TW111114784 A TW 111114784A TW 111114784 A TW111114784 A TW 111114784A TW 202309037 A TW202309037 A TW 202309037A
Authority
TW
Taiwan
Prior art keywords
compound
alkyl
substituted
unsubstituted
group
Prior art date
Application number
TW111114784A
Other languages
Chinese (zh)
Inventor
皮爾路易斯 比尤利
艾瑞克 比尤利
賽斯米塔 特里帕西
楊尼克 羅斯
麥克 多爾
Original Assignee
蒙特利爾大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒙特利爾大學 filed Critical 蒙特利爾大學
Publication of TW202309037A publication Critical patent/TW202309037A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Compounds, compositions and their use in the treatment of a proliferative disease or condition such as a said proliferative disease or disorder is associated with a RAF gene mutation and/or a RAS gene mutation. The compounds disclosed are of Formula I or a pharmaceutically acceptable salt or solvate thereof, wherein R1, R2, R3, X1, X2, X3, X4 and Y are as defined herein:.

Description

嘧啶并[5,4,d]嘧啶化合物、包含其之組成物及其用途Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof

相關申請案Related applications

本申請案根據適用法律主張2021年4月19日申請之美國臨時申請案第63/201,222號之優先權,該申請案之揭露內容出於所有目的以全文引用之方式併入本文中。This application claims priority under applicable law to U.S. Provisional Application No. 63/201,222, filed April 19, 2021, the disclosure of which is incorporated herein by reference in its entirety for all purposes.

本揭示案大體上係關於嘧啶并[5,4- d]嘧啶化合物、包含其之醫藥組成物及其在治療及預防表徵為RAS-ERK路徑失調之疾病(例如癌症、RAS病)中的用途。 The disclosure generally relates to pyrimido[5,4- d ]pyrimidine compounds, pharmaceutical compositions comprising the same, and their use in the treatment and prevention of diseases characterized by dysregulation of the RAS-ERK pathway (e.g., cancer, RAS disease) .

RAS-RAF-MEK-ERK (RAS:大鼠肉瘤;RAF:急速加速性纖維肉瘤;MEK:促分裂原活化蛋白激酶;ERK:胞外信號調節激酶)信號傳遞路徑(下文稱為RAS-ERK路徑)在將由生長因子受體產生之增殖信號自質膜傳送至細胞核中起至關重要的作用。由於受體酪胺酸激酶(receptor tyrosine kinase;RTK) (例如ERBB1、ERBB2、FLT3、RET、KIT)之活化、RAS調節因子(SOS1及NF1)之活化或失活,以及RAS基因( HRASKRASNRAS;總計30%癌症)或 BRAF基因(8%癌症)之持續性活化突變,該路徑在大部分癌症中失調。 KRAS突變之盛行率在胰臟癌(>90%)、結腸直腸癌(50%)及肺癌(30%)中尤其高。就其而言,在惡性黑色素瘤(70%)、甲狀腺癌(40%)及結腸直腸癌(10%)中發現BRAF突變之頻率極高(突變頻率基於2021年11月24日發行的第95版Catalogue Of Somatic Mutations In Cancer (COSMIC;Wellcome Trust Sanger研究所))。 RAS-RAF-MEK-ERK (RAS: rat sarcoma; RAF: rapidly accelerating fibrosarcoma; MEK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase) signaling pathway (hereinafter referred to as the RAS-ERK pathway ) play a crucial role in transmitting proliferative signals generated by growth factor receptors from the plasma membrane to the nucleus. Due to the activation of receptor tyrosine kinase (RTK) (such as ERBB1, ERBB2, FLT3, RET, KIT), the activation or inactivation of RAS regulatory factors (SOS1 and NF1), and the activation or inactivation of RAS genes ( HRAS , KRAS and NRAS ; a total of 30% of cancers) or persistent activating mutations in the BRAF gene (8% of cancers), a pathway that is dysregulated in most cancers. The prevalence of KRAS mutations is particularly high in pancreatic cancer (>90%), colorectal cancer (50%) and lung cancer (30%). For its part, BRAF mutations are found at very high frequency in malignant melanoma (70%), thyroid cancer (40%) and colorectal cancer (10%) (mutation frequency based on the 95th issue published on November 24, 2021 Edition Catalog Of Somatic Mutations In Cancer (COSMIC; Wellcome Trust Sanger Institute)).

RAS蛋白為小型GTP酶,其可將胞外生長信號傳遞至效應子以控制如細胞分化、增殖及存活之生命過程( Nat. Rev. Cancer2003, 3, 459)。RAS之生理活化發生在PTK刺激後之質膜處,其導致GTP負載GTP酶且因此該RAS活化。活化的RAS相互作用且活化一系列效應分子,其中在癌症發展之情況下,RAF激酶為最關鍵的RAS相互作用物( Nature Rev. Drug Discov.2014, 13, 828)。RAS同種型中之甘胺酸12、甘胺酸13或麩醯胺酸61之致癌突變導致人類癌症中之異常且持續的信號傳遞( Nat. Rev. Cancer2003, 3, 459) (2021年11月24日發行的第95版COSMIC)。 RAS proteins are small GTPases that transmit extracellular growth signals to effectors to control vital processes such as cell differentiation, proliferation and survival ( Nat. Rev. Cancer 2003, 3 , 459). Physiological activation of RAS occurs at the plasma membrane following PTK stimulation, which results in GTP loading of GTPases and thus activation of the RAS. Activated RAS interacts and activates a series of effector molecules, among which RAF kinases are the most critical RAS interactors in the context of cancer development ( Nature Rev. Drug Discov. 2014, 13 , 828 ). Oncogenic mutations of glycine 12, glycine 13, or glutamine 61 in RAS isoforms lead to aberrant and persistent signaling in human cancers ( Nat. Rev. Cancer 2003, 3 , 459) (2021 Nov. 95th edition of COSMIC issued on 24th April).

在RAS下游,哺乳動物細胞表現三種RAF同種同源物(ARAF、BRAF及CRAF),該等同種同源物共享保守C端激酶域(kinase domain;KD) ( Nat. Rev. Mol.Cell Biol.2015, 16, 281)及包含RAS結合域(RBD)之N端調節域(NTR)。在未刺激的細胞中,RAF蛋白作為單體在細胞質中螯合。GTP結合活化之RAS與RBD之結合誘導RAF激酶之膜錨定( Nat. Rev. Mol. Cell Biol.2015, 16, 281)。同時,RAF蛋白經歷激酶域側對側二聚化及催化活化( Nature2009, 461, 542)。活化的RAF蛋白經由磷酸化級聯將信號自RAF傳遞至MEK且隨後自MEK傳遞至ERK,導致ERK對一系列受質進行磷酸化,從而引發細胞特異性反應( Nat. Rev. Mol.Cell Biol.2020年10月, 21(10), 607)。 Downstream of RAS, mammalian cells express three RAF paralogs (ARAF, BRAF, and CRAF) that share a conserved C-terminal kinase domain (KD) ( Nat. Rev. Mol. Cell Biol. 2015, 16 , 281) and the N-terminal regulatory domain (NTR) containing the RAS-binding domain (RBD). In unstimulated cells, RAF proteins are sequestered in the cytoplasm as monomers. Binding of GTP-bound activated RAS to RBD induces membrane anchoring of RAF kinase ( Nat. Rev. Mol. Cell Biol. 2015, 16 , 281). At the same time, RAF protein undergoes side-to-side dimerization and catalytic activation of the kinase domain ( Nature 2009, 461 , 542 ). Activated RAF proteins transmit a signal from RAF to MEK and subsequently from MEK to ERK via a phosphorylation cascade, causing ERK to phosphorylate a range of substrates, triggering cell-specific responses ( Nat. Rev. Mol. Cell Biol . 2020 October, 21(10), 607).

迄今為止,活化RAF同種型突變主要受限於 BRAF基因,儘管在ARAF及CRAF中觀測到罕見變異體,強調了此同種型之功能重要性(2021年11月24日發行的第95版COSMIC)。BRAF中之最常見癌症突變,即位置600處之纈胺酸取代麩胺酸(稱為BRAF V600E),藉由穩定其活性形式來增強BRAF活性( Cell2004, 116, 855)。除V600E對偶基因以外,在其他殘基(例如G466V、D594G等)處發生一系列突變,其經由多種機制導致RAF信號傳遞增加( Nat. Rev. Mol.Cell Biol.2015, 16, 281)。此等突變已視其對RAS活性及RAF二聚化之依賴程度分為三個主要類別(1至3)( Nature2017年8月10日, 548(7666), 234-238)。野生型BRAF及CRAF在藉由刺激ERK信號傳遞來介導RAS驅動之腫瘤形成中的關鍵作用已得到廣泛驗證( Cancer Cell2011, 19, 652; Cancer Discov.2012, 2, 685; Nat. Commun.2017, 8, 15262)。因此,腫瘤細胞依賴於經由RAS及RAF活化之RAS-ERK路徑的升高及持續的信號傳遞,從而為在癌症中靶向RAF家族激酶之概念提供強有力的支持。 Activating RAF isoform mutations have so far been largely restricted to the BRAF gene, although rare variants have been observed in ARAF and CRAF, underscoring the functional importance of this isoform (COSMIC version 95, 24 November 2021) . The most common cancer mutation in BRAF, the substitution of valine for glutamic acid at position 600 (known as BRAF V600E ), enhances BRAF activity by stabilizing its active form ( Cell 2004, 116 , 855). In addition to the V600E allele, a series of mutations at other residues (eg, G466V, D594G, etc.) lead to increased RAF signaling through multiple mechanisms ( Nat. Rev. Mol. Cell Biol. 2015, 16 , 281). These mutations have been classified into three main categories (1 to 3) according to their dependence on RAS activity and RAF dimerization ( Nature 2017 Aug 10, 548(7666), 234-238). The key role of wild-type BRAF and CRAF in mediating RAS-driven tumor formation by stimulating ERK signaling has been widely verified ( Cancer Cell 2011, 19 , 652; Cancer Discov. 2012, 2 , 685; Nat. Commun. 2017, August , 15262). Thus, tumor cells depend on elevated and sustained signaling through the RAS-ERK pathway for RAS and RAF activation, providing strong support for the concept of targeting RAF family kinases in cancer.

為滿足現有的醫療需求,在過去十年中,已見證開發了一系列廣泛的ATP競爭性RAF抑制劑( Nat. Rev. Cancer2017, 17, 676)。努力主要集中在最常見的RAS非依賴性BRAF突變(BRAF V600E)上,導致開發及FDA批准之磺醯胺衍生物,諸如威羅菲尼(vemurafenib)及達拉非尼(dabrafenib)。此等RAF抑制劑中之一些已針對攜帶反覆的BRAF V600E對偶基因之轉移性黑色素瘤展示出令人印象深刻的療效且已經批准用於治療此患者群體( N. Engl. J. Med.2011, 364, 2507; Lancet2012, 380, 358)。針對BRAF V600E依賴性黑色素瘤之臨床反應係由此特定二聚非依賴性BRAF突變蛋白之單體形式的強效ATP競爭性抑制引起的( Cancer Cell2015, 28, 370)。不幸地,對此等藥劑之獲得性耐藥性總是會發生,該耐藥性主要由RAS-ERK路徑之重新活化,部分係藉由刺激RAF二聚化之機制引起。此等包括RTK信號傳遞上調、RAS突變及BRAF V600E擴增或截短( Sci. Signal.2010, 3, ra84; Nature2010, 468, 973; Nature2011, 480, 387; Nature Commun.2012, 3, 724)。 To meet existing medical needs, the past decade has witnessed the development of a broad series of ATP-competitive RAF inhibitors ( Nat. Rev. Cancer 2017, 17 , 676). Efforts have largely focused on the most common RAS-independent BRAF mutation (BRAF V600E ), leading to the development and FDA approval of sulfonamide derivatives such as vemurafenib and dabrafenib. Some of these RAF inhibitors have shown impressive efficacy against metastatic melanoma carrying repeated BRAF V600E alleles and have been approved for the treatment of this patient population ( N. Engl. J. Med. 2011, 364 , 2507; Lancet 2012, 380 , 358). Clinical responses against BRAF V600E- dependent melanoma are induced by potent ATP-competitive inhibition of monomeric forms of this specific dimerization-independent BRAF mutant protein ( Cancer Cell 2015, 28 , 370). Unfortunately, acquired resistance to these agents invariably occurs, mainly through reactivation of the RAS-ERK pathway, partly through mechanisms that stimulate RAF dimerization. These include upregulation of RTK signaling, RAS mutations, and BRAF V600E amplification or truncation ( Sci. Signal. 2010, 3 , ra84; Nature 2010, 468 , 973; Nature 2011, 480 , 387; Nature Commun. 2012, 3 , 724).

同時,展現RAS活性(由於活化RAS突變或升高的RTK信號傳遞,但在其他方面為BRAF之野生型)之腫瘤展示出對BRAF V600E抑制劑的主要耐藥性( Nature2010, 464, 431)。相反地,發現RAF抑制劑在RAS活性升高之條件下誘導ERK信號傳遞,且因此增強細胞增殖( Nature2010, 464, 431)。稱為反常效應之此違反直覺現象亦在依賴生理RAS活性的正常組織中觀測到且為黑色素瘤患者使用RAF抑制劑所見之不良效應中之一些(諸如新的續發腫瘤(例如鱗狀上皮細胞瘤及角質棘皮瘤)之發展)的基礎( Nat. Rev. Cancer2014, 14, 455)。因此,BRAF V600E對RAS驅動之癌症無效且甚至禁忌。潛在機制由化合物在活性RAS存在下促進RAF激酶域二聚化之能力產生( Nature2010, 464, 431)。此事件不限於BRAF,但亦涉及其他RAF家族成員且由化合物結合模式及親和力決定( Nat. Chem. Biol.2013, 9, 428)。 Concurrently, tumors exhibiting RAS activity (due to activating RAS mutations or elevated RTK signaling, but otherwise wild-type BRAF) exhibit major resistance to BRAF V600E inhibitors ( Nature 2010, 464 , 431) . Conversely, RAF inhibitors were found to induce ERK signaling under conditions of elevated RAS activity and thus enhance cell proliferation ( Nature 2010, 464 , 431). This counterintuitive phenomenon, known as the paradoxical effect, is also observed in normal tissues that depend on physiological RAS activity and is one of the adverse effects seen with RAF inhibitors in melanoma patients (such as new secondary tumors (e.g., squamous epithelial cells) ( Nat. Rev. Cancer 2014, 14 , 455). Thus, BRAF V600E is ineffective and even contraindicated against RAS-driven cancers. The underlying mechanism arises from the ability of the compound to promote dimerization of the RAF kinase domain in the presence of active RAS ( Nature 2010, 464 , 431). This event is not limited to BRAF, but also involves other RAF family members and is determined by compound binding mode and affinity ( Nat. Chem. Biol. 2013, 9 , 428 ).

近來執行兩種策略來規避第一代RAF抑制劑在RAS突變癌症中之局限性。第一策略依賴於觀測到反常ERK活化為一種劑量依賴性現象,亦即誘導發生於亞飽和抑制劑濃度下,但當化合物佔據RAF二聚體之兩個單元體時,該路徑在飽和濃度下經抑制。因此,第一策略專注於開發對所有RAF同種同源物具有更高結合親和力的分子,以便在較低藥物濃度下使RAF蛋白飽和,從而減少反常路徑誘導( Bioorg. Med. Chem. Lett.2012, 22, 6237; Cancer Res.2013, 73, 7043; J. Med.Chem.2015, 58, 4165; Cancer Cell2017, 31, 466;J Med Chem.2020, 63, 2013;Clin Cancer Res.2021, 27, 2061;Nature 2021, 594, 418)。然而,此等化合物保留強大的RAF二聚體誘導能力且因此反常地刺激RAS-ERK信號傳遞,儘管其幅度低於前幾代RAF抑制劑。儘管此類化合物展示改良的特性,但進來研究展示該等化合物中之大部分不存在ARAF同種型,其導致反常路徑活化及原發性耐藥性,以及活體外及臨床背景下出現之獲得性耐藥性(Clin Cancer Res.2021, 27, 2061;Nature 2021, 594, 418)。第二策略在於設計在非活化狀態下構形上偏向BRAF激酶域且因此並不反常誘導ERK信號傳遞之化合物。此產生了「反常破壞子」(Paradox Breaker;PB)分子PLX8394,即PLX4032/威羅菲尼之衍生物( Nature2015, 526, 583)。此等分子保留針對BRAF V600E之高效力且因此應證明適用於治療BRAF V600E-依賴性黑色素瘤。然而,儘管PLX8394並不在已測試的RAS突變細胞株中誘導ERK信號傳遞,但其仍然無效且對RAS突變腫瘤不適用。 Two strategies have been recently implemented to circumvent the limitations of first-generation RAF inhibitors in RAS-mutant cancers. The first strategy relies on the observation that paradoxical ERK activation is a dose-dependent phenomenon, i.e., induction occurs at subsaturating inhibitor concentrations, but the pathway is at saturating concentrations when the compound occupies both units of the RAF dimer. suppressed. Therefore, a first strategy focused on developing molecules with higher binding affinity for all RAF paralogs in order to saturate RAF protein at lower drug concentrations, thereby reducing aberrant pathway induction ( Bioorg. Med. Chem. Lett. 2012 , 22 , 6237; Cancer Res. 2013, 73 , 7043; J. Med.Chem. 2015, 58 , 4165; Cancer Cell 2017, 31 , 466; J Med Chem.2020, 63, 2013; 27, 2061; Nature 2021, 594, 418). However, these compounds retain a strong RAF dimer-inducing capacity and thus paradoxically stimulate RAS-ERK signaling, albeit to a lower magnitude than previous generations of RAF inhibitors. Although this class of compounds exhibits improved properties, recent studies have shown that the majority of these compounds are free of the ARAF isoform that leads to activation of aberrant pathways and primary drug resistance, as well as acquisition that occurs in vitro and in clinical settings Drug resistance (Clin Cancer Res.2021, 27, 2061; Nature 2021, 594, 418). A second strategy consists in designing compounds that are conformationally biased towards the BRAF kinase domain in the inactive state and thus do not paradoxically induce ERK signaling. This resulted in the "Paradox Breaker" (PB) molecule PLX8394, which is a derivative of PLX4032/vemurafenib ( Nature 2015, 526 , 583). These molecules retain high potency against BRAF V600E and should therefore prove useful in the treatment of BRAF V600E -dependent melanoma. However, although PLX8394 did not induce ERK signaling in the tested RAS-mutant cell lines, it was still ineffective and ineffective against RAS-mutant tumors.

仍然需要有效且持續阻斷攜帶多種RAS及RAF基因型之人類腫瘤細胞中之RAS-ERK信號傳遞及細胞內增殖的抑制劑。重要的是,開發在多種RAS突變腫瘤細胞株中亦不存在反常路徑誘導的此類抑制劑為高度理想的。There remains a need for inhibitors that effectively and consistently block RAS-ERK signaling and intracellular proliferation in human tumor cells carrying multiple RAS and RAF genotypes. Importantly, it would be highly desirable to develop such inhibitors that are also not induced by aberrant pathways in a variety of RAS mutant tumor cell lines.

根據一個態樣,本技術係關於式I之化合物:

Figure 02_image001
式I 其中: R 1選自經取代或未經取代之OR 3、SR 3、NH 2、NHR 3、N(R 3) 2、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; R 2選自經取代之C 6芳基及C 5-10雜芳基、經取代或未經取代之C 4-8雜環烷基及N(R 3) 2; R 3在每次出現時獨立地選自經取代或未經取代之C 1-8烷基、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; X 1為鹵基或拉電子基團; X 2選自H、鹵基及拉電子基團; X 3及X 4各自選自H、鹵基、拉電子基團、C 1-3烷基、C 3-4環烷基及OC 1-3烷基; Y選自H、鹵基、CN、OH、OC 1-8烷基、NH 2、NHC 1-8烷基、N(C 1-8烷基) 2及經取代或未經取代之C 1-8烷基; 或其醫藥學上可接受之鹽或溶劑合物; 前提條件係化合物不為:
Figure 02_image004
。 According to one aspect, the technology relates to compounds of formula I:
Figure 02_image001
Formula I wherein: R 1 is selected from substituted or unsubstituted OR 3 , SR 3 , NH 2 , NHR 3 , N(R 3 ) 2 , C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; R 2 is selected from substituted C 6 aryl and C 5-10 heteroaryl, substituted or unsubstituted C 4-8 heterocycloalkane and N(R 3 ) 2 ; R 3 at each occurrence is independently selected from substituted or unsubstituted C 1-8 alkyl, C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; X 1 is halo or electron-withdrawing group; X 2 is selected from H, halo and electron-withdrawing group; X 3 and X 4 are each selected from H , halo, electron-withdrawing group, C 1-3 alkyl, C 3-4 cycloalkyl and OC 1-3 alkyl; Y is selected from H, halo, CN, OH, OC 1-8 alkyl, NH 2 , NHC 1-8 alkyl, N(C 1-8 alkyl) 2 and substituted or unsubstituted C 1-8 alkyl; or pharmaceutically acceptable salts or solvates thereof; prerequisites Conditional compounds are not:
Figure 02_image004
.

式I之化合物亦根據貫穿本文檔所描述之實施例及實例中之任一者定義。Compounds of formula I are also defined according to any of the Examples and Examples described throughout this document.

根據另一態樣,本技術係關於用於如前文所提及之實施例中之任一項中所定義的用途的醫藥組成物,該組成物包含如本文所定義之化合物以及醫藥學上可接受之載劑、稀釋劑或賦形劑。According to another aspect, the technology relates to a pharmaceutical composition for use as defined in any one of the above-mentioned embodiments, the composition comprising a compound as defined herein and a pharmaceutically acceptable acceptable carrier, diluent or excipient.

在另一態樣中,本技術係關於如本文所定義之化合物用於治療選自以下之疾病或病症的用途:增殖性疾病或病症、RAS-ERK傳訊級聯失調所致的發育異常(RAS病),或發炎性疾病或免疫系統失調。In another aspect, the present technology relates to the use of a compound as defined herein for the treatment of a disease or disorder selected from the group consisting of proliferative disease or disorder, dysplasia due to dysregulation of the RAS-ERK signaling cascade (RAS disease), or inflammatory diseases or immune system disorders.

本技術亦進一步係關於用於治療選自以下之疾病或病症的方法:增殖性疾病或病症、RAS-ERK傳訊級聯失調所致的發育異常(RAS病),或發炎性疾病或免疫系統失調,該方法包括向有需要之受試者投與如本文所定義之化合物。亦考慮用於抑制異常細胞增殖之方法,該方法包括使該等細胞與如本文所定義之化合物接觸。The present technology also further relates to a method for treating a disease or disorder selected from the group consisting of a proliferative disease or disorder, dysregulation of the RAS-ERK signaling cascade (RAS disease), or an inflammatory disease or disorder of the immune system , the method comprising administering a compound as defined herein to a subject in need thereof. Also contemplated are methods for inhibiting abnormal cell proliferation comprising contacting these cells with a compound as defined herein.

在上述用途及方法之一個實施例中,疾病或病症選自贅瘤及發育異常,例如與RAF基因突變相關之疾病或病症(例如ARAF、BRAF或CRAF)、與RAS基因突變相關之疾病或病症(例如KRAS)或與RAF基因突變及RAS基因突變兩者相關之疾病或病症。在一個實施例中,疾病或病症與受體酪胺酸激酶突變或擴增(例如EGFR、HER2)或該受體下游RAS之調節因子的突變或擴增(例如SOS1功能獲得、NF1功能喪失)相關。In one embodiment of the above uses and methods, the disease or disease is selected from neoplasms and dysplasia, such as diseases or diseases associated with RAF gene mutations (such as ARAF, BRAF or CRAF), diseases or diseases associated with RAS gene mutations (such as KRAS) or diseases or conditions associated with both RAF gene mutations and RAS gene mutations. In one embodiment, the disease or disorder is associated with a mutation or amplification of a receptor tyrosine kinase (e.g. EGFR, HER2) or a regulator of the RAS downstream of the receptor (e.g. SOS1 gain of function, NF1 loss of function) relevant.

舉例而言,疾病或病症為贅瘤,諸如選自以下之贅瘤:黑色素瘤、甲狀腺癌(例如乳突甲狀腺癌)、結腸直腸癌、卵巢癌、乳癌、子宮內膜癌、肝癌、肉瘤、胃癌、胰臟癌、巴瑞特氏腺癌(Barret's adenocarcinoma)、神經膠質瘤(例如室管膜瘤)、肺癌(例如非小細胞肺癌)、頭頸癌、急性淋巴母細胞白血病、急性骨髓性白血病、非何杰金氏淋巴癌(non-Hodgkin's lymphoma)及毛細胞白血病。舉例而言,贅瘤選自結腸或結腸直腸癌、肺癌、胰臟癌、甲狀腺癌、乳癌及黑色素瘤。舉例而言,本用途及方法中之任一者包括抑制RAS-ERK信號傳遞路徑而基本上不誘導反常路徑。For example, the disease or condition is a neoplasm, such as a neoplasm selected from the group consisting of melanoma, thyroid cancer (e.g., papillary thyroid cancer), colorectal cancer, ovarian cancer, breast cancer, endometrial cancer, liver cancer, sarcoma, Gastric cancer, pancreatic cancer, Barret's adenocarcinoma, glioma (eg, ependymoma), lung cancer (eg, non-small cell lung cancer), head and neck cancer, acute lymphoblastic leukemia, acute myeloid leukemia , non-Hodgkin's lymphoma (non-Hodgkin's lymphoma) and hairy cell leukemia. For example, the neoplasm is selected from colon or colorectal cancer, lung cancer, pancreatic cancer, thyroid cancer, breast cancer and melanoma. For example, any of the uses and methods include inhibiting the RAS-ERK signaling pathway without substantially inducing an aberrant pathway.

本化合物、組成物、方法及用途之額外目的及特徵在閱讀以下例示性實施例及實例章節之非限制性描述後將變得更顯而易見,該等例示性實施例及實例不應解釋為限制本發明之範疇。Additional objects and features of the present compounds, compositions, methods and uses will become more apparent upon reading the non-limiting description of the following illustrative examples and examples section, which should not be construed as limiting the present invention scope of invention.

本文所用之所有技術及科學術語以及表述均具有與熟習本技術所屬領域的技術者通常所理解之定義相同的定義。儘管如此,下文提供了一些術語及表述之定義。若以引用之方式併入本文中之公開、專利及專利申請案中之術語之定義與本說明書中所闡述之定義相反,則以本發明中之定義為準。本文所用之章節標題僅用於組織目的且不應解釋為限制所揭露之主題。 i. 定義 All technical and scientific terms and expressions used herein have the same definitions as commonly understood by those skilled in the art to which this technology belongs. Nonetheless, definitions of some terms and expressions are provided below. To the extent definitions of terms in publications, patents and patent applications incorporated by reference herein are contrary to the definitions set forth in this specification, the definitions in this specification control. The section headings used herein are for organizational purposes only and should not be construed as limiting the subject matter disclosed. i. Definition

本文所描述之化學結構係根據習用標準繪製。此外,當所繪製之原子(諸如碳原子)似乎包括不完全價態時,則假定該價態由一或多個氫原子滿足,即使此等氫原子未必明確繪出。氫原子應推斷為該化合物之一部分。Chemical structures described herein are drawn according to customary standards. Furthermore, when drawn atoms (such as carbon atoms) appear to include incomplete valences, it is assumed that the valences are satisfied by one or more hydrogen atoms, even if such hydrogen atoms are not necessarily drawn explicitly. A hydrogen atom should be inferred to be part of the compound.

本文所用之術語僅出於描述特定實施例之目的且不欲具有限制性。應注意,除非上下文另外清楚指示,否則單數形式「一(a/an)」及「該」亦包括複數形式。因此,例如,對含有「一化合物」之組成物的提及亦涵蓋兩種或更多種化合物之混合物。亦應注意,除非上下文另外清楚指示,否則術語「或」通常在其包括「及/或」之意義上加以使用。此外,在術語「包括(including/includes)」、「具有(having/has/with)」或其變化形式用於實施方式及/或申請專利範圍中之情況下,此類術語旨在以與術語「包含(comprising)」類似之方式為包括性的。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It should be noted that the singular forms "a" and "the" include the plural forms unless the context clearly dictates otherwise. Thus, for example, reference to a composition containing "a compound" also covers mixtures of two or more compounds. It should also be noted that the term "or" is generally employed in its sense including "and/or" unless the context clearly dictates otherwise. Furthermore, where the terms "including/includes", "having/has/with" or variations thereof are used in the embodiments and/or claims, such terms are intended to be used in conjunction with the term "comprising" and the like are inclusive.

術語「約」或「大致」意謂在如一般熟習此項技術者所測定之關於特定值之可接受的誤差範圍內,該誤差範圍將部分地取決於如何量測或測定該值,亦即量測系統之限制。舉例而言,根據此項技術中之實踐,「約」可意謂1之內的標準偏差或大於1之標準偏差。替代地,「約」可意謂給定值之至多20%、較佳至多10%、更佳至多5%且再更佳至多1%之範圍。替代地,尤其關於生物系統或過程,該術語可意謂在一個值之一數量級內,較佳在5倍內且更佳在2倍內。在本申請案及申請專利範圍中描述特定值之情況下,除非另有規定,否則應假定術語「約」意謂處於該特定值之可接受誤差範圍內。The term "about" or "approximately" means within an acceptable error range for a particular value, as determined by one of ordinary skill in the art, which will depend in part on how the value was measured or determined, i.e. Measurement system limitations. For example, "about" can mean within 1 standard deviation or greater than 1 standard deviation, as practiced in the art. Alternatively, "about" may mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and even more preferably up to 1% of a given value. Alternatively, especially with regard to biological systems or processes, the term may mean within an order of magnitude, preferably within 5-fold and more preferably within 2-fold, of a value. Where specific values are described in this application and claims, unless otherwise specified, the term "about" should be assumed to mean within an acceptable error range for the specific value.

如本文所用,術語「化合物」、「本文所描述之化合物」、「本申請案之化合物」、「嘧啶并[5,4- d]嘧啶化合物」、「嘧啶并嘧啶化合物」及等效表述係指本申請案中所描述之化合物,例如結構式I所涵蓋的視情況參考適用實施例中之任一者之彼等化合物且亦包括例示性化合物,諸如實例1至114之化合物,以及其醫藥學上可接受之鹽、溶劑合物、酯及前藥(若適用)。當兩性離子形式係可能的,化合物可出於實際目的繪製為其中性形式,但該化合物應理解為包括其兩性離子形式。本文中之實施例可亦排除一或多種化合物。化合物可藉由其化學結構或其化學名稱來鑑別。在化學結構及化學名稱發生衝突之情況下,則以化學結構為準。 As used herein, the terms "compound", "compound described herein", "compound of the application", "pyrimido[5,4- d ]pyrimidine compound", "pyrimidopyrimidine compound" and equivalent expressions Refers to the compounds described in this application, such as those covered by structural formula I with reference to any of the applicable Examples as appropriate and also includes exemplary compounds, such as the compounds of Examples 1 to 114, and pharmaceuticals thereof Pharmaceutically acceptable salts, solvates, esters and prodrugs (if applicable). Where a zwitterionic form is possible, compounds may for practical purposes be drawn in their neutral form, but such compounds are understood to include their zwitterionic forms. The embodiments herein may also exclude one or more compounds. A compound can be identified by its chemical structure or its chemical name. In case of conflict between chemical structure and chemical name, the chemical structure shall prevail.

除非另外陳述,否則本文所述之結構亦意謂包括該結構之所有異構(例如鏡像異構、非鏡像異構及幾何(或構形))形式(若適用);例如各不對稱中之R及S組態。因此,本發明化合物之單一立體化學異構物以及鏡像異構、非鏡像異構及幾何(或構形)混合物在本說明書之範疇內。除非另外指出,否則治療化合物亦涵蓋所說明之化合物之所有可能的互變異構形式(若存在)。該術語亦包括同位素標誌化合物,其中一或多個原子之原子質量不同於自然界中最豐富存在之原子質量。可併入本發明化合物中之同位素之實例包括但不限於: 2H (D)、 3H (T)、 11C、 13C、 14C、 15N、 18O、 17O、硫之同位素中之任一者等。該化合物可亦以非溶劑化形式以及溶劑化形式,包括水合形式存在。化合物可以多種結晶或非晶形形式存在。一般而言,所有實體形式關於本文所涵蓋之用途皆等效且意欲在本發明之範疇內。 Unless otherwise stated, structures described herein are also meant to include all isomeric (e.g., mirror image, non-mirror image, and geometric (or configuration)) forms of the structure (if applicable); e.g., in each asymmetry R and S configurations. Thus, single stereochemical isomers as well as enantiomerically, diastereomerically and geometric (or configurational) mixtures of the compounds of the present invention are within the scope of this specification. Unless otherwise indicated, therapeutic compounds also encompass all possible tautomeric forms of the illustrated compounds, if any. The term also includes isotopically labeled compounds in which one or more atoms have an atomic mass different from the atomic mass most abundantly found in nature. Examples of isotopes that may be incorporated into compounds of the invention include, but are not limited to: 2H (D), 3H (T), 11C , 13C , 14C , 15N , 18O , 17O , isotopes of sulfur Either one etc. The compounds may also exist in unsolvated forms as well as solvated forms, including hydrated forms. Compounds can exist in various crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the invention.

當一特定對映異構物較佳時,在一些實施例中,其可在基本上不含相應對映異構物下提供,且亦可為經對映異構物增濃。「經對映異構物增濃」意謂化合物由顯著較大比例之一種對映異構物構成。在某些實施例中,化合物由至少約90重量%之較佳對映異構物構成。在其他實施例中,化合物由至少約95重量%、98重量%或99重量%之較佳對映異構物構成。較佳對映異構物可藉由熟習此項技術者已知之任何方法(包括掌性載體上之高壓液相層析(high-pressure liquid chromatography;HPLC)及形成掌性鹽並使其結晶)自外消旋混合物分離,或藉由不對稱合成製備。When a particular enantiomer is preferred, it may, in some embodiments, be provided substantially free of the corresponding enantiomer, and may also be enantiomerically enriched. "Enantiomerically enriched" means that a compound is composed of a significantly greater proportion of one enantiomer. In certain embodiments, the compounds consist of at least about 90% by weight of the preferred enantiomer. In other embodiments, the compounds consist of at least about 95%, 98%, or 99% by weight of the preferred enantiomer. The preferred enantiomer can be determined by any method known to those skilled in the art (including high-pressure liquid chromatography (HPLC) on a chiral support and formation and crystallization of chiral salts) Isolated from racemic mixture, or prepared by asymmetric synthesis.

表述「醫藥學上可接受之鹽」係指在合理的醫學診斷之範疇內,適用於與人類及低等動物之組織接觸而無不當毒性、刺激、過敏反應及其類似反應,且與合理的效益/風險比率相稱之本發明之化合物的彼等鹽。醫藥學上可接受之鹽為此項技術中熟知的。舉例而言,S. M. Berge,等人在 J. Pharmaceutical Sciences, 66: 1-19 (1977)中詳細描述了醫藥學上可接受之鹽。該等鹽可在本說明書之化合物之最終分離及純化期間原位製備,或藉由使化合物之遊離鹼官能基與適合的有機或無機酸(酸加成鹽)反應或藉由使化合物之酸性官能基與適合的有機或無機鹼(鹼加成鹽)反應來單獨製備。 The expression "pharmaceutically acceptable salt" means a salt suitable for use in contact with tissues of humans and lower animals without undue toxicity, irritation, allergic reactions and the like, within the scope of reasonable medical diagnosis, and with a reasonable These salts of the compounds of the invention have a commensurate benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, SM Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences , 66: 1-19 (1977). Such salts can be prepared in situ during the final isolation and purification of the compounds of this specification, either by reacting the free base functionality of the compounds with a suitable organic or inorganic acid (acid addition salts) or by rendering the acidic Functional groups are prepared individually by reaction with suitable organic or inorganic bases (base addition salts).

術語「溶劑合物」係指一種本發明化合物與一或多種溶劑分子,包括水分子及非水性溶劑分子之物理締合。此物理締合可包括氫鍵結。在某些情況下,溶劑合物將能夠分離,例如當一或多種溶劑分子併入結晶固體之晶格中時。術語「溶劑合物」涵蓋溶液相溶劑合物及可分離溶劑合物兩者。例示性溶劑合物包括但不限於:水合物、半水合物、乙醇化物、半乙醇化物、正丙醇化物、異丙醇化物、1-丁醇化物、2-丁醇化物及其他生理學上可接受之溶劑的溶劑合物,諸如 International Conference on Harmonization (ICH), Guide for Industry, Q3C Impurities: Residual Solvents(1997)中所描述之3類溶劑。因此,如本文所描述之化合物亦包括其溶劑合物中之每一者及其混合物。 The term "solvate" refers to the physical association of a compound of the present invention with one or more solvent molecules, including water molecules and non-aqueous solvent molecules. This physical association may include hydrogen bonding. In some cases, solvates will be able to be isolated, for example when one or more solvent molecules are incorporated into the crystal lattice of the crystalline solid. The term "solvate" encompasses both solution-phase and isolatable solvates. Exemplary solvates include, but are not limited to, hydrates, hemihydrates, ethanolates, hemiethanolates, n-propanolates, isopropanolates, 1-butanolates, 2-butanolates, and other physiologically Solvates of acceptable solvents, such as Class 3 solvents described in International Conference on Harmonization (ICH), Guide for Industry, Q3C Impurities: Residual Solvents (1997). Accordingly, compounds as described herein also include each of their solvates and mixtures thereof.

如本文所用,表述「醫藥學上可接受之酯」係指藉由本發明之方法形成之化合物的酯,其可活體內水解且包括在人體內容易地分解以留下母化合物或其鹽的彼等酯。適合的酯基包括例如衍生自醫藥學上可接受之脂族羧酸的彼等酯基,該等脂族羧酸尤其為鏈烷酸、鏈烯酸、環鏈烷酸及鏈烷二酸,其中各烷基或烯基部分宜具有不超過6個碳原子。特定酯之實例包括但不限於具有羥基之甲酸酯、乙酸酯、丙酸酯、丁酸酯、丙烯酸酯及乙基丁二酸酯,以及酸性基團之烷基酯。其他酯基包括磺酸酯或硫酸酯。As used herein, the expression "pharmaceutically acceptable ester" refers to esters of compounds formed by the methods of the present invention that are hydrolyzable in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Ester. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, especially alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, Wherein each alkyl or alkenyl moiety preferably has not more than 6 carbon atoms. Examples of specific esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates, and ethylsuccinates with hydroxyl groups, and alkyl esters with acidic groups. Other ester groups include sulfonate or sulfate.

如本文所用,表述「醫藥學上可接受之前藥」係指藉由本發明之方法形成之化合物的彼等前藥,其在合理的醫學診斷範疇內,適用於與人類及低等動物之組織接觸而無不當毒性、刺激、過敏反應及其類似反應,與合理的效益/風險比率相稱且對其預期用途有效。如本文所用之「前藥」意謂可藉由代謝方式(例如藉由水解)活體內轉化以提供由本發明之化學式描述之任何化合物的化合物。As used herein, the expression "pharmaceutically acceptable prodrugs" refers to those prodrugs of the compounds formed by the methods of the present invention, which are suitable for contact with tissues of humans and lower animals within the scope of rational medical diagnosis free from undue toxicity, irritation, allergic reactions and the like, commensurate with a reasonable benefit/risk ratio and valid for its intended use. "Prodrug" as used herein means a compound that can be transformed in vivo by metabolic means, for example by hydrolysis, to provide any compound described by the formulas of the present invention.

縮寫亦可用於本申請案之通篇中,除非另外指出,否則此類縮寫意欲具有本領域通常所理解之含義。此類縮寫之實例包括Me (甲基)、Et (乙基)、Pr (丙基)、i-Pr (異丙基)、Bu (丁基)、t-Bu (三級丁基)、i-Bu (異丁基)、s-Bu (二級丁基)、c-Bu (環丁基)、Ph (苯基)、Bn (苄基)、Bz (苯甲醯基)、CBz或Cbz或Z (碳酸苯甲氧基)、Boc或BOC (三級丁氧基羰基)及Su或Suc (丁二醯亞胺)。為更加確定,特定縮寫之額外定義亦包括於實例章節之介紹中。Abbreviations may also be used throughout this application, and unless otherwise indicated, such abbreviations are intended to have their commonly understood meanings in the art. Examples of such abbreviations include Me (methyl), Et (ethyl), Pr (propyl), i-Pr (isopropyl), Bu (butyl), t-Bu (tertiary butyl), i -Bu (isobutyl), s-Bu (secondary butyl), c-Bu (cyclobutyl), Ph (phenyl), Bn (benzyl), Bz (benzoyl), CBz or Cbz Or Z (benzyloxycarbonate), Boc or BOC (tertiary butoxycarbonyl) and Su or Suc (succinimide). For greater certainty, additional definitions of certain abbreviations are also included in the introduction to the Examples section.

烴基取代基中之碳原子之數目可藉由前綴「C x-C y」或「C x- y」指示,其中x為取代基中之碳原子之最小數目且y為最大數目。然而,當前綴「C x-C y」或「C x- y」與根據定義併有一或多個雜原子之基團(例如雜環烷基、雜芳基等)相關時,則x及y分別定義為環中之原子的最小及最大數目,包括碳原子以及一或多個雜原子。 The number of carbon atoms in a hydrocarbyl substituent can be indicated by the prefix " Cx - Cy " or " Cx - y ", where x is the minimum number of carbon atoms in the substituent and y is the maximum number. However, when the prefix "C x -C y " or "C x - y " is associated with a group which by definition contains one or more heteroatoms (eg heterocycloalkyl, heteroaryl, etc.), then x and y Defined as the minimum and maximum number of atoms in the ring, respectively, including carbon atoms and one or more heteroatoms.

如本文所用,術語「烷基」係指通常含有1至20個碳原子之飽和直鏈或分支鏈烴基。舉例而言,「C 1- 8烷基」含有一至八個碳原子。烷基之實例包括但不限於:甲基、乙基、丙基、異丙基、正丁基、三級丁基、新戊基、正己基、庚基、辛基及類似烷基。 As used herein, the term "alkyl" refers to a saturated straight or branched chain hydrocarbon group typically containing 1 to 20 carbon atoms. For example, "C 1-8 alkyl" contains one to eight carbon atoms. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl, octyl, and the like.

如本文所用,術語「烯基」指示含有一或多個雙鍵且通常含有2至20個碳原子之直鏈或分支鏈烴基。舉例而言,「C 2- 8烯基」含有二至八個碳原子。烯基包括但不限於例如乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基、庚烯基、辛烯基及類似烯基。 As used herein, the term "alkenyl" refers to a straight or branched chain hydrocarbon group containing one or more double bonds and generally containing 2 to 20 carbon atoms. For example, "C 2 -8 alkenyl" contains two to eight carbon atoms. Alkenyl groups include, but are not limited to, for example, vinyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, heptenyl, octenyl, and the like.

如本文所用,術語「烯基」指示含有一或多個三鍵且通常含有2至20個碳原子之直鏈或分支鏈烴基。舉例而言,「C 2- 8炔基」含有二至八個碳原子。代表性炔基包括但不限於例如乙炔基、1-丙炔基、1-丁炔基、庚炔基、辛炔基及類似炔基。 As used herein, the term "alkenyl" refers to a straight or branched chain hydrocarbon group containing one or more triple bonds and generally containing 2 to 20 carbon atoms. For example, " C2-8alkynyl " contains two to eight carbon atoms. Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, heptynyl, octynyl, and the like.

術語「環烷基」、「脂環族」、「碳環」、「碳環族」及等效表述係指在單環或多環系統中包含飽和或部分不飽和(非芳族)碳環之具有三至十五個環成員之基團,該多環系統包括螺環接(共享一個原子)、稠合(共享至少一個鍵)或橋聯(共享兩個或更多個鍵)碳環系統。環烷基之實例包括但不限於:環丙基、環丁基、環戊基、環戊烯-1-基、環戊烯-2-基、環戊烯-3-基、環己基、環己烯-1-基、環己烯-2-基、環己烯-3-基、環庚基、雙環[4,3,0]壬基、降莰基及類似環烷基。術語環烷基包括未經取代之環烷基及經取代之環烷基兩者。舉例而言,術語「C 3- n環烷基」係指在環結構中具有3至所指示「n」個碳原子數之環烷基。除非碳原子數另外指明,否則如本文所用之「低碳數環烷基」在其環結構中具有至少3個且等於或少於8個碳原子。 The terms "cycloalkyl", "cycloaliphatic", "carbocycle", "carbocyclyl" and equivalent expressions refer to compounds containing saturated or partially unsaturated (non-aromatic) carbocycles in a monocyclic or polycyclic ring system Groups having three to fifteen ring members, the polycyclic ring system including spiro-connected (sharing one atom), fused (sharing at least one bond) or bridged (sharing two or more bonds) carbocycles system. Examples of cycloalkyl groups include, but are not limited to: cyclopropyl, cyclobutyl, cyclopentyl, cyclopenten-1-yl, cyclopenten-2-yl, cyclopenten-3-yl, cyclohexyl, cyclo Hexen-1-yl, cyclohexen-2-yl, cyclohexen-3-yl, cycloheptyl, bicyclo[4,3,0]nonyl, norbornyl and similar cycloalkyl groups. The term cycloalkyl includes both unsubstituted and substituted cycloalkyl groups. For example, the term "C 3 -n cycloalkyl" refers to a cycloalkyl group having from 3 to the indicated "n" number of carbon atoms in the ring structure. Unless otherwise indicated by the number of carbon atoms, a "lower cycloalkyl group" as used herein has at least 3 and equal to or less than 8 carbon atoms in its ring structure.

如本文所用,術語「雜環」、「雜環烷基」、「雜環基」、「雜環基團」及「雜環之環」可互換使用且係指飽和或部分不飽和且除碳原子之外亦具有一或多個,較佳一至四個如上文所定義之雜原子的化學穩定的3至7員單環或7-10員雙環雜環部分。當參考雜環之環原子使用時,術語「氮」包括經取代之氮。舉例而言,在具有1-3個選自氧、硫或氮之雜原子之飽和或部分不飽和環中,氮可為N (如在3,4-二氫-2H-吡咯基中)、ΝΗ (如在吡咯啶基中)或NR (如在N取代之吡咯啶基中)。雜環可在任何雜原子或碳原子處附接於其側基以得到化學穩定結構且環原子中之任一者可視情況經取代。雜環烷基之實例包括但不限於:1,3-二氧雜環己基、吡咯啶基、吡咯酮基、吡唑啉基、吡唑啶基、咪唑啉基、咪唑啶基、哌啶基、哌嗪基、噁唑啶基、異噁唑啶基、嗎啉基、四氫噻唑基、異四氫噻唑基、四氫呋喃基、四氫哌喃基、四氫噻喃基、四氫聯噻吩基、四氫噻吩基、硫代嗎啉基、噻噁基、吖呾基、氧雜環丁基、硫雜環丁基、高哌啶基、氧雜環丙基、硫雜環庚基、氧氮雜卓基、二吖呯基、硫氮雜卓基、1,2,3,6-四氫吡啶基、2-吡咯啉基、3-吡咯啉基、2H-哌喃基、4H-哌喃基、二噁烷基、二噻吩基、二噻囒基、二氫哌喃基、二氫噻吩基、二氫呋喃基、3-氮雜二環[3,1,0]己基、3-氮雜二環[4,1,0]庚基、喹嗪基、奎寧環基、四氫喹啉基、四氫異喹啉基、十氫喹啉基及類似雜環烷基。雜環基亦包括與一或多個芳基、雜芳基或環脂族環稠合之基團,諸如吲哚啉基、3H-吲哚基、苯并二氫哌喃基、苯并哌喃基、啡啶基、2-氮雜二環[2.2.1]庚基、八氫吲哚基或四氫喹啉基,其中基團或附接點係在雜環基環上。雜環基可為單環或雙環。術語「雜環基烷基」係指經雜環基取代之烷基,其中烷基及雜環基部分獨立地視情況經取代。舉例而言,術語「C 3- n雜環烷基」係指在環結構中具有3至所指示「n」個原子數之雜環烷基,該原子包括碳原子及雜原子。 As used herein, the terms "heterocycle", "heterocycloalkyl", "heterocyclyl", "heterocyclic group" and "heterocyclic ring" are used interchangeably and refer to saturated or partially unsaturated and carbon-free Chemically stable 3 to 7 membered monocyclic or 7-10 membered bicyclic heterocyclic moieties having, in addition to atoms, one or more, preferably one to four, heteroatoms as defined above. When used with reference to a ring atom of a heterocyclic ring, the term "nitrogen" includes substituted nitrogens. For example, in a saturated or partially unsaturated ring with 1-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen can be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR (as in N-substituted pyrrolidinyl). A heterocycle can have its pendant groups attached at any heteroatom or carbon atom to give a chemically stable structure and any of the ring atoms can be optionally substituted. Examples of heterocycloalkyl groups include, but are not limited to: 1,3-dioxanyl, pyrrolidinyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl , piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, tetrahydrothiazolyl, isotetrahydrothiazolyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrobithiophene Base, tetrahydrothienyl, thiomorpholinyl, thioxyl, azetanyl, oxetanyl, thietanyl, homopiperidinyl, oxirane, thiepanyl, Oxazepinyl, diazrazyl, thiazepinyl, 1,2,3,6-tetrahydropyridyl, 2-pyrrolinyl, 3-pyrrolinyl, 2H-pyranyl, 4H- Pyranyl, dioxanyl, dithienyl, dithianyl, dihydropyranyl, dihydrothienyl, dihydrofuryl, 3-azabicyclo[3,1,0]hexyl, 3 - azabicyclo[4,1,0]heptyl, quinazinyl, quinuclidinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl and similar heterocycloalkyl groups. Heterocyclyl also includes groups fused to one or more aryl, heteroaryl or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, benzopiperyl pyranyl, phenanthridinyl, 2-azabicyclo[2.2.1]heptyl, octahydroindolyl or tetrahydroquinolinyl, wherein the radical or point of attachment is on the heterocyclyl ring. A heterocyclyl group can be monocyclic or bicyclic. The term "heterocyclylalkyl" refers to a heterocyclyl-substituted alkyl group wherein the alkyl and heterocyclyl moieties are independently optionally substituted. For example, the term "C 3 -n heterocycloalkyl" refers to a heterocycloalkyl group having from 3 to the indicated "n" number of atoms in the ring structure, the atoms including carbon atoms and heteroatoms.

如本文所用,術語「部分不飽和的」係指在環原子之間包括至少一個雙鍵或三鍵,但不為芳族之環部分。術語「部分不飽和的」意欲涵蓋具有多個不飽和位點之環但不意欲包括如本文所定義之芳基或雜芳基部分。As used herein, the term "partially unsaturated" refers to a portion of a ring that includes at least one double or triple bond between ring atoms, but is not aromatic. The term "partially unsaturated" is intended to encompass rings having multiple sites of unsaturation but is not intended to include aryl or heteroaryl moieties as defined herein.

單獨使用或作為如「芳烷基」、「芳烷氧基」、「芳氧基」或「芳氧基烷基」之較大部分之一部分使用的術語「芳基」係指在具有總計六至15個環成員之單環部分或雙環或三環稠合環系統中具有4n+2個共軛π(pi)電子之芳族基團,其中n為1至3之整數,其中系統中之至少一個環為芳族的且其中系統中之各環含有三至七個環成員。術語「芳基」可與術語「芳基環」互換使用。在本發明之某些實施例中,「芳基」係指可帶有一或多個取代基之芳環系統,其包括但不限於苯基、聯苯、萘基、薁基、蒽基及類似基團。術語「芳烷基」或「芳基烷基」係指附接至芳環之烷基殘基。芳烷基之實例包括但不限於苄基、苯乙基及類似基團。在如本文所用之術語「芳基」之範疇內亦包括芳環稠合於一或多個非芳環之基團,諸如二氫茚基、茚基、鄰苯二甲醯亞胺基、萘醯亞胺基(naphthimidyl)、茀基、啡啶基或四氫萘基及類似基團。舉例而言,術語「C 6- n芳基」係指在環結構中具有6至所指示「n」個原子數之芳基。 The term "aryl" used alone or as part of a larger moiety such as "aralkyl", "aralkoxy", "aryloxy" or "aryloxyalkyl" refers to groups having a total of six Monocyclic moieties of up to 15 ring members or aromatic groups having 4n+2 conjugated π(pi) electrons in a bicyclic or tricyclic fused ring system, where n is an integer from 1 to 3, wherein the At least one ring is aromatic and wherein each ring in the system contains from three to seven ring members. The term "aryl" is used interchangeably with the term "aryl ring". In certain embodiments of the present invention, "aryl" refers to an aromatic ring system that may bear one or more substituents, including but not limited to phenyl, biphenyl, naphthyl, azulenyl, anthracenyl, and the like group. The term "aralkyl" or "arylalkyl" refers to an alkyl residue attached to an aromatic ring. Examples of aralkyl groups include, but are not limited to, benzyl, phenethyl, and the like. Also included within the scope of the term "aryl" as used herein are groups in which an aromatic ring is fused to one or more non-aromatic rings, such as indenyl, indenyl, phthalimino, naphthalene Naphthimidyl, fenyl, phenanthryl or tetrahydronaphthyl and similar groups. For example, the term "C 6 -n aryl" refers to an aryl group having from 6 to the indicated "n" number of atoms in the ring structure.

單獨使用或作為例如「雜芳烷基」或「雜芳烷氧基」之較大部分之一部分使用的術語「雜芳基」係指具有4n+2個共軛π(pi)電子之芳族基團,其中n為1至3之整數(例如具有5至18個環原子,較佳5、6或9個環原子;在環陣列中共享6、10或14個π電子);除碳原子之外,具有一至五個雜原子。術語「雜原子」包括但不限於氮、氧或硫,且包括氮或硫之任何氧化形式,及鹼性氮之任何四級銨化形式。雜芳基可為單環,或兩個或更多個稠合環。如本文所用,術語「雜芳基」亦包括雜芳環稠合至一或多個芳基環、環脂族環或雜環之基團,其中基團或附接點係在雜芳環上。雜芳基之非限制性實例包括噻吩基、呋喃基(furanyl/furyl)、吡咯基、咪唑基、吡唑基、三唑基、四唑基、噁唑基、異噁唑基、噁二唑基、噻唑基、異噻唑基、噻二唑基、吡啶基、嗒嗪基、嘧啶基、吡嗪基、三嗪基、吲哚基、3H-吲哚基、異吲哚基、吲哚嗪基、苯并噻吩基(benzothienyl/benzothiophenyl)、苯并呋喃基、二苯并呋喃基、吲唑基、苯并咪唑基、苯并噁唑基、苯并噻唑基、苯并三唑基、吡咯并吡啶基(例如吡咯并[3,2-b]吡啶基或吡咯并[3,2-c]吡啶基)、吡唑并吡啶基(例如吡唑并[1,5-a]吡啶基)、呋喃吡啶基、嘌呤基、咪唑并吡嗪基(例如咪唑并[4,5-b]吡嗪基)、喹啉基(quinolyl/quinolinyl)、異喹啉基(isoquinolyl/isoquinolinyl)、喹啉酮、異喹啉酮、噌啉基、呔嗪基、喹唑啉基、喹噁啉基、4H-喹嗪基、萘啶基及喋啶基咔唑基、吖啶基、啡啶基、啡嗪基、啡噻嗪基、啡噁嗪基、四氫喹啉基、四氫異喹啉基及吡啶并[2,3-b]-l,4-噁嗪-3(4H)-酮。雜芳基可為單環或雙環。雜芳基包括視情況經取代之環。術語「雜芳烷基」係指經雜芳基取代之烷基,其中烷基及雜芳基部分獨立地視情況經取代。實例包括但不限於吡啶基甲基、嘧啶基乙基及類似基團。舉例而言,術語「C 5- n雜芳基」係指在環結構中具有5至所指示「n」個原子數之雜芳基,該等原子包括碳原子及雜原子。 The term "heteroaryl" used alone or as part of a larger moiety such as "heteroaralkyl" or "heteroaralkoxy" refers to an aromatic group having 4n+2 conjugated π(pi) electrons. Group wherein n is an integer from 1 to 3 (e.g. having 5 to 18 ring atoms, preferably 5, 6 or 9 ring atoms; sharing 6, 10 or 14 π electrons in the ring array); excluding carbon atoms In addition, with one to five heteroatoms. The term "heteroatom" includes, but is not limited to, nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternary ammonium form of a basic nitrogen. A heteroaryl group can be a single ring, or two or more fused rings. As used herein, the term "heteroaryl" also includes groups in which a heteroaryl ring is fused to one or more aryl, cycloaliphatic, or heterocyclic rings, wherein the radical or point of attachment is on the heteroaryl ring . Non-limiting examples of heteroaryl include thienyl, furanyl/furyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazole Base, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyrazinyl, triazinyl, indolyl, 3H-indolyl, isoindolyl, indoxazinyl benzothienyl/benzothiophenyl, benzofuryl, dibenzofuryl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzotriazolyl, pyrrole Pyridyl (such as pyrrolo[3,2-b]pyridyl or pyrrolo[3,2-c]pyridyl), pyrazolopyridyl (such as pyrazolo[1,5-a]pyridyl) , furopyridyl, purinyl, imidazopyrazinyl (eg imidazo[4,5-b]pyrazinyl), quinolyl/quinolinyl, isoquinolyl/isoquinolinyl, quinoline Ketone, isoquinolinone, cinnolinyl, oxazinyl, quinazolinyl, quinoxalinyl, 4H-quinazinyl, naphthyridinyl and pteridylcarbazolyl, acridinyl, phenanthridinyl, phenythiazinyl, phenythiazinyl, phenythiazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl and pyrido[2,3-b]-l,4-oxazin-3(4H)-one . Heteroaryl groups can be monocyclic or bicyclic. Heteroaryl includes optionally substituted rings. The term "heteroaralkyl" refers to a heteroaryl-substituted alkyl group, wherein the alkyl and heteroaryl portions independently are optionally substituted. Examples include, but are not limited to, pyridylmethyl, pyrimidinylethyl, and the like. For example, the term " C5 -nheteroaryl" refers to a heteroaryl group having from 5 to the indicated "n" number of atoms in the ring structure, which atoms include carbon atoms and heteroatoms.

如本文所描述,本發明化合物可含有「視情況經取代之」部分。一般而言,術語「經取代」無論前置有術語「視情況」或無前置,均意謂指定部分之一或多個氫經適合的取代基置換。除非另外指示,否則「視情況經取代之」基團可在基團之各可取代位置具有適合的取代基,且當任何給定結構中之超過一個位置可經超過一個選自指定群之取代基取代時,在各位置處之取代基可相同或不同。在本發明下設想之取代基之組合較佳為使得形成化學穩定或化學可行化合物之組合。如本文所用,術語「化學穩定」係指化合物在經受允許其產生、偵測及在某些實施例中其回收、純化及用於本文揭露之一或多種目的之條件時不會實質上改變。As described herein, compounds of the invention may contain "optionally substituted" moieties. In general, the term "substituted", whether preceded by the term "optionally" or not, means that one or more hydrogens of the specified moiety are replaced by a suitable substituent. Unless otherwise indicated, "optionally substituted" groups may have suitable substituents at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one selected from the specified group When a group is substituted, the substituents at each position may be the same or different. Combinations of substituents envisaged under the present invention are preferably those that result in the formation of chemically stable or chemically feasible compounds. As used herein, the term "chemically stable" means that a compound is not substantially altered when subjected to conditions that permit its production, detection and, in certain embodiments, its recovery, purification and use for one or more of the purposes disclosed herein.

術語「鹵基」表示鹵素原子,亦即氟、氯、溴或碘原子,較佳為氟或氯。The term "halo" means a halogen atom, ie a fluorine, chlorine, bromine or iodine atom, preferably fluorine or chlorine.

術語「視情況經取代」係指藉由其上一個、兩個或三個或更多個氫原子經包括但不限於以下之取代基獨立置換而經取代或未經取代之基團:F、CI、Br、I、OH、CO 2H、烷氧基、側氧基、硫代側氧基、NO 2、CN、CF 3、NH 2、NH烷基、NH烯基、NH炔基、NH環烷基、NH芳基、NH雜芳基、NH雜環、二烷基胺基、二芳基烷基、二雜芳基胺基、O-烷基、O-烯基、O-炔基、O-環烷基、O-芳基、O-雜芳基、O-鹵烷基、O-雜環、C(O)烷基、C(O)烯基、C(O)炔基、C(O)環烷基、C(O)芳基、C(O)雜芳基、C(O)雜環烷基、CO 2烷基、CO 2烯基、CO 2炔基、CO 2環烷基、CO 2芳基、CO 2雜芳基、CO 2雜環烷基、OC(O)烷基、OC(O)烯基、OC(O)炔基、OC(O)環烷基、OC(O)芳基、OC(O)雜芳基、OC(O)雜環烷基、C(O)NH 2、C(O)NH烷基、C(O)NH烯基、C(O)NH炔基、C(O)NH環烷基、C(O)NH芳基、C(O)NH雜芳基、C(O)NH雜環烷基、OCO 2烷基、OCO 2烯基、OCO 2炔基、OCO 2環烷基、OCO 2芳基、OCO 2雜芳基、OCO 2雜環烷基、OC(O)NH 2、OC(O)NH烷基、OC(O)NH烯基、OC(O)NH炔基、OC(O)NH環烷基、OC(O)NH芳基、OC(O)NH雜芳基、OC(O)NH雜環烷基、NHC(O)烷基、NHC(O)烯基、NHC(O)炔基、NHC(O)環烷基、NHC(O)芳基、NHC(O)雜芳基、NHC(O)雜環烷基、NHCO 2烷基、NHCO 2烯基、NHCO 2炔基、NHCO 2環烷基、NHCO 2芳基、NHCO 2雜芳基、NHCO 2雜環烷基、NHC(O)NH 2、NHC(O)NH烷基、NHC(O)NH烯基、NHC(O)NH烯基、NHC(O)NH環烷基、NHC(O)NH芳基、NHC(O)NH雜芳基、NHC(O)NH雜環烷基、NHC(S)NH 2、NHC(S)NH烷基、NHC(S)NH烯基、NHC(S)NH炔基、NHC(S)NH環烷基、NHC(S)NH芳基、NHC(S)NH雜芳基、NHC(S)NH雜環烷基、NHC(NH)NH 2、NHC(NH)NH烷基、NHC(NH)NH烯基、NHC(NH)NH烯基、NHC(NH)NH環烷基、NHC(NH)NH芳基、NHC(NH)NH雜芳基、NHC(NH)NH雜環烷基、NHC(NH)烷基、NHC(NH)烯基、NHC(NH)烯基、NHC(NH)環烷基、NHC(NH)芳基、NHC(NH)雜芳基、NHC(NH)雜環烷基、C(NH)NH烷基、C(NH)NH烯基、C(NH)NH炔基、C(NH)NH環烷基、C(NH)NH芳基、C(NH)NH雜芳基、C(NH)NH雜環烷基、P(O)(烷基) 2、P(O)(烯基) 2、P(O)(炔基) 2、P(O)(環烷基) 2、P(O)(芳基) 2、P(O)(雜芳基) 2、P(O)(雜環烷基) 2、P(O)(O烷基) 2、P(O)(OH) 2、P(O)(O烯基) 2、P(O)(O炔基) 2、P(O)(O環烷基) 2、P(O)(O芳基) 2、P(O)(O雜芳基) 2、P(O)(O雜環烷基) 2、S(O)烷基、S(O)烯基、S(O)炔基、S(O)環烷基、S(O)芳基、S(O) 2烷基、S(O) 2烯基、S(O) 2炔基、S(O) 2環烷基、S(O) 2芳基、S(O)雜芳基、S(O)雜環烷基、SO 2NH 2、SO 2NH烷基、SO 2NH烯基、SO 2NH炔基、SO 2NH環烷基、SO 2NH芳基、SO 2NH雜芳基、SO 2NH雜環烷基、NHSO 2烷基、NHSO 2烯基、NHSO 2炔基、NHSO 2環烷基、NHSO 2芳基、NHSO 2雜芳基、NHSO 2雜環烷基、CH 2NH 2、CH 2SO 2CH 3、烷基、烯基、炔基、芳基、芳基烷基、雜芳基、雜芳基烷基、雜環烷基、環烷基、碳環、雜環、聚烷氧基烷基、聚烷氧基、甲氧基甲氧基、甲氧基乙氧基、SH、S-烷基、S-烯基、S-炔基、S-環烷基、S-芳基、S-雜芳基、S-雜環烷基或甲硫基甲基。 ii. 化合物 The term "optionally substituted" refers to a group that is substituted or unsubstituted by independently replacing one, two or three or more hydrogen atoms thereon with substituents including, but not limited to: F, CI, Br, I, OH, CO 2 H, alkoxy, pendant oxy, thio pendant oxy, NO 2 , CN, CF 3 , NH 2 , NH alkyl, NH alkenyl, NH alkynyl, NH Cycloalkyl, NHaryl, NHheteroaryl, NHheterocyclic, Dialkylamino, Diarylalkyl, Diheteroarylamino, O-Alkyl, O-Alkenyl, O-Alkynyl , O-cycloalkyl, O-aryl, O-heteroaryl, O-haloalkyl, O-heterocycle, C(O)alkyl, C(O)alkenyl, C(O)alkynyl, C(O)cycloalkyl, C (O)aryl, C(O)heteroaryl, C(O)heterocycloalkyl, CO2alkyl, CO2alkenyl , CO2alkynyl , CO2cyclo Alkyl, CO2aryl , CO2heteroaryl , CO2heterocycloalkyl, OC(O)alkyl, OC(O)alkenyl, OC ( O)alkynyl, OC(O)cycloalkyl, OC(O)aryl, OC(O)heteroaryl, OC(O)heterocycloalkyl, C(O)NH 2 , C(O)NHalkyl, C(O)NHalkenyl, C(O)NH )NH alkynyl, C(O)NH cycloalkyl, C(O)NH aryl, C(O)NH heteroaryl, C(O)NH heterocycloalkyl, OCO2alkyl , OCO2alkenyl , OCO 2 alkynyl, OCO 2 cycloalkyl, OCO 2 aryl, OCO 2 heteroaryl, OCO 2 heterocycloalkyl, OC(O)NH 2 , OC(O)NH alkyl, OC(O)NH Alkenyl, OC(O)NH alkynyl, OC(O)NH cycloalkyl, OC(O)NH aryl, OC(O)NH heteroaryl, OC(O)NH heterocycloalkyl, NHC(O )alkyl, NHC(O)alkenyl, NHC(O)alkynyl, NHC(O)cycloalkyl, NHC(O)aryl, NHC(O)heteroaryl, NHC(O)heterocycloalkyl, NHCO 2 alkyl, NHCO 2 alkenyl, NHCO 2 alkynyl, NHCO 2 cycloalkyl, NHCO 2 aryl, NHCO 2 heteroaryl, NHCO 2 heterocycloalkyl, NHC(O)NH 2 , NHC(O) NHalkyl, NHC(O)NHalkenyl, NHC(O)NHalkenyl, NHC(O)NHcycloalkyl, NHC(O)NHaryl, NHC(O)NHheteroaryl, NHC(O) NH heterocycloalkyl, NHC(S) NH2 , NHC(S)NHalkyl, NHC(S)NHalkenyl, NHC(S)NHalkynyl, NHC(S)NHcycloalkyl, NHC(S) NH aryl, NHC(S)NH heteroaryl, NHC(S)NH heterocycloalkyl, NHC(NH)NH 2 , NHC(NH)NH alkyl, NHC(NH)NH alkenyl, NHC(NH) NHalkenyl, NHC(NH)NHcycloalkyl, NHC(NH)NHaryl, NHC(NH)NHheteroaryl, NHC(NH)NHheterocycloalkyl, NHC(NH)alkyl, NHC(NH )alkenyl, NHC(NH)alkenyl, NHC(NH)cycloalkyl, NHC(NH)aryl, NHC(NH)heteroaryl, NHC(NH)heterocycloalkyl, C(NH)NHalkyl , C(NH)NH alkenyl, C(NH)NH alkynyl, C(NH)NH cycloalkyl, C(NH)NH aryl, C(NH)NH heteroaryl, C(NH)NH heterocyclic Alkyl, P(O)(alkyl) 2 , P(O)(alkenyl) 2 , P(O)(alkynyl) 2 , P(O)(cycloalkyl) 2 , P(O)(aryl base) 2 , P(O)(heteroaryl) 2 , P(O)(heterocycloalkyl) 2 , P(O)(Oalkyl) 2 , P(O)(OH) 2 , P(O )(Oalkenyl) 2 , P(O)(Oalkynyl) 2 , P(O)(Ocycloalkyl) 2 , P(O)(Oaryl) 2 , P(O)(Oheteroaryl group) 2 , P(O)(Oheterocycloalkyl) 2 , S(O)alkyl, S(O)alkenyl, S(O)alkynyl, S(O)cycloalkyl, S(O) Aryl, S(O) 2alkyl , S ( O)alkenyl, S(O) alkynyl , S(O) cycloalkyl , S(O)aryl, S(O) heteroaryl radical, S(O)heterocycloalkyl, SO 2 NH 2 , SO 2 NH alkyl, SO 2 NH alkenyl, SO 2 NH alkynyl, SO 2 NH cycloalkyl, SO 2 NH aryl, SO 2 NH Heteroaryl, SO 2 NH heterocycloalkyl, NHSO 2 alkyl, NHSO 2 alkenyl, NHSO 2 alkynyl, NHSO 2 cycloalkyl, NHSO 2 aryl , NHSO 2 heteroaryl, NHSO 2 heterocycloalkyl , CH 2 NH 2 , CH 2 SO 2 CH 3 , Alkyl, Alkenyl, Alkynyl, Aryl, Arylalkyl, Heteroaryl, Heteroarylalkyl, Heterocycloalkyl, Cycloalkyl, Carbon Cyclic, heterocyclic, polyalkoxyalkyl, polyalkoxy, methoxymethoxy, methoxyethoxy, SH, S-alkyl, S-alkenyl, S-alkynyl, S- Cycloalkyl, S-aryl, S-heteroaryl, S-heterocycloalkyl or methylthiomethyl. ii. Compound

本文中對變數之任何定義中之化學基團列表的敘述包括該變數作為任何單一基團或所列基團之組合之定義。本文對變數之實施例之敘述包括作為任何單一實施例或與任何其他實施例或其部分組合之實施例。本文對實施例之敘述包括作為任何單一實施例或與任何其他實施例或其部分組合之實施例。因此,若適用,以下實施例單獨呈現或組合呈現。The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation herein of an embodiment of a variant includes that embodiment as any single embodiment or in combination with any other embodiment or portion thereof. The recitation herein of an embodiment includes that embodiment as any single embodiment or in combination with any other embodiment or portion thereof. Accordingly, the following embodiments are presented individually or in combination, where applicable.

本發明化合物呈現嘧啶并[5,4- d]嘧啶核結構,其上附接有所定義之取代基以實現產物之有利活性。如本文所定義之嘧啶并嘧啶化合物之實例由通式I示出:

Figure 02_image001
式I 其中: R 1選自經取代或未經取代之OR 3、SR 3、NH 2、NHR 3、N(R 3) 2、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; R 2選自經取代之C 6芳基及C 5-10雜芳基、經取代或未經取代之C 4-8雜環烷基及N(R 3) 2; R 3在每次出現時獨立地選自經取代或未經取代之C 1-8烷基、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; X 1為鹵基或拉電子基團; X 2選自H、鹵基及拉電子基團; X 3及X 4各自選自H、鹵基、拉電子基團、C 1-3烷基、C 3-4環烷基及OC 1-3烷基; Y選自H、鹵基、CN、OH、OC 1-8烷基、NH 2、NHC 1-8烷基、N(C 1-8烷基) 2及經取代或未經取代之C 1-8烷基; 或其醫藥學上可接受之鹽或溶劑合物; 前提條件係化合物不為:
Figure 02_image004
。 The compounds of the present invention exhibit a pyrimido[5,4- d ]pyrimidine core structure to which defined substituents are attached to achieve favorable activity of the product. Examples of pyrimidopyrimidine compounds as defined herein are shown by the general formula I:
Figure 02_image001
Formula I wherein: R 1 is selected from substituted or unsubstituted OR 3 , SR 3 , NH 2 , NHR 3 , N(R 3 ) 2 , C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; R 2 is selected from substituted C 6 aryl and C 5-10 heteroaryl, substituted or unsubstituted C 4-8 heterocycloalkane and N(R 3 ) 2 ; R 3 at each occurrence is independently selected from substituted or unsubstituted C 1-8 alkyl, C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; X 1 is halo or electron-withdrawing group; X 2 is selected from H, halo and electron-withdrawing group; X 3 and X 4 are each selected from H , halo, electron-withdrawing group, C 1-3 alkyl, C 3-4 cycloalkyl and OC 1-3 alkyl; Y is selected from H, halo, CN, OH, OC 1-8 alkyl, NH 2 , NHC 1-8 alkyl, N(C 1-8 alkyl) 2 and substituted or unsubstituted C 1-8 alkyl; or pharmaceutically acceptable salts or solvates thereof; prerequisites Conditional compounds are not:
Figure 02_image004
.

舉例而言,拉電子基團選自過鹵烷基(例如CF 3或CCl 3)、CN、NO 2、磺酸酯、烷基磺醯基(例如SO 2Me或SO 2CF 3)、烷基羰基(例如C(O)Me)、羧酸酯、烷氧基羰基(例如C(O)OMe)及胺基羰基(例如C(O)NH 2)。在一個實施例中,X 1為Cl且X 2為F,或X 1為F且X 2為H,或X 1及X 2均為F。在另一實施例中,X 3及X 4各自為H。在又另一實施例中,X 3為F且X 4為H。 For example, the electron withdrawing group is selected from perhaloalkyl (eg CF 3 or CCl 3 ), CN, NO 2 , sulfonate, alkylsulfonyl (eg SO 2 Me or SO 2 CF 3 ), alkane Carbonyl (eg C(O)Me), carboxylate, alkoxycarbonyl (eg C(O)OMe) and aminocarbonyl (eg C(O) NH2 ). In one embodiment, X 1 is Cl and X 2 is F, or X 1 is F and X 2 is H, or both X 1 and X 2 are F. In another embodiment, each of X3 and X4 is H. In yet another embodiment, X3 is F and X4 is H.

根據一個實例,Y為H且所有其他基團均如本文所定義。根據另一實例,Y為NH 2且所有其他基團均如本文所定義。 According to one example, Y is H and all other groups are as defined herein. According to another example, Y is NH2 and all other groups are as defined herein.

舉例而言,式I中之胺基芳基磺醯胺部分指定為L且選自:

Figure 02_image007
其中虛線(---)表示一鍵。 For example, the aminoarylsulfonamide moiety in formula I is designated L and is selected from:
Figure 02_image007
The dotted line (---) indicates a key.

在另一實施例中,R 2為經取代之C 6芳基或C 5-10雜芳基,例如R 2為經至少一個選自以下之基團取代之C 6芳基:F、Cl、Br、CN、NO 2及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基。舉例而言,R 2為具有下式之基團:

Figure 02_image009
其中: R 4選自H、F、Cl、Br、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,例如R 4選自H、F、Cl、Br、Me、Et、CN、CHF 2及CF 3; R 5選自H、F、Cl、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,例如R 5選自H、F、Me、CF 3、CN及Cl; R 6選自H、F、Cl、Br、NO 2、NH 2、及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,例如R 6選自H、F、Cl、Br及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,或R 6選自H、F、Cl、Me、Et及OMe; R 7選自H、F、Cl及經取代或未經取代之C 1-3烷基,例如R 7選自H、Me、F及Cl; R 8選自H、F及經取代或未經取代之C 1-3烷基,例如R 8選自H、Me及F; 或R 4及R 5或R 5及R 6與其相鄰的碳原子一起形成經取代或未經取代之碳環或雜環,前提條件係雜環(R 2)不為一苯并噁唑啉酮;並且 (---)表示一鍵; 其中當R 4為H或F時,則R 5、R 6、R 7或R 8中之至少一者不為H或F;以及 其中當R 5為CN,則R 4、R 6、R 7或R 8中之至少一者不為H。 In another embodiment, R 2 is a substituted C aryl or C 5-10 heteroaryl , for example R 2 is a C aryl substituted by at least one group selected from the group consisting of F , Cl, Br, CN, NO 2 and substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl. For example, R is a group having the formula:
Figure 02_image009
Wherein: R 4 is selected from H, F, Cl, Br, CN and substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl, for example R 4 is selected from H, F, Cl, Br, Me, Et, CN, CHF 2 and CF 3 ; R 5 is selected from H, F, Cl, CN and substituted or unsubstituted C 1-3 alkyl, C 3-4 Cycloalkyl or OC 1-3 alkyl, for example R 5 is selected from H, F, Me, CF 3 , CN and Cl; R 6 is selected from H, F, Cl, Br, NO 2 , NH 2 , and substituted Or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl, for example R 6 is selected from H, F, Cl, Br and substituted or unsubstituted C 1- 3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl, or R 6 selected from H, F, Cl, Me, Et and OMe; R 7 selected from H, F, Cl and substituted or unsubstituted Substituted C 1-3 alkyl, for example R 7 is selected from H, Me, F and Cl; R 8 is selected from H, F and substituted or unsubstituted C 1-3 alkyl, for example R 8 is selected from H, Me and F; or R 4 and R 5 or R 5 and R 6 together with their adjacent carbon atoms form a substituted or unsubstituted carbocyclic or heterocyclic ring, provided that the heterocyclic ring (R 2 ) is not A benzoxazolone; and (---) represents a bond; wherein when R 4 is H or F, then at least one of R 5 , R 6 , R 7 or R 8 is not H or F and wherein when R 5 is CN, at least one of R 4 , R 6 , R 7 or R 8 is not H.

在一個實施例中,R 8為H。在另一實施例中,R 4選自F、Cl、Et及Me,R 5、R 7及R 8各自為H,且R 6選自H、Cl、Me及OMe。在另一實施例中,R 4選自F、Cl及Me,R 6、R 7及R 8各自為H,且R 5選自F及Cl。 In one embodiment, R is H. In another embodiment, R4 is selected from F, Cl, Et and Me, R5 , R7 and R8 are each H, and R6 is selected from H, Cl, Me and OMe. In another embodiment, R4 is selected from F, Cl and Me, each of R6 , R7 and R8 is H, and R5 is selected from F and Cl.

在一個實施例中,R 4選自Cl及經取代或未經取代之C 1-3烷基(例如Me);較佳地,R 4為Cl或Me;R 5選自H、F、Cl及經取代或未經取代之C 1-3烷基(例如Me);R 6選自H及經取代或未經取代之OC 1-3烷基(例如OCH 3);且R 7及R 8各自為H。 In one embodiment, R 4 is selected from Cl and substituted or unsubstituted C 1-3 alkyl (such as Me); preferably, R 4 is Cl or Me; R 5 is selected from H, F, Cl And substituted or unsubstituted C 1-3 alkyl (such as Me); R 6 is selected from H and substituted or unsubstituted OC 1-3 alkyl (such as OCH 3 ); and R 7 and R 8 Each is H.

在又另一實施例中,R 4選自H、Cl、Br及甲基;R 5選自H、F及Cl;R 6選自H、F、Cl、Me及OMe;且R 7及R 8各自為H。 In yet another embodiment, R is selected from H, Cl, Br, and methyl; R is selected from H, F, and Cl; R is selected from H, F, Cl, Me, and OMe; and R and R 8 are H each.

在另一實施例中,R 4選自Cl及經取代或未經取代之C 1-3烷基(例如Me),較佳地,R 4為Cl或Me;R 5選自H、F、Cl及經取代或未經取代之C 1-3烷基(例如Me),較佳地,R 5為F、Cl或Me;R 6選自H、F、Cl、經取代或未經取代之C 1-3烷基(例如Me)及經取代或未經取代之OC 1-3烷基(例如OCH 3),較佳地,R 6為H或F,或R 6為Cl或經取代或未經取代之C 1-3烷基或經取代或未經取代之OC 1-3烷基、或CH 3或OCH 3;且R 7及R 8各自為H。在又另一實施例中,R 6為經取代之C 1-3烷基。 In another embodiment, R 4 is selected from Cl and substituted or unsubstituted C 1-3 alkyl (such as Me), preferably, R 4 is Cl or Me; R 5 is selected from H, F, Cl and substituted or unsubstituted C 1-3 alkyl (such as Me), preferably, R 5 is F, Cl or Me; R 6 is selected from H, F, Cl, substituted or unsubstituted C 1-3 alkyl (such as Me) and substituted or unsubstituted OC 1-3 alkyl (such as OCH 3 ), preferably, R 6 is H or F, or R 6 is Cl or substituted or unsubstituted C 1-3 alkyl or substituted or unsubstituted O-C 1-3 alkyl, or CH 3 or OCH 3 ; and R 7 and R 8 are each H. In yet another embodiment, R 6 is substituted C 1-3 alkyl.

在另一實施例中,R 2為經取代之C 5雜芳基,諸如具有下式之基團:

Figure 02_image011
其中: X 5選自NH、NC 1-3烷基、NC 3-4環烷基、O及S; R 9、R 10、R 11各自獨立地選自H、F、Cl、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基,前提條件係R 9及R 11中之一者為H且另一者不為H;並且 (---)表示一鍵。 In another embodiment, R is a substituted C heteroaryl , such as a group having the formula:
Figure 02_image011
Wherein: X 5 is selected from NH, NC 1-3 alkyl, NC 3-4 cycloalkyl, O and S; R 9 , R 10 , R 11 are each independently selected from H, F, Cl, CN and substituted Or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl, the prerequisite is one of R 9 and R 11 is H and the other is not H; and (---) represents a bond.

替代地,R 2為具有下式之基團:

Figure 02_image013
其中: X 5選自NH、NC 1-3烷基、NC 3-4環烷基、O及S; R 9選自F、Cl、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基; R 10及R 12各自獨立地選自H、F、Cl、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基;並且 (---)表示一鍵。 Alternatively, R is a group having the formula:
Figure 02_image013
Wherein: X 5 is selected from NH, NC 1-3 alkyl, NC 3-4 cycloalkyl, O and S; R 9 is selected from F, Cl, CN and substituted or unsubstituted C 1-3 alkyl , C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl; R 10 and R 12 are each independently selected from H, F, Cl, CN and substituted or unsubstituted Substituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl; and (---) represents a bond.

在一較佳實施例中,R 9及R 10各自獨立地選自F、Cl、CN及經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基,較佳為Cl及經取代或未經取代之C 1-3烷基,更佳地,R 9及R 10均為Cl。在另一實施例中,X 5為O或S,較佳為S。 In a preferred embodiment, R 9 and R 10 are each independently selected from F, Cl, CN, and substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O) OC 1-3 alkyl or OC 1-3 alkyl, preferably Cl and substituted or unsubstituted C 1-3 alkyl, more preferably, both R 9 and R 10 are Cl. In another embodiment, X 5 is O or S, preferably S.

在另一實施例中,R 2為經取代之C 5-10雜芳基,諸如具有下式之基團:

Figure 02_image015
其中: X 9、X 10、X 11、X 12及X 13獨立地選自N及C,其中X 9、X 10、X 11、X 12及X 13中之至少一者且至多兩者為N;以及 R 19、R 20、R 21、R 22及R 23選自H、F、Cl、Br、CN、NO 2、NH 2及經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,或當其所附接之X 9、X 10、X 11、X 12及X 13為N時不存在; 其中X 9及X 13中之至少一者不為N;並且 其中當X 9及X 13中之一者為N時,則另一者不為N或CH。 In another embodiment, R 2 is a substituted C 5-10 heteroaryl, such as a group having the formula:
Figure 02_image015
Wherein: X 9 , X 10 , X 11 , X 12 and X 13 are independently selected from N and C, wherein at least one of X 9 , X 10 , X 11 , X 12 and X 13 and at most two are N and R 19 , R 20 , R 21 , R 22 and R 23 are selected from H, F, Cl, Br, CN, NO 2 , NH 2 and substituted or unsubstituted C 1-3 alkyl, C 3 -4 cycloalkyl or OC 1-3 alkyl, or when X 9 , X 10 , X 11 , X 12 and X 13 to which it is attached are N; wherein at least one of X 9 and X 13 is not N; and wherein when one of X 9 and X 13 is N, the other is not N or CH.

在另一實例中,R 2為C 5雜環烷基。舉例而言,R 2為具有下式之基團:

Figure 02_image017
其中: R 13在每次出現時獨立地選自F、Cl及經取代或未經取代之C 1-3烷基、C 3-4環烷基或C 1-3烷氧基; n為選自0至8之整數;或 n介於2與8之間,且兩個R 13與其相鄰的碳原子一起形成C 3-4環烷基;並且 (---)表示一鍵。 In another example, R 2 is C 5 heterocycloalkyl. For example, R is a group having the formula:
Figure 02_image017
Wherein: R 13 is independently selected from F, Cl, and substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or C 1-3 alkoxy at each occurrence; n is selected An integer from 0 to 8; or n is between 2 and 8, and two R 13 and their adjacent carbon atoms together form a C 3-4 cycloalkyl group; and (---) represents a bond.

在一個實施例中,R 13處於3-位置。在另一實施例中,R 13選自F、Me、OMe及CH 2OMe,且n為1或2。舉例而言,R 13為處於3-位置之甲氧基,且n為1。 In one embodiment, R 13 is in the 3-position. In another embodiment, R 13 is selected from F, Me, OMe and CH 2 OMe, and n is 1 or 2. For example, R 13 is methoxy at the 3-position, and n is 1.

在另一實例中,R 2為N(R 3) 2。舉例而言,R 2為N(R 3) 2且R 3選自經取代或未經取代之C 1-8烷基或C 3-8環烷基。 In another example, R 2 is N(R 3 ) 2 . For example, R 2 is N(R 3 ) 2 and R 3 is selected from substituted or unsubstituted C 1-8 alkyl or C 3-8 cycloalkyl.

在又另一實施例中,式I之化合物為式II之化合物,或其醫藥學上可接受之鹽或溶劑合物:

Figure 02_image019
式II 其中R 1、R 4、R 5及R 6各自獨立地如本文所定義,較佳地,R 4選自Cl、Br及甲基;R 5選自H、F、Cl及甲基;R 6選自H、F、Cl、Me及OMe。 In yet another embodiment, the compound of formula I is a compound of formula II, or a pharmaceutically acceptable salt or solvate thereof:
Figure 02_image019
Formula II wherein R 1 , R 4 , R 5 and R 6 are each independently as defined herein, preferably, R 4 is selected from Cl, Br and methyl; R 5 is selected from H, F, Cl and methyl; R6 is selected from H, F, Cl, Me and OMe.

在另一實施例中,式I之化合物為式III之化合物,或其醫藥學上可接受之鹽或溶劑合物:

Figure 02_image021
式III 其中R 1、R 9、R 10、R 12及X 5各自獨立地如本文所定義。 In another embodiment, the compound of formula I is a compound of formula III, or a pharmaceutically acceptable salt or solvate thereof:
Figure 02_image021
Formula III wherein R 1 , R 9 , R 10 , R 12 and X 5 are each independently as defined herein.

例示性R 2由如下所定義之B1至B77說明:

Figure 02_image023
B1
Figure 02_image025
B2
Figure 02_image027
B3
Figure 02_image029
B4
Figure 02_image031
B5
Figure 02_image033
B6
Figure 02_image035
B7
Figure 02_image037
B8
Figure 02_image039
B9
Figure 02_image041
B10
Figure 02_image043
B11
Figure 02_image045
B12
Figure 02_image047
B13
Figure 02_image049
B14
Figure 02_image051
B15
Figure 02_image053
B16
Figure 02_image055
B17
Figure 02_image057
B18
Figure 02_image059
B19
Figure 02_image061
B20
Figure 02_image063
B21
Figure 02_image065
B22
Figure 02_image067
B23
Figure 02_image069
B24
Figure 02_image071
B25
Figure 02_image073
B26
Figure 02_image075
B27
Figure 02_image077
B28
Figure 02_image079
B29
Figure 02_image081
B30
Figure 02_image083
B31
Figure 02_image085
B32
Figure 02_image087
B33
Figure 02_image089
B34
Figure 02_image091
B35
Figure 02_image093
B36
Figure 02_image095
B37
Figure 02_image097
B38
Figure 02_image099
B39
Figure 02_image101
B40
Figure 02_image103
B41
Figure 02_image105
B42
Figure 02_image107
B43
Figure 02_image109
B44
Figure 02_image111
B45
Figure 02_image113
B46
Figure 02_image115
B47
Figure 02_image117
B48
Figure 02_image119
B49
Figure 02_image121
B50
Figure 02_image123
B51
Figure 02_image125
B52
Figure 02_image127
B53
Figure 02_image129
B54
Figure 02_image131
B55
Figure 02_image133
B56
Figure 02_image135
B57
Figure 02_image137
B58
Figure 02_image139
B59
Figure 02_image141
B60
Figure 02_image143
B61
Figure 02_image145
B62
Figure 02_image147
B63
Figure 02_image149
B64
Figure 02_image151
B65
Figure 02_image153
B66
Figure 02_image155
B67
Figure 02_image157
B68
Figure 02_image159
B69
Figure 02_image161
B70
Figure 02_image163
B71
Figure 02_image165
B72
Figure 02_image167
B73
Figure 02_image169
B74
Figure 02_image171
B75
Figure 02_image173
B76
Figure 02_image175
B77
        
其中(---)表示一鍵。 Exemplary R2 are illustrated by B1 to B77 as defined below:
Figure 02_image023
B1
Figure 02_image025
B2
Figure 02_image027
B3
Figure 02_image029
B4
Figure 02_image031
B5
Figure 02_image033
B6
Figure 02_image035
B7
Figure 02_image037
B8
Figure 02_image039
B9
Figure 02_image041
B10
Figure 02_image043
B11
Figure 02_image045
B12
Figure 02_image047
B13
Figure 02_image049
B14
Figure 02_image051
B15
Figure 02_image053
B16
Figure 02_image055
B17
Figure 02_image057
B18
Figure 02_image059
B19
Figure 02_image061
B20
Figure 02_image063
B21
Figure 02_image065
B22
Figure 02_image067
B23
Figure 02_image069
B24
Figure 02_image071
B25
Figure 02_image073
B26
Figure 02_image075
B27
Figure 02_image077
B28
Figure 02_image079
B29
Figure 02_image081
B30
Figure 02_image083
B31
Figure 02_image085
B32
Figure 02_image087
B33
Figure 02_image089
B34
Figure 02_image091
B35
Figure 02_image093
B36
Figure 02_image095
B37
Figure 02_image097
B38
Figure 02_image099
B39
Figure 02_image101
B40
Figure 02_image103
B41
Figure 02_image105
B42
Figure 02_image107
B43
Figure 02_image109
B44
Figure 02_image111
B45
Figure 02_image113
B46
Figure 02_image115
B47
Figure 02_image117
B48
Figure 02_image119
B49
Figure 02_image121
B50
Figure 02_image123
B51
Figure 02_image125
B52
Figure 02_image127
B53
Figure 02_image129
B54
Figure 02_image131
B55
Figure 02_image133
B56
Figure 02_image135
B57
Figure 02_image137
B58
Figure 02_image139
B59
Figure 02_image141
B60
Figure 02_image143
B61
Figure 02_image145
B62
Figure 02_image147
B63
Figure 02_image149
B64
Figure 02_image151
B65
Figure 02_image153
B66
Figure 02_image155
B67
Figure 02_image157
B68
Figure 02_image159
B69
Figure 02_image161
B70
Figure 02_image163
B71
Figure 02_image165
B72
Figure 02_image167
B73
Figure 02_image169
B74
Figure 02_image171
B75
Figure 02_image173
B76
Figure 02_image175
B77
Among them (---) represents a key.

在一個實施例中,R 2選自基團B1至B37、B41至B44、B49、B51至B55、B57、B59、B62至B67、B71至B74、B76及B77,或較佳地,R 2選自基團B1-B33、B36、B41、B42、B51至B54、B59、B65、B73及B77,或更佳地,R 2選自基團B1、B2、B6、B8、B11、B12、B15、B20、B21、B36、B41、B42、B53、B54、B59、B65及B73,或最佳地,R 2選自基團B21、B36、B41、B42、B52、B53、B54、B59、B65及B73。 In one embodiment, R 2 is selected from groups B1 to B37, B41 to B44, B49, B51 to B55, B57, B59, B62 to B67, B71 to B74, B76 and B77, or preferably, R 2 is selected from From the group B1-B33, B36, B41, B42, B51 to B54, B59, B65, B73 and B77, or more preferably, R2 is selected from the group B1, B2, B6, B8, B11, B12, B15, B20, B21, B36, B41, B42, B53, B54, B59, B65 and B73, or most preferably, R is selected from the group B21, B36, B41, B42, B52, B53, B54, B59, B65 and B73 .

在式I化合物之一個實施例中,R 1為OR 3或SR 3,例如R 1為SR 3。在各種實施例中,R 3為經取代或未經取代之C 1-8烷基(例如C 1-3烷基)。 In one embodiment of the compound of formula I, R 1 is OR 3 or SR 3 , for example R 1 is SR 3 . In various embodiments, R 3 is substituted or unsubstituted C 1-8 alkyl (eg, C 1-3 alkyl).

在另一實施例中,R 1為經取代或未經取代之C 6芳基。在另一實施例中,R 1為經取代或未經取代之C 4-6雜環烷基。舉例而言,R 1為視情況經一個或兩個選自以下之基團取代之C 4-5雜環烷基:鹵基、OH、C 1-6烷基及OC 1-6烷基。舉例而言,R 1為視情況經一個或兩個選自F及OH之基團取代之 N-吡咯啶基。 In another embodiment, R is a substituted or unsubstituted C aryl . In another embodiment, R 1 is a substituted or unsubstituted C 4-6 heterocycloalkyl. For example, R 1 is C 4-5 heterocycloalkyl optionally substituted with one or two groups selected from halo, OH, C 1-6 alkyl and OC 1-6 alkyl. For example, R1 is N -pyrrolidinyl optionally substituted with one or two groups selected from F and OH.

在另一實施例中,R 1為經取代或未經取代之C 5-6雜芳基或經取代或未經取代之C 9雜芳基。在另一實施例中,R 1為選自以下之經取代或未經取代之基團:噻吩基、咪唑基、吡唑基、三唑基、噻唑基、吡啶基、嘧啶基、吲哚基、吲唑基、苯并咪唑基、苯并三唑基、吡咯并吡啶基(例如吡咯并[3,2-b]吡啶基或吡咯并[3,2-c]吡啶基)、吡唑并吡啶基(例如吡唑并[1,5-a]吡啶基)、嘌呤基、咪唑并吡嗪基(例如咪唑并[4,5-b]吡嗪基)及喹啉基(quinolyl/quinolinyl),較佳地,R 1為經取代或未經取代之選自以下之基團:咪唑基、吡唑基、三唑基、吲哚基、吲唑基、苯并咪唑基、苯并三唑基、吡咯并吡啶基(例如吡咯并[3,2-b]吡啶基或吡咯并[3,2-c]吡啶基)、吡唑并吡啶基(例如吡唑并[1,5-a]吡啶基)、嘌呤基及咪唑并吡嗪基(例如咪唑并[4,5-b]吡嗪基),更佳地,經由氮原子附接至嘧啶并嘧啶核。 In another embodiment, R 1 is a substituted or unsubstituted C 5-6 heteroaryl or a substituted or unsubstituted C 9 heteroaryl. In another embodiment, R is a substituted or unsubstituted group selected from the group consisting of thienyl, imidazolyl, pyrazolyl, triazolyl, thiazolyl, pyridyl, pyrimidinyl, indolyl , indazolyl, benzimidazolyl, benzotriazolyl, pyrrolopyridyl (such as pyrrolo[3,2-b]pyridyl or pyrrolo[3,2-c]pyridyl), pyrazolo Pyridyl (e.g. pyrazolo[1,5-a]pyridinyl), purinyl, imidazopyrazinyl (e.g. imidazo[4,5-b]pyrazinyl) and quinolyl (quinolyl/quinolinyl) , preferably, R is a substituted or unsubstituted group selected from the group consisting of imidazolyl, pyrazolyl, triazolyl, indolyl, indazolyl, benzimidazolyl, benzotriazole base, pyrrolopyridyl (such as pyrrolo[3,2-b]pyridyl or pyrrolo[3,2-c]pyridyl), pyrazolopyridyl (such as pyrazolo[1,5-a] pyridyl), purinyl and imidazopyrazinyl (eg imidazo[4,5-b]pyrazinyl), more preferably attached to the pyrimidopyrimidine core via a nitrogen atom.

R 1之實例包括選自以下之基團:

Figure 02_image177
; 其中(---)表示一鍵,且其中該基團視情況經進一步取代。 Examples of R include groups selected from the following groups:
Figure 02_image177
; wherein (---) represents a bond, and wherein the group is optionally further substituted.

舉例而言,R 1為選自以下之經取代或未經取代之基團:

Figure 02_image179
; 其中(---)表示一鍵。 For example, R is a substituted or unsubstituted group selected from:
Figure 02_image179
; Among them (---) represents a key.

在一個實施例中,R 1為上述基團中之一者,其進一步經至少一個選自以下之取代基取代:OH、鹵基、CN、NO 2、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; 其中: R 14在每次出現時獨立地選自H、C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 4-10雜環烷基、C 6芳基及C 5-10雜芳基,或兩個R 14與其相鄰的氮原子一起形成C 4-10雜環烷基; R 15在每次出現時獨立地選自C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 6芳基及C 5-10雜芳基;並且 R 16在每次出現時獨立地選自H、C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 6芳基及C 5-10雜芳基; 其中包括於R 1(包括在R 14、R 15及R 16之定義中)中之該烷基、烯基、炔基、環烷基、雜環烷基、芳基或雜芳基視情況經進一步取代。 In one embodiment, R 1 is one of the above groups, which is further substituted by at least one substituent selected from: OH, halo, CN, NO 2 , C 1-6 alkyl, C 2- 6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O) R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; wherein: R 14 is independently selected from each occurrence of H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 4- 10 heterocycloalkyl, C 6 aryl and C 5-10 heteroaryl, or two R 14 and its adjacent nitrogen atoms together form a C 4-10 heterocycloalkyl; R 15 independently in each occurrence selected from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 6 aryl and C 5-10 heteroaryl; and R 16 in each When present, independently selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 6 aryl and C 5-10 heteroaryl; wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl included in R 1 (included in the definition of R 14 , R 15 and R 16 ) is optionally further replaced.

在另一實施例中,R 1為具有下式之基團:

Figure 02_image181
其中: R 17選自H、OH、鹵基、CN、NO 2、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; X 6為N或CH;並且 X 7為N且R 18不存在;或 X 7為C且R 18選自C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; 其中R 14、R 15及R 16如上文所定義; 其中包括於R 1(包括在R 14、R 15、R 16、R 17及 R 18之定義中)中之該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代;以及 其中(---)表示一鍵。 In another embodiment, R is a group having the formula:
Figure 02_image181
Wherein: R 17 is selected from H, OH, halo, CN, NO 2 , C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 Heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N( R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N (R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; X 6 is N or CH; and X 7 is N and R 18 is absent; or X 7 is C and R 18 is selected from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 ring Alkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C (O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N (R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; wherein R 14 , R 15 and R 16 are as defined above; wherein R 1 (included in R 14 , R 15 , The alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl or heteroaryl in the definitions of R 16 , R 17 and R 18 ) are optionally further substituted; and wherein (---) represents One Key.

在另一實施例中,R 1為具有下式之基團:

Figure 02_image183
其中: X 15、X 16、X 17及X 18獨立地選自O、N、S及CR 17,其中R 17如先前所定義; 其中X 15、X 16、X 17及X 18中之至多兩者為O、N或S。 In another embodiment, R is a group having the formula:
Figure 02_image183
Wherein: X 15 , X 16 , X 17 and X 18 are independently selected from O, N, S and CR 17 , wherein R 17 is as previously defined; wherein at most two of X 15 , X 16 , X 17 and X 18 Either O, N or S.

在一個實施例中,式I之化合物為式IV或V之化合物,或其醫藥學上可接受之鹽或溶劑合物:

Figure 02_image185
式IV
Figure 02_image187
式V 其中R 4、R 5、R 6、R 17、R 18、X 6、X 7、X 15、X 16、X 17及X 18各自獨立地如本文所定義,較佳地,R 4選自Cl、Br及甲基;R 5選自H、F、Cl及甲基;R 6選自H、F、Cl、Me及OMe。 In one embodiment, the compound of formula I is a compound of formula IV or V, or a pharmaceutically acceptable salt or solvate thereof:
Figure 02_image185
Formula IV
Figure 02_image187
Formula V wherein R 4 , R 5 , R 6 , R 17 , R 18 , X 6 , X 7 , X 15 , X 16 , X 17 and X 18 are each independently as defined herein, preferably, R 4 is selected from From Cl, Br and methyl; R 5 is selected from H, F, Cl and methyl; R 6 is selected from H, F, Cl, Me and OMe.

在另一實施例中,式I之化合物為式VI或VII之化合物,或其醫藥學上可接受之鹽或溶劑合物:

Figure 02_image189
式VI
Figure 02_image191
式VII 其中R 9、R 10、R 12、R 17、R 18、X 5、X 6、X 7、X 15、X 16、X 17及X 18各自獨立地如本文所定義。 In another embodiment, the compound of formula I is a compound of formula VI or VII, or a pharmaceutically acceptable salt or solvate thereof:
Figure 02_image189
Formula VI
Figure 02_image191
Formula VII wherein R 9 , R 10 , R 12 , R 17 , R 18 , X 5 , X 6 , X 7 , X 15 , X 16 , X 17 and X 18 are each independently as defined herein.

在上述化學式之一個實施例中,X 6為N。在另一實施例中,X 6為CH。 In one embodiment of the above formula, X 6 is N. In another embodiment, X6 is CH.

在另一實施例中,X 7為N,R 17選自H、OH、CN、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2,且R 18不存在,其中R 14、R 15、R 16或R 17中之該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代,較佳地,R 17選自C 1-6烷基、C 5-10雜芳基、C 4-10雜環烷基、N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、C(O)N(R 14) 2及SO 2N(R 14) 2,其中R 14、R 15、R 16或R 17中之該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代。舉例而言,R 17選自R 17為H、NH 2及視情況經取代之C 5-10雜芳基或C 4-10雜環烷基,較佳地,R 17為視情況經取代之C 5-10雜芳基或C 4-10雜環烷基。 In another embodiment, X 7 is N, R 17 is selected from H, OH, CN, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 ) SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C (O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 , and R 18 does not exist, wherein R 14 , R 15 , R 16 Or the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl or heteroaryl in R 17 is optionally substituted, preferably, R 17 is selected from C 1-6 alkyl, C 5 -10 heteroaryl, C 4-10 heterocycloalkyl, N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , C(O)N( R 14 ) 2 and SO 2 N(R 14 ) 2 , wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl or heteroaryl in R 14 , R 15 , R 16 or R 17 Further superseded as appropriate. For example, R 17 is selected from R 17 is H, NH 2 and optionally substituted C 5-10 heteroaryl or C 4-10 heterocycloalkyl, preferably, R 17 is optionally substituted C 5-10 heteroaryl or C 4-10 heterocycloalkyl.

在另一實施例中,R 17為視情況經取代之C 4-10雜環烷基,其中該雜環烷基可為單環或雙環且包括1至3個雜原子,較佳地,其中X 7為N。在一較佳實施例中,雜環烷基例如經至少一個選自以下之基團取代:F、OH、側氧基、CN、C 1-4烷基及OC 1-4烷基,其中該C 1-4烷基視情況經進一步取代(例如經F、OH、OC 1-3烷基等取代)。舉例而言,雜環烷基可選自視情況經取代之哌啶基團、哌嗪基團、硫代嗎啉基團及嗎啉基團,或含有哌啶、哌嗪、硫代嗎啉或嗎啉環之環狀結構(橋聯或螺環接)。 In another embodiment, R 17 is optionally substituted C 4-10 heterocycloalkyl, wherein the heterocycloalkyl can be monocyclic or bicyclic and includes 1 to 3 heteroatoms, preferably, wherein X 7 is N. In a preferred embodiment, the heterocycloalkyl is, for example, substituted by at least one group selected from the group consisting of F, OH, pendant oxy, CN, C 1-4 alkyl and OC 1-4 alkyl, wherein the C 1-4 alkyl is optionally further substituted (eg, substituted with F, OH, OC 1-3 alkyl, etc.). For example, heterocycloalkyl groups can be selected from optionally substituted piperidine groups, piperazine groups, thiomorpholine groups, and morpholine groups, or contain piperidine, piperazine, thiomorpholine groups Or the ring structure of morpholine ring (bridged or spiro ring).

在另一實施例中,X 7為C,例如X 7為C且R 18選自C 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2,其中R 14、R 15、R 16或R 18中之該烷基、烯基、炔基、環烷基、雜環烷基,或雜芳基視情況經進一步取代,較佳地,R 18選自C(O)N(R 14) 2、SO 2R 15及SO 2N(R 14) 2。在此等實施例之一子類中,R 17選自H、OH、C 1-6烷基、N(R 14) 2及視情況經取代之C 5-10雜芳基。舉例而言,R 17選自H、NH 2、及視情況經取代之C 5-10雜芳基,較佳為H或NH 2In another embodiment, X 7 is C, for example X 7 is C and R 18 is selected from C 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4-10 hetero Cycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N( R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)( R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N( R 14 ) 2 and CH 2 N(R 14 ) 2 , wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, or heteroaryl in R 14 , R 15 , R 16 or R 18 The group may be further substituted, preferably, R 18 is selected from C(O)N(R 14 ) 2 , SO 2 R 15 and SO 2 N(R 14 ) 2 . In a subclass of these embodiments, R 17 is selected from H, OH, C 1-6 alkyl, N(R 14 ) 2 and optionally substituted C 5-10 heteroaryl. For example, R 17 is selected from H, NH 2 , and optionally substituted C 5-10 heteroaryl, preferably H or NH 2 .

在又另一實施例中,R 14在每次出現時獨立地選自H、視情況經取代之C 1-6烷基、視情況經取代之C 3-10環烷基、視情況經取代之C 4-10雜環烷基及視情況經取代之C 5-6雜芳基,或兩個R 14與其相鄰的氮原子一起形成C 4-10雜環烷基。 In yet another embodiment, each occurrence of R is independently selected from H, optionally substituted C 1-6 alkyl, optionally substituted C 3-10 cycloalkyl, optionally substituted A C 4-10 heterocycloalkyl group and an optionally substituted C 5-6 heteroaryl group, or two R 14 together with their adjacent nitrogen atoms form a C 4-10 heterocycloalkyl group.

在另一實施例中,R 17為N(R 14) 2,其中該R 14與其相鄰的氮原子一起形成C 4-10雜環烷基,其中該雜環烷基可為單環或雙環且包括1至3個雜原子,較佳地,其中X 7為N。在一較佳實施例中,雜環烷基例如經至少一個選自以下之基團取代:F、OH、側氧基、CN、C 1-4烷基及OC 1-4烷基,其中該C 1-4烷基視情況經進一步取代(例如經F、OH、OC 1-3烷基等取代)。舉例而言,雜環烷基可選自視情況經取代之哌啶基團、哌嗪基團、硫代嗎啉基團及嗎啉基團,或含有哌啶、哌嗪、硫代嗎啉或嗎啉環之環狀結構(橋聯或螺環接)。 In another embodiment, R 17 is N(R 14 ) 2 , wherein the R 14 forms a C 4-10 heterocycloalkyl together with its adjacent nitrogen atom, wherein the heterocycloalkyl can be monocyclic or bicyclic And include 1 to 3 heteroatoms, preferably, wherein X 7 is N. In a preferred embodiment, the heterocycloalkyl is, for example, substituted by at least one group selected from the group consisting of F, OH, pendant oxy, CN, C 1-4 alkyl and OC 1-4 alkyl, wherein the C 1-4 alkyl is optionally further substituted (eg, substituted with F, OH, OC 1-3 alkyl, etc.). For example, heterocycloalkyl groups can be selected from optionally substituted piperidine groups, piperazine groups, thiomorpholine groups, and morpholine groups, or contain piperidine, piperazine, thiomorpholine groups Or the ring structure of morpholine ring (bridged or spiro ring).

在另一實施例中,R 1選自:

Figure 02_image193
其中R 14如本文所定義且(---)表示一鍵。 In another embodiment, R is selected from:
Figure 02_image193
wherein R 14 is as defined herein and (---) represents a bond.

在另一實例中,R 1選自:

Figure 02_image195
; 其中R 14如本文所定義且(---)表示一鍵。 In another example, R is selected from:
Figure 02_image195
; wherein R 14 is as defined herein and (---) represents a bond.

其他亞類實施例亦呈現於實例章節中,其中定義了各取代基R 1(C基團)、R 2(B基團)、Y及L。亦在下文及表2至5中進一步闡述組合之實例。本文亦描述了實例1至163之代表性較佳化合物。 Other subclass embodiments are also presented in the Examples section, where the respective substituents R 1 (C group), R 2 (B group), Y and L are defined. Examples of combinations are also set forth further below and in Tables 2-5. Representative preferred compounds of Examples 1-163 are also described herein.

更特定言之,例示性R 1基團示為如下定義之C1至C493: MeS-- C1

Figure 02_image197
C2
Figure 02_image199
C3
Figure 02_image201
C4
Figure 02_image203
C5
Figure 02_image205
C6
Figure 02_image207
C7
Figure 02_image209
C8
Figure 02_image211
C9
Figure 02_image213
C10
Figure 02_image215
C11
Figure 02_image217
C12
Figure 02_image219
C13
MeO-- C14
Figure 02_image221
C15
Figure 02_image223
C16
Figure 02_image225
C17
Figure 02_image227
C18
Figure 02_image229
C19
Figure 02_image231
C20
Figure 02_image233
C21
Figure 02_image235
C22
Figure 02_image237
C23
Figure 02_image239
C24
Figure 02_image241
C25
Figure 02_image243
C26
Figure 02_image245
C27
Figure 02_image247
C28
Figure 02_image249
C29
Figure 02_image251
C30
Figure 02_image253
C31
Figure 02_image255
C32
Figure 02_image257
C33
Figure 02_image259
C34
Figure 02_image261
C35
Figure 02_image263
C36
Figure 02_image265
C37
Figure 02_image267
C38
Figure 02_image269
C39
Figure 02_image271
C40
Figure 02_image273
C41
Figure 02_image275
C42
Figure 02_image277
C43
Figure 02_image279
   C44
  
Figure 02_image281
   C45
Figure 02_image283
C46
Figure 02_image285
C47
Figure 02_image287
C48
Figure 02_image289
C49
Figure 02_image291
C50
Figure 02_image293
C51
Figure 02_image295
C52
Figure 02_image297
C53
Figure 02_image299
C54
Figure 02_image301
C55
Figure 02_image303
C56
Figure 02_image305
C57
Figure 02_image307
C58
Figure 02_image309
C59
Figure 02_image311
C60
Figure 02_image313
C61
Figure 02_image315
C62
Figure 02_image317
C63
Figure 02_image319
C64
Figure 02_image321
C65
Figure 02_image323
C66
Figure 02_image325
C67
Figure 02_image327
C68
Figure 02_image329
C69
Figure 02_image331
C70
Figure 02_image333
C71
Figure 02_image335
C72
Figure 02_image337
C73
Figure 02_image339
C74
Figure 02_image341
C75
Figure 02_image343
C76
Figure 02_image345
C77
Figure 02_image347
C78
Figure 02_image349
C79
Figure 02_image351
C80
Figure 02_image353
C81
Figure 02_image355
C82
Figure 02_image357
C83
Figure 02_image359
C84
Figure 02_image361
C85
Figure 02_image363
C86
Figure 02_image365
C87
Figure 02_image367
C88
Figure 02_image369
C89
Figure 02_image371
C90
Figure 02_image373
C91
Figure 02_image375
C92
Figure 02_image377
C93
Figure 02_image379
C94
Figure 02_image381
C95
Figure 02_image383
C96
Figure 02_image385
C97
Figure 02_image387
C98
Figure 02_image389
C99
Figure 02_image391
C100
Figure 02_image393
C101
Figure 02_image395
C102
Figure 02_image397
C103
Figure 02_image399
C104
Figure 02_image401
C105
Figure 02_image403
C106
Figure 02_image405
C107
Figure 02_image407
C108
Figure 02_image409
C109
Figure 02_image411
C110
Figure 02_image413
C111
Figure 02_image415
C112
Figure 02_image417
C113
Figure 02_image419
C114
Figure 02_image421
C115
Figure 02_image423
C116
Figure 02_image425
C117
Figure 02_image427
C118
Figure 02_image429
C119
Figure 02_image431
C120
Figure 02_image433
C121
Figure 02_image435
C122
Figure 02_image437
C123
Figure 02_image439
C124
Figure 02_image441
C125
Figure 02_image443
C126
Figure 02_image445
C127
Figure 02_image447
C128
Figure 02_image449
C129
Figure 02_image451
C130
Figure 02_image453
C131
Figure 02_image455
C132
Figure 02_image457
C133
Figure 02_image459
C134
Figure 02_image461
C135
Figure 02_image463
C136
Figure 02_image465
C137
Figure 02_image467
C138
Figure 02_image469
C139
Figure 02_image471
C140
Figure 02_image473
C141
Figure 02_image475
C142
Figure 02_image477
C143
Figure 02_image479
C144
Figure 02_image481
C145
Figure 02_image483
C146
Figure 02_image485
C147
Figure 02_image487
C148
Figure 02_image489
C149
Figure 02_image491
C150
Figure 02_image493
C151
Figure 02_image495
C152
Figure 02_image497
C153
Figure 02_image499
C154
Figure 02_image501
C155
Figure 02_image503
C156
Figure 02_image505
C157
Figure 02_image507
C158
Figure 02_image509
C159
Figure 02_image511
C160
Figure 02_image513
C161
Figure 02_image515
C162
Figure 02_image517
C163
Figure 02_image519
C164
Figure 02_image521
C165
Figure 02_image523
C166
Figure 02_image525
C167
Figure 02_image527
C168
Figure 02_image529
C169
Figure 02_image531
C170
Figure 02_image533
C171
Figure 02_image535
C172
Figure 02_image537
C173
Figure 02_image539
C174
Figure 02_image541
C175
Figure 02_image543
C176
Figure 02_image545
C177
Figure 02_image547
C178
Figure 02_image549
C179
Figure 02_image551
C180
Figure 02_image553
C181
Figure 02_image555
C182
Figure 02_image557
C183
Figure 02_image559
C184
Figure 02_image561
C185
Figure 02_image563
C186
Figure 02_image565
C187
Figure 02_image567
C188
  
Figure 02_image455
C189
Figure 02_image570
C190
Figure 02_image572
C191
Figure 02_image574
C192
Figure 02_image576
C193
Figure 02_image578
C194
Figure 02_image580
C195
Figure 02_image582
C196
Figure 02_image584
C197
Figure 02_image586
C198
Figure 02_image588
C199
Figure 02_image590
C200
Figure 02_image592
C201
Figure 02_image594
C202
Figure 02_image596
C203
Figure 02_image598
C204
Figure 02_image600
C205
Figure 02_image602
C206
Figure 02_image604
C207
Figure 02_image606
C208
Figure 02_image608
C209
Figure 02_image610
C210
Figure 02_image612
C211
Figure 02_image614
C212
Figure 02_image616
C213
Figure 02_image618
C214
Figure 02_image620
C215
Figure 02_image622
C216
Figure 02_image624
C217
Figure 02_image626
C218
Figure 02_image628
C219
Figure 02_image630
C220
Figure 02_image632
C221
Figure 02_image634
C222
Figure 02_image636
C223
Figure 02_image638
C224
Figure 02_image640
C225
Figure 02_image642
C226
Figure 02_image644
C227
Figure 02_image646
C228
Figure 02_image648
C229
Figure 02_image650
C230
Figure 02_image652
C231
Figure 02_image654
C232
Figure 02_image656
C233
Figure 02_image658
C234
Figure 02_image660
C235
Figure 02_image662
C236
Figure 02_image664
C237
Figure 02_image666
C238
Figure 02_image668
C239
Figure 02_image670
C240
Figure 02_image672
C241
Figure 02_image674
C242
Figure 02_image676
C243
Figure 02_image678
C244
Figure 02_image680
C245
Figure 02_image682
C246
Figure 02_image684
C247
Figure 02_image686
C248
Figure 02_image688
C249
Figure 02_image690
C250
Figure 02_image692
C251
Figure 02_image694
C252
Figure 02_image696
C253
Figure 02_image698
C254
Figure 02_image700
C255
Figure 02_image702
C256
Figure 02_image704
C257
Figure 02_image706
C258
Figure 02_image708
C259
Figure 02_image710
C260
Figure 02_image712
C261
Figure 02_image714
C262
Figure 02_image716
C263
Figure 02_image718
C264
Figure 02_image720
C265
Figure 02_image722
C266
Figure 02_image724
C267
Figure 02_image726
C268
Figure 02_image728
C269
Figure 02_image730
C270
Figure 02_image732
C271
Figure 02_image734
C272
Figure 02_image736
C273
Figure 02_image738
C274
Figure 02_image740
C275
Figure 02_image742
C276
Figure 02_image744
C277
Figure 02_image746
C278
Figure 02_image748
C279
Figure 02_image750
C280
Figure 02_image752
C281
Figure 02_image754
C282
Figure 02_image756
C283
Figure 02_image758
C284
Figure 02_image760
C285
Figure 02_image762
C286
Figure 02_image764
C287
Figure 02_image766
C288
Figure 02_image768
C289
Figure 02_image770
C290
Figure 02_image772
C291
Figure 02_image774
C292
Figure 02_image776
C293
Figure 02_image778
C294
Figure 02_image780
C295
Figure 02_image782
C296
Figure 02_image784
C297
Figure 02_image786
C298
Figure 02_image788
C299
Figure 02_image790
C300
Figure 02_image792
C301
Figure 02_image794
C302
Figure 02_image796
C303
Figure 02_image798
C304
Figure 02_image800
C305
Figure 02_image802
C306
Figure 02_image804
C307
Figure 02_image806
C308
Figure 02_image808
C309
Figure 02_image810
C310
Figure 02_image812
C311
Figure 02_image814
C312
Figure 02_image816
C313
Figure 02_image818
C314
Figure 02_image820
C315
Figure 02_image822
C316
Figure 02_image824
C317
Figure 02_image826
C318
Figure 02_image828
C319
Figure 02_image830
C320
Figure 02_image832
C321
Figure 02_image834
C322
Figure 02_image836
C323
Figure 02_image838
C324
Figure 02_image840
C325
Figure 02_image842
C326
Figure 02_image844
C327
Figure 02_image846
C328
Figure 02_image848
C329
Figure 02_image850
C330
Figure 02_image852
C331
Figure 02_image854
C332
Figure 02_image856
C333
Figure 02_image858
C334
Figure 02_image860
C335
Figure 02_image862
C336
Figure 02_image864
C337
Figure 02_image866
C338
Figure 02_image868
C339
Figure 02_image870
C340
Figure 02_image872
C341
Figure 02_image874
C342
Figure 02_image876
C343
Figure 02_image878
C344
Figure 02_image880
C345
Figure 02_image882
C346
Figure 02_image884
C347
Figure 02_image886
C348
Figure 02_image888
C349
Figure 02_image890
C350
Figure 02_image892
C351
Figure 02_image894
C352
Figure 02_image896
C353
Figure 02_image898
C354
Figure 02_image900
C355
Figure 02_image902
C356
Figure 02_image904
C357
Figure 02_image906
C358
Figure 02_image908
C359
Figure 02_image910
C360
Figure 02_image912
C361
Figure 02_image914
C362
Figure 02_image916
C363
Figure 02_image918
C364
Figure 02_image920
C365
Figure 02_image922
C366
Figure 02_image924
C367
Figure 02_image926
C368
Figure 02_image928
C369
Figure 02_image930
C370
Figure 02_image932
C371
Figure 02_image934
C372
Figure 02_image936
C373
Figure 02_image938
C374
Figure 02_image940
C375
Figure 02_image942
C376
Figure 02_image944
C377
Figure 02_image946
C378
Figure 02_image948
C379
Figure 02_image950
C380
Figure 02_image952
C381
Figure 02_image954
C382
Figure 02_image956
C383
Figure 02_image958
C384
Figure 02_image960
C385
Figure 02_image962
C386
Figure 02_image964
C387
Figure 02_image966
C388
Figure 02_image289
C389
Figure 02_image968
C390
Figure 02_image970
C391
Figure 02_image972
C392
Figure 02_image974
C393
Figure 02_image976
C394
Figure 02_image978
C395
Figure 02_image980
C396
Figure 02_image982
C397
Figure 02_image984
C398
Figure 02_image986
C399
Figure 02_image988
C400
Figure 02_image990
C401
Figure 02_image992
C402
Figure 02_image994
C403
Figure 02_image996
C404
Figure 02_image998
C405
Figure 02_image1000
C406
Figure 02_image1002
C407
Figure 02_image1004
C408
Figure 02_image1006
C409
Figure 02_image1008
C410
Figure 02_image1010
C411
Figure 02_image1012
C412
Figure 02_image1014
C413
Figure 02_image1016
C414
Figure 02_image1018
C415
Figure 02_image1020
C416
Figure 02_image1022
C417
Figure 02_image1024
C418
Figure 02_image1026
C419
Figure 02_image1028
C420
Figure 02_image1030
C421
Figure 02_image1032
C422
Figure 02_image1034
C423
Figure 02_image295
C424
Figure 02_image1036
C425
Figure 02_image1038
C426
Figure 02_image1040
C427
Figure 02_image1042
C428
Figure 02_image1044
C429
Figure 02_image1046
C430
Figure 02_image1048
C431
Figure 02_image1050
C432
Figure 02_image1052
C433
Figure 02_image1054
C434
Figure 02_image1056
C435
Figure 02_image1058
C436
Figure 02_image1060
C437
Figure 02_image1062
C438
Figure 02_image1064
C439
Figure 02_image1066
C440
Figure 02_image1068
C441
Figure 02_image1070
C442
Figure 02_image1072
C443
Figure 02_image1074
C444
Figure 02_image1076
C445
Figure 02_image1078
C446
Figure 02_image1080
C447
Figure 02_image1082
C448
Figure 02_image1084
C449
Figure 02_image1086
C450
Figure 02_image1088
C451
Figure 02_image1090
C452
Figure 02_image1092
C453
Figure 02_image1094
C454
Figure 02_image1096
C455
Figure 02_image1098
C456
Figure 02_image1100
C457
Figure 02_image1102
C458
Figure 02_image1104
C459
Figure 02_image1106
C460
Figure 02_image1108
C461
Figure 02_image1110
C462
Figure 02_image1112
C463
Figure 02_image281
C464
Figure 02_image1114
C465
Figure 02_image1116
C466
Figure 02_image1118
C467
Figure 02_image1120
C468
Figure 02_image1122
C469
Figure 02_image1124
C470
Figure 02_image1126
C471
Figure 02_image1128
C472
Figure 02_image1130
C473
Figure 02_image1132
C474
Figure 02_image1134
C475
Figure 02_image1136
C476
Figure 02_image1138
C477
Figure 02_image1140
C478
Figure 02_image1142
C479
Figure 02_image1144
C480
Figure 02_image1146
C481
Figure 02_image1148
C482
Figure 02_image1150
C483
Figure 02_image1152
C484
Figure 02_image1154
C485
Figure 02_image1156
C486
Figure 02_image1158
C487
Figure 02_image1160
C488
Figure 02_image1162
C489
Figure 02_image1164
C490
Figure 02_image1166
C491
Figure 02_image1168
C492
Figure 02_image1170
C493
        
其中(---)表示一鍵。 More specifically, exemplary R groups are shown as C1 to C493 as defined below: MeS--C1
Figure 02_image197
C2
Figure 02_image199
C3
Figure 02_image201
C4
Figure 02_image203
C5
Figure 02_image205
C6
Figure 02_image207
C7
Figure 02_image209
C8
Figure 02_image211
C9
Figure 02_image213
C10
Figure 02_image215
C11
Figure 02_image217
C12
Figure 02_image219
C13
MeO--C14
Figure 02_image221
C15
Figure 02_image223
C16
Figure 02_image225
C17
Figure 02_image227
C18
Figure 02_image229
C19
Figure 02_image231
C20
Figure 02_image233
C21
Figure 02_image235
C22
Figure 02_image237
C23
Figure 02_image239
C24
Figure 02_image241
C25
Figure 02_image243
C26
Figure 02_image245
C27
Figure 02_image247
C28
Figure 02_image249
C29
Figure 02_image251
C30
Figure 02_image253
C31
Figure 02_image255
C32
Figure 02_image257
C33
Figure 02_image259
C34
Figure 02_image261
C35
Figure 02_image263
C36
Figure 02_image265
C37
Figure 02_image267
C38
Figure 02_image269
C39
Figure 02_image271
C40
Figure 02_image273
C41
Figure 02_image275
C42
Figure 02_image277
C43
Figure 02_image279
C44
Figure 02_image281
C45
Figure 02_image283
C46
Figure 02_image285
C47
Figure 02_image287
C48
Figure 02_image289
C49
Figure 02_image291
C50
Figure 02_image293
C51
Figure 02_image295
C52
Figure 02_image297
C53
Figure 02_image299
C54
Figure 02_image301
C55
Figure 02_image303
C56
Figure 02_image305
C57
Figure 02_image307
C58
Figure 02_image309
C59
Figure 02_image311
C60
Figure 02_image313
C61
Figure 02_image315
C62
Figure 02_image317
C63
Figure 02_image319
C64
Figure 02_image321
C65
Figure 02_image323
C66
Figure 02_image325
C67
Figure 02_image327
C68
Figure 02_image329
C69
Figure 02_image331
C70
Figure 02_image333
C71
Figure 02_image335
C72
Figure 02_image337
C73
Figure 02_image339
C74
Figure 02_image341
C75
Figure 02_image343
C76
Figure 02_image345
C77
Figure 02_image347
C78
Figure 02_image349
C79
Figure 02_image351
C80
Figure 02_image353
C81
Figure 02_image355
C82
Figure 02_image357
C83
Figure 02_image359
C84
Figure 02_image361
C85
Figure 02_image363
C86
Figure 02_image365
C87
Figure 02_image367
C88
Figure 02_image369
C89
Figure 02_image371
C90
Figure 02_image373
C91
Figure 02_image375
C92
Figure 02_image377
C93
Figure 02_image379
C94
Figure 02_image381
C95
Figure 02_image383
C96
Figure 02_image385
C97
Figure 02_image387
C98
Figure 02_image389
C99
Figure 02_image391
C100
Figure 02_image393
C101
Figure 02_image395
C102
Figure 02_image397
C103
Figure 02_image399
C104
Figure 02_image401
C105
Figure 02_image403
C106
Figure 02_image405
C107
Figure 02_image407
C108
Figure 02_image409
C109
Figure 02_image411
C110
Figure 02_image413
C111
Figure 02_image415
C112
Figure 02_image417
C113
Figure 02_image419
C114
Figure 02_image421
C115
Figure 02_image423
C116
Figure 02_image425
C117
Figure 02_image427
C118
Figure 02_image429
C119
Figure 02_image431
C120
Figure 02_image433
C121
Figure 02_image435
C122
Figure 02_image437
C123
Figure 02_image439
C124
Figure 02_image441
C125
Figure 02_image443
C126
Figure 02_image445
C127
Figure 02_image447
C128
Figure 02_image449
C129
Figure 02_image451
C130
Figure 02_image453
C131
Figure 02_image455
C132
Figure 02_image457
C133
Figure 02_image459
C134
Figure 02_image461
C135
Figure 02_image463
C136
Figure 02_image465
C137
Figure 02_image467
C138
Figure 02_image469
C139
Figure 02_image471
C140
Figure 02_image473
C141
Figure 02_image475
C142
Figure 02_image477
C143
Figure 02_image479
C144
Figure 02_image481
C145
Figure 02_image483
C146
Figure 02_image485
C147
Figure 02_image487
C148
Figure 02_image489
C149
Figure 02_image491
C150
Figure 02_image493
C151
Figure 02_image495
C152
Figure 02_image497
C153
Figure 02_image499
C154
Figure 02_image501
C155
Figure 02_image503
C156
Figure 02_image505
C157
Figure 02_image507
C158
Figure 02_image509
C159
Figure 02_image511
C160
Figure 02_image513
C161
Figure 02_image515
C162
Figure 02_image517
C163
Figure 02_image519
C164
Figure 02_image521
C165
Figure 02_image523
C166
Figure 02_image525
C167
Figure 02_image527
C168
Figure 02_image529
C169
Figure 02_image531
C170
Figure 02_image533
C171
Figure 02_image535
C172
Figure 02_image537
C173
Figure 02_image539
C174
Figure 02_image541
C175
Figure 02_image543
C176
Figure 02_image545
C177
Figure 02_image547
C178
Figure 02_image549
C179
Figure 02_image551
C180
Figure 02_image553
C181
Figure 02_image555
C182
Figure 02_image557
C183
Figure 02_image559
C184
Figure 02_image561
C185
Figure 02_image563
C186
Figure 02_image565
C187
Figure 02_image567
C188
Figure 02_image455
C189
Figure 02_image570
C190
Figure 02_image572
C191
Figure 02_image574
C192
Figure 02_image576
C193
Figure 02_image578
C194
Figure 02_image580
C195
Figure 02_image582
C196
Figure 02_image584
C197
Figure 02_image586
C198
Figure 02_image588
C199
Figure 02_image590
C200
Figure 02_image592
C201
Figure 02_image594
C202
Figure 02_image596
C203
Figure 02_image598
C204
Figure 02_image600
C205
Figure 02_image602
C206
Figure 02_image604
C207
Figure 02_image606
C208
Figure 02_image608
C209
Figure 02_image610
C210
Figure 02_image612
C211
Figure 02_image614
C212
Figure 02_image616
C213
Figure 02_image618
C214
Figure 02_image620
C215
Figure 02_image622
C216
Figure 02_image624
C217
Figure 02_image626
C218
Figure 02_image628
C219
Figure 02_image630
C220
Figure 02_image632
C221
Figure 02_image634
C222
Figure 02_image636
C223
Figure 02_image638
C224
Figure 02_image640
C225
Figure 02_image642
C226
Figure 02_image644
C227
Figure 02_image646
C228
Figure 02_image648
C229
Figure 02_image650
C230
Figure 02_image652
C231
Figure 02_image654
C232
Figure 02_image656
C233
Figure 02_image658
C234
Figure 02_image660
C235
Figure 02_image662
C236
Figure 02_image664
C237
Figure 02_image666
C238
Figure 02_image668
C239
Figure 02_image670
C240
Figure 02_image672
C241
Figure 02_image674
C242
Figure 02_image676
C243
Figure 02_image678
C244
Figure 02_image680
C245
Figure 02_image682
C246
Figure 02_image684
C247
Figure 02_image686
C248
Figure 02_image688
C249
Figure 02_image690
C250
Figure 02_image692
C251
Figure 02_image694
C252
Figure 02_image696
C253
Figure 02_image698
C254
Figure 02_image700
C255
Figure 02_image702
C256
Figure 02_image704
C257
Figure 02_image706
C258
Figure 02_image708
C259
Figure 02_image710
C260
Figure 02_image712
C261
Figure 02_image714
C262
Figure 02_image716
C263
Figure 02_image718
C264
Figure 02_image720
C265
Figure 02_image722
C266
Figure 02_image724
C267
Figure 02_image726
C268
Figure 02_image728
C269
Figure 02_image730
C270
Figure 02_image732
C271
Figure 02_image734
C272
Figure 02_image736
C273
Figure 02_image738
C274
Figure 02_image740
C275
Figure 02_image742
C276
Figure 02_image744
C277
Figure 02_image746
C278
Figure 02_image748
C279
Figure 02_image750
C280
Figure 02_image752
C281
Figure 02_image754
C282
Figure 02_image756
C283
Figure 02_image758
C284
Figure 02_image760
C285
Figure 02_image762
C286
Figure 02_image764
C287
Figure 02_image766
C288
Figure 02_image768
C289
Figure 02_image770
C290
Figure 02_image772
C291
Figure 02_image774
C292
Figure 02_image776
C293
Figure 02_image778
C294
Figure 02_image780
C295
Figure 02_image782
C296
Figure 02_image784
C297
Figure 02_image786
C298
Figure 02_image788
C299
Figure 02_image790
C300
Figure 02_image792
C301
Figure 02_image794
C302
Figure 02_image796
C303
Figure 02_image798
C304
Figure 02_image800
C305
Figure 02_image802
C306
Figure 02_image804
C307
Figure 02_image806
C308
Figure 02_image808
C309
Figure 02_image810
C310
Figure 02_image812
C311
Figure 02_image814
C312
Figure 02_image816
C313
Figure 02_image818
C314
Figure 02_image820
C315
Figure 02_image822
C316
Figure 02_image824
C317
Figure 02_image826
C318
Figure 02_image828
C319
Figure 02_image830
C320
Figure 02_image832
C321
Figure 02_image834
C322
Figure 02_image836
C323
Figure 02_image838
C324
Figure 02_image840
C325
Figure 02_image842
C326
Figure 02_image844
C327
Figure 02_image846
C328
Figure 02_image848
C329
Figure 02_image850
C330
Figure 02_image852
C331
Figure 02_image854
C332
Figure 02_image856
C333
Figure 02_image858
C334
Figure 02_image860
C335
Figure 02_image862
C336
Figure 02_image864
C337
Figure 02_image866
C338
Figure 02_image868
C339
Figure 02_image870
C340
Figure 02_image872
C341
Figure 02_image874
C342
Figure 02_image876
C343
Figure 02_image878
C344
Figure 02_image880
C345
Figure 02_image882
C346
Figure 02_image884
C347
Figure 02_image886
C348
Figure 02_image888
C349
Figure 02_image890
C350
Figure 02_image892
C351
Figure 02_image894
C352
Figure 02_image896
C353
Figure 02_image898
C354
Figure 02_image900
C355
Figure 02_image902
C356
Figure 02_image904
C357
Figure 02_image906
C358
Figure 02_image908
C359
Figure 02_image910
C360
Figure 02_image912
C361
Figure 02_image914
C362
Figure 02_image916
C363
Figure 02_image918
C364
Figure 02_image920
C365
Figure 02_image922
C366
Figure 02_image924
C367
Figure 02_image926
C368
Figure 02_image928
C369
Figure 02_image930
C370
Figure 02_image932
C371
Figure 02_image934
C372
Figure 02_image936
C373
Figure 02_image938
C374
Figure 02_image940
C375
Figure 02_image942
C376
Figure 02_image944
C377
Figure 02_image946
C378
Figure 02_image948
C379
Figure 02_image950
C380
Figure 02_image952
C381
Figure 02_image954
C382
Figure 02_image956
C383
Figure 02_image958
C384
Figure 02_image960
C385
Figure 02_image962
C386
Figure 02_image964
C387
Figure 02_image966
C388
Figure 02_image289
C389
Figure 02_image968
C390
Figure 02_image970
C391
Figure 02_image972
C392
Figure 02_image974
C393
Figure 02_image976
C394
Figure 02_image978
C395
Figure 02_image980
C396
Figure 02_image982
C397
Figure 02_image984
C398
Figure 02_image986
C399
Figure 02_image988
C400
Figure 02_image990
C401
Figure 02_image992
C402
Figure 02_image994
C403
Figure 02_image996
C404
Figure 02_image998
C405
Figure 02_image1000
C406
Figure 02_image1002
C407
Figure 02_image1004
C408
Figure 02_image1006
C409
Figure 02_image1008
C410
Figure 02_image1010
C411
Figure 02_image1012
C412
Figure 02_image1014
C413
Figure 02_image1016
C414
Figure 02_image1018
C415
Figure 02_image1020
C416
Figure 02_image1022
C417
Figure 02_image1024
C418
Figure 02_image1026
C419
Figure 02_image1028
C420
Figure 02_image1030
C421
Figure 02_image1032
C422
Figure 02_image1034
C423
Figure 02_image295
C424
Figure 02_image1036
C425
Figure 02_image1038
C426
Figure 02_image1040
C427
Figure 02_image1042
C428
Figure 02_image1044
C429
Figure 02_image1046
C430
Figure 02_image1048
C431
Figure 02_image1050
C432
Figure 02_image1052
C433
Figure 02_image1054
C434
Figure 02_image1056
C435
Figure 02_image1058
C436
Figure 02_image1060
C437
Figure 02_image1062
C438
Figure 02_image1064
C439
Figure 02_image1066
C440
Figure 02_image1068
C441
Figure 02_image1070
C442
Figure 02_image1072
C443
Figure 02_image1074
C444
Figure 02_image1076
C445
Figure 02_image1078
C446
Figure 02_image1080
C447
Figure 02_image1082
C448
Figure 02_image1084
C449
Figure 02_image1086
C450
Figure 02_image1088
C451
Figure 02_image1090
C452
Figure 02_image1092
C453
Figure 02_image1094
C454
Figure 02_image1096
C455
Figure 02_image1098
C456
Figure 02_image1100
C457
Figure 02_image1102
C458
Figure 02_image1104
C459
Figure 02_image1106
C460
Figure 02_image1108
C461
Figure 02_image1110
C462
Figure 02_image1112
C463
Figure 02_image281
C464
Figure 02_image1114
C465
Figure 02_image1116
C466
Figure 02_image1118
C467
Figure 02_image1120
C468
Figure 02_image1122
C469
Figure 02_image1124
C470
Figure 02_image1126
C471
Figure 02_image1128
C472
Figure 02_image1130
C473
Figure 02_image1132
C474
Figure 02_image1134
C475
Figure 02_image1136
C476
Figure 02_image1138
C477
Figure 02_image1140
C478
Figure 02_image1142
C479
Figure 02_image1144
C480
Figure 02_image1146
C481
Figure 02_image1148
C482
Figure 02_image1150
C483
Figure 02_image1152
C484
Figure 02_image1154
C485
Figure 02_image1156
C486
Figure 02_image1158
C487
Figure 02_image1160
C488
Figure 02_image1162
C489
Figure 02_image1164
C490
Figure 02_image1166
C491
Figure 02_image1168
C492
Figure 02_image1170
C493
Among them (---) represents a key.

在一個實施例中,R 1選自基團C1至C493或R 1選自基團C1至C23、C27、C60、C69、C71至C73、C81至C83、C88、C114、C182至C184、C196、C220、C223至C226、C275、C292、C310、C312、C313、C323、C346、C376、C402、C404、C414、C418、C419、C434、C435、C438、C440、C441、C472、C483、C488及C490,例如R 1選自基團C1、C3、C5、C7、C22、C23、C27、C60、C69、C73、C81至C83、C88、C182至C184、C196、C224-C226、C313、C323、C376、C402、C404、C414、C418、C419、C438及C488例如選自C7、C22、C23及C60或選自C183、C323、C376、C414、C418、C419、C438及C488。 In one embodiment, R is selected from groups C1 to C493 or R is selected from groups C1 to C23, C27, C60, C69, C71 to C73, C81 to C83, C88, C114, C182 to C184, C196, C220, C223 to C226, C275, C292, C310, C312, C313, C323, C346, C376, C402, C404, C414, C418, C419, C434, C435, C438, C440, C441, C472, C483, C488 and C490, For example R is selected from groups C1, C3, C5, C7, C22, C23, C27, C60, C69, C73, C81 to C83, C88, C182 to C184, C196, C224-C226, C313, C323, C376, C402 , C404, C414, C418, C419, C438 and C488 are for example selected from C7, C22, C23 and C60 or selected from C183, C323, C376, C414, C418, C419, C438 and C488.

以下實施例描繪了R 1(C1至C493)、R 2(B1至B77)及L (L1至L4)基團之組合,該等基團可組合以產生式I之化合物,其中Y為H或NH 2: C1-L-B1;C1-L-B2;C1-L-B3;C1-L-B4至70;C1-L-B71;C1-L-B72;C1-L-B73;C1-L-74;C1-L-B75至B77; C2-L-B1;C2-L-B2;C2-L-B3;C2-L-B4至70;C2-L-B71;C2-L-B72;C2-L-B73;C2-L-B74;C2-L-B75至B77; C3-L-B1;C3-L-B2;C3-L-B3;C3-L-B4至70;C3-L-B71;C3-L-B72;C3-L-B73;C3-L-B74;C3-L-B75至B77; C4至C488-L-B1;C4至C488-L-B2;C4至C488-L-B3;C4至C488-L-B4至70;C4至C488-L-B71;C4至C488-L-B72;C4至C488-L-B73;C4至C488-L-B74;C4至C488-L-B75至B77; C489-L-B1;C489-L-B2;C489-L-B3;C489-L-B4至B70;C489-L-B71;C489-L-B72;C489-L-B73;C489-L-B74;C489-L-B75至B77; C490-L-B1;C490-L-B2;C490-L-B3;C490-L-B4至B70;C490-L-B71;C490-L-B72;C490-L-B73;C490-L-B74;C490-L-B75至B77; C491至C493-L-B1;C491至C493-L-B2;C491至C493-L-B3;C491至C493-L-B4至B70;C491至C493-L-B71;C491至C493-L-B72;C491至C493-L-B73;C491至C493-L-B74;或C491至C493-L-B75至B77。 The following examples depict combinations of R 1 (C1 to C493), R 2 (B1 to B77) and L (L1 to L4) groups that can be combined to produce compounds of formula I, wherein Y is H or NH 2 : C1-L-B1; C1-L-B2; C1-L-B3; C1-L-B4 to 70; C1-L-B71; C1-L-B72; C1-L-B73; C1-L -74; C1-L-B75 to B77; C2-L-B1; C2-L-B2; C2-L-B3; C2-L-B4 to 70; C2-L-B71; C2-L-B72; C2 -L-B73; C2-L-B74; C2-L-B75 to B77; C3-L-B1; C3-L-B2; C3-L-B3; C3-L-B4 to 70; C3-L-B71 C3-L-B72; C3-L-B73; C3-L-B74; C3-L-B75 to B77; C4 to C488-L-B1; C4 to C488-L-B2; ; C4 to C488-L-B4 to 70; C4 to C488-L-B71; C4 to C488-L-B72; C4 to C488-L-B73; C4 to C488-L-B74; to B77; C489-L-B1; C489-L-B2; C489-L-B3; C489-L-B4 to B70; C489-L-B71; C489-L-B72; -B74; C489-L-B75 to B77; C490-L-B1; C490-L-B2; C490-L-B3; C490-L-B4 to B70; C490-L-B71; C490-L-B72; -L-B73; C490-L-B74; C490-L-B75 to B77; C491 to C493-L-B1; C491 to C493-L-B2; C491 to C493-L-B3; to B70; C491 to C493-L-B71; C491 to C493-L-B72; C491 to C493-L-B73; C491 to C493-L-B74; or C491 to C493-L-B75 to B77.

在一個實施例中,化合物如式I中所定義,其中: - R 1選自基團C1至C493或R 1選自基團C1至C23、C27、C60、C69、C71至C73、C81至C83、C88、C114、C182至C184、C196、C220、C223至C226、C275、C292、C310、C312、C313、C323、C346、C376、C402、C404、C414、C418、C419、C434、C435、C438、C440、C441、C472、C483、C488及C490,例如R 1選自基團C1、C3、C5、C7、C22、C23、C27、C60、C69、C73、C81至C83、C88、C182至C184、C196、C224-C226、C313、C323、C376、C402、C404、C414、C418、C419、C438及C488; - R 2選自B1、B2、B8、B11、B12、B20至B23 B34至B37、B41至B44、B49、B51至B54、B57、B59、B62至B67、B71至B74及B77;以及 - L為選自L1至L4之基團,且Y為H或NH 2,較佳地,Y為H。 In one embodiment, the compound is as defined in formula I, wherein: - R is selected from groups C1 to C493 or R is selected from groups C1 to C23, C27, C60, C69, C71 to C73, C81 to C83 , C88, C114, C182 to C184, C196, C220, C223 to C226, C275, C292, C310, C312, C313, C323, C346, C376, C402, C404, C414, C418, C419, C434, C435, C438, C440 , C441, C472, C483, C488 and C490, for example R is selected from the group C1, C3, C5, C7, C22, C23, C27, C60, C69, C73, C81 to C83, C88, C182 to C184, C196, C224-C226, C313, C323, C376, C402, C404, C414, C418, C419, C438 and C488; - R2 is selected from B1, B2, B8, B11, B12, B20 to B23 B34 to B37, B41 to B44, B49, B51 to B54, B57, B59, B62 to B67, B71 to B74 and B77; and - L is a group selected from L1 to L4, and Y is H or NH 2 , preferably, Y is H.

在另一實施例中,化合物如式I中所定義,其中R 1選自C7、C22、C23、C60、C73、C81、C83、C183、C376、C404、C414、C418、C419、C438及C488,R 2選自B12、B21、B36、B41、B42、B52至B54、B59、B65及B73,L為選自L1至L4之基團,且Y為H或NH 2,較佳地Y為H。 In another embodiment, the compound is as defined in formula I, wherein R is selected from C7, C22, C23, C60, C73, C81, C83, C183, C376, C404, C414, C418, C419, C438 and C488, R 2 is selected from B12, B21, B36, B41, B42, B52 to B54, B59, B65 and B73, L is a group selected from L1 to L4, and Y is H or NH 2 , preferably Y is H.

如本文所定義之例示性化合物包括在實例1-163下之表2、3、4及5中所涵蓋之各單一化合物。Exemplary compounds as defined herein include each single compound covered in Tables 2, 3, 4 and 5 under Examples 1-163.

較佳化合物之實例為即來自表3、4及5之實例31、36、40、51、55至60、69、72、80至83、88、93、94、96至122、124至147、149、151至160、162及163。更佳化合物之實例包括來自表3及5之實例80至83、93、94、96、98至101、104、106、111、112、114至116、119、120、122、125、128至134、139、142、144至146、153、155、157、159及162。Examples of preferred compounds are i.e. examples 31, 36, 40, 51, 55 to 60, 69, 72, 80 to 83, 88, 93, 94, 96 to 122, 124 to 147, from Tables 3, 4 and 5 149, 151 to 160, 162 and 163. Examples of more preferred compounds include examples 80 to 83, 93, 94, 96, 98 to 101, 104, 106, 111, 112, 114 to 116, 119, 120, 122, 125, 128 to 134 from Tables 3 and 5 , 139, 142, 144 to 146, 153, 155, 157, 159 and 162.

應理解,上述化合物中之任一者可呈任何非晶形、結晶或多形形式,包括任何鹽或溶劑合物形式,或其混合物。本發明之化合物可經由本文所述之任何合成手段藉由附加各種功能來進一步修飾,以增強選擇性生物特性。此類修飾為此項技術中已知的且包括增加對給定生物系統(例如血液、淋巴系統、中樞神經系統)之生物滲透、增加口服可用性、增加溶解性以允許藉由注射投與、改變代謝及改變排泄率之彼等修飾。It is to be understood that any of the above compounds may be in any amorphous, crystalline or polymorphic form, including any salt or solvate form, or mixtures thereof. The compounds of the present invention can be further modified by adding various functionalities via any of the synthetic means described herein to enhance selective biological properties. Such modifications are known in the art and include increasing biopenetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increasing oral availability, increasing solubility to allow administration by injection, altering These modifications metabolize and alter excretion rates.

此等化合物可藉由習知化學合成,諸如在本揭示案之流程及實例中所例示之彼等化學合成來製備。如可由熟習此項技術者所瞭解的,合成本文化學式之化合物的其他方法對於一般熟習此項技術者將為顯而易見的。另外,可以交替順序或次序進行各種合成步驟以得到所需化合物。 iii. 方法、用途、調配物及投與 These compounds can be prepared by conventional chemical syntheses, such as those exemplified in the Schemes and Examples of this disclosure. Other methods of synthesizing compounds of the formulas herein will be apparent to those of ordinary skill in the art, as can be understood by those skilled in the art. Additionally, the various synthetic steps may be performed in an alternating sequence or sequence to give the desired compounds. iii. Methods, uses, formulations and administration

如本文所用,術語「有效量」意謂在組織、系統、動物或人類中引發例如研究人員或臨床醫師所尋求之生物反應或醫學反應的藥物或醫藥劑之量。此外,術語「治療有效量」意謂與尚未接受此量之相應受試者相比,導致疾病、病症或其症狀之治療、治癒、預防或改善,或降低疾病或病症之進展速率的任何量。該術語亦包括在其範疇內有效增強正常生理學功能之量。As used herein, the term "effective amount" means the amount of a drug or pharmaceutical agent that elicits, for example, a biological or medical response in a tissue, system, animal or human being sought by a researcher or clinician. Furthermore, the term "therapeutically effective amount" means any amount that results in the treatment, cure, prevention or amelioration of a disease, disorder or symptoms thereof, or reduces the rate of progression of a disease or disorder compared to a corresponding subject that has not received such amount . The term also includes within its scope amounts effective to enhance normal physiological function.

如本文所用,術語「治療(treatment/treat/treating)」係指使如本文所描述之疾病或病症或其一或多種症狀逆轉、減輕、延遲發作或抑制進展。在一些實施例中,治療可在一或多種症狀已顯現之後投與。在其他實施例中,治療可在不存在症狀下投與。舉例而言,治療可在症狀發作之前(例如鑒於症狀史及/或鑒於遺傳或其他易感性因素)向易感個體投與。治療亦可在症狀已消除之後繼續例如以預防或延遲其復發。As used herein, the terms "treatment/treat/treating" refer to reversing, alleviating, delaying onset or inhibiting progression of a disease or disorder as described herein, or one or more symptoms thereof. In some embodiments, treatment may be administered after one or more symptoms have manifested. In other embodiments, treatment can be administered in the absence of symptoms. For example, treatment can be administered to susceptible individuals prior to the onset of symptoms (eg, in view of history of symptoms and/or in view of genetic or other predisposition factors). Treatment can also be continued after symptoms have resolved, eg, to prevent or delay their recurrence.

在一個實施例中,待治療之疾病或病狀為增殖性疾病或病症或激酶介導之疾病或病症。更特定言之,待治療之疾病或病症包括增殖性疾病或病症、RAS-ERK傳訊級聯失調所致的發育異常(RAS病)、發炎性疾病或免疫系統失調。In one embodiment, the disease or condition to be treated is a proliferative disease or disorder or a kinase-mediated disease or disorder. More specifically, the diseases or conditions to be treated include proliferative diseases or conditions, developmental abnormalities due to dysregulation of the RAS-ERK signaling cascade (RAS diseases), inflammatory diseases or disorders of the immune system.

根據一些實例,待治療之增殖性疾病或病症為贅瘤、發炎性疾病或病狀或發育異常,涉及RAS及/或RAF基因之持續性活化突變(例如KRAS及/或ARAF、BRAF或CRAF突變)。疾病或病症亦可進一步與受體酪胺酸激酶突變或擴增(例如EGFR、HER2)或該受體下游RAS之調節因子的突變(例如SOS1功能獲得、NF1功能喪失)相關。舉例而言,如本文所定義之化合物為信號酶抑制劑(例如BRAF及CRAF),其不僅參與控制攜帶RAF突變(例如BRAF V600E)腫瘤之細胞增殖,且重要的是亦參與突變的RAS驅動之癌症之細胞增殖。因此,本發明化合物可例如用於治療與此等信號酶之活性相關且特徵在於過度或異常細胞增殖之疾病。 According to some examples, the proliferative disease or disorder to be treated is a neoplasm, an inflammatory disease or condition or dysplasia involving persistent activating mutations in the RAS and/or RAF genes (e.g. KRAS and/or ARAF, BRAF or CRAF mutations ). Diseases or disorders may further be associated with mutations or amplifications of receptor tyrosine kinases (eg EGFR, HER2) or mutations of regulators of the RAS downstream of the receptor (eg SOS1 gain-of-function, NF1 loss-of-function). For example, compounds as defined herein are inhibitors of signaling enzymes (such as BRAF and CRAF), which are not only involved in the control of cell proliferation of tumors carrying RAF mutations (such as BRAF V600E ), but importantly also in the mutated RAS-driven Cancer cell proliferation. Thus, the compounds of the invention are useful, for example, in the treatment of diseases associated with the activity of these signaling enzymes and characterized by excessive or abnormal cell proliferation.

根據一個實施例,疾病或病症之特徵在於不受控制之細胞增殖,亦即「增殖性病症」或「增殖性疾病」。更特定言之,此等疾病及病症與具有自主生長能力之細胞有關,亦即由細胞快速增殖表徵之異常病狀狀態,該細胞快速增殖通常形成展示部分或完全缺乏結構組織及與正常細胞之功能協調的明顯的腫塊。According to one embodiment, the disease or disorder is characterized by uncontrolled cell proliferation, ie a "proliferative disorder" or "proliferative disease". More specifically, these diseases and disorders are associated with cells that have the ability to grow autonomously, that is, an abnormal condition characterized by rapid proliferation of cells, often forming cells that exhibit a partial or complete lack of structural organization and differences from normal cells. Distinct mass with harmonious function.

舉例而言,增殖性病症或疾病定義為「贅瘤」、「腫瘤性病症」、「贅瘤形成」、「癌症」及「腫瘤」,該等術語統稱為涵蓋造血贅瘤(例如淋巴瘤或白血病)以及實體贅瘤(例如肉瘤或癌),包括癌前及癌性生長,或致癌過程、轉移組織或惡性轉化型細胞、組織或器官中之所有類型,不論組織病理學類型或侵襲性階段如何。造血贅瘤為影響造血結構(與血球形成相關之結構)及免疫系統組分之惡性腫瘤,包括源自骨髓、淋巴或紅血球譜系之白血病(與血液及骨髓中之白血球(白細胞)及其前驅物相關),及淋巴瘤(與淋巴球相關)。實體贅瘤包括肉瘤,其為源自結締組織,諸如肌肉、軟骨、血管、纖維組織、脂肪或硬骨之惡性贅瘤。實體贅瘤亦包括癌,其為由上皮結構產生之惡性贅瘤,包括外部上皮(例如皮膚及胃腸道、肺及子宮頸之襯膜),及襯裡各種腺體(例如胸、胰臟、甲狀腺)之內部上皮。贅瘤之實例包括白血病及肝細胞癌、肉瘤、血管內皮癌、乳癌、中樞神經系統癌(例如星形細胞瘤、神經膠肉瘤、神經胚細胞瘤、寡樹突神經膠質瘤及神經膠母細胞瘤)、前列腺癌、肺及支氣管癌、喉癌、食道癌、結腸癌、結腸直腸癌、胃腸癌、黑色素瘤、卵巢癌及子宮內膜癌、腎癌及膀胱癌、肝癌、內分泌癌(例如甲狀腺)及胰臟癌。舉例而言,疾病或病症選自結腸癌、肺癌、胰臟癌、甲狀腺癌、乳癌及皮膚癌。贅瘤之實例包括黑色素瘤、乳突甲狀腺癌、結腸直腸癌、卵巢癌、乳癌、子宮內膜癌、肝癌、肉瘤、胃癌、巴瑞特氏腺癌、神經膠質瘤(包括室管膜瘤)、肺癌(包括非小細胞肺癌)、頭頸癌、急性淋巴母細胞白血病、急性骨髓性白血病、非何杰金氏淋巴癌及毛細胞白血病。For example, a proliferative disorder or disease is defined as "neoplastic," "neoplastic disorder," "neoplastic," "cancer," and "tumour," and these terms collectively encompass hematopoietic neoplasms (such as lymphoma or leukemia) and solid neoplasms (such as sarcomas or carcinomas), including precancerous and cancerous growths, or all types of oncogenic processes, metastatic tissue, or malignantly transformed cells, tissues, or organs, regardless of histopathological type or invasive stage how. Hematopoietic neoplasms are malignant neoplasms that affect hematopoietic structures (structures associated with blood cell formation) and components of the immune system, including leukemias of the myeloid, lymphoid, or erythroid lineage (with white blood cells (leukocytes) and their precursors in the blood and bone marrow) related), and lymphoma (related to lymphocytes). Solid neoplasms include sarcomas, which are malignant neoplasms derived from connective tissue, such as muscle, cartilage, blood vessels, fibrous tissue, fat, or hard bone. Solid neoplasms also include carcinomas, which are malignant neoplasms arising from epithelial structures, including the outer epithelium (such as the skin and linings of the gastrointestinal tract, lungs, and cervix), and the lining of various glands (such as breast, pancreas, thyroid ) of the inner epithelium. Examples of neoplasms include leukemia and hepatocellular carcinoma, sarcoma, vascular endothelial carcinoma, breast cancer, central nervous system cancers such as astrocytoma, gliosarcoma, neuroblastoma, oligodendroglioma, and glioblastoma cancer), prostate cancer, lung and bronchial cancer, laryngeal cancer, esophageal cancer, colon cancer, colorectal cancer, gastrointestinal cancer, melanoma, ovarian cancer and endometrial cancer, kidney cancer and bladder cancer, liver cancer, endocrine cancer (such as thyroid) and pancreatic cancer. For example, the disease or condition is selected from colon cancer, lung cancer, pancreatic cancer, thyroid cancer, breast cancer and skin cancer. Examples of neoplasms include melanoma, papillary thyroid cancer, colorectal cancer, ovarian cancer, breast cancer, endometrial cancer, liver cancer, sarcoma, gastric cancer, Barrett's adenocarcinoma, glioma (including ependymoma) , lung cancer (including non-small cell lung cancer), head and neck cancer, acute lymphoblastic leukemia, acute myeloid leukemia, non-Hodgkin's lymphoma and hairy cell leukemia.

在一實施例中,呈現上文所提及之造血或實體贅瘤中之一者的患者先前已接受靶向RAS-ERK路徑之抑制劑(包括RTK、RAF、MEK或ERK抑制劑)之治療,但已對該抑制劑產生耐藥性。抑制劑包括標準照護治療,諸如威羅菲尼、達拉非尼、考比替尼(cobimetinib)、曲美替尼(trametinib)、YERVOY、OPDIVO或此等醫藥劑之任何組合。In one embodiment, patients presenting with one of the above-mentioned hematopoietic or solid neoplasms have previously been treated with inhibitors targeting the RAS-ERK pathway, including RTK, RAF, MEK or ERK inhibitors , but resistance to this inhibitor has developed. Inhibitors include standard of care treatments such as vemurafenib, dabrafenib, cobimetinib, trametinib, YERVOY, OPDIVO, or any combination of these pharmaceutical agents.

在一實施例中,待治療之疾病定義為由RAS-ERK傳訊級聯失調所致的發育異常(RAS病:例如努南症候群(Noonan syndrome)、可斯洛症候群(Costello syndrome)、LEOPARD症候群、心─顏面─皮膚症候群(cardiofaciocutaneous syndrome)及肥厚性心肌症)。In one embodiment, the disease to be treated is defined as a developmental abnormality caused by RAS-ERK signaling cascade disorder (RAS disease: such as Noonan syndrome (Noonan syndrome), Costello syndrome (Costello syndrome), LEOPARD syndrome, Cardiofaciocutaneous syndrome and hypertrophic cardiomyopathy).

在一實施例中,待治療之疾病定義為發炎性疾病或免疫系統失調。此類發炎性疾病或免疫系統失調之實例包括發炎性腸道疾病、克羅恩氏病(Crohn's disease)、潰瘍性結腸炎、全身性紅斑性狼瘡(systemic lupus erythematosis;SLE)、風濕性關節炎、多發性硬化症、甲狀腺炎、1型糖尿病、類肉瘤病、牛皮癬、過敏性鼻炎、氣喘病、慢性阻塞性肺病(chronic obstructive pulmonary disease;COPD)。In one embodiment, the disease to be treated is defined as an inflammatory disease or a disorder of the immune system. Examples of such inflammatory diseases or immune system disorders include inflammatory bowel disease, Crohn's disease, ulcerative colitis, systemic lupus erythematosis (SLE), rheumatoid arthritis , multiple sclerosis, thyroiditis, type 1 diabetes, sarcoidosis, psoriasis, allergic rhinitis, asthma, chronic obstructive pulmonary disease (chronic obstructive pulmonary disease; COPD).

在一個實施例中,如本文所定義之化合物為攜帶至少一種突變的RAS或RAF基因型之腫瘤細胞中RAS-ERK信號傳遞及細胞增殖的抑制劑,不誘導或基本上不誘導反常路徑。In one embodiment, a compound as defined herein is an inhibitor of RAS-ERK signaling and cell proliferation in tumor cells carrying at least one mutated RAS or RAF genotype, without inducing or substantially not inducing aberrant pathways.

如本文所用,術語「患者或受試者」係指動物,諸如哺乳動物。因此,受試者可指例如小鼠、大鼠、狗、貓、馬、牛、豬、天竺鼠、包括人類之靈長類動物及其類似者。受試者較佳為人類。As used herein, the term "patient or subject" refers to an animal, such as a mammal. Thus, a subject may refer to, for example, mice, rats, dogs, cats, horses, cows, pigs, guinea pigs, primates including humans, and the like. The subject is preferably a human.

因此,本發明進一步係關於一種治療罹患增殖性疾病或病症(例如RAF突變及/或突變的RAS驅動之癌症)之受試者,諸如人類受試者之方法。方法包括向需要此類治療之受試者投與治療有效量之如本文所定義之化合物。Accordingly, the present invention further relates to a method of treating a subject, such as a human subject, suffering from a proliferative disease or disorder, eg RAF mutation and/or mutated RAS driven cancer. The method comprises administering to a subject in need of such treatment a therapeutically effective amount of a compound as defined herein.

在某些實施例中,本發明提供一種治療受試者之病症(如本文所描述的)的方法,該方法包括向鑑定為有需要之受試者投與本發明之化合物。鑑別需要治療上文所描述之病症的彼等患者完全在熟習此項技術者之能力及知識範圍內。用於鑑別處於罹患可藉由主題方法治療之上述病症之風險下的患者之某些方法在醫學領域為公認的,諸如家族史,以及存在與主題患者之疾病狀態之發展相關的風險因素。熟習此項技術之臨床醫師可藉由使用例如臨床試驗、體檢、病史/家族史及基因測定來容易地鑑別此類候選患者。In certain embodiments, the invention provides a method of treating a condition (as described herein) in a subject comprising administering to a subject identified in need thereof a compound of the invention. It is well within the ability and knowledge of those skilled in the art to identify those patients in need of treatment for the conditions described above. Certain methods for identifying patients at risk of developing the aforementioned conditions treatable by the subject methods are recognized in the medical arts, such as family history, and the presence of risk factors associated with the development of the subject patient's disease state. A clinician skilled in the art can readily identify such candidate patients by using, for example, clinical tests, physical exams, medical/family history, and genetic testing.

評估受試者治療之功效的方法包括藉由此項技術中熟知的方法確定病症之治療前症狀,且隨後向受試者投與治療有效量之本發明化合物。在投與該化合物後的適當時段(例如1週、2週、一個月、六個月)之後,再次確定病症之症狀。病症之症狀及/或生物標記(例如pERK或pMEK)之調節(例如減少)指示治療之功效。在整個治療過程中,可週期性地確定病症之症狀及/或生物標記。舉例而言,可每幾天、幾週或幾個月檢測病症之症狀及/或生物標記以評估治療之進一步功效。病症之症狀及/或生物標記之減少指示治療係有效的。Methods of assessing the efficacy of treatment in a subject include determining pre-treatment symptoms of a disorder by methods well known in the art, and then administering to the subject a therapeutically effective amount of a compound of the invention. Symptoms of the disorder are again determined after an appropriate period of time (eg, 1 week, 2 weeks, one month, six months) after administration of the compound. Modulation (eg, reduction) of a symptom of a disorder and/or a biomarker (eg, pERK or pMEK) is indicative of efficacy of the treatment. Symptoms and/or biomarkers of the disorder can be determined periodically throughout the course of treatment. For example, symptoms and/or biomarkers of a disorder can be detected every few days, weeks or months to assess further efficacy of the treatment. A reduction in symptoms and/or biomarkers of a disorder indicates that the treatment is effective.

在一些實施例中,治療有效量之如本文所定義之化合物可單獨投與患者或以與醫藥學上可接受之載劑、佐劑或媒劑摻合之組成物投與患者。In some embodiments, a therapeutically effective amount of a compound as defined herein may be administered to a patient alone or in a composition in admixture with a pharmaceutically acceptable carrier, adjuvant or vehicle.

表述「醫藥學上可接受之載劑、佐劑或媒劑」及等效表述係指不破壞其與之一起調配之化合物之藥理學活性的無毒載劑、佐劑或媒劑。可用於本揭示案之組成物中之醫藥學上可接受之載劑、佐劑及媒劑包括但不限於:離子交換劑、氧化鋁、硬脂酸鋁、卵磷脂(lecithin)、血清蛋白(諸如人類血清白蛋白)、緩衝物質(諸如磷酸鹽)、甘胺酸、山梨酸、山梨酸鉀、飽和植物脂肪酸之偏甘油酯混合物、水、鹽或電解質(諸如硫酸魚精蛋白(protamine sulfate))、磷酸氫二鈉、磷酸氫鉀、氯化鈉、鋅鹽、膠態二氧化矽、三矽酸鎂、聚乙烯吡咯啶酮、基於纖維素之物質、聚乙二醇、羧甲基纖維素鈉、聚丙烯酸酯、蠟、聚乙烯-聚氧化丙烯嵌段聚合物、聚乙二醇及羊毛脂。The expression "pharmaceutically acceptable carrier, adjuvant or vehicle" and equivalent expressions mean a non-toxic carrier, adjuvant or vehicle which does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants, and vehicles that can be used in the compositions of the present disclosure include, but are not limited to: ion exchangers, aluminum oxide, aluminum stearate, lecithin, serum albumin ( such as human serum albumin), buffer substances (such as phosphate), glycine, sorbic acid, potassium sorbate, mixtures of partial glycerides of saturated vegetable fatty acids, water, salts or electrolytes (such as protamine sulfate ), disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silicon dioxide, magnesium trisilicate, polyvinylpyrrolidone, cellulose-based substances, polyethylene glycol, carboxymethyl cellulose sodium sulfate, polyacrylates, waxes, polyethylene-polyoxypropylene block polymers, polyethylene glycol, and lanolin.

本文所描述之組成物可經口、非經腸、藉由吸入噴霧劑、局部、經直腸、經鼻、經頰或經由植入儲集囊投與。如本文所用,術語「非經腸」包括皮下、靜脈內、肌肉內、關節內、滑膜內、胸骨內、鞘內、肝內、病變內及顱內注射或輸注技術。投與之其他模式亦包括皮內或經皮投與。The compositions described herein can be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally or via an implanted reservoir. As used herein, the term "parenteral" includes subcutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Other modes of administration also include intradermal or transdermal administration.

用於口服投與之液體劑型包括但不限於:醫藥學上可接受之乳液、微乳液、溶液、懸浮液、糖漿及酏劑。除活性化合物之外,液體劑型亦可含有常用於此項技術中之惰性稀釋劑,諸如水或其他溶劑;增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙脂、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油(特定言之,棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚乙二醇以及去水山梨醇之脂肪酸酯,及其混合物。除惰性稀釋劑之外,口服組成物亦可包括佐劑,諸如濕潤劑、乳化劑及懸浮劑、界面活性劑、甜味劑、調味劑及芳香劑。Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. Liquid dosage forms may contain, in addition to the active compound, inert diluents commonly used in the art, such as water or other solvents; solubilizers and emulsifiers, such as ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzene; Methanol, benzyl benzoate, propylene glycol, 1,3-butanediol, dimethylformamide, oils (specifically, cottonseed oil, peanut oil, corn oil, germ oil, olive oil, castor oil, and sesame oil) , glycerin, tetrahydrofurfuryl alcohol, polyethylene glycol and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, surface active agents, sweetening, flavoring, and perfuming agents.

例如無菌可注射水性或油性懸浮液之可注射製劑可使用適合分散劑或濕潤劑及懸浮劑根據已知技術加以調配。無菌可注射製劑亦可為於無毒非經腸可接受之稀釋劑或溶劑中之無菌可注射溶液、懸浮液或乳液,例如呈於1,3-丁二醇中之溶液形式。可採用之可接受之媒劑及溶劑包括水、U.S.P.林格氏溶液(Ringer's solution)及等張氯化鈉溶液。此外,習知地將無菌、非揮發性油用作溶劑或懸浮介質。出於此目的,可使用包括合成單甘油酯或二甘油酯之任何溫和非揮發性油。此外,將諸如油酸之脂肪酸用於製備可注射劑。Injectable preparations such as sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Acceptable vehicles and solvents that may be employed include water, U.S.P. Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

可注射調配物可例如藉由經細菌截留過濾器過濾,或藉由併有呈可在使用之前溶解或分散於無菌水或其他無菌可注射介質中之無菌固體組成物形式之滅菌劑來滅菌。Injectable formulations can be sterilized, for example, by filtration through bacteria-retaining filters, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable media prior to use.

為延長所提供之化合物之作用,常需要減緩化合物自皮下或肌肉內注射之吸收。此可藉由使用水溶性不良之結晶或非晶形物質之液體懸浮液來實現。化合物之吸收速率則取決於其溶解速率,該溶解速率繼而可取決於晶體大小及結晶形式。替代地,藉由將化合物溶解或懸浮於油媒劑中來實現非經腸投與之化合物形式的延遲吸收。可注射儲槽形式係藉由在諸如聚乳酸-聚甘胺酸交酯之生物可降解聚合物中形成化合物之微膠囊基質來製備。視化合物與聚合物之比及所使用特定聚合物之性質而定,可控制化合物釋放速率。In order to prolong the effect of a provided compound, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This can be achieved by using a liquid suspension of poorly water soluble crystalline or amorphous material. The rate of absorption of the compound then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the compound in biodegradable polymers such as polylactide-polyglycide. Depending upon the ratio of compound to polymer, and the nature of the particular polymer employed, the rate of compound release can be controlled.

其他生物可降解聚合物之實例包括聚(原酸酯)及聚(酸酐)。儲槽可注射調配物亦藉由將化合物包埋在與身體組織相容之脂質體或微乳液中來製備。Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions which are compatible with body tissues.

用於經直腸投與之組成物較佳為栓劑,其可藉由將本發明化合物與在環境溫度下為固體但在體溫下為液體,且因此在直腸中融化且釋放活性化合物之適合的非刺激性賦形劑或載劑(諸如可可脂、聚乙二醇或栓劑蠟)混合來製備。Compositions for rectal administration are preferably suppositories, which can be obtained by combining a compound of the present invention with a suitable non-volatile agent that is solid at ambient temperature but liquid at body temperature and therefore melts in the rectum and releases the active compound. Irritant excipients or carriers such as cocoa butter, polyethylene glycol or suppository waxes are mixed to prepare.

用於口服投與之固體劑型包括膠囊、錠劑、丸劑、散劑及顆粒。在此類固體劑型中,活性化合物與以下各者混合:至少一種惰性的醫藥學上可接受之賦形劑或載劑,諸如檸檬酸鈉或磷酸二鈣及/或a)填充劑或增量劑,諸如澱粉、乳糖、蔗糖、葡萄糖、甘露糖醇及矽酸,b)黏合劑,諸如羧甲基纖維素、海藻酸鹽、明膠、聚乙烯吡咯啶酮(PVP)、蔗糖及阿拉伯膠,c)保濕劑,諸如甘油,d)崩解劑,諸如瓊脂、碳酸鈣、馬鈴薯或木薯澱粉、海藻酸、某些矽酸鹽及碳酸鈉,e)溶液阻滯劑,諸如石蠟,f)吸收加速劑,諸如四級銨化合物,g)濕潤劑,諸如鯨蠟醇及單硬脂酸甘油酯,h)吸附劑,諸如高嶺土及膨潤土,及i)潤滑劑,諸如滑石、硬脂酸鈣、硬脂酸鎂、固體聚乙二醇、月桂基硫酸鈉及其混合物。在膠囊、錠劑及丸劑之情況下,劑型亦可包含緩衝劑。Solid dosage forms for oral administration include capsules, lozenges, pills, powders, and granules. In such solid dosage forms, the active compound is admixed with at least one inert pharmaceutically acceptable excipient or carrier, such as sodium citrate or dicalcium phosphate and/or a) a filler or bulking agent agents such as starch, lactose, sucrose, glucose, mannitol and silicic acid, b) binders such as carboxymethylcellulose, alginate, gelatin, polyvinylpyrrolidone (PVP), sucrose and acacia, c) humectants, such as glycerin, d) disintegrants, such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarders, such as paraffin, f) absorption Accelerators, such as quaternary ammonium compounds, g) humectants, such as cetyl alcohol and glyceryl monostearate, h) adsorbents, such as kaolin and bentonite, and i) lubricants, such as talc, calcium stearate, Magnesium stearate, macrogol solid, sodium lauryl sulfate and mixtures thereof. In the case of capsules, lozenges and pills, the dosage form may also comprise buffering agents.

類似類型之固體組成物亦可在使用諸如乳糖(lactose/milk sugar)以及高分子量聚乙二醇及其類似物之此類賦形劑的軟及硬填充明膠膠囊中用作填充劑。錠劑、糖衣錠、膠囊、丸劑及顆粒之固體劑型可用諸如腸溶衣及醫藥調配技術中熟知之其他包衣的包衣及殼衣來製備。其可視情況含有失透劑且亦可具有使其視情況以延遲方式僅在或優先在腸道某一部分中釋放一或多種活性成分之組成。可使用之包埋組成物之實例包括聚合物質及蠟。類似類型之固體組成物亦可在使用諸如乳糖(lactose/milk sugar)以及高分子量聚乙二醇及其類似物之此類賦形劑的軟及硬填充明膠膠囊中用作填充劑。Solid compositions of a similar type can also be used as fillers in soft and hard-filled gelatin capsules using such excipients as lactose (milk sugar) and high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain devitrification agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type can also be used as fillers in soft and hard-filled gelatin capsules using such excipients as lactose (milk sugar) and high molecular weight polyethylene glycols and the like.

組成物亦可呈具有一或多種如上所示之賦形劑之微囊封形式。錠劑、糖衣錠、膠囊、丸劑及顆粒之固體劑型可用諸如腸溶衣、釋放控制包衣及醫藥調配技術中熟知之其他包衣的包衣及殼衣來製備。在此類固體劑型中,活性化合物可與至少一種惰性稀釋劑,諸如蔗糖、乳糖或澱粉摻合。如同正常實踐一般,此類劑型亦可包含除惰性稀釋劑以外之其他物質,例如製錠潤滑劑及其他製錠助劑,諸如硬脂酸鎂及微晶纖維素。在膠囊、錠劑及丸劑之情況下,劑型亦可包含緩衝劑。其可視情況含有失透劑且亦可具有使其視情況以延遲方式僅在或優先在腸道某一部分中釋放一或多種活性成分之組成。可使用之包埋組成物之實例包括聚合物質及蠟。The composition can also be in microencapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also contain substances other than inert diluents, such as tableting lubricants and other tableting aids, such as magnesium stearate and microcrystalline cellulose, as is normal practice. In the case of capsules, lozenges and pills, the dosage form may also comprise buffering agents. They may optionally contain devitrification agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.

用於局部或經皮投與本發明化合物之劑型包括軟膏劑、糊劑、乳膏劑、洗劑、凝膠劑、散劑、溶液、噴霧劑、吸入劑或貼片。活性組分在無菌條件下與醫藥學上可接受之載劑及如可為所需之任何所需防腐劑或緩衝劑摻合。經眼調配物、滴耳劑及滴眼劑亦涵蓋在本發明之範疇內。另外,本發明考慮使用經皮貼片,其具有提供化合物至身體之受控遞送的附加優勢。此類劑型可藉由將化合物溶解或分散於適當介質中來製備。吸收增強劑亦可用於增加化合物穿過皮膚之通量。速率可藉由提供速率控制膜或藉由將化合物分散於聚合物基質或凝膠中加以控制。Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active ingredient is admixed under sterile conditions with a pharmaceutically acceptable carrier and, if desired, any required preservatives or buffers. Ophthalmic formulations, ear drops, and eye drops are also within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of the compound to the body. Such dosage forms can be prepared by dissolving or dispersing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

本文所提供之醫藥學上可接受之組成物亦可藉由經鼻氣霧劑或吸入劑投與。此類組成物係根據醫藥調配技術中熟知之技術製備且可採用苯甲醇或其他適合的防腐劑、增強生物可用性之吸收促進劑、氟碳化合物及/或其他習知溶解劑或分散劑來製備成於鹽水中之溶液。The pharmaceutically acceptable compositions provided herein can also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the pharmaceutical compounding art and may be prepared using benzyl alcohol or other suitable preservatives, absorption enhancers to enhance bioavailability, fluorocarbons and/or other conventional solvents or dispersants into a solution in saline.

本文所提供之醫藥學上可接受之組成物可經調配用於口服投與。此類調配物可與或不與食物一起投與。在一些實施例中,本揭示案之醫藥學上可接受之組成物不與食物一起投與。在其他實施例中,本揭示案之醫藥學上可接受之組成物係與食物一起投與。The pharmaceutically acceptable compositions provided herein can be formulated for oral administration. Such formulations can be administered with or without food. In some embodiments, the pharmaceutically acceptable compositions of the disclosure are administered without food. In other embodiments, the pharmaceutically acceptable compositions of the disclosure are administered with food.

可與載劑物質組合以產生呈單一劑型之組成物之化合物的量將視待治療之患者及特定投與模式而變化。可調配所提供之組成物以使在每天每公斤體重0.01-100 mg之間的劑量之抑制劑可向接受此等組成物之患者投與。The amount of compound that can be combined with a carrier material to produce a composition in a single dosage form will vary depending upon the patient being treated and the particular mode of administration. The provided compositions may be formulated so that doses of between 0.01-100 mg per kilogram body weight per day of the inhibitor can be administered to patients receiving such compositions.

亦應理解,用於任何特定患者之特定劑量及治療方案均取決於多種因素,包括年齡、體重、一般健康狀況、性別、膳食、投與時間、排泄速率、藥物組合、治療醫師之診斷及與增殖性疾病或病症相關之症狀的嚴重性。組成物中所提供之化合物之量亦將取決於組成物中之特定化合物。It is also understood that the particular dosage and treatment regimen for any particular patient will depend on a variety of factors, including age, weight, general health, sex, diet, time of administration, rate of excretion, drug combination, diagnosis of the treating physician, and association with Severity of symptoms associated with a proliferative disease or disorder. The amount of compound provided in the composition will also depend on the particular compound in the composition.

可使用有效治療本文所考慮之症狀或減輕其嚴重性之任何量及任何投與途徑來投與本文所描述之化合物或組成物。所需精確量將在受試者與受試者之間不同,視受試者之物種、年齡及一般狀況;感染之嚴重性;特定藥劑;其投與模式及其類似因素而定。所提供之化合物較佳以單位劑型調配以便於劑量之投與及均一性。如本文所用,表述「單位劑型」係指適於待治療患者之藥劑的實體上分散單元。然而,應理解本揭示案之化合物及組成物之總日劑量將由主治醫師在合理醫學診斷之範疇內決定。A compound or composition described herein may be administered using any amount and any route of administration effective to treat or lessen the severity of a symptom contemplated herein. The precise amount required will vary from subject to subject, depending on the species, age, and general condition of the subject; the severity of the infection; the particular agent; its mode of administration, and the like. Provided compounds are preferably formulated in unit dosage form for ease of administration and uniformity of dosage. As used herein, the expression "unit dosage form" refers to a physically discrete unit of pharmaceutical agent suitable for the patient to be treated. It should be understood, however, that the total daily dosage of the compounds and compositions of the present disclosure will be at the discretion of the attending physician within the scope of sound medical diagnosis.

視所治療感染之嚴重性而定本揭示案之醫藥學上可接受之組成物可向人類及其他動物經口、經直腸、非經腸、腦池內、腹膜內、局部(如藉由散劑、軟膏劑或滴劑)、經頰(以經口或經鼻噴霧劑形式)或以其類似方式投與。在某些實施例中,所提供之化合物可在每天每公斤受試者體重約0.01 mg至約50 mg且較佳約1 mg至約25 mg之劑量下一天一或多次經口或非經腸投與以獲得所要治療效果。Depending on the severity of the infection being treated, the pharmaceutically acceptable compositions of the disclosure can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intraperitoneally, topically (e.g., by powder, ointment or drops), bucally (in the form of an oral or nasal spray), or the like. In certain embodiments, the provided compound can be administered orally or parenterally one or more times a day at a dose of about 0.01 mg to about 50 mg per kilogram of subject body weight per day, and preferably about 1 mg to about 25 mg. Enteral administration is used to obtain the desired therapeutic effect.

應理解,本發明之化合物及組成物之總日劑量將由主治醫師在合理醫學診斷之範疇內決定。以單一劑量或以分劑量向受試者投與之本發明之化合物的總每日抑制劑量可呈例如每公斤體重0.01 mg至50 mg或更通常每公斤體重0.1 mg至25 mg之量。單一劑量組成物可含有此類量或其子倍數以構成每日劑量。在一個實施例中,根據本發明之治療方案包括以單一劑量或多次劑量每天向需要此類治療之患者投與約10 mg至約1000 mg之一或多種本發明之化合物。It is understood that the total daily dosage of the compounds and compositions of this invention will be determined by the attending physician within the scope of sound medical diagnosis. The total daily inhibitory dose of a compound of the invention administered to a subject in a single dose or in divided doses may be, for example, in an amount of 0.01 mg to 50 mg per kilogram body weight, or more usually 0.1 mg to 25 mg per kilogram body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In one embodiment, a treatment regimen according to the invention comprises administering to a patient in need of such treatment from about 10 mg to about 1000 mg of one or more compounds of the invention per day in single or multiple doses.

取決於待治療之疾病或病症,額外治療劑亦可存在於本揭示案之組成物中,或作為劑量方案之一部分單獨投與,例如額外化療劑。可用於與本發明化合物組合之額外治療劑之非限制性實例包括抗增殖化合物,諸如芳香酶抑制劑;抗雌性素;抗雄性素;性釋素促效劑;拓樸異構酶I抑制劑;拓樸異構酶II抑制劑;微管活化劑;烷化劑;類視色素、類胡蘿蔔素、生育酚;環氧化酶抑制劑;MMP抑制劑;抗代謝物質;鉑化合物;甲硫胺酸胺肽酶抑制劑;雙膦酸鹽類;抗增殖抗體;肝素酶抑制劑;Ras致癌同種型抑制劑;端粒酶抑制劑;蛋白酶體抑制劑;用於治療血液學惡性病之化合物;驅動蛋白紡綞體蛋白抑制劑;Hsp90抑制劑;mTOR抑制劑;PI3K抑制劑;Flt-3抑制劑;CDK4/6抑制劑;HER2抑制劑(赫賽汀(Herceptin),曲妥珠單抗(Trastuzumab));EGFR抑制劑(易瑞沙(Iressa)、特羅凱(Tarceva)、來那替尼(Nerlynx)、拉帕替尼(Tykerb)、愛必妥(Erbitux));RAS抑制劑;MEK抑制劑(曲美替尼、貝美替尼(Binimetinib)、考比替尼(Cobimetinib));ERK抑制劑(優立替尼(Ulixertinib));抗PD-1抗體(Opdivo,Keytruda);抗CTLA4抗體(Yervoy);抗腫瘤抗體;亞硝基脲;靶向/降低蛋白質或脂質激酶活性之化合物、靶向/降低蛋白質或脂質磷酸酶活性之化合物,或任何其他抗生成血管化合物。Depending on the disease or condition being treated, additional therapeutic agents may also be present in the compositions of the present disclosure or administered separately as part of a dosage regimen, such as additional chemotherapeutic agents. Non-limiting examples of additional therapeutic agents that may be used in combination with the compounds of the present invention include antiproliferative compounds, such as aromatase inhibitors; antiestrogens; antiandrogens; sex release hormone agonists; topoisomerase I inhibitors ; topoisomerase II inhibitors; microtubule activators; alkylating agents; retinoids, carotenoids, tocopherols; cyclooxygenase inhibitors; MMP inhibitors; antimetabolites; platinum compounds; methionine Aminopeptidase Inhibitors; Bisphosphonates; Antiproliferative Antibodies; Heparanase Inhibitors; Ras Oncogenic Isoform Inhibitors; Telomerase Inhibitors; Proteasome Inhibitors; Compounds for the Treatment of Hematological Malignancies Kinesin spindle protein inhibitors; Hsp90 inhibitors; mTOR inhibitors; PI3K inhibitors; Flt-3 inhibitors; CDK4/6 inhibitors; HER2 inhibitors (Herceptin, trastuzumab (Trastuzumab); EGFR inhibitors (Iressa, Tarceva, Nerlynx, Lapatinib (Tykerb), Erbitux); RAS inhibitors ; MEK inhibitors (trametinib, binimetinib, cobimetinib); ERK inhibitors (ulixertinib); anti-PD-1 antibodies (Opdivo, Keytruda); Anti-CTLA4 antibody (Yervoy); anti-tumor antibody; nitrosourea; compound that targets/reduces protein or lipid kinase activity, compound that targets/reduces protein or lipid phosphatase activity, or any other anti-angiogenic compound.

治療亦可輔以其他治療或干預,諸如手術、放射治療(例如γ輻射、中子束放射治療、電子束放射治療、質子療法、近接治療及全身性放射性同位素)、生物反應調節劑(例如干擾素、介白素、腫瘤壞死因子(tumor necrosis factor;TNF))及用於減輕不良反應之藥劑。Treatment may also be supplemented by other treatments or interventions such as surgery, radiation therapy (eg, gamma radiation, neutron beam radiation therapy, electron beam radiation therapy, proton therapy, brachytherapy, and systemic radioisotopes), biological response modifiers (eg, interfering hormone, interleukin, tumor necrosis factor (tumor necrosis factor; TNF)) and agents for alleviating adverse reactions.

本文對變數之實施例之敘述包括作為任何單一實施例或與任何其他實施例或其部分組合之實施例。本文對實施例之敘述包括作為任何單一實施例或與任何其他實施例或其部分組合之實施例。 實例 The recitation herein of an embodiment of a variant includes that embodiment as any single embodiment or in combination with any other embodiment or portion thereof. The recitation herein of an embodiment includes that embodiment as any single embodiment or in combination with any other embodiment or portion thereof. example

縮寫之清單: Ac:乙醯基 AcOEt:乙酸乙酯 AcOH:乙酸 Ar:芳基 ATCC:美國典型培養物保藏中心 ATP:腺苷三磷酸 BINOL:[1,1'-聯萘]-2,2'-二醇 Boc:三級丁氧基羰基 BOP:六氟磷酸(苯并三唑-1-基氧基)參(二甲基胺基)鏻 br:寬頻帶 BSA:牛血清白蛋白 CCL:癌細胞株 DCE:1,2-二氯乙烷 DCM:二氯甲烷 DIEA (或DIPEA):N,N-二異丙基乙胺(惠寧氏鹼(Huenig’s base)) DME:1,2-二甲氧基乙烷 DMF:N,N-二甲基甲醯胺 DMSO:二甲亞碸 DTT:二硫蘇糖醇 EA:乙酸乙酯 EC 50:半數最大有效濃度 ECL:增強的化學螢光 EDTA:乙二胺四乙酸 Et 2O:二乙醚 EtOH:乙醇 Eu:銪 FBS:胎牛血清 GST:麩胱甘肽S-轉移酶 HATU: O-(7-氮雜苯并三唑-1-基)- N,N,N’,N’,-四甲基脲鎓六氟磷酸鹽 HEPES:4-(2-羥乙基)-1-哌嗪乙磺酸 Het:雜環 Hex:己烷 HRMS:高解析質譜法 HPLC:高效液相層析 HRP:山葵過氧化酶 IC 50:半數最大抑制濃度 IPA或iPrOH:異丙醇 LCMS:液相層析質譜法 MeCN:乙腈 MS:質譜法 NMP:N-甲基吡咯啶酮 NMR:核磁共振 ON:隔夜 PBS:磷酸鹽緩衝鹽水 pERK:磷酸化胞外信號調控激酶 PMB:對甲氧基苄基 PMSF:苯甲基磺醯氟 Rf:滯留因子 RPMI-1640:羅斯威爾公園紀念研究所中等 RT:室溫 SDS:十二烷基硫酸鈉 SDS-PAGE:十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳 SEM:三甲基矽烷基乙氧甲基 SNAr:親核芳族取代 TBST:含0.2% Tween-20之Tris緩衝鹽水 TBTU: O-(苯并三唑-1-基) -N,N,N’,N’-四甲基脲鎓六氟硼酸鹽 TEV:菸草蝕紋病毒蛋白酶 TFA:三氟乙酸 THF:四氫呋喃 TLC:矽膠薄層層析 TR-FRET:時間解析螢光共振能量轉移 Ts:對甲苯磺酸鹽 Y MIN:劑量-活性曲線之最小數據點 List of abbreviations: Ac: Acetyl AcOEt: Ethyl acetate AcOH: Acetate Ar: Aryl ATCC: American Type Culture Collection ATP: Adenosine triphosphate BINOL: [1,1'-binaphthyl]-2,2 '-diol Boc: tertiary butoxycarbonyl BOP: hexafluorophosphate (benzotriazol-1-yloxy)paraffin(dimethylamino)phosphonium br: broadband BSA: bovine serum albumin CCL: Cancer cell line DCE: 1,2-dichloroethane DCM: dichloromethane DIEA (or DIPEA): N,N-diisopropylethylamine (Huenig's base) DME: 1,2- Dimethoxyethane DMF: N,N-Dimethylformamide DMSO: Dimethylsulfide DTT: Dithiothreitol EA: Ethyl acetate EC 50 : Half-Maximum Effective Concentration ECL: Enhanced Chemiluminescence EDTA: Ethylenediaminetetraacetic acid Et2O : Diethyl ether EtOH: Ethanol Eu: Europium FBS: Fetal bovine serum GST: Glutathione S-transferase HATU: O- (7-azabenzotriazole-1- base) -N,N,N',N', -tetramethyluronium hexafluorophosphate HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Het: heterocycle Hex: hexane HRMS: High Resolution Mass Spectrometry HPLC: High Performance Liquid Chromatography HRP: Wasabi Peroxidase IC 50 : Half Maximal Inhibitory Concentration IPA or iPrOH: Isopropanol LCMS: Liquid Chromatography Mass Spectrometry MeCN: Acetonitrile MS: Mass Spectrometry NMP: N-Methylpyrrolidone NMR: Nuclear Magnetic Resonance ON: Overnight PBS: Phosphate Buffered Saline pERK: Phosphorylated Extracellular Signal Regulated Kinase PMB: p-Methoxybenzyl PMSF: Phenylmethylsulfonyl Fluoride Rf: Retention Factor RPMI -1640: Roswell Park Memorial Institute Medium RT: Room Temperature SDS: Sodium Dodecyl Sulfate SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis SEM: Trimethylsilylethoxy Methyl SNAr: nucleophilic aromatic substitution TBST: Tris buffered saline containing 0.2% Tween-20 TBTU: O -(benzotriazol-1-yl) -N,N,N',N' -tetramethylurea Onium hexafluoroborate TEV: Tobacco etch virus protease TFA: Trifluoroacetic acid THF: Tetrahydrofuran TLC: Silica gel thin layer chromatography TR-FRET: Time-resolved fluorescence resonance energy transfer Ts: p-toluenesulfonate Y MIN : Dose- The minimum data point of the activity curve

以下非限制性實例為說明性實施例且不應解釋為進一步限制本發明之範疇。參考附圖將更好地理解此等實例。The following non-limiting examples are illustrative embodiments and should not be construed as further limiting the scope of the invention. Such examples will be better understood with reference to the figures.

下文所闡述之實例提供針對某些例示性化合物獲得之合成及實驗結果。正如熟習此項技術者所熟知的,在需要保護反應組分免受空氣及水分影響之情況下,反應係在惰性氛圍(氮氣或氬氣)中進行。溫度以攝氏溫度(℃)給出。除非另外陳述,否則溶液百分比及比率表示體積與體積之間的關係。以下實例中所用之反應物可如本文所描述獲得,或若本文未描述,則該等反應物本身可商購或可藉由此項技術中已知之方法由可商購材料製備。使用Teledyne Isco Rf Combiflash儀器在254 nm處使用商業正相二氧化矽在二氧化矽(SiO 2)上進行急速層析。質譜分析係使用電灑質譜法記錄。NMR記錄於400 MHz Varian儀器上。 The examples set forth below provide synthetic and experimental results obtained for certain exemplary compounds. Reactions are carried out under an inert atmosphere (nitrogen or argon) where it is necessary to protect the reaction components from air and moisture, as is well known to those skilled in the art. Temperatures are given in degrees Celsius (°C). Solution percentages and ratios express volume-to-volume relationships unless otherwise stated. The reactants used in the following examples can be obtained as described herein or, if not described herein, are commercially available as such or can be prepared from commercially available materials by methods known in the art. Flash chromatography was performed on silica ( Si02 ) using commercial normal phase silica at 254 nm using a Teledyne Isco Rf Combiflash instrument. Mass spectrometry was recorded using electrospray mass spectrometry. NMR was recorded on a 400 MHz Varian instrument.

製備型HPLC係使用Agilent儀器,使用Phenomenex-Kinetex C18 (21×100mm,5 µm)管柱以20 mL/min之流動速率(RT)以及在220 nm及254 nm下UV偵測進行。除非另外陳述,否則移動相由溶劑A (5% MeOH,95%水+0.1%甲酸)及溶劑B (95% MeOH,5%水+0.1%甲酸)組成。如文中所述,在兩種溶劑中偶爾使用0.05% TFA或0.1% AcOH或其他添加劑代替0.1%甲酸作為添加劑。如文中所述,在兩種移動相中亦使用MeCN代替MeOH,以實現更具挑戰性的分離。實例中亦提供了特定的梯度條件,但以下具有代表性:T(0)→T(3 min)等度,視化合物極性而定,使用10%至50%之間的溶劑B,接著12分鐘梯度至100%溶劑B。最後5分鐘使用100%溶劑B。Preparative HPLC was performed using an Agilent instrument using a Phenomenex-Kinetex C18 (21×100 mm, 5 μm) column at a flow rate (RT) of 20 mL/min with UV detection at 220 nm and 254 nm. Unless otherwise stated, the mobile phase consisted of solvent A (5% MeOH, 95% water + 0.1% formic acid) and solvent B (95% MeOH, 5% water + 0.1% formic acid). Occasionally, 0.05% TFA or 0.1% AcOH or other additives were used instead of 0.1% formic acid as additives in both solvents, as described in the text. As described in the text, MeCN was also used instead of MeOH in both mobile phases for more challenging separations. Specific gradient conditions are also given in the examples, but the following are representative: T(0)→T(3 min) isocratic, depending on compound polarity, using between 10% and 50% solvent B, followed by 12 min Gradient to 100% solvent B. Use 100% solvent B for the last 5 minutes.

LCMS分析係在Agilent儀器上進行。液相層析係在220 nm及254 nm下之UV偵測下,以1.5 mL/min之流動速率(RT)在Phenomenex Kinetex C18管柱(2.6 µm;100 Å;3×30 mm)上進行。移動相由溶劑A (95% H 2O / 5% MeOH / 0.1% AcOH)及溶劑B (95% MeOH / 5% H 2O / 0.1% AcOH)組成,使用以下梯度:T(0) 100% A → T(0.5 min) 100% B →等度100% B至T(2 min)。MS偵測係在正及負模式下使用APCI偵測並行進行。 LCMS analysis was performed on an Agilent instrument. Liquid chromatography was performed on a Phenomenex Kinetex C18 column (2.6 µm; 100 Å; 3 x 30 mm) at a flow rate (RT) of 1.5 mL/min with UV detection at 220 nm and 254 nm. The mobile phase consisted of solvent A (95% H 2 O / 5% MeOH / 0.1% AcOH) and solvent B (95% MeOH / 5% H 2 O / 0.1% AcOH) using the following gradient: T(0) 100% A → T(0.5 min) 100% B → isocratic 100% B to T(2 min). MS detection was performed in parallel using APCI detection in positive and negative modes.

除非另外指示,否則本說明書及申請專利範圍中所用之表示成分之量、反應條件、濃度、特性、穩定性等之所有數字應理解為在所有情況下均由術語「約」修飾。至少,應至少根據所報告之有效數位的數目且藉由應用一般捨入技術來理解各數值參數。因此,除非相反地指示,否則在本說明書及隨附申請專利範圍中提出的數值參數為近似值,其可視試圖獲得之特性而變化。儘管闡述實施例之廣泛範疇之數值範圍及參數為近似值,但在特定實例中闡述之數值儘可能精確地報告。然而,任何數值固有地含有由於實驗、測試量測、統計分析等之變化而產生之某些誤差。 實例之合成、生物活性及表徵: Unless otherwise indicated, all numbers expressing amounts of ingredients, reaction conditions, concentrations, properties, stability, etc. used in this specification and claims are to be understood as being modified in all instances by the term "about". At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and the accompanying claims are approximations that may vary depending upon the properties sought to be obtained. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the examples are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors resulting from variation in experimentation, test measurements, statistical analysis, and the like. Synthesis, Biological Activity and Characterization of Examples:

本文所描述之所有化合物係根據表2至5中所示之方法製備。為實例中之每一者提供了質譜及NMR的表徵數據。化合物在生物實驗章節所描述之分析中進行測試。用於報告生物資料之慣例在各別表中以註腳提供。 一般合成方法A: All compounds described herein were prepared according to the methods shown in Tables 2-5. Characterization data from mass spectrometry and NMR are provided for each of the examples. Compounds were tested in the assays described in the Biological Assays section. The conventions used to report biological data are provided as footnotes in the respective tables. General Synthesis Method A:

可商購之2,6-二氟-3-硝基苯甲酸A-1 (流程A)可按照 J. Med.Chem.2003, 46, 1905中所描述之程序經由柯提斯反應(Curtius reaction)轉化為胺甲酸酯A-2。使用氫氣及催化劑(諸如碳上之鈀金屬或碳上之氫氧化鈀(珀爾曼催化劑(Pearlman’s catalyst)))來催化硝基芳烴A-2氫解生成苯胺A-3。苯胺A-3與磺醯化劑(諸如磺醯氯)在有機鹼(諸如可用作溶劑之吡啶)存在下,在有或無催化劑(諸如4-二甲胺基吡啶)之情況下,以及在諸如二氯甲烷或四氫呋喃之額外溶劑存在或不存在下反應生成磺醯胺中間物A-4,該中間物可使用強酸(例如於二噁烷中之無水鹽酸溶液)去保護為苯胺鹽,諸如A-5。替代地,2,6-二氟苯胺A-6可使用諸如乙酸酐之乙醯化劑轉化為其乙醯苯胺A-7且轉化為如WO 2012/101238A1中所描述之單保護二苯胺A-8。磺醯化為磺醯胺A-9係在用於使用磺醯化試劑在諸如吡啶之有機鹼存在下,在有或無諸如4-二甲胺基吡啶之催化劑及諸如二氯甲烷或四氫呋喃之溶劑的情況下將胺甲酸酯A-3轉化為磺醯胺A-4的類似條件下達成。在諸如醇之共溶劑存在下,用鹽酸水溶液處理乙醯苯胺A-9提供苯胺鹽A-5。 流程A

Figure 02_image1172
Commercially available 2,6-difluoro-3-nitrobenzoic acid A-1 (Scheme A) can be reacted via the Curtius reaction according to the procedure described in J. Med. Chem. 2003, 46 , 1905 ) into carbamate A-2. Hydrogenolysis of nitroarenes A-2 to aniline A-3 is catalyzed using hydrogen gas and a catalyst such as palladium metal on carbon or palladium hydroxide on carbon (Pearlman's catalyst). Aniline A-3 with a sulfonylating agent (such as sulfonyl chloride) in the presence of an organic base (such as pyridine, which can be used as a solvent), with or without a catalyst (such as 4-dimethylaminopyridine), and Reaction in the presence or absence of additional solvents such as dichloromethane or tetrahydrofuran leads to the sulfonamide intermediate A-4, which can be deprotected as the aniline salt using a strong acid such as anhydrous hydrochloric acid in dioxane, Such as A-5. Alternatively, 2,6-difluoroaniline A-6 can be converted to its acetaniline A-7 using an acetylating agent such as acetic anhydride and to mono-protected diphenylamine A- as described in WO 2012/101238A1 8. Sulfonylation to sulfonylamide A-9 is used in the presence of an organic base such as pyridine, with or without a catalyst such as 4-dimethylaminopyridine and in the presence of a sulfonylating reagent such as methylene chloride or tetrahydrofuran. The conversion of carbamate A-3 to sulfonamide A-4 is achieved under similar conditions without solvent. Treatment of acetaniline A-9 with aqueous hydrochloric acid in the presence of a co-solvent such as alcohol affords the aniline salt A-5. Process A
Figure 02_image1172

8-氯-2-(甲硫基)嘧啶并嘧啶A-10可商購或可如WO 2012/101238A1中所描述來製備。通式I之抑制劑係按照與WO 2012/101238A1中所描述之程序類似的程序,藉由A-10與苯胺衍生物A-5之間的親核取代製備。通式II之抑制劑係由通式I之抑制劑藉由兩步程序製備,該兩步程序涉及首先將硫甲基一般氧化為相應的甲亞碸及甲碸之混合物,該混合物隨後按照與WO 2012/101238A1中所描述之程序類似的程序與親核劑(例如1°胺或2°胺、醇、苯酚或含NH之雜環等)反應。後一步驟通常係在70℃至140℃範圍內之溫度下在於諸如DMSO或NMP之溶劑中之鹼(例如有機鹼,諸如DIEA、三甲胺、吡啶及類似有機鹼)存在下進行。 一般合成方法B: 8-Chloro-2-(methylthio)pyrimidopyrimidine A-10 is commercially available or can be prepared as described in WO 2012/101238A1. Inhibitors of general formula I were prepared by nucleophilic substitution between A-10 and aniline derivative A-5 following a procedure similar to that described in WO 2012/101238A1. Inhibitors of general formula II are prepared from inhibitors of general formula I by a two-step procedure involving first the oxidation of the thiomethyl group generally to the corresponding formazine and a mixture of formazines which are then followed by A similar procedure to the procedure described in WO 2012/101238A1 reacts with nucleophiles such as 1° amines or 2° amines, alcohols, phenols or NH-containing heterocycles, etc. The latter step is typically carried out in the presence of a base (eg, an organic base such as DIEA, trimethylamine, pyridine, and the like) in a solvent such as DMSO or NMP at a temperature in the range of 70°C to 140°C. General Synthesis Method B:

製備本發明抑制劑之替代方法描述於流程B中。如流程B中所示,中間物A-2 (流程A中所描述且如J. Med.Chem.2003, 46, 1905中所描述來製備)在酸性條件下(含HCl之二噁烷或TFA)藉由胺甲酸酯保護基裂解而轉化為硝基苯胺鹽酸鹽B-1。氯嘧啶并嘧啶A-10 (如流程A (WO 2012/101238A1)中所描述來製備)在與WO 2012/101238A1中所描述的條件類似的條件下,用諸如B-1之苯胺鹽或較佳用苯胺遊離鹼進行親核取代以提供中間物B-2。隨後在酸性條件下,在50℃至100℃範圍內之溫度下,在諸如MeOH、EtOH或EtOAc及類似溶劑之溶劑中,使用此項技術從業人員熟知之方法,諸如氯化錫(II)、鐵粉或鋅粉將中間物B-2之硝基官能基還原為相應苯胺B-3。隨後,如流程A中所描述,在鹼性條件下使用磺醯氯對苯胺B-3進行磺醯化,以提供通式I之抑制劑。隨後,如流程A中所描述,將通式I之抑制劑轉化為通式II之抑制劑。 流程B

Figure 02_image1174
一般合成方法C: An alternative method for preparing the inhibitors of the invention is described in Scheme B. As shown in Scheme B, intermediate A-2 (described in Scheme A and prepared as described in J. Med. Chem. 2003, 46, 1905) was prepared under acidic conditions (HCl in dioxane or TFA ) is converted to nitroaniline hydrochloride B-1 by cleavage of the carbamate protecting group. Chloropyrimidopyrimidine A-10 (prepared as described in Scheme A (WO 2012/101238A1)) was treated with an aniline salt such as B-1 or preferably Nucleophilic substitution with aniline free base affords intermediate B-2. Subsequent methods well known to those skilled in the art, such as tin(II) chloride, Iron powder or zinc powder reduces the nitro functional group of the intermediate B-2 to the corresponding aniline B-3. Subsequent sulfonylation of p-aniline B-3 using sulfonyl chloride under basic conditions as described in Scheme A provides inhibitors of general formula I. Subsequently, inhibitors of general formula I are converted to inhibitors of general formula II as described in Scheme A. Process B
Figure 02_image1174
General Synthesis Method C:

製備具有通式III及IV之本發明抑制劑的替代方法描述於流程C中。如流程C中所示,如流程B中所描述製備之中間物B3可藉由在諸如3°胺(例如三甲胺、DIEA及類似胺)之有機鹼存在下用磺醯氯處理而轉化為氯磺醯苯胺C-1。中間物C-1與1°胺或2°胺(諸如吡咯啶衍生物)反應以提供通式III之抑制劑。隨後,通式IV之抑制劑係藉由兩步程序獲得,該兩步程序涉及將硫甲基氧化為亞碸及碸之混合物,接著與如流程A中所描述之親核劑反應。 流程C

Figure 02_image1176
一般合成方法D: An alternative method of preparing inhibitors of the invention having general formulas III and IV is described in Scheme C. As shown in Scheme C, intermediate B3 prepared as described in Scheme B can be converted to chlorine by treatment with sulfonyl chloride in the presence of an organic base such as a 3° amine (e.g. trimethylamine, DIEA and similar amines) Sulfonylaniline C-1. Reaction of intermediate C-1 with 1° or 2° amines such as pyrrolidine derivatives provides inhibitors of general formula III. Inhibitors of general formula IV are then obtained by a two-step procedure involving oxidation of the thiomethyl group to a mixture of aridine and arridine, followed by reaction with a nucleophile as described in Scheme A. Process C
Figure 02_image1176
General Synthetic Method D:

通式V之抑制劑之實例係按照流程D中所示之順序製備。 流程D

Figure 02_image1178
Examples of inhibitors of general formula V are prepared according to the sequence shown in Scheme D. Process D
Figure 02_image1178

2,4,8-三氯嘧啶并嘧啶D-1係藉由 ACS Med.Chem.Lett.2011, 2, 538中所描述之程序製備且如WO 2010/026262A1中所描述,藉由用氨處理而轉化為4-胺基-2,8-二氯嘧啶并嘧啶D-2。二氯嘧啶并嘧啶D-2在流程A中所描述之一般條件下用通式A-5之苯胺鹽進行區域選擇性親核置換,以提供8-氯嘧啶并嘧啶中間物D-3。氯嘧啶并嘧啶D-3按照與WO 2012/101238A1中所描述之方案類似的方案,藉由親核劑(諸如2°胺或含NH之雜環)進行第二置換,以提供通式V之抑制劑。後一步驟通常在70℃至140℃範圍內之溫度下在於諸如DMSO或NMP之溶劑中之鹼(例如有機鹼,諸如DIEA、三甲胺、吡啶及類似有機鹼)存在下進行。替代地,在銅催化之交叉偶合條件下,在有機配位體(例如外消旋BINOL)及諸如碳酸銫之無機鹼存在下,中間物D-3與諸如2°胺或含NH之雜芳基(例如咪唑、苯并咪唑及類似雜芳基)的親核劑反應。此等反應通常在80℃至140℃範圍內之溫度下,在諸如DMSO或NMP之溶劑中進行。涉及金屬催化過程之將氯嘧啶與此類親核劑偶合之其他方法為熟習此項技術這熟知的且可用於獲得通式V之抑制劑。 一般合成方法E: 2,4,8-Trichloropyrimidopyrimidine D-1 was prepared by the procedure described in ACS Med.Chem.Lett. 2011, 2 , 538 and by treatment with ammonia as described in WO 2010/026262A1 And converted to 4-amino-2,8-dichloropyrimidopyrimidine D-2. Regioselective nucleophilic displacement of the dichloropyrimidopyrimidine D-2 with the aniline salt of general formula A-5 under the general conditions described in Scheme A provides the 8-chloropyrimidopyrimidine intermediate D-3. Chloropyrimidopyrimidine D-3 is second displaced by a nucleophile such as a 2° amine or NH-containing heterocycle following a scheme similar to that described in WO 2012/101238A1 to provide a compound of general formula V Inhibitor. The latter step is usually carried out in the presence of a base (eg organic bases such as DIEA, trimethylamine, pyridine and the like) in a solvent such as DMSO or NMP at a temperature in the range of 70°C to 140°C. Alternatively, intermediate D-3 reacts with a heteroaryl such as a 2° amine or an NH-containing heteroaryl in the presence of an organic ligand (e.g. racemic BINOL) and an inorganic base such as cesium carbonate under copper-catalyzed cross-coupling conditions. Nucleophiles react with groups such as imidazole, benzimidazole, and similar heteroaryls. These reactions are typically carried out in solvents such as DMSO or NMP at temperatures ranging from 80°C to 140°C. Other methods of coupling chloropyrimidines to such nucleophiles involving metal catalyzed processes are well known to those skilled in the art and can be used to obtain inhibitors of general formula V. General Synthetic Method E:

通式VI之抑制劑如流程E中所描述來製備。通式I之中間物首先按照一般方法A或B製備且隨後如一般方法A中所描述的氧化為甲亞碸及甲碸之混合物。隨後按照與WO 2012/101238A1中所描述之方案類似的方案將中間物I與3-吲哚羧酸酯(例如甲酯,X=CH)或3-吲唑羧酸酯(例如甲酯,X=N)偶合。後一步驟通常係在環境溫度至140℃範圍內之溫度下,在於諸如THF、DMSO或NMP之溶劑中的鹼(例如有機或無機鹼,諸如Cs 2CO 3、KOtBu、DIEA、三甲胺、吡啶及類似鹼)存在下進行。使用於水及可混溶有機溶劑(例如甲醇、乙醇、THF、二噁烷及類似溶劑)之混合物中的無機鹼(例如NaOH或KOH)在環境溫度至100℃範圍內之溫度下將酯保護基去保護,接著用礦物質(例如鹽酸或硫酸水溶液)、無機鹽溶液(例如NH 4Cl或KHSO 4水溶液)或有機酸(例如檸檬酸或乙酸水溶液)酸化來提供相應的羧酸中間物E-1。使用標準醯胺偶合試劑(例如TBTU、HATU、DCC、EDC及類似試劑)將中間物E-1與胺偶合,以提供通式VI之醯胺衍生物。 流程E

Figure 02_image1180
一般合成方法F: Inhibitors of general formula VI were prepared as described in Scheme E. Intermediates of general formula I are first prepared according to general method A or B and then oxidized as described in general method A to formazine and a mixture of formazine. Intermediate I was subsequently combined with 3-indole carboxylate (e.g. methyl ester, X=CH) or 3-indazole carboxylate (e.g. methyl ester, X=CH) following a protocol similar to that described in WO 2012/101238A1. =N) coupling. The latter step is typically a base (e.g. an organic or inorganic base such as Cs2CO3 , KOtBu , DIEA, trimethylamine, pyridine) in a solvent such as THF, DMSO or NMP at a temperature in the range from ambient to 140°C. and similar bases). Esters are protected using an inorganic base such as NaOH or KOH in a mixture of water and a miscible organic solvent such as methanol, ethanol, THF, dioxane, and the like at temperatures ranging from ambient to 100°C Group deprotection, followed by acidification with minerals (such as aqueous hydrochloric or sulfuric acid), inorganic salt solutions (such as aqueous NH4Cl or KHSO4 ), or organic acids (such as aqueous citric or acetic acid) afford the corresponding carboxylic acid intermediate E -1. Intermediate E-1 is coupled with amines using standard amide coupling reagents such as TBTU, HATU, DCC, EDC and the like to provide amide derivatives of general formula VI. Process E
Figure 02_image1180
General synthetic method F:

按照流程F中所描述之一般程序,將如按照一般方法A或B所描述製備之硫甲基中間物I在步驟1中氧化為如一般法A中所描述之甲亞碸及甲碸之混合物。各別地,在步驟2中,如 Org.Lett.2011, 13, 3588中所描述來製備2,3-吲哚磺醯氯且在於諸如THF之溶劑中的有機鹼(例如DIEA、三甲胺及類似鹼)存在下與胺縮合,以提供中間物3-吲哚磺醯胺中間物F-1。替代地,將N-甲苯磺醯基保護之吲哚-3-磺醯氯(藉由 Chemical and Pharmaceutical Bulletin2009, 57, 591中所描述之程序製備)在諸如THF之溶劑中且在三級鹼(諸如DIEA或三乙胺)存在下與一級胺或二級胺反應以在用無機鹼水溶液(諸如KOH)處理後移除甲苯磺醯基保護基之後提供中間物磺醯胺F-1。隨後,按照與WO 2012/101238A1中所描述之方案類似的方案,將中間物F-1與來自步驟1之中間物I的氧化混合物縮合。後一步驟通常係在70℃至140℃範圍內之溫度下,在於諸如DMSO或NMP之溶劑中的鹼(例如有機鹼,諸如DIEA、三甲胺、吡啶及類似鹼)存在下進行,以提供通式VII之抑制劑。 流程F

Figure 02_image1182
一般合成方法G: Following the general procedure described in Scheme F, thiomethyl intermediate I, prepared as described in general method A or B, was oxidized in step 1 to a mixture of formazine and formazan as described in general method A . Respectively, in step 2, 2,3-indosulfonyl chloride is prepared as described in Org. Lett. 2011, 13 , 3588 and an organic base (such as DIEA, trimethylamine and Condensation with amine in the presence of similar base) to provide intermediate 3-indolesulfonamide intermediate F-1. Alternatively, N-tosyl-protected indole-3-sulfonyl chloride (prepared by the procedure described in Chemical and Pharmaceutical Bulletin 2009, 57 , 591) in a solvent such as THF and in a tertiary base Reaction with a primary or secondary amine in the presence of (such as DIEA or triethylamine) to provide the intermediate sulfonylamide F-1 after removal of the tosylyl protecting group following treatment with an aqueous inorganic base such as KOH. Subsequently, intermediate F-1 is condensed with the oxidation mixture of intermediate I from step 1 following a protocol analogous to that described in WO 2012/101238 A1. The latter step is usually carried out in the presence of a base (e.g., an organic base such as DIEA, trimethylamine, pyridine, and the like) in a solvent such as DMSO or NMP at a temperature in the range of 70°C to 140°C to provide general Inhibitors of formula VII. Process F
Figure 02_image1182
General synthetic method G:

使用還原劑(諸如九水硫化鈉)將3-吲哚硫氰酸酯G-1 (按照 Phosphorus, Sulfur and Silicon and the Related Elements2014, 189, 1378中所描述之程序製備)還原為相應的硫化物鹽,且在不與烷基鹵化物分離之情況下直接烷基化,以提供硫化物中間物G-2。隨後,使用諸如3-氯過氧苯甲酸之氧化劑將硫化物中間物G-2轉化為碸中間物G-3。隨後,以如所描述之通常方式獲得通用結構VIII之最終抑制劑。 流程G

Figure 02_image1184
一般合成方法H: 3-indole thiocyanate G-1 (prepared according to the procedure described in Phosphorus, Sulfur and Silicon and the Related Elements 2014, 189 , 1378) was reduced to the corresponding sulfide using a reducing agent such as sodium sulfide nonahydrate salt, and direct alkylation without isolation from the alkyl halide to afford the sulfide intermediate G-2. Subsequently, sulfide intermediate G-2 is converted to sulfide intermediate G-3 using an oxidizing agent such as 3-chloroperoxybenzoic acid. Subsequently, the final inhibitor of general structure VIII was obtained in the usual manner as described. Process G
Figure 02_image1184
General synthetic method H:

將可商購之3-氟-2-硝基苯胺H-1之鮮紅色溶液在溶劑(諸如MeCN、DMSO或NMP)中且在無機鹼(諸如碳酸鉀)或有機鹼(諸如DIEA)存在下與一級胺或二級胺反應,以在熱或微波條件下,在40℃至120℃範圍內之溫度下加熱時提供中間物H-2。中間物H-2之硝基的還原可使用諸如Fe或Zn之金屬,在40℃至80℃範圍內之溫度下,在氯化銨存在下,在諸如異丙醇之醇溶劑中達成。隨後,1,2-苯二胺中間物在40℃至80℃範圍內之溫度下用甲酸加熱後直接轉化為所需的苯并咪唑中間物H-3。隨後,在如先前所描述之通常條件下,自中間物苯并咪唑H-3及I獲得通用結構IX之最終抑制劑。 流程H

Figure 02_image1186
一般合成方法I: A bright red solution of commercially available 3-fluoro-2-nitroaniline H-1 in a solvent such as MeCN, DMSO or NMP in the presence of an inorganic base such as potassium carbonate or an organic base such as DIEA Reaction with primary or secondary amines to provide intermediate H-2 upon heating under thermal or microwave conditions at temperatures ranging from 40°C to 120°C. Reduction of the nitro group of intermediate H-2 can be achieved using a metal such as Fe or Zn in the presence of ammonium chloride in an alcoholic solvent such as isopropanol at a temperature in the range of 40°C to 80°C. Subsequently, the 1,2-phenylenediamine intermediate was directly converted to the desired benzimidazole intermediate H-3 after heating with formic acid at temperatures ranging from 40 °C to 80 °C. Subsequently, the final inhibitor of general structure IX was obtained from intermediate benzimidazoles H-3 and I under usual conditions as described previously. Process H
Figure 02_image1186
General Synthetic Method I:

在40℃至80℃範圍內之溫度下,在氯化銨存在下,在諸如異丙醇之醇溶劑中使用諸如Fe或Zn之金屬將如按照一般合成方法H所描述獲得之硝基苯胺H-2還原為1,2-苯二胺I-1。隨後,1,2-苯二胺中間物I-1在酸性條件(例如AcOH)下,在用諸如亞硝酸鈉之無機亞硝酸鹽處理之後轉化為所需的苯并三唑中間物I-2。隨後,通用結構X之最終抑制劑在如先前所描述之條件下自中間物I-2及I獲得。 流程I

Figure 02_image1188
磺醯氯: Nitroaniline H obtained as described following the general synthetic method H using a metal such as Fe or Zn in an alcoholic solvent such as isopropanol in the presence of ammonium chloride at temperatures in the range 40°C to 80°C -2 is reduced to 1,2-phenylenediamine I-1. Subsequently, 1,2-phenylenediamine intermediate I-1 is converted to the desired benzotriazole intermediate I-2 after treatment with an inorganic nitrite such as sodium nitrite under acidic conditions (e.g. AcOH) . Subsequently, the final inhibitor of general structure X was obtained from intermediates 1-2 and I under conditions as previously described. Process I
Figure 02_image1188
Sulfonyl chloride:

以下磺醯氯係自商業來源獲得且按原樣使用:4-甲氧苯磺醯氯、2,4-二氯苯磺醯氯、2,4-二甲苯磺醯氯、2-氯苯磺醯氯、2-甲苯磺醯氯、4-乙苯磺醯氯、2-氰苯磺醯氯、2,4-二甲氧苯磺醯氯、2-三氟甲苯磺醯氯、3-氯苯磺醯氯、3-甲苯磺醯氯、2,3-二氯苯磺醯氯、3-氯-2-甲苯磺醯氯、2-溴苯磺醯氯、2-氯-4-氟苯磺醯氯、2-氯-6-氟苯磺醯氯、2,5-二氯苯磺醯氯、2,5-二甲苯磺醯氯、2-氯-6-甲苯磺醯氯、3-氟-2-甲苯磺醯氯、2-氯-4-甲苯磺醯氯、1,3-苯并二氧呃-5-磺醯氯、2-氯-4-(三氟甲基)-苯磺醯氯、2-甲基-4-硝基苯磺醯氯、2-(二氟甲基)苯磺醯氯。The following sulfonyl chlorides were obtained from commercial sources and used as received: 4-methoxybenzenesulfonyl chloride, 2,4-dichlorobenzenesulfonyl chloride, 2,4-xylenesulfonyl chloride, 2-chlorobenzenesulfonyl chloride Chlorine, 2-toluenesulfonyl chloride, 4-ethylbenzenesulfonyl chloride, 2-cyanobenzenesulfonyl chloride, 2,4-dimethoxybenzenesulfonyl chloride, 2-trifluorotoluenesulfonyl chloride, 3-chlorobenzene Sulfonyl chloride, 3-toluenesulfonyl chloride, 2,3-dichlorobenzenesulfonyl chloride, 3-chloro-2-toluenesulfonyl chloride, 2-bromobenzenesulfonyl chloride, 2-chloro-4-fluorobenzenesulfonyl chloride Acyl chloride, 2-chloro-6-fluorobenzenesulfonyl chloride, 2,5-dichlorobenzenesulfonyl chloride, 2,5-xylenesulfonyl chloride, 2-chloro-6-toluenesulfonyl chloride, 3-fluoro -2-toluenesulfonyl chloride, 2-chloro-4-toluenesulfonyl chloride, 1,3-benzodioxer-5-sulfonyl chloride, 2-chloro-4-(trifluoromethyl)-benzenesulfonyl Acyl chloride, 2-methyl-4-nitrobenzenesulfonyl chloride, 2-(difluoromethyl)benzenesulfonyl chloride.

其他磺醯氯係藉由使用或改編如下文所描述之文獻程序製備。 2-氟-4-甲氧苯磺醯氯:

Figure 02_image1190
Other sulfonyl chlorides were prepared by using or adapting literature procedures as described below. 2-Fluoro-4-methoxybenzenesulfonyl chloride:
Figure 02_image1190

按照EP2752410A1中所描述之程序,將2-氟-4-甲氧基苯胺(1.00 g,7.1 mmol)溶解於乙腈(25 mL)中且添加濃HCl (10 mL)。在冰鹽浴中將混合物冷卻至0℃。隨後按份添加NaNO 2(0.59 g,8.5 mmol)於水(1 mL)中之溶液且將混合物在0℃下攪拌1.5 h (懸浮有少量白色固體之淺褐色溶液)。向所得混合物中添加AcOH (12 mL)且在0℃下攪拌10分鐘之後添加NaHSO 3(7.37g,10當量,71 mmol)。在攪拌5 min之後,添加氯化銅(II) (0.96 g,1當量)及CuCl (70 mg,0.1當量)且將綠色懸浮液在冰浴中攪拌,使溫度在1 h內上升至RT,之後在RT下再攪拌該懸浮液18 h (在2:1己烷/EtOAc中,TLC R f:0.45)。隨後將反應混合物傾入水(100 mL)中且用EtOAc萃取。將萃取物用水洗滌,經MgSO 4乾燥且藉由使用1:1己烷/EA作為溶離劑之矽膠(15 mL)墊過濾。在減壓下移除揮發成分得到1.22 g澄清的淺褐色油狀物(TLC展示在水溶液處理後存在更多極性未鑑別雜質)。 1H NMR (CDCl 3) δ:7.88 (t, J = 8.6 Hz, 1H), 6.76 - 6.93 (m, 2H), 3.93 (s, 3H)。藉由 1H NMR之均勻性為約70%。 Following the procedure described in EP2752410A1, 2-fluoro-4-methoxyaniline (1.00 g, 7.1 mmol) was dissolved in acetonitrile (25 mL) and concentrated HCl (10 mL) was added. The mixture was cooled to 0°C in an ice-salt bath. A solution of NaNO2 (0.59 g, 8.5 mmol) in water (1 mL) was then added in portions and the mixture was stirred at 0 °C for 1.5 h (light brown solution with a small amount of white solid suspended). To the resulting mixture was added AcOH (12 mL) and after stirring at 0° C. for 10 min was added NaHSO 3 (7.37 g, 10 equiv, 71 mmol). After stirring for 5 min, copper(II) chloride (0.96 g, 1 eq) and CuCl (70 mg, 0.1 eq) were added and the green suspension was stirred in an ice bath, allowing the temperature to rise to RT within 1 h, The suspension was then stirred for a further 18 h at RT (TLC Rf in 2:1 Hexane/EtOAc: 0.45). The reaction mixture was then poured into water (100 mL) and extracted with EtOAc. The extract was washed with water, dried over MgSO 4 and filtered through a pad of silica gel (15 mL) using 1:1 hexane/EA as eluent. Removal of volatile components under reduced pressure gave 1.22 g of a clear beige oil (TLC showed more polar unidentified impurities after aqueous workup). 1 H NMR (CDCl 3 ) δ: 7.88 (t, J = 8.6 Hz, 1H), 6.76 - 6.93 (m, 2H), 3.93 (s, 3H). The homogeneity by 1 H NMR is about 70%.

使用類似程序製備以下磺醯氯: 2-氰基-4-氟苯磺醯氯:使用2-氰基-4-氟苯胺作為起始物質製備。粗物質為高度不純的,但成功地用於磺醯化反應中。 4-甲氧基-2-三氟甲苯磺醯氯:使用4-甲氧基-2-三氟甲基苯胺製備: 1H NMR (CDCl 3) δ:8.30 (d, J = 9.0 Hz, 1H), 7.42 (d, J = 2.3 Hz, 1H), 7.19 (dd, J = 9.0, 2.7 Hz, 1H), 3.99 (s, 3H)。 4-氯-2-甲苯磺醯氯:

Figure 02_image1192
The following sulfonyl chlorides were prepared using a similar procedure: 2-Cyano-4-fluorobenzenesulfonyl chloride: Prepared using 2-cyano-4-fluoroaniline as starting material. The crude material was highly impure, but was used successfully in the sulfonylation reaction. 4-Methoxy-2-trifluorotoluenesulfonyl chloride: Prepared from 4-methoxy-2-trifluoromethylaniline: 1 H NMR (CDCl 3 ) δ: 8.30 (d, J = 9.0 Hz, 1H ), 7.42 (d, J = 2.3 Hz, 1H), 7.19 (dd, J = 9.0, 2.7 Hz, 1H), 3.99 (s, 3H). 4-Chloro-2-toluenesulfonyl chloride:
Figure 02_image1192

按照 Acta Crystallographica Section E2009, 65(4), o800中所描述之程序藉由間氯甲苯之氯磺醯化來製備。將間氯甲苯(1 mL)溶解於CHCl 3(4 mL)中且將溶液在冰浴中冷卻。隨著HCl氣體緩慢逸出,歷時15 min逐滴添加氯磺酸(2.5 mL)。在完成之後,使反應混合物升溫至RT。TLC展示無更多的起始物質(在8:2己烷/EA中Rf=0.8)且形成略微落後的新光點(在8:2己烷/EA中Rf=0.7)。將反應混合物傾至冰(50 mL)上,添加DCM (15 mL)且分離產物有機相,用冷水洗滌,乾燥(MgSO 4)且濃縮成無色油狀物(0.87 g),其不經進一步純化即使用: 1H NMR (CDCl 3) δ:8.01 (d, J = 8.6 Hz, 1H), 7.43 (s, 1H), 7.40 (dd, J = 8.6, 2.0 Hz, 1H), 2.78 (s, 3H)。 Prepared by chlorosulfonylation of m-chlorotoluene following the procedure described in Acta Crystallographica Section E 2009, 65 (4), o800. m-Chlorotoluene (1 mL) was dissolved in CHCl 3 (4 mL) and the solution was cooled in an ice bath. Chlorosulfonic acid (2.5 mL) was added dropwise over 15 min as HCl gas slowly evolved. After completion, the reaction mixture was allowed to warm to RT. TLC showed no more starting material (Rf = 0.8 in 8:2 hexanes/EA) and slightly behind new spots (Rf = 0.7 in 8:2 hexanes/EA). The reaction mixture was poured onto ice (50 mL), DCM (15 mL) was added and the product organic phase was separated, washed with cold water, dried (MgSO 4 ) and concentrated to a colorless oil (0.87 g) without further purification Even with: 1 H NMR (CDCl 3 ) δ: 8.01 (d, J = 8.6 Hz, 1H), 7.43 (s, 1H), 7.40 (dd, J = 8.6, 2.0 Hz, 1H), 2.78 (s, 3H ).

使用進行如下所描述之一些修改的類似程序製備以下磺醯氯: 4-甲氧基-2-甲苯磺醯氯:

Figure 02_image1194
The following sulfonyl chlorides were prepared using a similar procedure with some modifications as described below: 4-Methoxy-2-toluenesulfonyl chloride:
Figure 02_image1194

將3-甲氧基甲苯(6.00 g)溶解於CHCl 3(30 mL)中且將溶液冷卻至-35℃ (浴溫)。歷時20 min,逐滴添加氯磺酸(15 mL) (無明顯的HCl/SO 2氣體逸出)。隨後在-30℃至-25℃下攪拌澄清溶液15 min (未注意到氣體逸出)。將反應混合物小心地傾至冰(50 mL)上,添加DCM (50 mL)且分離輕微乳狀的產物有機相,用冷水洗滌,乾燥(MgSO 4)且濃縮成無色油狀物,將其在真空下乾燥(8.28 g,76%產率)。NMR展示存在單一異構物: 1H NMR (CDCl 3) δ:8.01 (d, J = 8.6 Hz, 1H), 6.72 - 6.95 (m, 2H), 3.90 (s, 3H), 2.75 (s, 3H)。 2-氯-4-甲氧苯磺醯氯:

Figure 02_image1196
3-Methoxytoluene (6.00 g) was dissolved in CHCl 3 (30 mL) and the solution was cooled to -35°C (bath temperature). Chlorosulfonic acid (15 mL) was added dropwise over 20 min (no significant HCl/ SO2 gas evolution). The clear solution was then stirred at -30°C to -25°C for 15 min (no gas evolution noted). The reaction mixture was carefully poured onto ice (50 mL), DCM (50 mL) was added and the slightly milky product organic phase was separated, washed with cold water, dried (MgSO 4 ) and concentrated to a colorless oil which was taken up in Dry under vacuum (8.28 g, 76% yield). NMR showed the presence of a single isomer: 1 H NMR (CDCl 3 ) δ: 8.01 (d, J = 8.6 Hz, 1H), 6.72 - 6.95 (m, 2H), 3.90 (s, 3H), 2.75 (s, 3H ). 2-Chloro-4-methoxybenzenesulfonyl chloride:
Figure 02_image1196

將3-氯苯基甲基醚(1.00 g)溶解於CHCl 3(4 mL)中且將溶液冷卻至約-35℃。歷時15 min,逐滴添加於CHCl 3(2 mL)中之氯磺酸(2.5 mL)。在完成之後,TLC (在8:2己烷/EA中SM Rf=0.8)僅偵測出基線物質。一旦將反應混合物升溫至RT,即注意到氣體逸出且藉由TLC (在8:2己烷/EA中Rf=0.30及0.25)注意到異構產物。在RT下攪拌30 min之後,開始形成白色沉澱。將反應混合物傾至冰(50 mL)上,添加DCM (15 mL)且分離有機產物相,用冷水洗滌,乾燥(MgSO 4)且濃縮成無色油狀物,其靜置後結晶為白色針狀物(0.89 g)。 1H NMR展示呈60:40之比的2種異構物之混合物,該等異構物藉由使用8:2己烷/EtOAc作為溶離劑之矽膠上的急速層析分離。所需異構物(更具極性): 1H NMR (CDCl 3) δ:7.90 (d, J = 8.6 Hz, 1H), 7.04 - 7.19 (m, 2H), 4.08 (s, 3H)。 2,3-二甲苯磺醯氯:

Figure 02_image1198
3-Chlorophenylmethyl ether (1.00 g) was dissolved in CHCl3 (4 mL) and the solution was cooled to about -35 °C. Chlorosulfonic acid (2.5 mL) in CHCl3 (2 mL) was added dropwise over 15 min. After completion, only baseline material was detected by TLC (SM Rf = 0.8 in 8:2 hexane/EA). Once the reaction mixture was warmed to RT, gas evolution was noted and isomeric products were noted by TLC (Rf = 0.30 and 0.25 in 8:2 hexanes/EA). After stirring for 30 min at RT, a white precipitate started to form. The reaction mixture was poured onto ice (50 mL), DCM (15 mL) was added and the organic product phase was separated, washed with cold water, dried (MgSO 4 ) and concentrated to a colorless oil which crystallized as white needles on standing material (0.89 g). 1 H NMR showed a mixture of 2 isomers in a 60:40 ratio, which were separated by flash chromatography on silica gel using 8:2 hexane/EtOAc as eluent. Desired isomer (more polar): 1 H NMR (CDCl 3 ) δ: 7.90 (d, J = 8.6 Hz, 1H), 7.04 - 7.19 (m, 2H), 4.08 (s, 3H). 2,3-Dimethylbenzenesulfonyl chloride:
Figure 02_image1198

如WO2003/055478中所描述,在鄰-二甲苯氯磺醯化之後分離為次要異構物。 1H NMR (CDCl 3) δ:7.96 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 2.71 (s, 3H), 2.41 (s, 3H)。 3-氟-2-甲基-4-甲氧苯磺醯氯:

Figure 02_image1200
The minor isomer was isolated after o-xylene chlorosulfonylation as described in WO2003/055478. 1 H NMR (CDCl 3 ) δ: 7.96 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 2.71 (s, 3H ), 2.41 (s, 3H). 3-Fluoro-2-methyl-4-methoxybenzenesulfonyl chloride:
Figure 02_image1200

步驟1:向2-氟-3-甲基苯酚(4.32 mL,39.7 mmol)於丙酮(50 mL)中之溶液中添加碳酸鉀(6.58 g,47.6 mmol),接著添加碘甲烷(2.75 mL,43.7 mmol)。隨後,將反應混合物在60℃下回流隔夜。隨後將反應混合物冷卻至RT,過濾(2×10 mL丙酮用於沖洗)且在減壓下濃縮。將粗產物自水(30 mL)及EtOAc (2×50 mL)中萃取。隨後分離有機層,經Na 2SO 4乾燥,過濾且在減壓下濃縮。殘餘物係藉由使用0至5% EtOAc/己烷之矽膠上的急速層析純化,以得到呈澄清無色液體之2-氟-3-甲苯基甲醚(5.30 g,95%產率): 1H NMR (CDCl 3) δ:6.95 (td, J = 8.0, 1.4 Hz, 1H), 6.85 – 6.71 (m, 2H), 3.87 (s, 3H), 2.28 (d, J = 2.3 Hz, 3H)。 Step 1: To a solution of 2-fluoro-3-methylphenol (4.32 mL, 39.7 mmol) in acetone (50 mL) was added potassium carbonate (6.58 g, 47.6 mmol), followed by iodomethane (2.75 mL, 43.7 mmol). Subsequently, the reaction mixture was refluxed overnight at 60°C. The reaction mixture was then cooled to RT, filtered (2 x 10 mL acetone for rinsing) and concentrated under reduced pressure. The crude product was extracted from water (30 mL) and EtOAc (2 x 50 mL). The organic layer was then separated, dried over Na2SO4 , filtered and concentrated under reduced pressure . The residue was purified by flash chromatography on silica gel using 0 to 5% EtOAc/hexanes to give 2-fluoro-3-tolylmethyl ether (5.30 g, 95% yield) as a clear colorless liquid: 1 H NMR (CDCl 3 ) δ: 6.95 (td, J = 8.0, 1.4 Hz, 1H), 6.85 – 6.71 (m, 2H), 3.87 (s, 3H), 2.28 (d, J = 2.3 Hz, 3H) .

步驟2:歷時5分鐘時段,向來自步驟1之2-氟-3-甲苯基甲醚(1.00 g,7.13 mmol)於DCM (5.6 mL)中之溶液中添加氯磺酸(1.13 mL,16.5 mmol)於DCM (5.6 mL)中之溶液。將含有黏性液體層之淡褐色反應混合物在RT下攪拌10 min,且隨後藉由傾入水(10 mL)及冰(5 g)之混合物中來淬滅。水相用DCM (2×10 mL)萃取,經Na 2SO 4乾燥,過濾且在減壓下濃縮以得到呈無色液體之所需磺醯氯(1.70 g,100%產率)。該物質不經進一步純化即使用: 1H NMR (CDCl 3) δ:7.87 (dd, J = 9.0, 1.8 Hz, 1H), 6.97 – 6.86 (m, 1H), 3.97 (s, 3H), 2.66 (d, J = 2.8 Hz, 3H)。 3-氯-2-甲基-4-甲氧苯磺醯氯:

Figure 02_image1202
Step 2: To a solution of 2-fluoro-3-tolylmethyl ether (1.00 g, 7.13 mmol) from step 1 in DCM (5.6 mL) was added chlorosulfonic acid (1.13 mL, 16.5 mmol) over a period of 5 minutes ) in DCM (5.6 mL). The beige reaction mixture containing a viscous liquid layer was stirred at RT for 10 min and then quenched by pouring into a mixture of water (10 mL) and ice (5 g). The aqueous phase was extracted with DCM (2×10 mL), dried over Na 2 SO 4 , filtered and concentrated under reduced pressure to give the desired sulfonyl chloride (1.70 g, 100% yield) as a colorless liquid. The material was used without further purification: 1 H NMR (CDCl 3 ) δ: 7.87 (dd, J = 9.0, 1.8 Hz, 1H), 6.97 - 6.86 (m, 1H), 3.97 (s, 3H), 2.66 ( d, J = 2.8 Hz, 3H). 3-Chloro-2-methyl-4-methoxybenzenesulfonyl chloride:
Figure 02_image1202

按照與3-氟-2-甲基-4-甲氧苯磺醯氯類似的程序(步驟1),且自2-氯-3-甲基苯酚開始,以定量產率獲得呈無色液體之2-氯-3-甲苯基甲醚: 1H NMR (CDCl 3) δ:7.12 (t, J = 7.9 Hz, 1H), 6.87 – 6.83 (m, 1H), 6.79 (d, J = 8.2 Hz, 1H), 3.89 (s, 3H), 2.38 (s, 3H)。 Following an analogous procedure to 3-fluoro-2-methyl-4-methoxybenzenesulfonyl chloride (step 1), and starting from 2-chloro-3-methylphenol, β-(R) was obtained as a colorless liquid in quantitative yield. 2-Chloro-3-tolyl methyl ether: 1 H NMR (CDCl 3 ) δ: 7.12 (t, J = 7.9 Hz, 1H), 6.87 – 6.83 (m, 1H), 6.79 (d, J = 8.2 Hz, 1H), 3.89 (s, 3H), 2.38 (s, 3H).

如針對3-氟-2-甲基-4-甲氧苯磺醯氯(步驟2)所描述的,用氯磺酸處理以96%產率提供呈無色液體的所需3-氯-2-甲基-4-甲氧苯磺醯氯: 1H NMR (CDCl 3) δ:8.02 (d, J = 9.1 Hz, 1H), 6.90 (d, J = 9.1 Hz, 1H), 4.00 (s, 3H), 2.83 (s, 3H)。 2-乙苯磺醯氯:

Figure 02_image1204
Treatment with chlorosulfonic acid as described for 3-fluoro-2-methyl-4-methoxybenzenesulfonyl chloride (step 2) provided the desired 3-chloro-2- Methyl-4-methoxybenzenesulfonyl chloride: 1 H NMR (CDCl 3 ) δ: 8.02 (d, J = 9.1 Hz, 1H), 6.90 (d, J = 9.1 Hz, 1H), 4.00 (s, 3H ), 2.83 (s, 3H). 2-Ethylbenzenesulfonyl chloride:
Figure 02_image1204

將2-乙苯硫醇(1.46 mL,10.3 mmol)及KCl (776 mg,10.3 mmol)溶解於水(38 mL)中且逐小份添加oxone® (15.8 g,25.8 mmol)。在RT下攪拌1 h之後,藉由LCMS分析認為反應完成且反應混合物用EtOAc (4×5 mL)萃取。將萃取物乾燥(Na 2SO 4)且在減壓下濃縮以得到白色結晶固體(1.43 g,68%產率),其按原樣使用: 1H NMR (CDCl 3) δ:8.07 (dd, J= 8.1, 1.3 Hz, 1H), 7.66 (td, J= 7.6, 1.3 Hz, 1H), 7.49 (d, J= 7.7 Hz, 1H), 7.45 – 7.38 (m, 1H), 3.20 (q, J= 7.5 Hz), 1.36 (t, J= 7.5 Hz)。 3-氟-2-乙苯磺醯氯

Figure 02_image1206
2-Ethylbenzenethiol (1.46 mL, 10.3 mmol) and KCl (776 mg, 10.3 mmol) were dissolved in water (38 mL) and oxone® (15.8 g, 25.8 mmol) was added in small portions. After stirring at RT for 1 h, the reaction was considered complete by LCMS analysis and the reaction mixture was extracted with EtOAc (4 x 5 mL). The extract was dried (Na 2 SO 4 ) and concentrated under reduced pressure to give a white crystalline solid (1.43 g, 68% yield), which was used as received: 1 H NMR (CDCl 3 ) δ: 8.07 (dd, J = 8.1, 1.3 Hz, 1H), 7.66 (td, J = 7.6, 1.3 Hz, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.45 – 7.38 (m, 1H), 3.20 (q, J = 7.5 Hz), 1.36 (t, J = 7.5 Hz). 3-fluoro-2-ethylbenzenesulfonyl chloride
Figure 02_image1206

步驟1:將2-溴-6-氟苯甲醛(6.00 g,29.5 mmol)溶解於無水THF (60 mL)中且在氬氣氛圍下,將溶液冷卻至-78℃。逐滴添加溴化甲鎂(於二乙醚中之3.0 M溶液,13.4 mL,40.3 mmol)且將混合物在-78℃下攪拌30 min。隨後用10%鹽酸(50 mL)淬滅反應且將產物萃取至乙醚(2×50 mL)中。將萃取物乾燥(MgSO 4)且濃縮,且殘餘物藉由使用10%-30% EtOAc/己烷作為溶離劑之矽膠上的Combiflash®純化,以得到呈無色油狀物之所需醇衍生物(6.20 g,96%產率): 1H NMR (CDCl 3) δ:7.35 (ddd, J = 7.9, 3.1, 2.0 Hz, 1H), 7.16 – 6.99 (m, 2H), 5.35 (q, J = 6.7 Hz, 1H), 1.61 (dd, J = 6.8, 1.1 Hz, 3H)。 Step 1: 2-Bromo-6-fluorobenzaldehyde (6.00 g, 29.5 mmol) was dissolved in anhydrous THF (60 mL) and the solution was cooled to -78 °C under argon atmosphere. Methylmagnesium bromide (3.0 M solution in diethyl ether, 13.4 mL, 40.3 mmol) was added dropwise and the mixture was stirred at -78 °C for 30 min. The reaction was then quenched with 10% hydrochloric acid (50 mL) and the product was extracted into diethyl ether (2 x 50 mL). The extract was dried (MgSO 4 ) and concentrated, and the residue was purified by Combiflash® on silica gel using 10%-30% EtOAc/hexane as eluent to give the desired alcohol derivative as a colorless oil (6.20 g, 96% yield): 1 H NMR (CDCl 3 ) δ: 7.35 (ddd, J = 7.9, 3.1, 2.0 Hz, 1H), 7.16 – 6.99 (m, 2H), 5.35 (q, J = 6.7 Hz, 1H), 1.61 (dd, J = 6.8, 1.1 Hz, 3H).

步驟2:將氯化銦(III) (412 mg,1.83 mmol)懸浮於DCM (40 mL)中且添加氯二異丙基矽烷(8.42 mL,49.3 mmol)。添加來自步驟1之於DCM (8 mL)中之醇(4.00 g,18.3 mmol)且將混合物在RT下攪拌3 h,以得到澄清溶液。將反應混合物用水(50 mL)淬滅,用二乙醚(3×20 mL)萃取,用鹽水洗滌且乾燥(MgSO 4)。濃縮且藉由使用己烷作為溶離劑之急速層析純化,以提供起始醇之矽烷化醚。 Step 2: Indium(III) chloride (412 mg, 1.83 mmol) was suspended in DCM (40 mL) and chlorodiisopropylsilane (8.42 mL, 49.3 mmol) was added. Alcohol (4.00 g, 18.3 mmol) from step 1 in DCM (8 mL) was added and the mixture was stirred at RT for 3 h to give a clear solution. The reaction mixture was quenched with water (50 mL), extracted with diethyl ether (3 x 20 mL), washed with brine and dried (MgSO 4 ). Concentration and purification by flash chromatography using hexane as eluent provided the silylated ether of the starting alcohol.

將該物質溶解於DCE (41 mL)中且添加氯二異丙基矽烷(0.78 mL,4.6 mmol)及氯化銦(III) (103 mg,4.6 mmol)。將混合物在80℃下攪拌3 h。在冷卻至環境溫度之後,反應混合物用己烷(100 mL)稀釋,用水(100 mL)洗滌且水相用己烷(2×50 mL)反萃取。將合併的有機相乾燥(Na 2SO 4)且濃縮,以得到無色油狀物,其藉由使用己烷作為溶離劑之矽膠上的急速層析純化以得到呈無色油狀物之2-溴-6-氟-乙苯(3.71 g,100%):1H-NMR (CDCl 3) δ: 7.32 (d, J = 7.8 Hz, 1H), 7.11 – 6.91 (m, 2H), 2.82 (dq, J = 7.5, 2.2 Hz, 2H), 1.20 – 1.15 (m, 3H)。 This material was dissolved in DCE (41 mL) and chlorodiisopropylsilane (0.78 mL, 4.6 mmol) and indium(III) chloride (103 mg, 4.6 mmol) were added. The mixture was stirred at 80 °C for 3 h. After cooling to ambient temperature, the reaction mixture was diluted with hexane (100 mL), washed with water (100 mL) and the aqueous phase was back extracted with hexane (2 x 50 mL). The combined organic phases were dried ( Na2SO4 ) and concentrated to give a colorless oil, which was purified by flash chromatography on silica gel using hexane as eluent to give 2-bromo as a colorless oil -6-Fluoro-ethylbenzene (3.71 g, 100%): 1H-NMR (CDCl 3 ) δ: 7.32 (d, J = 7.8 Hz, 1H), 7.11 – 6.91 (m, 2H), 2.82 (dq, J = 7.5, 2.2 Hz, 2H), 1.20 – 1.15 (m, 3H).

步驟3:將來自步驟2之芳基溴(3.71 g,18.3 mmol)溶解於甲苯(60 mL)中且添加N,N-二異丙基乙胺(6.40 mL,36.5 mmol)。隨後溶液藉由3個抽真空及用氮氣回填之循環脫氣。添加參(二亞苄丙酮)-二鈀(0) (836 mg,0.9 mmol)、4,4-雙(二苯基膦基)-9,9-二甲基二苯并哌喃(1.08 g,1.83 mmol)及2-乙基己基-3-巰丙酸酯(4.59 mL, 19.2 mmol)且將混合物再脫氣兩次,隨後在氮氣氛圍下回流隔夜。隨後將反應混合物冷卻至RT,用水(50 mL)淬滅,且用EtOAc (2×50 mL)萃取。將合併的有機相用10% HCl水溶液(75 mL)洗滌且乾燥(Na 2SO 4)。在減壓下濃縮且藉由使用0-15% EtOAc/己烷作為溶離劑之急速層析純化殘餘物,以得到呈經一些未反應之起始硫醇污染之橙色油狀物的所需硫化物中間物(4.00 g)。此物質按原樣用於下一步驟中。 Step 3: The aryl bromide (3.71 g, 18.3 mmol) from Step 2 was dissolved in toluene (60 mL) and N,N-diisopropylethylamine (6.40 mL, 36.5 mmol) was added. The solution was then degassed by 3 cycles of evacuation and backfilling with nitrogen. Add ginseng(dibenzylideneacetone)-dipalladium(0) (836 mg, 0.9 mmol), 4,4-bis(diphenylphosphino)-9,9-dimethyldibenzopyran (1.08 g , 1.83 mmol) and 2-ethylhexyl-3-mercaptopropionate (4.59 mL, 19.2 mmol) and the mixture was degassed two more times, then refluxed overnight under nitrogen atmosphere. The reaction mixture was then cooled to RT, quenched with water (50 mL), and extracted with EtOAc (2 x 50 mL). The combined organic phases were washed with 10% aqueous HCl (75 mL) and dried (Na 2 SO 4 ). Concentrate under reduced pressure and purify the residue by flash chromatography using 0-15% EtOAc/hexanes as eluent to give the desired thiol as an orange oil contaminated with some unreacted starting thiol Intermediate (4.00 g). This material was used as such in the next step.

步驟4:將來自步驟3之粗硫化物衍生物(4.00 g,假定為11.7 mmol)溶解於THF (41 mL)中且逐滴添加三級丁醇鉀(1.0 M於THF中,14.1 mL,14.1 mmol)。將所得溶液在RT下攪拌1 h。隨後,反應藉由添加飽和NH 4Cl水溶液(40 mL)淬滅且用EtOAc (2×30 mL)萃取。將合併的有機相濃縮且將深橙色殘餘物穿過使用己烷之小矽膠墊來洗滌,以得到硫醇與二硫化物之混合物(1.50 g),其按原樣用於下一步驟中(注意:惡臭)。 Step 4: The crude sulfide derivative from Step 3 (4.00 g, assumed to be 11.7 mmol) was dissolved in THF (41 mL) and potassium tert-butoxide (1.0 M in THF, 14.1 mL, 14.1 mmol). The resulting solution was stirred at RT for 1 h. Then, the reaction was quenched by the addition of saturated aqueous NH 4 Cl (40 mL) and extracted with EtOAc (2×30 mL). The combined organic phases were concentrated and the dark orange residue was washed through a small pad of silica gel with hexane to give a mixture of thiol and disulfide (1.50 g), which was used as such in the next step (note :stench).

步驟5:將來自步驟4之硫酚與二硫化物之粗混合物(1.50 g,假定為9.6 mmol)及KCl (723 mg,9.6 mmol)懸浮於水(40 mL)中且按份添加oxone® (14.8 g,24 mmol)。在RT下攪拌1 h之後,用EtOAc (2×20 mL)萃取反應混合物,並且將萃取物乾燥(Na 2SO 4)且在減壓下濃縮,以得到粗磺醯氯,其按原樣用於製備相應的片段A-5及苯胺A-8 (參見表1)。 3-氯-2-乙苯磺醯氯:

Figure 02_image1208
Step 5: The crude mixture of thiophenols and disulfides from Step 4 (1.50 g, assumed to be 9.6 mmol) and KCl (723 mg, 9.6 mmol) were suspended in water (40 mL) and oxone® was added in portions ( 14.8 g, 24 mmol). After stirring at RT for 1 h, the reaction mixture was extracted with EtOAc (2 x 20 mL), and the extracts were dried (Na 2 SO 4 ) and concentrated under reduced pressure to give crude sulfonyl chloride, which was used as such The corresponding fragment A-5 and aniline A-8 were prepared (see Table 1). 3-Chloro-2-ethylbenzenesulfonyl chloride:
Figure 02_image1208

按照與3-氟-2-乙苯磺醯氯相同的程序,但自2-溴-6-氯苯甲醛開始來製備磺醯氯: 步驟1 (呈白色固體,98%產率): 1H NMR (CDCl 3) δ:7.49 (dd, J= 8.0, 1.2 Hz, 1H), 7.33 (dd, J= 8.0, 1.2 Hz, 1H), 7.05 (t, J= 8.0 Hz, 1H), 5.58 (q, J= 6.9 Hz, 1H), 1.64 (d, J= 6.9 Hz, 3H)。 The sulfonyl chloride was prepared following the same procedure as 3-fluoro-2-ethylbenzenesulfonyl chloride, but starting from 2-bromo-6-chlorobenzaldehyde: Step 1 (white solid, 98% yield): 1 H NMR (CDCl 3 ) δ: 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.33 (dd, J = 8.0, 1.2 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 5.58 (q , J = 6.9 Hz, 1H), 1.64 (d, J = 6.9 Hz, 3H).

步驟2 (呈無色油狀物,100%產率): 1H-NMR (CDCl 3) δ: 7.43 (dd, J= 8.0, 1.2 Hz, 1H), 7.29 (dd, J= 8.0, 1.2 Hz, 1H), 6.96 (t, J= 8.0 Hz, 1H), 2.97 (q, J= 7.5 Hz, 2H), 1.17 (t, J= 7.5 Hz, 3H)。 Step 2 (as colorless oil, 100% yield): 1 H-NMR (CDCl 3 ) δ: 7.43 (dd, J = 8.0, 1.2 Hz, 1H), 7.29 (dd, J = 8.0, 1.2 Hz, 1H), 6.96 (t, J = 8.0 Hz, 1H), 2.97 (q, J = 7.5 Hz, 2H), 1.17 (t, J = 7.5 Hz, 3H).

步驟3 (呈橙色油狀物,81%產率): 1H-NMR (CDCl 3) δ: 7.24 – 7.18 (m, 2H), 7.08 (t, J= 7.9 Hz, 1H), 4.07 – 3.96 (m, 2H), 3.17 (t, J= 7.4 Hz, 2H), 2.96 (q, J= 7.5 Hz, 2H), 2.64 (t, J= 7.4 Hz, 2H), 1.56 (dd, J= 11.9, 5.8 Hz, 2H), 1.40 – 1.21 (m, 9H), 1.16 (t, J= 7.5 Hz, 3H), 0.89 (t, J= 7.4 Hz, 6H)。 Step 3 (orange oil, 81% yield): 1 H-NMR (CDCl 3 ) δ: 7.24 – 7.18 (m, 2H), 7.08 (t, J = 7.9 Hz, 1H), 4.07 – 3.96 ( m, 2H), 3.17 (t, J = 7.4 Hz, 2H), 2.96 (q, J = 7.5 Hz, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.56 (dd, J = 11.9, 5.8 Hz, 2H), 1.40 – 1.21 (m, 9H), 1.16 (t, J = 7.5 Hz, 3H), 0.89 (t, J = 7.4 Hz, 6H).

步驟4 (呈無色液體,99%產率): 1H-NMR (CDCl 3) δ: 7.15 (d, J= 7.9 Hz, 2H), 6.97 – 6.92 (m, 1H), 3.41 (s, 1H), 2.87 (q, J= 7.5 Hz, 2H), 1.18 (t, J= 7.5 Hz, 3H)。 Step 4 (colorless liquid, 99% yield): 1 H-NMR (CDCl 3 ) δ: 7.15 (d, J = 7.9 Hz, 2H), 6.97 – 6.92 (m, 1H), 3.41 (s, 1H) , 2.87 (q, J = 7.5 Hz, 2H), 1.18 (t, J = 7.5 Hz, 3H).

步驟5 (未經進一步純化即使用之粗物質): 1H-NMR (CDCl 3) δ: 8.03 (dd, J= 8.2, 1.3 Hz, 1H), 7.73 (dd, J= 8.0. 1.3 Hz, 1H), 7.37 (t, J= 8.1 Hz, 1H), 3.30 (q, J= 7.4 Hz, 2H), 1.33 (t, J= 7.4 Hz, 3H)。 2-甲基-3-(三氟甲基)苯磺醯氯:

Figure 02_image1210
Step 5 (crude material used without further purification): 1 H-NMR (CDCl 3 ) δ: 8.03 (dd, J = 8.2, 1.3 Hz, 1H), 7.73 (dd, J = 8.0.1.3 Hz, 1H ), 7.37 (t, J = 8.1 Hz, 1H), 3.30 (q, J = 7.4 Hz, 2H), 1.33 (t, J = 7.4 Hz, 3H). 2-Methyl-3-(trifluoromethyl)benzenesulfonyl chloride:
Figure 02_image1210

按照與3-氟-2-乙苯磺醯氯相同的程序,但自可商購之2-甲基-3-(三氟甲基)溴苯開始來製備磺醯氯:The sulfonyl chloride was prepared following the same procedure as for 3-fluoro-2-ethylbenzenesulfonyl chloride, but starting from commercially available 2-methyl-3-(trifluoromethyl)bromobenzene:

步驟3 (呈橙色油狀物,100%產率): 1H-NMR (CDCl 3) δ: 7.49 (d, J= 7.9 Hz, 2H), 7.26 – 7.19 (m, 1H), 4.06 – 4.00 (m, 2H), 3.18 (dd, J= 9.1, 5.6 Hz, 2H), 2.65 (dd, J= 9.2, 5.6 Hz, 2H), 2.50 (d, J= 1.3Hz, 3H), 1.33 – 1.23 (m, 11H), 0.88 (td, J= 7.4, 2.3 Hz, 6H)。 Step 3 (orange oil, 100% yield): 1 H-NMR (CDCl 3 ) δ: 7.49 (d, J = 7.9 Hz, 2H), 7.26 – 7.19 (m, 1H), 4.06 – 4.00 ( m, 2H), 3.18 (dd, J = 9.1, 5.6 Hz, 2H), 2.65 (dd, J = 9.2, 5.6 Hz, 2H), 2.50 (d, J = 1.3Hz, 3H), 1.33 – 1.23 (m , 11H), 0.88 (td, J = 7.4, 2.3 Hz, 6H).

步驟4 (呈無色油狀物,定量產率): 1H-NMR (CDCl 3) δ: 7.43 (dd, J= 7.9, 2.2 Hz, 2H), 7.12 (t, J= 7.8 Hz, 1H), 3.42 (s, 1H), 2.43 (s, 3H)。 Step 4 (as colorless oil, quantitative yield): 1 H-NMR (CDCl 3 ) δ: 7.43 (dd, J = 7.9, 2.2 Hz, 2H), 7.12 (t, J = 7.8 Hz, 1H) , 3.42 (s, 1H), 2.43 (s, 3H).

步驟5 (呈白色固體,定量產率): 1H-NMR (CDCl 3) δ: 8.31 (d, J= 8.1 Hz, 1H), 8.00 (t, J= 7.7 Hz, 1H), 7.55 (dd, J= 15.6, 7.6 Hz, 1H), 2.93 (s, 3H)。 由芳基溴製備磺醯氯之一般程序:

Figure 02_image1212
Step 5 (white solid, quantitative yield): 1 H-NMR (CDCl 3 ) δ: 8.31 (d, J = 8.1 Hz, 1H), 8.00 (t, J = 7.7 Hz, 1H), 7.55 (dd , J = 15.6, 7.6 Hz, 1H), 2.93 (s, 3H). General procedure for the preparation of sulfonyl chlorides from aryl bromides:
Figure 02_image1212

步驟1:將芳基溴1 (1.00 mmol)溶解於甲苯(1.70 mL)中。將混合物用氮氣鼓泡通過溶液來脫氣5 min。添加參(二亞苄丙酮)-二鈀(0) (0.02 mmol)、4,4-雙(二苯基膦基)-9,9-二甲基二苯并哌喃(0.04 mmol)及 N, N-二異丙基乙胺(2.0 mmol)且隨後將混合物再次脫氣5 min。隨後添加苄硫醇(1 mmol)且在回流下加熱所得混合物隔夜(油浴T=115℃)。在完成之後,將反應冷卻至室溫,用EtOAc (20 mL)稀釋且用H 2O (20 mL)淬滅。用EtOAc (2×20 mL)萃取水層。將合併的有機層用鹽水(50.0 mL)洗滌,乾燥(Na 2SO 4),過濾且在減壓下濃縮。粗物質藉由急速層析(0-10% EtOAc/己烷,35 mL/min,產物以100%己烷溶離)進一步純化。收集感興趣的級分且在減壓下濃縮以得到標題化合物2。 Step 1: Aryl bromide 1 (1.00 mmol) was dissolved in toluene (1.70 mL). The mixture was degassed by bubbling nitrogen through the solution for 5 min. Add ginseng(dibenzylideneacetone)-dipalladium(0) (0.02 mmol), 4,4-bis(diphenylphosphino)-9,9-dimethyldibenzopyran (0.04 mmol) and N , N -diisopropylethylamine (2.0 mmol) and then the mixture was degassed again for 5 min. Benzylthiol (1 mmol) was then added and the resulting mixture was heated at reflux overnight (oil bath T=115°C). After completion, the reaction was cooled to room temperature, diluted with EtOAc (20 mL) and quenched with H2O (20 mL). The aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic layers were washed with brine (50.0 mL), dried (Na 2 SO 4 ), filtered and concentrated under reduced pressure. The crude material was further purified by flash chromatography (0-10% EtOAc/hexanes, 35 mL/min, product eluted in 100% hexanes). Fractions of interest were collected and concentrated under reduced pressure to afford the title compound 2.

步驟2:將化合物2 (1.00 mmol)溶解於乙酸(1.90 mL)中且添加H 2O (0.65 mL)以得到非均質溶液。逐份添加 N-氯琥珀醯亞胺(4.00 mmol)。攪拌反應且藉由LCMS監測(樣品用 N-甲基哌嗪淬滅)。在反應完成之後,將混合物在減壓下濃縮。將所得混合物緩慢傾入產生氣體釋放之飽和NaHCO 3水溶液中。將混合物用EtOAc (2×75 mL)萃取。將合併的有機層用鹽水洗滌,乾燥(Na 2SO 4),過濾且在減壓下濃縮。粗化合物藉由正相層析(0-40% EtOAc/己烷,60 mL/min,產物以100%己烷分離)進一步純化。收集感興趣的級分且在減壓下濃縮以得到標題化合物3。 2-氯-3-甲苯磺醯氯:

Figure 02_image1214
Step 2: Compound 2 (1.00 mmol) was dissolved in acetic acid (1.90 mL) and H 2 O (0.65 mL) was added to obtain a heterogeneous solution. N -chlorosuccinimide (4.00 mmol) was added in portions. The reaction was stirred and monitored by LCMS (sample was quenched with N -methylpiperazine). After the reaction was completed, the mixture was concentrated under reduced pressure. The resulting mixture was slowly poured into saturated aqueous NaHCO 3 with gas evolution. The mixture was extracted with EtOAc (2 x 75 mL). The combined organic layers were washed with brine, dried (Na 2 SO 4 ), filtered and concentrated under reduced pressure. The crude compound was further purified by normal phase chromatography (0-40% EtOAc/hexanes, 60 mL/min, product separated on 100% hexanes). Fractions of interest were collected and concentrated under reduced pressure to afford the title compound 3. 2-Chloro-3-toluenesulfonyl chloride:
Figure 02_image1214

磺醯氯係按照自可商購之1-溴-2-氯-3-甲苯開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 1-bromo-2-chloro-3-toluene:

(2-氯-3-甲苯基)苄硫醚:黃色固體,51%產率,95%純度(在220 nm下)。(ES -) M-H =247.2; 1H NMR (400 MHz, CDCl 3) δ 7.39 – 7.35 (m, 2H), 7.33 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H + CDCl 3), 7.11 – 7.03 (m, 3H), 4.15 (s, 2H), 2.38 (s, 3H)。 (2-Chloro-3-methylphenyl)benzylsulfide: yellow solid, 51% yield, 95% purity (at 220 nm). (ES - ) MH =247.2; 1 H NMR (400 MHz, CDCl 3 ) δ 7.39 – 7.35 (m, 2H), 7.33 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H + CDCl 3 ), 7.11 – 7.03 (m, 3H), 4.15 (s, 2H), 2.38 (s, 3H).

2-氯-3-甲苯磺醯氯:淡黃色油狀物,70%產率,60%純度(在254 nm下)。LCMS:將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=288.8) (ES +) M+H = 289.2。用作粗物質。 3-氟-2-(三氟甲基)苯磺醯氯:

Figure 02_image1216
2-Chloro-3-toluenesulfonyl chloride: Pale yellow oil, 70% yield, 60% purity (at 254 nm). LCMS: The LCMS sample was quenched with N -methylpiperazine (resulting sulfonamide MW = 288.8) (ES + ) M+H = 289.2. Used as a crude substance. 3-Fluoro-2-(trifluoromethyl)benzenesulfonyl chloride:
Figure 02_image1216

磺醯氯係按照自可商購之1-溴-3-氟-2-(三氟甲基)苯開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 1-bromo-3-fluoro-2-(trifluoromethyl)benzene:

(3-氟-2-(三氟甲基)苯基)苄硫醚:黃色油狀物,66%產率,98%純度(在254 nm下)。(ES -) M-H = 285.2。 (3-Fluoro-2-(trifluoromethyl)phenyl)benzyl sulfide: yellow oil, 66% yield, 98% purity (at 254 nm). (ES - ) MH = 285.2.

3-氟-2-(三氟甲基)苯磺醯氯:淡黃色油狀物,93%產率,98%純度(在254 nm下)。將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=326.1) (ES +) M+H = 327.1。 3-氯-2-(三氟甲基)苯磺醯氯:

Figure 02_image1218
3-Fluoro-2-(trifluoromethyl)benzenesulfonyl chloride: Pale yellow oil, 93% yield, 98% purity (at 254 nm). The LCMS sample was quenched with N -methylpiperazine (resulting sulfonamide MW = 326.1) (ES + ) M+H = 327.1. 3-Chloro-2-(trifluoromethyl)benzenesulfonyl chloride:
Figure 02_image1218

磺醯氯係按照自可商購之1-溴-3-氯-2-(三氟甲基)苯開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 1-bromo-3-chloro-2-(trifluoromethyl)benzene:

(3-氯-2-(三氟甲基)苯基)苄硫醚:白色固體,59%產率,90%純度(在220 nm下)。(ES -) M-H =301.2; 1H NMR (400 MHz, CDCl 3) δ 7.46 – 7.14 (m, 8H + CDCl 3), 4.16 (s, 2H)。 (3-Chloro-2-(trifluoromethyl)phenyl)benzyl sulfide: white solid, 59% yield, 90% purity (at 220 nm). (ES - ) MH =301.2; 1 H NMR (400 MHz, CDCl 3 ) δ 7.46 - 7.14 (m, 8H + CDCl 3 ), 4.16 (s, 2H).

3-氯-2-(三氟甲基)苯磺醯氯:無色油狀物,66%產率。LCMS:將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=343.5) (ES +) M+H = 343.2。用作粗物質。 3,4-二氟-2-甲苯磺醯氯:

Figure 02_image1220
3-Chloro-2-(trifluoromethyl)benzenesulfonyl chloride: colorless oil, 66% yield. LCMS: The LCMS sample was quenched with N -methylpiperazine (resulting sulfonamide MW = 343.5) (ES + ) M+H = 343.2. Used as a crude substance. 3,4-difluoro-2-toluenesulfonyl chloride:
Figure 02_image1220

磺醯氯係按照自可商購之1-溴-3-氯-2-(三氟甲基)苯開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 1-bromo-3-chloro-2-(trifluoromethyl)benzene:

(3,4-二氯-2-甲苯基)苄硫醚:橙色油狀物,96%產率,96%純度(在254 nm下)。(ES -) M-H = 249.2; 1H NMR (400 MHz, DMSO-d 6) δ 7.32 – 7.17 (m, 7H), 4.16 (s, 2H), 2.18 (d, J = 2.7 Hz, 3H)。3,4-二氟-2-甲苯磺醯氯:淡黃色油狀物,49%產率。LCMS:將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=290.3) (ES +) M+H = 291.2; 1H NMR (400 MHz, DMSO-d 6) δ 7.56 (ddd, J = 8.4, 5.5, 1.8 Hz, 1H), 7.15 (dd, J = 18.4, 8.4 Hz, 1H), 2.46 (d, J = 2.8 Hz, 3H)。 2,4-二甲基-3-氟苯磺醯氯:

Figure 02_image1222
(3,4-Dichloro-2-methylphenyl)benzylsulfide: orange oil, 96% yield, 96% purity (at 254 nm). (ES - ) MH = 249.2; 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.32 – 7.17 (m, 7H), 4.16 (s, 2H), 2.18 (d, J = 2.7 Hz, 3H). 3,4-Difluoro-2-toluenesulfonyl chloride: Pale yellow oil, 49% yield. LCMS: The LCMS sample was quenched with N -methylpiperazine (obtained sulfonamide MW=290.3) (ES + ) M+H = 291.2; 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.56 (ddd, J = 8.4, 5.5, 1.8 Hz, 1H), 7.15 (dd, J = 18.4, 8.4 Hz, 1H), 2.46 (d, J = 2.8 Hz, 3H). 2,4-Dimethyl-3-fluorobenzenesulfonyl chloride:
Figure 02_image1222

磺醯氯係按照自可商購之1-溴-2,4-二甲基-3-氟苯開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 1-bromo-2,4-dimethyl-3-fluorobenzene:

(3-氟-2,4-二甲苯基)苄硫醚:橙色油狀物,95%之粗物質產率,80%純度(在254 nm下),用作粗物質。(3-Fluoro-2,4-xylyl)benzylsulfide: orange oil, 95% yield of crude material, 80% purity (at 254 nm), used as crude material.

3-氟-2,4-二甲基苯-1-磺醯氯:橙色油狀物,89%之粗物質產率,74%純度(在254 nm下)。LCMS:將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=286.4) (ES +) M+H = 287.1。用作粗物質。 2-甲吡啶-3-磺醯氯:

Figure 02_image1224
3-Fluoro-2,4-dimethylbenzene-1-sulfonyl chloride: orange oil, 89% crude yield, 74% purity (at 254 nm). LCMS: The LCMS sample was quenched with N -methylpiperazine (resulting sulfonamide MW = 286.4) (ES + ) M+H = 287.1. Used as a crude substance. 2-picoline-3-sulfonyl chloride:
Figure 02_image1224

磺醯氯係按照自可商購之3-溴-2-甲吡啶開始之一般程序製備:Sulfonyl chloride was prepared following the general procedure starting from commercially available 3-bromo-2-picoline:

3-(苄硫基)-2-甲吡啶:橙色液體,88%產率,94%純度(在220 nm下)。(ES +) M+H =215.8,(ES -) M-H = 214.1。 1H NMR (400 MHz, DMSO-d 6) δ 8.30 (dd, J = 4.9, 1.5 Hz, 1H), 7.57 – 7.45 (m, 1H), 7.31 – 7.27 (m, 5H), 7.07 (dd, J = 7.6, 5.1 Hz, 1H), 4.09 (s, 2H), 2.58 (s, 3H)。 3-(Benzylthio)-2-picoline: orange liquid, 88% yield, 94% purity (at 220 nm). (ES + ) M+H = 215.8, (ES - ) MH = 214.1. 1 H NMR (400 MHz, DMSO-d 6 ) δ 8.30 (dd, J = 4.9, 1.5 Hz, 1H), 7.57 – 7.45 (m, 1H), 7.31 – 7.27 (m, 5H), 7.07 (dd, J = 7.6, 5.1 Hz, 1H), 4.09 (s, 2H), 2.58 (s, 3H).

2-甲吡啶-3-磺醯氯:淡黃色油狀物,100%產率,95%純度(在254 nm下)。將LCMS樣品用H 2O稀釋(所得磺酸MW=173.1) (ES -) M-H = 171.9; 1H NMR (400 MHz, CDCl 3) δ 8.80 (dd, J = 4.8, 1.6 Hz, 1H), 8.33 (dd, J = 8.1, 1.7 Hz, 1H), 7.43 – 7.36 (m, 1H), 3.02 (s, 3H)。 6-甲氧基-4-甲吡啶-3-磺醯氯:

Figure 02_image1226
2-picoline-3-sulfonyl chloride: Pale yellow oil, 100% yield, 95% purity (at 254 nm). The LCMS sample was diluted with H 2 O (obtained sulfonic acid MW=173.1) (ES - ) MH = 171.9; 1 H NMR (400 MHz, CDCl 3 ) δ 8.80 (dd, J = 4.8, 1.6 Hz, 1H), 8.33 (dd, J = 8.1, 1.7 Hz, 1H), 7.43 – 7.36 (m, 1H), 3.02 (s, 3H). 6-Methoxy-4-picoline-3-sulfonyl chloride:
Figure 02_image1226

3-((6-甲氧基-4-甲吡啶-3-基)硫基)丙酸2-乙基己酯(2)之製備:將5-溴-2-甲氧基-4-甲吡啶(6.00 g,29.7 mmol)溶解於甲苯(100 mL)中且添加 N, N-二異丙基乙胺(10.4 mL,59.4 mmol)。將混合物用氮氣鼓泡通過溶液來脫氣5 min。添加參(二亞苄丙酮)二鈀(0) (1.36 g,1.49 mmol)、4,4-雙(二苯基膦基)-9,9-二甲基二苯并哌喃(1.75 g,2.97 mmol)及2-乙基己基-3-巰丙酸酯(7.47 mL,31.2 mmol)。將混合物再次脫氣5 min。在回流下加熱混合物隔夜(油浴T=117℃)。將反應冷卻至室溫,用EtOAc (100 mL)稀釋且用H 2O (100 mL)淬滅。分離有機層與水層,且用EtOAc (2×50.0 mL)萃取水層。將合併的有機層用HCl (10%於H 2O中,50.0 mL)洗滌,乾燥(Na 2SO 4),過濾且在減壓下濃縮。將粗物質藉由急速層析(330 g矽膠柱,EtOAc-己烷,0-20%)純化以得到呈橙色油狀物之標題化合物(10.0 g,99%產率)。(ES +) M+H = 340.2; 1H NMR (400 MHz, CDCl 3) δ 8.19 (s, 1H), 6.64 (s, 1H), 3.99 (dd, J = 5.9, 2.4 Hz, 2H), 3.93 (s, 3H), 2.96 (t, J = 7.3 Hz, 2H), 2.55 (t, J = 7.3 Hz, 2H), 2.42 (d, J = 0.5 Hz, 3H), 1.56 (dt, J = 12.1, 6.0 Hz, 1H), 1.39 – 1.22 (m, 8H), 0.88 (m, 6H)。 Preparation of 2-ethylhexyl 3-((6-methoxy-4-methylpyridin-3-yl)thio)propionate (2): 5-bromo-2-methoxy-4-methyl Pyridine (6.00 g, 29.7 mmol) was dissolved in toluene (100 mL) and N , N -diisopropylethylamine (10.4 mL, 59.4 mmol) was added. The mixture was degassed by bubbling nitrogen through the solution for 5 min. Add ginseng(dibenzylideneacetone)dipalladium(0) (1.36 g, 1.49 mmol), 4,4-bis(diphenylphosphino)-9,9-dimethyldibenzopyran (1.75 g, 2.97 mmol) and 2-ethylhexyl-3-mercaptopropionate (7.47 mL, 31.2 mmol). The mixture was degassed again for 5 min. The mixture was heated at reflux overnight (oil bath T=117°C). The reaction was cooled to room temperature, diluted with EtOAc (100 mL) and quenched with H 2 O (100 mL). The organic and aqueous layers were separated, and the aqueous layer was extracted with EtOAc (2 x 50.0 mL). The combined organic layers were washed with HCl (10% in H 2 O, 50.0 mL), dried (Na 2 SO 4 ), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography (330 g silica gel column, EtOAc-hexanes, 0-20%) to afford the title compound (10.0 g, 99% yield) as an orange oil. (ES + ) M+H = 340.2; 1 H NMR (400 MHz, CDCl 3 ) δ 8.19 (s, 1H), 6.64 (s, 1H), 3.99 (dd, J = 5.9, 2.4 Hz, 2H), 3.93 (s, 3H), 2.96 (t, J = 7.3 Hz, 2H), 2.55 (t, J = 7.3 Hz, 2H), 2.42 (d, J = 0.5 Hz, 3H), 1.56 (dt, J = 12.1, 6.0 Hz, 1H), 1.39 – 1.22 (m, 8H), 0.88 (m, 6H).

6-甲氧基-4-甲吡啶-3-硫醇(3)之製備:向2 (10.0 g,29.5 mmol)於THF (105 mL)中之-78℃溶液中逐滴添加三級丁醇鉀(1.00 M於THF中,35.3 mL,35.3 mmol)且形成沉澱。在-78℃下攪拌所得懸浮液30分鐘。將反應藉由添加NH 4Cl (50.0 mL)來淬滅且混合物用CH 2Cl 2(2×50.0 mL)萃取。將合併的有機層乾燥(Na 2SO 4),過濾且在減壓下濃縮以得到深橙色液體。粗物質藉由急速層析(100%己烷)純化以得到標題化合物與其二硫化物之混合物(4.56 g),其不經進一步純化即用於下一步驟中。LCMS:硫醇3:(ES +) M+H = 156.9及二硫化物:(ES +) M+H = 309.0。 Preparation of 6-methoxy-4-picoline-3-thiol (3): To a -78°C solution of 2 (10.0 g, 29.5 mmol) in THF (105 mL) was added tert-butanol dropwise Potassium (1.00 M in THF, 35.3 mL, 35.3 mmol) and a precipitate formed. The resulting suspension was stirred at -78°C for 30 minutes. The reaction was quenched by the addition of NH 4 Cl (50.0 mL) and the mixture was extracted with CH 2 Cl 2 (2×50.0 mL). The combined organic layers were dried ( Na2SO4 ), filtered and concentrated under reduced pressure to give a dark orange liquid. The crude material was purified by flash chromatography (100% hexanes) to give a mixture of the title compound and its disulfide (4.56 g), which was used in the next step without further purification. LCMS: Thiol 3: (ES + ) M+H = 156.9 and disulfide: (ES + ) M + H = 309.0.

6-甲氧基-4-甲吡啶-3-磺醯氯(4)之製備:向硫醇3 (4.56 g, 29.4 mmol)於H 2O (123 mL)中之混合物中添加氯化鉀(2.21 g,29.3 mmol),接著逐份添加Oxone® (45.2 g,73.5 mmol)。在反應完成之後(1 h),混合物用EtOAc (2×20.0 mL)萃取且將合併的有機層乾燥(Na 2SO 4)並且在減壓下濃縮。所獲得之粗產物未經進一步純化即使用。 3-甲吡啶-4-磺醯氯:

Figure 02_image1228
Preparation of 6-methoxy-4-picoline-3-sulfonyl chloride (4): To a mixture of thiol 3 (4.56 g, 29.4 mmol) in H2O (123 mL) was added potassium chloride ( 2.21 g, 29.3 mmol), followed by the addition of Oxone® (45.2 g, 73.5 mmol) in portions. After completion of the reaction (1 h), the mixture was extracted with EtOAc (2 x 20.0 mL) and the combined organic layers were dried (Na 2 SO 4 ) and concentrated under reduced pressure. The crude product obtained was used without further purification. 3-picoline-4-sulfonyl chloride:
Figure 02_image1228

步驟1:將4-溴吡啶(1.00 mmol)溶解於甲苯(1.70 mL)中且添加N,N-二異丙基乙胺(2.00 mmol)。將混合物用氮氣鼓泡通過溶液來脫氣5 min。添加參(二亞苄丙酮)-二鈀(0) (0.02 mmol)、4,4-雙(二苯基膦基)-9,9-二甲基二苯并哌喃(0.04 mmol)及苯基甲硫醇/苄硫醇(1.00 mmol)。將混合物再次脫氣5 min。在回流下加熱混合物18 h (油浴T=115℃)。將反應冷卻至室溫,用EtOAc (10.0 mL)稀釋且用H 2O (10.0 mL)淬滅。分離水層與有機層且用EtOAc (2×10.0 mL)萃取水層,並且合併的有機相用鹽水HCl (10%於H 2O中,10.0 mL)洗滌,乾燥(Na 2SO 4),過濾且在減壓下濃縮。粗物質藉由急速層析(EtOAc-己烷,10%至35%)純化,以得到硫化物2:(90%產率)。(ES +) M+H = 216.1; 1H NMR (400 MHz, CDCl 3) δ 8.28 (d, J = 4.6, 1H), 8.24 (s, 1H), 7.43 – 7.27 (m, 5H), 7.20 (t, J = 5.4 Hz, 1H), 4.25 (s, 2H), 2.28 (s, 3H)。 Step 1: 4-Bromopyridine (1.00 mmol) was dissolved in toluene (1.70 mL) and N,N-diisopropylethylamine (2.00 mmol) was added. The mixture was degassed by bubbling nitrogen through the solution for 5 min. Add ginseng(dibenzylideneacetone)-dipalladium(0) (0.02 mmol), 4,4-bis(diphenylphosphino)-9,9-dimethyldibenzopyran (0.04 mmol) and benzene Methyl mercaptan/benzyl mercaptan (1.00 mmol). The mixture was degassed again for 5 min. The mixture was heated at reflux for 18 h (oil bath T=115 °C). The reaction was cooled to room temperature, diluted with EtOAc (10.0 mL) and quenched with H2O (10.0 mL). The aqueous and organic layers were separated and the aqueous layer was extracted with EtOAc (2×10.0 mL), and the combined organic phases were washed with brine HCl (10% in H 2 O, 10.0 mL), dried (Na 2 SO 4 ), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography (EtOAc-Hex, 10% to 35%) to afford sulfide 2: (90% yield). (ES + ) M+H = 216.1; 1 H NMR (400 MHz, CDCl 3 ) δ 8.28 (d, J = 4.6, 1H), 8.24 (s, 1H), 7.43 – 7.27 (m, 5H), 7.20 ( t, J = 5.4 Hz, 1H), 4.25 (s, 2H), 2.28 (s, 3H).

步驟2:將化合物2 (1.00 mmol)溶解於CH 2Cl 2(11.5 mL)中且冷卻至-10℃。添加HCl (1.00 M於H 2O中,5.70 mL)且在-10℃下攪拌5 min。歷時10 min添加次氯酸鈉(於水中之10%溶液,3.00 mmol),保持溫度低於0℃。將混合物在0℃下攪拌10 min。分離有機層與水層。乾燥(Na 2SO 4)有機層。粗磺醯氯不經進一步純化或蒸發即用於下一步驟中: 將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=255.3);(ES +) M+H += 256.2。 2,3-二甲吡啶-4-磺醯氯:

Figure 02_image1230
Step 2: Compound 2 ( 1.00 mmol) was dissolved in CH2Cl2 (11.5 mL) and cooled to -10 °C. HCl (1.00 M in H2O , 5.70 mL) was added and stirred at -10 °C for 5 min. Sodium hypochlorite (10% solution in water, 3.00 mmol) was added over 10 min, keeping the temperature below 0 °C. The mixture was stirred at 0 °C for 10 min. The organic and aqueous layers were separated. The organic layer was dried (Na 2 SO 4 ). The crude sulfonyl chloride was used in the next step without further purification or evaporation: the LCMS sample was quenched with N -methylpiperazine (obtained sulfonamide MW = 255.3); (ES + ) M + H + = 256.2 . 2,3-Lutidine-4-sulfonyl chloride:
Figure 02_image1230

自2,3-二甲基-4-溴吡啶開始,使用與3-甲吡啶-4-磺醯氯相同的程序:Starting with 2,3-dimethyl-4-bromopyridine, use the same procedure as for 3-picoline-4-sulfonyl chloride:

步驟1:4-(苄硫基)-2,3-二甲吡啶(2):(92%產率)。LCMS:(ES +) M+H = 230.2; 1H NMR (400 MHz, CDCl 3) δ:8.17 (d, J = 5.5 Hz, 1H), 7.42 – 7.28 (m, 5H), 6.99 (d, J = 5.5 Hz, 1H), 4.18 (s, 2H), 2.53 (s, 3H), 2.24 (s, 3H)。 Step 1: 4-(Benzylthio)-2,3-lutidine (2): (92% yield). LCMS: (ES + ) M+H = 230.2; 1 H NMR (400 MHz, CDCl 3 ) δ: 8.17 (d, J = 5.5 Hz, 1H), 7.42 - 7.28 (m, 5H), 6.99 (d, J = 5.5 Hz, 1H), 4.18 (s, 2H), 2.53 (s, 3H), 2.24 (s, 3H).

步驟2:2,3-二甲吡啶-4-磺醯氯(3):將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=269.3);(ES +) M+H += 270.2。 針對片段B69之受保護磺醯氯:

Figure 02_image1232
Step 2: 2,3-Lutidine-4-sulfonyl chloride (3): Quench the LCMS sample with N -methylpiperazine (obtained sulfonamide MW=269.3); (ES + ) M+H + = 270.2. Protected sulfonyl chloride against fragment B69:
Figure 02_image1232

步驟1:向可商購之胺吡啶(1.00 g,4.27 mmol)及N-苄基胺甲醯氯(0.9421 g,5.5546 mmol)於EtOAc (20 mL)中之溶液中添加20 mL飽和NaHCO 3水溶液。將溶液在RT下攪拌16 h。一旦完成,則將EtOAc添加至反應混合物中且分離有機層,用鹽水洗滌,經MgSO 4乾燥,隨後過濾且濃縮。將殘餘物吸附於SiO 2上,隨後在SiO 2上藉由EtOAc/己烷純化以得到所需的受保護之胺吡啶(1.00 g,2.72 mmol,64%)。 1H NMR (400 MHz, DMSO-d 6) δ:10.35 (s, 1H), 8.09 (d, J= 8.61 Hz, 1H), 7.47 (d, J= 9.00 Hz, 1H), 7.23 - 7.44 (m, 4H), 5.16 (s, 2H), 2.53 (s, 3H) MS m/z369.2 (MH +)。 Step 1: To a solution of commercially available aminopyridine (1.00 g, 4.27 mmol) and N-benzylcarbamoyl chloride (0.9421 g, 5.5546 mmol) in EtOAc (20 mL) was added 20 mL of saturated aqueous NaHCO 3 . The solution was stirred at RT for 16 h. Once complete, EtOAc was added to the reaction mixture and the organic layer was separated, washed with brine, dried over MgSO 4 , then filtered and concentrated. The residue was adsorbed on SiO2 followed by purification on SiO2 by EtOAc/hexanes to give the desired protected aminopyridine (1.00 g, 2.72 mmol, 64%). 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.35 (s, 1H), 8.09 (d, J = 8.61 Hz, 1H), 7.47 (d, J = 9.00 Hz, 1H), 7.23 - 7.44 (m , 4H), 5.16 (s, 2H), 2.53 (s, 3H) MS m/z 369.2 (MH + ).

步驟2:將來自步驟1之碘吡啶(0.61 g,1.66 mmol)、參(二亞苄丙酮)-二鈀(0)氯仿加成物(86 mg,0.0828 mmol)、9,9-二甲基-9h-二苯并哌喃-4,5-二基-雙(二苯膦) (96 mg,0.166 mmol)、DIPEA (0.576 mL,3.31 mmol)及苄硫醇(0.233 mL,1.99 mmol)於甲苯(15 mL)中之脫氣溶液在N 2下在115℃下攪拌3 h。一旦完成,則將SiO 2添加至反應混合物中且在真空下濃縮。將殘餘物在具有EtOAc/己烷之SiO 2管柱上純化以提供預期硫化物(560 mg,93%)。 1H NMR (400 MHz, CDCl 3) δ:7.71 (d, J= 8.61 Hz, 1H), 7.54 (d, J= 8.61 Hz, 1H), 7.46 (br s, 1H), 7.31 - 7.43 (m, 5H), 7.19 - 7.26 (m, 2H), 7.12 - 7.19 (m, 2H), 5.22 (s, 2H), 3.96 (s, 2H), 2.41 (s, 3H)。MS m/z365.2 (MH +)。 Step 2: Iodopyridine (0.61 g, 1.66 mmol) from Step 1, ginseng(dibenzylideneacetone)-dipalladium(0) chloroform adduct (86 mg, 0.0828 mmol), 9,9-dimethyl -9h-dibenzopyran-4,5-diyl-bis(diphenylphosphine) (96 mg, 0.166 mmol), DIPEA (0.576 mL, 3.31 mmol) and benzylthiol (0.233 mL, 1.99 mmol) in A degassed solution in toluene (15 mL) was stirred at 115 °C for 3 h under N2 . Once complete, SiO2 was added to the reaction mixture and concentrated under vacuum. The residue was purified on a SiO 2 column with EtOAc/hexanes to provide the expected sulfide (560 mg, 93%). 1 H NMR (400 MHz, CDCl 3 ) δ: 7.71 (d, J = 8.61 Hz, 1H), 7.54 (d, J = 8.61 Hz, 1H), 7.46 (br s, 1H), 7.31 - 7.43 (m, 5H), 7.19 - 7.26 (m, 2H), 7.12 - 7.19 (m, 2H), 5.22 (s, 2H), 3.96 (s, 2H), 2.41 (s, 3H). MS m/z 365.2 (MH + ).

步驟3:向來自步驟2之硫化物(300 mg,0.823 mmol)於含90% AcOH的水(16 mL)中之溶液中添加N-氯琥珀醯亞胺(330 mg,2.47 mmol)。將反應混合物在室溫下攪拌3小時。將反應混合物蒸發至乾燥,隨後在EtOAc中稀釋且用水洗滌,接著用鹽水洗滌。將有機層經MgSO 4乾燥、過濾且在真空下濃縮,以得到基團B49之所需磺醯氯(282 mg,99%),其按原樣使用: 1H NMR (400 MHz, CDCl 3) δ:8.28 (d, J= 9.00 Hz, 1H), 8.02 (d, J= 9.00 Hz, 1H), 7.72 (br s, H), 7.34 - 7.60 (m, 5H), 5.27 (s, 2H),2.86 (s, 3H)。MS m/z341.2 (MH +)。 2,2-二氟苯并[d][1,3]二氧呃-4-磺醯氯:

Figure 02_image1234
Step 3: To a solution of the sulfide from Step 2 (300 mg, 0.823 mmol) in 90% AcOH in water (16 mL) was added N-chlorosuccinimide (330 mg, 2.47 mmol). The reaction mixture was stirred at room temperature for 3 hours. The reaction mixture was evaporated to dryness then diluted in EtOAc and washed with water followed by brine. The organic layer was dried over MgSO 4 , filtered and concentrated in vacuo to give the desired sulfonyl chloride of group B49 (282 mg, 99%) which was used as received: 1 H NMR (400 MHz, CDCl 3 ) δ : 8.28 (d, J = 9.00 Hz, 1H), 8.02 (d, J = 9.00 Hz, 1H), 7.72 (br s, H), 7.34 - 7.60 (m, 5H), 5.27 (s, 2H), 2.86 (s, 3H). MS m/z 341.2 (MH + ). 2,2-Difluorobenzo[d][1,3]dioxer-4-sulfonyl chloride:
Figure 02_image1234

歷時20 min,將亞硫醯氯(5.96 mL)逐滴添加至水(30 mL)中且將混合物在RT下攪拌48 h,以生成含有二氧化硫之溶液。在一單獨的容器中,將2,2-二氟苯并[ d][1,3]二氧呃-4-胺(1.00 g,5.78 mmol)逐滴添加至冰冷卻之HCl (7 mL)中,以生成白色沉澱。歷時5 min,將亞硝酸鈉(523 mg,7.5 mmol)於水(2 mL)中之溶液逐滴添加至苯胺鹽酸鹽中,以生成橙色反應混合物。隨後,在5℃下將橙色懸浮液逐漸添加至來自上文之二氧化硫溶液中,其中先前已向該二氧化硫溶液中添加10 mg氯化亞銅。將混合物在冰浴中再攪拌2 h (觀測到氣體逸出且橙色液體沉積於燒瓶底部)。在如藉由LCMS分析確定完成之後,將反應混合物用DCM (2×20 mL)萃取、乾燥(Na 2SO 4)、過濾及濃縮,以得到呈橙色油狀物之所需磺醯氯(100%粗物質產率),其未經進一步純化即使用:1H-NMR (400 MHz, CDCl 3) δ 7.65 (dd, J= 8.4, 1.1 Hz, 1H), 7.44 (dd, J= 8.1, 1.1 Hz, 1H), 7.32 (t, J= 8.2 Hz, 1H)。 4-氯-3-氟-2-甲苯磺醯氯:

Figure 02_image1236
Thionyl chloride (5.96 mL) was added dropwise to water (30 mL) over 20 min and the mixture was stirred at RT for 48 h to generate a solution containing sulfur dioxide. In a separate vessel, 2,2-difluorobenzo[ d ][1,3]dioxer-4-amine (1.00 g, 5.78 mmol) was added dropwise to ice-cooled HCl (7 mL) to form a white precipitate. A solution of sodium nitrite (523 mg, 7.5 mmol) in water (2 mL) was added dropwise to the aniline hydrochloride over 5 min to generate an orange reaction mixture. Subsequently, the orange suspension was gradually added at 5°C to the sulfur dioxide solution from above to which 10 mg of cuprous chloride had been added previously. The mixture was stirred for another 2 h in the ice bath (gas evolution was observed and an orange liquid was deposited at the bottom of the flask). After completion as determined by LCMS analysis, the reaction mixture was extracted with DCM (2 x 20 mL), dried (Na 2 SO 4 ), filtered and concentrated to afford the desired sulfonyl chloride (100 % yield of crude material), which was used without further purification: 1H-NMR (400 MHz, CDCl 3 ) δ 7.65 (dd, J = 8.4, 1.1 Hz, 1H), 7.44 (dd, J = 8.1, 1.1 Hz , 1H), 7.32 (t, J = 8.2 Hz, 1H). 4-Chloro-3-fluoro-2-toluenesulfonyl chloride:
Figure 02_image1236

N-(3-氟-2-甲苯基)三甲基乙醯胺(2)之製備:在0℃下,歷時10 min,向3-氟-2-甲苯胺(10.9 mL,93.0 mmol)之THF (240 mL)溶液中添加三乙胺(14.9 mL,106 mmol),接著添加三甲基乙醯氯(13.1 mL,105 mmol)。將混合物升溫至室溫且攪拌2 h。在減壓下蒸發揮發成分且將殘餘物分配於H 2O (250 mL)與EtOAc (150 mL)之間。分離有機層與水層。將水層用EtOAc (4×60 mL)萃取。將合併的有機層用鹽水(60 mL)洗滌、乾燥(Na 2SO 4)且在減壓下濃縮,以得到呈固體之標題化合物2 (18.5 g,95%產率)。(ES +) M+H = 210.2。 Preparation of N- (3-fluoro-2-methylphenyl)trimethylacetamide (2): Add 3-fluoro-2-toluidine (10.9 mL, 93.0 mmol) at 0°C for 10 min To a solution in THF (240 mL) was added triethylamine (14.9 mL, 106 mmol), followed by trimethylacetyl chloride (13.1 mL, 105 mmol). The mixture was warmed to room temperature and stirred for 2 h. The volatile components were evaporated under reduced pressure and the residue was partitioned between H2O (250 mL) and EtOAc (150 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with EtOAc (4 x 60 mL). The combined organic layers were washed with brine (60 mL), dried (Na 2 SO 4 ) and concentrated under reduced pressure to give the title compound 2 (18.5 g, 95% yield) as a solid. (ES + ) M + H = 210.2.

N-(4-氯-3-氟-2-甲苯基)三甲基乙醯胺(3)之製備:在室溫下,歷時10 min,向化合物2 (4.20 g,20.1 mmol)之DMF (50.0 mL)溶液中添加 N-氯琥珀醯亞胺(2.76 g,20.1 mmol) (分3份)。在80℃下,加熱混合物90 min。添加額外 N-氯琥珀醯亞胺(541 mg,4.01 mmol)且在80℃下將其攪拌45 min。將混合物冷卻至室溫且用EtOAc (30 mL)及水(60 mL)稀釋。分離有機層與水層。將水層用EtOAc (3×20 mL)萃取。將合併的有機層用H 2O (3×30 mL)、鹽水(20.0 mL)洗滌,乾燥(Na 2SO 4)且在減壓下濃縮,以得到粗化合物(5.20 g)。將粗物質溶解於環己烷(30 mL)中且在45℃-50℃下加熱直至所有固體均溶解。將溶液冷卻至室溫。過濾出所沉澱之白色固體且用環己烷(3×5 mL)洗滌,以得到呈固體之標題化合物3 (1.95 g,40%產率)。(ES +) M+H = 244.1。 Preparation of N-(4-chloro-3-fluoro-2-tolyl)trimethylacetamide (3): at room temperature, for 10 min, compound 2 (4.20 g, 20.1 mmol) in DMF ( 50.0 mL) solution was added N -chlorosuccinimide (2.76 g, 20.1 mmol) (in 3 portions). The mixture was heated at 80 °C for 90 min. Additional N -chlorosuccinimide (541 mg, 4.01 mmol) was added and it was stirred at 80 °C for 45 min. The mixture was cooled to room temperature and diluted with EtOAc (30 mL) and water (60 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with H 2 O (3×30 mL), brine (20.0 mL), dried (Na 2 SO 4 ) and concentrated under reduced pressure to give crude compound (5.20 g). The crude material was dissolved in cyclohexane (30 mL) and heated at 45°C-50°C until all solids were dissolved. The solution was cooled to room temperature. The precipitated white solid was filtered off and washed with cyclohexane (3 x 5 mL) to give the title compound 3 (1.95 g, 40% yield) as a solid. (ES + ) M + H = 244.1.

4-氯-3-氟-2-甲苯胺(4)之製備:在室溫下,歷時5 min,向化合物3 (1.60 g,6.57 mmol)之二噁烷(18 mL)溶液中添加HCl (6.00 M於水中,23 mL,138 mmol)。在100℃下加熱混合物20 h。將混合物冷卻至室溫。逐份添加固體K 2CO 3(放熱)直至獲得pH=8-9。將混合物用EtOAc (4×20 mL)萃取。將合併的有機層用鹽水(20 mL)洗滌,乾燥(Na 2SO 4)且在減壓下濃縮,以得到1.6 g粗物質,將其在真空下乾燥24 h,以得到呈油狀物之標題化合物4 (850 mg,81%產率)。其不經進一步純化即用於下一反應中。 1H NMR (400 MHz, CDCl 3) δ 6.99 (t, J = 8.3 Hz, 1H), 6.40 (d, J = 8.6 Hz, 1H), 2.22 – 2.06 (m, 3H)。 Preparation of 4-chloro-3-fluoro-2-toluidine (4): To a solution of compound 3 (1.60 g, 6.57 mmol) in dioxane (18 mL) was added HCl ( 6.00 M in water, 23 mL, 138 mmol). The mixture was heated at 100 °C for 20 h. The mixture was cooled to room temperature. Solid K2CO3 was added portionwise ( exotherm ) until pH = 8-9 was obtained. The mixture was extracted with EtOAc (4 x 20 mL). The combined organic layers were washed with brine (20 mL), dried (Na 2 SO 4 ) and concentrated under reduced pressure to give 1.6 g of crude material, which was dried under vacuum for 24 h to give Title compound 4 (850 mg, 81% yield). It was used in the next reaction without further purification. 1 H NMR (400 MHz, CDCl 3 ) δ 6.99 (t, J = 8.3 Hz, 1H), 6.40 (d, J = 8.6 Hz, 1H), 2.22 - 2.06 (m, 3H).

4-氯-3-氟-2-甲苯-1-磺醯氯(5)之製備:在冰冷卻下,歷時20 min,將亞硫醯氯(29.1 mL,395 mmol)逐滴添加至H 2O (92.1 mL)中。將含有二氧化硫之此溶液在0℃下攪拌2 h且在室溫下攪拌18 h。各別地,在0℃下,將HCl (濃) (23 mL)逐份添加至化合物4 (3.00 g, 18.8 mmol)中,以得到米色沉澱。將其在0℃下攪拌5 min。歷時大致10 min,逐滴添加亞硝酸鈉(1.70 g,24.4 mmol)於H 2O (2 mL)中之溶液。在5℃下,歷時40 min,將上文所提及之含有氯化銅(I)之二氧化硫溶液(38.4 mg,376 μmol)逐漸添加至反應混合物中。在冰冷卻下,將混合物進一步攪拌2 h且隨後在室溫下攪拌4天。將混合物用CH 2Cl 2(20 mL)稀釋。分離水層與有機層。用CH 2Cl 2(3×20 mL)萃取水層。將合併的有機層乾燥(Na 2SO 4),過濾且濃縮以得到呈油狀物之粗化合物5 (1.95 g,30%產率,70%純度)。粗物質5未經進一步純化按原樣使用。LCMS:將LCMS樣品用N-甲基哌嗪淬滅(所得磺醯胺MW=306.784);(ES +) M+H = 307.1; 1H NMR (400 MHz, CDCl 3) δ 7.81 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 2.69 (s, 3H)。 3-甲基-2-苯硫基磺醯氯:

Figure 02_image1238
Preparation of 4-chloro-3-fluoro-2-toluene-1-sulfonyl chloride (5): Add thionyl chloride (29.1 mL, 395 mmol) dropwise to H2 under ice cooling over 20 min O (92.1 mL). This solution containing sulfur dioxide was stirred at 0 °C for 2 h and at room temperature for 18 h. Separately, HCl (cone) (23 mL) was added portionwise to compound 4 (3.00 g, 18.8 mmol) at 0°C to give a beige precipitate. It was stirred at 0 °C for 5 min. A solution of sodium nitrite (1.70 g, 24.4 mmol) in H2O (2 mL) was added dropwise over approximately 10 min. The above-mentioned sulfur dioxide solution containing copper(I) chloride (38.4 mg, 376 μmol) was gradually added to the reaction mixture at 5 °C over 40 min. The mixture was further stirred for 2 h under ice cooling and then at room temperature for 4 days. The mixture was diluted with CH2Cl2 (20 mL). The aqueous and organic layers were separated. The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were dried (Na 2 SO 4 ), filtered and concentrated to give crude compound 5 (1.95 g, 30% yield, 70% purity) as an oil. Crude material 5 was used as such without further purification. LCMS: The LCMS sample was quenched with N-methylpiperazine (obtained sulfonamide MW=306.784); (ES + ) M+H = 307.1; 1 H NMR (400 MHz, CDCl 3 ) δ 7.81 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 2.69 (s, 3H). 3-Methyl-2-phenylthiosulfonyl chloride:
Figure 02_image1238

如美國專利3,991,081中所描述,藉由3-甲基噻吩之氯磺醯化來製備。 1H NMR (CDCl 3) δ:7.67 (d, J = 5.1 Hz, 1H), 7.03 (d, J = 5.1 Hz, 1H), 2.63 (s, 3H)。 3-氯-2-苯硫基磺醯氯:

Figure 02_image1240
Prepared by chlorosulfonylation of 3-methylthiophene as described in US Patent 3,991,081. 1 H NMR (CDCl 3 ) δ: 7.67 (d, J = 5.1 Hz, 1H), 7.03 (d, J = 5.1 Hz, 1H), 2.63 (s, 3H). 3-Chloro-2-phenylthiosulfonyl chloride:
Figure 02_image1240

將3-氯噻吩(1.00 g)溶解於CHCl 3(10 mL)中且將溶液冷卻至-30℃。歷時5 min,逐滴添加氯磺酸(2.4 mL) (無明顯的氣體逸出)。隨後,攪拌該橙褐色溶液30 min,再經歷30 min使溫度上升至-10℃,隨後上升至RT。隨後,在RT下攪拌反應混合物2 h (未發現氣體逸出,且TLC顯示產物形成(在8:2己烷/EA中Rf=0.4))。將反應混合物傾至冰(50 mL)上,添加DCM (25 mL)且分離乳狀產物有機相,用冷水洗滌,乾燥(MgSO 4)且濃縮成黃色油狀物(0.55 g),將其在真空下乾燥且不經進一步純化即使用。 1H NMR (CDCl 3) δ:7.76 (d, J = 5.7 Hz, 1H), 7.16 (d, J = 5.7 Hz, 1H)。 4-氯-3-甲噻吩-2-磺醯氯:

Figure 02_image1242
3-Chlorothiophene (1.00 g) was dissolved in CHCl3 (10 mL) and the solution was cooled to -30 °C. Chlorosulfonic acid (2.4 mL) was added dropwise over 5 min (no significant gas evolution). Subsequently, the orange-brown solution was stirred for 30 min and the temperature was allowed to rise to -10 °C over 30 min and then to RT. Subsequently, the reaction mixture was stirred at RT for 2 h (no gas evolution was found and TLC showed product formation (Rf=0.4 in 8:2 hexane/EA)). The reaction mixture was poured onto ice (50 mL), DCM (25 mL) was added and the milky organic phase was separated, washed with cold water, dried (MgSO 4 ) and concentrated to a yellow oil (0.55 g), which was taken up in Dry under vacuum and use without further purification. 1 H NMR (CDCl 3 ) δ: 7.76 (d, J = 5.7 Hz, 1H), 7.16 (d, J = 5.7 Hz, 1H). 4-Chloro-3-methylthiophene-2-sulfonyl chloride:
Figure 02_image1242

3-氯-4-甲噻吩之製備:在100 mL燒瓶中,在室溫下,將氯化銅(I) (5.76 g, 56.5 mmol)添加至含3-溴-4-甲噻吩(3.16 mL,28.2 mmol)之DMF (20.1 mL)中。將其在油浴中在160℃下加熱24 h。將粗物質傾於H 2O (50 mL)上。在室溫下攪拌所得混合物10 min。過濾所形成的褐綠色固體,用水(3×10.0 mL)及Et 2O (4×10.0 mL)洗滌。將濾液用Et 2O (3×25.0 mL)萃取。將合併的有機層用H 2O (2×20.0 mL)、鹽水(20.0 mL)洗滌,乾燥(Na 2SO 4)且在減壓下濃縮,以得到橙色油狀物(0.890 g,59%粗物質產率)。 1H NMR (400 MHz, CDCl 3) δ 7.09 (d, J = 3.5 Hz, 1H), 6.99 – 6.95 (m, 1H), 2.22 – 2.21 (m, 3H)。 Preparation of 3-chloro-4-methylthiophene: In a 100 mL flask, copper(I) chloride (5.76 g, 56.5 mmol) was added to 3-bromo-4-methylthiophene (3.16 mL , 28.2 mmol) in DMF (20.1 mL). It was heated at 160 °C in an oil bath for 24 h. The crude material was poured onto H2O (50 mL). The resulting mixture was stirred at room temperature for 10 min. The resulting brown-green solid was filtered, washed with water (3 x 10.0 mL) and Et2O (4 x 10.0 mL). The filtrate was extracted with Et2O (3 x 25.0 mL). The combined organic layers were washed with H 2 O (2×20.0 mL), brine (20.0 mL), dried (Na 2 SO 4 ) and concentrated under reduced pressure to give an orange oil (0.890 g, 59% crude material yield). 1 H NMR (400 MHz, CDCl 3 ) δ 7.09 (d, J = 3.5 Hz, 1H), 6.99 – 6.95 (m, 1H), 2.22 – 2.21 (m, 3H).

4-氯-3-甲噻吩-2-磺醯氯之製備:將3-氯-4-甲噻吩(1.00 g,7.54 mmol)溶解於CHCl 3(4.43 mL)中,且在室溫下,歷時5 min,添加氯磺酸(1.19 mL,17.3 mmol)於CHCl 3(1.48 mL)中之溶液。攪拌混合物10 min。向反應混合物中添加五氯化磷(4.13 g,18.9 mmol),接著添加CHCl 3(7.50 mL)。將其在50℃下加熱1 h。將反應混合物緩慢添加至NaHCO 3水溶液+冰(30 mL)中。將其攪拌10 min。用CH 2Cl 2(4×10 mL)萃取。將合併的有機層乾燥(Na 2SO 4),在減壓下濃縮以得到呈油狀物之標題化合物(1.30 g,30%產率,40%純度)。其不經進一步純化即用於下一反應中。LCMS:將LCMS樣品用N-甲基哌嗪淬滅;(ES +) M+H = 295.1; 1H NMR (400 MHz, CDCl 3) δ 7.57 (s, 1H), 2.57 (s, 3H)。 3,4-二氯噻吩-2-磺醯氯:

Figure 02_image1244
Preparation of 4-chloro-3-methylthiophene-2-sulfonyl chloride: 3-chloro-4-methylthiophene (1.00 g, 7.54 mmol) was dissolved in CHCl 3 (4.43 mL), and at room temperature, for After 5 min, a solution of chlorosulfonic acid (1.19 mL, 17.3 mmol) in CHCl3 (1.48 mL) was added. The mixture was stirred for 10 min. Phosphorus pentachloride (4.13 g, 18.9 mmol) was added to the reaction mixture followed by CHCl 3 (7.50 mL). It was heated at 50 °C for 1 h. The reaction mixture was slowly added to aqueous NaHCO 3 + ice (30 mL). It was stirred for 10 min. Extract with CH2Cl2 (4 x 10 mL). The combined organic layers were dried (Na 2 SO 4 ), concentrated under reduced pressure to give the title compound (1.30 g, 30% yield, 40% purity) as an oil. It was used in the next reaction without further purification. LCMS: LCMS sample was quenched with N-methylpiperazine; (ES + ) M+H = 295.1; 1 H NMR (400 MHz, CDCl 3 ) δ 7.57 (s, 1H), 2.57 (s, 3H). 3,4-Dichlorothiophene-2-sulfonyl chloride:
Figure 02_image1244

3,4-二氯噻吩之製備:在100 mL燒瓶中,在室溫下,將氯化銅(I) (13.9 g,137 mmol)添加至含3,4-二溴噻吩(5.03 mL,45.5 mmol)之DMF (32 mL)中。將其在油浴中在160℃下加熱24 h。將粗物質傾於H 2O (100 mL)上且用Et 2O (60 mL)稀釋。將混合物在室溫下攪拌10 min。過濾所形成的褐綠色固體,用H 2O (3×20 mL)洗滌,隨後用Et 2O (4×20 mL)洗滌。將濾液用Et 2O (4×30 mL)萃取。將合併的有機層用H 2O (2×30 mL)、鹽水(30 mL)洗滌,乾燥(MgSO 4)且在減壓下濃縮,以得到呈紅色油狀物之標題化合物2 (5.50 g,79%產率)。 1H NMR (400 MHz, CDCl 3) δ 7.21 (s, 2H)。 Preparation of 3,4-dichlorothiophene: In a 100 mL flask, copper(I) chloride (13.9 g, 137 mmol) was added to 3,4-dibromothiophene (5.03 mL, 45.5 mmol) in DMF (32 mL). It was heated at 160 °C in an oil bath for 24 h. The crude material was poured on H2O (100 mL) and diluted with Et2O (60 mL). The mixture was stirred at room temperature for 10 min. The resulting brown-green solid was filtered, washed with H2O (3 x 20 mL), followed by Et2O (4 x 20 mL). The filtrate was extracted with Et 2 O (4×30 mL). The combined organic layers were washed with H 2 O (2×30 mL), brine (30 mL), dried (MgSO 4 ) and concentrated under reduced pressure to give the title compound 2 as a red oil (5.50 g, 79% yield). 1 H NMR (400 MHz, CDCl 3 ) δ 7.21 (s, 2H).

3,4-二氯噻吩-2-磺醯氯之製備:歷時5 min,向化合物2 (1.61 g,10.5 mmol)之CHCl 3(5.98 mL)溶液中添加氯磺酸(757 µL,11.0 mmol)於CHCl 3(2 mL)中之溶液。將混合物在室溫下攪拌20 min。將五氯化磷(5.77 g,26.3 mmol)分4份添加至混合物中。將混合物在50℃下加熱18 h。在減壓下移除揮發成分,且將殘餘物溶解於CH 2Cl 2(25 mL)中,用飽和NaHCO 3水溶液(3×15 mL)、H 2O (3×10 mL)及鹽水(10 mL)洗滌。將有機層乾燥(Na 2SO 4)且在減壓下濃縮,以得到標題化合物3 (2.32 g,88%產率)。LCMS:將LCMS樣品用 N-甲基哌嗪淬滅(所得磺醯胺MW=315.240);(ES +) M+H = 315.1。 (3 R)-3-甲氧基1-吡咯啶磺醯氯:

Figure 02_image1246
Preparation of 3,4-dichlorothiophene-2-sulfonyl chloride: To a solution of compound 2 (1.61 g, 10.5 mmol) in CHCl 3 (5.98 mL) was added chlorosulfonic acid (757 µL, 11.0 mmol) over 5 min Solution in CHCl3 (2 mL). The mixture was stirred at room temperature for 20 min. Phosphorus pentachloride (5.77 g, 26.3 mmol) was added to the mixture in 4 portions. The mixture was heated at 50 °C for 18 h. The volatile components were removed under reduced pressure, and the residue was dissolved in CH 2 Cl 2 (25 mL), washed with saturated aqueous NaHCO 3 (3×15 mL), H 2 O (3×10 mL), and brine (10 mL) for washing. The organic layer was dried (Na 2 SO 4 ) and concentrated under reduced pressure to give the title compound 3 (2.32 g, 88% yield). LCMS: LCMS sample was quenched with N -methylpiperazine (resulting sulfonamide MW = 315.240); (ES + ) M+H = 315.1. (3 R )-3-methoxyl-1-pyrrolidinesulfonyl chloride:
Figure 02_image1246

按照美國專利申請案US 2011/0311474A1中所描述之程序,將( R)-3-甲氧基吡咯啶鹽酸鹽(0.30 g,2.1 mmol)懸浮於4 mL甲苯及2 mL DCM之混合物中。添加三乙胺(0.64 mL,4.6 mmol)且對混合物進行音波處理4-5 min,以得到細白色懸浮液。在單獨的燒瓶中,將4 mL甲苯在乙腈/乾冰浴中冷卻至-40℃。添加硫醯氯(0.71 mL,8.7 mmol)且將溶液攪拌5 min。隨後,歷時10 min,將吡咯啶懸浮液逐滴添加至冷(-40℃)硫醯氯溶液中。使所得懸浮液在相同的溫度下攪拌1小時且隨後使其升溫至室溫。濾出固體且用甲苯沖洗。濃縮濾液以得到400 mg呈淡褐色油狀物之所需產無(0.40 g),其未經進一步純化即使用。 1H NMR (CDCl 3) δ:4.07 (tt, J = 4.6, 2.1 Hz, 1H), 3.48 - 3.69 (m, 4H), 3.36 (s, 3H), 2.12 - 2.23 (m, 1H), 1.98 - 2.12 (m, 1H)。 (3 S)-3-甲氧基1-吡咯啶磺醯氯:

Figure 02_image1248
( R )-3-Methoxypyrrolidine hydrochloride (0.30 g, 2.1 mmol) was suspended in a mixture of 4 mL of toluene and 2 mL of DCM following the procedure described in US patent application US 2011/0311474A1. Triethylamine (0.64 mL, 4.6 mmol) was added and the mixture was sonicated for 4-5 min to give a fine white suspension. In a separate flask, cool 4 mL of toluene to -40 °C in an acetonitrile/dry ice bath. Thioyl chloride (0.71 mL, 8.7 mmol) was added and the solution was stirred for 5 min. Subsequently, the pyrrolidine suspension was added dropwise to the cold (-40 °C) sulfonyl chloride solution over 10 min. The resulting suspension was stirred at the same temperature for 1 hour and then allowed to warm to room temperature. The solid was filtered off and rinsed with toluene. The filtrate was concentrated to give 400 mg of the desired product (0.40 g) as a light brown oil which was used without further purification. 1 H NMR (CDCl 3 ) δ: 4.07 (tt, J = 4.6, 2.1 Hz, 1H), 3.48 - 3.69 (m, 4H), 3.36 (s, 3H), 2.12 - 2.23 (m, 1H), 1.98 - 2.12 (m, 1H). (3 S )-3-Methoxyl-1-pyrrolidinesulfonyl chloride:
Figure 02_image1248

以與( R)-異構物類似的方式製備,但自( S)-3-甲氧基吡咯啶鹽酸鹽開始。 Prepared in an analogous manner to the ( R )-isomer, but starting from ( S )-3-methoxypyrrolidine hydrochloride.

使用可商購之2°胺及US 2011/0311474A1中所描述之程序以類似的方式製備其他胺磺醯氯,包括: ( S)-3-氟吡咯啶-1-磺醯氯:自( S)-3-氟吡咯啶鹽酸鹽獲得,呈白色固體: 1H NMR (DMSO-d 6) δ:4.54 (dt, J = 52.6, 3.2 Hz, 1H), 2.72 - 3.03 (m, 5H), 1.34 - 1.58 (m, 2H) 3,3-二氟吡咯啶-1-磺醯氯:自3,3-二氟吡咯啶鹽酸鹽獲得,呈白色固體: 1H NMR (CDCl 3) δ:3.81 (t, J = 12.3 Hz, 2H), 3.74 (t, J = 7.4 Hz, 2H), 2.53 (tt, J = 13.0, 7.5 Hz, 2H)。 Other sulfamoyl chlorides were prepared in a similar manner using commercially available 2° amines and the procedure described in US 2011/0311474A1, including: ( S )-3-fluoropyrrolidine-1-sulfonyl chloride: from ( S )-3-Fluoropyrrolidine hydrochloride was obtained as a white solid: 1 H NMR (DMSO-d 6 ) δ: 4.54 (dt, J = 52.6, 3.2 Hz, 1H), 2.72 - 3.03 (m, 5H), 1.34 - 1.58 (m, 2H) 3,3-Difluoropyrrolidine-1-sulfonyl chloride: obtained from 3,3-difluoropyrrolidine hydrochloride as a white solid: 1 H NMR (CDCl 3 ) δ: 3.81 (t, J = 12.3 Hz, 2H), 3.74 (t, J = 7.4 Hz, 2H), 2.53 (tt, J = 13.0, 7.5 Hz, 2H).

3-甲氧基吖呾-1-磺醯氯:自3-甲氧基吖呾鹽酸鹽獲得: 1H NMR (CDCl 3) δ:4.22 - 4.33 (m, 3H), 3.97 - 4.09 (m, 2H), 3.33 (s, 3H)。 ( R)-3-(氯甲基)吡咯啶-1-磺醯氯:

Figure 02_image1250
3-Methoxyacridine-1-sulfonyl chloride: Obtained from 3-methoxyacridine hydrochloride: 1 H NMR (CDCl 3 ) δ: 4.22 - 4.33 (m, 3H), 3.97 - 4.09 (m , 2H), 3.33 (s, 3H). ( R )-3-(chloromethyl)pyrrolidine-1-sulfonyl chloride:
Figure 02_image1250

在-78℃下,將( R)-3-(羥甲基)吡咯啶(200 mg,2 mmol)及三乙胺(0.61 mL,4.35 mmol)於無水DCM (15 mL)中之溶液逐滴添加至硫醯氯(0.48 mL,5.9 mmol)於DCM (5 mL)中之經攪拌溶液中。將反應在-78℃下攪拌30分鐘。且隨後使其歷時1 h升溫至室溫。隨後,反應混合物1 M鹽酸水溶液(5 mL)及鹽水(5 mL)洗滌。分離有機層,經無水硫酸鈉乾燥,過濾且濃縮以得到呈無色油狀物之標題化合物,其按原樣用於製備實例28。 由胺甲酸三級丁酯A-2製備二氟苯胺鹽酸鹽中間物A-5 (Ar=4-甲氧苯基).

Figure 02_image1252
A solution of ( R )-3-(hydroxymethyl)pyrrolidine (200 mg, 2 mmol) and triethylamine (0.61 mL, 4.35 mmol) in anhydrous DCM (15 mL) was added dropwise at -78 °C Add to a stirred solution of thionyl chloride (0.48 mL, 5.9 mmol) in DCM (5 mL). The reaction was stirred at -78°C for 30 minutes. And then allowed to warm to room temperature over 1 h. Subsequently, the reaction mixture was washed with 1 M aqueous hydrochloric acid (5 mL) and brine (5 mL). The organic layer was separated, dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound as a colorless oil which was used as such in the preparation of Example 28. Preparation of difluoroaniline hydrochloride intermediate A-5 from tertiary butyl carbamate A-2 (Ar=4-methoxyphenyl).
Figure 02_image1252

步驟1-苯胺中間物A-3之製備:將硝基芳烴A-2 (5.00 g,18 mmol,按照 J. Med.Chem.2003, 46, 1905中所描述之程序製備)及20% Pd(OH) 2/C (130 mg)懸浮於MeOH (50 mL)中且當藉由TLC分析(在2:1己烷/EtOAc中Rf=0.45)顯示還原完成時,將混合物在含氫氣之氣球下攪拌18 h。將懸浮液藉由celite ®墊過濾以移除催化劑,使用MeOH洗滌且在減壓下蒸發溶劑。一旦暴露於空氣,原本無色的溶液即快速變成極深的藍綠色。獲得呈深紫綠色泡沫狀物之粗中間物苯胺A-3,其未經進一步純化即立即用於下一步驟中: 1H NMR (DMSO-d 6) δ:8.58 (s, 1H), 6.77 (td, J = 9.4, 2.0 Hz, 1H), 6.60 (td, J = 9.4, 5.5 Hz, 1H), 4.97 (s, 2H), 1.43 (s, 9H)。 Step 1- Preparation of aniline intermediate A-3: Nitroarene A-2 (5.00 g, 18 mmol, prepared according to the procedure described in J. Med. Chem. 2003, 46 , 1905) and 20% Pd ( OH) 2 /C (130 mg) was suspended in MeOH (50 mL) and when the reduction was shown to be complete by TLC analysis (Rf = 0.45 in 2:1 hexane/EtOAc), the mixture was placed under a balloon containing hydrogen Stir for 18 h. The suspension was filtered through a pad of celite® to remove the catalyst, washed with MeOH and the solvent was evaporated under reduced pressure. Upon exposure to air, the otherwise colorless solution rapidly turns a very dark blue-green. The crude intermediate Aniline A-3 was obtained as a dark purple-green foam, which was used immediately in the next step without further purification: 1 H NMR (DMSO-d 6 ) δ: 8.58 (s, 1H), 6.77 (td, J = 9.4, 2.0 Hz, 1H), 6.60 (td, J = 9.4, 5.5 Hz, 1H), 4.97 (s, 2H), 1.43 (s, 9H).

步驟2–磺醯胺A-4 (Ar=4-甲氧苯基)之製備:將來自步驟1之粗苯胺A-3 (假定為18 mmol)溶解於THF (30 mL)中且添加過量的4-甲氧苯基磺醯氯(7.53 g,36 mmol),接著添加吡啶(6 mL)。將混合物在50℃下攪拌18 h。在減壓下移除THF且將殘餘物分配於EtOAc與水之間。將萃取物用飽和NaHCO 3水溶液及鹽水洗滌,且經MgSO 4乾燥。將乾燥劑漿液通過75 mL矽膠墊,使用EtOAc洗滌,以移除乾燥劑及基線物質。移除溶劑得到褐色油狀物,將其藉由二氧化矽(約250 mL)急速層析純化,使用20%-50% EtOAc/己烷作為溶離劑。在真空下乾燥之後,獲得呈褐色泡沫狀物之產物A-4 (8.16 g),其經未反應之磺醯氯以藉由 1H NMR之2:1的比污染。該物質按原樣直接用於下一步驟中: 1H NMR (CDCl 3) δ:7.68 (d, J = 9.0 Hz, 2H), 7.41 (td, J = 8.8, 5.5 Hz, 1H), 6.85 - 6.98 (m, 3H), 6.57 (br s, 1H), 5.85 (br s, 1H), 3.85 (s, 3H), 1.46 (s, 9H)。MS m/z413.0 (M-H), m/z313.0 (M-H-Boc)。 Step 2 - Preparation of sulfonamide A-4 (Ar = 4-methoxyphenyl): The crude aniline A-3 (assumed to be 18 mmol) from step 1 was dissolved in THF (30 mL) and an excess of 4-Methoxyphenylsulfonyl chloride (7.53 g, 36 mmol) followed by pyridine (6 mL). The mixture was stirred at 50 °C for 18 h. THF was removed under reduced pressure and the residue was partitioned between EtOAc and water. The extract was washed with saturated aqueous NaHCO 3 and brine, and dried over MgSO 4 . The desiccant slurry was passed through a 75 mL pad of silica gel and washed with EtOAc to remove the desiccant and baseline material. Removal of the solvent gave a brown oil, which was purified by flash chromatography on silica (ca. 250 mL) using 20%-50% EtOAc/hexanes as eluent. After drying under vacuum, the product A-4 (8.16 g) was obtained as a brown foam, which was contaminated with unreacted sulfonyl chloride in a ratio of 2:1 by 1 H NMR. This material was used directly in the next step as received: 1 H NMR (CDCl 3 ) δ: 7.68 (d, J = 9.0 Hz, 2H), 7.41 (td, J = 8.8, 5.5 Hz, 1H), 6.85 - 6.98 (m, 3H), 6.57 (br s, 1H), 5.85 (br s, 1H), 3.85 (s, 3H), 1.46 (s, 9H). MS m/z 413.0 (MH), m/z 313.0 (MH-Boc).

步驟3–苯胺鹽酸鹽A-5 (Ar=4-甲氧苯基)之製備:在RT下將來自步驟3之粗胺甲酸酯A-4 (8.16 g)在含4 N HCl之二噁烷(25 mL)中攪拌1.5 h,在此期間米色固體逐漸沉澱。1.5 h之後,添加另一10 mL之含4 N HCl之二噁烷且繼續攪拌另外1 h。隨後,將反應混合物用50 mL二乙醚稀釋且藉由過濾收集該米色沉澱,用乙醚洗滌且在真空下乾燥。自硝基芳烴A-2以68%總產率獲得呈純形式之苯胺鹽A-5 (4.38 g): 1H NMR (DMSO-d 6) δ:9.73 (s, 1H), 7.62 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H), 6.69 - 6.88 (m, 1H), 6.30 (td, J = 8.6, 5.5 Hz, 1H), 3.81 (s, 3H)。MS m/z313.0 (M-H)。 由乙醯苯胺A-8製備二氟苯胺鹽酸鹽中間物A-5 (Ar=2,3-二氯苯基).

Figure 02_image1254
Step 3 - Preparation of aniline hydrochloride A-5 (Ar = 4-methoxyphenyl): Crude carbamate A-4 (8.16 g) from Step 3 was dissolved in 4 N HCl at RT. Oxane (25 mL) was stirred for 1.5 h, during which time a beige solid gradually precipitated. After 1.5 h, another 10 mL of 4 N HCl in dioxane was added and stirring was continued for another 1 h. Then, the reaction mixture was diluted with 50 mL diethyl ether and the beige precipitate was collected by filtration, washed with diethyl ether and dried under vacuum. The aniline salt A-5 (4.38 g) was obtained in pure form from the nitroarene A-2 in 68% overall yield: 1 H NMR (DMSO-d 6 ) δ: 9.73 (s, 1H), 7.62 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H), 6.69 - 6.88 (m, 1H), 6.30 (td, J = 8.6, 5.5 Hz, 1H), 3.81 (s, 3H). MS m/z 313.0 (MH). Preparation of difluoroaniline hydrochloride intermediate A-5 (Ar=2,3-dichlorophenyl) from acetaniline A-8.
Figure 02_image1254

乙醯苯胺A-8之製備:乙醯苯胺A-7可按照 Bioorg.Med.Chem.2016, 24, 2215中所描述之文獻程序藉由用乙酸酐乙醯化2,6-二氟苯胺A-6來製備。如WO 2012/101238A1中所描述,藉由依序硝化,接著將硝基還原為苯胺來將中間物A-7轉化為乙醯苯胺A-8。 Preparation of Acetylaniline A-8: Acetylaniline A-7 can be prepared by acetylating 2,6-difluoroaniline A with acetic anhydride according to the literature procedure described in Bioorg.Med.Chem. 2016, 24 , 2215 -6 to prepare. Intermediate A-7 was converted to acetaniline A-8 by sequential nitration followed by reduction of the nitro group to aniline as described in WO 2012/101238A1.

步驟1–磺醯胺A-9 (Ar=2,3-二氯苯基)之製備:將苯胺A-8 (8.50 g,45.5 mmol)溶解於THF (145 mL)中且將吡啶(4當量,14.7 mL)添加至褐色溶液中,接著添加2,3-二氯苯磺醯氯(1.2當量,13.45 g)。將所得反應混合物在45℃下攪拌3.5小時,之後藉由LCMS監測判斷轉化完成。使反應混合物冷卻至室溫,隨後分配於EtOAc及2-Me-THF (1:1)與水之間。添加1 N HCl溶液,直至獲得微弱酸性pH值。顯著量之灰白色固體存在於雙相混合物中且濾出(第一批)。分離濾液層,且水層用EtOAc再萃取兩次。合併的有機萃取物用水洗滌一次,隨後用鹽水洗滌,經MgSO 4乾燥,過濾且濃縮至約20 mL。對所得懸浮液進行音波處理,且藉由過濾收集固體並且用EtOH洗滌(第2批)。將兩批合併且在減壓下乾燥。獲得呈米色固體之A-9 (15.3 g,85%產率),其未經進一步純化即使用: 1H NMR (DMSO-d 6) δ:10.61 (s, 1H), 9.67 (s, 1H), 7.95 (dd, J = 8.0, 1.4 Hz, 1H), 7.85 (dd, J = 8.0, 1.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.05 - 7.18 (m, 2H), 2.00 (s, 3H)。MS m/z395.0 (MH +)。 Step 1 - Preparation of sulfonamide A-9 (Ar = 2,3-dichlorophenyl): Aniline A-8 (8.50 g, 45.5 mmol) was dissolved in THF (145 mL) and pyridine (4 eq , 14.7 mL) was added to the brown solution followed by 2,3-dichlorobenzenesulfonyl chloride (1.2 equiv, 13.45 g). The resulting reaction mixture was stirred at 45°C for 3.5 hours, after which time the conversion was complete as monitored by LCMS. The reaction mixture was cooled to room temperature, then partitioned between EtOAc and 2-Me-THF (1:1) and water. 1 N HCl solution was added until a slightly acidic pH was obtained. A significant amount of off-white solid was present in the biphasic mixture and was filtered off (first crop). The filtrate layers were separated, and the aqueous layer was extracted two more times with EtOAc. The combined organic extracts were washed once with water, then brine, dried over MgSO 4 , filtered and concentrated to about 20 mL. The resulting suspension was sonicated and the solid was collected by filtration and washed with EtOH (crop 2). The two batches were combined and dried under reduced pressure. A-9 (15.3 g, 85% yield) was obtained as a beige solid, which was used without further purification: 1 H NMR (DMSO-d 6 ) δ: 10.61 (s, 1H), 9.67 (s, 1H) , 7.95 (dd, J = 8.0, 1.4 Hz, 1H), 7.85 (dd, J = 8.0, 1.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.05 - 7.18 (m, 2H), 2.00 (s, 3H). MS m/z 395.0 (MH + ).

步驟2–苯胺鹽酸鹽A-5 (Ar=2,3-二氯苯基)之製備:在500 mL圓底燒瓶中,將乙醯苯胺A-9 (7.00 g,17.7 mmol)懸浮於乙醇(65 mL)中且添加濃HCl與水(65 mL)之1:1混合物。燒瓶配備有塞頭回流冷凝器且在攪拌下在80℃下加熱。24小時之後,如藉由LCMS監測判斷轉化率為~70%。將額外EtOH (65 mL)及6 N HCl (65 mL)添加至懸浮液中且在80℃下攪拌假定7小時以上,之後LCMS指示完全轉化為所需苯胺。將反應混合物用50 mL水稀釋,同時仍然溫熱,且藉由棉塞過濾以移除少量不溶性物質。隨後在減壓下將其濃縮至乾燥。殘餘物藉由在減壓下蒸發甲苯3次來進行共沸乾燥,隨後在真空下乾燥,得到7.2 g呈黃色固體形式之所需產物A-5,作為其HCl鹽: 1H NMR (DMSO-d 6) δ:10.30 (s, 1H), 7.93 (dd, J = 8.2, 1.2 Hz, 1H), 7.83 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 6.68 - 6.96 (m, 1H), 6.31 (td, J = 8.6, 5.5 Hz, 1H)。MS m/z350.9 (M-H)。 表1 A-5 SM MS m/z(M-H) 1H NMR (400 MHz)

Figure 02_image1256
A-2 331.0 未測定
Figure 02_image1258
A-2 327.0 1H NMR (DMSO-d 6) d: 9.77 (s, 1H), 7.60 (d, J = 9.0 Hz, 1H), 6.93 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 8.8, 2.5 Hz, 1H), 6.72 - 6.79 (m, 1H), 6.32 (td, J = 8.6, 5.5 Hz, 1H), 3.78 (s, 3H), 2.56 (s, 3H).
Figure 02_image1260
A-2 308.0 1H NMR (DMSO-d 6) δ: 10.34 (s, 1H), 8.07 (dd, J = 7.4, 1.2 Hz, 1H), 7.77 - 7.95 (m, 3H), 6.67 - 6.90 (m, 1H), 6.30 (td, J = 8.4, 5.5 Hz, 1H).
Figure 02_image1262
A-2 322.9 未測定
Figure 02_image1264
A-8 317.0 1H NMR (DMSO-d 6) δ: 10.12 (s, 1H), 7.85 (dd, J = 7.8, 1.6 Hz, 1H), 7.59 - 7.71 (m, 2H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 6.74 - 6.82 (m, 1H), 6.31 (td, J = 8.6, 5.5 Hz, 1H)
Figure 02_image1266
A-8 331.0 1H NMR (CDCl 3) δ: 7.84 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 6.68 - 6.74 (m, 2H), 6.63 (br s, 1H), 2.75 (s, 3H)
Figure 02_image1268
A-8 315.0 1H NMR (DMSO-d 6) δ: 10.10 (s, 1H), 7.54 (d, J= 7.8 Hz, 1H), 7.46 (td, J= 9.0, 1.2 Hz, 1H), 7.35 (td, J= 8.2, 5.5 Hz, 1H), 6.79 (ddd, J= 10.9, 9.1, 2.0 Hz, 1H), 6.32 (td, J= 8.6, 5.5 Hz, 1H), 2.49 (d, J= 2.0 Hz, 3H
Figure 02_image1270
A-2 346.9 1H NMR (CDCl 3) δ: 7.84 (d, J = 8.2 Hz, 1H), 7.74 (br s, 1H), 6.95 (s, 1H), 6.89 (br s, 1H), 6.76 (br. d, J = 7.8 Hz, 1H), 6.53 - 6.72 (m, 1H), 5.52 (br s, 3H), 3.78 (s, 3H)
Figure 02_image1272
A-8 347.1 1H NMR (DMSO-d 6) δ: 9.94 (s, 1H), 7.48 (dd, J = 8.9, 1.5 Hz, 1H), 7.07 (t, J = 8.6 Hz, 1H), 6.78 (ddd, J = 10.8, 9.0, 1.9 Hz, 1H), 6.33 (td, J = 8.6, 5,5 Hz, 1H), 3.86 (s, 3H), 2.48 (d, J = 2.7 Hz, 3H)
Figure 02_image1274
A-8 363.2 1H NMR (DMSO-d 6) δ: 10.00 (s, 1H), 7.67 (d, J = 8.9 Hz, 1H), 7.07 (d, J = 9.0 Hz, 1H), 6.78 (ddd, J = 9.0, 6.5, 1.9 Hz, 1H), 6.33 (td (J = 8.7, 5.5 Hz, 1H), 3.89 (s, 3H), 2.65 (s, 3H)
Figure 02_image1276
A-8 313.0 1H NMR (CDCl 3) δ: 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.49 (td, J = 7.6, 1.3 Hz, 1H), 7.38 – 7.29 (m, J = 7.7 Hz, 1H), 7.24 – 7.19 (m, 1H), 6.72 – 6.62 (m, 2H), 6.54 (brs, 1H), 3.04 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 7.5 Hz, 3H)
Figure 02_image1278
A-8 331.0 1H-NMR (CDCl 3) δ: 7.70 – 7.64 (m, 1H), 7.24 – 7.19 (m, 2H), 6.73 – 6.65 (m, 2H), 6.63 (s, 1H), 3.01 (qd, J = 7.4, 2.1 Hz, 2H), 1.25 (t, J = 7.4 Hz, 3H)
Figure 02_image1280
A-8 346.8 1H-NMR (DMSO-d 6) δ: 10.21 (s, 1H), 7.71 (ddd, J= 8.0, 4.9, 1.2 Hz, 1H), 7.35 (t, J= 8.0 Hz, 1H), 7.02 – 6.92 (m, 1H), 6.87 – 6.75 (m, 1H), 6.60 (bs, 1H), 6.28 (td, J= 8.6, 5.6 Hz, 1H), 3.12 (q, J= 7.2 Hz, 2H), 1.18 (t, J= 7.3 Hz, 3H)
Figure 02_image1282
A-8 366.3 1H-NMR (CDCl 3) δ: 8.12 (d, J= 8.1 Hz, 1H), 7.84 (d, J= 8.0 Hz, 1H), 7.37 (t, J= 8.0 Hz, 1H), 6.74 – 6.64 (m, 2H), 6.61 (s, 1H), 3.88 – 3.62 (bs), 2.83 (s, 3H)
Figure 02_image1284
A-8 364.3 1H-NMR (DMSO-d 6) δ 10.38 (s, 1H), 7.70 (dd, J= 7.6, 1.6 Hz, 1H), 7.44 – 7.26 (m, 2H), 6.82 (ddd, J= 10.7, 9.0, 1.9 Hz, 1H), 6.32 (td, J= 8.6, 5.5 Hz, 1H), 5.27 (s, 2H).
Figure 02_image1286
A-8 333.1 1H NMR (400 MHz, DMSO-d 6) δ 10.06 (s, 1H), 7.72 (dd,J = 7.9, 1.1 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.36 (t,J = 7.7 Hz, 1H), 6.76 (ddd,J = 10.7, 9.0, 1.9 Hz, 1H), 6.28 (td,J = 8.6, 5.4 Hz, 1H), 2.42 (s, 3H)
Figure 02_image1288
A-8 344.2 1H NMR (DMSO-d 6) δ: 10.33 (s, 1 H), 8.29 (d, J=2.35 Hz, 1 H), 8.13 (dd, J=8.61, 2.35 Hz, 1 H), 7.91 (d, J=8.61 Hz, 1 H), 2.72 (s, 2 H), 6.88 - 7.01(m, 1 H), 6.70 - 6.86 (m, 1 H), 6.60 (td, J=8.41, 5.09 Hz, 1 H), 6.32 (td, J=8.51, 5.67 Hz, 1 H)
Figure 02_image1290
A-8 338.2 1H NMR (DMSO-d 6) δ: 10.38 (s, 1H), 8.59 (s, 1H), 7.92 - 8.39 (m, 4H), 7.45 - 7.66 (m, 1H)
Figure 02_image1292
A-8 385.2 1H NMR (400 MHz, DMSO-d 6) δ 10.27 (s, 1H), 8.00 (dd,J = 8.0, 4.5 Hz, 2H), 7.81 (t,J = 8.1 Hz, 1H), 6.83 (ddd,J = 10.7, 9.1, 1.8 Hz, 1H), 6.35 (td,J = 8.6, 5.5 Hz, 1H), 5.31 (s, 2H)
Figure 02_image1294
A-8 388.2 1H NMR (400 MHz, DMSO-d 6) δ 10.25 (s, 1H), 7.96 – 7.70 (m, 3H), 6.83 (m, 1H), 6.37 (m, 1H), 5.30 (s, 2H)
Figure 02_image1296
A-8 335.2 1H NMR (400 MHz, DMSO-d 6) δ 10.15 (s, 1H), 7.54 (ddd,J = 8.8, 5.0, 1.3 Hz, 1H), 7.40 (dd,J = 17.3, 9.1 Hz, 1H), 6.80 (ddd,J = 10.7, 9.1, 1.8 Hz, 1H), 6.32 (td,J = 8.6, 5.5 Hz, 1H), 5.28 (s, 2H), 2.54 (d,J = 2.5 Hz, 3H)
Figure 02_image1298
A-8 329.1 1H NMR (400 MHz, DMSO-d 6) δ 10.03 (s, 1H), 7.43 (d,J = 8.1 Hz, 1H), 7.22 (t,J = 7.8 Hz, 1H), 6.78 (ddd,J = 10.8, 9.0, 1.9 Hz, 1H), 6.33 (td,J = 8.6, 5.5 Hz, 1H), 2.48 (d,J = 2.4 Hz, 3H), 2.26 (d,J = 1.9 Hz, 3H)
Figure 02_image1300
A-8 349.1 1H NMR (400 MHz, DMSO-d 6) δ 10.21 (s, 1H), 7.60 – 7.55 (m, 1H), 7.55 – 7.50 (m, 1H), 6.81 (ddd,J = 10.7, 9.0, 1.8 Hz, 1H), 6.32 (td,J = 8.6, 5.5 Hz, 1H), 2.53 (d,J = 2.6 Hz, 3H)
Figure 02_image1302
A-8 330.0 未測定
Figure 02_image1304
A-8 449.2 1H NMR (DMSO-d 6) δ: 10.71 (s, 1H), 10.02 (s, 1H), 7.91 - 8.07 (m, 1H), 7.74 (d, J= 8.61 Hz, 1H), 7.28 - 7.47 (m, 4H), 6.80 (t, J= 8.80Hz, 1H), 6.33 (dt, J= 5.48, 8.61 Hz, 1H), 5.76 (s, 1H), 5.24 (s, 1H), 5.18 (s, 2H), 2.63 - 2.66 (m, 3H)
Figure 02_image1306
A-8 314.2 1H NMR (400 MHz, DMSO-d 6) δ 10.59 (s, 1H), 8.57 (d, J = 5.6 Hz, 1H), 7.72 (d, J = 5.6 Hz, 1H), 6.97 (br s, 3H), 6.80 (ddd, J = 10.7, 9.1, 1.8 Hz, 1H), 6.30 (td, J = 8.6, 5.4 Hz, 1H), 2.69 (s, 3H), 2.58 (s, 3H)
Figure 02_image1308
A-8 337.2 1H NMR (400 MHz, DMSO-d 6) δ 10.27 (s, 1H), 7.92 (s, 1H), 6.93 – 6.75 (m, 1H), 6.35 (td,J = 8.5, 5.5 Hz, 1H), 5.32 (s, 2H), 2.22 (s, 3H)
Figure 02_image1310
A-8 337.2 1H NMR (400 MHz, CDCl 3) δ 7.20 (m, 1H), 7.03 (br s, 1H), 6.87 (td, J = 8.8, 5.4 Hz, 1H), 6.73 (td, J = 9.8, 2.0 Hz, 1H), 2.21 (s, 3H)
Figure 02_image1312
A-8 357.2 1H NMR (400 MHz, DMSO-d 6) δ 10.59 (s, 1H), 8.15 (s, 1H), 6.98 – 6.71 (m, 1H), 6.35 (td,J = 8.5, 5.5 Hz, 1H), 5.34 (s, 2H)
Figure 02_image1314
A-8 319.1 未測定
Figure 02_image1316
A-8 337.2 1H NMR (400 MHz, DMSO-d 6) δ 10.27 (s, 1H), 7.92 (s, 1H), 6.93 – 6.75 (m, 1H), 6.35 (td, J = 8.5, 5.5 Hz, 1H), 5.32 (s, 2H), 2.22 (s, 3H).
一般合成方法A–由中間物A-5製備抑制劑I及II (實例1及36):
Figure 02_image1318
Step 2 – Preparation of aniline hydrochloride A-5 (Ar=2,3-dichlorophenyl): In a 500 mL round bottom flask, suspend acetaniline A-9 (7.00 g, 17.7 mmol) in ethanol (65 mL) and a 1:1 mixture of concentrated HCl and water (65 mL) was added. The flask was equipped with a stoppered reflux condenser and heated at 80 °C with stirring. After 24 hours, the conversion was -70% as judged by LCMS monitoring. Additional EtOH (65 mL) and 6 N HCl (65 mL) were added to the suspension and stirred at 80 °C for over 7 hours assuming LCMS indicated complete conversion to the desired aniline. The reaction mixture was diluted with 50 mL of water while still warm, and filtered through a cotton plug to remove a small amount of insoluble material. It was then concentrated to dryness under reduced pressure. The residue was azeotropically dried by evaporating toluene under reduced pressure 3 times, followed by drying under vacuum to give 7.2 g of the desired product A-5 as its HCl salt in the form of a yellow solid: 1 H NMR (DMSO- d 6 ) δ: 10.30 (s, 1H), 7.93 (dd, J = 8.2, 1.2 Hz, 1H), 7.83 (dd, J = 8.0, 1.4 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H ), 6.68 - 6.96 (m, 1H), 6.31 (td, J = 8.6, 5.5 Hz, 1H). MS m/z 350.9 (MH). Table 1 A-5 SM MS m/z (MH) 1H NMR (400MHz)
Figure 02_image1256
A-2 331.0 Not determined
Figure 02_image1258
A-2 327.0 1 H NMR (DMSO-d 6 ) d: 9.77 (s, 1H), 7.60 (d, J = 9.0 Hz, 1H), 6.93 (d, J = 2.3 Hz, 1H), 6.81 (dd, J = 8.8, 2.5 Hz, 1H), 6.72 - 6.79 (m, 1H), 6.32 (td, J = 8.6, 5.5 Hz, 1H), 3.78 (s, 3H), 2.56 (s, 3H).
Figure 02_image1260
A-2 308.0 1 H NMR (DMSO-d 6 ) δ: 10.34 (s, 1H), 8.07 (dd, J = 7.4, 1.2 Hz, 1H), 7.77 - 7.95 (m, 3H), 6.67 - 6.90 (m, 1H), 6.30 (td, J = 8.4, 5.5 Hz, 1H).
Figure 02_image1262
A-2 322.9 Not determined
Figure 02_image1264
A-8 317.0 1 H NMR (DMSO-d 6 ) δ: 10.12 (s, 1H), 7.85 (dd, J = 7.8, 1.6 Hz, 1H), 7.59 - 7.71 (m, 2H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 6.74 - 6.82 (m, 1H), 6.31 (td, J = 8.6, 5.5 Hz, 1H)
Figure 02_image1266
A-8 331.0 1 H NMR (CDCl 3 ) δ: 7.84 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 6.68 - 6.74 (m , 2H), 6.63 (br s, 1H), 2.75 (s, 3H)
Figure 02_image1268
A-8 315.0 1 H NMR (DMSO-d 6 ) δ: 10.10 (s, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.46 (td, J = 9.0, 1.2 Hz, 1H), 7.35 (td, J = 8.2, 5.5 Hz, 1H), 6.79 (ddd, J = 10.9, 9.1, 2.0 Hz, 1H), 6.32 (td, J = 8.6, 5.5 Hz, 1H), 2.49 (d, J = 2.0 Hz, 3H
Figure 02_image1270
A-2 346.9 1 H NMR (CDCl 3 ) δ: 7.84 (d, J = 8.2 Hz, 1H), 7.74 (br s, 1H), 6.95 (s, 1H), 6.89 (br s, 1H), 6.76 (br. d, J = 7.8 Hz, 1H), 6.53 - 6.72 (m, 1H), 5.52 (br s, 3H), 3.78 (s, 3H)
Figure 02_image1272
A-8 347.1 1 H NMR (DMSO-d 6 ) δ: 9.94 (s, 1H), 7.48 (dd, J = 8.9, 1.5 Hz, 1H), 7.07 (t, J = 8.6 Hz, 1H), 6.78 (ddd, J = 10.8, 9.0, 1.9 Hz, 1H), 6.33 (td, J = 8.6, 5,5 Hz, 1H), 3.86 (s, 3H), 2.48 (d, J = 2.7 Hz, 3H)
Figure 02_image1274
A-8 363.2 1 H NMR (DMSO-d 6 ) δ: 10.00 (s, 1H), 7.67 (d, J = 8.9 Hz, 1H), 7.07 (d, J = 9.0 Hz, 1H), 6.78 (ddd, J = 9.0, 6.5, 1.9 Hz, 1H), 6.33 (td (J = 8.7, 5.5 Hz, 1H), 3.89 (s, 3H), 2.65 (s, 3H)
Figure 02_image1276
A-8 313.0 1 H NMR (CDCl 3 ) δ: 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.49 (td, J = 7.6, 1.3 Hz, 1H), 7.38 – 7.29 (m, J = 7.7 Hz, 1H) , 7.24 – 7.19 (m, 1H), 6.72 – 6.62 (m, 2H), 6.54 (brs, 1H), 3.04 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 7.5 Hz, 3H)
Figure 02_image1278
A-8 331.0 1 H-NMR (CDCl 3 ) δ: 7.70 – 7.64 (m, 1H), 7.24 – 7.19 (m, 2H), 6.73 – 6.65 (m, 2H), 6.63 (s, 1H), 3.01 (qd, J = 7.4, 2.1 Hz, 2H), 1.25 (t, J = 7.4 Hz, 3H)
Figure 02_image1280
A-8 346.8 1 H-NMR (DMSO-d 6 ) δ: 10.21 (s, 1H), 7.71 (ddd, J = 8.0, 4.9, 1.2 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.02 – 6.92 (m, 1H), 6.87 – 6.75 (m, 1H), 6.60 (bs, 1H), 6.28 (td, J = 8.6, 5.6 Hz, 1H), 3.12 (q, J = 7.2 Hz, 2H), 1.18 ( t, J = 7.3 Hz, 3H)
Figure 02_image1282
A-8 366.3 1 H-NMR (CDCl 3 ) δ: 8.12 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 6.74 – 6.64 ( m, 2H), 6.61 (s, 1H), 3.88 – 3.62 (bs), 2.83 (s, 3H)
Figure 02_image1284
A-8 364.3 1 H-NMR (DMSO-d 6 ) δ 10.38 (s, 1H), 7.70 (dd, J = 7.6, 1.6 Hz, 1H), 7.44 – 7.26 (m, 2H), 6.82 (ddd, J = 10.7, 9.0 , 1.9 Hz, 1H), 6.32 (td, J = 8.6, 5.5 Hz, 1H), 5.27 (s, 2H).
Figure 02_image1286
A-8 333.1 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.06 (s, 1H), 7.72 (dd,J = 7.9, 1.1 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.36 (t,J = 7.7 Hz, 1H), 6.76 (ddd, J = 10.7, 9.0, 1.9 Hz, 1H), 6.28 (td, J = 8.6, 5.4 Hz, 1H), 2.42 (s, 3H)
Figure 02_image1288
A-8 344.2 1 H NMR (DMSO-d 6 ) δ: 10.33 (s, 1 H), 8.29 (d, J =2.35 Hz, 1 H), 8.13 (dd, J =8.61, 2.35 Hz, 1 H), 7.91 (d , J =8.61 Hz, 1 H), 2.72 (s, 2 H), 6.88 - 7.01(m, 1 H), 6.70 - 6.86 (m, 1 H), 6.60 (td, J =8.41, 5.09 Hz, 1 H), 6.32 (td, J =8.51, 5.67 Hz, 1 H)
Figure 02_image1290
A-8 338.2 1 H NMR (DMSO-d 6 ) δ: 10.38 (s, 1H), 8.59 (s, 1H), 7.92 - 8.39 (m, 4H), 7.45 - 7.66 (m, 1H)
Figure 02_image1292
A-8 385.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.27 (s, 1H), 8.00 (dd, J = 8.0, 4.5 Hz, 2H), 7.81 (t, J = 8.1 Hz, 1H), 6.83 (ddd, J = 10.7, 9.1, 1.8 Hz, 1H), 6.35 (td, J = 8.6, 5.5 Hz, 1H), 5.31 (s, 2H)
Figure 02_image1294
A-8 388.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.25 (s, 1H), 7.96 – 7.70 (m, 3H), 6.83 (m, 1H), 6.37 (m, 1H), 5.30 (s, 2H)
Figure 02_image1296
A-8 335.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.15 (s, 1H), 7.54 (ddd, J = 8.8, 5.0, 1.3 Hz, 1H), 7.40 (dd, J = 17.3, 9.1 Hz, 1H), 6.80 (ddd, J = 10.7, 9.1, 1.8 Hz, 1H), 6.32 (td, J = 8.6, 5.5 Hz, 1H), 5.28 (s, 2H), 2.54 (d, J = 2.5 Hz, 3H)
Figure 02_image1298
A-8 329.1 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.03 (s, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.78 (ddd, J = 10.8, 9.0, 1.9 Hz, 1H), 6.33 (td, J = 8.6, 5.5 Hz, 1H), 2.48 (d, J = 2.4 Hz, 3H), 2.26 (d, J = 1.9 Hz, 3H)
Figure 02_image1300
A-8 349.1 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.21 (s, 1H), 7.60 – 7.55 (m, 1H), 7.55 – 7.50 (m, 1H), 6.81 (ddd, J = 10.7, 9.0, 1.8 Hz , 1H), 6.32 (td,J = 8.6, 5.5 Hz, 1H), 2.53 (d,J = 2.6 Hz, 3H)
Figure 02_image1302
A-8 330.0 Not determined
Figure 02_image1304
A-8 449.2 1 H NMR (DMSO-d 6 ) δ: 10.71 (s, 1H), 10.02 (s, 1H), 7.91 - 8.07 (m, 1H), 7.74 (d, J = 8.61 Hz, 1H), 7.28 - 7.47 ( m, 4H), 6.80 (t, J = 8.80Hz, 1H), 6.33 (dt, J = 5.48, 8.61 Hz, 1H), 5.76 (s, 1H), 5.24 (s, 1H), 5.18 (s, 2H ), 2.63 - 2.66 (m, 3H)
Figure 02_image1306
A-8 314.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.59 (s, 1H), 8.57 (d, J = 5.6 Hz, 1H), 7.72 (d, J = 5.6 Hz, 1H), 6.97 (br s, 3H ), 6.80 (ddd, J = 10.7, 9.1, 1.8 Hz, 1H), 6.30 (td, J = 8.6, 5.4 Hz, 1H), 2.69 (s, 3H), 2.58 (s, 3H)
Figure 02_image1308
A-8 337.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.27 (s, 1H), 7.92 (s, 1H), 6.93 – 6.75 (m, 1H), 6.35 (td,J = 8.5, 5.5 Hz, 1H), 5.32 (s, 2H), 2.22 (s, 3H)
Figure 02_image1310
A-8 337.2 1 H NMR (400 MHz, CDCl 3 ) δ 7.20 (m, 1H), 7.03 (br s, 1H), 6.87 (td, J = 8.8, 5.4 Hz, 1H), 6.73 (td, J = 9.8, 2.0 Hz , 1H), 2.21 (s, 3H)
Figure 02_image1312
A-8 357.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.59 (s, 1H), 8.15 (s, 1H), 6.98 – 6.71 (m, 1H), 6.35 (td,J = 8.5, 5.5 Hz, 1H), 5.34 (s, 2H)
Figure 02_image1314
A-8 319.1 Not determined
Figure 02_image1316
A-8 337.2 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.27 (s, 1H), 7.92 (s, 1H), 6.93 – 6.75 (m, 1H), 6.35 (td, J = 8.5, 5.5 Hz, 1H), 5.32 (s, 2H), 2.22 (s, 3H).
General Synthetic Method A - Preparation of Inhibitors I and II from Intermediate A-5 (Examples 1 and 36):
Figure 02_image1318

步驟1 (實例之製備1):將氯嘧啶A-10 (0.546 g,1.25當量)及苯胺鹽酸鹽A-5 (Ar=4-甲氧苯基;0.750 g,1當量)溶解於AcOH (10mL)中且在50℃下攪拌褐色溶液1 h。LCMS顯示完全轉化為所需粗產物(實例1)。將反應混合物冷卻至RT且用水(50 mL)稀釋,產生灰色沉澱,其藉由過濾收集,用水洗滌且在真空下乾燥。使用1:1己烷/EA作為溶離劑,將100 mg粗物質樣品藉由穿過小矽膠(3 mL)墊來純化,以移除有色的基線物質。在自淡紫紅色溶液中移除揮發成分之後,將該物質自MeCN-水凍乾以提供實例1之抑制劑(73 mg)。Step 1 (Preparation 1 of Example): Dissolve chloropyrimidine A-10 (0.546 g, 1.25 eq) and aniline hydrochloride A-5 (Ar=4-methoxyphenyl; 0.750 g, 1 eq) in AcOH ( 10 mL) and the brown solution was stirred at 50 °C for 1 h. LCMS showed complete conversion to the desired crude product (Example 1). The reaction mixture was cooled to RT and diluted with water (50 mL) resulting in a gray precipitate which was collected by filtration, washed with water and dried under vacuum. A 100 mg sample of crude material was purified by passing through a small pad of silica gel (3 mL) using 1:1 hexane/EA as the eluent to remove colored baseline material. After removal of volatile components from the mauve solution, the material was lyophilized from MeCN-water to provide the inhibitor of Example 1 (73 mg).

步驟2及3 (實例36之製備):在室溫下,向粗硫甲基衍生物(實例1;355 mg,0.72 mmol,1當量)於7 mL DCM中之溶液中添加m-CPBA (185 mg,1.07 mmol,1.5當量)。將混合物在該溫度下攪拌1 h。LCMS顯示完全轉化為亞碸與碸之80:20混合物。濃縮混合物以移除大部分DCM,隨後倒入EtOAc中且用NaHCO 3溶液洗滌3次。將合併的水層用EtOAc反萃取且將合併的有機層用水洗滌一次,隨後用鹽水洗滌。隨後,有機層經MgSO 4乾燥,過濾且濃縮以得到356 mg黃色泡沫狀物,其未經進一步純化按原樣使用:MS m/z507 and 523 (MH +)。 Steps 2 and 3 (preparation of Example 36): To a solution of the crude thiomethyl derivative (Example 1; 355 mg, 0.72 mmol, 1 equiv) in 7 mL of DCM was added m-CPBA (185 mg, 1.07 mmol, 1.5 equiv). The mixture was stirred at this temperature for 1 h. LCMS showed complete conversion to an 80:20 mixture of arginine and arginine. The mixture was concentrated to remove most of the DCM, then poured into EtOAc and washed 3 times with NaHCO 3 solution. The combined aqueous layers were back extracted with EtOAc and the combined organic layers were washed once with water followed by brine. The organic layer was then dried over MgSO 4 , filtered and concentrated to give 356 mg of a yellow foam which was used as such without further purification: MS m/z 507 and 523 (MH + ).

將來自上文之亞碸及碸(25 mg,0.05 mmol)與苯并咪唑(12 mg,0.1 mmol,2當量)的粗混合物裝入4 mL小瓶中且溶解於NMP (1 mL)中。隨後添加DIEA (43 µL,0.25 mmol,5當量)且在60℃下攪拌所得混合物19 h (LCMS顯示完全反應)。反應藉由添加0.2 mL AcOH來淬滅,隨後用甲醇稀釋至2 mL。過濾溶液,隨後藉由製備型HPLC (MeOH/H 2O/ 0.1% HCO 2H條件,10%-100%甲醇梯度)純化。合併含有主峰之級分且部分濃縮以移除甲醇。藉由添加幾毫升乙腈溶解所得懸浮液,隨後將溶液冷凍且凍乾。獲得8.1 mg呈粉紅色固體之所需產物(實例36)。 A crude mixture of arginine and arginine (25 mg, 0.05 mmol) and benzimidazole (12 mg, 0.1 mmol, 2 equiv) from above was charged to a 4 mL vial and dissolved in NMP (1 mL). Then DIEA (43 µL, 0.25 mmol, 5 equiv) was added and the resulting mixture was stirred at 60 °C for 19 h (LCMS showed complete reaction). The reaction was quenched by adding 0.2 mL of AcOH, then diluted to 2 mL with methanol. The solution was filtered and then purified by preparative HPLC (MeOH/H 2 O/0.1% HCO 2 H condition, 10%-100% methanol gradient). Fractions containing the main peak were combined and partially concentrated to remove methanol. The resulting suspension was dissolved by adding a few milliliters of acetonitrile, then the solution was frozen and lyophilized. 8.1 mg of the desired product were obtained as a pink solid (Example 36).

以類似方式製備之通式I及II之抑制劑的其他實例連同特徵資料列於表1及表2中。 使用一般合成方法B合成抑制劑I及II (實例12及56):

Figure 02_image1320
Further examples of inhibitors of general formulas I and II prepared in a similar manner are listed in Tables 1 and 2 together with characterization data. Inhibitors I and II were synthesized using General Synthetic Method B (Examples 12 and 56):
Figure 02_image1320

步驟1:將胺甲酸酯A-2 (1.50 g)溶解於DCM (5 mL)中且添加TFA (2 mL)。在室溫下攪拌2 h之後,完成去保護(LCMS)並且將反應混合物濃縮且在減壓下乾燥。Step 1: Carbamate A-2 (1.50 g) was dissolved in DCM (5 mL) and TFA (2 mL) was added. After stirring at room temperature for 2 h, deprotection (LCMS) was completed and the reaction mixture was concentrated and dried under reduced pressure.

步驟2:儘管來自步驟1 (上述)之粗TFA鹽可直接用於步驟2中,但所需中間物B-2經A-10之溶劑分解產生的不同量之8-羥基-2-硫甲基嘧啶并嘧啶污染。若在與A-10反應之前將苯胺TFA鹽中和為遊離苯胺,則此副反應可最小化且獲得更乾淨的中間物B-2。將來自步驟1之粗TFA溶解於DCM中且將溶液用NaHCO 3洗滌。在乾燥(MgSO 4)之後,移除揮發成分,得到呈褐色黏性固體之遊離苯胺B-1(0.85 g): 1H NMR (DMSO-d 6) δ:7.22 - 7.38 (m, 1H), 7.06 - 7.19 (m, 1H), 5.92 (br s, 2H)。 Step 2: Although the crude TFA salt from Step 1 (above) can be used directly in Step 2, solvolysis of the desired intermediate B-2 to A-10 produces varying amounts of 8-hydroxy-2-thiomethan pyrimidopyrimidine contamination. This side reaction can be minimized and a cleaner intermediate B-2 obtained if the aniline TFA salt is neutralized to free aniline prior to reaction with A-10. The crude TFA from step 1 was dissolved in DCM and the solution was washed with NaHCO 3 . After drying (MgSO 4 ), removal of volatile components gave free aniline B-1 (0.85 g) as a brown sticky solid: 1 H NMR (DMSO-d 6 ) δ: 7.22 - 7.38 (m, 1H), 7.06 - 7.19 (m, 1H), 5.92 (br s, 2H).

將氯嘧啶并嘧啶A-10 (550 mg。2.6 mmol)及B-1苯胺遊離鹼(0.39 g,2.25 mmol)溶解於乙酸(7 mL)中且將混合物在55℃下攪拌1 h。LCMS顯示完全轉化為所需產物。將反應混合物冷卻至RT且用三倍體積之水稀釋,導致產物沉澱為奶油色固體。藉由過濾收集物質,用水洗滌且在真空下乾燥(0.58 g): 1H NMR (DMSO-d 6) δ:10.28 (s, 1H), 9.35 (s, 1H), 8.60 (s, 1H), 8.23 - 8.49 (m, 1H), 7.58 (t, J = 8.8 Hz, 1H), 2.71 (s, 3H)。MS m/z350.1 (MH +)。 Chloropyrimidopyrimidine A-10 (550 mg. 2.6 mmol) and B-1 aniline free base (0.39 g, 2.25 mmol) were dissolved in acetic acid (7 mL) and the mixture was stirred at 55 °C for 1 h. LCMS showed complete conversion to desired product. The reaction mixture was cooled to RT and diluted with three volumes of water, resulting in precipitation of the product as a cream solid. The material was collected by filtration, washed with water and dried under vacuum (0.58 g): 1 H NMR (DMSO-d 6 ) δ: 10.28 (s, 1H), 9.35 (s, 1H), 8.60 (s, 1H), 8.23 - 8.49 (m, 1H), 7.58 (t, J = 8.8 Hz, 1H), 2.71 (s, 3H). MS m/z 350.1 (MH + ).

步驟3:將硝基芳烴B-2 (0.86 g,2.45 mmol)及水合物氯化錫(II) (2.7當量,6.6 mmol,1.49 g)懸浮於無水乙醇(10 mL)中且將混合物在65℃下攪拌3 h。將反應混合物分配於1 N NaOH與EtOAc之間。將有機萃取物用NaHCO 3、鹽水洗滌且乾燥(MgSO 4)。隨後,使用EtOAc作為溶離劑,藉由藉由矽膠(40 mL)墊過濾來將乾燥劑與萃取物分離,以移除基線物質。濃縮濾液且用EtOAc/己烷研磨殘餘物以得到呈橙色固體之苯胺B-3,其藉由過濾收集,用乙醚洗滌且乾燥(0.438 g): 1H NMR (DMSO-d 6) δ:9.98 (s, 1H), 9.28 (s, 1H), 8.53 (s, 1H), 6.93 (td, J = 9.4, 1.6 Hz, 1H), 6.77 (td, J = 9.4, 5.5 Hz, 1H), 5.12 (br s, 2H), 2.73 (s, 3H)。MS m/z321.1 (MH +)。 Step 3: Suspend nitroarene B-2 (0.86 g, 2.45 mmol) and tin(II) chloride hydrate (2.7 equivalents, 6.6 mmol, 1.49 g) in absolute ethanol (10 mL) and dissolve the mixture at 65 Stir at ℃ for 3 h. The reaction mixture was partitioned between 1 N NaOH and EtOAc. The organic extracts were washed with NaHCO 3 , brine and dried (MgSO 4 ). Subsequently, the desiccant was separated from the extract by filtration through a pad of silica gel (40 mL) using EtOAc as eluent to remove baseline material. The filtrate was concentrated and the residue was triturated with EtOAc/hexanes to give aniline B-3 as an orange solid which was collected by filtration, washed with ether and dried (0.438 g): 1 H NMR (DMSO-d 6 ) δ: 9.98 (s, 1H), 9.28 (s, 1H), 8.53 (s, 1H), 6.93 (td, J = 9.4, 1.6 Hz, 1H), 6.77 (td, J = 9.4, 5.5 Hz, 1H), 5.12 ( br s, 2H), 2.73 (s, 3H). MS m/z 321.1 (MH + ).

藉由使用10%-70% EtOAc/己烷(在1:2己烷-EA中Rf=0.3)之急速層析(30 mL)純化母液,以提供額外96 mg之苯胺B-3。The mother liquor was purified by flash chromatography (30 mL) using 10%-70% EtOAc/hexane (Rf=0.3 in 1:2 hexane-EA) to provide an additional 96 mg of aniline B-3.

步驟4 (實例12):將苯胺B-3 (25 mg,0.078 mmol)及4-甲氧基-2-甲苯磺醯氯(100 mg,0.23 mmol,3當量)溶解於THF (1 mL)中且添加吡啶(40 µL)。將混合物在45℃下攪拌1 h (藉由LCMS之50%轉化率)。添加另一份磺醯氯(100 mg)且在45℃下攪拌假定18 h (LCMS顯示完全轉化)。將反應混合物用TFA (100 µL)酸化且用DMSO稀釋至1.8 mL。藉由使用30%-100% MeOH+0.1% HCOOH梯度(13 mg)之製備型HPLC分離產物(實例12)。Step 4 (Example 12): Aniline B-3 (25 mg, 0.078 mmol) and 4-methoxy-2-toluenesulfonyl chloride (100 mg, 0.23 mmol, 3 equiv) were dissolved in THF (1 mL) And pyridine (40 µL) was added. The mixture was stirred at 45 °C for 1 h (50% conversion by LCMS). Another portion of sulfonyl chloride (100 mg) was added and stirred at 45 °C for an assumed 18 h (LCMS showed complete conversion). The reaction mixture was acidified with TFA (100 µL) and diluted to 1.8 mL with DMSO. The product was isolated by preparative HPLC using a 30%-100% MeOH+0.1% HCOOH gradient (13 mg) (Example 12).

步驟5及6 (實例56):在室溫下,向硫甲基嘧啶(實例12,300 mg,0.59 mmol)於DCM (5 mL)中之懸浮液中添加1.2當量之m-CPBA (160 mg,0.71 mmol)。混合物在10分鐘內變成黃色溶液。使其在室溫下攪拌總計45分鐘,此時LCMS揭示反應完成。濃縮混合物以移除大部分DCM,隨後分配於EtOAc與NaHCO 3水溶液之間。分離各層,且有機層用NaHCO 3溶液再洗滌兩次。將合併的水層用EtOAc反萃取且將合併的有機層用鹽水洗滌,隨後經MgSO 4乾燥且過濾。濃縮濾液至乾燥,隨後在真空下乾燥以得到295 mg亞碸與碸之混合物(藉由LCMS之~80:20的比)。物質未經進一步純化按原樣用於下一步驟中。 Steps 5 and 6 (Example 56): To a suspension of thiomethylpyrimidine (Example 12, 300 mg, 0.59 mmol) in DCM (5 mL) was added 1.2 equivalents of m-CPBA (160 mg , 0.71 mmol). The mixture turned into a yellow solution within 10 minutes. It was allowed to stir at room temperature for a total of 45 minutes, at which point LCMS revealed that the reaction was complete. The mixture was concentrated to remove most of the DCM, then partitioned between EtOAc and aqueous NaHCO 3 . The layers were separated, and the organic layer was washed two more times with NaHCO 3 solution. The combined aqueous layers were back extracted with EtOAc and the combined organic layers were washed with brine, then dried over MgSO 4 and filtered. The filtrate was concentrated to dryness and then dried under vacuum to give 295 mg of a mixture of argon and arginine (~80:20 ratio by LCMS). The material was used as such in the next step without further purification.

將4,5-二甲基-1H-咪唑鹽酸鹽(19 mg,0.14 mmol,3當量)及來自上文之亞碸-碸混合物(25 mg,0.048 mmol,1當量)裝入4 mL小瓶中,接著裝入NMP (o,5 mL)及DIEA (42 µL,0.24 mmol,5當量)。將所得混合物在60℃下攪拌4 h (LCMS顯示完全轉化)。將反應混合物用AcOH (0.2 mL)酸化,且產物(實例56)藉由製備型HPLC (MeOH/H 2O/ 0.1%甲酸,30%-100%甲醇梯度)分離。合併含有主峰之級分且部分濃縮以移除甲醇。藉由添加幾毫升乙腈溶解所得懸浮液,隨後將溶液冷凍且凍乾。獲得14 mg黃色粉末,藉由HPLC偵測其純度僅為88%。此物質藉由急速層析在3 g矽膠筒上,使用100% DCM至7%異丙醇/DCM梯度進行再純化。將適當的級分合併、濃縮、與乙腈共蒸發一次,隨後倒入1:1 MeCN/水混合物中。在凍乾之後,獲得7.5 mg呈黃色固體之所需產物(實例56)。 4,5-Dimethyl-1H-imidazole hydrochloride (19 mg, 0.14 mmol, 3 equiv) and the aridine-thridine mixture from above (25 mg, 0.048 mmol, 1 equiv) were charged to a 4 mL vial , followed by NMP (o, 5 mL) and DIEA (42 µL, 0.24 mmol, 5 equiv). The resulting mixture was stirred at 60 °C for 4 h (LCMS showed complete conversion). The reaction mixture was acidified with AcOH (0.2 mL), and the product (Example 56) was isolated by preparative HPLC (MeOH/H 2 O/0.1% formic acid, 30%-100% methanol gradient). Fractions containing the main peak were combined and partially concentrated to remove methanol. The resulting suspension was dissolved by adding a few milliliters of acetonitrile, then the solution was frozen and lyophilized. 14 mg of yellow powder was obtained, the purity of which was only 88% as detected by HPLC. This material was repurified by flash chromatography on a 3 g silica gel cartridge using a gradient of 100% DCM to 7% isopropanol/DCM. Appropriate fractions were combined, concentrated, co-evaporated once with acetonitrile, then poured into a 1:1 MeCN/water mixture. After lyophilization, 7.5 mg of the desired product was obtained as a yellow solid (Example 56).

以類似方式製備之通式I及II之抑制劑的其他實例連同特徵資料列於表2及表3中。 使用一般合成方法C合成抑制劑III及IV (實例29及73):

Figure 02_image1322
Further examples of inhibitors of general formulas I and II prepared in a similar manner are listed in Tables 2 and 3 together with characterization data. Inhibitors III and IV (Examples 29 and 73) were synthesized using General Synthetic Method C:
Figure 02_image1322

步驟1:將硫醯氯(0.051 ml,0.624 mmol)溶解於DCM (2 ml)中且將溶液冷卻至-78℃。歷時5 min,逐滴添加苯胺B-3 (50 mg,0.156 mmol)及三乙胺(0.11 ml,0.78 mmol)於DCM (5 mL)中之溶液。將反應混合物在-78℃下攪拌90 min,以得到中間物C-1之溶液。Step 1: Thioyl chloride (0.051 ml, 0.624 mmol) was dissolved in DCM (2 ml) and the solution was cooled to -78°C. A solution of aniline B-3 (50 mg, 0.156 mmol) and triethylamine (0.11 ml, 0.78 mmol) in DCM (5 mL) was added dropwise over 5 min. The reaction mixture was stirred at -78 °C for 90 min to obtain a solution of intermediate C-1.

步驟2 (實例29):將於DCM (3 mL)中之( R)-3-甲基吡咯啶鹽酸鹽(76 mg,0.62 mmol)添加至中間物C-1上之冷溶液中,接著添加吡啶(0.5 mL)。使反應混合物升溫至RT,隨後攪拌2 h (LCMS顯示產物之質量及反應完成)。將反應混合物蒸發至乾燥且與甲苯共沸以移除吡啶。將殘餘物在使用RediSep 24 g管柱(DCM/EtOAc)之ISCO上純化,以提供呈褐色固體之實例29之抑制劑(25 mg)。 Step 2 (Example 29): ( R )-3-Methylpyrrolidine hydrochloride (76 mg, 0.62 mmol) in DCM (3 mL) was added to the cold solution on Intermediate C-1, followed by Pyridine (0.5 mL) was added. The reaction mixture was allowed to warm to RT, then stirred for 2 h (LCMS showed mass of product and reaction was complete). The reaction mixture was evaporated to dryness and azeotroped with toluene to remove pyridine. The residue was purified on an ISCO using a RediSep 24 g column (DCM/EtOAc) to provide the inhibitor of Example 29 (25 mg) as a tan solid.

步驟3及4 (實例73):將來自步驟1之硫甲基嘧啶(實例29,20 mg,0.043 mmol)溶解於DCM (5 mL)中且添加m-CPBA (11.5 mg,0.051 mmol)。將混合物在RT下攪拌30 min (LCMS顯示不再有起始物質)。反應混合物用二氯甲烷(25 mL)稀釋且用飽和NaHCO 3溶液洗滌。分離有機層並且經無水Na 2SO 4乾燥且過濾。將濾液蒸發至乾燥,以提供呈褐色泡沫固體之亞碸與碸之混合物(18 mg),其未經任何進一步純化即用於下一步驟中。 Steps 3 and 4 (Example 73): The thiomethylpyrimidine from Step 1 (Example 29, 20 mg, 0.043 mmol) was dissolved in DCM (5 mL) and m-CPBA (11.5 mg, 0.051 mmol) was added. The mixture was stirred at RT for 30 min (LCMS showed no more starting material). The reaction mixture was diluted with dichloromethane (25 mL) and washed with saturated NaHCO 3 solution. The organic layer was separated and dried over anhydrous Na2SO4 and filtered. The filtrate was evaporated to dryness to afford a mixture of arginine and arginine (18 mg) as a brown foamy solid which was used in the next step without any further purification.

將來自上文之粗物質(18 mg,0.037 mmol)溶解於NMP (2 mL)中,且添加DIEA (0.033 ml,0.186 mmol)及苯并咪唑(13.2 mg,0.112 mmol)。將反應混合物在60℃下加熱3 h (LCMS顯示完全轉化)。將反應混合物用MeOH (1 mL)稀釋,用幾滴乙酸酸化且產物藉由使用30%–100% MeOH-Water-0.1% TFA梯度之製備型HPLC分離。將產物級分部分蒸發,溶解於ACN及水中且凍乾,以提供實例73 (12 mg)。The crude material from above (18 mg, 0.037 mmol) was dissolved in NMP (2 mL), and DIEA (0.033 ml, 0.186 mmol) and benzimidazole (13.2 mg, 0.112 mmol) were added. The reaction mixture was heated at 60 °C for 3 h (LCMS showed complete conversion). The reaction mixture was diluted with MeOH (1 mL), acidified with a few drops of acetic acid and the product was isolated by preparative HPLC using a 30%-100% MeOH-Water-0.1% TFA gradient. The product fractions were partially evaporated, dissolved in ACN and water and lyophilized to provide Example 73 (12 mg).

以類似方式製備之通式I及II之抑制劑的其他實例連同特徵資料列於表2及表3中。 使用一般合成方法D合成抑制劑V (實例88):

Figure 02_image1324
Further examples of inhibitors of general formulas I and II prepared in a similar manner are listed in Tables 2 and 3 together with characterization data. Inhibitor V was synthesized using General Synthetic Method D (Example 88):
Figure 02_image1324

步驟1:將胺基-二氯嘧啶并嘧啶D-2 (50 mg,0.23 mmol,1當量)及苯胺鹽酸鹽A-5 (85 mg,0.23 mmol,1當量)溶解於AcOH (1.5 mL)中且將混合物在55℃下攪拌1 h (LCMS顯示轉化為產物,但仍有少量苯胺)。添加另一10 mg二氯衍生物D-2且在在55℃下繼續攪拌30 min。冷卻至RT,用3倍體積的水稀釋,收集奶油色沉澱,用水洗滌且在真空下乾燥(120 mg): 1H NMR (DMSO-d 6) δ:10.10 (s, 1H), 9.78 (s, 1H), 8.61 (br s, 1H), 8.39 (br s, 1H), 8.37 (s, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.17 - 7.26 (m, 1H), 7.13 (t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.0 Hz, 1H), 6.86 (dd, J = 9.0, 2.0 Hz, 1H), 3.80 (s, 3H), 2.56 (s, 3H)。MS m/z508.0 (MH +)。 Step 1: Amino-dichloropyrimidopyrimidine D-2 (50 mg, 0.23 mmol, 1 equiv) and aniline hydrochloride A-5 (85 mg, 0.23 mmol, 1 equiv) were dissolved in AcOH (1.5 mL) and the mixture was stirred at 55 °C for 1 h (LCMS showed conversion to product, but still a small amount of aniline). Another 10 mg of dichloro derivative D-2 was added and stirring was continued for 30 min at 55°C. Cool to RT, dilute with 3 volumes of water, collect the cream colored precipitate, wash with water and dry under vacuum (120 mg): 1 H NMR (DMSO-d 6 ) δ: 10.10 (s, 1H), 9.78 (s , 1H), 8.61 (br s, 1H), 8.39 (br s, 1H), 8.37 (s, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.17 - 7.26 (m, 1H), 7.13 ( t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.0 Hz, 1H), 6.86 (dd, J = 9.0, 2.0 Hz, 1H), 3.80 (s, 3H), 2.56 (s, 3H). MS m/z 508.0 (MH + ).

步驟2:將胺基-氯嘧啶(25 mg,0.05 mmol,1當量)及苯并咪唑(10.5 mg,0.09 mmol,1.8當量)懸浮於DMSO (0.7 mL)中且添加碳酸銫(37 mg,0.11 mmol,2.3當量),接著添加Cu粉(0.3 mg,0.1當量)及外消旋-BINOL (1.5 mg,0.1當量)。將混合物在110℃下攪拌2 h (LCMS顯示完全轉化為所需質量)。將褐色反應混合物用TFA (100 µL)酸化且產物藉由使用30%-100% MeOH/0.1% HCOOH梯度之製備型HPLC分離。在凍乾之後,將實例88之抑制劑(10 mg)分離為米色固體。以類似方式製備實例85、86及87。Step 2: Amino-chloropyrimidine (25 mg, 0.05 mmol, 1 equiv) and benzimidazole (10.5 mg, 0.09 mmol, 1.8 equiv) were suspended in DMSO (0.7 mL) and cesium carbonate (37 mg, 0.11 mmol, 2.3 equiv), followed by Cu powder (0.3 mg, 0.1 equiv) and rac-BINOL (1.5 mg, 0.1 equiv). The mixture was stirred at 110 °C for 2 h (LCMS showed complete conversion to the desired mass). The brown reaction mixture was acidified with TFA (100 μL) and the product was separated by preparative HPLC using a 30%-100% MeOH/0.1% HCOOH gradient. The inhibitor of Example 88 (10 mg) was isolated as a beige solid after lyophilization. Examples 85, 86 and 87 were prepared in a similar manner.

在實例84之情況下,如流程A及B之最後一步中所描述,產物係在鹼性條件(將中間物D-3、4當量之DIEA及2當量之3-氟吡咯啶鹽酸鹽在100℃下在NMP中加熱1.5 h)下使用親核置換形成。In the case of Example 84, as described in the last step of schemes A and B, the product was obtained under basic conditions (intermediate D-3, 4 equivalents of DIEA and 2 equivalents of 3-fluoropyrrolidine hydrochloride in Formation using nucleophilic displacement under heating in NMP at 100 °C for 1.5 h).

以類似方式製備之通式V之抑制劑的其他實例連同特徵資料列於表4中。 使用一般合成方法E合成抑制劑VI:

Figure 02_image1326
Further examples of inhibitors of general formula V prepared in a similar manner are listed in Table 4 together with characterization data. Inhibitor VI was synthesized using General Synthetic Method E:
Figure 02_image1326

步驟1:如一般合成方法A之步驟1及2中所描述,將由適當的中間物A-5製備之中間物I (Ar=3-氟-2-甲苯基,實例90)氧化成亞碸與碸之混合物。Step 1: Oxidation of intermediate I (Ar = 3-fluoro-2-tolyl, Example 90) prepared from the appropriate intermediate A-5 as described in steps 1 and 2 of General Synthetic Method A to arone and A mixture of porridge.

步驟2及3 (X=CH):將碳酸銫(1.16 g,3.51 mmol)及甲基吲哚-3-甲酸酯(X=CH;0.554 g,3.1 mmol)懸浮於DMSO (62 mL)中且將混合物在RT下攪拌10 min。添加來自步驟1之亞碸與碸之混合物(1.55 g,2.95 mmol)且將混合物在80℃下攪拌18 h,此時藉由LCMS分析判斷轉化完成。Steps 2 and 3 (X=CH): Cesium carbonate (1.16 g, 3.51 mmol) and methylindole-3-carboxylate (X=CH; 0.554 g, 3.1 mmol) were suspended in DMSO (62 mL) And the mixture was stirred at RT for 10 min. The mixture of arginine and arginine from step 1 (1.55 g, 2.95 mmol) was added and the mixture was stirred at 80 °C for 18 h at which time the conversion was judged to be complete by LCMS analysis.

將NaOH (236 mg,5.9 mmol)添加至來自步驟2之反應混合物中且在RT下攪拌混合物,直至如藉由LCMS分析確定完全轉化為所需羧酸中間物E-1 (X=CH)。隨後添加檸檬酸溶液(1 M)以沉澱產物,將其過濾,用水洗滌且乾燥以得到呈褐色固體之E-1 (X=CH) (1.67 g,93%產率): 1H NMR (DMSO-d 6) δ 12.70 (br, 1H), 10.56 (s, 1H), 10.50 (s, 1H), 9.64 (s, 1H), 9.43 (s, 1H), 8.89 (d, J = 8.3 Hz, 1H), 8.55 (s, 1H), 8.20 – 8.12 (m, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.45 – 7.33 (m, 3H), 7.27 (t, J = 9.2 Hz, 1H), 2.49 – 2.48 (m, 3H)。MS m/z620.3 (MH +)。 NaOH (236 mg, 5.9 mmol) was added to the reaction mixture from step 2 and the mixture was stirred at RT until complete conversion to the desired carboxylic acid intermediate E-1 (X=CH) as determined by LCMS analysis. Citric acid solution (1 M) was then added to precipitate the product, which was filtered, washed with water and dried to give E-1 (X=CH) (1.67 g, 93% yield) as a brown solid: 1 H NMR (DMSO -d 6 ) δ 12.70 (br, 1H), 10.56 (s, 1H), 10.50 (s, 1H), 9.64 (s, 1H), 9.43 (s, 1H), 8.89 (d, J = 8.3 Hz, 1H ), 8.55 (s, 1H), 8.20 – 8.12 (m, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.53 – 7.45 (m, 1H), 7.45 – 7.33 (m, 3H), 7.27 ( t, J = 9.2 Hz, 1H), 2.49 – 2.48 (m, 3H). MS m/z 620.3 (MH + ).

步驟2及3 (X=N):將三級丁醇鈉(341 mg,3.54 mmol)添加至於無水THF (6 2mL)中之1H-吲唑-3-甲酸甲酯(573 mg,3.19 mmol)中,且將混合物在RT下攪拌10 min。添加來自步驟1之亞碸/碸混合物(1.55 g,2.95 mmol)且將混合物在RT下攪拌18 h,此時藉由LCMS分析判斷轉化完成。將反應混合物在減壓下濃縮至20 mL之體積且添加NaOH (236 mg,5.9 mmol)於水(20 mL)中之溶液。將混合物在RT下攪拌4 h,此時藉由LCMS分析完全轉化為所需羧酸。反應混合物傾向於在減壓下濃縮以移除THF且將水性殘餘物用1 M檸檬酸酸化以沉澱產物,該沉澱產物係藉由過濾收集,用水洗滌且乾燥,以定量產率得到呈褐色固體之E-1 (X=N): 1H NMR (DMSO-d 6) δ 10.53 (br, 1H), 10.03 (s, 1H), 9.69 (s, 1H), 8.89 (d, J = 8.6 Hz, 1H), 8.61 (s, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.55 (dt, J = 8.0, 1.5 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.41 (td, J = 8.0, 5.6 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 (t, J = 9.3 Hz, 1H), 2.50 – 2.49 (m,  3H)。MS m/z607.2 (MH +)。 Steps 2 and 3 (X=N): Sodium tert-butoxide (341 mg, 3.54 mmol) was added to methyl 1H-indazole-3-carboxylate (573 mg, 3.19 mmol) in anhydrous THF (6.2 mL) , and the mixture was stirred at RT for 10 min. The argon/throne mixture from step 1 (1.55 g, 2.95 mmol) was added and the mixture was stirred at RT for 18 h at which point the conversion was complete as judged by LCMS analysis. The reaction mixture was concentrated under reduced pressure to a volume of 20 mL and a solution of NaOH (236 mg, 5.9 mmol) in water (20 mL) was added. The mixture was stirred at RT for 4 h, at which time the conversion to the desired carboxylic acid was complete by LCMS analysis. The reaction mixture was tended to be concentrated under reduced pressure to remove THF and the aqueous residue was acidified with 1 M citric acid to precipitate the product, which was collected by filtration, washed with water and dried to give a brownish color in quantitative yield. E-1 in solid (X=N): 1 H NMR (DMSO-d 6 ) δ 10.53 (br, 1H), 10.03 (s, 1H), 9.69 (s, 1H), 8.89 (d, J = 8.6 Hz , 1H), 8.61 (s, 1H), 8.26 (d, J = 8.1 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.55 (dt, J = 8.0, 1.5 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.41 (td, J = 8.0, 5.6 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 ( t, J = 9.3 Hz, 1H), 2.50 – 2.49 (m, 3H). MS m/z 607.2 (MH + ).

步驟4 (實例103之製備,X=CH):將羧酸E-1 (X=CH;61 mg,0.1 mmol)及(S)-3-羥基哌啶鹽酸鹽(17 mg,0.12 mmol)溶解於DMF (0.5 mL)中且添加DIPEA (61 µL,0.35 mmol),接著添加HATU (58 mg,0.15 mmol)。將混合物在環境溫度下攪拌18 h。隨後將反應混合物藉由製備型逆相HPLC直接純化,以提供在凍乾後呈黃色粉末之實例103之化合物。Step 4 (Preparation of Example 103, X=CH): Add carboxylic acid E-1 (X=CH; 61 mg, 0.1 mmol) and (S)-3-hydroxypiperidine hydrochloride (17 mg, 0.12 mmol) Dissolved in DMF (0.5 mL) and added DIPEA (61 µL, 0.35 mmol) followed by HATU (58 mg, 0.15 mmol). The mixture was stirred at ambient temperature for 18 h. The reaction mixture was then directly purified by preparative reverse phase HPLC to provide the compound of Example 103 as a yellow powder after lyophilization.

列於表3 (X=CH或N)中且使用方法E之其他實例係以類似方式製備。 使用一般合成方法F合成抑制劑VII (實例95):

Figure 02_image1328
Other examples listed in Table 3 (X = CH or N) and using Method E were prepared in a similar manner. Inhibitor VII was synthesized using General Synthetic Method F (Example 95):
Figure 02_image1328

步驟1:3-吲哚磺醯氯係如 Org.Lett.2011, 13, 3588中所描述來製備。將磺醯氯(200 mg,0.9 mmol)裝入25 mL燒瓶中,向該燒瓶中添加THF (4 mL),接著添加二甲胺鹽酸鹽(2當量,150 mg,1.9 mmol)及DIEA (4當量,0.65 mL,3.7 mmol)。溶液很快變成淡黃色,且黃色膠狀油狀物沉積於底部。在RT下攪拌20分鐘之後(LCMS顯示磺醯氯完全消耗)。將混合物分配於EtOAc與飽和NH 4Cl溶液之間。水層用EtOAc萃取且將合併的有機層用飽和NH 4Cl溶液再洗滌一次,隨後用鹽水洗滌。隨後,將其經MgSO 4乾燥,過濾且濃縮至乾燥,以得到65 mg米色結晶固體,其未經進一步純化按原樣使用: 1H NMR (DMSO-d 6) δ:12.17 (br s, 1H), 7.96 (d, J = 3.1 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.49 - 7.57 (m, 1H), 7.22 - 7.28 (m, 1H), 7.16 - 7.22 (m, 1H), 2.58 (s, 6H)。MS m/z225.1 (MH +)。 Step 1: 3-Indosulfonyl chloride was prepared as described in Org. Lett. 2011, 13 , 3588. Sulfonyl chloride (200 mg, 0.9 mmol) was charged to a 25 mL flask, THF (4 mL) was added to the flask, followed by dimethylamine hydrochloride (2 equiv, 150 mg, 1.9 mmol) and DIEA ( 4 equivalents, 0.65 mL, 3.7 mmol). The solution quickly turned pale yellow, and a yellow gummy oil settled to the bottom. After stirring at RT for 20 minutes (LCMS showed complete consumption of sulfonyl chloride). The mixture was partitioned between EtOAc and saturated NH4Cl solution. The aqueous layer was extracted with EtOAc and the combined organic layers were washed once more with saturated NH4Cl solution followed by brine. Then, it was dried over MgSO 4 , filtered and concentrated to dryness to give 65 mg beige crystalline solid which was used as received without further purification: 1 H NMR (DMSO-d 6 ) δ: 12.17 (br s, 1H) , 7.96 (d, J = 3.1 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.49 - 7.57 (m, 1H), 7.22 - 7.28 (m, 1H), 7.16 - 7.22 (m, 1H ), 2.58 (s, 6H). MS m/z 225.1 (MH + ).

步驟2:如一般方法A中所描述,將硫甲基衍生物I (Ar=3-氟-2-甲苯基;實例90)氧化為亞碸與碸之混合物。Step 2: Oxidation of thiomethyl derivative I (Ar = 3-fluoro-2-tolyl; Example 90) to a mixture of aridine and aridine as described in General Method A.

步驟3 (實例95):使用一般方法A,由來自步驟1之吲哚磺醯胺及來自步驟2之亞碸/碸混合物製備。Step 3 (Example 95): Prepared using general method A from indosulfonamide from step 1 and the argon/throne mixture from step 2.

表3中所列之其他實例係使用一般方法F,以類似方式製備。 使用一般合成方法G合成抑制劑VIII (實例142):

Figure 02_image1330
The other examples listed in Table 3 were prepared in a similar manner using General Method F. Inhibitor VIII was synthesized using General Synthetic Method G (Example 142):
Figure 02_image1330

步驟1:向1H-吲哚-3-基-硫氰酸酯( Phosphorus, Sulfur and Silicon and the Related Elements2014, 189, 1378) (100 mg,0.57 mmol)於iPrOH (5 mL)中之溶液中添加九水合硫化鈉(414 mg,1.72 mmol),溶解於0.5 mL水中,隨後將所得混合物在50℃下攪拌2 h。此後,添加4-氯四氫哌喃(0.19 mL,1.72 mmol)且在50℃下攪拌隔夜。用EtOAc (30 mL)稀釋反應混合物且進行分離。將有機層用水(15 mL)洗滌,接著用鹽水(15 mL)洗滌,經MgSO 4乾燥且隨後在真空下濃縮以得到粗硫化物,其未經進一步純化直接用於下一步驟中。 Step 1: To a solution of 1H-indol-3-yl-thiocyanate ( Phosphorus, Sulfur and Silicon and the Related Elements 2014, 189 , 1378) (100 mg, 0.57 mmol) in iPrOH (5 mL) Sodium sulfide nonahydrate (414 mg, 1.72 mmol) was added, dissolved in 0.5 mL of water, and the resulting mixture was stirred at 50 °C for 2 h. After this time, 4-chlorotetrahydropyranan (0.19 mL, 1.72 mmol) was added and stirred at 50 °C overnight. The reaction mixture was diluted with EtOAc (30 mL) and separated. The organic layer was washed with water (15 mL) followed by brine (15 mL), dried over MgSO 4 and then concentrated under vacuum to give the crude sulfide which was used directly in the next step without further purification.

步驟2:將來自步驟1之硫化物溶解於DCM中且添加3-氯過氧苄酸(297 mg,1.72 mmol)並且在室溫下攪拌2 h。完成之後,反應藉由添加10 mL之飽和NaHCO 3水溶液與10% Na 2SO 3水溶液之1:1溶液淬滅。將所得懸浮液在室溫下攪拌15 min。添加EtOAc且分離有機層。有機層用水(15 mL)洗滌,隨後用飽和鹽水溶液(15 mL)洗滌。將有機層進行分離、乾燥(MgSO 4)且過濾,接著濃縮至乾燥以提供預期碸(154 mg,98%),將其溶解於DMSO中且未經進一步純化直接用於下一步驟中。MS m/z266.2 (MH +)。 Step 2: The sulfide from step 1 was dissolved in DCM and 3-chloroperoxybenzoic acid (297 mg, 1.72 mmol) was added and stirred at room temperature for 2 h. After completion, the reaction was quenched by adding 10 mL of a 1:1 solution of saturated aqueous NaHCO 3 and 10% aqueous Na 2 SO 3 . The resulting suspension was stirred at room temperature for 15 min. EtOAc was added and the organic layer was separated. The organic layer was washed with water (15 mL), followed by saturated brine solution (15 mL). The organic layer was separated, dried (MgSO 4 ) and filtered, then concentrated to dryness to provide the expected sulfide (154 mg, 98%), which was dissolved in DMSO and used directly in the next step without further purification. MS m/z 266.2 (MH + ).

步驟3 (實例142):使用一般方法A中所描述之程序,將來自步驟2之吲哚與中間物I (Ar=2,3-二氯甲基)偶合。Step 3 (Example 142): Using the procedure described in General Method A, the indole from Step 2 was coupled with Intermediate I (Ar = 2,3-dichloromethyl).

在步驟1中使用適當的烷化劑以類似方式製備的抑制劑之其他實例列於方法F下之表3中。 使用一般合成方法H合成抑制劑IX (實例130): Additional examples of inhibitors prepared in a similar manner in Step 1 using the appropriate alkylating agent are listed in Table 3 under Method F. Synthesis of Inhibitor IX (Example 130) using General Synthetic Method H:

在步驟2中,使用鐵作為還原劑(實例130):

Figure 02_image1332
In step 2, iron was used as reducing agent (Example 130):
Figure 02_image1332

步驟1:將4-甲哌啶-4-醇(0.24 g,1.84 mmol)及碳酸鉀(0.49 g,3.52 mmol)添加至3-氟-2-硝基-苯胺(0.25 g,1.60 mmol)於MeCN (2.6 mL)中之溶液中。將所得混合物在85℃下攪拌10 h。在減壓下移除MeCN且添加EtOAc。將懸浮液離心且傾入燒瓶中。將溶液濃縮且粗1-(3-胺基-2-硝基-苯基)-4-甲基-哌啶-4-醇(0.40 g,94%產率)未經進一步純化即用於下一步驟中。MS m/z252.2 (MH +)。 Step 1: Add 4-methylpiperidin-4-ol (0.24 g, 1.84 mmol) and potassium carbonate (0.49 g, 3.52 mmol) to 3-fluoro-2-nitro-aniline (0.25 g, 1.60 mmol) in in solution in MeCN (2.6 mL). The resulting mixture was stirred at 85 °C for 10 h. MeCN was removed under reduced pressure and EtOAc was added. The suspension was centrifuged and poured into a flask. The solution was concentrated and the crude 1-(3-amino-2-nitro-phenyl)-4-methyl-piperidin-4-ol (0.40 g, 94% yield) was used without further purification in the following in one step. MS m/z 252.2 (MH + ).

步驟2 (使用鐵作為還原劑):將鐵(0.37 g,6.70 mmol)及氯化銨(0.36 g, 6.70 mmol)添加至1-(3-胺基-2-硝基-苯基)-4-甲基-哌啶-4-醇(0.34 g,1.34 mmol)於iPrOH (6.5 mL)及甲酸(1.9 mL,49.6 mmol)中之混合物中。將所得混合物加熱至90℃且攪拌10 h。將反應混合物冷卻至室溫,且藉由Celite®過濾。濃縮溶液且將粗物質藉由管柱層析(矽膠,0%-15% MeOH/DCM)純化以得到呈微紅色泡沫狀固體之1-(1H-苯并咪唑-4-基)-4-甲基-哌啶-4-醇(0.17 g,55%產率)。MS m/z232.2 (MH +)。 1H NMR (400 MHz, DMSO-d 6)δ:12.21 (br s, 1H), 8.02 (s, 1H), 6.85 - 7.20 (m, 2H), 6.33 - 6.67 (m, 1H), 4.24 (s, 1H), 3.15 - 3.26 (m, 2H), 2.48 (td, J= 1.66, 3.72 Hz, 2H), 1.41 - 1.74 (m, 4H), 1.16 (s, 3H)。 Step 2 (using iron as reducing agent): Add iron (0.37 g, 6.70 mmol) and ammonium chloride (0.36 g, 6.70 mmol) to 1-(3-amino-2-nitro-phenyl)-4 - A mixture of methyl-piperidin-4-ol (0.34 g, 1.34 mmol) in iPrOH (6.5 mL) and formic acid (1.9 mL, 49.6 mmol). The resulting mixture was heated to 90 °C and stirred for 10 h. The reaction mixture was cooled to room temperature and filtered through Celite®. The solution was concentrated and the crude material was purified by column chromatography (silica gel, 0%-15% MeOH/DCM) to give 1-(1H-benzimidazol-4-yl)-4- as a reddish foamy solid Methyl-piperidin-4-ol (0.17 g, 55% yield). MS m/z 232.2 (MH + ). 1 H NMR (400 MHz, DMSO-d 6 )δ: 12.21 (br s, 1H), 8.02 (s, 1H), 6.85 - 7.20 (m, 2H), 6.33 - 6.67 (m, 1H), 4.24 (s , 1H), 3.15 - 3.26 (m, 2H), 2.48 (td, J = 1.66, 3.72 Hz, 2H), 1.41 - 1.74 (m, 4H), 1.16 (s, 3H).

步驟3 (實例130):使用一般方法A中所描述之程序,將來自步驟2之苯并咪唑與中間物I (Ar=2,3-二氯甲基)偶合。 在步驟2中,將鋅用作還原劑(苯并咪唑片段C328之製備): Step 3 (Example 130): Using the procedure described in General Method A, the benzimidazole from Step 2 was coupled with Intermediate I (Ar = 2,3-dichloromethyl). In step 2, zinc is used as reducing agent (preparation of benzimidazole fragment C328):

步驟1:4-甲哌啶-4-醇由(R)-3-甲氧哌啶鹽酸鹽替代。步驟1之硝基芳烴係以88%產率獲得,呈紅色固體且未經進一步純化直接用於步驟2中:MS m/z252.1 (MH +)。 1H NMR (400 MHz, CDCl 3)δ:1.2 - 1.35 (m, 1 H), 1.58 - 1.73 (m, 1 H), 1.74 - 1.85 (m, 1 H), 2.06 - 2.17 (m, 1 H), 2.53 - 2.61 (m, 1 H), 2.70 (td, J=11.5, 3.0 Hz, 1 H), 3.12 (dt, J=12.0, 3.8 Hz, 1 H), 3.35 - 3.45 (m, 2 H), 3.40 (s, 3 H), 4.79 (br s, 2 H), 6.38 (dd, J=8.25, 1.13 Hz, 1 H), 6.41 (dd, J=8.13, 1.13 Hz, 1 H), 7.12 (t, J=8.13 Hz, 1 H)。 Step 1: 4-Mepiperidin-4-ol is replaced by (R)-3-methoxypiperidine hydrochloride. The nitroarene from step 1 was obtained in 88% yield as a red solid and used directly in step 2 without further purification: MS m/z 252.1 (MH + ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.2 - 1.35 (m, 1 H), 1.58 - 1.73 (m, 1 H), 1.74 - 1.85 (m, 1 H), 2.06 - 2.17 (m, 1 H) ), 2.53 - 2.61 (m, 1 H), 2.70 (td, J=11.5, 3.0 Hz, 1 H), 3.12 (dt, J=12.0, 3.8 Hz, 1 H), 3.35 - 3.45 (m, 2 H ), 3.40 (s, 3 H), 4.79 (br s, 2 H), 6.38 (dd, J=8.25, 1.13 Hz, 1 H), 6.41 (dd, J=8.13, 1.13 Hz, 1 H), 7.12 (t, J=8.13 Hz, 1 H).

步驟2:在配備有鐵氟龍塗佈之磁力攪拌棒的250 mL圓底燒瓶中且在氮氣下,將來自步驟1之粗產物(1.37 g,5.45 mmol)及氯化銨(4.08 g,76.3 mmol)於甲醇(18 mL)及2-甲基四氫呋喃(36 mL)中之混合物用所添加的一份鋅粉(2.7 g,38.16 mmol)處理。觀測到放熱且在約10 min之後,反應混合物變成無色。將反應混合物攪拌1 h且LCMS指示完全轉化為1,2-二胺苯。反應混合物藉由小celite墊過濾且用DCM:異丙醇(9: 1,30 mL)洗滌。將濾液用DCM-異丙醇(9:1,100 mL)稀釋且用10%碳酸鉀水溶液(30 mL,pH ~ 10)洗滌。收集有機相且經無水硫酸鎂乾燥。在減壓下蒸發溶劑,得到1.2 g:MS m/z222.2 (MH +)。 1H NMR (400 MHz, CDCl 3)δ:1.4 - 1.6 (br s, 1 H), 1.61 - 1.74 (m, 1 H), 1.81 - 1.94 (m, 1 H), 2.0 (br s, 1 H), 2.65 (br s, 1 H), 2.95 (br s, 1 H), 3.17 (br s, 1 H), 3.37 (br s, 2 H), 3.4 - 3.5 (m, 2 H), 3.41 (s, 3 H), 3.79 (br s, 2 H), 6.53 (dd, J=7.63, 1.45 Hz, 1 H), 6.61 (dd, J=7.94, 1.45 Hz, 1 H), 6.68 (t, J=7.8 Hz, 1 H)。 Step 2: The crude product from Step 1 (1.37 g, 5.45 mmol) and ammonium chloride (4.08 g, 76.3 mmol) in methanol (18 mL) and 2-methyltetrahydrofuran (36 mL) was treated with an added portion of zinc dust (2.7 g, 38.16 mmol). An exotherm was observed and after about 10 min the reaction mixture became colorless. The reaction mixture was stirred for 1 h and LCMS indicated complete conversion to 1,2-diaminobenzene. The reaction mixture was filtered through a small pad of celite and washed with DCM:isopropanol (9:1, 30 mL). The filtrate was diluted with DCM-isopropanol (9:1, 100 mL) and washed with 10% aqueous potassium carbonate (30 mL, pH~10). The organic phase was collected and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give 1.2 g: MS m/z 222.2 (MH + ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.4 - 1.6 (br s, 1 H), 1.61 - 1.74 (m, 1 H), 1.81 - 1.94 (m, 1 H), 2.0 (br s, 1 H ), 2.65 (br s, 1 H), 2.95 (br s, 1 H), 3.17 (br s, 1 H), 3.37 (br s, 2 H), 3.4 - 3.5 (m, 2 H), 3.41 ( s, 3 H), 3.79 (br s, 2 H), 6.53 (dd, J=7.63, 1.45 Hz, 1 H), 6.61 (dd, J=7.94, 1.45 Hz, 1 H), 6.68 (t, J =7.8 Hz, 1 H).

如下將粗1,2-二苯胺環化為所需苯并咪唑:向配備有鐵氟龍塗佈之磁力攪拌棒、回流冷凝管且在氮氣下之100 mL圓底燒瓶中裝入2-丙醇(20 mL)及上述粗產物(1.20 g,5.42 mmol)。隨後,以一份添加甲酸(5 mL,132 mmol)且將所得溶液在60℃下加熱16 h。LCMS指示完全形成所需苯并咪唑(m/z 232)。將冷卻的反應混合物用DCM稀釋:將2-丙醇(9:1,200 ml)用10%碳酸鉀水溶液(40 mL,pH 10)、鹽水洗滌且經無水硫酸鎂乾燥。在減壓下蒸發溶劑,得到褐色固體。將該固體在矽膠(3×12 cm)上層析,用乙酸乙酯-2-丙醇(90:5至9:1)溶離,以得到1.01 g (81%產率)。用乙酸乙酯(10 mL)研磨得到0.88 g淺橙褐色固體:MS m/z232.1 (MH +)。 1H NMR (400 MHz, CDCl 3)δ:1.47 (br s, 1 H) 1.80 (br s, 1 H) 1.94 (br s, 1 H), 2.13 (br s, 1 H), 2.92 (br s, 2 H), 3.47 (s, 3 H), 3.53 - 3.63 (m, 1 H), 4.1 ( br s, 2 H), 6.72 (br s, 1 H), 7.07 (br s, 1 H), 7.19 (t, J=7.9 Hz, 1 H), 7.98 (s, 1 H), 9.43 and 9.7 (two br s, ratio 2:1, 1 H)。 Crude 1,2-diphenylamine was cyclized to the desired benzimidazole as follows: A 100 mL round bottom flask equipped with a Teflon-coated magnetic stir bar, reflux condenser, and under nitrogen was charged with 2-propane Alcohol (20 mL) and the above crude product (1.20 g, 5.42 mmol). Subsequently, formic acid (5 mL, 132 mmol) was added in one portion and the resulting solution was heated at 60 °C for 16 h. LCMS indicated complete formation of the desired benzimidazole (m/z 232). The cooled reaction mixture was diluted with DCM: 2-propanol (9:1, 200 ml) was washed with 10% aqueous potassium carbonate (40 mL, pH 10), brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a brown solid. The solid was chromatographed on silica gel (3 x 12 cm), eluting with ethyl acetate-2-propanol (90:5 to 9:1 ) to afford 1.01 g (81% yield). Trituration with ethyl acetate (10 mL) gave 0.88 g of a light orange-brown solid: MS m/z 232.1 (MH + ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.47 (br s, 1 H) 1.80 (br s, 1 H) 1.94 (br s, 1 H), 2.13 (br s, 1 H), 2.92 (br s , 2 H), 3.47 (s, 3 H), 3.53 - 3.63 (m, 1 H), 4.1 (br s, 2 H), 6.72 (br s, 1 H), 7.07 (br s, 1 H), 7.19 (t, J=7.9 Hz, 1 H), 7.98 (s, 1 H), 9.43 and 9.7 (two br s, ratio 2:1, 1 H).

在步驟1中使用適當的胺且在步驟2中使用鐵或鋅作為還原劑以類似方式製備的抑制劑之其他實例列於方法H下之表3中。 使用一般合成方法I合成抑制劑X (實例138):

Figure 02_image1334
Further examples of inhibitors prepared in a similar manner using the appropriate amine in step 1 and iron or zinc as reducing agent in step 2 are listed in Table 3 under method H. Inhibitor X was synthesized using General Synthetic Method I (Example 138):
Figure 02_image1334

步驟1:將1-氧-8-氮雜螺[4.5]癸烷鹽酸鹽(188 mg,1.06 mmol)及碳酸鉀(2.20當量,292 mg,2.11 mmol)添加至3-氟-2-硝基-苯胺(150 mg,0.961 mmol)於ACN (4.5 mL)中之鮮紅色溶液中。將所得混合物在90℃下攪拌16 h。一旦完成,即將反應混合物用ACN稀釋且離心。分離上清液且按原樣用於下一步驟中。MS m/z278.3 (MH +)。 Step 1: Add 1-oxo-8-azaspiro[4.5]decane hydrochloride (188 mg, 1.06 mmol) and potassium carbonate (2.20 equivalents, 292 mg, 2.11 mmol) to 3-fluoro-2-nitrate A bright red solution of di-aniline (150 mg, 0.961 mmol) in ACN (4.5 mL). The resulting mixture was stirred at 90 °C for 16 h. Once complete, the reaction mixture was diluted with ACN and centrifuged. The supernatant was separated and used as such in the next step. MS m/z 278.3 (MH + ).

步驟2:向於ACN中之2-硝基-3-(1-氧-8-氮雜螺[4.5]癸-8-基)苯胺(250 mg,0.901 mmol)中添加氯化銨(1028 mg,19.2 mmol)及鋅(628 mg,9.61 mmol)。將所得懸浮液在40℃下攪拌1 h。一旦完成,即將反應混合物用EtOAc稀釋,隨後離心。分離上清液且在真空下蒸發。將殘餘3-(1-氧-8-氮雜螺[4.5]癸-8-基)苯-1,2-二胺(194 mg,0.784 mmol,82%產率)按原樣用於下一步驟中。MS m/z248.2 (MH +)。 Step 2: To 2-nitro-3-(1-oxo-8-azaspiro[4.5]dec-8-yl)aniline (250 mg, 0.901 mmol) in ACN was added ammonium chloride (1028 mg , 19.2 mmol) and zinc (628 mg, 9.61 mmol). The resulting suspension was stirred at 40 °C for 1 h. Once complete, the reaction mixture was diluted with EtOAc and centrifuged. The supernatant was separated and evaporated under vacuum. The residual 3-(1-oxo-8-azaspiro[4.5]dec-8-yl)benzene-1,2-diamine (194 mg, 0.784 mmol, 82% yield) was used as such in the next step middle. MS m/z 248.2 (MH + ).

步驟3:將3-(1-氧-8-氮雜螺[4.5]癸-8-基)苯-1,2-二胺(194 mg,0.78 mmol)溶解於AcOH (6 mL)中,隨後添加亞硝酸鈉(54 mg,0.78 mmol)且在室溫下攪拌1 h。一旦完成,即添加EtOAc及NaHCO 3水溶液且分離有機層。將有機層用NaHCO 3水溶液洗滌,隨後用鹽水洗滌,經MgSO 4乾燥,過濾且在真空下濃縮以提供8-(1H-苯并三唑-4-基)-1-氧-8-氮雜螺[4.5]癸烷(165 mg,0.64 mmol,67%產率),其未經純化即使用。MS m/z259.2 (MH +)。 Step 3: 3-(1-Oxo-8-azaspiro[4.5]dec-8-yl)benzene-1,2-diamine (194 mg, 0.78 mmol) was dissolved in AcOH (6 mL), followed by Sodium nitrite (54 mg, 0.78 mmol) was added and stirred at room temperature for 1 h. Once complete, EtOAc and aqueous NaHCO 3 were added and the organic layer was separated. The organic layer was washed with aqueous NaHCO 3 followed by brine, dried over MgSO 4 , filtered and concentrated under vacuum to afford 8-(1H-benzotriazol-4-yl)-1-oxo-8-aza Spiro[4.5]decane (165 mg, 0.64 mmol, 67% yield) was used without purification. MS m/z 259.2 (MH + ).

步驟4 (實例138):使用一般方法A中所描述之程序,將來自步驟3之苯并三唑與中間物I (Ar=2,3-二氯苯基)偶合。Step 4 (Example 138): Using the procedure described in General Method A, the benzotriazole from Step 3 was coupled with Intermediate I (Ar = 2,3-dichlorophenyl).

在步驟1中使用適當的胺,以類似方式製備之抑制劑的其他實例列於方法I下之表3中。 實例114之製備:

Figure 02_image1336
Additional examples of inhibitors prepared in a similar manner are listed in Table 3 under Method I, using the appropriate amine in Step 1. Preparation of Example 114:
Figure 02_image1336

步驟1–4-(吡啶-3-基)-1 H-苯并[d]咪唑之製備:將溴苯并咪唑(70 mg,0.355 mmol)、碳酸鉀(196 mg,1.42 mmol)及3-吡啶基硼酸(57 mg,0.46 mmol)裝入4 mL小瓶中且添加二噁烷(2 mL)及水(0.7 mL)。將氬氣鼓泡通過混合物1分鐘且隨後添加肆(三苯膦)鈀(0) (16.4 mg,0.014 mmol)。將氬氣再次鼓泡通過溶液3 min,將小瓶密封且在100℃下加熱2小時(如藉由LCMS分析判斷轉化為所需產物已完成)。使反應混合物冷卻至RT,用EtOAc稀釋且用鹽水洗滌。在MgSO 4上乾燥之後,將萃取物在減壓下濃縮且殘餘物藉由使用Et 3N預處理二氧化矽及DCM–20% iPrOH/DCM梯度之急速層析純化,以提供所需的苯并咪唑中間物(58 mg,84%產率): 1H NMR (DMSO-d 6)δ:12.71 (寬頻帶s, 1H), 9.24 (s. 1H), 8.57 (dd, J = 5.1, 1.6 Hz, 1H), 8.43 (broad d, J = 5.5 Hz, 1H), 8.31 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.52 (ddd, J = 7.8, 4.7, 0.8 Hz, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H)。MS m/z196.1 (MH +)。 Step 1 - Preparation of 4-(pyridin-3-yl)-1 H -benzo[d]imidazole: Bromobenzimidazole (70 mg, 0.355 mmol), potassium carbonate (196 mg, 1.42 mmol) and 3- Pyridylboronic acid (57 mg, 0.46 mmol) was charged to a 4 mL vial and dioxane (2 mL) and water (0.7 mL) were added. Argon was bubbled through the mixture for 1 min and tetrakis(triphenylphosphine)palladium(0) (16.4 mg, 0.014 mmol) was then added. Argon was bubbled through the solution again for 3 min, the vial was sealed and heated at 100 °C for 2 h (conversion to the desired product was complete as judged by LCMS analysis). The reaction mixture was cooled to RT, diluted with EtOAc and washed with brine. After drying over MgSO 4 , the extract was concentrated under reduced pressure and the residue was purified by flash chromatography using Et 3 N pretreated silica and a DCM–20% iPrOH/DCM gradient to provide the desired benzene Imidazole intermediate (58 mg, 84% yield): 1 H NMR (DMSO-d 6 )δ: 12.71 (broadband s, 1H), 9.24 (s. 1H), 8.57 (dd, J = 5.1, 1.6 Hz, 1H), 8.43 (broad d, J = 5.5 Hz, 1H), 8.31 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.52 (ddd, J = 7.8, 4.7, 0.8 Hz, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H). MS m/z 196.1 (MH + ).

步驟2:如一般方法A中所描述,將硫甲基衍生物I (Ar=3-氟-2-甲苯基;實例90)氧化為亞碸與碸之混合物。Step 2: Oxidation of thiomethyl derivative I (Ar = 3-fluoro-2-tolyl; Example 90) to a mixture of aridine and aridine as described in General Method A.

步驟3 (實例114):使用一般方法A,由步驟1中所描述之苯并咪唑衍生物及來自步驟2之亞碸/碸混合物製備。 ( R)-3-(二氟甲氧基)吡咯啶鹽酸鹽之製備:

Figure 02_image1338
Step 3 (Example 114): Prepared using general method A from the benzimidazole derivative described in Step 1 and the argon/throne mixture from Step 2. ( R )-3-(difluoromethoxy)pyrrolidine hydrochloride preparation:
Figure 02_image1338

( R)-N-Boc-3-羥基吡咯啶係使用2-氟磺醯基-2,2-二氟乙酸及碘化銅(I)催化劑進行二氟甲基化,如 J. Org.Chem.2016, 81, 5803中所描述,接著用含4 N HCl之二噁烷移除N-Boc保護基。 ( S)-3-乙吡咯啶鹽酸鹽之製備:

Figure 02_image1340
( R )-N-Boc-3-hydroxypyrrolidine is difluoromethylated using 2-fluorosulfonyl-2,2-difluoroacetic acid and copper(I) iodide catalyst, such as J.Org.Chem . 2016, 81 , 5803, followed by removal of the N-Boc protecting group with 4 N HCl in dioxane. Preparation of ( S )-3-ethylpyrrolidine hydrochloride:
Figure 02_image1340

步驟1:將可商購之( R)-2-(1-(三級丁氧羰基)吡咯啶-3-基)乙酸(2.0 g,8.72 mmol)溶解於無水THF (25 mL)中且添加1 M BH 3.THF (17.45 mL,17.45 mmol)。在RT下攪拌反應混合物3 h。隨後,將其在冰水浴中冷卻且藉由緩慢添加1 N HCl淬滅。將產物萃取至EtOA中且用飽和NaHCO 3水溶液及鹽水洗滌。將有機層經無水Na 2SO 4乾燥且蒸發至乾燥,以提供呈油狀物之3-(2-羥乙基)吡咯啶-1-甲酸( R)-三級丁酯(1.50 g,6.98 mmol,80%產率): 1H NMR (CDCl 3) δ:3.62 - 3.70 (m, 2H), 3.37 - 3.60 (m, 2H), 3.15 - 3.33 (m, 1H), 2.88 (dt, J = 18.4, 9.6 Hz, 1H), 2.13 - 2.35 (m, 1H), 1.94 - 2.08 (m, 1H), 1.47 - 1.69 (m, 3H), 1.45 (s, 9H), 1.30 - 1.43 (m, 1H), 0.93 (t, J = 7.4 Hz, 1H)。 Step 1: Dissolve commercially available ( R )-2-(1-(tertiary butoxycarbonyl)pyrrolidin-3-yl)acetic acid (2.0 g, 8.72 mmol) in anhydrous THF (25 mL) and add 1 M BH 3 .THF (17.45 mL, 17.45 mmol). The reaction mixture was stirred at RT for 3 h. Then, it was cooled in an ice-water bath and quenched by slow addition of 1 N HCl. The product was extracted into EtOA and washed with saturated aqueous NaHCO 3 and brine. The organic layer was dried over anhydrous Na 2 SO 4 and evaporated to dryness to provide 3-(2-hydroxyethyl)pyrrolidine-1-carboxylic acid ( R )-tert-butyl ester (1.50 g, 6.98 mmol, 80% yield): 1 H NMR (CDCl 3 ) δ: 3.62 - 3.70 (m, 2H), 3.37 - 3.60 (m, 2H), 3.15 - 3.33 (m, 1H), 2.88 (dt, J = 18.4, 9.6 Hz, 1H), 2.13 - 2.35 (m, 1H), 1.94 - 2.08 (m, 1H), 1.47 - 1.69 (m, 3H), 1.45 (s, 9H), 1.30 - 1.43 (m, 1H) , 0.93 (t, J = 7.4 Hz, 1H).

步驟2:將來自步驟1之3-(2-羥乙基)吡咯啶-1-甲酸( R)-三級丁酯(1.0 g,4.64 mmol)溶解於DCM (15 mL)中且添加三乙胺(1.55 mL,11 mmol)。將混合物冷卻至0℃,且逐滴添加甲烷磺醯氯(0.58 mL,7.4 mmol)於DCM (2 mL)中之溶液。將反應混合物在0℃下攪拌1 h。隨後反應混合物用DCM (15 mL)稀釋且用飽和NaHCO 3洗滌。分離有機層,經無水Na 2SO 4乾燥且過濾。將濾液蒸發至乾燥,以得到呈油狀物之粗甲磺酸酯(1.36 g),其未經進一步純化即用於下一步驟中: 1H NMR (CDCl 3) δ:4.26 (dt, J = 11.3, 6.3 Hz, 2H), 3.39 - 3.66 (m, 2H), 3.21 - 3.35 (m, J = 8.2, 8.2 Hz, 1H), 3.03 (s, 3H), 2.85 - 2.99 (m, 1H), 2.21 - 2.38 (m, 1H), 1.98 - 2.15 (m, 1H), 1.80 - 1.92 (m, 1H), 1.70 - 1.80 (m, 1H), 1.48 - 1.70 (m, 2H), 1.46 (s, 9H), 0.97 (t, J = 7.2 Hz, 1H)。 Step 2: 3-(2-Hydroxyethyl)pyrrolidine-1-carboxylic acid ( R )-tert-butyl ester (1.0 g, 4.64 mmol) from step 1 was dissolved in DCM (15 mL) and triethyl was added Amine (1.55 mL, 11 mmol). The mixture was cooled to 0 °C, and a solution of methanesulfonyl chloride (0.58 mL, 7.4 mmol) in DCM (2 mL) was added dropwise. The reaction mixture was stirred at 0 °C for 1 h. Then the reaction mixture was diluted with DCM (15 mL) and washed with saturated NaHCO 3 . The organic layer was separated, dried over anhydrous Na2SO4 and filtered. The filtrate was evaporated to dryness to give the crude mesylate as an oil (1.36 g), which was used in the next step without further purification: 1 H NMR (CDCl 3 ) δ: 4.26 (dt, J = 11.3, 6.3 Hz, 2H), 3.39 - 3.66 (m, 2H), 3.21 - 3.35 (m, J = 8.2, 8.2 Hz, 1H), 3.03 (s, 3H), 2.85 - 2.99 (m, 1H), 2.21 - 2.38 (m, 1H), 1.98 - 2.15 (m, 1H), 1.80 - 1.92 (m, 1H), 1.70 - 1.80 (m, 1H), 1.48 - 1.70 (m, 2H), 1.46 (s, 9H ), 0.97 (t, J = 7.2 Hz, 1H).

步驟3:將來自步驟2之粗甲磺酸酯(0.60 g,2.0 mmol)溶解於THF (10 mL)中且將溶液在冰水浴中冷卻。緩慢添加含1 M三乙基氫硼化鋰之THF (4.70 mL,4.70 mmol),之後移除冰浴,且將混合物在RT下攪拌2 h。TLC (2:1,乙酸乙酯/己烷)顯示無起始物質。緩慢添加甲醇(5 mL)以淬滅反應且在減壓下移除有機溶劑。將粗反應混合物分配於EtOAc (30 mL)與水(15 mL)之間且有機層用鹽水(10 mL)洗滌。分離有機層,經無水Na 2SO 4乾燥,過濾且蒸發至乾燥以提供粗產物。將該物質在使用RediSep 12 g管柱(己烷/EtOAc)之ISCO上純化,以提供呈油狀物之3-乙吡咯啶-1-甲酸(S)-三級丁酯(300 mg,73%產率): 1H NMR (CDCl 3) δ:3.48 (tt, J = 29.7, 9.4 Hz, 2H), 3.16 - 3.34 (m, 1H), 2.85 (dt, J = 19.8, 10.1 Hz, 1H), 1.90 - 2.11 (m, 2H), 1.45 (s, 9H), 1.36 - 1.43 (m, 3H), 0.93 (t, J = 7.4 Hz, 3H)。 Step 3: The crude mesylate from Step 2 (0.60 g, 2.0 mmol) was dissolved in THF (10 mL) and the solution was cooled in an ice water bath. 1 M Lithium triethylborohydride in THF (4.70 mL, 4.70 mmol) was added slowly before the ice bath was removed and the mixture was stirred at RT for 2 h. TLC (2:1, ethyl acetate/hexanes) showed no starting material. Methanol (5 mL) was added slowly to quench the reaction and the organic solvent was removed under reduced pressure. The crude reaction mixture was partitioned between EtOAc (30 mL) and water (15 mL) and the organic layer was washed with brine (10 mL). The organic layer was separated, dried over anhydrous Na2SO4 , filtered and evaporated to dryness to give crude product. This material was purified on an ISCO using a RediSep 12 g column (Hexanes/EtOAc) to afford (S)-tert-butyl 3-ethylpyrrolidine-1-carboxylate as an oil (300 mg, 73 % yield): 1 H NMR (CDCl 3 ) δ: 3.48 (tt, J = 29.7, 9.4 Hz, 2H), 3.16 - 3.34 (m, 1H), 2.85 (dt, J = 19.8, 10.1 Hz, 1H) , 1.90 - 2.11 (m, 2H), 1.45 (s, 9H), 1.36 - 1.43 (m, 3H), 0.93 (t, J = 7.4 Hz, 3H).

步驟4:將來自步驟3之羧酸酯(250 mg,1.25 mmol)溶解於MeOH (2 mL)中且添加含4 M HCl之二噁烷(2 mL,8 mmol)。將反應在RT下攪拌2 h。隨後在減壓下移除揮發成分,將殘餘物與乙酸乙酯共沸至乾燥且在真空下乾燥殘餘物,以提供呈濃稠油狀物之( S)-3-乙吡咯啶鹽酸鹽(162 mg,95%產率)。 ( R)-3-(甲氧基甲基)吡咯啶鹽酸鹽之製備:

Figure 02_image1342
Step 4: The carboxylate from Step 3 (250 mg, 1.25 mmol) was dissolved in MeOH (2 mL) and 4 M HCl in dioxane (2 mL, 8 mmol) was added. The reaction was stirred at RT for 2 h. The volatile components were then removed under reduced pressure, the residue was azeotroped to dryness with ethyl acetate and the residue was dried under vacuum to afford ( S )-3-ethylpyrrolidine hydrochloride as a thick oil (162 mg, 95% yield). Preparation of ( R )-3-(methoxymethyl)pyrrolidine hydrochloride:
Figure 02_image1342

步驟1:將3-(羥甲基)吡咯啶-1-甲酸( R)-三級丁酯(1.00 g,4.97 mmol)溶解於THF (20 mL)中且將溶液在冰水浴中冷卻。逐份添加NaH 60%油狀分散液(0.60 g,14.91 mmol)且將反應混合物在0℃下攪拌15 min。緩慢添加碘甲烷(1.55 mL,24 mmol)且將反應混合物在RT下攪拌隔夜。隨後,將反應混合物用飽和NH 4Cl溶液淬滅且用EtOAc (2×50 mL)萃取。分離有機層,經無水Na 2SO 4乾燥且過濾。將濾液蒸發至乾燥且藉由使用EtOAc-己烷0至100%之矽膠管柱層析(80 g)純化。獲得呈無色油狀物之3-(羥甲基)吡咯啶-1-甲酸( R)-三級丁酯(700 mg,3.25 mmol,65.4%產率): 1H NMR (CDCl 3) δ:3.49 (dd, J = 11.0, 7.6 Hz, 1H), 3.43 (br s, 1H), 3.35 (s, 3H), 3.26 - 3.35 (m, 3H), 3.06 (dd, J = 10.7, 7.3 Hz, 1H), 2.46 (spt, J = 7.3 Hz, 1H), 1.91 - 2.02 (m, 1H), 1.58 - 1.70 (m, 1H), 1.46 (s, 9H)。 Step 1: 3-(Hydroxymethyl)pyrrolidine-1-carboxylic acid ( R )-tert-butyl ester (1.00 g, 4.97 mmol) was dissolved in THF (20 mL) and the solution was cooled in an ice water bath. NaH 60% oily dispersion (0.60 g, 14.91 mmol) was added portionwise and the reaction mixture was stirred at 0 °C for 15 min. Iodomethane (1.55 mL, 24 mmol) was added slowly and the reaction mixture was stirred at RT overnight. Then, the reaction mixture was quenched with saturated NH 4 Cl solution and extracted with EtOAc (2×50 mL). The organic layer was separated, dried over anhydrous Na2SO4 and filtered. The filtrate was evaporated to dryness and purified by silica gel column chromatography (80 g) using EtOAc-Hexane 0 to 100%. 3-(Hydroxymethyl)pyrrolidine-1-carboxylic acid ( R )-tert-butyl ester (700 mg, 3.25 mmol, 65.4% yield) was obtained as a colorless oil: 1 H NMR (CDCl 3 ) δ: 3.49 (dd, J = 11.0, 7.6 Hz, 1H), 3.43 (br s, 1H), 3.35 (s, 3H), 3.26 - 3.35 (m, 3H), 3.06 (dd, J = 10.7, 7.3 Hz, 1H ), 2.46 (spt, J = 7.3 Hz, 1H), 1.91 - 2.02 (m, 1H), 1.58 - 1.70 (m, 1H), 1.46 (s, 9H).

步驟2:將來自步驟1之於DCM (2 mL)中之3-(羥甲基)吡咯啶-1-甲酸( R)-三級丁酯(100 mg,0.46 mmol)與含4 M HCl之二噁烷(2 mL,8.0 mmol)混合且將混合物在RT下攪拌2 h。在減壓下蒸發揮發成分,將殘餘物與EtOAc共蒸發至乾燥且在真空下乾燥產物,以提供呈油狀物之( R)-3-(甲氧基甲基)吡咯啶鹽酸鹽(70 mg),其未經進一步純化即使用。 實例89之製備:

Figure 02_image1344
Step 2: 3-(Hydroxymethyl)pyrrolidine-1-carboxylic acid ( R )-tert-butyl ester (100 mg, 0.46 mmol) from Step 1 in DCM (2 mL) was mixed with 4 M HCl Dioxane (2 mL, 8.0 mmol) was mixed and the mixture was stirred at RT for 2 h. The volatile components were evaporated under reduced pressure, the residue was co-evaporated to dryness with EtOAc and the product was dried under vacuum to afford ( R )-3-(methoxymethyl)pyrrolidine hydrochloride as an oil ( 70 mg), which was used without further purification. Preparation of Example 89:
Figure 02_image1344

步驟1:將2-氯-6-氟苯胺(10 g)裝入250 mL燒瓶中且溶解於40 mL冰醋酸中。在室溫下添加乙酸酐(7.47 mL)且將所得混合物在90℃下攪拌1 h,此時LCMS分析揭示反應完成。在減壓下移除揮發成分,將殘餘物溶解於DCM中且用飽和NaHCO 3溶液緩慢中和。分離各層且水層用DCM萃取3次。將合併的有機層用水洗滌一次,隨後經MgSO 4乾燥,過濾且濃縮。在真空乾燥之後,獲得呈白色至淡粉色晶體之所需產物(12.79 g): 1H NMR (CDCl 3) δ:7.16 - 7.26 (m, 2H), 7.03 - 7.13 (m, 1H), 6.93 (br s, 1H), 2.23 (br s, 3H)。MS m/z188.1 (MH +)。 Step 1: 2-Chloro-6-fluoroaniline (10 g) was charged in a 250 mL flask and dissolved in 40 mL of glacial acetic acid. Acetic anhydride (7.47 mL) was added at room temperature and the resulting mixture was stirred at 90 °C for 1 h at which time LCMS analysis revealed that the reaction was complete. The volatile components were removed under reduced pressure, the residue was dissolved in DCM and slowly neutralized with saturated NaHCO 3 solution. The layers were separated and the aqueous layer was extracted 3 times with DCM. The combined organic layers were washed once with water, then dried over MgSO 4 , filtered and concentrated. After vacuum drying, the desired product (12.79 g) was obtained as white to pale pink crystals: 1 H NMR (CDCl 3 ) δ: 7.16 - 7.26 (m, 2H), 7.03 - 7.13 (m, 1H), 6.93 ( br s, 1H), 2.23 (br s, 3H). MS m/z 188.1 (MH + ).

步驟2:將來自步驟1之乙醯胺苯(12.75 g)溶解於25 mL之濃硫酸中且在冰浴中冷卻至0℃。緩慢添加硝酸(90%,3.31 mL)。5-10分鐘之後,混合物變成固體塊。使其升溫至室溫,產生濃稠的紫紅色淤漿。在總計4 h之後,反應藉由LCMS監測,該LCMS揭示一些剩餘起始物質。添加另一5 mL硫酸以改良流動性,接著添加0.3 mL之90%硝酸。使混合物在室溫下再攪拌18小時。隨後將混合物冷卻至0℃,且傾至碎冰(約150 mL)上。一旦冰融化,即將懸浮液進行音波處理且藉由過濾收集黃色固體,用水洗滌且乾燥(15.1 g粗產物)。將粗固體倒入50 mL乙腈中且進行回流,得到澄清的深紅色溶液。停止加熱,使混合物在1小時內冷卻至室溫,隨後在室溫下攪拌2 h。彼時,混合物已變成固體塊,用抹刀將其打碎且進行音波處理。隨後將固體藉由過濾收集且用少量的冷乙腈洗滌。如藉由NMR所示,獲得呈單一區域異構物之所需灰白色硝基化合物(6.63 g) (母液產生第二批2.16 g,其中含有7%的6-氯-2-氟-3-硝乙醯胺苯): 1H NMR (CDCl 3) δ:7.90 (dd, J = 9.2, 4.9 Hz, 1H), 7.24 (dd, J = 9.2, 8.4 Hz, 1H), 6.98 (br s, 1H), 2.28 (s, 3H)。MS m/z233.0 (MH +)。 Step 2: The acetamidobenzene (12.75 g) from Step 1 was dissolved in 25 mL of concentrated sulfuric acid and cooled to 0 °C in an ice bath. Nitric acid (90%, 3.31 mL) was added slowly. After 5-10 minutes, the mixture became a solid mass. Allowing to warm to room temperature resulted in a thick purple-red slurry. After a total of 4 h, the reaction was monitored by LCMS which revealed some remaining starting material. Another 5 mL of sulfuric acid was added to improve flow, followed by 0.3 mL of 90% nitric acid. The mixture was stirred at room temperature for an additional 18 hours. The mixture was then cooled to 0 °C and poured onto crushed ice (ca. 150 mL). Once the ice melted, the suspension was sonicated and the yellow solid was collected by filtration, washed with water and dried (15.1 g crude product). The crude solid was poured into 50 mL of acetonitrile and refluxed to give a clear dark red solution. Heating was stopped and the mixture was allowed to cool to room temperature over 1 hour, then stirred at room temperature for 2 h. At this point, the mixture had become a solid mass, which was broken up with a spatula and sonicated. The solid was then collected by filtration and washed with a small amount of cold acetonitrile. The desired off-white nitro compound (6.63 g) was obtained as a single regioisomer as shown by NMR (the mother liquor yielded a second crop of 2.16 g containing 7% 6-chloro-2-fluoro-3-nitro Acetamidobenzene): 1 H NMR (CDCl 3 ) δ: 7.90 (dd, J = 9.2, 4.9 Hz, 1H), 7.24 (dd, J = 9.2, 8.4 Hz, 1H), 6.98 (br s, 1H) , 2.28 (s, 3H). MS m/z 233.0 (MH + ).

步驟3:向來自步驟2之硝乙醯胺苯(500 mg,2.15 mmol)於15 mL乙醇中之溶液中添加NH 4Cl (60 mg,1.12 mmol)於1.35 mL水中之溶液。將混合物升溫至70℃,隨後分三份添加鐵粉(600 mg,10.75 mmol),間隔10分鐘。將所得深紅色至紫紅色混合物在70℃下攪拌20 h。彼時,反應混合物之過濾等分試樣的LCMS揭示反應完成。將混合物藉由celite®墊過濾。將深褐色濾液濃縮至乾燥,隨後倒入添加有MgSO 4之EtOAc中。攪拌懸浮液,隨後過濾,得到澄清的淡黃色溶液。將溶液濃縮至乾燥,以得到呈淡黃色固體之所需產物(440 mg),其未經進一步純化按原樣使用: 1H NMR (CDCl 3) δ:6.92 (t, J = 9.0 Hz, 1H), 6.76 (br s, 1H), 6.68 (dd, J = 8.6, 4.7 Hz, 1H), 3.98 (br s, 2H), 2.24 (br s, 3H)。MS m/z203.1 (MH +)。 Step 3: To the solution of nitroacetamide (500 mg, 2.15 mmol) in 15 mL of ethanol from step 2 was added a solution of NH4Cl (60 mg, 1.12 mmol) in 1.35 mL of water. The mixture was warmed to 70 °C, then iron powder (600 mg, 10.75 mmol) was added in three portions with 10 min intervals. The resulting dark red to purple mixture was stirred at 70 °C for 20 h. At that point, LCMS of a filtered aliquot of the reaction mixture revealed that the reaction was complete. The mixture was filtered through a pad of celite®. The dark brown filtrate was concentrated to dryness, then poured into EtOAc with MgSO4 . The suspension was stirred and then filtered to give a clear pale yellow solution. The solution was concentrated to dryness to give the desired product (440 mg) as a pale yellow solid which was used as such without further purification: 1 H NMR (CDCl 3 ) δ: 6.92 (t, J = 9.0 Hz, 1H) , 6.76 (br s, 1H), 6.68 (dd, J = 8.6, 4.7 Hz, 1H), 3.98 (br s, 2H), 2.24 (br s, 3H). MS m/z 203.1 (MH + ).

步驟4:如對於流程A中之A-9所描述,將來自步驟3之苯胺使用4-甲氧苯磺醯氯以常用方式來進行磺醯化: 1H NMR (DMSO-d 6) δ:9.89 (s, 1H), 9.67 (s, 1H), 7.57 - 7.74 (m, 2H), 7.23 (t, J = 9.2 Hz, 1H), 7.13 (dd, J = 8.8, 5.3 Hz, 1H), 7.02 - 7.10 (m, 2H), 3.82 (s, 3H), 2.00 (s, 3H)。MS m/z373.0 (MH +)。 Step 4: As described for A-9 in Scheme A, the aniline from step 3 was sulfonylated in the usual manner using 4-methoxybenzenesulfonyl chloride: 1 H NMR (DMSO-d 6 ) δ: 9.89 (s, 1H), 9.67 (s, 1H), 7.57 - 7.74 (m, 2H), 7.23 (t, J = 9.2 Hz, 1H), 7.13 (dd, J = 8.8, 5.3 Hz, 1H), 7.02 - 7.10 (m, 2H), 3.82 (s, 3H), 2.00 (s, 3H). MS m/z 373.0 (MH + ).

步驟5:將來自步驟4之乙醯苯胺(200 mg,0.54 mmol)倒入1.5 mL乙醇中,隨後緩慢添加濃HCl與水(2 mL)之1:1混合物。隨後將黃色漿液升溫至80℃且攪拌1 h。彼時,添加1 mL乙醇以改良溶解性。使混合物在相同的溫度下再攪拌5 h (此時,混合物已變成澄清的黃色溶液)。彼時的LCMS分析顯示<3%的剩餘起始物質。濃縮混合物以移除大部分乙醇,隨後在冰上冷卻。將其用4 N NaOH鹼化至pH 5-6。將所得懸浮液進行音波處理,並且藉由過濾收集固體且用水洗滌。在減壓下乾燥之後,獲得156 mg呈米色固體之所需產物: 1H NMR (DMSO-d 6) δ:9.53 (s, 1H), 7.53 - 7.72 (m, 2H), 7.00 - 7.14 (m, 2H), 6.95 (dd, J = 10.8, 8.8 Hz, 1H), 6.36 (dd, J = 8.6, 5.1 Hz, 1H), 5.39 (s, 2H), 3.81 (s, 3H)。MS m/z329.0 (M-H)。 Step 5: Acetaniline (200 mg, 0.54 mmol) from Step 4 was poured into 1.5 mL of ethanol, followed by the slow addition of a 1:1 mixture of concentrated HCl and water (2 mL). The yellow slurry was then warmed to 80 °C and stirred for 1 h. At that time, 1 mL of ethanol was added to improve solubility. The mixture was allowed to stir at the same temperature for another 5 h (by this time, the mixture had turned into a clear yellow solution). LCMS analysis at that time showed <3% starting material remaining. The mixture was concentrated to remove most of the ethanol, then cooled on ice. It was basified to pH 5-6 with 4 N NaOH. The resulting suspension was sonicated and the solid was collected by filtration and washed with water. After drying under reduced pressure, 156 mg of the desired product were obtained as a beige solid: 1 H NMR (DMSO-d 6 ) δ: 9.53 (s, 1H), 7.53 - 7.72 (m, 2H), 7.00 - 7.14 (m , 2H), 6.95 (dd, J = 10.8, 8.8 Hz, 1H), 6.36 (dd, J = 8.6, 5.1 Hz, 1H), 5.39 (s, 2H), 3.81 (s, 3H). MS m/z 329.0 (MH).

步驟6:使用流程A中所描述之用於由合成中間物A-5 (步驟1,實例1)製備式I之抑制劑的方案,將來自步驟5之苯胺與中間物A-10反應以提供實例89。 實例135之製備:

Figure 02_image1346
Step 6: Using the protocol described in Scheme A for the preparation of inhibitors of Formula I from the synthesis of Intermediate A-5 (Step 1, Example 1), the aniline from Step 5 was reacted with Intermediate A-10 to provide Example 89. Preparation of Example 135:
Figure 02_image1346

步驟1:向100 mL圓底燒瓶中添加於DMF (15 mL)中之2,6-二氟硝基苯(1.3 mL,12.6 mmol)及氰乙酸乙酯(1.6 mL,15.1 mmol)。隨後,在室溫下緩慢添加氫化鈉(754 mg,18.9 mmol)。使反應在室溫下攪拌15 min。將反應用1 M HCl淬滅,直至深紅色溶液變成黃色且隨後在EtOAc中稀釋。分離有機層,隨後用NH 4Cl溶液洗滌,接著用鹽水洗滌。將有機層藉由MgSO 4乾燥,過濾且隨後在減壓下濃縮。將粗物質溶解於DMSO (9 mL)及水(1 mL)中且轉移至20 mL微波小瓶中。將反應加熱至120℃且攪拌16 h。使反應混合物冷卻至室溫且在EtOAc中稀釋,隨後用NH 4Cl水溶液洗滌,接著用鹽水洗滌。將有機層藉由MgSO 4乾燥,過濾且隨後在減壓下濃縮。粗物質藉由使用己烷:EtOAc之正相急速管柱層析純化,以得到呈橙色固體之所需苄腈(2.12 g,93%)。 1H NMR (400 MHz, DMSO-d 6) δ:7.80 (td, J=7.8, 5.5 Hz, 1 H), 7.65 (t, J=9.6 Hz, 1 H), 7.54 (d, J=7.4 Hz, 1 H), 4.28 (s, 2 H)。MS m/z725.4 (MH +)。MS m/z181.2 (MH +)。 Step 1: To a 100 mL round bottom flask was added 2,6-difluoronitrobenzene (1.3 mL, 12.6 mmol) and ethyl cyanoacetate (1.6 mL, 15.1 mmol) in DMF (15 mL). Subsequently, sodium hydride (754 mg, 18.9 mmol) was added slowly at room temperature. The reaction was allowed to stir at room temperature for 15 min. The reaction was quenched with 1 M HCl until the deep red solution turned yellow and then diluted in EtOAc. The organic layer was separated and washed with NH4Cl solution followed by brine. The organic layer was dried over MgSO 4 , filtered and then concentrated under reduced pressure. The crude material was dissolved in DMSO (9 mL) and water (1 mL) and transferred to a 20 mL microwave vial. The reaction was heated to 120 °C and stirred for 16 h. The reaction mixture was cooled to room temperature and diluted in EtOAc, then washed with aq. NH 4 Cl followed by brine. The organic layer was dried over MgSO 4 , filtered and then concentrated under reduced pressure. The crude material was purified by normal phase flash column chromatography using hexanes:EtOAc to afford the desired benzonitrile (2.12 g, 93%) as an orange solid. 1 H NMR (400 MHz, DMSO-d 6 ) δ: 7.80 (td, J=7.8, 5.5 Hz, 1 H), 7.65 (t, J=9.6 Hz, 1 H), 7.54 (d, J=7.4 Hz , 1 H), 4.28 (s, 2 H). MS m/z 725.4 (MH + ). MS m/z 181.2 (MH + ).

步驟2:將來自步驟1之苯乙腈衍生物(200 mg,1.11 mmol)及DMSO (4 mL)裝入25 mL燒瓶中。隨後在室溫下添加二苯基(乙烯基)鋶-三氟甲磺酸鹽(479 mg,1.32 mmol),接著添加1,8-二氮雜二環[5.4.0]十一-7-烯(0.37 ml,2.48 mmol)。將混合物彼溫度下攪拌16 h。一旦完成,即添加NH 4Cl水溶液且用EtOAc萃取水層。有機層用水洗滌且用鹽水洗滌一次。將有機層經MgSO 4乾燥,過濾且在真空下濃縮。將所得殘餘物藉由藉由使用EtOAc/己烷之矽膠管柱的急速層析純化,以產生所需環丙烷衍生物(138 mg,60% yield)。 1H NMR (400 MHz, CDCl 3) δ:7.47 - 7.59 (m, 1H), 7.29 - 7.41 (m, 2H), 1.69 - 1.85 (m, 2H), 1.29 - 1.39 (m, 2H)。MS m/z207.2 (MH +)。 Step 2: A 25 mL flask was charged with the phenylacetonitrile derivative from Step 1 (200 mg, 1.11 mmol) and DMSO (4 mL). Then diphenyl(vinyl)percolium-trifluoromethanesulfonate (479 mg, 1.32 mmol) was added at room temperature, followed by 1,8-diazabicyclo[5.4.0]undec-7- Alkene (0.37 ml, 2.48 mmol). The mixture was stirred at this temperature for 16 h. Once complete, aqueous NH4Cl was added and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and once with brine. The organic layer was dried over MgSO 4 , filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography on a silica gel column using EtOAc/hexanes to yield the desired cyclopropane derivative (138 mg, 60% yield). 1 H NMR (400 MHz, CDCl 3 ) δ: 7.47 - 7.59 (m, 1H), 7.29 - 7.41 (m, 2H), 1.69 - 1.85 (m, 2H), 1.29 - 1.39 (m, 2H). MS m/z 207.2 (MH + ).

步驟3:向10 mL微波小瓶中添加步驟2之環丙烷衍生物(138 mg,0.67 mmol)。隨後,將3 mL濃氫氧化銨添加至反應中。將反應在微波中在130℃下加熱1 h。一旦完成,即將反應用水稀釋,隨後用EtOAc萃取。將有機層用鹽水洗滌,經MgSO 4乾燥,過濾且在減壓下濃縮,以得到呈橙色固體之1-(3-胺基-2-硝基-苯基)環丙腈(120 mg,88%產率)。 1H NMR (400 MHz, CDCl 3) δ:7.27 (d, J = 15.26 Hz, 1H), 6.83 (d, J = 8.38 Hz, 1H), 6.86 (d, J = 7.50 Hz, 1H), 5.36 (br s, 2H), 1.71 (br s, 2H), 1.24 (br s, 2H)。 Step 3: To a 10 mL microwave vial was added the cyclopropane derivative of Step 2 (138 mg, 0.67 mmol). Subsequently, 3 mL of concentrated ammonium hydroxide was added to the reaction. The reaction was heated in the microwave at 130 °C for 1 h. Once complete, the reaction was diluted with water followed by extraction with EtOAc. The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated under reduced pressure to give 1-(3-amino-2-nitro-phenyl)cyclopropanenitrile (120 mg, 88 %Yield). 1 H NMR (400 MHz, CDCl 3 ) δ: 7.27 (d, J = 15.26 Hz, 1H), 6.83 (d, J = 8.38 Hz, 1H), 6.86 (d, J = 7.50 Hz, 1H), 5.36 ( br s, 2H), 1.71 (br s, 2H), 1.24 (br s, 2H).

步驟4:使用實例138之一般方法I之步驟2及3中所描述之程序,將中間物1,2-苯二胺還原成及閉環成苯并三唑環。Step 4: Using the procedure described in Steps 2 and 3 of General Method I of Example 138, the intermediate 1,2-phenylenediamine was reduced and closed to the benzotriazole ring.

步驟5 (實例135):使用一般方法A中所描述之程序,將來自步驟4之苯并三唑與中間物I (Ar=2,3-二氯苯基)偶合。 實例137之製備:

Figure 02_image1348
Step 5 (Example 135): Using the procedure described in General Method A, the benzotriazole from Step 4 was coupled with Intermediate I (Ar = 2,3-dichlorophenyl). Preparation of Example 137:
Figure 02_image1348

步驟1:將碳酸鉀(0.35 g,2.56 mmol)及2-甲氧基乙醇(0.40 mL,5.1 mmol)添加至3-氟-2-硝基-苯胺(0.10 g,0.641 mmol)於DMF (3.2 mL)中之溶液中。將所得混合物在80℃下攪拌10 h。添加水且將水性混合物用EtOAc萃取。將有機層合併,用鹽水洗滌,經NA 2SO 4乾燥,過濾且濃縮。將粗物質藉由管柱層析(矽膠,0-100% EtOAc/己烷)純化以得到3-(2-甲氧乙氧)-2-硝基-苯胺(52 mg,38%產率)。MS m/z213.1 (MH +)。 Step 1: Add potassium carbonate (0.35 g, 2.56 mmol) and 2-methoxyethanol (0.40 mL, 5.1 mmol) to 3-fluoro-2-nitro-aniline (0.10 g, 0.641 mmol) in DMF (3.2 mL) in solution. The resulting mixture was stirred at 80 °C for 10 h. Water was added and the aqueous mixture was extracted with EtOAc. The organic layers were combined, washed with brine, dried over NA2SO4 , filtered and concentrated. The crude material was purified by column chromatography (silica gel, 0-100% EtOAc/hexanes) to give 3-(2-methoxyethoxy)-2-nitro-aniline (52 mg, 38% yield) . MS m/z 213.1 (MH + ).

步驟2:使用實例138之一般方法I之步驟2及3中所描述之程序,將中間物1,2-苯二胺還原成及閉環成苯并三唑環。Step 2: Using the procedure described in Steps 2 and 3 of General Method I of Example 138, the intermediate 1,2-phenylenediamine was reduced and closed to the benzotriazole ring.

步驟3 (實例137):使用一般方法A中所描述之程序,將來自步驟2之苯并三唑與中間物I (Ar=2,3-二氯苯基)偶合。 實例160至163 (表5)之製備:

Figure 02_image1350
Step 3 (Example 137): Using the procedure described in General Method A, the benzotriazole from Step 2 was coupled with Intermediate I (Ar = 2,3-dichlorophenyl). Preparation of Examples 160 to 163 (Table 5):
Figure 02_image1350

步驟1:如專利WO2020/261156中所描述,進行2,4,5-三氟苯胺之甲氧羰基化。Step 1: Methoxycarbonylation of 2,4,5-trifluoroaniline was carried out as described in patent WO2020/261156.

步驟2:在rt下,向3-胺基-2,5,6-三氟苯甲酸甲酯(2.72 g,13.26 mmol)於DCE/吡啶(1:1,16 mL)中之溶液中逐份添加2,3-二氯苯磺醯氯(3.91 g,15.9 mmol)。將反應加熱至70℃持續16 h。藉由LCMS監測反應。當反應完成時,用1 M HCl淬滅。水層用EtOAc (15 mL)萃取三次。將合併的有機層用鹽水洗滌,經MgSO 4乾燥,過濾且蒸發至乾燥。殘餘物藉由使用0-30% EtOAc/己烷之矽膠管柱上的層析純化。收集純級分且蒸發以得到呈淺褐色固體之3-((2,3-二氯苯基)磺醯胺基)-2,5,6-三氟苯甲酸甲酯(5.14 g,91%產率):m/z = 412.0。 Step 2: To a solution of methyl 3-amino-2,5,6-trifluorobenzoate (2.72 g, 13.26 mmol) in DCE/pyridine (1:1, 16 mL) in portions at rt 2,3-Dichlorobenzenesulfonyl chloride (3.91 g, 15.9 mmol) was added. The reaction was heated to 70 °C for 16 h. The reaction was monitored by LCMS. When the reaction was complete, it was quenched with 1 M HCl. The aqueous layer was extracted three times with EtOAc (15 mL). The combined organic layers were washed with brine, dried over MgSO 4 , filtered and evaporated to dryness. The residue was purified by chromatography on a silica gel column using 0-30% EtOAc/hexanes. The pure fractions were collected and evaporated to give methyl 3-((2,3-dichlorophenyl)sulfonamido)-2,5,6-trifluorobenzoate (5.14 g, 91% Yield): m/z = 412.0.

步驟3:在rt下,向來自步驟2之3-((2,3-二氯苯基)磺醯胺基)-2,5,6-三氟苯甲酸甲酯(5.14 g,12.4 mmol)於30 mL之THF:MeOH (5:1)中的溶液中添加2 M KOH (37 mL,74.5 mmol)。將反應在rt下攪拌隔夜。當反應完成時,將其蒸發至乾燥且向殘餘物中添加水(30 mL)及二乙醚(30 mL)。用乙醚(20 mL)洗滌水層兩次。將水層用1 M HCl酸化至pH=2。將水層用EtOAc (30 mL)萃取三次。將合併的有機層用鹽水洗滌,經MgSO 4乾燥,過濾且蒸發以得到呈淺橙色油狀物之3-((2,3-二氯苯基)磺醯胺基)-2,5,6-三氟苯甲酸(4.5 g,91%產率)。化合物按原樣用於下一步驟中:m/z = 398.0。 Step 3: To methyl 3-((2,3-dichlorophenyl)sulfonamido)-2,5,6-trifluorobenzoate (5.14 g, 12.4 mmol) from Step 2 at rt To a solution in 30 mL of THF:MeOH (5:1 ) was added 2 M KOH (37 mL, 74.5 mmol). The reaction was stirred overnight at rt. When the reaction was complete, it was evaporated to dryness and water (30 mL) and diethyl ether (30 mL) were added to the residue. The aqueous layer was washed twice with ether (20 mL). The aqueous layer was acidified to pH=2 with 1 M HCl. The aqueous layer was extracted three times with EtOAc (30 mL). The combined organic layers were washed with brine, dried over MgSO 4 , filtered and evaporated to give 3-((2,3-dichlorophenyl)sulfonamido)-2,5,6 as a light orange oil - Trifluorobenzoic acid (4.5 g, 91% yield). The compound was used as such in the next step: m/z = 398.0.

步驟4:在rt下,向來自步驟3之3-((2,3-二氯苯基)磺醯胺基)-2,5,6-三氟苯甲酸(4.50 g,11.2 mmol)於乙腈(30 mL)中之溶液中添加三乙胺(1.71 mL,12.37 mmol)及二苯基疊氮化磷醯(2.91 mL,13.50 mmol)。將反應加熱至80℃隔夜。將反應冷卻至rt且添加水(30 mL)。水層用EtOAc (30 mL)萃取三次。將合併的有機層用鹽水洗滌,經MgSO 4乾燥,過濾且蒸發成深黃色殘餘物。粗物質藉由使用0-50% EtOAc/己烷之矽膠管柱上的層析純化。收集純級分且蒸發以得到呈褐色固體之2,3-二氯-N-(2,4,5-三氟-3-異氰酸基苯基)苯磺醯胺(2.29 g,51%產率):m/z = 391.0.。 Step 4: Add 3-((2,3-dichlorophenyl)sulfonamido)-2,5,6-trifluorobenzoic acid (4.50 g, 11.2 mmol) from step 3 in acetonitrile at rt To a solution in (30 mL) was added triethylamine (1.71 mL, 12.37 mmol) and diphenylphosphoryl azide (2.91 mL, 13.50 mmol). The reaction was heated to 80 °C overnight. The reaction was cooled to rt and water (30 mL) was added. The aqueous layer was extracted three times with EtOAc (30 mL). The combined organic layers were washed with brine, dried over MgSO 4 , filtered and evaporated to a dark yellow residue. The crude material was purified by chromatography on a silica gel column using 0-50% EtOAc/hexanes. The pure fractions were collected and evaporated to give 2,3-dichloro-N-(2,4,5-trifluoro-3-isocyanatophenyl)benzenesulfonamide (2.29 g, 51% Yield): m/z = 391.0..

步驟5:向來自步驟4之2,3-二氯-N-(2,4,5-三氟-3-異氰酸基苯基)苯磺醯胺(1.35 g,3.39 mmol)於THF (17 mL)中之溶液中添加4 M LiOH (17 mL)。將壓力容器擰緊且在油浴中加熱至100℃持續1 h。當反應完成時,將其用飽和NH 4Cl淬滅。添加EtOAc且允許分離各層。將水層用EtOAc (20 mL)再萃取兩次。將合併的有機層用鹽水洗滌,經MgSO 4乾燥,過濾且蒸發以得到呈褐色固體之N-(3-胺基-2,4,5-三氟苯基)-2,3-二氯苯磺醯胺(1.09 g,86%產率)。化合物不經進一步純化即繼續至下一步驟: 1H NMR (400  MHz, DMSO-d 6) δ:10.59 (br s, 1H), 7.94 (dd, J = 8.2, 1.6 Hz, 1H), 7.89 (dd, J = 8.2, 1.6 Hz, 1H), 7.51 (dd, J = 8.0 Hz, 1H), 6.34 - 6.43 (m, 1H), 5.72 (s, 2H). m/z = 369.0。 Step 5: Add 2,3-dichloro-N-(2,4,5-trifluoro-3-isocyanatophenyl)benzenesulfonamide (1.35 g, 3.39 mmol) from step 4 in THF ( 17 mL) was added 4 M LiOH (17 mL). The pressure vessel was tightened and heated to 100 °C in an oil bath for 1 h. When the reaction was complete, it was quenched with saturated NH4Cl . EtOAc was added and the layers were allowed to separate. The aqueous layer was extracted two more times with EtOAc (20 mL). The combined organic layers were washed with brine, dried over MgSO 4 , filtered and evaporated to give N-(3-amino-2,4,5-trifluorophenyl)-2,3-dichlorobenzene as a brown solid Sulfonamide (1.09 g, 86% yield). The compound was carried on to the next step without further purification: 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.59 (br s, 1H), 7.94 (dd, J = 8.2, 1.6 Hz, 1H), 7.89 ( dd, J = 8.2, 1.6 Hz, 1H), 7.51 (dd, J = 8.0 Hz, 1H), 6.34 - 6.43 (m, 1H), 5.72 (s, 2H). m/z = 369.0.

步驟6:將步驟5之苯胺如一般方法A (實例36)下所描述轉化為嘧啶并嘧啶,其中Ar=2,6-二氯苯基。Step 6: The aniline of step 5 was converted to a pyrimidopyrimidine where Ar = 2,6-dichlorophenyl as described under General Method A (Example 36).

步驟7 (實例160-163,表5):按照一般方法A中之方案,使用經適當取代之苯并咪唑(實例160、162、163)或苯并三唑(實例161)將來自步驟6之硫甲基中間物轉化為抑制劑。 生物活性 活體外生物活性 (a) BRAF CRAF ARAF 之激酶活性分析 Step 7 (Examples 160-163, Table 5): Using appropriately substituted benzimidazoles (Examples 160, 162, 163) or benzotriazoles (Example 161 ) following the protocol in General Method A, the compound from Step 6 was synthesized. Thiomethyl intermediates are converted to inhibitors. Biological activity In vitro biological activity (a) Kinase activity analysis of BRAF , CRAF and ARAF

化合物製備:將1打蘭小瓶中之各物質之固體樣品以20 mM的儲備濃度懸浮於DMSO (Fisher Scientific)中。將儲備液保持在-20℃且避光。若化合物在20 mM下之溶解性出現問題,則將DMSO儲備液之初始濃度更改為10 mM或5 mM。Compound preparation: Solid samples of each material in 1 dram vials were suspended in DMSO (Fisher Scientific) at a stock concentration of 20 mM. Stock solutions were kept at -20°C and protected from light. If compound solubility at 20 mM is problematic, change the initial concentration of the DMSO stock solution to 10 mM or 5 mM.

活體外酶反應用於評價化合物對BRAF、CRAF及ARAF之內在活性。對於BRAF及CRAF,在10 µM之具有或不具有測試化合物之超純ATP (目錄號V9102;Promega;第V915A部分)存在下,將0.375 nM經純化之GST標記激酶(分別來自Millipore Sigma的目錄號B4062-10UG及目錄號R1656-10UG)與75 nM激酶死亡MEK1受質(目錄號40075;BPS Bioscience)一起在含有50 mM HEPES pH 7.5、10 mM MgCl 2、1 mM EDTA、0.01% Brij-35及2mM DTT之緩衝液中孵育。以MEK1受質及ATP作為空白對照進行單獨的反應。除激酶濃度提高至3.75 nM以外,ARAF激酶反應嚴格相同(目錄號1768-0000-1;Reaction Biology)。 In vitro enzyme reactions were used to evaluate the intrinsic activity of compounds on BRAF, CRAF and ARAF. For BRAF and CRAF, 0.375 nM of purified GST-tagged kinase (catalog no. B4062-10UG and Cat. No. R1656-10UG) together with 75 nM Kinase Dead MEK1 Substrate (Cat. No. 40075; BPS Bioscience) in the presence of 50 mM HEPES pH 7.5, 10 mM MgCl 2 , 1 mM EDTA, 0.01% Brij-35 and Incubate in 2mM DTT buffer. Separate reactions were performed with MEK1 substrate and ATP as blank controls. The ARAF kinase reaction was strictly identical except that the kinase concentration was increased to 3.75 nM (Cat# 1768-0000-1; Reaction Biology).

對於化合物處理,將5 μL/孔之測試物質溶液置放於384孔代理培養盤(Perkin Elmer)中且與2×濃縮激酶反應混合。選擇稀釋系列,使得九種濃度覆蓋100 nM至0.01 nM之範圍。若有必要(若化合物展現低內在效力),則將100 nM之初始濃度更改為1 μM或0.5 μM,且相應地進行進一步稀釋。分析中之DMSO之最終濃度設定為0.05%。For compound treatments, 5 μL/well of test substance solutions were placed in 384-well proxy plates (Perkin Elmer) and mixed with 2× concentrated kinase reactions. The dilution series was chosen such that nine concentrations covered the range from 100 nM to 0.01 nM. If necessary (if the compound exhibits low intrinsic potency), the initial concentration of 100 nM was changed to 1 μM or 0.5 μM, and further dilutions were made accordingly. The final concentration of DMSO in the assay was set at 0.05%.

BRAF及CRAF激酶反應在30℃下進行總共2小時,且隨後藉由在ADP-Glo試劑(目錄號V9102;Promega;第V912C部分)中之1/2稀釋而停止。隨後將反應在室溫下孵育1 h,接著添加一體積之激酶偵測試劑(目錄號V9102;Promega;第V917A部分)。隨後將培養盤在室溫下平衡30分鐘,接著在Synergy Neo2盤式讀取器(Biotek)上偵測發光。各化合物稀釋對BRAF及CRAF激酶活性之影響表示為%抑制且如下計算。首先,自各數據點中減去內部100%抑制對照(僅包含激酶死亡MEK1受質的激酶反應中之發光平均值)。建立DMSO (媒劑)對照平均值(設定為0%抑制)且用於計算%抑制: %抑制=100*(1-((發光信號 compound)/(發光信號 DMSO))) BRAF and CRAF kinase reactions were performed at 30°C for a total of 2 hours and then stopped by a 1/2 dilution in ADP-Glo reagent (Catalog # V9102; Promega; Section V912C). The reaction was then incubated for 1 h at room temperature, followed by the addition of one volume of Kinase Detection Reagent (Cat# V9102; Promega; Section V917A). Plates were then equilibrated at room temperature for 30 minutes before detection of luminescence on a Synergy Neo2 plate reader (Biotek). The effect of each compound dilution on BRAF and CRAF kinase activity is expressed as % inhibition and calculated as follows. First, an internal 100% inhibition control (average of luminescence in kinase reactions containing only kinase-dead MEK1 substrate) was subtracted from each data point. A DMSO (vehicle) control mean was established (set as 0% inhibition) and used to calculate % inhibition: % inhibition=100*(1-((luminescent signal compound )/(luminescent signal DMSO )))

ARAF激酶反應在30℃下進行總共2小時,且隨後藉由添加最終濃度為40 mM之EDTA而停止。隨後使用AlphaLISA® SureFire® Ultra™ p-MEK 1/2 (Ser218/222) (PerkinElmer)套組偵測反應。反應係根據製造商之說明在384孔代理培養盤(Perkin Elmer)中以5 µL激酶反應進行,接著在室溫下,在加濕腔室中對反應進行隔夜孵育。在偵測反應完成之後,在配備有AlphaLISA®過濾器之Synergy Neo2盤式讀取器(Biotek)上記錄信號。各化合物稀釋對由ARAF反應產生之pMEK信號的影響以%抑制表示且如下計算。內部100%抑制對照(僅包含激酶死亡MEK1受質的激酶反應中之發光平均值)包括於各培養盤中以量測pMEK背景且自各數據點中減去。亦建立了DMSO (媒劑)對照平均值(設定為0%抑制)且用於計算%抑制: %抑制=100*(1-((pMEK信號 compound)/(pMEK信號 DMSO))) The ARAF kinase reaction was performed at 30°C for a total of 2 hours and then stopped by the addition of EDTA at a final concentration of 40 mM. The reaction was then detected using the AlphaLISA® SureFire® Ultra ™ p-MEK 1/2 (Ser218/222) (PerkinElmer) kit. Reactions were performed in 5 µL kinase reactions in 384-well proxy plates (Perkin Elmer) according to the manufacturer's instructions, followed by overnight incubation of the reactions in a humidified chamber at room temperature. After completion of the detection reaction, the signal was recorded on a Synergy Neo2 disc reader (Biotek) equipped with an AlphaLISA® filter. The effect of each compound dilution on the pMEK signal generated by the ARAF reaction is expressed as % inhibition and calculated as follows. An internal 100% inhibition control (average of luminescence in kinase reactions containing only kinase-dead MEK1 substrate) was included in each plate to measure the pMEK background and was subtracted from each data point. DMSO (vehicle) control mean values were also established (set as 0% inhibition) and used to calculate % inhibition: % inhibition=100*(1-((pMEK signal compound )/(pMEK signal DMSO )))

IC 50值係藉由使用GraphPadPrism (V7.0)或Dotmatics Screening Ultra平台繪製激酶抑制值且使用對數(促效劑)與反應-可變斜率(四個參數)函數來擬合劑量-活性曲線而獲得。包括於ARAF激酶分析中之標準為貝伐拉菲尼(Belvarafenib) (MedChem Express目錄號HY-109080;CAS號1446113-23-0)、LXH254 (MedChem Express目錄號HY-112089;CAS號1800398-38-2)及BGB283 (目錄號HY-18957;CAS號1446090-79-4)。 IC50 values were obtained by plotting kinase inhibition values using GraphPad Prism (V7.0) or Dotmatics Screening Ultra platforms and fitting dose-activity curves using logarithmic (agonist) and response-variable slope (four parameter) functions get. Standards included in the ARAF kinase assay were Belvarafenib (MedChem Express Cat. No. HY-109080; CAS No. 1446113-23-0), LXH254 (MedChem Express Cat. No. HY-112089; CAS No. 1800398-38 -2) and BGB283 (Cat. No. HY-18957; CAS No. 1446090-79-4).

因此,本文所報告之所有物質均為BRAF、CRAF及ARAF ATP競爭性激酶抑制劑,如活體外酶活性之直接抑制所證實。化合物之BRAF及CRAF抑制效力列於表2-5中,而代表性類似物之ARAF激酶抑制效力列於表A中。如實施例中所定義之較佳實例展示BRAF IC 50值< 10 nM且甚至更佳的實例具有BRAF IC 50值< 1 nM。如實施例中所定義之較佳實例展示CRAF IC 50值< 50 nM且甚至更佳的實例具有CRAF IC 50值< 10 nM。 表A. ARAF激酶抑制結果 實例 激酶 IC 50(nM) ARAF 98 ** 112 * 114 *** 119 ** 128 * 129 ** 貝伐拉菲尼 * BGB283 * LXH254 * Thus, all substances reported herein are BRAF, CRAF and ARAF ATP competitive kinase inhibitors as demonstrated by direct inhibition of the enzyme activity in vitro. The BRAF and CRAF inhibitory potencies of the compounds are listed in Tables 2-5, while the ARAF kinase inhibitory potencies of representative analogs are listed in Table A. Preferred examples as defined in the Examples exhibit BRAF IC 50 values < 10 nM and even better examples have BRAF IC 50 values < 1 nM. Preferred examples as defined in the Examples exhibit CRAF IC 50 values < 50 nM and even better examples have CRAF IC 50 values < 10 nM. Table A. ARAF Kinase Inhibition Results example Kinase IC 50 (nM) ARAF 98 ** 112 * 114 *** 119 ** 128 * 129 ** Bevarafini * BGB283 * LXH254 *

對於ARAF生化激酶分析,*指示IC50 >20 nM,**指示10-20 nM IC50範圍且***指示IC50 < 10 nM。 (b) 一般細胞培養方法 For the ARAF biochemical kinase assay, * indicates IC50 > 20 nM, ** indicates 10-20 nM IC50 range and *** indicates IC50 < 10 nM. (b) General cell culture method

所有癌細胞株(A375、A101D、A2058、RKO、HT29 SK-MEL 30、IPC298、HepG2、HCT-116、Lovo、SW620、SW480、NCI-H358、NCI-H2122、Calu-6、NCIH2087、NCIH1755、NCIH1666及Mewo)均自ATCC獲得且在5% CO 2及37℃下,在補充有5%熱失活胎牛血清(FBS,Wisent)之RPMI-1640培養基(Gibco)中培養。將細胞保持於T175燒瓶(Greiner)中。該等細胞藉由移除培養基、在10 mL之室溫磷酸鹽緩衝鹽水(Phosphate Buffered Saline;PBS;Wisent)中洗滌一次且在37℃下與2 mL之0.05%胰蛋白(Thermo-Fisher)一起孵育來進行傳代。隨後藉由添加完全生長培養基來使胰蛋白失活且隨後以適當的稀釋度將細胞重新鋪種於T175培養皿中。所有細胞株均對黴漿菌污染進行常規測試。組織類型及各細胞株之突變狀態可見於表B中。 表B. 用於本申請案中所描述之物質的pERK及抗增殖剖析的組織類型及癌細胞株(CCL)之RAS-ERK路徑突變狀態. 細胞株 組織類型 突變狀態 A375 皮膚 BRAF V600E A101D 皮膚 BRAF V600E A2058 皮膚 BRAF V600E RKO 結腸 BRAF V600E HT29 結腸 BRAF V600E NCIH2087 BRAF L597V; KRAS Q61K NCIH1755 BRAF G469A NCIH1666 BRAF G466V SK-MEL30 皮膚 NRAS-Q61K IPC298 皮膚 NRAS-Q61L HepG2 NRAS-Q61L HCT-116 結腸 KRAS G13D Lovo 結腸 KRAS-G13D SW620 結腸 KRAS-G12V SW480 結腸 KRAS G12D NCI-H358 KRAS-G12C NCI-H2122 KRAS-G12C Calu-6 KRAS Q61K Mewo 皮膚 NF1 LOF (c) 藉由 AlphaLISA® SureFire® Ultra p-ERK 1/2 (Thr202/Tyr204) 量測經培養人類癌細胞株中之磷酸化 ERK 抑制 All cancer cell lines (A375, A101D, A2058, RKO, HT29 SK-MEL 30, IPC298, HepG2, HCT-116, Lovo, SW620, SW480, NCI-H358, NCI-H2122, Calu-6, NCIH2087, NCIH1755, NCIH1666 and Mewo) were obtained from ATCC and cultured in RPMI-1640 medium (Gibco) supplemented with 5% heat-inactivated fetal bovine serum (FBS, Wisent) at 5% CO 2 and 37°C. Cells were maintained in T175 flasks (Greiner). The cells were washed once in 10 mL of room temperature phosphate buffered saline (Phosphate Buffered Saline; PBS; Wisent) by removing the culture medium and at 37°C with 2 mL of 0.05% trypsin (Thermo-Fisher). Incubate for passage. Trypsin was then inactivated by adding complete growth medium and cells were then re-plated in T175 dishes at appropriate dilutions. All cell lines were routinely tested for mycoplasma contamination. Tissue types and mutation status of each cell line can be found in Table B. Table B. RAS-ERK pathway mutation status of tissue types and cancer cell lines (CCL) for pERK and antiproliferative profiling of substances described in this application. cell line organization type mutant state A375 skin BRAF V600E A101D skin BRAF V600E A2058 skin BRAF V600E RKO colon BRAF V600E HT29 colon BRAF V600E NCIH2087 lung BRAF L597V; KRAS Q61K NCIH1755 lung BRAF G469A NCIH1666 lung BRAF G466V SK-MEL30 skin NRAS-Q61K IPC298 skin NRAS-Q61L HepG2 liver NRAS-Q61L HCT-116 colon KRAS G13D Lovo colon KRAS-G13D SW620 colon KRAS-G12V SW480 colon KRAS G12D NCI-H358 lung KRAS-G12C NCI-H2122 lung KRAS-G12C Calu-6 lung KRAS Q61K Mewo skin NF1 LOF (c) Measurement of phosphorylated ERK inhibition in cultured human cancer cell lines by AlphaLISA® SureFire® Ultra p-ERK 1/2 (Thr202/Tyr204)

AlphaLISA® SureFire ®Ultra p-ERK 1/2 (Thr202/Tyr204)分析係在以表C中所指示之密度鋪種於96孔平底透明培養皿(Costar)中之100 μL的完全RPMI-1640生長培養基中的細胞上進行。將細胞在37℃下,在5% CO 2下保持隔夜,隨後用化合物之稀釋系列處理一小時。以細胞數/cm 2為單位之細胞密度對應於細胞數除以96孔盤之一個孔的面積(0.143 cm 2)。 表C. 對於各癌細胞株,每孔鋪種之細胞數. 細胞株 細胞數/每孔 A375 15,000 NCIH2087 30,000 NCIH1755 30,000 NCIH1666 30,000 SK-MEL30 24,000 IPC298 20,000 HepG2 20,000 HCT-116 22,000 Lovo 20,000 SW620 30,000 SW480 15,000 NCI-H358 20,000 NCI-H2122 24, 000 Calu-6 15, 000 Mewo 20, 000 AlphaLISA® SureFire® Ultra p-ERK 1/2 (Thr202/Tyr204) assays were grown in 100 μL of complete RPMI-1640 plated in 96-well flat-bottomed clear dishes (Costar) at the densities indicated in Table C performed on cells in culture medium. Cells were maintained overnight at 37°C under 5% CO2 and then treated with a dilution series of compounds for one hour. Cell density in units of cell number/cm 2 corresponds to the number of cells divided by the area of one well of a 96-well plate (0.143 cm 2 ). Table C. For each cancer cell line, the number of cells plated per well. cell line Cells/well A375 15,000 NCIH2087 30,000 NCIH1755 30,000 NCIH1666 30,000 SK-MEL30 24,000 IPC298 20,000 HepG2 20,000 HCT-116 22,000 Lovo 20,000 SW620 30,000 SW480 15,000 NCI-H358 20,000 NCI-H2122 24,000 Calu-6 15,000 Mewo 20,000

在稀釋系列中,將在完全RPMI-1640生長培養基中製備的100 μL/孔之測試物質稀釋液添加至細胞中。選擇稀釋系列,使得十個濃度覆蓋30 µM或10 μM至0.33 nM之範圍。若必要,則將10 μM之初始濃度增加至100 μM或降低至1 μM (如在A375及NCIH1666細胞之情況下,該等細胞通常對化合物更敏感)且相應地進行進一步稀釋。分析中之DMSO之最終濃度設定為0.5%。In the dilution series, 100 μL/well of test substance dilutions prepared in complete RPMI-1640 growth medium were added to the cells. Dilution series were chosen such that ten concentrations covered the range from 30 µM or 10 µM to 0.33 nM. The initial concentration of 10 μM was increased to 100 μM or decreased to 1 μM if necessary (as in the case of A375 and NCIH1666 cells, which are generally more sensitive to the compound) and further dilutions were made accordingly. The final concentration of DMSO in the assay was set at 0.5%.

在處理之後,移除培養基且將細胞在50 µL之1× AlphaScreen Ultra裂解緩衝液(Perkin Elmer)中裂解。AlphaLISA® SureFire® Ultra™ p-ERK 1/2 (Thr202/Tyr204) (PerkinElmer)反應係根據製造商之說明在384孔代理培養盤(Perkin Elmer)中使用5 µL細胞裂解物進行,接著在室溫下,在加濕腔室中將反應孵育隔夜。反應完成後,使用內置AlphaLISA®設置在EnVision盤式讀取器(Perkin Elmer)上記錄信號。 Following treatment, medium was removed and cells were lysed in 50 μL of 1× AlphaScreen Ultra Lysis Buffer (Perkin Elmer). AlphaLISA® SureFire® Ultra ™ p-ERK 1/2 (Thr202/Tyr204) (PerkinElmer) reactions were performed according to the manufacturer's instructions in 384-well surrogate culture plates (Perkin Elmer) using 5 µL of cell lysate, followed by incubation at room temperature. Next, the reaction was incubated overnight in a humidified chamber. After the reaction was complete, the signal was recorded on an EnVision disc reader (Perkin Elmer) using the built-in AlphaLISA® setup.

各化合物稀釋度對pERK信號之影響以%抑制表示且如下計算。內部100%抑制對照(1 μM曲美替尼,目錄號HY-10999;MedChem Express;CAS號871700-17-3)包括於各培養盤中且用作pERK背景之量度。首先,自各數據點減去曲美替尼所獲得的值。建立DMSO (媒劑)對照平均值(設定為0%抑制)且用於計算%抑制: %抑制= 100*(1-((pERK信號 compound)/(pERK信號 DMSO))) The effect of each compound dilution on pERK signal was expressed as % inhibition and calculated as follows. An internal 100% inhibition control (1 μΜ Trametinib, cat# HY-10999; MedChem Express; CAS# 871700-17-3) was included in each plate and was used as a measure of the pERK background. First, the value obtained for trametinib was subtracted from each data point. DMSO (vehicle) control averages were established (set as 0% inhibition) and used to calculate % inhibition: % inhibition = 100*(1-((pERK signal compound )/(pERK signal DMSO )))

各化合物抑制pERK信號之能力表示為IC 50值,該值藉由使用GraphPadPrism (V7.0)繪製稀釋系列之各數據點的抑制值且使用對數(促效劑)與反應-可變斜率(四個參數)函數來擬合所獲得的曲線而獲得。 The ability of each compound to inhibit pERK signaling was expressed as an IC50 value by plotting the inhibition value for each data point of the dilution series using GraphPad Prism (V7.0) and using log (agonist) and response-variable slope (4 parameters) function to fit the obtained curve.

當存在時,反常pERK誘導係自化合物之pERK IC 50曲線中觀測到的負%抑制值推斷出。為了將化合物分類為pERK反常誘導劑,將劑量-活性曲線之最小數據點(%Y MIN)的%抑制設置為低於-20%,其視為在所預期分析變化範圍內(例如,具有%Y MIN= -30%或-50%或-150%之化合物視為產生路徑之反常誘導。顯示具有Y MIN= -10%之IC 50曲線的化合物視為不產生路徑之反常活化)。因此,當滿足以下準則時,則化合物在給定細胞株中抑制該路徑而無反常誘導: 1. 最高測試劑量(30 µM、10 µM或1 µM)下之%抑制超過50%。 2. IC 50曲線之%Y MIN大於-20%;其中Y MIN對應於該化合物之IC 50曲線中具有最低值之數據點。 Abnormal pERK induction, when present, was inferred from negative % inhibition values observed in pERK IC50 curves for compounds. To classify a compound as a paradoxical inducer of pERK, the % inhibition of the smallest data point (% Y MIN ) of the dose-activity curve is set below -20%, which is considered to be within the range of expected assay variation (e.g., with % Compounds with Y MIN = -30% or -50% or -150% were considered to produce aberrant induction of the pathway. Compounds showing an IC50 curve with Y MIN = -10% were considered not to produce aberrant activation of the pathway). Thus, a compound inhibits this pathway in a given cell line without paradoxical induction when the following criteria are met: 1. The % inhibition at the highest dose tested (30 µM, 10 µM or 1 µM) exceeds 50%. 2. The %Y MIN of the IC 50 curve is greater than -20%; where Y MIN corresponds to the data point with the lowest value in the IC 50 curve of the compound.

熟習此項技術者所熟知的,在此類實驗中預期抑制值之一些變化。±20%之Y MIN值視為在實驗誤差內且為不顯著的。因此,僅具有超過分析變化(約>20%)之負值的化合物視為誘導傳訊級聯之反常活化且不包括於本揭示案之範疇內。第1圖提供了誘導反常路徑活化的化合物(PLX4720,可自Selleck Chemicals商購;CAS號918505-84-7)及如本文所描述之展現非預期及特別的無誘導概況之代表性化合物的IC 50曲線的可視化。 Some variation in inhibition values is to be expected in such experiments, as is well known to those skilled in the art. Y MIN values of ±20% were considered within experimental error and not significant. Therefore, compounds with only negative values beyond the assay variation (approximately >20%) are considered to induce aberrant activation of signaling cascades and are excluded from the scope of the present disclosure. Figure 1 provides the IC of a compound that induced activation of the aberrant pathway (PLX4720, commercially available from Selleck Chemicals; CAS No. 918505-84-7) and a representative compound as described herein that exhibited an unexpected and unique no-induction profile Visualization of 50 curves.

第1圖展示了如本文所描述之在RAS突變HCT116細胞(實例80及81)中並不誘導pERK信號傳遞之反常誘導(Y MIN>-20%)的化合物及在相同細胞株中導致強烈誘導(Y MIN~-600%)該路徑之化合物(PLX4720)的代表性IC 50抑制劑量反應曲線。 Figure 1 shows compounds as described herein that do not induce paradoxical induction of pERK signaling (Y MIN >-20%) in RAS mutant HCT116 cells (Examples 80 and 81) and result in strong induction in the same cell lines (Y MIN ~-600%) Representative IC 50 inhibitory dose-response curves for this pathway compound (PLX4720).

值得注意地,根據上文所描述之準則,如本文所定義之化合物並不誘導路徑之反常活化。對於無誘導化合物(實例80)及誘導劑PLX4720,可使用如下文所描述且第2圖中所描繪的免疫墨點分析來說明此高度期望的特性的進一步說明。Notably, the compounds as defined herein do not induce abnormal activation of the pathway according to the criteria described above. Further illustration of this highly desirable property can be illustrated using immunoblot analysis as described below and depicted in Figure 2 for the no-inducing compound (Example 80) and the inducer PLX4720.

對於免疫墨點分析,將500,000個HCT-116細胞鋪種於在24孔平底透明培養皿(Costar)中之1 mL完整RPMI-1640生長培養基中。將細胞在37℃下,在5% CO 2下保持隔夜,隨後用化合物之稀釋系列處理一小時。隨後將細胞在PBS中洗滌一次且在250 µL補充有亮肽素(Leupeptin)、抑肽酶(Aprotinin)、PMSF、磷酸酶抑制劑混合物(Sigma)及Na 3VO 4之Igepal裂解緩衝液(50 mM Tris-HCl pH 7.5、150 mM NaCl、1% Igepal-CA630、1 mM EDTA、10%甘油)中,在4℃下在輕輕搖動下裂解15分鐘。隨後藉由在4℃下以20,000 g離心10分鐘來澄清細胞提取物。隨後將澄清的裂解物轉移至新試管中之冰上且隨後在上樣緩衝液(100 mM Tris-HCl pH 6.8、4% SDS、0.2%溴酚藍、20%甘油、200 mM β-巰基乙醇)中煮沸5分鐘,接著藉由SDS-PAGE分離且轉移至硝化纖維素膜(PALL)。將膜在含有2% BSA (Sigma)之Tris緩衝之鹽水0.2% Tween-20 (TBST;10 mM Tris-HCl pH 8.0、0.2% Tween-20、150 mM NaCl)中阻斷1小時且隨後與在TBST中製備之以下初級抗體的稀釋液在4℃下一起孵育隔夜:抗pERK (1:2000稀釋度;Sigma-Aldrich;目錄號M9692)、抗總ERK (1:1000稀釋度;Cell Signaling Technology;目錄號4695)、抗pMEK (1:1000稀釋度;Cell Signaling Technology;目錄號9121)及抗總MEK (1:1000稀釋度;Cell Signaling Technology;目錄號9122)。二級抗小鼠HRP及抗兔HRP (Jackson Immunoresearch Labs;目錄號分別為115-035-146及111-035-144)分別以1:5000及1:10000稀釋度製備於TBST中。免疫墨點係藉由在ECL試劑中孵育一分鐘之後,暴露於X光膠片來揭示。 For immunoblot analysis, 500,000 HCT-116 cells were plated in 1 mL of complete RPMI-1640 growth medium in 24-well flat-bottomed clear dishes (Costar). Cells were maintained overnight at 37°C under 5% CO2 and then treated with a dilution series of compounds for one hour. Cells were then washed once in PBS and washed in 250 µL of Igepal lysis buffer supplemented with Leupeptin, Aprotinin, PMSF, phosphatase inhibitor cocktail ( Sigma ) and NaVO (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Igepal-CA630, 1 mM EDTA, 10% glycerol) at 4°C for 15 min with gentle shaking. Cell extracts were then clarified by centrifugation at 20,000 g for 10 minutes at 4°C. The clarified lysate was then transferred to a new tube on ice and then incubated in loading buffer (100 mM Tris-HCl pH 6.8, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 200 mM β-mercaptoethanol ) for 5 minutes, then separated by SDS-PAGE and transferred to a nitrocellulose membrane (PALL). Membranes were blocked for 1 hour in Tris-buffered saline 0.2% Tween-20 (TBST; 10 mM Tris-HCl pH 8.0, 0.2% Tween-20, 150 mM NaCl) containing 2% BSA (Sigma) and then compared with Dilutions of the following primary antibodies prepared in TBST were incubated overnight at 4°C: anti-pERK (1:2000 dilution; Sigma-Aldrich; cat# M9692), anti-total ERK (1:1000 dilution; Cell Signaling Technology; Cat. No. 4695), anti-pMEK (1:1000 dilution; Cell Signaling Technology; Cat. No. 9121) and anti-total MEK (1:1000 dilution; Cell Signaling Technology; Cat. No. 9122). Secondary anti-mouse HRP and anti-rabbit HRP (Jackson Immunoresearch Labs; catalog numbers 115-035-146 and 111-035-144, respectively) were prepared in TBST at 1:5000 and 1:10000 dilutions, respectively. Immunoblots were revealed by exposure to X-ray film after incubation in ECL reagent for one minute.

第2圖示出了RAS突變HCT-116細胞之免疫墨點分析,該等細胞經並不誘導pERK或pMEK信號傳遞之反常誘導之代表性化合物(實例80;上圖)處理,且相比之下,經誘導同一細胞株中之路徑的化合物(PLX4720;下圖)處理。亦藉由免疫墨點探測總MEK及總ERK信號,以確保不同條件下均等負載蛋白質樣品。以微莫耳為單位之化合物濃度指示免疫墨點圖上方。用於處理之濃度範圍與實例80及PLX4720相同。Figure 2 shows immunoblot analysis of RAS mutant HCT-116 cells treated with a representative compound (Example 80; upper panel) that did not induce paradoxical induction of pERK or pMEK signaling, and compared to Next, treated with a compound (PLX4720; lower panel) that induces the pathway in the same cell line. Total MEK and total ERK signals were also probed by immunoblotting to ensure equal loading of protein samples under different conditions. Compound concentrations in micromolar are indicated above the immunoblot plots. The concentration range used for treatment was the same as Example 80 and PLX4720.

如表2-5中所示,實例化合物1至163在結腸G13D Ras突變之HCT-116細胞株中展示pERK抑制活性。另外,一些實例亦展示了在攜帶KRAS之G12D對偶基因的SW480結腸細胞株中顯示pERK信號傳遞之反常無誘導抑制(表2-5)。此外,亦測試了來自表2-5之一些實例對包含BRAF V600E驅動突變的A375細胞中pERK之抑制,且發現其亦具有活性(表D)。在表2-5中,所有化合物實例1-163在HCT116細胞株中均顯示pERK IC 50值<30 µM。較佳化合物之IC 50值為1-10 µM、更佳化合物之IC 50值為0.5-1 µM、而甚至更佳化合物之IC 50值為<0.5 µM。 As shown in Tables 2-5, Example Compounds 1 to 163 exhibited pERK inhibitory activity in colonic G13D Ras mutated HCT-116 cell line. In addition, some examples also demonstrate paradoxical induction-free inhibition of pERK signaling in the SW480 colon cell line carrying the G12D allele of KRAS (Tables 2-5). In addition, some examples from Tables 2-5 were also tested for inhibition of pERK in A375 cells containing the BRAF V600E driver mutation and found to be active as well (Table D). In Table 2-5, all compounds of Example 1-163 showed pERK IC 50 values <30 μM in HCT116 cell line. Preferred compounds have IC50 values of 1-10 µM, more preferred compounds have IC50 values of 0.5-1 µM, and even more preferred compounds have IC50 values of <0.5 µM.

亦在額外腫瘤細胞上測試了如本文所定義之代表性化合物之pERK抑制活性且在攜帶各種NRAS、KRAS及NF1對偶基因且代表大量組織類型(亦即SK-MEL 30、IPC298、HepG2、HCT-116、Lovo、SW620、SW480、NCI-H358、NCI-H2122、Calu-6及Mewo;表D且基因型參考表B)的癌細胞株展示良好至極好的pERK抑制活性。化合物之pERK抑制活性在攜帶BRAF對偶基因(A375、A101D、A2058、RKO、HT29、NCIH2087、NCIH1755及NCIH1666)之癌細胞株中更強(表D)。The pERK inhibitory activity of representative compounds as defined herein was also tested on additional tumor cells carrying various NRAS, KRAS and NF1 alleles and representing a large number of tissue types (i.e. SK-MEL 30, IPC298, HepG2, HCT- 116, Lovo, SW620, SW480, NCI-H358, NCI-H2122, Calu-6 and Mewo; Table D and genotype refer to Table B) cancer cell lines exhibited good to excellent pERK inhibitory activity. The pERK inhibitory activity of the compounds was stronger in cancer cell lines carrying BRAF alleles (A375, A101D, A2058, RKO, HT29, NCIH2087, NCIH1755 and NCIH1666) (Table D).

表D (D-1及D-2). 一組RAS突變癌細胞株(基因型參見表B)及BRAF V600E突變A375中所選化合物之無誘導pERK IC 50值及抗增殖EC 50值。 D-1. 實例 A375    A2058 HT-29 RKO A101D SK-MEL30 IPC298 HepG2 HCT116    pERK    pERK pERK pERK pERK pERK pERK pERK pERK    增殖    增殖 增殖 增殖 增殖 增殖 增殖 增殖 增殖 98                   +++ (10) ++ (13) +++ (27) ++ (-6.0) 98 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 112                   +++ (6) ++ (1) ++ (-10) + (-0.8) 112 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎    ⁎⁎⁎ ⁎⁎ 114                   ++ (-9) ++ (1) ++ (14) + (-4.9) 114 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ 119                   ++ (-12) ++ (-4) ++ (30) + (-7) 119 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎    ⁎⁎⁎ ⁎⁎ 128                   +++ (13) ++ (8) +++ (34) ++ (7) 128 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 129                   +++ (16) ++ (17) ++ (-2) ++ (-8) 129 ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ Belv.                   +++ (-45) ++ (-63) ++ (-36) ++ (-46) Belv. ⁎⁎⁎       ⁎⁎⁎ ⁎⁎⁎    ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ Table D (D-1 and D-2). Non-induction pERK IC 50 values and anti-proliferation EC 50 values of selected compounds in a group of RAS mutant cancer cell lines (see Table B for genotype) and BRAF V600E mutation A375. D-1. example A375 A2058 HT-29 RKO A101D SK-MEL30 IPC298 HepG2 HCT116 ERK ERK ERK ERK ERK ERK ERK ERK ERK proliferation proliferation proliferation proliferation proliferation proliferation proliferation proliferation proliferation 98 +++ (10) ++ (13) +++ (27) ++ (-6.0) 98 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 112 +++ (6) ++ (1) ++ (-10) + (-0.8) 112 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ 114 ++ (-9) ++ (1) ++ (14) + (-4.9) 114 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ 119 ++ (-12) ++ (-4) ++ (30) + (-7) 119 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ 128 +++ (13) ++ (8) +++ (34) ++ (7) 128 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 129 +++ (16) ++ (17) ++ (-2) ++ (-8) 129 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ Belv. +++ (-45) ++ (-63) ++ (-36) ++ (-46) Belv. ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎

在pERK中:+指示IC 50>300 nM,++指示30-300nM IC 50範圍且+++指示IC 50< 30 nM。對於增殖:⁎指示EC 50>3000 nM,⁎⁎指示300-3000 nM EC 50範圍,⁎⁎⁎指示EC 50<300nM。Belv.:貝伐拉菲尼。括號中之值為%抑制。空白意謂該值未測定。 D-2. 實例 Lovo NCI-H358 SW620 Calu6 NCI-H2122 SW480 Mewo NCIH2087 NCIH1755    pERK pERK pERK pERK pERK pERK pERK pERK pERK    增殖 增殖 增殖 增殖 增殖 增殖 增殖 增殖 增殖 98 ++ (27) ++ (20) ++ (36) ++ (5) ++ (26) ++ (-1) ++ (9) +++ (6) +++ (9) 98 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 112 ++ (-1) ++ (-8) ++ (11) ++ (1) ++ (-15) ++ (-7) +++ (12) +++ (-7) +++ (12) 112 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎    114 +++ (4) + (-4) + (-13) ++ (8) ++ (0) ++ (1) ++ (-12) ++ (2) ++ (-5) 114 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ 119 ++ (0) ++ (29) ++ (-1) ++ (-16) + (-3) ++ (-5) ++ (-12) +++ (26) ++ (0) 119          ⁎⁎          128 ++ (-12) ++ (14) ++ (11) ++ (1) + (-4) ++ (-14) ++ (-7) +++ (-7) +++ (1) 128 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 129 ++ (-2) ++ (-3) + (-7) ++ (-1) + (-14) ++ (3) ++ (-5) +++ (3) +++ (-2) 129 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ Belv. +++ (-12) ++ (-122) ++ (-151) ++ (-39) ++ (-9) ++ (-100) ++ (-116) +++ (-31) ++ (-79) Belv. ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ In pERK: + indicates IC50 > 300 nM, ++ indicates 30-300 nM IC50 range and +++ indicates IC50 < 30 nM. For proliferation: ⁎ indicates EC 50 >3000 nM, ⁎⁎ indicates 300-3000 nM EC 50 range, ⁎⁎⁎ indicates EC 50 < 300 nM. Belv.: Belvalafini. Values in parentheses are % inhibition. A blank means that the value was not determined. D-2. example Lovo NCI-H358 SW620 Calu6 NCI-H2122 SW480 Mewo NCIH2087 NCIH1755 ERK ERK ERK ERK ERK ERK ERK ERK ERK proliferation proliferation proliferation proliferation proliferation proliferation proliferation proliferation proliferation 98 ++ (27) ++ (20) ++ (36) ++ (5) ++ (26) ++ (-1) ++ (9) +++ (6) +++ (9) 98 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 112 ++ (-1) ++ (-8) ++ (11) ++ (1) ++ (-15) ++ (-7) +++ (12) +++ (-7) +++ (12) 112 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ 114 +++ (4) + (-4) + (-13) ++ (8) ++ (0) ++ (1) ++ (-12) ++ (2) ++ (-5) 114 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ 119 ++ (0) ++ (29) ++ (-1) ++ (-16) + (-3) ++ (-5) ++ (-12) +++ (26) ++ (0) 119 ⁎⁎ 128 ++ (-12) ++ (14) ++ (11) ++ (1) + (-4) ++ (-14) ++ (-7) +++ (-7) +++ (1) 128 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ 129 ++ (-2) ++ (-3) + (-7) ++ (-1) + (-14) ++ (3) ++ (-5) +++ (3) +++ (-2) 129 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ Belv. +++ (-12) ++ (-122) ++ (-151) ++ (-39) ++ (-9) ++ (-100) ++ (-116) +++ (-31) ++ (-79) Belv. ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎

在pERK中:+指示IC 50>300 nM,++指示30-300nM IC 50範圍且+++指示IC 50< 30 nM。對於增殖:⁎指示EC50 >3000 nM,⁎⁎指示300-3000 nM EC50範圍,⁎⁎⁎指示EC50 <300nM。Belv.:貝伐拉菲尼。括號中之值為%抑制。空白意謂該值未測定。 In pERK: + indicates IC50 > 300 nM, ++ indicates 30-300 nM IC50 range and +++ indicates IC50 < 30 nM. For proliferation: ⁎ indicates EC50 >3000 nM, ⁎⁎ indicates 300-3000 nM EC50 range, ⁎⁎⁎ indicates EC50 <300nM. Belv.: Belvalafini. Values in parentheses are % inhibition. A blank means that the value was not determined.

對於RAS突變癌細胞株,pERK IC 50曲線之%Y min值均高於-20%且視為顯示最小誘導或無誘導且因此化合物在此組癌細胞株中並不引起可偵測之路徑反常活化。相比之下,分子貝伐拉菲尼(自MedChem Express獲得,目錄號HY-109080;CAS號1446113-23-0)之比較結果在相同細胞株中展示輕度至強度的路徑誘導(在所測試13個RAS突變細胞株中的11個中,Y MIN< -30%)。 (d) 使用 CellTiter-Glo® 試劑量測經培養人類癌細胞株 (CCL) 之增殖抑制 For RAS mutant cancer cell lines, the %Y min values of the pERK IC 50 curves were all higher than -20% and were considered to show minimal or no induction and therefore the compound did not cause detectable pathway abnormalities in this group of cancer cell lines activation. In contrast, comparisons of the molecule bevarafenib (obtained from MedChem Express, Cat. No. HY-109080; CAS No. 1446113-23-0) showed mild to strong pathway induction in the same cell lines (in the In 11 of 13 RAS mutant cell lines tested, Y MIN < -30%). (d) Measurement of Proliferation Inhibition of Cultured Human Cancer Cell Lines (CCL) Using CellTiter-Glo® Reagent

CellTiter-Glo®生存力分析係在以表E中所指示之密度(對於各CCL,用於進行CellTiter-Glo®細胞生存力分析的96孔盤之每孔鋪種之細胞數)鋪種於96孔平底白色不透明培養盤(Greiner或Corning)中之40 μL的完全RPMI-1640生長培養基中的細胞上進行。以細胞數/cm 2為單位之細胞密度對應於細胞數除以96孔盤之一個孔的面積(0.32 cm 2)。將細胞在37℃下,在5% CO 2下保持隔夜,隨後用化合物之稀釋系列處理3天。 表E. 用於進行CellTiter-Glo®細胞生存力分析的96孔盤之每孔鋪種之細胞數 細胞株 細胞數/孔 A375 2000 A101D 2000 A2058 2000 RKO 2000 HT29 2000 NCIH2087 3600 NCIH1755 3600 NCIH1666 3600 SK-MEL30 2400 IPC298 2000 HepG2 7200 HCT-116 1500 Lovo 4800 SW620 3600 SW480 4800 NCI-H358 2400 NCI-H2122 4800 Calu-6 2400 Mewo 2400 The CellTiter-Glo® Viability Assay was plated at the density indicated in Table E (for each CCL, the number of cells plated per well of the 96-well plate used for the CellTiter-Glo® Cell Viability Assay) in 96 This was performed on cells in 40 μL of complete RPMI-1640 growth medium in well flat-bottomed white opaque culture dishes (Greiner or Corning). Cell density in units of cell number/cm 2 corresponds to the number of cells divided by the area of one well of a 96-well plate (0.32 cm 2 ). Cells were maintained overnight at 37°C under 5% CO2 and then treated with a dilution series of compounds for 3 days. Table E. Number of cells plated per well of 96-well plates for CellTiter-Glo® Cell Viability Assay cell line Cells/well A375 2000 A101D 2000 A2058 2000 RKO 2000 HT29 2000 NCIH2087 3600 NCIH1755 3600 NCIH1666 3600 SK-MEL30 2400 IPC298 2000 HepG2 7200 HCT-116 1500 Lovo 4800 SW620 3600 SW480 4800 NCI-H358 2400 NCI-H2122 4800 Calu-6 2400 Mewo 2400

在稀釋系列中,將在完全RPMI-1640生長培養基中製備的100 μL/孔之測試物質稀釋液添加至最初鋪種於100 μL生長培養基中之細胞中。選擇稀釋系列,使得十個濃度覆蓋30 µM或10 μM至0.33 μM之範圍。若必要(如在A375細胞之情況下,該等細胞對化合物更敏感),則將10 μM之初始濃度降低至1 μM且相應地進行進一步稀釋。分析中之DMSO之最終濃度設定為0.5%。In the dilution series, 100 μL/well of test substance dilutions prepared in complete RPMI-1640 growth medium were added to cells initially plated in 100 μL of growth medium. Dilution series were chosen such that ten concentrations covered the range from 30 µM or 10 µM to 0.33 µM. If necessary (as in the case of A375 cells, which are more sensitive to the compound), the initial concentration of 10 μΜ was reduced to 1 μΜ and further dilutions were made accordingly. The final concentration of DMSO in the assay was set at 0.5%.

在孵育3天之後,藉由抽吸移除生長培養基且向各孔中添加60 μL之經稀釋CellTiter-Glo®試劑(10 μL CellTiter-Glo®試劑+ 50 μL PBS)。藉由在盤式振盪器上孵育5 min,接著在室溫下孵育10 min,使細胞在CellTiter-Glo®試劑中裂解且平衡。隨後在Synergy Neo2盤式讀取器(Biotek)上獲取發光信號。After 3 days of incubation, the growth medium was removed by aspiration and 60 μL of diluted CellTiter-Glo® Reagent (10 μL CellTiter-Glo® Reagent + 50 μL PBS) was added to each well. Cells were lysed and equilibrated in CellTiter-Glo® reagent by incubation on a plate shaker for 5 min, followed by 10 min at room temperature. Luminescent signals were subsequently acquired on a Synergy Neo2 disk reader (Biotek).

各化合物稀釋度對癌細胞株增殖之影響以%抑制表示且如下計算。內部100%抑制對照(1 μM曲美替尼;目錄號HY-10999;MedChem Express;CAS號871700-17-3)包括於各培養盤中且用作CellTiter-Glo®信號背景之量度。自各數據點減去曲美替尼所獲得的值。建立DMSO (媒劑)對照平均值(設定為0%抑制)且用於計算%抑制: %抑制=100*(1-((CellTiter-Glo®信號 compound)/(CellTiter-Glo®信號 DMSO))) The effect of each compound dilution on the proliferation of cancer cell lines was expressed as % inhibition and calculated as follows. An internal 100% inhibition control (1 μΜ Trametinib; Cat# HY-10999; MedChem Express; CAS# 871700-17-3) was included in each plate and was used as a measure of the CellTiter-Glo® signal background. Values obtained by subtracting trametinib from each data point. A DMSO (vehicle) control mean was established (set as 0% inhibition) and used to calculate % inhibition: % inhibition=100*(1-((CellTiter-Glo® signal compound )/(CellTiter-Glo® signal DMSO )) )

各化合物抑制增殖之能力表示為EC 50值,該值藉由使用GraphPadPrism (V7.0)或Dotmatics Screening Ultra平台繪製稀釋系列之各數據點的影響值且使用對數(促效劑)與反應-可變斜率(四個參數)函數來擬合所獲得的曲線而獲得。 The ability of each compound to inhibit proliferation was expressed as an EC50 value by plotting the effect of each data point of the dilution series using the GraphPadPrism (V7.0) or Dotmatics Screening Ultra platforms and using the logarithm (agonist) and response-can Obtained by fitting the obtained curve with a function of variable slope (four parameters).

如表D中所示,活性物質在代表多種組織類型(亦即SK-MEL 30、IPC298、HepG2、HCT-116、Lovo、SW620、SW480、NCI-H358、NCI-H2122、Calu-6及Mewo;表D且基因型參考表B)之各種NRAS突變、KRAS突變及NF1突變癌細胞株中展示抗增殖活性。抗增殖活性通常在攜帶BRAF驅動突變之細胞株中甚至更強(表D)。值得注意的是,在KRAS突變及BRAF突變細胞株中,pERK降低之IC 50值與物質之抗增殖活性的EC 50值之間具有相當好的相關性(表D)。本發明化合物因此對若干種腫瘤類型有效且可用於此等腫瘤及其他適應症中。此證實本文所定義之化合物對治療不同類型腫瘤之有用性。 (e) 結果 As shown in Table D, active substances were tested in representative tissue types (i.e. SK-MEL 30, IPC298, HepG2, HCT-116, Lovo, SW620, SW480, NCI-H358, NCI-H2122, Calu-6 and Mewo; Table D and genotypes refer to Table B) in various NRAS-mutated, KRAS-mutated and NF1-mutated cancer cell lines exhibiting anti-proliferative activity. Antiproliferative activity was generally even stronger in cell lines carrying BRAF driver mutations (Table D). It is noteworthy that there is a fairly good correlation between the IC50 values for pERK reduction and the EC50 values for the antiproliferative activity of the substances in KRAS mutant and BRAF mutant cell lines (Table D). The compounds of the invention are thus effective against several tumor types and can be used in these and other indications. This demonstrates the usefulness of the compounds defined herein for the treatment of different types of tumors. (e) Results

下表2至5中總結了例示性化合物結構、合成方法及生物學結果。此等表格中之每一者後面均有各自的總結化合物之化學特徵的表格。 表2

Figure 02_image1352
實例 R 2 HCT116 pERK IC 50(µM) (Y min%) SW480 pERK IC 50(µM) (Y min%) 激酶IC 50BRAF (nM) 激酶IC 50CRAF (nM) 1 B1 + (1) ++ (6) * § 2 B2 ++ (-14) ++ (5)       3 B3 ++ (-7) ++ (9)       4 B4 ++ (-5) ++ (-2)       5 B5 + (8) ++ (8)       6 B6 + (-10) ++ (1)       7 B7 + (7) ++ (17)       8 B8 ++ (-3) ++ (15)       9 B9 + (1) + (-3)       10 B10 + (9) ++ (-9)       11 B11 ++ (10) ++ (8)       12 B12 ++ (-7) ++ (-10)       13 B13 + (-2) + (4)       14 B14 ++ (-5) ++ (-6)       15 B15 + (-3) + (0)       16 B16 + (1) ++ (3)       17 B17 + (5) ++ (3)       18 B18 + (4) ++ (11)       19 B19 + (-4) ++ (4)       20 B20 ++ (7) ++ (12)       21 B21 ++ (2) ++ (9)       22 B22 ++ (-1) ++ (-5)       23 B23 ++ (0) ++ (-7)       24 B24 + (10) ++ (13)       25 B25 + (7) + (-6)       26 B26 ++ (11) ++ (9)       27 B27 + (-6)          28 B28 ++ (3) ++ (-3)       29 B29 + (-9) + (3)       90 B36 ++ (-9.2)    ** §§ 91 B53 ++ (-8)    * §§ 92 B54 ++ (-12)    ** §§§ Exemplary compound structures, synthetic methods and biological results are summarized in Tables 2 to 5 below. Each of these tables is followed by a respective table summarizing the chemical characteristics of the compounds. Table 2
Figure 02_image1352
example R 2 HCT116 pERK IC 50 (µM) (Y min %) SW480 pERK IC 50 (µM) (Y min %) Kinase IC 50 BRAF (nM) Kinase IC 50 CRAF (nM) 1 B1 + (1) ++ (6) * § 2 B2 ++ (-14) ++ (5) 3 B3 ++ (-7) ++ (9) 4 B4 ++ (-5) ++ (-2) 5 B5 + (8) ++ (8) 6 B6 + (-10) ++ (1) 7 B7 + (7) ++ (17) 8 B8 ++ (-3) ++ (15) 9 B9 + (1) + (-3) 10 B10 + (9) ++ (-9) 11 B11 ++ (10) ++ (8) 12 B12 ++ (-7) ++ (-10) 13 B13 + (-2) + (4) 14 B14 ++ (-5) ++ (-6) 15 B15 + (-3) + (0) 16 B16 + (1) ++ (3) 17 B17 + (5) ++ (3) 18 B18 + (4) ++ (11) 19 B19 + (-4) ++ (4) 20 B20 ++ (7) ++ (12) twenty one B21 ++ (2) ++ (9) twenty two B22 ++ (-1) ++ (-5) twenty three B23 ++ (0) ++ (-7) twenty four B24 + (10) ++ (13) 25 B25 + (7) + (-6) 26 B26 ++ (11) ++ (9) 27 B27 + (-6) 28 B28 ++ (3) ++ (-3) 29 B29 + (-9) + (3) 90 B36 ++ (-9.2) ** §§ 91 B53 ++ (-8) * §§ 92 B54 ++ (-12) ** §§§

對於pERK分析,+指示10-30 µM IC50範圍,++指示1-10 µM IC50範圍,+++指示0.5-1 µM IC50範圍且++++指示IC50  <0.5 µM。% Ymin值指示各IC50曲線之最低值。展現Ymin值高於-20%之IC50曲線的化合物視為顯示最小誘導或無誘導且不引起可偵測之路徑的反常活化。對於BRAF生化激酶分析,*指示IC50 >10 nM,**指示1-10 nM IC50範圍且***指示IC50 < 1 nM。對於CRAF生化激酶分析,§指示IC50 >50 nM,§§指示10-50 nM IC50範圍且§§§指示IC50 < 10 nM。 表2中之化合物之特徵 實例 合成方法 HRMS m/z(MH +) 1H NMR (400 MHz) 1 A 491.1 1H NMR (DMSO-d 6) δ: 10.14 (s, 1H), 10.03 (s, 1H), 9.27 (s, 1H), 8.49 (s, 1H), 7.56 – 7.76 (m, 2H), 7.16 – 7.31 (m, 2H), 7.06 – 7.12 (m, 2H), 3.81 (s, 3H), 2.68 (s, 3H) 2 B 521.1 1H NMR (DMSO-d 6) δ: 10.12 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.17 – 7.33 (m, 4H), 7.09 (d, J = 8.6 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 2.71 (s, 3H) 3 B 525.3 1H NMR (DMSO-d 6) δ: 10.06 (s, 1H), 9.88 (s, 1H), 9.29 (s, 1H), 8.50 (s, 1H), 7.98 (d, J = 5.0 Hz, 1H), 7.38 (d, J = 5.0 Hz, 1H), 7.34 (td, J = 8.7, 5.8 Hz, 1H), 7.23 (td, J = 9.1, 0.9 Hz, 1H), 3.85 (s, 3H), 2.71 (s, 3H) 4 B 503.5 1H NMR (DMSO-d 6) δ: 10.08 (s, 1H), 10.04 (s, 1H), 9.30 (s, 1H), 8.50 (s, 1H), 7.56 – 7.63 (m, 1H), 7.50 (dd, J = 8.4, 2.0 Hz, 1H), 7.26 (td, J = 9.1, 6.0 Hz, 1H), 7.20 (t, J = 9.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.21 (t, J = 8.8 Hz, 2H), 2.71 (s, 3H) 5 B 486.1 1H NMR (DMSO-d 6) δ: 10.78 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 8.10 (dd, J = 7.2, 1.4 Hz, 1H), 7.95 (dd, J = 8.2, 1.0 Hz, 1H), 7.90 (td, J = 7.5, 1.4 Hz, 1H), 7.84 (td, J = 7.4, 1.0 Hz, 1H), 7.34 (td, J = 8.7, 5.7 Hz, 1H), 7.26 (t, J = 9.2 Hz, 1H), 2.69 (s, 3H) 6 B 505.1 1H NMR (DMSO-d 6) δ: 10.19 (s, 1H), 10.05 (s, 1H), 9.30 (s, 1H), 8.50 (s, 1H), 7.16 – 7.32 (m, 4H), 7.06 (d, J = 8.2 Hz, 1H), 6.15 (s, 2H), 2.71 (s, 3H) 7 B 516.1 1H NMR (DMSO-d 6) δ: 10.58 (s, 1H), 10.05 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 2.7 Hz, 1H), 7.40 (dd, J = 9.0, 2.7 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 (t, J = 9.0 Hz, 1H), 3.88 (s, 3H), 2.69 (s, 3H) 8 A 509.1 1H NMR (DMSO-d 6) δ: 10.40 (s, 1H), 10.07 (s, 1H), 9.29 (s, 1H), 8.47 (s, 1H), 7.61 (t, J = 8.6 Hz, 1H), 7.29 (td, J = 8.2, 5.9 Hz, 1H), 7.22 (t, J = 9.4 Hz, 1H), 7.06 (dd, J = 12.1, 2.0 Hz, 1H), 6.89 (dd, J = 9.0, 2.0 Hz, 1H), 3.83 (s, 3H), 2.71 (s, 3H) 9 B 472.4 1H NMR (DMSO-d 6) δ: 10.12 (s, 1H), 9.81 (s, 1H), 9.31 (s, 1H), 8.54 (s, 1H), 7.48 (td, J = 8.6, 5.8 Hz, 1H), 7.26 (td, J = 9.1, 0.9 Hz, 1H), 5.33 (dt, J = 53.3, 3.5 Hz, 1H), 3.36 – 3.52 (m, 3H), 3.31 (td, J = 9.9, 6.6 Hz, 1H), 2.73 (s, 3H), 1.96 – 2.17 (m, 2H) 10 B 504.1 1H NMR (DMSO-d 6) δ: 10.81 (s, 1H), 10.05 (br s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 8.19 (dd, J = 8.6, 2.7 Hz, 1H), 7.99 (dd, J = 9.0, 5.5 Hz, 1H), 7.79 (td, J = 8.4, 2.7 Hz, 1H), 7.36 (td, J = 8.6, 5.9 Hz, 1H), 7.27 (t, J = 9.0 Hz, 1H), 2.70 (s, 3H) 11 B 484.2 1H NMR (DMSO-d 6) δ: 10.11 (s, 1H), 9.70 (s, 1H), 9.31 (s, 1H), 8.53 (s, 1H), 7.49 (td, J = 8.8, 5.7 Hz, 1H), 7.25 (td, J = 9.1, 1.3 Hz, 1H), 3.91 – 4.01 (m, 1H), 3.29 – 3.34 (m, 2H), 3.21 – 3.29 (m, 2H), 3.19 (s, 3H), 2.73 (s, 3H), 1.84 – 1.97 (m, 2H) 12 A,B 505.1 1H NMR (DMSO-d 6) δ: 10.17 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.26 (td, J = 9.0, 5.9 Hz, 1H), 7.19 (t, J = 9.0 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.71 (s, 3H), 2.57 (s, 3H) 13 B 472.4 1H NMR (DMSO-d 6) δ: 10.12 (s, 1H), 9.81 (s, 1H), 9.31 (s, 1H), 8.54 (s, 1H), 7.48 (td, J = 8.6, 5.8 Hz, 1H), 7.26 (td, J = 9.1, 0.9 Hz, 1H), 5.33 (dt, J = 53.3, 3.5 Hz, 1H), 3.36 – 3.52 (m, 3H), 3.31 (td, J = 9.9, 6.6 Hz, 1H), 2.73 (s, 3H), 1.96 – 2.17 (m, 2H) 14 B 559.1 1H NMR (DMSO-d 6) δ: 10.29 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.41 (d, J = 2.7 Hz, 1H), 7.37 (dd, J = 9.0, 2.7 Hz, 1H), 7.30 (td, J = 8.6, 5.9 Hz, 1H), 7.23 (t, J = 9.4 Hz, 1H), 3.89 (s, 3H), 2.68 (s, 3H) 15 B 529.0 1H NMR (DMSO-d 6) δ: 10.63 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.91 (d, J = 2.3 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.61 (dd, J = 8.4, 2.2 Hz, 1H), 7.30 (td, J = 8.6, 5.9 Hz, 1H), 7.22 (t, J = 9.0 Hz, 1H), 2.69 (s, 3H) 16 B 557.0 559.0 1H NMR (DMSO-d 6) δ: 10.70 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.87 (dd, J = 9.8, 1.0 Hz, 1H), 7.56 – 7.67 (m, 2H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.24 (t, J = 9.2 Hz, 1H), 2.68 (s, 3H) 17 B 553.0 555.0 1H NMR (DMSO-d 6) δ: 10.43 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.69 (d, J = 1.2 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 9.8, 5.9 Hz, 1H), 7.22 (t, J = 9.8 Hz, 1H), 2.71 (s, 3H), 2.59 (s, 3H) 18 B 475.1 1H NMR (DMSO-d 6) δ: 10.24 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.50 (s, 1H), 7.53 – 7.77 (m, J = 8.2 Hz, 2H), 7.35 – 7.42 (m, J = 7.8 Hz, 2H), 7.16 – 7.30 (m, 2H), 2.71 (s, 3H), 2.36 (s, 3H) 19 B 521.1 1H NMR (DMSO-d 6) δ: 10.04 (br s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.26 (td, J = 8.7, 5.7 Hz, 1H), 7.15 (td, J = 9.4, 1.0 Hz, 1H), 6.69 (d, J = 2.3 Hz, 1H), 6.58 (dd, J = 8.6, 2.3 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 2.68 (s, 3H) 20 B 475.1 1H NMR (DMSO-d 6) δ: 10.33 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.75 (dd, J = 8.0, 1.0 Hz, 1H), 7.52 (td, J = 7.4, 1.2 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (td, J = 9.0, 5.9 Hz, 1H), 7.19 (t, J = 9.4 Hz, 1H), 2.68 (s, 3H), 2.61 (s, 3H) 21 B 495.0 1H NMR (DMSO-d 6) δ: 10.53 (s, 1H), 10.06 (br s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.91 (dd, J = 7.8, 1.6 Hz, 1H), 7.62 – 7.72 (m, 2H), 7.47 – 7.54 (m, 1H), 7.17 – 7.33 (m, 2H), 2.68 (s, 3H) 22 B 509.0 1H NMR (DMSO-d 6) δ: 10.43 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.55 (s, 1H), 7.43 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 9.0, 6.7 Hz, 1H), 7.22 (t, J = 9.0 Hz, 1H), 2.71 (s, 3H), 2.60 (s, 3H) 23 B 489.1 1H NMR (DMSO-d 6) δ: 10.26 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.09 – 7.32 (m, 4H), 2.70 (s, 3H), 2.57 (s, 3H), 2.30 (s, 3H) 24 B 454.1 1H NMR (DMSO-d 6) δ: 10.11 (br s, 1H), 9.31 (s, 1H), 8.52 (s, 1H), 7.49 (td, J = 8.8, 5.9 Hz, 1H), 7.25 (t, J = 8.6 Hz, 1H), 3.18 (t, J = 6.7 Hz, 4H), 2.73 (s, 3H), 1.74 – 1.87 (m, 4H) 25 B 470.4 1H NMR (CDCl 3) δ: 9.33 (s, 1H), 8.74 (s, 1H), 8.15 (br s, 1H), 7.60 (td, J = 8.8, 5.4 Hz, 1H), 7.22 (br s, 1H), 7.08 (td, J = 9.1, 1.9 Hz, 1H), 4.13 – 4.20 (m, 1H), 4.04 – 4.11 (m, 2H), 3.84 – 3.96 (m, 2H), 3.26 (s, 3H), 2.71 (s, 3H) 26 B 484.4 1H NMR (DMSO-d 6) δ: 10.11 (s, 1H), 9.70 (s, 1H), 9.31 (s, 1H), 8.53 (s, 1H), 7.49 (td, J = 8.8, 5.7 Hz, 1H), 7.25 (td, J = 9.1, 1.3 Hz, 1H), 3.91 – 4.01 (m, 1H), 3.29 – 3.34 (m, 2H), 3.21 – 3.29 (m, 2H), 3.19 (s, 3H), 2.73 (s, 3H), 1.84 – 1.97 (m, 2H) 27 B 490.4 1H NMR (MeOH-d 4) δ: 9.18 (s, 1H), 8.49 (s, 1H), 7.56 – 7.63 (m, 1H), 7.15 (td, J = 9.1, 1.9 Hz, 1H), 3.63 (t, J = 12.8 Hz, 2H), 3.52 (t, J = 7.3 Hz, 2H), 2.74 (s, 3H), 2.39 (tt, J = 13.9, 7.1 Hz, 2H) 28 B 501.9 1H NMR (MeOH-d 4) δ: 9.20 (s, 1H), 8.53 (s, 1H), 7.63 (td, J = 8.8, 5.7 Hz, 1H), 7.14 (td, J = 9.1, 1.9 Hz, 1H), 3.48 – 3.59 (m, 4H), 3.39 – 3.44 (m, 1H), 3.12 (dd, J = 9.9, 7.1 Hz, 1H), 2.75 (s, 3H), 2.61 (dt, J = 14.4, 7.1 Hz, 1H), 2.09 (dtd, J = 12.3, 7.3, 4.6 Hz, 1H), 1.76 (dq, J = 12.6, 8.1 Hz, 1H) 29 C 468.1 1H NMR (CDCl 3) δ: 9.29 (s, 1H), 8.67 (s, 1H), 8.11 (br s, 1H), 7.61 (td, J = 9.0, 5.5 Hz, 1H), 7.07 (td, J = 9.2, 2.0 Hz, 1H), 6.67 (br s, 1H), 3.44 – 3.54 (m, 2H), 3.27 – 3.38 (m, 1H), 2.88 (dd, J = 9.2, 8.0 Hz, 1H), 2.71 (s, 3H), 2.30 (dq, J = 15.2, 7.3 Hz, 1H), 1.98 – 2.09 (m, 1H), 1.48 – 1.58 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H) 90 A 參見實例 1 493.2 1H NMR (DMSO- d 6) δ: 10.50 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.61 (d, J= 8.2 Hz, 1H), 7.48 (dd, J= 9.8, 8.2 Hz, 1H), 7.36 - 7.43 (m, 1H), 7.25 - 7.34 (m, 1H), 7.21 (dd, J= 11.3, 8.6 Hz, 1H), 2.71 (s, 3H), 2.50 (s, 3H) 91 A 參見實例1 523.2 1H NMR (DMSO- d 6) δ: 10.33 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.46 (s, 1H), 7.57 (d, J= 8.2 Hz, 1H), 7.25 - 7.34 (m, 1H), 7.16 - 7.23 (m, 1H), 7.06 - 7.15 (m, 1H), 3.87 (s, 3H), 2.71 (s, 3H), 2.48 (s, 3H) 92 A 參見實例1 539.2 1H NMR (DMSO- d 6) δ: 10.39 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.46 (s, 1H), 7.76 (d, J= 9.0 Hz, 1H), 7.25 - 7.33 (m, 1H), 7.15 - 7.23 (m, 1H), 7.12 (d, J= 9.0 Hz, 1H), 3.90 (s, 3H), 2.71 (s, 3H), 2.65 (s, 3H) 表3

Figure 02_image1354
實例 R- 1 R 2 HCT116 pERK IC 50(µM) (Y min%) SW480 pERK IC 50(µM) (Y min%) Kinase IC 50BRAF (nM) Kinase IC 50CRAF (nM) 30 C2 B2 ++ (-6) + (-5)       31 C3 B1 ++ (13) ++ (11)       32 C4 B1 + (1) ++ (8)       33 C3 B5 + (-4) ++ (13)       34 C5 B5 + (-3) ++ (-2.0)       35 C6 B1 + (-4) ++ (14)       36 C7 B1 ++ (10) ++ (10)       37 C8 B1 ++ (-5) ++ (-6)       38 C9 B1 + (-1) + (-3)       39 C10 B1 + (5) + (-3)       40 C5 B1 ++ (12) ++ (-7)       41 C11 B1 + (13) + (6)       42 C12 B1 + (-2) + (11)       43 C13 B1 + (11) + (0)       44 C3 B8 ++ (-2) ++ (12)       45 C7 B8 ++ (11) ++ (-8)       46 C14 B1 + (8) + (12)       47 C15 B1 ++ (6) ++ (-1)       48 C16 B1 ++ (13) ++ (6)       49 C17 B1 + (8) + (-9)       50 C16 B8 ++ (8) ++ (-9)       51 C7 B9 ++ (-8) ++ (-1)       52 C15 B8 ++ (-4) ++ (-8)       53 C5 B8 ++ (15) ++ (-4)       54 C18 B1 + (-7) + (8)       55 C7 B12 ++ (-4) ++ (-2)       56 C5 B12 ++ (-10) ++ (4)       57 C3 B12 ++ (-2) ++ (-2) * § 58 C5 B11 ++(11) ++ (16)       59 C7 B11 +++ (11) +++ (2)       60 C3 B11 ++ (9) ++ (15)       61 C3 B15 ++ (11) ++ (9)       62 C5 B15 ++ (11) +++ (2) ** §§ 63 C7 B15 ++ (-2) ++ (1) ** §§§ 64 C7 B4 ++ (2) ++ (19)       65 C5 B4 ++ (4) ++ (5)       66 C3 B4 + (10) ++ (0)       67 C19 B11 ++ (6) ++ (18)       68 C20 B11 ++ (17) ++ (0)       69 C27 B11 +++ (8) ++++ (12)       70 C7 B30 ++ (0) ++ (1)       71 C21 B11 ++ (8) ++ (-4)       72 C22 B11 ++ (20 ++ (1)       73 C7 B29 ++ (-2) ++ (7)       74 C7 B31 ++ (-3) ++ (-7)       75 C7 B28 ++ (-10) ++ (-6)       76 C7 B32 ++ (-1) ++ (-9)       77 C7 B24 ++ (-4) ++ (-4)       78 C7 B33 ++ (6) +++ (10)       79 C23 B8 +++ (-6) ++++ (-2)       80 C23 B41 ++++ (-7) ++++ (-2) *** §§§ 81 C7 B41 ++++ (-4) ++++ (3) *** §§§ 82 C23 B36 ++++ (-10) ++++ (3.2) ** §§§ 83 C7 B36 ++++ (-10) ++++ (-2) ** §§§ 93 C60 B36 ++++ (1.3)    ** §§§ 94 C60 B41 ++++ (7.7)    ** §§§ 95 C72 B36 ++ (-5)    ** §§ 96 C81 B36 ++++ (-3.8)    *** §§§ 97 C223 B36 ++++ (-6.3)    *** §§ 98 C224 B36 ++++ (-6.0) ++++ (-1) *** §§ 99 C73 B36 ++++ (-3.6)    *** §§ 100 C69 B36 ++++ (2.2)    *** §§ 101 C225 B36 ++++ (3.5)    *** §§§ 102 C196 B36 +++ (-9.5)    *** §§§ 103 C114 B36 +++ (-9.9)    *** §§§ 104 C83 B36 ++++ (-9.8)    *** § 105 C71 B36 ++++ (-8.7)    ** § 106 C184 B36 ++++ (-2.3)    *** §§ 107 C220 B36 +++ (-5.2)    *** §§ 108 C88 B36 ++ (-7.0)    +++ §§ 109 C182 B36 ++++ (-6.5)    *** §§ 110 C82 B36 ++++ (-3.7)    *** §§ 111 C23 B53 ++++ (-8.1)    ** §§§ 112 C23 B54 +++ (-0.8) ++++ (-7) * §§ 113 C226 B36 +++ (-7.0)    ** §§ 114 C183 B36 ++++ (-4.9) ++++ (2) ** §§ 115 C7 B54 ++++ (2)    ** §§ 116 C7 B53 ++++ (-1)    ** § 117 C22 B54 ++ (-1)    * §§ 118 C22 B53 ++ (-14)    * §§ 119 C488 B54 ++++ (-7) ++++ (-5) *** §§ 120 C488 B53 ++++ (-4)    ** §§ 121 C22 B36 ++ (-4)    ** §§§ 122 C488 B41 ++++ (-4)    *** §§§ 123 C490 B41 ++ (3)    ** §§§ 124 C22 B42 ++ (-9)    ** §§§ 125 C488 B42 +++ (-5)    +++ §§§ 126 C488 B36 ++++ (-3)    *** §§§ 127 C7 B42 ++++ (0)    ** §§§ 128 C418 B41 ++++ (7) ++++ (-14) * §§ 129 C414 B41 ++++ (-8) ++++ (3) * §§ 130 C376 B41 ++++ (-13)    ** §§§ 131 C419 B41 ++++ (-4)    ** §§ 132 C404 B41 ++++ (-4)    ** §§§ 133 C438 B41 ++++ (-6)    ** §§§ 134 C312 B41 ++++ (8)    ** §§§ 135 C440 B41 +++ (-14)    ** §§§ 136 C435 B41 ++++ (19)    ** §§§ 137 C313 B41 ++++ (11)    ** §§§ 138 C441 B41 ++++ (1)    * §§ 139 C434 B41 ++++ (2)    *** §§§ 140 C483 B41 ++++ (-16)    * §§ 141 C275 B41 ++++ (-3)    ** §§ 142 C323 B41 ++++ (-15)    *** §§§ 143 C346 B41 ++++ (-7)    ** §§ 144 C292 B41 ++++ (-9)    ** §§ 145 C472 B41 ++++ (-8)    *** §§§ 146 C402 B41 ++++ (-9)    *** §§§ 147 C310 B41 ++++ (-9)    ** §§ 148 C7 B55 ++ (-1)    * §§ 149 C438 B55 ++++ (4)    * §§ 150 C7 B77 ++ (-8)    ** §§ 151 C438 B77 ++++ (10)    ** §§ 152 C7 B59 ++++ (-15)    ** § 153 C438 B59 ++++ (-6)    ** §§ 154 C7 B65 +++ (3)    ** § 155 C438 B65 ++++ (-8)    ** § 156 C7 B63 +++    ** §§§ 157 C7 B73 ++++ (0)    *** §§§ 158 C438 B63 ++++ (-1)    ** §§§ 159 C438 B73 ++++ (5)    ** §§§ For pERK analysis, + indicates the 10-30 µM IC50 range, ++ indicates the 1-10 µM IC50 range, +++ indicates the 0.5-1 µM IC50 range and ++++ indicates the IC50 <0.5 µM. The % Ymin value indicates the lowest value of each IC50 curve. Compounds exhibiting IC50 curves with Ymin values above -20% were considered to show minimal or no induction and did not cause aberrant activation of detectable pathways. For BRAF biochemical kinase assays, * indicates IC50 > 10 nM, ** indicates 1-10 nM IC50 range and *** indicates IC50 < 1 nM. For CRAF biochemical kinase assays, § indicates IC50 > 50 nM, §§ indicates 10-50 nM IC50 range and §§§ indicates IC50 < 10 nM. Characteristics of Compounds in Table 2 example resolve resolution HRMS m/z (MH + ) 1H NMR (400MHz) 1 A 491.1 1 H NMR (DMSO-d 6 ) δ: 10.14 (s, 1H), 10.03 (s, 1H), 9.27 (s, 1H), 8.49 (s, 1H), 7.56 – 7.76 (m, 2H), 7.16 – 7.31 (m, 2H), 7.06 – 7.12 (m, 2H), 3.81 (s, 3H), 2.68 (s, 3H) 2 B 521.1 1 H NMR (DMSO-d 6 ) δ: 10.12 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.17 – 7.33 (m, 4H), 7.09 ( d, J = 8.6 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 2.71 (s, 3H) 3 B 525.3 1 H NMR (DMSO-d 6 ) δ: 10.06 (s, 1H), 9.88 (s, 1H), 9.29 (s, 1H), 8.50 (s, 1H), 7.98 (d, J = 5.0 Hz, 1H) , 7.38 (d, J = 5.0 Hz, 1H), 7.34 (td, J = 8.7, 5.8 Hz, 1H), 7.23 (td, J = 9.1, 0.9 Hz, 1H), 3.85 (s, 3H), 2.71 ( s, 3H) 4 B 503.5 1 H NMR (DMSO-d 6 ) δ: 10.08 (s, 1H), 10.04 (s, 1H), 9.30 (s, 1H), 8.50 (s, 1H), 7.56 – 7.63 (m, 1H), 7.50 ( dd, J = 8.4, 2.0 Hz, 1H), 7.26 (td, J = 9.1, 6.0 Hz, 1H), 7.20 (t, J = 9.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.21 (t, J = 8.8 Hz, 2H), 2.71 (s, 3H) 5 B 486.1 1 H NMR (DMSO-d 6 ) δ: 10.78 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 8.10 (dd, J = 7.2, 1.4 Hz, 1H), 7.95 (dd, J = 8.2, 1.0 Hz, 1H), 7.90 (td, J = 7.5, 1.4 Hz, 1H), 7.84 (td, J = 7.4, 1.0 Hz, 1H), 7.34 (td, J = 8.7, 5.7 Hz, 1H), 7.26 (t, J = 9.2 Hz, 1H), 2.69 (s, 3H) 6 B 505.1 1 H NMR (DMSO-d 6 ) δ: 10.19 (s, 1H), 10.05 (s, 1H), 9.30 (s, 1H), 8.50 (s, 1H), 7.16 – 7.32 (m, 4H), 7.06 ( d, J = 8.2 Hz, 1H), 6.15 (s, 2H), 2.71 (s, 3H) 7 B 516.1 1 H NMR (DMSO-d 6 ) δ: 10.58 (s, 1H), 10.05 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.84 (d, J = 9.0 Hz, 1H) , 7.67 (d, J = 2.7 Hz, 1H), 7.40 (dd, J = 9.0, 2.7 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 (t, J = 9.0 Hz, 1H), 3.88 (s, 3H), 2.69 (s, 3H) 8 A 509.1 1 H NMR (DMSO-d 6 ) δ: 10.40 (s, 1H), 10.07 (s, 1H), 9.29 (s, 1H), 8.47 (s, 1H), 7.61 (t, J = 8.6 Hz, 1H) , 7.29 (td, J = 8.2, 5.9 Hz, 1H), 7.22 (t, J = 9.4 Hz, 1H), 7.06 (dd, J = 12.1, 2.0 Hz, 1H), 6.89 (dd, J = 9.0, 2.0 Hz, 1H), 3.83 (s, 3H), 2.71 (s, 3H) 9 B 472.4 1 H NMR (DMSO-d 6 ) δ: 10.12 (s, 1H), 9.81 (s, 1H), 9.31 (s, 1H), 8.54 (s, 1H), 7.48 (td, J = 8.6, 5.8 Hz, 1H), 7.26 (td, J = 9.1, 0.9 Hz, 1H), 5.33 (dt, J = 53.3, 3.5 Hz, 1H), 3.36 – 3.52 (m, 3H), 3.31 (td, J = 9.9, 6.6 Hz , 1H), 2.73 (s, 3H), 1.96 – 2.17 (m, 2H) 10 B 504.1 1 H NMR (DMSO-d 6 ) δ: 10.81 (s, 1H), 10.05 (br s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 8.19 (dd, J = 8.6, 2.7 Hz , 1H), 7.99 (dd, J = 9.0, 5.5 Hz, 1H), 7.79 (td, J = 8.4, 2.7 Hz, 1H), 7.36 (td, J = 8.6, 5.9 Hz, 1H), 7.27 (t, J = 9.0 Hz, 1H), 2.70 (s, 3H) 11 B 484.2 1 H NMR (DMSO-d 6 ) δ: 10.11 (s, 1H), 9.70 (s, 1H), 9.31 (s, 1H), 8.53 (s, 1H), 7.49 (td, J = 8.8, 5.7 Hz, 1H), 7.25 (td, J = 9.1, 1.3 Hz, 1H), 3.91 – 4.01 (m, 1H), 3.29 – 3.34 (m, 2H), 3.21 – 3.29 (m, 2H), 3.19 (s, 3H) , 2.73 (s, 3H), 1.84 – 1.97 (m, 2H) 12 A,B 505.1 1 H NMR (DMSO-d 6 ) δ: 10.17 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H) , 7.26 (td, J = 9.0, 5.9 Hz, 1H), 7.19 (t, J = 9.0 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.71 (s, 3H), 2.57 (s, 3H) 13 B 472.4 1 H NMR (DMSO-d 6 ) δ: 10.12 (s, 1H), 9.81 (s, 1H), 9.31 (s, 1H), 8.54 (s, 1H), 7.48 (td, J = 8.6, 5.8 Hz, 1H), 7.26 (td, J = 9.1, 0.9 Hz, 1H), 5.33 (dt, J = 53.3, 3.5 Hz, 1H), 3.36 – 3.52 (m, 3H), 3.31 (td, J = 9.9, 6.6 Hz , 1H), 2.73 (s, 3H), 1.96 – 2.17 (m, 2H) 14 B 559.1 1 H NMR (DMSO-d 6 ) δ: 10.29 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.95 (d, J = 9.0 Hz, 1H) , 7.41 (d, J = 2.7 Hz, 1H), 7.37 (dd, J = 9.0, 2.7 Hz, 1H), 7.30 (td, J = 8.6, 5.9 Hz, 1H), 7.23 (t, J = 9.4 Hz, 1H), 3.89 (s, 3H), 2.68 (s, 3H) 15 B 529.0 1 H NMR (DMSO-d 6 ) δ: 10.63 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.91 (d, J = 2.3 Hz, 1H) , 7.87 (d, J = 8.6 Hz, 1H), 7.61 (dd, J = 8.4, 2.2 Hz, 1H), 7.30 (td, J = 8.6, 5.9 Hz, 1H), 7.22 (t, J = 9.0 Hz, 1H), 2.69 (s, 3H) 16 B 557.0 559.0 1 H NMR (DMSO-d 6 ) δ: 10.70 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.87 (dd, J = 9.8, 1.0 Hz, 1H), 7.56 – 7.67 (m, 2H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.24 (t, J = 9.2 Hz, 1H), 2.68 (s, 3H) 17 B 553.0 555.0 1 H NMR (DMSO-d 6 ) δ: 10.43 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.69 (d, J = 1.2 Hz, 1H) , 7.62 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 9.8, 5.9 Hz, 1H), 7.22 (t, J = 9.8 Hz, 1H), 2.71 (s, 3H), 2.59 (s, 3H) 18 B 475.1 1 H NMR (DMSO-d 6 ) δ: 10.24 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.50 (s, 1H), 7.53 – 7.77 (m, J = 8.2 Hz , 2H), 7.35 – 7.42 (m, J = 7.8 Hz, 2H), 7.16 – 7.30 (m, 2H), 2.71 (s, 3H), 2.36 (s, 3H) 19 B 521.1 1 H NMR (DMSO-d 6 ) δ: 10.04 (br s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.26 (td, J = 8.7, 5.7 Hz, 1H), 7.15 (td, J = 9.4, 1.0 Hz, 1H), 6.69 (d, J = 2.3 Hz, 1H), 6.58 (dd, J = 8.6, 2.3 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 2.68 (s, 3H) 20 B 475.1 1 H NMR (DMSO-d 6 ) δ: 10.33 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.75 (dd, J = 8.0, 1.0 Hz, 1H), 7.52 (td, J = 7.4, 1.2 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (td, J = 9.0, 5.9 Hz, 1H), 7.19 (t, J = 9.4 Hz, 1H), 2.68 (s, 3H), 2.61 (s, 3H) twenty one B 495.0 1 H NMR (DMSO-d 6 ) δ: 10.53 (s, 1H), 10.06 (br s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.91 (dd, J = 7.8, 1.6 Hz , 1H), 7.62 – 7.72 (m, 2H), 7.47 – 7.54 (m, 1H), 7.17 – 7.33 (m, 2H), 2.68 (s, 3H) twenty two B 509.0 1 H NMR (DMSO-d 6 ) δ: 10.43 (s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.70 (d, J = 8.2 Hz, 1H) , 7.55 (s, 1H), 7.43 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 9.0, 6.7 Hz, 1H), 7.22 (t, J = 9.0 Hz, 1H), 2.71 ( s, 3H), 2.60 (s, 3H) twenty three B 489.1 1 H NMR (DMSO-d 6 ) δ: 10.26 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H ), 7.09 – 7.32 (m, 4H), 2.70 (s, 3H), 2.57 (s, 3H), 2.30 (s, 3H) twenty four B 454.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (br s, 1H), 9.31 (s, 1H), 8.52 (s, 1H), 7.49 (td, J = 8.8, 5.9 Hz, 1H), 7.25 (t , J = 8.6 Hz, 1H), 3.18 (t, J = 6.7 Hz, 4H), 2.73 (s, 3H), 1.74 – 1.87 (m, 4H) 25 B 470.4 1 H NMR (CDCl 3 ) δ: 9.33 (s, 1H), 8.74 (s, 1H), 8.15 (br s, 1H), 7.60 (td, J = 8.8, 5.4 Hz, 1H), 7.22 (br s, 1H), 7.08 (td, J = 9.1, 1.9 Hz, 1H), 4.13 – 4.20 (m, 1H), 4.04 – 4.11 (m, 2H), 3.84 – 3.96 (m, 2H), 3.26 (s, 3H) , 2.71 (s, 3H) 26 B 484.4 1 H NMR (DMSO-d 6 ) δ: 10.11 (s, 1H), 9.70 (s, 1H), 9.31 (s, 1H), 8.53 (s, 1H), 7.49 (td, J = 8.8, 5.7 Hz, 1H), 7.25 (td, J = 9.1, 1.3 Hz, 1H), 3.91 – 4.01 (m, 1H), 3.29 – 3.34 (m, 2H), 3.21 – 3.29 (m, 2H), 3.19 (s, 3H) , 2.73 (s, 3H), 1.84 – 1.97 (m, 2H) 27 B 490.4 1 H NMR (MeOH-d 4 ) δ: 9.18 (s, 1H), 8.49 (s, 1H), 7.56 – 7.63 (m, 1H), 7.15 (td, J = 9.1, 1.9 Hz, 1H), 3.63 ( t, J = 12.8 Hz, 2H), 3.52 (t, J = 7.3 Hz, 2H), 2.74 (s, 3H), 2.39 (tt, J = 13.9, 7.1 Hz, 2H) 28 B 501.9 1 H NMR (MeOH-d 4 ) δ: 9.20 (s, 1H), 8.53 (s, 1H), 7.63 (td, J = 8.8, 5.7 Hz, 1H), 7.14 (td, J = 9.1, 1.9 Hz, 1H), 3.48 – 3.59 (m, 4H), 3.39 – 3.44 (m, 1H), 3.12 (dd, J = 9.9, 7.1 Hz, 1H), 2.75 (s, 3H), 2.61 (dt, J = 14.4, 7.1 Hz, 1H), 2.09 (dtd, J = 12.3, 7.3, 4.6 Hz, 1H), 1.76 (dq, J = 12.6, 8.1 Hz, 1H) 29 C 468.1 1 H NMR (CDCl 3 ) δ: 9.29 (s, 1H), 8.67 (s, 1H), 8.11 (br s, 1H), 7.61 (td, J = 9.0, 5.5 Hz, 1H), 7.07 (td, J = 9.2, 2.0 Hz, 1H), 6.67 (br s, 1H), 3.44 – 3.54 (m, 2H), 3.27 – 3.38 (m, 1H), 2.88 (dd, J = 9.2, 8.0 Hz, 1H), 2.71 (s, 3H), 2.30 (dq, J = 15.2, 7.3 Hz, 1H), 1.98 – 2.09 (m, 1H), 1.48 – 1.58 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H) 90 A see example 1 493.2 1 H NMR (DMSO- d 6 ) δ: 10.50 (s, 1H), 10.04 (s, 1H), 9.29 (s, 1H), 8.48 (s, 1H), 7.61 (d, J = 8.2 Hz, 1H) , 7.48 (dd, J = 9.8, 8.2 Hz, 1H), 7.36 - 7.43 (m, 1H), 7.25 - 7.34 (m, 1H), 7.21 (dd, J = 11.3, 8.6 Hz, 1H), 2.71 (s , 3H), 2.50 (s, 3H) 91 A see example 1 523.2 1 H NMR (DMSO- d 6 ) δ: 10.33 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.46 (s, 1H), 7.57 (d, J = 8.2 Hz, 1H ), 7.25 - 7.34 (m, 1H), 7.16 - 7.23 (m, 1H), 7.06 - 7.15 (m, 1H), 3.87 (s, 3H), 2.71 (s, 3H), 2.48 (s, 3H) 92 A see example 1 539.2 1 H NMR (DMSO- d 6 ) δ: 10.39 (br s, 1H), 10.03 (s, 1H), 9.29 (s, 1H), 8.46 (s, 1H), 7.76 (d, J = 9.0 Hz, 1H ), 7.25 - 7.33 (m, 1H), 7.15 - 7.23 (m, 1H), 7.12 (d, J = 9.0 Hz, 1H), 3.90 (s, 3H), 2.71 (s, 3H), 2.65 (s, 3H) table 3
Figure 02_image1354
example R- 1 R 2 HCT116 pERK IC 50 (µM) (Y min %) SW480 pERK IC 50 (µM) (Y min %) Kinase IC 50 BRAF (nM) Kinase IC 50 CRAF (nM) 30 C2 B2 ++ (-6) + (-5) 31 C3 B1 ++ (13) ++ (11) 32 C4 B1 + (1) ++ (8) 33 C3 B5 + (-4) ++ (13) 34 C5 B5 + (-3) ++ (-2.0) 35 C6 B1 + (-4) ++ (14) 36 C7 B1 ++ (10) ++ (10) 37 C8 B1 ++ (-5) ++ (-6) 38 C9 B1 + (-1) + (-3) 39 C10 B1 + (5) + (-3) 40 C5 B1 ++ (12) ++ (-7) 41 C11 B1 + (13) + (6) 42 C12 B1 + (-2) + (11) 43 C13 B1 + (11) + (0) 44 C3 B8 ++ (-2) ++ (12) 45 C7 B8 ++ (11) ++ (-8) 46 C14 B1 + (8) + (12) 47 C15 B1 ++ (6) ++ (-1) 48 C16 B1 ++ (13) ++ (6) 49 C17 B1 + (8) + (-9) 50 C16 B8 ++ (8) ++ (-9) 51 C7 B9 ++ (-8) ++ (-1) 52 C15 B8 ++ (-4) ++ (-8) 53 C5 B8 ++ (15) ++ (-4) 54 C18 B1 + (-7) + (8) 55 C7 B12 ++ (-4) ++ (-2) 56 C5 B12 ++ (-10) ++ (4) 57 C3 B12 ++ (-2) ++ (-2) * § 58 C5 B11 ++(11) ++ (16) 59 C7 B11 +++ (11) +++ (2) 60 C3 B11 ++ (9) ++ (15) 61 C3 B15 ++ (11) ++ (9) 62 C5 B15 ++ (11) +++ (2) ** §§ 63 C7 B15 ++ (-2) ++ (1) ** §§§ 64 C7 B4 ++ (2) ++ (19) 65 C5 B4 ++ (4) ++ (5) 66 C3 B4 + (10) ++ (0) 67 C19 B11 ++ (6) ++ (18) 68 C20 B11 ++ (17) ++ (0) 69 C27 B11 +++ (8) ++++ (12) 70 C7 B30 ++ (0) ++ (1) 71 C21 B11 ++ (8) ++ (-4) 72 C22 B11 ++ (20 ++ (1) 73 C7 B29 ++ (-2) ++ (7) 74 C7 B31 ++ (-3) ++ (-7) 75 C7 B28 ++ (-10) ++ (-6) 76 C7 B32 ++ (-1) ++ (-9) 77 C7 B24 ++ (-4) ++ (-4) 78 C7 B33 ++ (6) +++ (10) 79 C23 B8 +++ (-6) ++++ (-2) 80 C23 B41 ++++ (-7) ++++ (-2) *** §§§ 81 C7 B41 ++++ (-4) ++++ (3) *** §§§ 82 C23 B36 ++++ (-10) ++++ (3.2) ** §§§ 83 C7 B36 ++++ (-10) ++++ (-2) ** §§§ 93 C60 B36 ++++ (1.3) ** §§§ 94 C60 B41 ++++ (7.7) ** §§§ 95 C72 B36 ++ (-5) ** §§ 96 C81 B36 ++++ (-3.8) *** §§§ 97 C223 B36 ++++ (-6.3) *** §§ 98 C224 B36 ++++ (-6.0) ++++ (-1) *** §§ 99 C73 B36 ++++ (-3.6) *** §§ 100 C69 B36 ++++ (2.2) *** §§ 101 C225 B36 ++++ (3.5) *** §§§ 102 C196 B36 +++ (-9.5) *** §§§ 103 C114 B36 +++ (-9.9) *** §§§ 104 C83 B36 ++++ (-9.8) *** § 105 C71 B36 ++++ (-8.7) ** § 106 C184 B36 ++++ (-2.3) *** §§ 107 C220 B36 +++ (-5.2) *** §§ 108 C88 B36 ++ (-7.0) +++ §§ 109 C182 B36 ++++ (-6.5) *** §§ 110 C82 B36 ++++ (-3.7) *** §§ 111 C23 B53 ++++ (-8.1) ** §§§ 112 C23 B54 +++ (-0.8) ++++ (-7) * §§ 113 C226 B36 +++ (-7.0) ** §§ 114 C183 B36 ++++ (-4.9) ++++ (2) ** §§ 115 C7 B54 ++++ (2) ** §§ 116 C7 B53 ++++ (-1) ** § 117 C22 B54 ++ (-1) * §§ 118 C22 B53 ++ (-14) * §§ 119 C488 B54 ++++ (-7) ++++ (-5) *** §§ 120 C488 B53 ++++ (-4) ** §§ 121 C22 B36 ++ (-4) ** §§§ 122 C488 B41 ++++ (-4) *** §§§ 123 C490 B41 ++ (3) ** §§§ 124 C22 B42 ++ (-9) ** §§§ 125 C488 B42 +++ (-5) +++ §§§ 126 C488 B36 ++++ (-3) *** §§§ 127 C7 B42 ++++ (0) ** §§§ 128 C418 B41 ++++ (7) ++++ (-14) * §§ 129 C414 B41 ++++ (-8) ++++ (3) * §§ 130 C376 B41 ++++ (-13) ** §§§ 131 C419 B41 ++++ (-4) ** §§ 132 C404 B41 ++++ (-4) ** §§§ 133 C438 B41 ++++ (-6) ** §§§ 134 C312 B41 ++++ (8) ** §§§ 135 C440 B41 +++ (-14) ** §§§ 136 C435 B41 ++++ (19) ** §§§ 137 C313 B41 ++++ (11) ** §§§ 138 C441 B41 ++++ (1) * §§ 139 C434 B41 ++++ (2) *** §§§ 140 C483 B41 ++++ (-16) * §§ 141 C275 B41 ++++ (-3) ** §§ 142 C323 B41 ++++ (-15) *** §§§ 143 C346 B41 ++++ (-7) ** §§ 144 C292 B41 ++++ (-9) ** §§ 145 C472 B41 ++++ (-8) *** §§§ 146 C402 B41 ++++ (-9) *** §§§ 147 C310 B41 ++++ (-9) ** §§ 148 C7 B55 ++ (-1) * §§ 149 C438 B55 ++++ (4) * §§ 150 C7 B77 ++ (-8) ** §§ 151 C438 B77 ++++ (10) ** §§ 152 C7 B59 ++++ (-15) ** § 153 C438 B59 ++++ (-6) ** §§ 154 C7 B65 +++ (3) ** § 155 C438 B65 ++++ (-8) ** § 156 C7 B63 +++ ** §§§ 157 C7 B73 ++++ (0) *** §§§ 158 C438 B63 ++++ (-1) ** §§§ 159 C438 B73 ++++ (5) ** §§§

對於pERK分析,+指示10-30 µM IC 50範圍,++指示1-10 µM IC 50範圍,+++指示0.5-1 µM IC 50範圍且++++指示IC 50<0.5 µM。% Y min值指示各IC 50曲線之最低值。展現Y min值高於-20%之IC 50曲線的化合物視為顯示最小誘導或無誘導且不引起可偵測之路徑的反常活化。對於BRAF生化激酶分析,*指示IC 50>10 nM,**指示1-10 nM IC 50範圍且***指示IC 50< 1 nM。對於CRAF生化激酶分析,§指示IC 50>50 nM,§§指示10-50 nM IC 50範圍且§§§指示IC 50< 10 nM。 表3中之化合物之特徵 實例 合成方法 HRMS m/z(MH +) 1H NMR (400 MHz) 30 B 555.6 1H NMR (DMSO-d 6) δ: 10.31 (s, 1H), 9.53 (s, 1H), 8.77 (s, 1H), 8.55 (s, 1H), 7.99 (s, 1H), 7.30 (dd, J = 8.5, 2.2 Hz, 1H), 7.24 – 7.28 (m, 1H), 7.23 (d, J = 2.2 Hz, 1H), 7.07 (d, J = 8.5 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 2.22 (d, J = 0.9 Hz, 3H) 31 B 532.1 1H NMR (DMSO-d 6) δ: 10.11 (br s, 1H), 9.56 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.67 (d, J = 9.0 Hz, 2H), 7.13 – 7.31 (m, 2H), 7.08 (d, J = 9.0 Hz, 2H), 5.50 (d, J = 54 Hz, 1H), 3.99 (br s, 1H), 3.81 (s, 3H), 3.54 – 3.72 (m, 1H), 2.24 – 2.40 (m, 3H) 32 B 525.1 1H NMR (DMSO-d 6) δ: 10.41 (s, 1H), 10.17 (s, 1H), 9.73 (s, 1H), 8.70 (s, 1H), 8.68 (br s, 1H), 7.77 (d, J = 2.0 Hz, 1H), 7.62 – 7.73 (m, 2H), 7.23 – 7.31 (m, 2H), 7.05 – 7.14 (m, 2H), 3.81 (s, 3H), 3.05 (s, 3H) 33 B 527.1 1H NMR (DMSO-d 6) δ: 10.76 (s, 1H), 9.69 (br s, 1H), 9.13 (s, 1H), 8.26 (s, 1H), 8.10 (d, J = 7.4 Hz, 1H), 7.93 – 7.98 (m, 1H), 7.89 (t, J = 7.6 Hz, 1H), 7.84 (td, J = 7.8, 1.0 Hz, 1H), 7.31 (td, J = 8.6, 6.3 Hz, 1H), 7.24 (t, J = 9.0 Hz, 1H), 3.97 (br s, 1H), 3.84 (br s, 1H), 3.73 (br s, 1H), 3.63 (s, 1H), 2.24 – 2.36 (m, 3H) 34 A 534.1 1H NMR (DMSO-d 6) δ: 10.80 (br s, 1H), 10.34 (s, 1H), 9.72 (br s, 1H), 9.70 (s, 1H), 8.68 (s, 1H), 8.11 (dd, J = 7.4, 1.6 Hz, 1H), 7.98 (dd, J = 8.2, 1.2 Hz, 1H), 7.91 (td, J = 7.6, 1.2 Hz, 1H), 7.86 (td, J = 7.8, 1.6 Hz, 1H), 7.25 – 7.43 (m, 2H), 2.64 (s, 3H), 2.31 (s, 3H) 35 A 511.1 1H NMR (DMSO-d 6) δ: 10.37 (s, 1H), 10.18 (br s, 1H), 9.57 (s, 1H), 8.89 (s, 1H), 8.59 (s, 1H), 8.28 (s, 1H), 7.68 (d, J = 9.0 Hz, 2H), 7.18 – 7.34 (m, 3H), 7.09 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H) 36 A 561.1 1H NMR (DMSO-d 6) δ: 10.29 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.60 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.65 – 7.75 (m, 2H), 7.48 (td, J = 7.8, 0.8 Hz, 1H), 7.41 (td, J = 7.4, 1.0 Hz, 1H), 7.19 – 7.35 (m, 2H), 7.05 – 7.16 (m, J = 9.0 Hz, 2H), 3.81 (s, 3H) 37 A 539.1 1H NMR (DMSO-d 6) δ: 10.17 (br s, 1H), 10.14 (s, 1H), 9.54 (s, 1H), 8.56 (s, 1H), 8.00 (s, 1H), 7.68 (d, J = 8.6 Hz, 2H), 7.18 – 7.34 (m, 2H), 7.09 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H), 2.75 (s, 3H), 2.14 (s, 3H) 38 A 532.1 1H NMR (DMSO-d 6) δ: 10.12 (br s, 1H), 9.56 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.57 – 7.75 (m, 2H), 7.13 – 7.27 (m, 2H), 7.08 (d, J = 9.0 Hz, 2H), 5.51 (d, J = 53.2 Hz, 1H), 3.89 – 4.05 (m, 2H), 3.81 (s, 3H), 3.56 – 3.77 (m, 2H), 2.12 – 2.38 (m, 2H) 39 A 550.1 1H NMR (DMSO-d 6) δ: 10.11 (br s, 1H), 9.66 (s, 1H), 9.18 (s, 1H), 8.28 (s, 1H), 7.54 - 7.78 (m, 2H), 7.14 - 7.28 (m, 2H), 7.04 - 7.12 (m, 2H), 4.09 (t, J = 13.3 Hz, 2H), 3.90 (t, J = 7.2 Hz, 2H), 3.81 (s, 3H), 2.53 - 2.68 (m, 2H) 40 A 539.1 1H NMR (DMSO-d 6) δ: 10.16 (s, 2H), 9.55 (s, 1H), 8.75 (s, 1H), 8.57 (s, 1H), 7.53 - 7.75 (m, 2H), 7.18 - 7.38 (m, 2H), 6.94 - 7.18 (m, 2H), 3.81 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 41 A 530.1 1H NMR (DMSO-d 6) δ: 10.11 (s, 1H), 9.49 (br s, 1H), 9.09 (s, 1H), 8.20 (s, 1H), 7.51 - 7.76 (m, 2H), 7.12 - 7.26 (m, 2H), 7.05 - 7.12 (m, 2H), 5.03 (d, J = 3.5 Hz, 1H), 4.43 (sxt, J = 3.5 Hz, 1H), 3.81 (s, 3H), 3.76 (br s, 1H), 3.61 - 3.71 (m, 3H), 2.06 (s, 1H), 1.87 - 2.00 (m, 1H) 42 A 530.1 1H NMR (DMSO-d 6) δ: 10.11 (s, 1H), 9.49 (br s, 1H), 9.09 (s, 1H), 8.20 (s, 1H), 7.51 - 7.76 (m, 2H), 7.12 - 7.26 (m, 2H), 7.05 - 7.12 (m, 2H), 5.03 (d, J = 3.5 Hz, 1H), 4.43 (sxt, J = 3.5 Hz, 1H), 3.81 (s, 3H), 3.76 (br s, 1H), 3.61 - 3.71 (m, 3H), 2.06 (s, 1H), 1.87 - 2.00 (m, 1H) 43 A 500.1 1H NMR (DMSO-d 6) δ: 10.10 (br s, 1H), 9.47 (s, 1H), 9.07 (s, 1H), 8.23 (s, 1H), 7.52 - 7.77 (m, 2H), 7.21 (td, J = 9.0, 5.9 Hz, 1H), 7.15 (t, J = 9.0 Hz, 1H), 7.03 - 7.11 (m, J = 9.0 Hz, 2H), 4.20 (t, J = 7.6 Hz, 4H), 3.80 (s, 3H), 2.37 (quin, J = 7.5 Hz, 2H) 44 A 550.1 1H NMR (DMSO-d 6) δ: 10.37 (br s, 1H), 9.58 (s, 1H), 9.13 (s, 1H), 8.21 (s, 1H), 7.61 (t, J = 8.8 Hz, 1H), 7.26 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.4 Hz, 1H), 7.05 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 8.8, 2.2 Hz, 1H), 3.87 - 4.17 (m, 2H), 3.82 (s, 3H), 3.52 - 3.77 (m, 2H), 2.12 - 2.38 (m, 2H) 45 A 579.1 1H NMR (DMSO-d 6) δ: 10.45 (s, 1H), 10.31 (s, 1H), 9.68 (s, 1H), 9.62 (s, 1H), 8.71 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.33 (td, J = 8.6, 6.3 Hz, 1H), 7.27 (t, J = 8.6 Hz, 1H), 7.07 (dd, J = 12.3, 2.2 Hz, 1H), 6.90 (dd, J = 9.0, 2.3 Hz, 1H), 3.83 (s, 3H) 46 A 475.1 1H NMR (DMSO-d 6) δ: 10.14 (br s, 1H), 10.00 (s, 1H), 9.36 (s, 1H), 8.46 (s, 1H), 7.61 - 7.71 (m, 2H), 7.24 (td, J = 8.6, 5.5 Hz, 1H), 7.19 (t, J = 9.8 Hz, 1H), 7.04 - 7.12 (m, 2H), 4.12 (s, 3H), 3.81 (s, 3H) 47 A 518.1 1H NMR (DMSO-d 6) δ: 10.11 (br s, 1H), 9.59 (s, 1H), 9.13 (s, 1H), 8.27 (s, 1H), 7.48 - 7.75 (m, 2H), 7.22 (td, J = 9.0, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.04 - 7.13 (m, J = 9.0 Hz, 2H), 5.55 (dspt, J = 57.5, 2.9 Hz, 0H), 4.54 (ddd, J = 21.5, 11.7, 6.3 Hz, 2H), 4.25 (dd, J = 24.3, 10.2 Hz, 2H), 3.81 (s, 3H) 48 A 536.1 1H NMR (DMSO-d 6) δ: 10.12 (br s, 1H), 9.71 (s, 1H), 9.20 (s, 1H), 8.33 (s, 1H), 7.64 - 7.71 (m, J = 9.0 Hz, 2H), 7.23 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.0 Hz, 1H), 7.04 - 7.13 (m, J = 9.0 Hz, 2H), 4.62 (t, J = 12.3 Hz, 4H), 3.81 (s, 3H) 49 A 562.1 1H NMR (DMSO-d 6) δ: 10.13 (br s, 1H), 10.11 (s, 1H), 9.41 (s, 1H), 8.52 (s, 1H), 7.90 - 7.95 (m, 1H), 7.77 (dt, J = 7.0, 1.6 Hz, 1H), 7.62 - 7.75 (m, 4H), 7.24 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.4 Hz, 1H), 7.09 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H) 50 A 554.1 1H NMR (DMSO-d 6) δ: 10.38 (s, 1H), 9.73 (s, 1H), 9.21 (s, 1H), 8.30 (s, 1H), 7.60 (t, J = 8.6 Hz, 1H), 7.27 (td, J = 9.0, 6.3 Hz, 1H), 7.19 (t, J = 9.4 Hz, 1H), 7.05 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 8.8, 2.2 Hz, 1H), 4.62 (t, J = 12.3 Hz, 4H), 3.82 (s, 3H) 51 B 542.6 1H NMR (DMSO-d 6) δ: 10.38 (br s, 1H), 9.85 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.5 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.47 - 7.56 (m, 2H), 7.42 (td, J = 7.6, 1.1 Hz, 1H), 7.32 (td, J = 9.1, 1.3 Hz, 1H), 5.34 (dt, J = 53.6, 3.2 Hz, 1H), 3.49 - 3.52 (m, 1H), 3.39 - 3.48 (m, 2H), 3.33 (td, J = 9.9, 6.8 Hz, 1H), 1.98 - 2.18 (m, 2H) 52 A 536.1 1H NMR (DMSO-d 6) δ: 10.37 (br s, 1H), 9.60 (s, 1H), 9.13 (s, 1H), 8.25 (s, 1H), 7.61 (t, J = 8.6 Hz, 1H), 7.25 (td, J = 8.6, 6.3 Hz, 1H), 7.17 (t, J = 9.4 Hz, 1H), 7.04 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 9.0, 2.3 Hz, 1H), 5.55 (dspt, J = 57.5, 3.1 Hz, 0H), 4.54 (ddd, J = 21.5, 11.0, 5.9 Hz, 2H), 4.25 (dd, J = 23.9, 10.6 Hz, 2H), 3.80 (s, 3H) 53 A 557.1 1H NMR (DMSO-d 6) δ: 10.42 (br s, 1H), 10.17 (s, 1H), 9.55 (s, 1H), 8.75 (s, 1H), 8.54 (s, 1H), 7.62 (t, J = 8.6 Hz, 1H), 7.31 (td, J = 8.6, 5.9 Hz, 1H), 7.24 (t, J = 9.0 Hz, 1H), 7.06 (dd, J = 12.3, 2.2 Hz, 1H), 6.89 (dd, J = 8.6, 2.3 Hz, 1H), 3.83 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 54 A 552.1 1H NMR (DMSO-d 6) δ: 10.17 (br s, 1H), 9.35 (s, 1H), 8.48 (s, 1H), 7.67 (d, J = 9.0 Hz, 2H), 7.20 - 7.29 (m, 1H), 7.16 (t, J = 9.0 Hz, 1H), 7.00 - 7.13 (m, 4H), 6.45 (d, J = 7.8 Hz, 1H), 6.41 (t, J = 2.0 Hz, 1H), 6.36 (dd, J = 7.8, 2.0 Hz, 1H), 5.28 (br s, 2H), 3.81 (s, 3H) 55 A 575.1 1H NMR (DMSO-d 6) δ: 10.29 (s, 1H), 10.22 (br s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.59 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.45 - 7.53 (m, 1H), 7.37 - 7.45 (m, 1H), 7.18 - 7.35 (m, 2H), 6.96 (d, J = 2.3 Hz, 1H), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H) 56 A 553.2 1H NMR (DMSO-d 6) δ: 10.18 (s, 1H), 10.16 (s, 1H), 9.54 (s, 1H), 8.75 (s, 1H), 8.56 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.28 (td, J = 8.6, 5.9 Hz, 1H), 7.21 (t, J = 9.4 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.58 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 57 A 546.2 1H NMR (DMSO-d 6) δ: 10.14 (br s, 1H), 9.57 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.22 (td, J = 9.0, 5.9 Hz, 1H), 7.16 (t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.85 (dd, J = 8.8, 2.5 Hz, 1H), 5.44 (d, J = 53.6 Hz, 1H), 3.90 - 4.07 (m, 2H), 3.78 (s, 3H), 3.54 - 3.71 (m, 2H), 2.57 (s, 3H), 2.23 - 2.39 (m, 2H) 58 B 532.2 1H NMR (DMSO-d 6) δ: 10.49 (br s, 1H), 9.74 (s, 2H), 8.74 (s, 1H), 8.47 (s, 1H), 7.54 (td, J = 8.7, 5.8 Hz, 1H), 7.32 (td, J = 9.1, 1.6 Hz, 1H), 3.94 - 3.99 (m, 1H), 3.22 - 3.38 (m, 4H), 3.19 (s, 3H), 3.06 (s, 3H), 2.37 (d, J = 1.3 Hz, 3H), 1.93 (dq, J = 6.5, 4.1 Hz, 2H) 59 B 554.1 1H NMR (DMSO-d 6) δ: 10.37 (s, 1H), 9.78 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.45 - 7.58 (m, 2H), 7.38 - 7.45 (m, 1H), 7.31 (td, J = 9.0, 1.6 Hz, 1H), 3.90 - 4.03 (m, 1H), 3.22 - 3.37 (m, 4H), 3.20 (s, 3H), 1.93 (td, J = 7.6, 4.3 Hz, 2H) 60 B 525.2 1H NMR (DMSO-d 6) δ: 9.78 (br s, 1H), 9.69 (s, 1H), 9.16 (s, 1H), 8.32 (s, 1H), 7.47 (td, J = 8.8, 5.7 Hz, 1H), 7.24 (td, J = 9.1, 1.3 Hz, 1H), 5.47 (d, J = 53.6 Hz, 1H), 3.92 - 3.99 (m, 1H), 3.80 (dd, J = 39.7, 13.6 Hz, 1H), 3.61 - 3.71 (m, 1H), 3.29 - 3.34 (m, 1H), 3.20 - 3.29 (m, 3H), 3.19 (s, 3H), 2.13 - 2.39 (m, 2H), 1.88 - 1.95 (m, 2H) 61 B 570.1 1H NMR (DMSO-d 6) δ: 10.61 (br s, 1H), 9.57 (s, 1H), 9.13 (s, 1H), 8.22 (s, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.60 (dd, J = 8.4, 2.2 Hz, 1H), 7.22 - 7.31 (m, 1H), 7.18 (t, J = 9.0 Hz, 1H), 5.50 (d, J = 53.6 Hz, 1H), 3.88 - 4.20 (m, 2H), 3.78 (dd, J = 38.0, 11.7 Hz, 1H), 3.63 (q, J = 7.8 Hz, 1H), 2.12 - 2.41 (m, 2H) 62 B 577.1 1H NMR (DMSO-d 6) δ: 10.65 (br s, 1H), 10.14 (s, 1H), 9.53 (s, 1H), 8.73 (s, 1H), 8.53 (s, 1H), 7.89 (d, J = 2.0 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.59 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 8.6, 5.9 Hz, 1H), 7.21 (t, J = 9.0 Hz, 1H), 2.53 (s, 3H), 2.12 (s, 3H) 63 B 599.0 1H NMR (DMSO-d 6) δ: 10.69 (s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.59 (s, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.63 (dd, J = 8.6, 2.0 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.35 (td, J = 9.0, 5.5 Hz, 1H), 7.28 (t, J = 9.0 Hz, 1H) 64 B 573.2 1H NMR (DMSO-d 6) δ: 10.31 (br.s., 1H), 10.14 (s, 1H), 9.68 (s, 1H), 9.64 (s, 1H), 8.71 (d, J = 8.2 Hz, 1H), 8.62 (s, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 1.6 Hz, 1H), 7.37 – 7.57 (m, 3H), 7.17 – 7.37 (m, 2H), 6.91 (d, J = 8.5 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.22 (t, J = 8.8 Hz, 1H) 65 B 551.5 1H NMR (DMSO-d 6) δ: 10.42 (br s, 1H), 10.12 (s, 1H), 9.73 (s, 1H), 8.70 (s, 1H), 8.45 (br s, 1H), 7.60 - 7.63 (m, 1H), 7.50 (dd, J = 8.5, 2.2 Hz, 1H), 7.25 - 7.28 (m, J = 8.2 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.22 (t, J = 8.8 Hz, 2H), 3.05 (s, 3H), 2.36 (d, J = 1.3 Hz, 3H) 66 B 544.5 1H NMR (DMSO-d 6) δ: 10.07 (s, 1H), 9.73 (br.s., 1H), 9.14 (s, 1H), 8.29 (s, 1H), 7.60 (d, J = 1.6 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.16 – 7.26 (m, 2H), 6.89 (d, J = 8.5 Hz, 1H), 5.51 (d, J = 52 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.60 – 4.10 (m, 4H), 3.21 (t, J = 9.0 Hz, 2H), 2.11 – 2.34 (m, 2H) 67 B 555.6 1H NMR (CDCl 3) δ: 9.77 (br s, 1H), 9.69 (s, 1H), 9.22 (s, 1H), 8.32 (s, 1H), 7.44 - 7.51 (m, 2H), 7.32 - 7.39 (m, 2H), 7.24 (t, J = 9.1 Hz, 1H), 5.02 (br s, 4H), 3.91 - 4.00 (m, 1H), 3.33 (dd, J = 10.7, 4.7 Hz, 1H), 3.21 - 3.30 (m, 3H), 3.19 (s, 3H), 1.84 - 1.97 (m, 2H) 68 B 553.2 1H NMR (DMSO-d 6) δ: 10.26 (s, 1H), 9.74 (s, 1H), 9.62 (s, 1H), 8.87 (d, J = 8.5 Hz, 1H), 8.82 (d, J = 3.5 Hz, 1H), 8.58 (s, 1H), 7.69 (dt, J = 7.6, 0.9 Hz, 1H), 7.52 (td, J = 8.9, 5.8 Hz, 1H), 7.38 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 7.30 (td, J = 9.1, 1.6 Hz, 1H), 7.27 (td, J = 7.3, 0.9 Hz, 1H), 6.91 (dd, J = 3.8, 0.6 Hz, 1H), 3.95 - 3.99 (m, 1H), 3.34 (dd, J = 10.7, 4.7 Hz, 1H), 3.22 - 3.31 (m, 3H), 3.20 (s, 3H), 1.83 - 2.03 (m, 2H) 69 B 554.5 1H NMR (DMSO-d 6) δ: 10.36 (br s, 1H), 9.86 (s, 1H), 9.74 (s, 1H), 9.70 (s, 1H), 8.72 (s, 1H), 7.53 (td, J = 8.8, 5.7 Hz, 1H), 7.31 (td, J = 9.1, 1.6 Hz, 1H), 3.92 - 4.00 (m, 1H), 3.33 (dd, J = 10.7, 4.7 Hz, 1H), 3.20 - 3.31 (m, 5H), 3.19 (s, 3H), 2.67 - 2.76 (m, 2H), 1.90 - 1.97 (m, 2H), 1.80 - 1.90 (m, 4H) 70 C 568.5 1H NMR (DMSO-d 6) δ: 10.38 (s, 1H), 9.77 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.64 (s, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.54 (td, J = 8.8, 5.7 Hz, 1H), 7.47 - 7.51 (m, 1H), 7.40 - 7.45 (m, 1H), 7.32 (td, J = 9.5, 1.6 Hz, 1H), 3.34 (dd, J = 9.8, 7.6 Hz, 1H), 3.18 - 3.32 (m, 4H), 3.20 (s, 3H), 2.96 (dd, J = 9.6, 7.1 Hz, 1H), 2.45 (dt, J = 14.3, 7.3 Hz, 1H), 1.94 (dtd, J = 12.2, 7.3, 4.4 Hz, 1H), 1.58 (dq, J = 12.6, 7.9 Hz, 1H) 71 B 554.5 1H NMR (DMSO-d 6) δ: 10.39 (s, 1H), 9.74 (br s, 1H), 9.67 (s, 1H), 8.85 (br s, 1H), 8.61 (s, 1H), 8.47 (dd, J = 4.7, 1.6 Hz, 1H), 8.12 (dd, J = 7.7, 1.7 Hz, 1H), 7.52 (td, J = 8.8, 5.7 Hz, 1H), 7.32 (dd, J = 7.9, 4.7 Hz, 1H), 7.29 (t, J = 9.1 Hz, 1H), 6.91 (d, J = 4.1 Hz, 1H), 3.93 - 4.01 (m, 1H), 3.23 - 3.30 (m, 3H), 3.19 (s, 3H), 1.89 - 1.96 (m, 2H) 72 B 555.5 1H NMR (DMSO-d 6) δ: 10.38 (s, 1H), 9.76 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, 8.2 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.46 – 7.60 (m, 1H), 7.39 – 7.46 (m, 1H), 7.23 – 7.39 (m, 1H), 3.97 (m, 1H), 3.26 – 3.37 (m, 3H), 3.22 – 3.26 (m, 1H), 3.20 (s, 3H), 1.88 – 2.00 (m, 2H) 73 C 538.2 1H NMR (DMSO-d 6) δ: 10.36 (br s, 1H), 9.69 (s, 1H), 9.64 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.63 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.53 (td, J = 9.0, 5.9 Hz, 1H), 7.45 - 7.51 (m, 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.30 (td, J = 9.4, 1.2 Hz, 1H), 3.37 (dd, J = 9.4, 7.0 Hz, 1H), 3.19 (td, J = 9.0, 7.0 Hz, 1H), 2.73 (dd, J = 9.0, 8.2 Hz, 1H), 2.22 (dq, J = 14.7, 7.2 Hz, 1H), 1.91 - 2.03 (m, 1H), 1.44 (dq, J = 12.3, 8.4 Hz, 1H), 0.96 (d, J = 6.7 Hz, 3H) 74 C 536.1 1H NMR (DMSO-d 6) δ: 10.37 (br s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.53 (m, 1H), 7.39 - 7.45 (m, 1H), 7.30 (t, J = 8.8 Hz, 1H), 3.29 (br.s, 4H), 1.55 (dd, J = 7.2, 3.3 Hz, 2H), 0.58 (td, J = 7.7, 4.9 Hz, 1H), 0.23 (q, J = 4.3 Hz, 1H) 75 B 572.1 1H NMR (DMSO-d 6) δ: 10.36 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.64 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.60 (m, 2H), 7.38 - 7.45 (m, 1H), 7.29 (t, J = 8.8 Hz, 1H), 3.56 - 3.75 (m, 2H), 3.41 (dd, J = 9.6, 7.6 Hz, 1H), 3.16 - 3.26 (m, 1H), 3.01 (dd, J = 9.8, 7.0 Hz, 1H), 2.57 (dt, J = 14.6, 7.4 Hz, 1H), 1.92 - 2.09 (m, 1H), 1.68 (dq, J = 12.6, 7.9 Hz, 1H) 76 C 552.2 1H NMR (DMSO-d 6) δ: 10.36 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.62 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.45 - 7.59 (m, 2H), 7.37 - 7.45 (m, 1H), 7.29 (t, J = 9.0 Hz, 1H), 3.38 (dd, J = 9.4, 7.4 Hz, 1H), 3.17 (td, J = 9.4, 6.7 Hz, 1H), 2.77 (t, J = 9.0 Hz, 1H), 1.89 - 2.11 (m, 2H), 1.38 - 1.53 (m, 1H), 1.25 - 1.38 (m, 2H), 0.83 (t, J = 7.4 Hz, 3H) 77 C 524.1 1H NMR (DMSO-d 6) δ: 10.37 (s, 1H), 9.73 (s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.64 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.54 (td, J = 9.0, 5.9 Hz, 1H), 7.46 - 7.52 (m, 1H), 7.38 - 7.45 (m, 1H), 7.32 (td, J = 9.2, 1.6 Hz, 1H), 3.11 - 3.25 (m, 4H), 1.81 (dt, J = 6.5, 3.4 Hz, 4H) 78 C 590.1 1H NMR (DMSO-d 6) δ: 10.36 (s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 7.8 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.57 (m, 2H), 7.39 - 7.45 (m, 1H), 7.30 (t, J = 9.0 Hz, 1H), 4.79 - 4.91 (m, 1H), 3.49 (dd, J = 11.2, 4.9 Hz, 1H), 3.34 - 3.39 (m, 1H), 3.26 - 3.30 (m, 2H), 2.08 - 2.21 (m, 1H), 1.94 - 2.06 (m, 1H) 79 A 594.1 1H NMR (DMSO-d 6) δ: 10.45 (br s, 1H), 10.27 (s, 1H), 9.64 (s, 1H), 9.39 (s, 1H), 8.55 (s, 1H), 7.84 (dd, J = 8.2, 0.9 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.22 - 7.39 (m, 2H), 7.13 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 12.5, 2.4 Hz, 1H), 6.90 (dd, J = 8.9, 2.6 Hz, 1H), 6.58 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H), 3.83 (s, 3H) 80 A 614.1 1H NMR (DMSO-d 6) δ: 10.76 (br s, 1H), 10.26 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.56 (s, 1H), 7.95 (dd, J = 7.9, 1.1 Hz, 1H), 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.20 - 7.39 (m, 2H), 7.12 (t, J = 7.9 Hz, 1H), 6.57 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H) 81 A 599.0 1H NMR (DMSO-d 6) δ: 10.77 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.60 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.59 (s, 1H), 7.97 (dd, J = 8.1, 1.5 Hz, 1H), 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.82 (dd, J = 7.2, 0.9 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.48 (td, J = 7.3, 1.2 Hz, 1H), 7.42 (dd, J = 7.8, 1.5 Hz, 1H), 7.21 - 7.38 (m, 2H) 82 A 578.1 1H NMR (DMSO-d 6) δ: 10.55 (br s, 1H), 10.26 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.56 (s, 1H), 7.84 (dd, J = 8.1, 0.7 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.50 (td, J = 9.5, 1.2 Hz, 1H), 7.42 (dd, J = 8.1, 5.6 Hz, 1H), 7.21 - 7.39 (m, 2H), 7.12 (t, J = 7.9 Hz, 1H), 6.57 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H), 2.51 (s, 3H) 83 A 563.1 1H NMR (DMSO-d 6) δ: 10.55 (br s, 1H), 10.29 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.6 Hz, 1H), 8.59 (s, 1H), 7.76 - 7.88 (m, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.17 - 7.56 (m, 6H), 2.51 (s, 3H) 93 A 579.1 1H NMR (DMSO-d 6) δ: 10.51 (s, 1H), 10.10 (s, 1H), 9.71 (s, 1H), 8.61 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 9.0 Hz, 1H), 7.41 (td, J = 8.2, 5.9 Hz, 1H), 7.39 (t, J = 8.2 Hz, 1H), 7.32 (td, J = 8.7, 6.1 Hz, 1H), 7.24 (t, J = 9.4 Hz, 1H), 6.62 (d, J = 7.4 Hz, 1H), 6.36 (s, 2H), 2.50 (br s, 3H) 94 A 615.0 1H NMR (DMSO-d 6) δ: 10.73 (br s, 1H), 10.11 (s, 1H), 9.71 (s, 1H), 8.61 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.90 (dd, J = 7.8, 1.2 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.27 - 7.36 (m, 1H), 7.24 (t, J = 9.2 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 6.36 (s, 2H) 95 F 699.1 1H NMR (DMSO-d 6) δ: 10.56 (br s, 1H), 10.46 (br s, 1H), 9.68 (s, 1H), 9.35 (s, 1H), 8.96 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.53 (dd, J = 9.0, 7.8 Hz, 1H), 7.28 - 7.48 (m, 4H), 7.17 - 7.26 (m, 1H), 2.74 (s, 6H) 96 F 724.2 1H NMR (DMSO-d 6) δ: 10.47 (s, 1H), 9.68 (s, 1H), 9.33 (s, 1H), 8.96 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.51 - 7.56 (m, 1H), 7.30 - 7.49 (m, 5H), 7.19 - 7.27 (m, 1H), 3.07 (br s, 4H), 2.37 - 2.43 (m, 4H), 2.13 (s, 3H) 97 E 633.3 1H NMR (DMSO-d 6) δ: 10.56 (br s, 1H), 10.28 (s, 1H), 9.63 (s, 1H), 9.07 (s, 1H), 8.87 (d, J= 8.5 Hz, 1H), 8.54 (s, 1H), 7.72 (d, J= 7.8 Hz, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.38 – 7.50 (m, 3H), 7.30 – 7.35 (m, 2H), 7.24 (t, J= 8.7 Hz, 1H), 3.12 (br s, 6H), 2.50 (s, 3H). 98 E 710.2 1H NMR (DMSO-d 6) δ: 10.57 (br s, 1H), 10.27 (s, 1H), 9.63 (s, 1H), 9.12 (s, 1H), 8.90 (d, J= 8.0 Hz, 1H), 8.57 (br s, 2H), 8.55 (s, 1H), 7.77 (d, J= 7.5 Hz, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.25 – 7.50 (m, 8H), 4.81 (s, 2H), 3.13 (br s, 3H), 2.50 (s, 3H). 99 E 688.2 1H NMR (DMSO-d 6) δ: 10.33 (s, 1H), 9.63 (s, 1H), 9.09 (s, 1H), 8.88 (d, J= 8.2 Hz, 1H), 8.54 (s, 1H), 7.67 (d, J= 7.8 Hz, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.42 – 7.48 (m, 2H), 7.28 – 7.41 (m, 3H), 7.21 (t, J= 9.0 Hz, 1H), 3.68 (br s, 4H), 2.50 (s, 3H), 2.39 (br s, 4H), 2.22 (s, 3H). 100 E 675.2 1H NMR (DMSO-d 6) δ: 10.57 (s, 1H), 10.32 (s, 1H), 9.64 (s, 1H), 9.11 (s, 1H), 8.89 (d, J= 8.5 Hz, 1H), 8.54 (s, 1H), 7.71 (d, J= 7.8 Hz, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.41 – 7.49 (m, 2H), 7.29 – 7.40 (m, 3H), 7.23 (t, J= 8.7 Hz, 1H), 3.65 (br s, 8H), 2.50 (s, 3H). 101 E 663.4 1H NMR (DMSO-d 6) δ: 10.56 (s, 1H), 10.30 (s, 1H), 9.63 (s, 1H), 9.05 (s, 1H), 8.88 (d, J= 8.5 Hz, 1H), 8.54 (s, 1H), 7.69 (br s, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.49 (t, J= 8.7 Hz, 1H), 7.39 – 7.45 (m, 2H), 7.31 – 7.37 (m, 2H), 7.26 (t, J= 9.1 Hz, 1H), 4.80 (br s, 1H), 3.58 – 3.66 (m, 4H), 3.13 (s, 3H), 2.51 (s, 3H). 102 E 689.5 1H NMR (DMSO-d 6) δ: 10.56 (s, 1H), 10.35 (s, 1H), 9.63 (s, 1H), 9.08 (s, 1H), 8.88 (d, J= 8.5 Hz, 1H), 8.54 (s, 1H), 7.63 (dd, J= 12.0, 7.9 Hz, 2H), 7.50 (t, J= 8.7 Hz, 1H), 7.39 – 7.46 (m, 2H), 7.31 – 7.37 (m, 2H), 7.26 (t, J= 9.4 Hz, 1H), 4.82 (d, J= 4.1 Hz, 1H), 3.77 (td, J= 8.1, 4.3 Hz, 1H), 3.27 – 3.33 (m, 4H), 2.50 (s, 3H), 1.78 (s, 2H), 1.39 (s, 2H). 103 E 689.5 1H NMR (DMSO-d 6) δ: 10.56 (s, 1H), 10.36 (s, 1H), 9.63 (s, 1H), 9.08 (s, 1H), 8.88 (d, J= 8.5 Hz, 1H), 8.54 (s, 1H), 7.63 (dd, J= 11.4, 7.8 Hz, 2H), 7.39 – 7.51 (m, 3H), 7.30 – 7.36 (m, 2H), 7.25 (t, J= 8.5 Hz, 1H), 4.86 – 4.99 (m, 1H), 3.75 – 3.91 (m, 1H), 3.50 (br s, 1H), 3.31 (s, 1H), 3.23 (br s, 1H), 2.82 – 3.11 (m, 1H), 2.50 (s, 3H), 1.88 – 1.90 (m, 1H), 1.75 (br s, 1H), 1.42 – 1.45 (m, 2H). 104 E 689.3 1H NMR (DMSO-d 6) δ: 9.92 (br s, 1H), 9.68 (s, 1H), 8.90 (d, J= 8.5 Hz, 1H), 8.59 (s, 1H), 8.00 (d, J= 8.2 Hz, 1H), 7.69 (t, J= 7.8 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 7.49 (t, J= 7.4 Hz, 1H), 7.45 (d, J= 8.9 Hz, 1H), 7.39 (td, J= 8.0, 5.9 Hz, 1H), 7.29 (td, J= 8.7, 5.7 Hz, 1H), 7.19 (t, J= 8.5 Hz, 1H), 3.85 (br s, 2H), 3.79 (br s, 2H), 2.50 (br s, 3H), 2.48 (br s, 2H), 2.08 (br s, 2H), 2.25 (s, 3H). 105 E 634.3 1H NMR (DMSO-d 6) δ: 10.52 (br s, 1H), 9.93 (s, 1H), 9.67 (s, 1H), 8.89 (d, J= 8.5 Hz, 1H), 8.58 (s, 1H), 8.02 (d, J= 8.0 Hz, 1H), 7.68 (td, J= 7.1, 1.0 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 7.45 – 7.50 (m, 2H), 7.40 (td, J= 7.8, 5.7 Hz, 1H), 7.31 (td, J= 8.9, 5.9 Hz, 1H), 7.22 (t, J= 8.9 Hz, 1H), 3.33 (s, 3H), 3.14 (s, 3H), 2.50 (s, 3H). 106 E 711.2 1H NMR (DMSO-d 6) δ: 10.52 (br s, 1H), 9.93 (s, 0.6H), 9.78 (s, 0.4H), 9.69 (s, 0.6H), 9.65 (s, 0.4H), 8.92 (d, J= 8.7 Hz, 1H), 8.88 (d, J= 8.2 Hz, 1H), 8.59 (t, J= 5.0 Hz, 2H), 8.47 (d, J= 5.7 Hz, 1H), 8.10 (t, J= 8.0 Hz, 1H), 7.69 (dd, J= 15.8, 8.7 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 7.46 – 7.53 (m, 2H), 7.38 – 7.43 (m, 3H), 7.29 – 7.35 (m, 1H), 7.22 – 7.27 (m, 1H), 5.14 (s, 0.8H), 4.87 (s, 1.2H), 3.38 (s, 1.8H), 3.11 (s, 1.2H), 2.50 (s, 3H). 107 E 664.3 1H NMR (DMSO-d 6) δ: 10.54 (br s, 1H), 9.95 (d, J= 6.2 Hz, 1H), 9.68 (d, J= 2.7 Hz, 1H), 8.89 (t, J= 9.8 Hz, 1H), 8.59 (d, J= 2.1 Hz, 1H), 8.01 (d, J= 8.2 Hz, 1H), 7.69 (t, J= 7.8 Hz, 1H), 7.62 (d, J= 7.8 Hz, 1H), 7.46 – 7.53 (m, 2H), 7.39 – 7.44 (m, 1H), 7.30 – 7.36 (m, 1H), 7.26 (t, J= 9.1 Hz, 1H), 4.90 – 5.06 (m, 1H), 3.83 (t, J= 5.5 Hz, 1H), 3.70 – 3.73 (m, 1H), 3.65 – 3.68 (m, 1H), 3.64 (t, J= 5.3 Hz, 1H), 3.34 (s, 1H), 3.14 (s, 2H), 2.50 (s, 3H). 108 E 690.3 1H NMR (DMSO-d 6) δ: 10.54 (br s, 1H), 9.95 (s, 1H), 9.68 (s, 1H), 8.89 (d, J= 8.5 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J= 8.0 Hz, 1H), 7.69 (ddd, J= 8.5, 7.1, 0.9 Hz, 1H), 7.62 (d, J= 7.5 Hz, 1H), 7.49 (q, J= 7.2 Hz, 2H), 7.41 (td, J= 8.0, 5.5 Hz, 1H), 7.32 (td, J= 8.7, 5.9 Hz, 1H), 7.25 (dd, J= 9.1, 0.7 Hz, 1H), 4.82 (br s, 1H), 4.17 (dt, J= 12.3, 4.3 Hz, 1H), 4.02 (dt, J= 12.6, 3.7 Hz, 1H), 3.80 (tt, J= 8.1, 3.8 Hz, 1H), 3.47 (ddd, J= 13.2, 9.7, 3.2 Hz, 2H), 2.50 (s, 3H), 1.88 – 1.91 (m, 1H), 1.76 – 1.79 (m, 1H), 1.35 – 1.52 (m, 2H). 109 E 690.3 1H NMR (DMSO-d 6) δ: 10.54 (br s, 1H), 9.94 (s, 1H), 9.67 (d, J= 3.2 Hz, 1H), 8.89 (dd, J =8.5, 4.1 Hz, 1H), 8.58 (d, J= 1.4 Hz, 1H), 7.96 (d, J= 8.0 Hz, 1H), 7.69 (t, J= 7.7 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 7.48 (t, J= 7.9 Hz, 2H), 7.40 (td, J= 7.8, 6.2 Hz, 1H),  7.31 (td, J= 8.7, 5.7 Hz, 1H), 7.22 (t, J= 8.7 Hz, 1H), 5.10 (d, J= 4.1 Hz, 0.5H), 4.88 (d, J= 4.1 Hz, 0.5H), 4.30 (dd, J= 12.5, 3.5 Hz, 0.5H), 3.97 (d, J= 13.3 Hz, 0.5H), 3.89 (dd, J= 12.8, 2.7 Hz, 1H), 3.63 (dt, J= 8.2, 4.1 Hz, 0.5), 3.55 (br s, 0.5H), 3.45 – 3.50 (m, 1H), 3.46 (dd, J= 12.8, 7.5 Hz, 0.5H), 3.04 (dd, J= 12.3, 8.7 Hz, 0.5H), 2.50 (s, 3H), 1.70 – 1.91 (m, 2H), 1.41 – 1.53 (m, 2H). 110 E 676.3 1H NMR (DMSO-d 6) δ: 10.54 (br s, 1H), 9.93 (s, 1H), 9.68 (s, 1H), 8.90 (d, J= 8.7 Hz, 1H), 8.59 (s, 1H), 8.05 (d, J= 8.2 Hz, 1H), 7.70 (ddd, J= 8.2, 7.0, 0.9 Hz, 1H), 7.63 (d, J= 7.8 Hz, 1H), 7.50 (t, J= 7.5 Hz, 2H), 7.40 (dd, J= 13.5, 7.8 Hz, 1H), 7.31 (dd, J= 14.6, 8.9 Hz, 1H), 7.22 (t, J= 8.0 Hz, 1H), 3.92 – 3.94 (m, 2H), 3.78 – 3.80 (m, 2H), 3.74 – 3.76 (m, 2H), 3.63 – 3.66 (m, 2H), 2.50 (s, 3H). 111 A 608.3 1H NMR (DMSO-d 6) δ: 10.37 (br s, 1H), 10.25 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.55 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.28 - 7.36 (m, 1H), 7.20 - 7.27 (m, 1H), 7.13 (dd, J = 9.0 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 5.50 (s, 2H), 3.88 (s, 3H). 112 A 624.3 1H NMR (DMSO-d 6) δ: 10.44 (br s, 1H), 10.25 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.55 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.29 - 7.37 (m, 1H), 7.24 (dd, J = 11.0, 9.0 Hz, 1H), 7.12 (dd, J = 9.0, 7.0 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 5.50 (br s, 2H), 3.91 (s, 3H), 2.67 (s, 3H). 113 F 746.1 1H NMR (DMSO-d 6) δ: 10.56 (br s, 1H), 10.45 (s, 1H), 9.69 (s, 1H), 9.44 (s, 1H), 8.98 (d, J = 8.2 Hz, 1H), 8.50 - 8.61 (m, 3H), 8.00 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.55 (dd, J = 9.4, 7.4 Hz, 1H), 7.27 - 7.50 (m, 6H), 7.15 - 7.25 (m, 1H), 4.35 (s, 2H), 2.74 (s, 3H) 114 A 640.4 1H NMR (DMSO-d 6) δ: 10.56 (br s, 1H), 10.31 (s, 1H), 9.71 (s, 1H), 9.66 (s, 1H), 9.24 (br s, 1H), 8.80 (d, J = 8.2 Hz, 1H), 8.57 - 8.66 (m, 2H), 8.43 (dt, J = 8.1, 1.8 Hz, 1H), 7.66 - 7.73 (m, 1H), 7.54 - 7.65 (m, 3H), 7.45 - 7.53 (m, 1H), 7.23 - 7.45 (m, 3H) 115 A 609.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.44 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.57 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.48 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.27 - 7.36 (m, 1H), 7.16 - 7.26 (m, 1H), 7.12 (d, J = 9.4 Hz, 1H), 3.90 (s, 3H), 2.67 (s, 3H) 116 A 593.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.38 (br s, 1H), 10.27 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.59 (dd, J = 9.0, 0.8 Hz, 1H), 7.48 (ddd, J = 7.8, 7.1, 0.8 Hz, 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.24 - 7.36 (m, 1H), 7.14 - 7.24 (m, 1H), 7.10 (t, J = 8.6 Hz, 1H), 3.87 (s, 3H), 2.49 (br s, 3H) 117 A 610.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.41 (br s, 1H), 10.20 (s, 1H), 9.76 (s, 1H), 8.79 (d, J = 8.6 Hz, 1H), 8.63 (s, 1H), 8.27 (d, J = 8.6 Hz, 1H), 7.79 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.62 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.32 (td, J = 8.6, 6.3 Hz, 1H), 7.21 (br. t, J = 9.0 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 3.91 (s, 3H), 2.66 (s, 3H) 118 A 594.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.35 (br s, 1H), 10.21 (s, 1H), 9.76 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.63 (s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.79 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.63 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.59 (dd, J = 9.0, 1.2 Hz, 1H), 7.31 (td, J = 8.4, 6.3 Hz, 1H), 7.21 (t, J = 8.6 Hz, 1H), 7.13 (t, J = 8.6 Hz, 1H), 3.88 (s, 3H), 2.48 (d, J = 2.7 Hz, 3H) 119 F 772.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.44 (br s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.95 (d, J = 8.2 Hz, 1H), 8.56 (s, 1H), 8.14 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.53 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.44 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.31 (td, J = 8.8, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.10 (d, J = 9.0 Hz, 1H), 3.90 (s, 3H), 3.16 - 3.22 (m, 4H), 2.82 (s, 3H), 2.67 (s, 3H), 2.21 (s, 6H) 120 F 756.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.45 (br s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.56 (s, 1H), 8.14 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.30 (td, J = 8.7, 5.7 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.09 (t, J = 8.6 Hz, 1H), 3.87 (s, 3H), 3.19 (t, J = 6.7 Hz, 4H), 2.82 (s, 3H), 2.47 (d, J = 6.7 Hz, 3H), 2.18 (s, 6H) 121 A 564.3 1H NMR (400 MHz, DMSO-d 6) δ: 10.52 (br s, 1H), 10.20 (s, 1H), 9.77 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.65 (s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 3.5 Hz, 1H), 7.62 (t, J = 3.5 Hz, 1H), 7.49 (t, J = 8.8 Hz, 1H), 7.41 (td, J = 7.6, 6.3 Hz, 1H), 7.28 - 7.36 (m, 1H), 7.24 (t, J = 9.0 Hz, 1H), 2.49 - 2.50 (m, 3H) 122 F 762.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.41 (br s, 1H), 9.67 (s, 1H), 9.39 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.58 (s, 1H), 8.14 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.45 (td, J = 7.7, 2.9 Hz, 2H), 7.23 (td, J = 8.8, 6.3 Hz, 1H), 7.06 (t, J = 9.0 Hz, 1H), 3.24 (t, J = 6.7 Hz, 2H), 2.82 (s, 3H), 2.69 (t, J = 6.1 Hz, 2H), 2.35 (s, 6H) 123 A 617.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.78 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.66 (s, 1H), 8.61 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.85 (br. d, J = 6.3 Hz, 1H), 7.42 - 7.53 (m, J = 8.2, 8.2, 4.7 Hz, 2H), 7.25 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.2 Hz, 1H), 7.12 (br s, 1H) 124 A 580.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.58 (s, 1H), 10.21 (s, 1H), 9.77 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.65 (s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.77 - 7.83 (m, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 (t, J = 9.0 Hz, 1H), 2.66 (s, 3H) 125 F 742.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.62 (s, 1H), 10.44 (s, 1H), 9.70 (s, 1H), 9.46 (br s, 1H), 9.39 (s, 1H), 8.98 (d, J = 8.2 Hz, 1H), 8.60 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.77 (t, J = 7.4 Hz, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.31 - 7.37 (m, 1H), 7.29 (t, J = 9.0 Hz, 1H), 3.41 (t, J = 5.5 Hz, 2H), 3.36 (t, J = 4.7 Hz, 2H), 2.88 (d, J = 3.5 Hz, 6H), 2.83 (s, 3H), 2.68 (s, 3H) 126 F 726.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.45 (br s, 1H), 9.67 (s, 1H), 9.37 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.58 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 6.7, 3.5 Hz, 1H), 7.38 (dd, J = 7.8, 5.5 Hz, 1H), 7.31 (td, J = 8.8, 5.9 Hz, 1H), 7.19 (t, J = 9.0 Hz, 1H), 3.23 (t, J = 6.5 Hz, 2H), 2.82 (s, 3H), 2.66 (t, J = 6.1 Hz, 2H), 2.51 (d, J = 2.3 Hz, 3H), 2.33 (s, 6H) 127 A 579.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.61 (br s, 1H), 10.27 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.71 (d, J = 8.6 Hz, 1H), 8.59 (s, 1H), 7.81 (dd, J = 10.2, 8.2 Hz, 2H), 7.70 (br s, 1H), 7.48 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.41 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.36 (t, J = 8.2 Hz, 1H), 7.30 (br s, 1H), 7.19 (br s, 1H), 2.67 (s, 3H) 128 H 766.2 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.66 (s, 1H), 9.43 (s, 1H), 8.58 (s, 1H), 8.26 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.28 - 7.39 (m, 2H), 7.25 (t, J = 9.0 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.00 (s, 1H), 4.22 (d, J = 11.9 Hz, 2H), 3.09 (dd, J = 12.1, 10.8 Hz, 2H), 1.94 (td, J = 12.7, 4.4 Hz, 2H), 1.80 (d, J = 12.4 Hz, 2H) 129 H 738.4 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.58 (s, 1H), 8.23 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.91 (dd, J = 8.0, 1.5 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.8, 5.8 Hz, 1H), 7.29 (t, J = 8.1 Hz, 1H), 7.26 (t, J = 9.0 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.77 (t, J = 6.8 Hz, 2H), 3.57 - 3.68 (m, 2H), 3.51 (ddd, J = 11.9, 7.7, 4.3 Hz, 2H), 1.91 (quin, J = 6.9 Hz, 2H), 1.66 - 1.82 (m, 6H) 130 H 712.2 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 8.0, 1.4 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.34 (td, J = 8.9, 6.1 Hz, 1H), 7.19 - 7.31 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.30 (s, 1H), 3.76 (dt, J = 12.0, 4.5 Hz, 2H), 3.36 - 3.45 (m, 2H), 1.58 - 1.78 (m, 4H), 1.20 (s, 3H) 131 H 712.2 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.58 (s, 1H), 8.23 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 8.0, 1.5 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.8, 6.0 Hz, 1H), 7.20 - 7.31 (m, 2H), 6.78 (d, J = 7.9 Hz, 1H), 3.97 (dt, J = 12.4, 3.8 Hz, 2H), 3.40 (spt, J = 4.1 Hz, 1H), 3.30 (s, 3H), 3.13 (ddd, J = 12.3, 9.8, 2.5 Hz, 2H), 1.94 - 2.11 (m, 2H), 1.64 (dtd, J = 12.5, 9.2, 3.5 Hz, 2H) 132 H 707.2 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.66 (s, 1H), 9.42 (s, 1H), 8.58 (s, 1H), 8.27 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.29 - 7.40 (m, 2H), 7.26 (t, J = 9.0 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 3.66 - 3.86 (m, 2H), 3.38 (ddd, J = 11.8, 8.3, 2.9 Hz, 2H), 3.12 (tt, J = 8.2, 4.1 Hz, 1H), 2.09 (ddd, J = 9.3, 6.2, 2.8 Hz, 2H), 1.87 - 2.02 (m, 2H) 133 H 726.2 1H NMR (400 MHz, DMSO-d 6) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.4, 6.0 Hz, 1H), 7.21 - 7.31 (m, 2H), 6.79 (d, J = 7.9 Hz, 1H), 4.08 (s, 1H), 3.81 - 3.95 (m, 2H), 3.25 (td, J = 11.9, 2.8 Hz, 2H), 1.68 (td, J = 12.5, 4.0 Hz, 2H), 1.56 - 1.64 (m, 2H), 1.46 (q, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 134 H 672.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.16 (br s, 1H), 9.63 (s, 1H), 9.44 (s, 1H), 8.58 (s, 1H), 8.14 (s, 1H), 8.09 (d, J = 8.00 Hz, 1H), 7.80 - 7.98 (m, 1H), 7.42 (br s, 1H), 7.25 (t, J = 8.13 Hz, 1H), 6.61 (d, J = 8.25 Hz, 1H), 6.52 (s, 1H), 4.76 (t, J = 5.07 Hz, 1H), 3.93 (t, J = 6.19 Hz, 2H), 3.69 (q, J = 5.92 Hz, 2H), 3.13 (s, 3H) 135 參見正文 665.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.74 (br s, 1H), 10.19 (s, 1H), 9.77 (s, 1H), 8.76 (d, J = 8.26 Hz, 1H), 8.66 (s, 1H), 7.84 - 7.99 (m, 2H), 7.73 - 7.84 (m, 1H), 7.69 (d, J = 7.25 Hz, 1H), 7.53 (t, J = 8.07 Hz, 1H), 7.32 (d, J = 6.13 Hz, 1H), 7.22 (br s, 1H), 2.04 - 2.11 (m, 2H), 1.91 - 2.02 (m, 2H) 136 I 727.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.74 (s, 1H), 10.13 (s, 1H), 9.74 (s, 1H), 8.63 (s, 1H), 8.08 (d, J = 8.13 Hz, 1H), 7.95 (d, J = 8.00 Hz, 1H), 7.91 (dd, J = 1.19, 7.94 Hz, 1H), 7.53 (dt, J = 6.00, 7.94 Hz, 2H), 7.29 - 7.44 (m, 1H), 7.07 - 7.29 (m, 1H), 6.84 (d, J = 8.00 Hz, 1H), 4.06 - 4.29 (m, 3H), 3.37 - 3.58 (m, 2H), 1.56 - 1.81 (m, 4H), 1.47 (q, J = 7.34 Hz, 2H), 0.89 (t, J = 7.44 Hz, 3H) 137 參見正文 674.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.74 (br s, 1H), 10.20 (s, 1H), 9.68 - 9.85 (m, 1H), 8.50 - 8.71 (m, 1H), 8.30 (d, J = 8.38 Hz, 1H), 7.80 - 8.03 (m, 2H), 7.66 (t, J = 8.13 Hz, 1H), 7.53 (t, J = 8.00 Hz, 1H), 7.31 (d, J = 6.00 Hz, 1H), 7.22 (br s, 1H), 7.09 (d, J = 7.88 Hz, 1H), 4.48 (dd, J = 3.63, 5.25 Hz, 2H), 3.84 (dd, J = 3.63, 5.25 Hz, 2H), 3.35 - 3.46 (m, 3H) 138 I 739.3 1H NMR (400 MHz, DMSO-d 6) δ: 10.74 (s, 1H), 10.14 (s, 1H), 9.68 - 9.75 (m, 1H), 8.63 (s, 1H), 8.10 (d, J = 8.25 Hz, 1H), 7.95 (d, J = 8.00 Hz, 1H), 7.90 (dd, J = 1.38, 8.00 Hz, 1H), 7.53 (dt, J = 4.06, 8.04 Hz, 2H), 7.28 - 7.38 (m, 1H), 7.05 - 7.28 (m, 1H), 6.84 (d, J = 8.00 Hz, 1H), 3.86 - 4.13 (m, 2H), 3.79 (t, J = 6.75 Hz, 2H), 3.70 (ddd, J = 3.94, 8.54, 12.54 Hz, 2H), 1.85 - 2.02 (m, 2H), 1.68 - 1.84 (m, 6H) 139 I 728.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.10 (br s, 1H), 9.68 - 9.76 (m, 1H), 8.62 - 8.68 (m, 1H), 8.19 (d, J = 7.88 Hz, 1H), 8.13 (s, 1H), 7.91 (dd, J = 1.25, 7.88 Hz, 1H), 7.87 (d, J = 8.13 Hz, 1H), 7.56 (t, J = 8.07 Hz, 1H), 7.49 (t, J = 8.00 Hz, 1H), 7.20 - 7.33 (m, 1H), 7.12 (br s, 1H), 6.84 (d, J = 8.00 Hz, 1H), 4.59 (br s, 1H), 3.79 (br s, 4H), 3.61 (br s, 2H), 2.82 (br s, 4H), 2.61 (br s, 2H) 140 H 686.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.76 (br s, 1H), 10.19 (s, 1H), 9.64 (s, 1H), 9.37 (s, 1H), 8.51 - 8.59 (m, 1H), 8.02 (d, J = 8.13 Hz, 1H), 7.91 (d, J = 7.88 Hz, 2H), 7.51 (br s, 1H), 7.09 - 7.38 (m, 3H), 6.32 (d, J = 7.88 Hz, 1H), 4.75 (d, J = 6.00 Hz, 1H), 4.63 (d, J = 6.00 Hz, 1H), 4.28 (t, J = 7.94 Hz, 2H), 3.99 (dd, J = 5.63, 7.88 Hz, 2H), 3.12 (td, J = 6.11, 19.17 Hz, 1H) 141 G 690.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.78 (br s, 1H), 10.55 (s, 1H), 9.68 (s, 1H), 9.43 (s, 1H), 8.96 (d, J= 8.38 Hz, 1H), 8.58 (s, 1H), 7.81 - 8.02 (m, 3H), 7.54 (dt, J= 4.75, 7.69 Hz, 2H), 7.46 (t, J= 7.50 Hz, 1H), 7.31 - 7.40 (m, 1H), 7.26 (t, J= 9.13 Hz, 1H), 3.40 (q, J= 7.30 Hz, 2H), 1.22 (t, J= 7.38 Hz, 3H) 142 G 746.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.78 (s, 1H), 10.54 (s, 1H), 9.69 (s, 1H), 9.42 (s, 1H), 8.97 (d, J= 8.38 Hz, 1H), 8.58 (s, 1H), 7.83 - 8.03 (m, 3H), 7.50 - 7.62 (m, 2H), 7.41 - 7.50 (m, 1H), 7.30 - 7.41 (m, 1H), 7.27 (d, J= 8.88 Hz, 1H), 3.91 (dd, J= 4.00, 11.13 Hz, 2H), 3.58 (tt, J= 3.60, 11.91 Hz, 1H), 3.29 (br s, 1H), 1.90 (d, J= 10.76 Hz, 2H), 1.68 (dq, J= 4.57, 12.32 Hz, 2H) 143 G 753.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.78 (br s, 1H), 10.53 (s, 1H), 9.68 (s, 1H), 9.34 (s, 1H), 8.94 (d, J= 8.50 Hz, 1H), 8.58 (s, 1H), 8.47 (d, J= 5.88 Hz, 2H), 7.96 (d, J= 8.00 Hz, 1H), 7.91 (dd, J= 1.38, 8.00 Hz, 1H), 7.62 (d, J= 8.00 Hz, 1H), 7.51 (t, J= 7.50 Hz, 1H), 7.54 (t, J= 8.07 Hz, 1H), 7.30 - 7.42 (m, 2H), 7.15 - 7.30 (m, 3H), 4.86 (s, 2H) 144 G 760.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.78 (s, 1H), 10.54 (s, 1H), 9.69 (s, 1H), 9.43 (s, 1H), 8.96 (d, J= 8.51 Hz, 1H), 8.58 (s, 1H), 7.95 (d, J= 7.75 Hz, 2H), 7.91 (dd, J= 1.31, 7.94 Hz, 1H), 7.51 - 7.60 (m, 2H), 7.42 - 7.51 (m, 1H), 7.35 (d, J= 6.63 Hz, 1H), 7.26 (br s, 1H), 3.65 - 3.83 (m, 2H), 3.40 (d, J= 6.25 Hz, 2H), 3.22 - 3.28 (m, 2H), 2.11 - 2.29 (m, 1H), 1.67 - 1.88 (m, 2H), 1.30 - 1.45 (m, 2H) 145 H 725.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.16 (br s, 1H), 9.63 (s, 1H), 9.47 (s, 1H), 8.59 (s, 1H), 8.27 (d, J= 8.25 Hz, 1H), 7.93 (dd, J= 1.38, 7.88 Hz, 1H), 7.73 (d, J= 7.75 Hz, 1H), 7.41 (t, J= 7.94 Hz, 1H), 7.31 (t, J= 8.07 Hz, 1H), 7.16 (dt, J= 6.07, 9.04 Hz, 1H), 6.94 (t, J= 9.01 Hz, 1H), 6.80 (d, J= 8.00 Hz, 1H), 4.41 (d, J= 12.13 Hz, 2H), 2.90 - 3.21 (m, 2H), 2.82 (t, J= 11.63 Hz, 2H), 2.65 (s, 6H), 2.01 - 2.13 (m, 2H), 1.70 - 1.87 (m, 2H) 146 H 727..2 1H NMR (400 MHz, DMSO-d 6) δ: 10.20 (s, 1H), 9.64 (s, 1H), 9.45 (s, 1H), 8.59 (s, 1H), 8.28 (d, J= 8.13 Hz, 1H), 7.92 (dd, J= 1.38, 7.88 Hz, 1H), 7.84 (d, J= 7.88 Hz, 1H), 7.47 (t, J= 7.94 Hz, 1H), 7.32 (t, J= 8.13 Hz, 1H), 7.16 - 7.28 (m, 1H), 7.10 (t, J= 8.82 Hz, 1H), 6.78 (d, J= 8.00 Hz, 1H), 3.54 - 3.69 (m, 6H), 2.85 (br s, 4H), 2.60 - 2.73 (m, 2H) 147 H 698.3 1H NMR (400 MHz, DMSO-d 6) δ: 10.77 (s, 1H), 10.27 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 7.94 (d, J = 8.13 Hz, 1H), 7.81 - 7.93 (m, 2H), 7.53 (t, J = 8.07 Hz, 1H), 7.29 - 7.41 (m, 1H), 7.25 (br s, 1H), 7.21 (t, J = 8.07 Hz, 1H), 6.52 (d, J = 8.88 Hz, 1H), 5.99 (t, J = 5.94 Hz, 1H), 3.71 - 3.86 (m, 2H), 3.64 (q, J = 7.75 Hz, 1H), 3.54 (dd, J = 5.32, 8.44 Hz, 1H), 3.25 (t, J = 6.63 Hz, 2H), 2.60 - 2.75 (m, 1H), 1.91 - 2.13 (m, 1H), 1.67 (dd, J = 5.57, 12.82 Hz, 1H) 148 A 559.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.28 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.70 (d, J= 8.13 Hz, 1H), 8.60 (s, 1H), 7.79 (d, J= 7.88 Hz, 1H), 7.82 (d, J= 7.88 Hz, 1H), 7.54 (d, J= 6.88 Hz, 1H), 7.37 - 7.52 (m, 3H), 7.33 (t, J= 7.44 Hz, 1H), 7.04 - 7.30 (m, 2H), 3.05 (q, J= 7.38 Hz, 2H), 1.21 (t, J= 7.44 Hz, 3H) 149 H 686.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.41 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.59 (s, 1H), 8.21 (d, J= 8.13 Hz, 1H), 7.78 (d, J= 7.88 Hz, 1H), 7.58 (t, J= 7.50 Hz, 1H), 7.47 (d, J= 7.63 Hz, 1H), 7.35 (t, J= 7.57 Hz, 1H), 7.17 - 7.32 (m, 3H), 6.79 (d, J= 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J= 11.88 Hz, 2H), 3.16 - 3.29 (m, 2H), 3.04 (q, J= 7.38 Hz, 2H), 1.53 - 1.77 (m, 4H), 1.46 (q, J= 7.30 Hz, 2H), 1.21 (t, J= 7.44 Hz, 3H), 0.89 (t, J= 7.38 Hz, 3H) 150 A 611.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.85 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.63 (s, 1H), 8.70 (d, J= 8.00 Hz, 1H), 8.57 (s, 1H), 7.82 (d, J= 7.88 Hz, 1H), 7.72 (br s, 1H), 7.22 - 7.51 (m, 6H) 151 H 738.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.85 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.41 (s, 1H), 8.56 (s, 1H), 8.21 (d, J= 8.26 Hz, 1H), 7.73 (d, J= 6.00 Hz, 1H), 7.42 - 7.51 (m, 1H), 7.32 - 7.42 (m, 2H), 7.29 (t, J= 8.07 Hz, 2H), 6.79 (d, J= 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J= 11.88 Hz, 2H), 3.18 - 3.29 (m, 2H), 1.52 - 1.76 (m, 4H), 1.46 (q, J= 7.34 Hz, 2H), 0.89 (t, J= 7.44 Hz, 3H) 152 A 579.3 1H NMR (400 MHz, DMSO-d 6) δ: 10.53 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.62 (s, 1H), 8.71 (d, J= 8.13 Hz, 1H), 8.60 (s, 1H), 7.81 (t, J= 8.69 Hz, 2H), 7.62 (br s, 1H), 7.45 - 7.54 (m, 1H), 7.41 (t, J= 7.57 Hz, 2H), 7.26 (br s, 2H), 2.40 (s, 3H) 153 H 706.3 1H NMR (400 MHz, DMSO-d 6) δ: 10.55 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.23 - 9.49 (m, 1H), 8.58 (s, 1H), 8.21 (d, J= 8.13 Hz, 1H), 7.79 (d, J= 7.75 Hz, 1H), 7.64 (d, J= 7.50 Hz, 1H), 7.39 (t, J= 7.75 Hz, 1H), 7.28 (t, J= 8.00 Hz, 2H), 7.11 - 7.25 (m, 1H), 6.79 (d, J= 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J= 11.76 Hz, 2H), 3.17 - 3.29 (m, 2H), 2.40 (s, 3H), 1.54 - 1.82 (m, 4H), 1.46 (q, J= 7.38 Hz, 2H), 0.89 (t, J= 7.44 Hz, 3H) 154 A 581.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.59 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J= 8.13 Hz, 1H), 8.58 (s, 1H), 7.82 (d, J= 7.88 Hz, 1H), 7.64 (dd, J= 5.07, 8.57 Hz, 1H), 7.37 - 7.54 (m, 3H), 7.27 - 7.37 (m, 1H), 7.23 (br s, 1H), 2.54 - 2.59 (m, 3H) 155 H 708.4 1H NMR (400 MHz, DMSO-d 6) δ: 10.58 (br s, 1H), 10.21 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J= 8.13 Hz, 1H), 7.63 (dd, J= 4.88, 8.63 Hz, 1H), 7.45 (q, J= 8.80 Hz, 1H), 7.18 - 7.39 (m, 3H), 6.79 (d, J= 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J= 11.76 Hz, 2H), 3.17 - 3.29 (m, 2H), 2.56 (d, J= 2.25 Hz, 3H), 1.64 - 1.75 (m, 2H), 1.55 - 1.64 (m, 2H), 1.46 (q, J= 7.25 Hz, 2H), 0.89 (t, J= 7.44 Hz, 3H) 156 A 633.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.75 (br s, 1H), 10.32 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.60 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.36 (dd, J = 8.3, 6.0 Hz, 1H), 7.30 (t, J = 9.3 Hz, 1H) 157 A 605.2 1H NMR (400 MHz, DMSO-d 6) δ: 11.05 (br s, 1H), 10.35 (s, 1H), 9.69 (s, 1H), 9.64 (s, 1H), 8.71 (d, J = 8.1 Hz, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.35 - 7.40 (m, 1H), 7.32 (t, J = 9.3 Hz, 1H) 158 H 760.2 1H NMR (400 MHz, DMSO-d 6) δ: 10.75 (br s, 1H), 10.25 (s, 1H), 9.66 (s, 1H), 9.40 (s, 1H), 8.59 (s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.86 (t, J = 8.0 Hz, 1H), 7.32 - 7.42 (m, 1H), 7.21 - 7.32 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.09 (s, 1H), 3.89 (dt, J = 11.9, 3.9 Hz, 2H), 3.25 (td, J = 11.0, 2.6 Hz, 2H), 1.68 (td, J = 12.0, 4.0 Hz, 2H), 1.54 - 1.64 (m, 2H), 1.46 (q, J = 7.5 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 159 H 732.2 1H NMR (400 MHz, DMSO-d 6) δ: 11.04 (br s, 1H), 10.27 (s, 1H), 9.66 (s, 1H), 9.41 (s, 1H), 8.60 (s, 1H), 8.15 - 8.29 (m, 2H), 7.34 - 7.43 (m, 1H), 7.24 - 7.34 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.09 (s, 1H), 3.89 (dt, J = 11.6, 3.8 Hz, 2H), 3.25 (td, J = 11.5, 3.0 Hz, 2H), 1.68 (td, J = 12.0, 3.6 Hz, 2H), 1.55 - 1.64 (m, 2H), 1.46 (q, J = 7.3 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 表4

Figure 02_image1356
實例 R -1 R 2 HCT116 pERK IC 50(µM) (Y min%) SW480 pERK IC 50(µM) (Y min%) Kinase IC 50BRAF (nM) Kinase IC 50CRAF (nM) 84 C3 B1 ++ (8) ++ (10)       85 C5 B1 + (8) ++ (4)       86 C5 B12 ++ (8) ++ (3)       87 C3 B12 ++ (2) +++ (11)       88 C7 B12 ++ (3) ++ (2) * § For pERK analysis, + indicates the 10-30 µM IC 50 range, ++ indicates the 1-10 µM IC 50 range, +++ indicates the 0.5-1 µM IC 50 range and ++++ indicates the IC 50 <0.5 µM. The % Y min value indicates the minimum value of each IC50 curve. Compounds exhibiting IC50 curves with Y min values above -20% were considered to show minimal or no induction and did not cause aberrant activation of detectable pathways. For BRAF biochemical kinase assays, * indicates IC 50 >10 nM, ** indicates 1-10 nM IC 50 range and *** indicates IC 50 < 1 nM. For the CRAF biochemical kinase assay, § indicates IC 50 >50 nM, §§ indicates 10-50 nM IC 50 range and §§§ indicates IC 50 < 10 nM. Characteristics of Compounds in Table 3 example resolve resolution HRMS m/z (MH + ) 1H NMR (400MHz) 30 B 555.6 1 H NMR (DMSO-d 6 ) δ: 10.31 (s, 1H), 9.53 (s, 1H), 8.77 (s, 1H), 8.55 (s, 1H), 7.99 (s, 1H), 7.30 (dd, J = 8.5, 2.2 Hz, 1H), 7.24 – 7.28 (m, 1H), 7.23 (d, J = 2.2 Hz, 1H), 7.07 (d, J = 8.5 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 2.22 (d, J = 0.9 Hz, 3H) 31 B 532.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (br s, 1H), 9.56 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.67 (d, J = 9.0 Hz, 2H ), 7.13 – 7.31 (m, 2H), 7.08 (d, J = 9.0 Hz, 2H), 5.50 (d, J = 54 Hz, 1H), 3.99 (br s, 1H), 3.81 (s, 3H), 3.54 – 3.72 (m, 1H), 2.24 – 2.40 (m, 3H) 32 B 525.1 1 H NMR (DMSO-d 6 ) δ: 10.41 (s, 1H), 10.17 (s, 1H), 9.73 (s, 1H), 8.70 (s, 1H), 8.68 (br s, 1H), 7.77 (d , J = 2.0 Hz, 1H), 7.62 – 7.73 (m, 2H), 7.23 – 7.31 (m, 2H), 7.05 – 7.14 (m, 2H), 3.81 (s, 3H), 3.05 (s, 3H) 33 B 527.1 1 H NMR (DMSO-d 6 ) δ: 10.76 (s, 1H), 9.69 (br s, 1H), 9.13 (s, 1H), 8.26 (s, 1H), 8.10 (d, J = 7.4 Hz, 1H ), 7.93 – 7.98 (m, 1H), 7.89 (t, J = 7.6 Hz, 1H), 7.84 (td, J = 7.8, 1.0 Hz, 1H), 7.31 (td, J = 8.6, 6.3 Hz, 1H) , 7.24 (t, J = 9.0 Hz, 1H), 3.97 (br s, 1H), 3.84 (br s, 1H), 3.73 (br s, 1H), 3.63 (s, 1H), 2.24 – 2.36 (m, 3H) 34 A 534.1 1 H NMR (DMSO-d 6 ) δ: 10.80 (br s, 1H), 10.34 (s, 1H), 9.72 (br s, 1H), 9.70 (s, 1H), 8.68 (s, 1H), 8.11 ( dd, J = 7.4, 1.6 Hz, 1H), 7.98 (dd, J = 8.2, 1.2 Hz, 1H), 7.91 (td, J = 7.6, 1.2 Hz, 1H), 7.86 (td, J = 7.8, 1.6 Hz , 1H), 7.25 – 7.43 (m, 2H), 2.64 (s, 3H), 2.31 (s, 3H) 35 A 511.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (s, 1H), 10.18 (br s, 1H), 9.57 (s, 1H), 8.89 (s, 1H), 8.59 (s, 1H), 8.28 (s , 1H), 7.68 (d, J = 9.0 Hz, 2H), 7.18 – 7.34 (m, 3H), 7.09 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H) 36 A 561.1 1 H NMR (DMSO-d 6 ) δ: 10.29 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.60 (s, 1H) , 7.82 (d, J = 7.8 Hz, 1H), 7.65 – 7.75 (m, 2H), 7.48 (td, J = 7.8, 0.8 Hz, 1H), 7.41 (td, J = 7.4, 1.0 Hz, 1H), 7.19 – 7.35 (m, 2H), 7.05 – 7.16 (m, J = 9.0 Hz, 2H), 3.81 (s, 3H) 37 A 539.1 1 H NMR (DMSO-d 6 ) δ: 10.17 (br s, 1H), 10.14 (s, 1H), 9.54 (s, 1H), 8.56 (s, 1H), 8.00 (s, 1H), 7.68 (d , J = 8.6 Hz, 2H), 7.18 – 7.34 (m, 2H), 7.09 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H), 2.75 (s, 3H), 2.14 (s, 3H) 38 A 532.1 1 H NMR (DMSO-d 6 ) δ: 10.12 (br s, 1H), 9.56 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.57 – 7.75 (m, 2H), 7.13 – 7.27 (m, 2H), 7.08 (d, J = 9.0 Hz, 2H), 5.51 (d, J = 53.2 Hz, 1H), 3.89 – 4.05 (m, 2H), 3.81 (s, 3H), 3.56 – 3.77 (m, 2H), 2.12 – 2.38 (m, 2H) 39 A 550.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (br s, 1H), 9.66 (s, 1H), 9.18 (s, 1H), 8.28 (s, 1H), 7.54 - 7.78 (m, 2H), 7.14 - 7.28 (m, 2H), 7.04 - 7.12 (m, 2H), 4.09 (t, J = 13.3 Hz, 2H), 3.90 (t, J = 7.2 Hz, 2H), 3.81 (s, 3H), 2.53 - 2.68 (m, 2H) 40 A 539.1 1 H NMR (DMSO-d 6 ) δ: 10.16 (s, 2H), 9.55 (s, 1H), 8.75 (s, 1H), 8.57 (s, 1H), 7.53 - 7.75 (m, 2H), 7.18 - 7.38 (m, 2H), 6.94 - 7.18 (m, 2H), 3.81 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 41 A 530.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (s, 1H), 9.49 (br s, 1H), 9.09 (s, 1H), 8.20 (s, 1H), 7.51 - 7.76 (m, 2H), 7.12 - 7.26 (m, 2H), 7.05 - 7.12 (m, 2H), 5.03 (d, J = 3.5 Hz, 1H), 4.43 (sxt, J = 3.5 Hz, 1H), 3.81 (s, 3H), 3.76 ( br s, 1H), 3.61 - 3.71 (m, 3H), 2.06 (s, 1H), 1.87 - 2.00 (m, 1H) 42 A 530.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (s, 1H), 9.49 (br s, 1H), 9.09 (s, 1H), 8.20 (s, 1H), 7.51 - 7.76 (m, 2H), 7.12 - 7.26 (m, 2H), 7.05 - 7.12 (m, 2H), 5.03 (d, J = 3.5 Hz, 1H), 4.43 (sxt, J = 3.5 Hz, 1H), 3.81 (s, 3H), 3.76 ( br s, 1H), 3.61 - 3.71 (m, 3H), 2.06 (s, 1H), 1.87 - 2.00 (m, 1H) 43 A 500.1 1 H NMR (DMSO-d 6 ) δ: 10.10 (br s, 1H), 9.47 (s, 1H), 9.07 (s, 1H), 8.23 (s, 1H), 7.52 - 7.77 (m, 2H), 7.21 (td, J = 9.0, 5.9 Hz, 1H), 7.15 (t, J = 9.0 Hz, 1H), 7.03 - 7.11 (m, J = 9.0 Hz, 2H), 4.20 (t, J = 7.6 Hz, 4H) , 3.80 (s, 3H), 2.37 (quin, J = 7.5 Hz, 2H) 44 A 550.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (br s, 1H), 9.58 (s, 1H), 9.13 (s, 1H), 8.21 (s, 1H), 7.61 (t, J = 8.8 Hz, 1H ), 7.26 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.4 Hz, 1H), 7.05 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 8.8, 2.2 Hz, 1H), 3.87 - 4.17 (m, 2H), 3.82 (s, 3H), 3.52 - 3.77 (m, 2H), 2.12 - 2.38 (m, 2H) 45 A 579.1 1 H NMR (DMSO-d 6 ) δ: 10.45 (s, 1H), 10.31 (s, 1H), 9.68 (s, 1H), 9.62 (s, 1H), 8.71 (d, J = 8.2 Hz, 1H) , 8.58 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.33 (td, J = 8.6, 6.3 Hz, 1H), 7.27 (t, J = 8.6 Hz, 1H), 7.07 (dd, J = 12.3, 2.2 Hz, 1H), 6.90 (dd, J = 9.0, 2.3 Hz, 1H), 3.83 (s, 3H) 46 A 475.1 1 H NMR (DMSO-d 6 ) δ: 10.14 (br s, 1H), 10.00 (s, 1H), 9.36 (s, 1H), 8.46 (s, 1H), 7.61 - 7.71 (m, 2H), 7.24 (td, J = 8.6, 5.5 Hz, 1H), 7.19 (t, J = 9.8 Hz, 1H), 7.04 - 7.12 (m, 2H), 4.12 (s, 3H), 3.81 (s, 3H) 47 A 518.1 1 H NMR (DMSO-d 6 ) δ: 10.11 (br s, 1H), 9.59 (s, 1H), 9.13 (s, 1H), 8.27 (s, 1H), 7.48 - 7.75 (m, 2H), 7.22 (td, J = 9.0, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.04 - 7.13 (m, J = 9.0 Hz, 2H), 5.55 (dspt, J = 57.5, 2.9 Hz, 0H), 4.54 (ddd, J = 21.5, 11.7, 6.3 Hz, 2H), 4.25 (dd, J = 24.3, 10.2 Hz, 2H), 3.81 (s, 3H) 48 A 536.1 1 H NMR (DMSO-d 6 ) δ: 10.12 (br s, 1H), 9.71 (s, 1H), 9.20 (s, 1H), 8.33 (s, 1H), 7.64 - 7.71 (m, J = 9.0 Hz , 2H), 7.23 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.0 Hz, 1H), 7.04 - 7.13 (m, J = 9.0 Hz, 2H), 4.62 (t, J = 12.3 Hz, 4H), 3.81 (s, 3H) 49 A 562.1 1 H NMR (DMSO-d 6 ) δ: 10.13 (br s, 1H), 10.11 (s, 1H), 9.41 (s, 1H), 8.52 (s, 1H), 7.90 - 7.95 (m, 1H), 7.77 (dt, J = 7.0, 1.6 Hz, 1H), 7.62 - 7.75 (m, 4H), 7.24 (td, J = 9.0, 6.3 Hz, 1H), 7.18 (t, J = 9.4 Hz, 1H), 7.09 ( d, J = 9.0 Hz, 2H), 3.81 (s, 3H) 50 A 554.1 1 H NMR (DMSO-d 6 ) δ: 10.38 (s, 1H), 9.73 (s, 1H), 9.21 (s, 1H), 8.30 (s, 1H), 7.60 (t, J = 8.6 Hz, 1H) , 7.27 (td, J = 9.0, 6.3 Hz, 1H), 7.19 (t, J = 9.4 Hz, 1H), 7.05 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 8.8, 2.2 Hz, 1H), 4.62 (t, J = 12.3 Hz, 4H), 3.82 (s, 3H) 51 B 542.6 1 H NMR (DMSO-d 6 ) δ: 10.38 (br s, 1H), 9.85 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.5 Hz, 1H ), 8.65 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.47 - 7.56 (m, 2H), 7.42 (td, J = 7.6, 1.1 Hz, 1H), 7.32 (td, J = 9.1, 1.3 Hz, 1H), 5.34 (dt, J = 53.6, 3.2 Hz, 1H), 3.49 - 3.52 (m, 1H), 3.39 - 3.48 (m, 2H), 3.33 (td, J = 9.9, 6.8 Hz , 1H), 1.98 - 2.18 (m, 2H) 52 A 536.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (br s, 1H), 9.60 (s, 1H), 9.13 (s, 1H), 8.25 (s, 1H), 7.61 (t, J = 8.6 Hz, 1H ), 7.25 (td, J = 8.6, 6.3 Hz, 1H), 7.17 (t, J = 9.4 Hz, 1H), 7.04 (dd, J = 12.3, 2.2 Hz, 1H), 6.88 (dd, J = 9.0, 2.3 Hz, 1H), 5.55 (dspt, J = 57.5, 3.1 Hz, 0H), 4.54 (ddd, J = 21.5, 11.0, 5.9 Hz, 2H), 4.25 (dd, J = 23.9, 10.6 Hz, 2H), 3.80 (s, 3H) 53 A 557.1 1 H NMR (DMSO-d 6 ) δ: 10.42 (br s, 1H), 10.17 (s, 1H), 9.55 (s, 1H), 8.75 (s, 1H), 8.54 (s, 1H), 7.62 (t , J = 8.6 Hz, 1H), 7.31 (td, J = 8.6, 5.9 Hz, 1H), 7.24 (t, J = 9.0 Hz, 1H), 7.06 (dd, J = 12.3, 2.2 Hz, 1H), 6.89 (dd, J = 8.6, 2.3 Hz, 1H), 3.83 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 54 A 552.1 1 H NMR (DMSO-d 6 ) δ: 10.17 (br s, 1H), 9.35 (s, 1H), 8.48 (s, 1H), 7.67 (d, J = 9.0 Hz, 2H), 7.20 - 7.29 (m , 1H), 7.16 (t, J = 9.0 Hz, 1H), 7.00 - 7.13 (m, 4H), 6.45 (d, J = 7.8 Hz, 1H), 6.41 (t, J = 2.0 Hz, 1H), 6.36 (dd, J = 7.8, 2.0 Hz, 1H), 5.28 (br s, 2H), 3.81 (s, 3H) 55 A 575.1 1 H NMR (DMSO-d 6 ) δ: 10.29 (s, 1H), 10.22 (br s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H ), 8.59 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.45 - 7.53 (m, 1H), 7.37 - 7.45 (m, 1H) , 7.18 - 7.35 (m, 2H), 6.96 (d, J = 2.3 Hz, 1H), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H) 56 A 553.2 1 H NMR (DMSO-d 6 ) δ: 10.18 (s, 1H), 10.16 (s, 1H), 9.54 (s, 1H), 8.75 (s, 1H), 8.56 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.28 (td, J = 8.6, 5.9 Hz, 1H), 7.21 (t, J = 9.4 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.58 (s, 3H), 2.55 (s, 3H), 2.14 (s, 3H) 57 A 546.2 1 H NMR (DMSO-d 6 ) δ: 10.14 (br s, 1H), 9.57 (s, 1H), 9.13 (s, 1H), 8.23 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H ), 7.22 (td, J = 9.0, 5.9 Hz, 1H), 7.16 (t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.85 (dd, J = 8.8, 2.5 Hz , 1H), 5.44 (d, J = 53.6 Hz, 1H), 3.90 - 4.07 (m, 2H), 3.78 (s, 3H), 3.54 - 3.71 (m, 2H), 2.57 (s, 3H), 2.23 - 2.39 (m, 2H) 58 B 532.2 1 H NMR (DMSO-d 6 ) δ: 10.49 (br s, 1H), 9.74 (s, 2H), 8.74 (s, 1H), 8.47 (s, 1H), 7.54 (td, J = 8.7, 5.8 Hz , 1H), 7.32 (td, J = 9.1, 1.6 Hz, 1H), 3.94 - 3.99 (m, 1H), 3.22 - 3.38 (m, 4H), 3.19 (s, 3H), 3.06 (s, 3H), 2.37 (d, J = 1.3 Hz, 3H), 1.93 (dq, J = 6.5, 4.1 Hz, 2H) 59 B 554.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (s, 1H), 9.78 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H ), 8.65 (s, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.45 - 7.58 (m, 2H), 7.38 - 7.45 (m, 1H), 7.31 (td, J = 9.0, 1.6 Hz, 1H), 3.90 - 4.03 (m, 1H), 3.22 - 3.37 (m, 4H), 3.20 (s, 3H), 1.93 (td, J = 7.6, 4.3 Hz, 2H) 60 B 525.2 1 H NMR (DMSO-d 6 ) δ: 9.78 (br s, 1H), 9.69 (s, 1H), 9.16 (s, 1H), 8.32 (s, 1H), 7.47 (td, J = 8.8, 5.7 Hz , 1H), 7.24 (td, J = 9.1, 1.3 Hz, 1H), 5.47 (d, J = 53.6 Hz, 1H), 3.92 - 3.99 (m, 1H), 3.80 (dd, J = 39.7, 13.6 Hz, 1H), 3.61 - 3.71 (m, 1H), 3.29 - 3.34 (m, 1H), 3.20 - 3.29 (m, 3H), 3.19 (s, 3H), 2.13 - 2.39 (m, 2H), 1.88 - 1.95 ( m, 2H) 61 B 570.1 1 H NMR (DMSO-d 6 ) δ: 10.61 (br s, 1H), 9.57 (s, 1H), 9.13 (s, 1H), 8.22 (s, 1H), 7.90 (d, J = 2.0 Hz, 1H ), 7.87 (d, J = 8.6 Hz, 1H), 7.60 (dd, J = 8.4, 2.2 Hz, 1H), 7.22 - 7.31 (m, 1H), 7.18 (t, J = 9.0 Hz, 1H), 5.50 (d, J = 53.6 Hz, 1H), 3.88 - 4.20 (m, 2H), 3.78 (dd, J = 38.0, 11.7 Hz, 1H), 3.63 (q, J = 7.8 Hz, 1H), 2.12 - 2.41 ( m, 2H) 62 B 577.1 1 H NMR (DMSO-d 6 ) δ: 10.65 (br s, 1H), 10.14 (s, 1H), 9.53 (s, 1H), 8.73 (s, 1H), 8.53 (s, 1H), 7.89 (d , J = 2.0 Hz, 1H), 7.86 (d, J = 8.6 Hz, 1H), 7.59 (dd, J = 8.6, 2.0 Hz, 1H), 7.29 (td, J = 8.6, 5.9 Hz, 1H), 7.21 (t, J = 9.0 Hz, 1H), 2.53 (s, 3H), 2.12 (s, 3H) 63 B 599.0 1 H NMR (DMSO-d 6 ) δ: 10.69 (s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H) , 8.59 (s, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.63 (dd, J = 8.6, 2.0 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.35 (td, J = 9.0, 5.5 Hz, 1H), 7.28 (t, J = 9.0 Hz, 1H) 64 B 573.2 1 H NMR (DMSO-d 6 ) δ: 10.31 (br.s., 1H), 10.14 (s, 1H), 9.68 (s, 1H), 9.64 (s, 1H), 8.71 (d, J = 8.2 Hz , 1H), 8.62 (s, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 1.6 Hz, 1H), 7.37 – 7.57 (m, 3H), 7.17 – 7.37 (m, 2H), 6.91 (d, J = 8.5 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.22 (t, J = 8.8 Hz, 1H) 65 B 551.5 1 H NMR (DMSO-d 6 ) δ: 10.42 (br s, 1H), 10.12 (s, 1H), 9.73 (s, 1H), 8.70 (s, 1H), 8.45 (br s, 1H), 7.60 - 7.63 (m, 1H), 7.50 (dd, J = 8.5, 2.2 Hz, 1H), 7.25 - 7.28 (m, J = 8.2 Hz, 2H), 6.90 (d, J = 8.5 Hz, 1H), 4.62 (t , J = 8.8 Hz, 2H), 3.22 (t, J = 8.8 Hz, 2H), 3.05 (s, 3H), 2.36 (d, J = 1.3 Hz, 3H) 66 B 544.5 1 H NMR (DMSO-d 6 ) δ: 10.07 (s, 1H), 9.73 (br.s., 1H), 9.14 (s, 1H), 8.29 (s, 1H), 7.60 (d, J = 1.6 Hz , 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.16 – 7.26 (m, 2H), 6.89 (d, J = 8.5 Hz, 1H), 5.51 (d, J = 52 Hz, 1H), 4.62 (t, J = 8.8 Hz, 2H), 3.60 – 4.10 (m, 4H), 3.21 (t, J = 9.0 Hz, 2H), 2.11 – 2.34 (m, 2H) 67 B 555.6 1 H NMR (CDCl 3 ) δ: 9.77 (br s, 1H), 9.69 (s, 1H), 9.22 (s, 1H), 8.32 (s, 1H), 7.44 - 7.51 (m, 2H), 7.32 - 7.39 (m, 2H), 7.24 (t, J = 9.1 Hz, 1H), 5.02 (br s, 4H), 3.91 - 4.00 (m, 1H), 3.33 (dd, J = 10.7, 4.7 Hz, 1H), 3.21 - 3.30 (m, 3H), 3.19 (s, 3H), 1.84 - 1.97 (m, 2H) 68 B 553.2 1 H NMR (DMSO-d 6 ) δ: 10.26 (s, 1H), 9.74 (s, 1H), 9.62 (s, 1H), 8.87 (d, J = 8.5 Hz, 1H), 8.82 (d, J = 3.5 Hz, 1H), 8.58 (s, 1H), 7.69 (dt, J = 7.6, 0.9 Hz, 1H), 7.52 (td, J = 8.9, 5.8 Hz, 1H), 7.38 (ddd, J = 8.4, 7.3 , 1.3 Hz, 1H), 7.30 (td, J = 9.1, 1.6 Hz, 1H), 7.27 (td, J = 7.3, 0.9 Hz, 1H), 6.91 (dd, J = 3.8, 0.6 Hz, 1H), 3.95 - 3.99 (m, 1H), 3.34 (dd, J = 10.7, 4.7 Hz, 1H), 3.22 - 3.31 (m, 3H), 3.20 (s, 3H), 1.83 - 2.03 (m, 2H) 69 B 554.5 1 H NMR (DMSO-d 6 ) δ: 10.36 (br s, 1H), 9.86 (s, 1H), 9.74 (s, 1H), 9.70 (s, 1H), 8.72 (s, 1H), 7.53 (td , J = 8.8, 5.7 Hz, 1H), 7.31 (td, J = 9.1, 1.6 Hz, 1H), 3.92 - 4.00 (m, 1H), 3.33 (dd, J = 10.7, 4.7 Hz, 1H), 3.20 - 3.31 (m, 5H), 3.19 (s, 3H), 2.67 - 2.76 (m, 2H), 1.90 - 1.97 (m, 2H), 1.80 - 1.90 (m, 4H) 70 C 568.5 1 H NMR (DMSO-d 6 ) δ: 10.38 (s, 1H), 9.77 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H) , 8.64 (s, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.54 (td, J = 8.8, 5.7 Hz, 1H), 7.47 - 7.51 (m, 1H), 7.40 - 7.45 (m, 1H ), 7.32 (td, J = 9.5, 1.6 Hz, 1H), 3.34 (dd, J = 9.8, 7.6 Hz, 1H), 3.18 - 3.32 (m, 4H), 3.20 (s, 3H), 2.96 (dd, J = 9.6, 7.1 Hz, 1H), 2.45 (dt, J = 14.3, 7.3 Hz, 1H), 1.94 (dtd, J = 12.2, 7.3, 4.4 Hz, 1H), 1.58 (dq, J = 12.6, 7.9 Hz , 1H) 71 B 554.5 1 H NMR (DMSO-d 6 ) δ: 10.39 (s, 1H), 9.74 (br s, 1H), 9.67 (s, 1H), 8.85 (br s, 1H), 8.61 (s, 1H), 8.47 ( dd, J = 4.7, 1.6 Hz, 1H), 8.12 (dd, J = 7.7, 1.7 Hz, 1H), 7.52 (td, J = 8.8, 5.7 Hz, 1H), 7.32 (dd, J = 7.9, 4.7 Hz , 1H), 7.29 (t, J = 9.1 Hz, 1H), 6.91 (d, J = 4.1 Hz, 1H), 3.93 - 4.01 (m, 1H), 3.23 - 3.30 (m, 3H), 3.19 (s, 3H), 1.89 - 1.96 (m, 2H) 72 B 555.5 1 H NMR (DMSO-d 6 ) δ: 10.38 (s, 1H), 9.76 (s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, 8.2 Hz, 1H), 8.65 (s, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.46 – 7.60 (m, 1H), 7.39 – 7.46 (m, 1H), 7.23 – 7.39 (m, 1H), 3.97 (m, 1H ), 3.26 – 3.37 (m, 3H), 3.22 – 3.26 (m, 1H), 3.20 (s, 3H), 1.88 – 2.00 (m, 2H) 73 C 538.2 1 H NMR (DMSO-d 6 ) δ: 10.36 (br s, 1H), 9.69 (s, 1H), 9.64 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.63 (s, 1H ), 7.83 (d, J = 7.8 Hz, 1H), 7.53 (td, J = 9.0, 5.9 Hz, 1H), 7.45 - 7.51 (m, 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H) , 7.30 (td, J = 9.4, 1.2 Hz, 1H), 3.37 (dd, J = 9.4, 7.0 Hz, 1H), 3.19 (td, J = 9.0, 7.0 Hz, 1H), 2.73 (dd, J = 9.0 , 8.2 Hz, 1H), 2.22 (dq, J = 14.7, 7.2 Hz, 1H), 1.91 - 2.03 (m, 1H), 1.44 (dq, J = 12.3, 8.4 Hz, 1H), 0.96 (d, J = 6.7 Hz, 3H) 74 C 536.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (br s, 1H), 9.70 (s, 1H), 9.65 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.65 (s, 1H ), 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.53 (m, 1H), 7.39 - 7.45 (m, 1H), 7.30 (t, J = 8.8 Hz, 1H), 3.29 (br.s, 4H), 1.55 (dd, J = 7.2, 3.3 Hz, 2H), 0.58 (td, J = 7.7, 4.9 Hz, 1H), 0.23 (q, J = 4.3 Hz, 1H) 75 B 572.1 1 H NMR (DMSO-d 6 ) δ: 10.36 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.64 (s, 1H ), 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.60 (m, 2H), 7.38 - 7.45 (m, 1H), 7.29 (t, J = 8.8 Hz, 1H), 3.56 - 3.75 (m, 2H), 3.41 (dd, J = 9.6, 7.6 Hz, 1H), 3.16 - 3.26 (m, 1H), 3.01 (dd, J = 9.8, 7.0 Hz, 1H), 2.57 (dt, J = 14.6, 7.4 Hz , 1H), 1.92 - 2.09 (m, 1H), 1.68 (dq, J = 12.6, 7.9 Hz, 1H) 76 C 552.2 1 H NMR (DMSO-d 6 ) δ: 10.36 (br s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 8.2 Hz, 1H), 8.62 (s, 1H ), 7.83 (d, J = 7.8 Hz, 1H), 7.45 - 7.59 (m, 2H), 7.37 - 7.45 (m, 1H), 7.29 (t, J = 9.0 Hz, 1H), 3.38 (dd, J = 9.4, 7.4 Hz, 1H), 3.17 (td, J = 9.4, 6.7 Hz, 1H), 2.77 (t, J = 9.0 Hz, 1H), 1.89 - 2.11 (m, 2H), 1.38 - 1.53 (m, 1H ), 1.25 - 1.38 (m, 2H), 0.83 (t, J = 7.4 Hz, 3H) 77 C 524.1 1 H NMR (DMSO-d 6 ) δ: 10.37 (s, 1H), 9.73 (s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.72 (d, J = 7.8 Hz, 1H) , 8.64 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.54 (td, J = 9.0, 5.9 Hz, 1H), 7.46 - 7.52 (m, 1H), 7.38 - 7.45 (m, 1H ), 7.32 (td, J = 9.2, 1.6 Hz, 1H), 3.11 - 3.25 (m, 4H), 1.81 (dt, J = 6.5, 3.4 Hz, 4H) 78 C 590.1 1 H NMR (DMSO-d 6 ) δ: 10.36 (s, 1H), 9.70 (s, 1H), 9.64 (s, 1H), 8.73 (d, J = 7.8 Hz, 1H), 8.65 (s, 1H) , 7.83 (d, J = 7.8 Hz, 1H), 7.46 - 7.57 (m, 2H), 7.39 - 7.45 (m, 1H), 7.30 (t, J = 9.0 Hz, 1H), 4.79 - 4.91 (m, 1H ), 3.49 (dd, J = 11.2, 4.9 Hz, 1H), 3.34 - 3.39 (m, 1H), 3.26 - 3.30 (m, 2H), 2.08 - 2.21 (m, 1H), 1.94 - 2.06 (m, 1H ) 79 A 594.1 1 H NMR (DMSO-d 6 ) δ: 10.45 (br s, 1H), 10.27 (s, 1H), 9.64 (s, 1H), 9.39 (s, 1H), 8.55 (s, 1H), 7.84 (dd , J = 8.2, 0.9 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.22 - 7.39 (m, 2H), 7.13 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 12.5, 2.4 Hz, 1H), 6.90 (dd, J = 8.9, 2.6 Hz, 1H), 6.58 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H), 3.83 (s, 3H) 80 A 614.1 1 H NMR (DMSO-d 6 ) δ: 10.76 (br s, 1H), 10.26 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.56 (s, 1H), 7.95 (dd , J = 7.9, 1.1 Hz, 1H), 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.20 - 7.39 (m, 2H), 7.12 (t, J = 7.9 Hz, 1H), 6.57 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H) 81 A 599.0 1 H NMR (DMSO-d 6 ) δ: 10.77 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.60 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H ), 8.59 (s, 1H), 7.97 (dd, J = 8.1, 1.5 Hz, 1H), 7.91 (dd, J = 7.9, 1.6 Hz, 1H), 7.82 (dd, J = 7.2, 0.9 Hz, 1H) , 7.55 (t, J = 8.1 Hz, 1H), 7.48 (td, J = 7.3, 1.2 Hz, 1H), 7.42 (dd, J = 7.8, 1.5 Hz, 1H), 7.21 - 7.38 (m, 2H) 82 A 578.1 1 H NMR (DMSO-d 6 ) δ: 10.55 (br s, 1H), 10.26 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.56 (s, 1H), 7.84 (dd , J = 8.1, 0.7 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.50 (td, J = 9.5, 1.2 Hz, 1H), 7.42 (dd, J = 8.1, 5.6 Hz, 1H) , 7.21 - 7.39 (m, 2H), 7.12 (t, J = 7.9 Hz, 1H), 6.57 (dd, J = 7.8, 1.0 Hz, 1H), 5.50 (br s, 2H), 2.51 (s, 3H) 83 A 563.1 1 H NMR (DMSO-d 6 ) δ: 10.55 (br s, 1H), 10.29 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.6 Hz, 1H ), 8.59 (s, 1H), 7.76 - 7.88 (m, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.17 - 7.56 (m, 6H), 2.51 (s, 3H) 93 A 579.1 1 H NMR (DMSO-d 6 ) δ: 10.51 (s, 1H), 10.10 (s, 1H), 9.71 (s, 1H), 8.61 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H) , 7.62 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 9.0 Hz, 1H), 7.41 (td, J = 8.2, 5.9 Hz, 1H), 7.39 (t, J = 8.2 Hz, 1H) , 7.32 (td, J = 8.7, 6.1 Hz, 1H), 7.24 (t, J = 9.4 Hz, 1H), 6.62 (d, J = 7.4 Hz, 1H), 6.36 (s, 2H), 2.50 (br s , 3H) 94 A 615.0 1 H NMR (DMSO-d 6 ) δ: 10.73 (br s, 1H), 10.11 (s, 1H), 9.71 (s, 1H), 8.61 (s, 1H), 7.95 (d, J = 8.2 Hz, 1H ), 7.90 (dd, J = 7.8, 1.2 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H ), 7.27 - 7.36 (m, 1H), 7.24 (t, J = 9.2 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 6.36 (s, 2H) 95 f 699.1 1 H NMR (DMSO-d 6 ) δ: 10.56 (br s, 1H), 10.46 (br s, 1H), 9.68 (s, 1H), 9.35 (s, 1H), 8.96 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.53 (dd, J = 9.0, 7.8 Hz, 1H), 7.28 - 7.48 (m, 4H), 7.17 - 7.26 (m, 1H), 2.74 (s, 6H) 96 f 724.2 1 H NMR (DMSO-d 6 ) δ: 10.47 (s, 1H), 9.68 (s, 1H), 9.33 (s, 1H), 8.96 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H) , 7.93 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.51 - 7.56 (m, 1H), 7.30 - 7.49 (m, 5H), 7.19 - 7.27 (m, 1H ), 3.07 (br s, 4H), 2.37 - 2.43 (m, 4H), 2.13 (s, 3H) 97 E. 633.3 1 H NMR (DMSO-d 6 ) δ: 10.56 (br s, 1H), 10.28 (s, 1H), 9.63 (s, 1H), 9.07 (s, 1H), 8.87 (d, J = 8.5 Hz, 1H ), 8.54 (s, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.38 – 7.50 (m, 3H), 7.30 – 7.35 (m, 2H) , 7.24 (t, J = 8.7 Hz, 1H), 3.12 (br s, 6H), 2.50 (s, 3H). 98 E. 710.2 1 H NMR (DMSO-d 6 ) δ: 10.57 (br s, 1H), 10.27 (s, 1H), 9.63 (s, 1H), 9.12 (s, 1H), 8.90 (d, J = 8.0 Hz, 1H ), 8.57 (br s, 2H), 8.55 (s, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.25 – 7.50 (m, 8H), 4.81 (s, 2H), 3.13 (br s, 3H), 2.50 (s, 3H). 99 E. 688.2 1 H NMR (DMSO-d 6 ) δ: 10.33 (s, 1H), 9.63 (s, 1H), 9.09 (s, 1H), 8.88 (d, J = 8.2 Hz, 1H), 8.54 (s, 1H) , 7.67 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.42 – 7.48 (m, 2H), 7.28 – 7.41 (m, 3H), 7.21 (t, J = 9.0 Hz, 1H), 3.68 (br s, 4H), 2.50 (s, 3H), 2.39 (br s, 4H), 2.22 (s, 3H). 100 E. 675.2 1 H NMR (DMSO-d 6 ) δ: 10.57 (s, 1H), 10.32 (s, 1H), 9.64 (s, 1H), 9.11 (s, 1H), 8.89 (d, J = 8.5 Hz, 1H) , 8.54 (s, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.41 – 7.49 (m, 2H), 7.29 – 7.40 (m, 3H), 7.23 (t, J = 8.7 Hz, 1H), 3.65 (br s, 8H), 2.50 (s, 3H). 101 E. 663.4 1 H NMR (DMSO-d 6 ) δ: 10.56 (s, 1H), 10.30 (s, 1H), 9.63 (s, 1H), 9.05 (s, 1H), 8.88 (d, J = 8.5 Hz, 1H) , 8.54 (s, 1H), 7.69 (br s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 8.7 Hz, 1H), 7.39 – 7.45 (m, 2H), 7.31 – 7.37 (m, 2H), 7.26 (t, J = 9.1 Hz, 1H), 4.80 (br s, 1H), 3.58 – 3.66 (m, 4H), 3.13 (s, 3H), 2.51 (s, 3H) . 102 E. 689.5 1 H NMR (DMSO-d 6 ) δ: 10.56 (s, 1H), 10.35 (s, 1H), 9.63 (s, 1H), 9.08 (s, 1H), 8.88 (d, J = 8.5 Hz, 1H) , 8.54 (s, 1H), 7.63 (dd, J = 12.0, 7.9 Hz, 2H), 7.50 (t, J = 8.7 Hz, 1H), 7.39 – 7.46 (m, 2H), 7.31 – 7.37 (m, 2H ), 7.26 (t, J = 9.4 Hz, 1H), 4.82 (d, J = 4.1 Hz, 1H), 3.77 (td, J = 8.1, 4.3 Hz, 1H), 3.27 – 3.33 (m, 4H), 2.50 (s, 3H), 1.78 (s, 2H), 1.39 (s, 2H). 103 E. 689.5 1 H NMR (DMSO-d 6 ) δ: 10.56 (s, 1H), 10.36 (s, 1H), 9.63 (s, 1H), 9.08 (s, 1H), 8.88 (d, J = 8.5 Hz, 1H) , 8.54 (s, 1H), 7.63 (dd, J = 11.4, 7.8 Hz, 2H), 7.39 – 7.51 (m, 3H), 7.30 – 7.36 (m, 2H), 7.25 (t, J = 8.5 Hz, 1H ), 4.86 – 4.99 (m, 1H), 3.75 – 3.91 (m, 1H), 3.50 (br s, 1H), 3.31 (s, 1H), 3.23 (br s, 1H), 2.82 – 3.11 (m, 1H ), 2.50 (s, 3H), 1.88 – 1.90 (m, 1H), 1.75 (br s, 1H), 1.42 – 1.45 (m, 2H). 104 E. 689.3 1 H NMR (DMSO-d 6 ) δ: 9.92 (br s, 1H), 9.68 (s, 1H), 8.90 (d, J = 8.5 Hz, 1H), 8.59 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 8.9 Hz, 1H), 7.39 (td, J = 8.0, 5.9 Hz, 1H), 7.29 (td, J = 8.7, 5.7 Hz, 1H), 7.19 (t, J = 8.5 Hz, 1H), 3.85 (br s, 2H), 3.79 (br s, 2H), 2.50 (br s, 3H), 2.48 (br s, 2H), 2.08 (br s, 2H), 2.25 (s, 3H). 105 E. 634.3 1 H NMR (DMSO-d 6 ) δ: 10.52 (br s, 1H), 9.93 (s, 1H), 9.67 (s, 1H), 8.89 (d, J = 8.5 Hz, 1H), 8.58 (s, 1H ), 8.02 (d, J = 8.0 Hz, 1H), 7.68 (td, J = 7.1, 1.0 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.45 – 7.50 (m, 2H), 7.40 (td, J = 7.8, 5.7 Hz, 1H), 7.31 (td, J = 8.9, 5.9 Hz, 1H), 7.22 (t, J = 8.9 Hz, 1H), 3.33 (s, 3H), 3.14 (s, 3H), 2.50 (s, 3H). 106 E. 711.2 1 H NMR (DMSO-d 6 ) δ: 10.52 (br s, 1H), 9.93 (s, 0.6H), 9.78 (s, 0.4H), 9.69 (s, 0.6H), 9.65 (s, 0.4H) , 8.92 (d, J = 8.7 Hz, 1H), 8.88 (d, J = 8.2 Hz, 1H), 8.59 (t, J = 5.0 Hz, 2H), 8.47 (d, J = 5.7 Hz, 1H), 8.10 (t, J = 8.0 Hz, 1H), 7.69 (dd, J = 15.8, 8.7 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.46 – 7.53 (m, 2H), 7.38 – 7.43 ( m, 3H), 7.29 – 7.35 (m, 1H), 7.22 – 7.27 (m, 1H), 5.14 (s, 0.8H), 4.87 (s, 1.2H), 3.38 (s, 1.8H), 3.11 (s , 1.2H), 2.50 (s, 3H). 107 E. 664.3 1 H NMR (DMSO-d 6 ) δ: 10.54 (br s, 1H), 9.95 (d, J = 6.2 Hz, 1H), 9.68 (d, J = 2.7 Hz, 1H), 8.89 (t, J = 9.8 Hz, 1H), 8.59 (d, J = 2.1 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.46 – 7.53 (m, 2H), 7.39 – 7.44 (m, 1H), 7.30 – 7.36 (m, 1H), 7.26 (t, J = 9.1 Hz, 1H), 4.90 – 5.06 (m, 1H) , 3.83 (t, J = 5.5 Hz, 1H), 3.70 – 3.73 (m, 1H), 3.65 – 3.68 (m, 1H), 3.64 (t, J = 5.3 Hz, 1H), 3.34 (s, 1H), 3.14 (s, 2H), 2.50 (s, 3H). 108 E. 690.3 1 H NMR (DMSO-d 6 ) δ: 10.54 (br s, 1H), 9.95 (s, 1H), 9.68 (s, 1H), 8.89 (d, J = 8.5 Hz, 1H), 8.58 (s, 1H ), 7.96 (d, J = 8.0 Hz, 1H), 7.69 (ddd, J = 8.5, 7.1, 0.9 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.49 (q, J = 7.2 Hz , 2H), 7.41 (td, J = 8.0, 5.5 Hz, 1H), 7.32 (td, J = 8.7, 5.9 Hz, 1H), 7.25 (dd, J = 9.1, 0.7 Hz, 1H), 4.82 (br s , 1H), 4.17 (dt, J = 12.3, 4.3 Hz, 1H), 4.02 (dt, J = 12.6, 3.7 Hz, 1H), 3.80 (tt, J = 8.1, 3.8 Hz, 1H), 3.47 (ddd, J = 13.2, 9.7, 3.2 Hz, 2H), 2.50 (s, 3H), 1.88 – 1.91 (m, 1H), 1.76 – 1.79 (m, 1H), 1.35 – 1.52 (m, 2H). 109 E. 690.3 1 H NMR (DMSO-d 6 ) δ: 10.54 (br s, 1H), 9.94 (s, 1H), 9.67 (d, J = 3.2 Hz, 1H), 8.89 (dd, J = 8.5, 4.1 Hz, 1H ), 8.58 (d, J = 1.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.9 Hz, 2H), 7.40 (td, J = 7.8, 6.2 Hz, 1H), 7.31 (td, J = 8.7, 5.7 Hz, 1H), 7.22 (t, J = 8.7 Hz, 1H ), 5.10 (d, J = 4.1 Hz, 0.5H), 4.88 (d, J = 4.1 Hz, 0.5H), 4.30 (dd, J = 12.5, 3.5 Hz, 0.5H), 3.97 (d, J = 13.3 Hz, 0.5H), 3.89 (dd, J = 12.8, 2.7 Hz, 1H), 3.63 (dt, J = 8.2, 4.1 Hz, 0.5), 3.55 (br s, 0.5H), 3.45 – 3.50 (m, 1H ), 3.46 (dd, J = 12.8, 7.5 Hz, 0.5H), 3.04 (dd, J = 12.3, 8.7 Hz, 0.5H), 2.50 (s, 3H), 1.70 – 1.91 (m, 2H), 1.41 – 1.53 (m, 2H). 110 E. 676.3 1 H NMR (DMSO-d 6 ) δ: 10.54 (br s, 1H), 9.93 (s, 1H), 9.68 (s, 1H), 8.90 (d, J = 8.7 Hz, 1H), 8.59 (s, 1H ), 8.05 (d, J = 8.2 Hz, 1H), 7.70 (ddd, J = 8.2, 7.0, 0.9 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.5 Hz , 2H), 7.40 (dd, J = 13.5, 7.8 Hz, 1H), 7.31 (dd, J = 14.6, 8.9 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 3.92 – 3.94 (m, 2H), 3.78 – 3.80 (m, 2H), 3.74 – 3.76 (m, 2H), 3.63 – 3.66 (m, 2H), 2.50 (s, 3H). 111 A 608.3 1 H NMR (DMSO-d 6 ) δ: 10.37 (br s, 1H), 10.25 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.55 (s, 1H), 7.84 (d , J = 7.8 Hz, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.28 - 7.36 (m, 1H), 7.20 - 7.27 (m, 1H), 7.13 (dd, J = 9.0 Hz, 2H) , 6.57 (d, J = 7.8 Hz, 1H), 5.50 (s, 2H), 3.88 (s, 3H). 112 A 624.3 1 H NMR (DMSO-d 6 ) δ: 10.44 (br s, 1H), 10.25 (s, 1H), 9.64 (s, 1H), 9.38 (s, 1H), 8.55 (s, 1H), 7.84 (d , J = 7.8 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.29 - 7.37 (m, 1H), 7.24 (dd, J = 11.0, 9.0 Hz, 1H), 7.12 (dd, J = 9.0, 7.0 Hz, 2H), 6.57 (d, J = 7.8 Hz, 1H), 5.50 (br s, 2H), 3.91 (s, 3H), 2.67 (s, 3H). 113 f 746.1 1 H NMR (DMSO-d 6 ) δ: 10.56 (br s, 1H), 10.45 (s, 1H), 9.69 (s, 1H), 9.44 (s, 1H), 8.98 (d, J = 8.2 Hz, 1H ), 8.50 - 8.61 (m, 3H), 8.00 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.55 (dd, J = 9.4, 7.4 Hz, 1H), 7.27 - 7.50 (m, 6H), 7.15 - 7.25 (m, 1H), 4.35 (s, 2H), 2.74 (s, 3H) 114 A 640.4 1 H NMR (DMSO-d 6 ) δ: 10.56 (br s, 1H), 10.31 (s, 1H), 9.71 (s, 1H), 9.66 (s, 1H), 9.24 (br s, 1H), 8.80 ( d, J = 8.2 Hz, 1H), 8.57 - 8.66 (m, 2H), 8.43 (dt, J = 8.1, 1.8 Hz, 1H), 7.66 - 7.73 (m, 1H), 7.54 - 7.65 (m, 3H) , 7.45 - 7.53 (m, 1H), 7.23 - 7.45 (m, 3H) 115 A 609.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.44 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 7.8 Hz, 1H), 8.57 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.48 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H ), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.27 - 7.36 (m, 1H), 7.16 - 7.26 (m, 1H), 7.12 (d, J = 9.4 Hz, 1H), 3.90 (s, 3H), 2.67 (s, 3H) 116 A 593.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.38 (br s, 1H), 10.27 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.70 (d, J = 8.2 Hz, 1H), 8.58 (s, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.59 (dd, J = 9.0, 0.8 Hz, 1H), 7.48 (ddd, J = 7.8, 7.1, 0.8 Hz , 1H), 7.41 (td, J = 7.8, 1.2 Hz, 1H), 7.24 - 7.36 (m, 1H), 7.14 - 7.24 (m, 1H), 7.10 (t, J = 8.6 Hz, 1H), 3.87 ( s, 3H), 2.49 (br s, 3H) 117 A 610.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.41 (br s, 1H), 10.20 (s, 1H), 9.76 (s, 1H), 8.79 (d, J = 8.6 Hz, 1H), 8.63 ( s, 1H), 8.27 (d, J = 8.6 Hz, 1H), 7.79 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.62 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.32 (td, J = 8.6, 6.3 Hz, 1H), 7.21 (br. t, J = 9.0 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H) , 3.91 (s, 3H), 2.66 (s, 3H) 118 A 594.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.35 (br s, 1H), 10.21 (s, 1H), 9.76 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.63 ( s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.79 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.63 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.59 (dd, J = 9.0, 1.2 Hz, 1H), 7.31 (td, J = 8.4, 6.3 Hz, 1H), 7.21 (t, J = 8.6 Hz, 1H), 7.13 (t, J = 8.6 Hz, 1H) , 3.88 (s, 3H), 2.48 (d, J = 2.7 Hz, 3H) 119 f 772.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.44 (br s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.95 (d, J = 8.2 Hz, 1H), 8.56 ( s, 1H), 8.14 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 9.0 Hz, 1H), 7.53 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H ), 7.44 (ddd, J = 7.8, 7.0, 0.8 Hz, 1H), 7.31 (td, J = 8.8, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.10 (d, J = 9.0 Hz, 1H), 3.90 (s, 3H), 3.16 - 3.22 (m, 4H), 2.82 (s, 3H), 2.67 (s, 3H), 2.21 (s, 6H) 120 f 756.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.45 (br s, 1H), 9.67 (s, 1H), 9.36 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.56 ( s, 1H), 8.14 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.44 ( t, J = 7.4 Hz, 1H), 7.30 (td, J = 8.7, 5.7 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 7.09 (t, J = 8.6 Hz, 1H), 3.87 ( s, 3H), 3.19 (t, J = 6.7 Hz, 4H), 2.82 (s, 3H), 2.47 (d, J = 6.7 Hz, 3H), 2.18 (s, 6H) 121 A 564.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.52 (br s, 1H), 10.20 (s, 1H), 9.77 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.65 ( s, 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 3.5 Hz, 1H), 7.62 (t, J = 3.5 Hz, 1H), 7.49 (t, J = 8.8 Hz, 1H), 7.41 (td, J = 7.6, 6.3 Hz, 1H), 7.28 - 7.36 (m, 1H), 7.24 (t, J = 9.0 Hz, 1H), 2.49 - 2.50 (m, 3H) 122 f 762.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.41 (br s, 1H), 9.67 (s, 1H), 9.39 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.58 ( s, 1H), 8.14 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.53 ( t, J = 7.8 Hz, 1H), 7.45 (td, J = 7.7, 2.9 Hz, 2H), 7.23 (td, J = 8.8, 6.3 Hz, 1H), 7.06 (t, J = 9.0 Hz, 1H), 3.24 (t, J = 6.7 Hz, 2H), 2.82 (s, 3H), 2.69 (t, J = 6.1 Hz, 2H), 2.35 (s, 6H) 123 A 617.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.78 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.66 (s, 1H), 8.61 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.85 (br. d, J = 6.3 Hz, 1H), 7.42 - 7.53 (m, J = 8.2, 8.2, 4.7 Hz, 2H), 7.25 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.2 Hz, 1H), 7.12 (br s, 1H) 124 A 580.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.58 (s, 1H), 10.21 (s, 1H), 9.77 (s, 1H), 8.79 (d, J = 8.2 Hz, 1H), 8.65 (s , 1H), 8.27 (d, J = 8.2 Hz, 1H), 7.77 - 7.83 (m, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.33 (td, J = 8.6, 5.9 Hz, 1H), 7.25 (t, J = 9.0 Hz, 1H), 2.66 (s, 3H) 125 f 742.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.62 (s, 1H), 10.44 (s, 1H), 9.70 (s, 1H), 9.46 (br s, 1H), 9.39 (s, 1H), 8.98 (d, J = 8.2 Hz, 1H), 8.60 (s, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.77 (t, J = 7.4 Hz, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.31 - 7.37 (m, 1H), 7.29 (t, J = 9.0 Hz, 1H), 3.41 (t, J = 5.5 Hz, 2H), 3.36 (t, J = 4.7 Hz, 2H), 2.88 (d, J = 3.5 Hz, 6H), 2.83 (s, 3H), 2.68 (s, 3H) 126 f 726.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.45 (br s, 1H), 9.67 (s, 1H), 9.37 (s, 1H), 8.96 (d, J = 8.6 Hz, 1H), 8.58 ( s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.43 (dd, J = 6.7, 3.5 Hz, 1H), 7.38 (dd, J = 7.8, 5.5 Hz, 1H), 7.31 (td, J = 8.8, 5.9 Hz, 1H), 7.19 (t, J = 9.0 Hz, 1H), 3.23 (t, J = 6.5 Hz, 2H), 2.82 (s, 3H), 2.66 (t, J = 6.1 Hz, 2H), 2.51 (d, J = 2.3 Hz, 3H), 2.33 (s, 6H) 127 A 579.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.61 (br s, 1H), 10.27 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.71 (d, J = 8.6 Hz, 1H), 8.59 (s, 1H), 7.81 (dd, J = 10.2, 8.2 Hz, 2H), 7.70 (br s, 1H), 7.48 (ddd, J = 8.2, 7.4, 0.8 Hz, 1H), 7.41 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.36 (t, J = 8.2 Hz, 1H), 7.30 (br s, 1H), 7.19 (br s, 1H), 2.67 (s, 3H) 128 h 766.2 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.66 (s, 1H), 9.43 (s, 1H), 8.58 (s, 1H), 8.26 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.28 - 7.39 (m, 2H), 7.25 (t, J = 9.0 Hz, 1H), 6.84 (d, J = 7.9 Hz, 1H), 6.00 (s, 1H), 4.22 (d, J = 11.9 Hz, 2H ), 3.09 (dd, J = 12.1, 10.8 Hz, 2H), 1.94 (td, J = 12.7, 4.4 Hz, 2H), 1.80 (d, J = 12.4 Hz, 2H) 129 h 738.4 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.58 (s, 1H), 8.23 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.91 (dd, J = 8.0, 1.5 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.8, 5.8 Hz, 1H), 7.29 (t, J = 8.1 Hz, 1H), 7.26 (t, J = 9.0 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.77 (t, J = 6.8 Hz, 2H), 3.57 - 3.68 (m, 2H), 3.51 (ddd, J = 11.9, 7.7, 4.3 Hz, 2H), 1.91 (quin, J = 6.9 Hz, 2H), 1.66 - 1.82 (m, 6H) 130 h 712.2 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 8.0, 1.4 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.34 (td, J = 8.9, 6.1 Hz, 1H), 7.19 - 7.31 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.30 (s, 1H), 3.76 (dt, J = 12.0, 4.5 Hz, 2H), 3.36 - 3.45 (m, 2H), 1.58 - 1.78 (m, 4H), 1.20 (s, 3H) 131 h 712.2 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.58 (s, 1H), 8.23 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 8.0, 1.5 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.8, 6.0 Hz, 1H), 7.20 - 7.31 (m, 2H), 6.78 (d, J = 7.9 Hz, 1H), 3.97 (dt, J = 12.4, 3.8 Hz, 2H), 3.40 (spt, J = 4.1 Hz, 1H), 3.30 (s, 3H), 3.13 (ddd, J = 12.3, 9.8, 2.5 Hz, 2H), 1.94 - 2.11 (m, 2H), 1.64 (dtd, J = 12.5 , 9.2, 3.5 Hz, 2H) 132 h 707.2 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.66 (s, 1H), 9.42 (s, 1H), 8.58 (s, 1H), 8.27 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.29 - 7.40 (m, 2H), 7.26 (t, J = 9.0 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 3.66 - 3.86 (m, 2H), 3.38 (ddd, J = 11.8, 8.3, 2.9 Hz, 2H), 3.12 (tt, J = 8.2, 4.1 Hz, 1H), 2.09 (ddd, J = 9.3, 6.2, 2.8 Hz, 2H), 1.87 - 2.02 (m, 2H) 133 h 726.2 1 H NMR (400 MHz, DMSO-d 6 ) δ:10.77 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.9, 1.4 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.34 (td, J = 8.4, 6.0 Hz, 1H), 7.21 - 7.31 (m, 2H), 6.79 (d, J = 7.9 Hz, 1H), 4.08 (s, 1H), 3.81 - 3.95 (m, 2H) , 3.25 (td, J = 11.9, 2.8 Hz, 2H), 1.68 (td, J = 12.5, 4.0 Hz, 2H), 1.56 - 1.64 (m, 2H), 1.46 (q, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 134 h 672.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.16 (br s, 1H), 9.63 (s, 1H), 9.44 (s, 1H), 8.58 (s, 1H), 8.14 (s, 1H), 8.09 (d, J = 8.00 Hz, 1H), 7.80 - 7.98 (m, 1H), 7.42 (br s, 1H), 7.25 (t, J = 8.13 Hz, 1H), 6.61 (d, J = 8.25 Hz, 1H), 6.52 (s, 1H), 4.76 (t, J = 5.07 Hz, 1H), 3.93 (t, J = 6.19 Hz, 2H), 3.69 (q, J = 5.92 Hz, 2H), 3.13 (s, 3H) 135 see text 665.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.74 (br s, 1H), 10.19 (s, 1H), 9.77 (s, 1H), 8.76 (d, J = 8.26 Hz, 1H), 8.66 ( s, 1H), 7.84 - 7.99 (m, 2H), 7.73 - 7.84 (m, 1H), 7.69 (d, J = 7.25 Hz, 1H), 7.53 (t, J = 8.07 Hz, 1H), 7.32 (d , J = 6.13 Hz, 1H), 7.22 (br s, 1H), 2.04 - 2.11 (m, 2H), 1.91 - 2.02 (m, 2H) 136 I 727.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.74 (s, 1H), 10.13 (s, 1H), 9.74 (s, 1H), 8.63 (s, 1H), 8.08 (d, J = 8.13 Hz , 1H), 7.95 (d, J = 8.00 Hz, 1H), 7.91 (dd, J = 1.19, 7.94 Hz, 1H), 7.53 (dt, J = 6.00, 7.94 Hz, 2H), 7.29 - 7.44 (m, 1H), 7.07 - 7.29 (m, 1H), 6.84 (d, J = 8.00 Hz, 1H), 4.06 - 4.29 (m, 3H), 3.37 - 3.58 (m, 2H), 1.56 - 1.81 (m, 4H) , 1.47 (q, J = 7.34 Hz, 2H), 0.89 (t, J = 7.44 Hz, 3H) 137 see text 674.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.74 (br s, 1H), 10.20 (s, 1H), 9.68 - 9.85 (m, 1H), 8.50 - 8.71 (m, 1H), 8.30 (d , J = 8.38 Hz, 1H), 7.80 - 8.03 (m, 2H), 7.66 (t, J = 8.13 Hz, 1H), 7.53 (t, J = 8.00 Hz, 1H), 7.31 (d, J = 6.00 Hz , 1H), 7.22 (br s, 1H), 7.09 (d, J = 7.88 Hz, 1H), 4.48 (dd, J = 3.63, 5.25 Hz, 2H), 3.84 (dd, J = 3.63, 5.25 Hz, 2H ), 3.35 - 3.46 (m, 3H) 138 I 739.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.74 (s, 1H), 10.14 (s, 1H), 9.68 - 9.75 (m, 1H), 8.63 (s, 1H), 8.10 (d, J = 8.25 Hz, 1H), 7.95 (d, J = 8.00 Hz, 1H), 7.90 (dd, J = 1.38, 8.00 Hz, 1H), 7.53 (dt, J = 4.06, 8.04 Hz, 2H), 7.28-7.38 ( m, 1H), 7.05 - 7.28 (m, 1H), 6.84 (d, J = 8.00 Hz, 1H), 3.86 - 4.13 (m, 2H), 3.79 (t, J = 6.75 Hz, 2H), 3.70 (ddd , J = 3.94, 8.54, 12.54 Hz, 2H), 1.85 - 2.02 (m, 2H), 1.68 - 1.84 (m, 6H) 139 I 728.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.10 (br s, 1H), 9.68 - 9.76 (m, 1H), 8.62 - 8.68 (m, 1H), 8.19 (d, J = 7.88 Hz, 1H ), 8.13 (s, 1H), 7.91 (dd, J = 1.25, 7.88 Hz, 1H), 7.87 (d, J = 8.13 Hz, 1H), 7.56 (t, J = 8.07 Hz, 1H), 7.49 (t , J = 8.00 Hz, 1H), 7.20 - 7.33 (m, 1H), 7.12 (br s, 1H), 6.84 (d, J = 8.00 Hz, 1H), 4.59 (br s, 1H), 3.79 (br s , 4H), 3.61 (br s, 2H), 2.82 (br s, 4H), 2.61 (br s, 2H) 140 h 686.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.76 (br s, 1H), 10.19 (s, 1H), 9.64 (s, 1H), 9.37 (s, 1H), 8.51 - 8.59 (m, 1H ), 8.02 (d, J = 8.13 Hz, 1H), 7.91 (d, J = 7.88 Hz, 2H), 7.51 (br s, 1H), 7.09 - 7.38 (m, 3H), 6.32 (d, J = 7.88 Hz, 1H), 4.75 (d, J = 6.00 Hz, 1H), 4.63 (d, J = 6.00 Hz, 1H), 4.28 (t, J = 7.94 Hz, 2H), 3.99 (dd, J = 5.63, 7.88 Hz, 2H), 3.12 (td, J = 6.11, 19.17 Hz, 1H) 141 G 690.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.78 (br s, 1H), 10.55 (s, 1H), 9.68 (s, 1H), 9.43 (s, 1H), 8.96 (d, J = 8.38 Hz, 1H), 8.58 (s, 1H), 7.81 - 8.02 (m, 3H), 7.54 (dt, J = 4.75, 7.69 Hz, 2H), 7.46 (t, J = 7.50 Hz, 1H), 7.31 - 7.40 (m, 1H), 7.26 (t, J = 9.13 Hz, 1H), 3.40 (q, J = 7.30 Hz, 2H), 1.22 (t, J = 7.38 Hz, 3H) 142 G 746.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.78 (s, 1H), 10.54 (s, 1H), 9.69 (s, 1H), 9.42 (s, 1H), 8.97 (d, J = 8.38 Hz , 1H), 8.58 (s, 1H), 7.83 - 8.03 (m, 3H), 7.50 - 7.62 (m, 2H), 7.41 - 7.50 (m, 1H), 7.30 - 7.41 (m, 1H), 7.27 (d , J = 8.88 Hz, 1H), 3.91 (dd, J = 4.00, 11.13 Hz, 2H), 3.58 (tt, J = 3.60, 11.91 Hz, 1H), 3.29 (br s, 1H), 1.90 (d, J = 10.76 Hz, 2H), 1.68 (dq, J = 4.57, 12.32 Hz, 2H) 143 G 753.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.78 (br s, 1H), 10.53 (s, 1H), 9.68 (s, 1H), 9.34 (s, 1H), 8.94 (d, J = 8.50 Hz, 1H), 8.58 (s, 1H), 8.47 (d, J = 5.88 Hz, 2H), 7.96 (d, J = 8.00 Hz, 1H), 7.91 (dd, J = 1.38, 8.00 Hz, 1H), 7.62 (d, J = 8.00 Hz, 1H), 7.51 (t, J = 7.50 Hz, 1H), 7.54 (t, J = 8.07 Hz, 1H), 7.30 - 7.42 (m, 2H), 7.15 - 7.30 (m , 3H), 4.86 (s, 2H) 144 G 760.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.78 (s, 1H), 10.54 (s, 1H), 9.69 (s, 1H), 9.43 (s, 1H), 8.96 (d, J = 8.51 Hz , 1H), 8.58 (s, 1H), 7.95 (d, J = 7.75 Hz, 2H), 7.91 (dd, J = 1.31, 7.94 Hz, 1H), 7.51 - 7.60 (m, 2H), 7.42 - 7.51 ( m, 1H), 7.35 (d, J = 6.63 Hz, 1H), 7.26 (br s, 1H), 3.65 - 3.83 (m, 2H), 3.40 (d, J = 6.25 Hz, 2H), 3.22 - 3.28 ( m, 2H), 2.11 - 2.29 (m, 1H), 1.67 - 1.88 (m, 2H), 1.30 - 1.45 (m, 2H) 145 h 725.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.16 (br s, 1H), 9.63 (s, 1H), 9.47 (s, 1H), 8.59 (s, 1H), 8.27 (d, J = 8.25 Hz, 1H), 7.93 (dd, J = 1.38, 7.88 Hz, 1H), 7.73 (d, J = 7.75 Hz, 1H), 7.41 (t, J = 7.94 Hz, 1H), 7.31 (t, J = 8.07 Hz, 1H), 7.16 (dt, J = 6.07, 9.04 Hz, 1H), 6.94 (t, J = 9.01 Hz, 1H), 6.80 (d, J = 8.00 Hz, 1H), 4.41 (d, J = 12.13 Hz, 2H), 2.90 - 3.21 (m, 2H), 2.82 (t, J = 11.63 Hz, 2H), 2.65 (s, 6H), 2.01 - 2.13 (m, 2H), 1.70 - 1.87 (m, 2H) 146 h 727..2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.20 (s, 1H), 9.64 (s, 1H), 9.45 (s, 1H), 8.59 (s, 1H), 8.28 (d, J = 8.13 Hz , 1H), 7.92 (dd, J = 1.38, 7.88 Hz, 1H), 7.84 (d, J = 7.88 Hz, 1H), 7.47 (t, J = 7.94 Hz, 1H), 7.32 (t, J = 8.13 Hz , 1H), 7.16 - 7.28 (m, 1H), 7.10 (t, J = 8.82 Hz, 1H), 6.78 (d, J = 8.00 Hz, 1H), 3.54 - 3.69 (m, 6H), 2.85 (br s , 4H), 2.60 - 2.73 (m, 2H) 147 h 698.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.77 (s, 1H), 10.27 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 7.94 (d, J = 8.13 Hz, 1H), 7.81 - 7.93 (m, 2H), 7.53 (t, J = 8.07 Hz, 1H), 7.29 - 7.41 (m, 1H), 7.25 (br s, 1H), 7.21 (t, J = 8.07 Hz, 1H), 6.52 (d, J = 8.88 Hz, 1H), 5.99 (t, J = 5.94 Hz, 1H), 3.71 - 3.86 (m, 2H), 3.64 (q, J = 7.75 Hz, 1H), 3.54 (dd, J = 5.32, 8.44 Hz, 1H), 3.25 (t, J = 6.63 Hz, 2H), 2.60 - 2.75 (m, 1H), 1.91 - 2.13 (m, 1H), 1.67 (dd, J = 5.57, 12.82 Hz, 1H) 148 A 559.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.28 (s, 1H), 9.67 (s, 1H), 9.62 (s, 1H), 8.70 (d, J = 8.13 Hz, 1H), 8.60 (s , 1H), 7.79 (d, J = 7.88 Hz, 1H), 7.82 (d, J = 7.88 Hz, 1H), 7.54 (d, J = 6.88 Hz, 1H), 7.37 - 7.52 (m, 3H), 7.33 (t, J = 7.44 Hz, 1H), 7.04 - 7.30 (m, 2H), 3.05 (q, J = 7.38 Hz, 2H), 1.21 (t, J = 7.44 Hz, 3H) 149 h 686.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.41 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.59 (s, 1H), 8.21 (d, J = 8.13 Hz, 1H), 7.78 (d, J = 7.88 Hz, 1H), 7.58 (t, J = 7.50 Hz, 1H), 7.47 (d, J = 7.63 Hz, 1H), 7.35 ( t, J = 7.57 Hz, 1H), 7.17 - 7.32 (m, 3H), 6.79 (d, J = 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J = 11.88 Hz, 2H), 3.16 - 3.29 (m, 2H), 3.04 (q, J = 7.38 Hz, 2H), 1.53 - 1.77 (m, 4H), 1.46 (q, J = 7.30 Hz, 2H), 1.21 (t, J = 7.44 Hz , 3H), 0.89 (t, J = 7.38 Hz, 3H) 150 A 611.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.85 (br s, 1H), 10.30 (s, 1H), 9.68 (s, 1H), 9.63 (s, 1H), 8.70 (d, J = 8.00 Hz, 1H), 8.57 (s, 1H), 7.82 (d, J = 7.88 Hz, 1H), 7.72 (br s, 1H), 7.22 - 7.51 (m, 6H) 151 h 738.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.85 (br s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 9.41 (s, 1H), 8.56 (s, 1H), 8.21 (d, J = 8.26 Hz, 1H), 7.73 (d, J = 6.00 Hz, 1H), 7.42 - 7.51 (m, 1H), 7.32 - 7.42 (m, 2H), 7.29 (t, J = 8.07 Hz , 2H), 6.79 (d, J = 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J = 11.88 Hz, 2H), 3.18 - 3.29 (m, 2H), 1.52 - 1.76 (m, 4H), 1.46 (q, J = 7.34 Hz, 2H), 0.89 (t, J = 7.44 Hz, 3H) 152 A 579.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.53 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.62 (s, 1H), 8.71 (d, J = 8.13 Hz, 1H), 8.60 (s, 1H), 7.81 (t, J = 8.69 Hz, 2H), 7.62 (br s, 1H), 7.45 - 7.54 (m, 1H), 7.41 (t, J = 7.57 Hz, 2H), 7.26 (br s, 2H), 2.40 (s, 3H) 153 h 706.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.55 (br s, 1H), 10.22 (s, 1H), 9.65 (s, 1H), 9.23 - 9.49 (m, 1H), 8.58 (s, 1H) ), 8.21 (d, J = 8.13 Hz, 1H), 7.79 (d, J = 7.75 Hz, 1H), 7.64 (d, J = 7.50 Hz, 1H), 7.39 (t, J = 7.75 Hz, 1H), 7.28 (t, J = 8.00 Hz, 2H), 7.11 - 7.25 (m, 1H), 6.79 (d, J = 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J = 11.76 Hz, 2H ), 3.17 - 3.29 (m, 2H), 2.40 (s, 3H), 1.54 - 1.82 (m, 4H), 1.46 (q, J = 7.38 Hz, 2H), 0.89 (t, J = 7.44 Hz, 3H) 154 A 581.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.59 (br s, 1H), 10.28 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.13 Hz, 1H), 8.58 (s, 1H), 7.82 (d, J = 7.88 Hz, 1H), 7.64 (dd, J = 5.07, 8.57 Hz, 1H), 7.37 - 7.54 (m, 3H), 7.27 - 7.37 (m, 1H), 7.23 (br s, 1H), 2.54 - 2.59 (m, 3H) 155 h 708.4 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.58 (br s, 1H), 10.21 (s, 1H), 9.65 (s, 1H), 9.39 (s, 1H), 8.57 (s, 1H), 8.21 (d, J = 8.13 Hz, 1H), 7.63 (dd, J = 4.88, 8.63 Hz, 1H), 7.45 (q, J = 8.80 Hz, 1H), 7.18 - 7.39 (m, 3H), 6.79 (d , J = 8.00 Hz, 1H), 4.08 (s, 1H), 3.89 (d, J = 11.76 Hz, 2H), 3.17 - 3.29 (m, 2H), 2.56 (d, J = 2.25 Hz, 3H), 1.64 - 1.75 (m, 2H), 1.55 - 1.64 (m, 2H), 1.46 (q, J = 7.25 Hz, 2H), 0.89 (t, J = 7.44 Hz, 3H) 156 A 633.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.75 (br s, 1H), 10.32 (s, 1H), 9.68 (s, 1H), 9.61 (s, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.60 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 8.1 Hz, 1H), 7.82 ( d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.36 (dd, J = 8.3, 6.0 Hz, 1H), 7.30 ( t, J = 9.3 Hz, 1H) 157 A 605.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.05 (br s, 1H), 10.35 (s, 1H), 9.69 (s, 1H), 9.64 (s, 1H), 8.71 (d, J = 8.1 Hz, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.35 - 7.40 (m, 1H), 7.32 (t, J = 9.3 Hz, 1H) 158 h 760.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 10.75 (br s, 1H), 10.25 (s, 1H), 9.66 (s, 1H), 9.40 (s, 1H), 8.59 (s, 1H), 8.21 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.86 (t, J = 8.0 Hz, 1H), 7.32 - 7.42 (m, 1H), 7.21 - 7.32 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.09 (s, 1H), 3.89 (dt, J = 11.9, 3.9 Hz, 2H), 3.25 (td, J = 11.0, 2.6 Hz, 2H), 1.68 (td, J = 12.0, 4.0 Hz, 2H), 1.54 - 1.64 (m, 2H), 1.46 (q, J = 7.5 Hz, 2H), 0.89 ( t, J = 7.4 Hz, 3H) 159 h 732.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.04 (br s, 1H), 10.27 (s, 1H), 9.66 (s, 1H), 9.41 (s, 1H), 8.60 (s, 1H), 8.15 - 8.29 (m, 2H), 7.34 - 7.43 (m, 1H), 7.24 - 7.34 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.09 (s, 1H), 3.89 (dt, J = 11.6, 3.8 Hz, 2H), 3.25 (td, J = 11.5, 3.0 Hz, 2H), 1.68 (td, J = 12.0, 3.6 Hz, 2H), 1.55 - 1.64 (m, 2H), 1.46 (q , J = 7.3 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) Table 4
Figure 02_image1356
example R -1 R 2 HCT116 pERK IC 50 (µM) (Y min %) SW480 pERK IC 50 (µM) (Y min %) Kinase IC 50 BRAF (nM) Kinase IC 50 CRAF (nM) 84 C3 B1 ++ (8) ++ (10) 85 C5 B1 + (8) ++ (4) 86 C5 B12 ++ (8) ++ (3) 87 C3 B12 ++ (2) +++ (11) 88 C7 B12 ++ (3) ++ (2) * §

對於pERK分析,+指示10-30 µM IC 50範圍,++指示1-10 µM IC 50範圍,+++指示0.5-1 µM IC 50範圍且++++指示IC 50<0.5 µM。% Y min值指示各IC 50曲線之最低值。展現Y min值高於-20%之IC 50曲線的化合物視為顯示最小誘導或無誘導且不引起可偵測之路徑的反常活化。對於BRAF生化激酶分析,*指示IC 50>10 nM,**指示1-10 nM IC 50範圍且***指示IC 50< 1 nM。對於CRAF生化激酶分析,§指示IC 50>50 nM,§§指示10-50 nM IC 50範圍且§§§指示IC 50< 10 nM。 表4中之化合物之特徵 實例 HRMS m/z(MH +) 1H NMR (400 MHz) 84 547.2 1H NMR (DMSO-d 6) δ: 10.09 (br s, 1H), 9.01 (s, 1H), 8.06 (s, 1H), 7.60 - 7.73 (m, 3H), 7.45 (br s, 1H), 7.11 - 7.24 (m, 2H), 7.04 - 7.11 (m, 2H), 5.42 (dt, J = 54.0, 3.1 Hz, 1H), 3.83 - 3.92 (m, 1H), 3.81 (s, 3H), 3.66 (ddd, J = 40.3, 14.1, 3.5 Hz, 1H), 3.53 (td, J = 10.9, 7.2 Hz, 1H), 2.05 - 2.28 (m, 2H) 85 554.2 1H NMR (DMSO-d 6) δ: 10.13 (br s, 1H), 9.54 (s, 1H), 8.59 (br s, 1H), 8.40 (br s, 1H), 8.36 (s, 1H), 8.24 (br s, 1H), 7.63 - 7.72 (m, 2H), 7.15 - 7.29 (m, 2H), 7.04 - 7.13 (m, 2H), 3.81 (s, 3H), 2.53 (s, 3H), 2.10 (s, 3H) 86 568.2 1H NMR (DMSO-d 6) δ: 10.15 (s, 1H), 9.55 (s, 1H), 8.60 (br s, 1H), 8.40 (s, 1H), 8.35 (s, 1H), 8.24 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.24 (td, J = 8.6, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 6.95 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.57 (s, 3H), 2.53 (s, 3H), 2.10 (s, 3H) 87 561.2 1H NMR (DMSO-d 6) δ: 10.11 (s, 1H), 9.02 (s, 1H), 8.05 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.65 (br s, 1H), 7.44 (br s, 1H), 7.19 (td, J = 9.0, 5.9 Hz, 1H), 7.12 (t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.85 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 - 3.91 (m, 2H), 3.79 (s, 3H), 3.66 (ddd, J = 39.9, 14.1, 3.5 Hz, 1H), 3.53 (td, J = 10.7, 7.2 Hz, 1H), 2.57 (s, 3H), 2.14 - 2.30 (m, 2H) 88 590.2 1H NMR (DMSO-d 6) δ: 10.18 (s, 1H), 9.76 (s, 1H), 9.53 (s, 1H), 8.83 (d, J = 8.2 Hz, 1H), 8.66 (s, 1H), 8.39 (br s, 1H), 8.38 (s, 1H), 7.75 (d, J = 7.4 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.40 (t, J = 7.0 Hz, 1H), 7.35 (t, J = 7.0 Hz, 1H), 7.27 (td, J = 8.6, 5.5 Hz, 1H), 7.21 (t, J = 9.4 Hz, 1H), 6.96 (d, J = 2.3 Hz, 1H), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H) 表5

Figure 02_image1358
實例 R 1 R 2 X 1/ X 2/ X 3 HCT116 pERK IC 50(µM) SW480 pERK IC 50(µM) 激酶IC 50(nM) BRAF 激酶IC 50(nM) CRAF 89 C1 B1 Cl / F / H + (-5) + (3.5)       160 C7 B41 F / F / F ++++ (-9)    ** §§§ 161 C22 B41 F / F / F ++ (-2.7)    ** §§§ 162 C438 B41 F / F / F ++++ (-9)    ** §§§ 163 C416 B41 F / F / F ++++ (-14)    ** §§§ For pERK analysis, + indicates the 10-30 µM IC 50 range, ++ indicates the 1-10 µM IC 50 range, +++ indicates the 0.5-1 µM IC 50 range and ++++ indicates the IC 50 <0.5 µM. The % Y min value indicates the minimum value of each IC50 curve. Compounds exhibiting IC50 curves with Y min values above -20% were considered to show minimal or no induction and did not cause aberrant activation of detectable pathways. For BRAF biochemical kinase assays, * indicates IC 50 >10 nM, ** indicates 1-10 nM IC 50 range and *** indicates IC 50 < 1 nM. For the CRAF biochemical kinase assay, § indicates IC 50 >50 nM, §§ indicates 10-50 nM IC 50 range and §§§ indicates IC 50 < 10 nM. Characteristics of Compounds in Table 4 example HRMS m/z (MH + ) 1H NMR (400MHz) 84 547.2 1 H NMR (DMSO-d 6 ) δ: 10.09 (br s, 1H), 9.01 (s, 1H), 8.06 (s, 1H), 7.60 - 7.73 (m, 3H), 7.45 (br s, 1H), 7.11 - 7.24 (m, 2H), 7.04 - 7.11 (m, 2H), 5.42 (dt, J = 54.0, 3.1 Hz, 1H), 3.83 - 3.92 (m, 1H), 3.81 (s, 3H), 3.66 ( ddd, J = 40.3, 14.1, 3.5 Hz, 1H), 3.53 (td, J = 10.9, 7.2 Hz, 1H), 2.05 - 2.28 (m, 2H) 85 554.2 1 H NMR (DMSO-d 6 ) δ: 10.13 (br s, 1H), 9.54 (s, 1H), 8.59 (br s, 1H), 8.40 (br s, 1H), 8.36 (s, 1H), 8.24 (br s, 1H), 7.63 - 7.72 (m, 2H), 7.15 - 7.29 (m, 2H), 7.04 - 7.13 (m, 2H), 3.81 (s, 3H), 2.53 (s, 3H), 2.10 ( s, 3H) 86 568.2 1 H NMR (DMSO-d 6 ) δ: 10.15 (s, 1H), 9.55 (s, 1H), 8.60 (br s, 1H), 8.40 (s, 1H), 8.35 (s, 1H), 8.24 (s , 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.24 (td, J = 8.6, 5.9 Hz, 1H), 7.17 (t, J = 9.0 Hz, 1H), 6.95 (d, J = 2.3 Hz , 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.57 (s, 3H), 2.53 (s, 3H), 2.10 (s, 3H) 87 561.2 1 H NMR (DMSO-d 6 ) δ: 10.11 (s, 1H), 9.02 (s, 1H), 8.05 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.65 (br s, 1H ), 7.44 (br s, 1H), 7.19 (td, J = 9.0, 5.9 Hz, 1H), 7.12 (t, J = 9.4 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.85 ( dd, J = 8.8, 2.5 Hz, 1H), 3.79 - 3.91 (m, 2H), 3.79 (s, 3H), 3.66 (ddd, J = 39.9, 14.1, 3.5 Hz, 1H), 3.53 (td, J = 10.7, 7.2 Hz, 1H), 2.57 (s, 3H), 2.14 - 2.30 (m, 2H) 88 590.2 1 H NMR (DMSO-d 6 ) δ: 10.18 (s, 1H), 9.76 (s, 1H), 9.53 (s, 1H), 8.83 (d, J = 8.2 Hz, 1H), 8.66 (s, 1H) , 8.39 (br s, 1H), 8.38 (s, 1H), 7.75 (d, J = 7.4 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.40 (t, J = 7.0 Hz, 1H ), 7.35 (t, J = 7.0 Hz, 1H), 7.27 (td, J = 8.6, 5.5 Hz, 1H), 7.21 (t, J = 9.4 Hz, 1H), 6.96 (d, J = 2.3 Hz, 1H ), 6.87 (dd, J = 8.8, 2.5 Hz, 1H), 3.79 (s, 3H), 2.59 (s, 3H) table 5
Figure 02_image1358
example R 1 R 2 X 1 / X 2 / X 3 HCT116 pERK IC50 (µM) SW480 pERK IC 50 (µM) Kinase IC 50 (nM) BRAF Kinase IC 50 (nM) CRAF 89 C1 B1 Cl / F / H + (-5) + (3.5) 160 C7 B41 F / F / F ++++ (-9) ** §§§ 161 C22 B41 F / F / F ++ (-2.7) ** §§§ 162 C438 B41 F / F / F ++++ (-9) ** §§§ 163 C416 B41 F / F / F ++++ (-14) ** §§§

對於pERK分析,+指示10-30 µM IC 50範圍,++指示1-10 µM IC 50範圍,+++指示0.5-1 µM IC 50範圍且++++指示IC 50<0.5 µM。% Y min值指示各IC 50曲線之最低值。展現Y min值高於-20%之IC 50曲線的化合物視為顯示最小誘導或無誘導且不引起可偵測之路徑的反常活化。對於BRAF生化激酶分析,*指示IC 50>10 nM,**指示1-10 nM IC 50範圍且***指示IC 50< 1 nM。對於CRAF生化激酶分析,§指示IC 50>50 nM,§§指示10-50 nM IC 50範圍且§§§指示IC 50< 10 nM。 表5中之化合物之特徵 實例 HRMS m/z(MH +) 1H NMR (400 MHz) 89 507.1 1H NMR (DMSO-d 6) δ: 10.14 (s, 1H), 9.99 (br s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.68 (d, J = 9.0 Hz, 2H), 7.36 (t, J = 9.0 Hz, 1H), 7.20 - 7.32 (m, 1H), 7.09 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.71 (br s, 3H) 160 619.2 1H NMR (400 MHz, DMSO-d 6) δ: 11.08 (br s, 1H), 10.42 (s, 1H), 9.71 (s, 1H), 9.60 (s, 1H), 8.70 (d, J = 8.1 Hz, 1H), 8.63 (s, 1H), 7.97 (d, J = 7.9 Hz, 2H), 7.83 (d, J = 7.9 Hz, 1H), 7.45 - 7.60 (m, 3H), 7.39 - 7.45 (m, 1H) 161 618.2 1H NMR (400 MHz, DMSO-d 6) δ: 11.04 (br s, 1H), 10.35 (s, 1H), 9.79 (s, 1H), 8.76 (d, J = 8.3 Hz, 1H), 8.68 (s, 1H), 8.28 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 7.80 (dd, J = 7.7 Hz, 1H), 7.63 (dd, J = 7.6 Hz, 1H), 7.48 - 7.58 (m, 2H) 162 745.3 1H NMR (400 MHz, DMSO-d 6) δ: 11.07 (br s, 1H), 10.33 (s, 1H), 9.67 (s, 1H), 9.38 (s, 1H), 8.61 (s, 1H), 8.20 (d, J = 8.1 Hz, 1H), 7.89 - 8.00 (m, 2H), 7.46 - 7.58 (m, 2H), 7.29 (dd, J = 8.1 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 4.08 (s, 1H), 3.84 - 3.93 (m, 2H), 3.21 - 3.30 (m, 2H), 1.56 - 1.73 (m, 4H), 1.46 (q, J = 7.3 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 163 718.2 1H NMR (400 MHz, DMSO-d 6) δ: 11.07 (br s, 1H), 10.33 (s, 1H), 9.67 (s, 1H), 9.39 (s, 1H), 8.62 (s, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.89 - 8.01 (m, 2H), 7.45 - 7.59 (m, 2H), 7.29 (dd, J = 8.1 Hz, 1H), 6.77 (d, J = 8.1 Hz, 1H), 4.85 (br s, 1H), 4.20 (dd, J = 11.1, 2.8 Hz, 1H), 4.06 (d, J = 11.8 Hz, 1H), 3.73 (br s, 1H), 2.74 - 2.85 (m, 1H), 2.59 (t, J = 10.3 Hz, 1H), 1.98 (dd, J = 11.7, 3.4 Hz, 1H), 1.76 - 1.87 (m, 1H), 1.61 - 1.74 (m, 1H), 1.20 - 1.37 (m, 1H) For pERK analysis, + indicates the 10-30 µM IC 50 range, ++ indicates the 1-10 µM IC 50 range, +++ indicates the 0.5-1 µM IC 50 range and ++++ indicates the IC 50 <0.5 µM. The % Y min value indicates the minimum value of each IC50 curve. Compounds exhibiting IC50 curves with Y min values above -20% were considered to show minimal or no induction and did not cause aberrant activation of detectable pathways. For BRAF biochemical kinase assays, * indicates IC 50 >10 nM, ** indicates 1-10 nM IC 50 range and *** indicates IC 50 < 1 nM. For the CRAF biochemical kinase assay, § indicates IC 50 >50 nM, §§ indicates 10-50 nM IC 50 range and §§§ indicates IC 50 < 10 nM. Characteristics of Compounds in Table 5 example HRMS m/z (MH + ) 1H NMR (400MHz) 89 507.1 1 H NMR (DMSO-d 6 ) δ: 10.14 (s, 1H), 9.99 (br s, 1H), 9.29 (s, 1H), 8.49 (s, 1H), 7.68 (d, J = 9.0 Hz, 2H ), 7.36 (t, J = 9.0 Hz, 1H), 7.20 - 7.32 (m, 1H), 7.09 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.71 (br s, 3H) 160 619.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.08 (br s, 1H), 10.42 (s, 1H), 9.71 (s, 1H), 9.60 (s, 1H), 8.70 (d, J = 8.1 Hz, 1H), 8.63 (s, 1H), 7.97 (d, J = 7.9 Hz, 2H), 7.83 (d, J = 7.9 Hz, 1H), 7.45 - 7.60 (m, 3H), 7.39 - 7.45 (m , 1H) 161 618.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.04 (br s, 1H), 10.35 (s, 1H), 9.79 (s, 1H), 8.76 (d, J = 8.3 Hz, 1H), 8.68 ( s, 1H), 8.28 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 7.80 (dd, J = 7.7 Hz, 1H), 7.63 (dd, J = 7.6 Hz, 1H), 7.48 - 7.58 (m, 2H) 162 745.3 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.07 (br s, 1H), 10.33 (s, 1H), 9.67 (s, 1H), 9.38 (s, 1H), 8.61 (s, 1H), 8.20 (d, J = 8.1 Hz, 1H), 7.89 - 8.00 (m, 2H), 7.46 - 7.58 (m, 2H), 7.29 (dd, J = 8.1 Hz, 1H), 6.79 (d, J = 8.0 Hz , 1H), 4.08 (s, 1H), 3.84 - 3.93 (m, 2H), 3.21 - 3.30 (m, 2H), 1.56 - 1.73 (m, 4H), 1.46 (q, J = 7.3 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H) 163 718.2 1 H NMR (400 MHz, DMSO-d 6 ) δ: 11.07 (br s, 1H), 10.33 (s, 1H), 9.67 (s, 1H), 9.39 (s, 1H), 8.62 (s, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.89 - 8.01 (m, 2H), 7.45 - 7.59 (m, 2H), 7.29 (dd, J = 8.1 Hz, 1H), 6.77 (d, J = 8.1 Hz , 1H), 4.85 (br s, 1H), 4.20 (dd, J = 11.1, 2.8 Hz, 1H), 4.06 (d, J = 11.8 Hz, 1H), 3.73 (br s, 1H), 2.74 - 2.85 ( m, 1H), 2.59 (t, J = 10.3 Hz, 1H), 1.98 (dd, J = 11.7, 3.4 Hz, 1H), 1.76 - 1.87 (m, 1H), 1.61 - 1.74 (m, 1H), 1.20 - 1.37 (m, 1H)

在不脫離本發明之範疇的情況下,可對上文所描述之實施例中之任一者進行多種修改。本文檔中所提及之任何參考文獻、專利或科學文獻文檔均出於所有目的以全文引用之方式併入本文中。Various modifications may be made to any of the above described embodiments without departing from the scope of the invention. Any references, patents, or scientific literature documents mentioned in this document are hereby incorporated by reference in their entirety for all purposes.

none

第1圖示出了如本文所描述之並不誘導RAS突變HCT116細胞(實例80及81)中之pERK信號傳遞之反常誘導(Y MIN>-20%)的化合物及在同一細胞株中引起該路徑之強烈誘導(Y MIN~-600%)之化合物(PLX4720;CAS# 918505-84-7)的代表性IC 50抑制劑量反應曲線。 Figure 1 shows compounds that do not induce paradoxical induction (Y MIN >-20%) of pERK signaling in RAS mutant HCT116 cells (Examples 80 and 81) as described herein and that elicit this in the same cell line. Representative IC50 inhibitory dose-response curve of a compound (PLX4720; CAS# 918505-84-7) with strong induction of the pathway (Y MIN ~-600%).

第2圖示出了RAS突變HCT-116細胞之免疫墨點分析,該等細胞經並不誘導pERK或pMEK信號傳遞之反常誘導之代表性化合物(實例80;上圖)處理,且相比之下,經誘導同一細胞株中之路徑的化合物(PLX4720;下圖)處理。Figure 2 shows immunoblot analysis of RAS mutant HCT-116 cells treated with a representative compound (Example 80; upper panel) that did not induce paradoxical induction of pERK or pMEK signaling, and compared to Next, treated with a compound (PLX4720; lower panel) that induces the pathway in the same cell line.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

Claims (112)

一種式I之化合物:
Figure 03_image001
式I 其中: R 1選自經取代或未經取代之OR 3、SR 3、NH 2、NHR 3、N(R 3) 2、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; R 2選自經取代之C 6芳基及C 5-10雜芳基、經取代或未經取代之C 4-8雜環烷基及N(R 3) 2; R 3在每次出現時獨立地選自經取代或未經取代之C 1-8烷基、C 3-8環烷基、C 4-8雜環烷基、C 6-10芳基及C 5-10雜芳基; X 1為鹵基或一拉電子基團; X 2選自H、鹵基及一拉電子基團; X 3及X 4各自選自H、鹵基、一拉電子基團、C 1-3烷基、C 3-4環烷基及OC 1-3烷基; Y選自H、鹵基、CN、OH、OC 1-8烷基、NH 2、NHC 1-8烷基、N(C 1-8烷基) 2及一經取代或未經取代之C 1-8烷基; 或其一醫藥學上可接受之鹽或溶劑合物; 前提條件係該化合物不為:
Figure 03_image004
A compound of formula I:
Figure 03_image001
Formula I wherein: R 1 is selected from substituted or unsubstituted OR 3 , SR 3 , NH 2 , NHR 3 , N(R 3 ) 2 , C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; R 2 is selected from substituted C 6 aryl and C 5-10 heteroaryl, substituted or unsubstituted C 4-8 heterocycloalkane and N(R 3 ) 2 ; R 3 at each occurrence is independently selected from substituted or unsubstituted C 1-8 alkyl, C 3-8 cycloalkyl, C 4-8 heterocycloalkyl , C 6-10 aryl and C 5-10 heteroaryl; X 1 is halo or an electron-withdrawing group; X 2 is selected from H, halo and an electron-withdrawing group; X 3 and X 4 are each selected From H, halo, an electron-withdrawing group, C 1-3 alkyl, C 3-4 cycloalkyl and OC 1-3 alkyl; Y is selected from H, halo, CN, OH, OC 1-8 Alkyl, NH 2 , NHC 1-8 alkyl, N(C 1-8 alkyl) 2 and a substituted or unsubstituted C 1-8 alkyl; or a pharmaceutically acceptable salt or solvent thereof compound; provided that the compound is not:
Figure 03_image004
.
如請求項1所述之化合物,其中R 2為一經取代之C 6芳基或C 5-10雜芳基。 The compound as claimed in claim 1, wherein R 2 is a substituted C 6 aryl or C 5-10 heteroaryl. 如請求項2所述之化合物,其中R 2為經至少一個選自以下之基團取代的一C 6芳基:F、Cl、Br、CN、NO 2及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基。 The compound as claimed in claim 2, wherein R 2 is a C aryl group substituted by at least one group selected from the group consisting of F, Cl, Br, CN, NO 2 and a substituted or unsubstituted C 1 -3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl. 如請求項2所述之化合物,其中R 2為具有下式之一基團:
Figure 03_image009
其中: R 4選自H、F、Cl、Br、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基; R 5選自H、F、Cl、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基; R 6選自H、F、Cl、Br、NO 2、NH 2及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基; R 7選自H、F、Cl及一經取代或未經取代之C 1-3烷基; R 8選自H、F及一經取代或未經取代之C 1-3烷基; 或R 4及R 5或R 5及R 6與其相鄰的碳原子一起形成一經取代或未經取代之碳環或雜環,前提條件係該雜環不為一苯并噁唑啉酮;並且 (---)表示一鍵; 其中當R 4為H或F時,則R 5、R 6、R 7或R 8中之至少一者不為H或F;以及 其中當R 5為CN,則R 4、R 6、R 7或R 8中之至少一者不為H。
The compound as claimed in item 2, wherein R 2 is a group with one of the following formulas:
Figure 03_image009
Wherein: R 4 is selected from H, F, Cl, Br, CN and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl; R 5 is selected from H , F, Cl, CN and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl; R 6 is selected from H, F, Cl, Br, NO 2 , NH 2 and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl; R 7 is selected from H, F, Cl and a substituted or unsubstituted C 1-3 alkyl; R 8 is selected from H, F and a substituted or unsubstituted C 1-3 alkyl; or R 4 and R 5 or R 5 and R 6 together with their adjacent carbon atoms form a Substituted or unsubstituted carbocycle or heterocycle, provided that the heterocycle is not a benzoxazolone; and (---) represents a bond; wherein when R 4 is H or F, then R 5 , at least one of R 6 , R 7 or R 8 is not H or F; and wherein when R 5 is CN, at least one of R 4 , R 6 , R 7 or R 8 is not H.
如請求項4所述之化合物,其中R 4選自H、F、Cl、Br、Me、Et、CN、CHF 2及CF 3The compound as claimed in claim 4, wherein R 4 is selected from H, F, Cl, Br, Me, Et, CN, CHF 2 and CF 3 . 如請求項4或5所述之化合物,其中R 5選自H、F、Me、CF 3、CN及Cl。 The compound as described in claim 4 or 5, wherein R 5 is selected from H, F, Me, CF 3 , CN and Cl. 如請求項4至6中任一項所述之化合物,其中R 6選自H、F、Cl、Br及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基。 The compound as described in any one of claims 4 to 6, wherein R is selected from H, F, Cl, Br and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or OC 1-3 alkyl. 如請求項4至7中任一項所述之化合物,其中R 6選自H、F、Cl、Me、Et及OMe。 The compound as described in any one of claims 4 to 7, wherein R is selected from H, F, Cl, Me, Et and OMe. 如請求項4至8中任一項所述之化合物,其中R 7選自H、Me、F及Cl。 The compound as described in any one of claims 4 to 8, wherein R 7 is selected from H, Me, F and Cl. 如請求項4至9中任一項所述之化合物,其中R 8選自H、Me及F。 The compound as described in any one of claims 4 to 9, wherein R is selected from H, Me and F. 如請求項4所述之化合物,其中: R 4選自Cl及一經取代或未經取代之C 1-3烷基; R 5選自H、F、Cl及一經取代或未經取代之C 1-3烷基; R 6選自H、F、Cl、一經取代或未經取代之C 1-3烷基及一經取代或未經取代之OC 1-3烷基;並且 R 7及R 8各自為H。 The compound as described in claim 4, wherein: R 4 is selected from Cl and a substituted or unsubstituted C 1-3 alkyl group; R 5 is selected from H, F, Cl and a substituted or unsubstituted C 1 -3 alkyl; R is selected from H, F, Cl, a substituted or unsubstituted C 1-3 alkyl and a substituted or unsubstituted OC 1-3 alkyl; and R and R are each for H. 如請求項11所述之化合物,其中R 4選自Cl及CH 3The compound as claimed in claim 11, wherein R 4 is selected from Cl and CH 3 . 如請求項11或12所述之化合物,其中R 5選自F、Cl及CH 3The compound as claimed in claim 11 or 12, wherein R 5 is selected from F, Cl and CH 3 . 如請求項11至13中任一項所述之化合物,其中R 6為H或F。 The compound as described in any one of claims 11 to 13, wherein R 6 is H or F. 如請求項11至13中任一項所述之化合物,其中R 6為Cl、一經取代或未經取代之C 1-3烷基或一經取代或未經取代之OC 1-3烷基。 The compound as described in any one of claims 11 to 13, wherein R 6 is Cl, a substituted or unsubstituted C 1-3 alkyl or a substituted or unsubstituted OC 1-3 alkyl. 如請求項15所述之化合物,其中R 6為CH 3或OCH 3The compound as claimed in claim 15, wherein R 6 is CH 3 or OCH 3 . 如請求項1所述之化合物,其中R 2為具有下式之一基團:
Figure 03_image011
其中: X 5選自NH、NC 1-3烷基、NC 3-4環烷基、O及S; R 9、R 10、R 11各自獨立地選自H、F、Cl、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基,前提條件係R 9及R 11中之一者為H且另一者不為H;並且 (---)表示一鍵。
The compound as claimed in item 1, wherein R is a group with one of the following formulas:
Figure 03_image011
Wherein: X 5 is selected from NH, NC 1-3 alkyl, NC 3-4 cycloalkyl, O and S; R 9 , R 10 , R 11 are each independently selected from H, F, Cl, CN and once substituted Or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl, the prerequisite is one of R 9 and R 11 is H and the other is not H; and (---) represents a bond.
如請求項1所述之化合物,其中R 2為具有下式之一基團:
Figure 03_image013
其中: X 5選自NH、NC 1-3烷基、NC 3-4環烷基、O及S; R 9選自F、Cl、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基; R 10及R 12各自獨立地選自H、F、Cl、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基;並且 (---)表示一鍵。
The compound as claimed in item 1, wherein R is a group with one of the following formulas:
Figure 03_image013
Wherein: X 5 is selected from NH, NC 1-3 alkyl, NC 3-4 cycloalkyl, O and S; R 9 is selected from F, Cl, CN and a substituted or unsubstituted C 1-3 alkyl , C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl; R 10 and R 12 are each independently selected from H, F, Cl, CN and once substituted or unsubstituted Substituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl; and (---) represents a bond.
如請求項17或18所述之化合物,其中R 9及R 10各自獨立地選自F、Cl、CN及一經取代或未經取代之C 1-3烷基、C 3-4環烷基、C(O)OC 1-3烷基或OC 1-3烷基。 The compound as described in claim 17 or 18, wherein R 9 and R 10 are each independently selected from F, Cl, CN and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl, C(O)OC 1-3 alkyl or OC 1-3 alkyl. 如請求項19所述之化合物,其中R 9及R 10各自獨立地選自Cl及一經取代或未經取代之C 1-3烷基。 The compound as claimed in claim 19, wherein R 9 and R 10 are each independently selected from Cl and a substituted or unsubstituted C 1-3 alkyl group. 如請求項19所述之化合物,其中R 9及R 10均為Cl。 The compound as described in claim 19, wherein R 9 and R 10 are both Cl. 如請求項17至21中任一項所述之化合物,其中X 5為O或S,較佳為S。 The compound as described in any one of claims 17 to 21, wherein X 5 is O or S, preferably S. 如請求項2所述之化合物,其中R 2為具有下式之一基團:
Figure 03_image015
其中: X 9、X 10、X 11、X 12及X 13獨立地選自N及C,其中X 9、X 10、X 11、X 12及X 13中之至少一者且至多兩者為N;以及 R 19、R 20、R 21、R 22及R 23選自H、F、Cl、Br、CN、NO 2、NH 2及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或OC 1-3烷基,或當其所附接之X 9、X 10、X 11、X 12及X 13為N時不存在; 其中X 9及X 13中之至少一者不為N;並且 其中當X 9及X 13中之一者為N時,則另一者不為N或CH。
The compound as claimed in item 2, wherein R 2 is a group with one of the following formulas:
Figure 03_image015
Wherein: X 9 , X 10 , X 11 , X 12 and X 13 are independently selected from N and C, wherein at least one of X 9 , X 10 , X 11 , X 12 and X 13 and at most two are N and R 19 , R 20 , R 21 , R 22 and R 23 are selected from H, F, Cl, Br, CN, NO 2 , NH 2 and a substituted or unsubstituted C 1-3 alkyl, C 3 -4 cycloalkyl or OC 1-3 alkyl, or when X 9 , X 10 , X 11 , X 12 and X 13 to which it is attached are N; wherein at least one of X 9 and X 13 is not N; and wherein when one of X 9 and X 13 is N, the other is not N or CH.
如請求項1所述之化合物,其中R 2為具有下式之一基團:
Figure 03_image017
其中: R 13在每次出現時獨立地選自F、Cl及一經取代或未經取代之C 1-3烷基、C 3-4環烷基或C 1-3烷氧基; n為選自0至8之一整數;或 介於2與8之間,且兩個R 18與其相鄰的碳原子一起形成一C 3-4環烷基;並且 (---)表示一鍵。
The compound as claimed in item 1, wherein R is a group with one of the following formulas:
Figure 03_image017
Wherein: R 13 is independently selected from F, Cl and a substituted or unsubstituted C 1-3 alkyl, C 3-4 cycloalkyl or C 1-3 alkoxy at each occurrence; n is selected An integer from 0 to 8; or between 2 and 8, and two R 18 and their adjacent carbon atoms together form a C 3-4 cycloalkyl; and (---) represents a bond.
如請求項24所述之化合物,其中R 13為F、Me、OMe及CH 2OMe,且n為1或2。 The compound as described in claim 24, wherein R 13 is F, Me, OMe and CH 2 OMe, and n is 1 or 2. 如請求項1所述之化合物,其中R 2為N(R 3) 2The compound as claimed in claim 1, wherein R 2 is N(R 3 ) 2 . 如請求項26所述之化合物,其中R 3選自經取代或未經取代之C 1-8烷基或C 3-8環烷基。 The compound as claimed in claim 26, wherein R 3 is selected from substituted or unsubstituted C 1-8 alkyl or C 3-8 cycloalkyl. 如請求項1所述之化合物,其中R 2選自基團B1至B77。 The compound as claimed in claim 1, wherein R 2 is selected from groups B1 to B77. 如請求項28所述之化合物,其中R 2選自基團B1至B37、B41至B44、B49、B51至B55、B57、B59、B62至B67、B71至B74、B76及B77。 The compound as claimed in claim 28, wherein R is selected from groups B1 to B37, B41 to B44, B49, B51 to B55, B57, B59, B62 to B67, B71 to B74, B76 and B77. 如請求項28所述之化合物,其中R 2選自基團B1-B33、B36、B41、B42、B51至B54、B59、B65、B73及B77。 The compound as claimed in claim 28, wherein R 2 is selected from groups B1-B33, B36, B41, B42, B51 to B54, B59, B65, B73 and B77. 如請求項28所述之化合物,其中R 2選自基團B1、B2、B6、B8、B11、B12、B15、B20、B21、B36、B41、B42、B53、B54、B59、B65及B73。 The compound as claimed in claim 28, wherein R is selected from groups B1, B2, B6, B8, B11, B12, B15, B20, B21, B36, B41, B42, B53, B54, B59, B65 and B73. 如請求項22所述之化合物,其中R 2選自基團B21、B36、B41、B42、B52、B53、B54、B59、B65及B72。 The compound as claimed in claim 22, wherein R is selected from groups B21, B36, B41, B42, B52, B53, B54, B59, B65 and B72. 如請求項1至32中任一項所述之化合物,其中R 1為OR 3或SR 3The compound according to any one of claims 1 to 32, wherein R 1 is OR 3 or SR 3 . 如請求項33所述之化合物,其中R 1為SR 3The compound as described in claim 33, wherein R 1 is SR 3 . 如請求項1至34中任一項所述之化合物,其中R 3為一經取代或未經取代之C 1-8烷基(例如C 1-3烷基)。 The compound according to any one of claims 1 to 34, wherein R 3 is a substituted or unsubstituted C 1-8 alkyl (eg C 1-3 alkyl). 如請求項1至32中任一項所述之化合物,其中R 1為一經取代或未經取代之C 5-6雜芳基。 The compound as described in any one of claims 1 to 32, wherein R 1 is a substituted or unsubstituted C 5-6 heteroaryl. 如請求項1至32中任一項所述之化合物,其中R 1為一經取代或未經取代之C 9雜芳基。 The compound as described in any one of claims 1 to 32, wherein R 1 is a substituted or unsubstituted C 9 heteroaryl. 如請求項1至32中任一項所述之化合物,其中R 1為選自以下之一經取代或未經取代的基團:咪唑基、吡唑基、三唑基、吲哚基、吲唑基、苯并咪唑基、苯并三唑基、吡咯并吡啶基(例如吡咯并[3,2-b]吡啶基或吡咯并[3,2-c]吡啶基)、吡唑并吡啶基(例如吡唑并[1,5-a]吡啶基)、嘌呤基及咪唑并吡嗪基(例如咪唑并[4,5-b]吡嗪基)。 The compound as described in any one of claims 1 to 32, wherein R is a substituted or unsubstituted group selected from one of the following: imidazolyl, pyrazolyl, triazolyl, indolyl, indazole Base, benzimidazolyl, benzotriazolyl, pyrrolopyridyl (such as pyrrolo[3,2-b]pyridyl or pyrrolo[3,2-c]pyridyl), pyrazolopyridyl ( For example pyrazolo[1,5-a]pyridyl), purinyl and imidazopyrazinyl (eg imidazo[4,5-b]pyrazinyl). 如請求項38所述之化合物,其中該經取代或未經取代之基團經由一氮原子附接至嘧啶并嘧啶核。The compound as described in claim 38, wherein the substituted or unsubstituted group is attached to the pyrimidopyrimidine core through a nitrogen atom. 如請求項1至32中任一項所述之化合物,其中R 1為一經取代或未經取代之C 4-6雜環烷基。 The compound as described in any one of claims 1 to 32, wherein R 1 is a substituted or unsubstituted C 4-6 heterocycloalkyl. 如請求項1至32中任一項所述之化合物,其中R 1為選自以下之一經取代或未經取代的基團:
Figure 03_image177
; 其中(---)表示一鍵。
The compound as described in any one of claims 1 to 32, wherein R is a substituted or unsubstituted group selected from one of the following:
Figure 03_image177
; Among them (---) represents a key.
如請求項41所述之化合物,其中R 1為選自以下之一經取代或未經取代的基團:
Figure 03_image179
; 其中(---)表示一鍵。
The compound as claimed in claim 41, wherein R is a substituted or unsubstituted group selected from one of the following:
Figure 03_image179
; Among them (---) represents a key.
如請求項1至42中任一項所述之化合物,其中R 1經至少一個選自以下之取代基取代:OH、鹵基、CN、NO 2、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; 其中: R 14在每次出現時獨立地選自H、C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 4-10雜環烷基、C 6芳基及C 5-10雜芳基,或兩個R 14與其相鄰的氮原子一起形成一C 4-10雜環烷基; R 15在每次出現時獨立地選自C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 6芳基及C 5-10雜芳基;並且 R 16在每次出現時獨立地選自H、C 1-6烷基、C 2-6烯基、C 2-6炔基、C 3-10環烷基、C 6芳基及C 5-10雜芳基; 其中該烷基、烯基、炔基、環烷基、雜環烷基、芳基或雜芳基視情況經進一步取代。 The compound as described in any one of claims 1 to 42, wherein R is substituted by at least one substituent selected from: OH, halo, CN, NO 2 , C 1-6 alkyl, C 2-6 Alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C (O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N (R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; wherein: R 14 is independently selected from each occurrence of H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 4-10 Heterocycloalkyl, C 6 aryl and C 5-10 heteroaryl, or two R 14 and its adjacent nitrogen atoms together form a C 4-10 heterocycloalkyl; R 15 independently in each occurrence selected from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 6 aryl and C 5-10 heteroaryl; and R 16 in each When present, independently selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-10 cycloalkyl, C 6 aryl and C 5-10 heteroaryl; Wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl is optionally further substituted. 如請求項1至32中任一項所述之化合物,其中R 1為具有下式之一基團:
Figure 03_image181
其中: R 17選自H、OH、鹵基、CN、NO 2、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、 CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; X 6為N或CH;並且 X 7為N且R 18不存在;或 X 7為C且R 18選自C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2; 其中R 14、R 15及R 16如請求項39中所定義; 其中該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代;以及 其中(---)表示一鍵。
The compound as described in any one of claims 1 to 32, wherein R 1 is a group with the following formula:
Figure 03_image181
Wherein: R 17 is selected from H, OH, halo, CN, NO 2 , C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 Heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N( R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N (R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; X 6 is N or CH; and X 7 is N and R 18 is absent; or X 7 is C and R 18 is selected from C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 ring Alkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C (O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N (R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 ; wherein R 14 , R 15 and R 16 are as defined in claim 39; wherein the alkyl, alkenyl, alkynyl, Cycloalkyl, heterocycloalkyl or heteroaryl are optionally further substituted; and wherein (---) represents a bond.
如請求項44所述之化合物,其中X 6為N。 The compound as described in claim 44, wherein X 6 is N. 如請求項44所述之化合物,其中X 6為CH。 The compound as described in claim 44, wherein X 6 is CH. 如請求項44至46中任一項所述之化合物,其中X 7為N,R 17選自H、OH、CN、C 1-6烷基、C 2-6烯基、C 2-6炔基、OC 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2,且R 18不存在,其中該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代。 The compound as described in any one of claims 44 to 46, wherein X 7 is N, and R 17 is selected from H, OH, CN, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkyne radical, OC 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4-10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2. SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P(O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O) N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 , and R 18 does not exist, Wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl or heteroaryl is optionally further substituted. 如請求項47所述之化合物,其中R 17選自C 1-6烷基、C 5-10雜芳基、C 4-10雜環烷基、N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、C(O)N(R 14) 2及SO 2N(R 14) 2,其中該烷基、烯基、炔基、環烷基、雜環烷基或雜芳基視情況經進一步取代。 The compound as described in claim 47, wherein R 17 is selected from C 1-6 alkyl, C 5-10 heteroaryl, C 4-10 heterocycloalkyl, N(R 14 ) 2 , N(R 16 ) C(O)R 15 , N(R 16 )SO 2 R 15 , C(O)N(R 14 ) 2 and SO 2 N(R 14 ) 2 , wherein the alkyl, alkenyl, alkynyl, cycloalkane The radical, heterocycloalkyl or heteroaryl is optionally further substituted. 如請求項47所述之化合物,其中R 17選自R 17為H、NH 2及一視情況經取代之C 5-10雜芳基或C 4-10雜環烷基,較佳為一視情況經取代之C 5-10雜芳基或C 4-10雜環烷基。 The compound as described in claim 47, wherein R 17 is selected from R 17 is H, NH 2 and an optionally substituted C 5-10 heteroaryl or C 4-10 heterocycloalkyl, preferably an optional In the case of substituted C 5-10 heteroaryl or C 4-10 heterocycloalkyl. 如請求項44至46中任一項所述之化合物,其中R 17為一視情況經取代之C 4-10雜環烷基,其中該雜環烷基為一單環或雙環且包括1至3個雜原子,較佳地,其中X 7為N。 The compound as described in any one of claims 44 to 46, wherein R 17 is an optionally substituted C 4-10 heterocycloalkyl, wherein the heterocycloalkyl is a monocyclic or bicyclic ring and includes 1 to 3 heteroatoms, preferably, wherein X 7 is N. 如請求項50所述之化合物,其中該雜環烷基經至少一個選自F、OH、側氧基、CN、C 1-4烷基及OC 1-4烷基之取代基取代,其中該C 1-4烷基視情況經進一步取代(例如經F、OH、OC 1-3烷基等取代)。 The compound as described in claim item 50, wherein the heterocycloalkyl group is substituted by at least one substituent selected from F, OH, side oxy group, CN, C 1-4 alkyl and OC 1-4 alkyl, wherein the C 1-4 alkyl is optionally further substituted (eg, substituted with F, OH, OC 1-3 alkyl, etc.). 如請求項49或51中任一項所述之化合物,其中該雜環烷基選自哌啶基團、哌嗪基團、硫代嗎啉基團及嗎啉基團,或為含有哌啶、哌嗪、硫代嗎啉或嗎啉環之一雙環結構(橋聯或螺環接)。The compound as described in any one of claim 49 or 51, wherein the heterocycloalkyl group is selected from piperidine group, piperazine group, thiomorpholine group and morpholine group, or contains piperidine , piperazine, thiomorpholine or one of the bicyclic structures (bridged or spiro-connected) of the morpholine ring. 如請求項44至46中任一項所述之化合物,其中X 7為C。 The compound as described in any one of claims 44 to 46, wherein X 7 is C. 如請求項44至46中任一項所述之化合物,其中X 7為C且R 18選自C 1-6烷基、C 5-10雜芳基、C 3-10環烷基、C 4-10雜環烷基、C(O)R 15、C(O)N(R 14) 2、SO 2R 15、SO 2N(R 14) 2、N(R 16)C(O)R 15、N(R 16)SO 2R 15、N(R 16)C(O)N(R 14) 2、N(R 16)SO 2N(R 14) 2、N(R 14) 2、P(O)(R 15) 2、CH 2C(O)R 15、CH 2C(O)N(R 14) 2、CH 2SO 2R 15、CH 2SO 2N(R 14) 2、CH 2N(R 16)C(O)R 15、CH 2N(R 16)SO 2R 15、CH 2N(R 16)C(O)N(R 14) 2、CH 2N(R 16)SO 2N(R 14) 2及CH 2N(R 14) 2,其中該烷基、烯基、炔基、環烷基、雜環烷基、芳基或雜芳基視情況經進一步取代。 The compound as described in any one of claims 44 to 46, wherein X 7 is C and R 18 is selected from C 1-6 alkyl, C 5-10 heteroaryl, C 3-10 cycloalkyl, C 4 -10 heterocycloalkyl, C(O)R 15 , C(O)N(R 14 ) 2 , SO 2 R 15 , SO 2 N(R 14 ) 2 , N(R 16 )C(O)R 15 , N(R 16 )SO 2 R 15 , N(R 16 )C(O)N(R 14 ) 2 , N(R 16 )SO 2 N(R 14 ) 2 , N(R 14 ) 2 , P( O)(R 15 ) 2 , CH 2 C(O)R 15 , CH 2 C(O)N(R 14 ) 2 , CH 2 SO 2 R 15 , CH 2 SO 2 N(R 14 ) 2 , CH 2 N(R 16 )C(O)R 15 , CH 2 N(R 16 )SO 2 R 15 , CH 2 N(R 16 )C(O)N(R 14 ) 2 , CH 2 N(R 16 )SO 2 N(R 14 ) 2 and CH 2 N(R 14 ) 2 , wherein the alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl is optionally further substituted. 如請求項54所述之化合物,其中R 18選自C(O)N(R 14) 2、SO 2R 15及SO 2N(R 14) 2The compound as described in claim 54, wherein R 18 is selected from C(O)N(R 14 ) 2 , SO 2 R 15 and SO 2 N(R 14 ) 2 . 如請求項53至55中任一項所述之化合物,其中R 17選自H、OH、C 1-6烷基、N(R 14) 2及一視情況經取代之C 5-10雜芳基。 The compound as described in any one of claims 53 to 55, wherein R 17 is selected from H, OH, C 1-6 alkyl, N(R 14 ) 2 and an optionally substituted C 5-10 heteroaryl base. 如請求項56所述之化合物,其中R 17選自H、NH 2及一視情況經取代之C 5-10雜芳基,較佳為H或NH 2The compound as described in claim 56, wherein R 17 is selected from H, NH 2 and an optionally substituted C 5-10 heteroaryl, preferably H or NH 2 . 如請求項39至57中任一項所述之化合物,其中R 14在每次出現時獨立地選自H、視情況經取代之C 1-6烷基、視情況經取代之C 3-10環烷基、視情況經取代之C 4-10雜環烷基及視情況經取代之C 5-6雜芳基,或兩個R 14與其相鄰的氮原子一起形成一視情況經取代之C 4-10雜環烷基。 The compound according to any one of claims 39 to 57, wherein R 14 is independently selected from H, optionally substituted C 1-6 alkyl, optionally substituted C 3-10 at each occurrence Cycloalkyl, optionally substituted C 4-10 heterocycloalkyl and optionally substituted C 5-6 heteroaryl, or two R 14 together with their adjacent nitrogen atoms form an optionally substituted C 4-10 heterocycloalkyl. 如請求項58所述之化合物,其中兩個R 14與其相鄰的氮原子一起形成一視情況經取代之C 4-10雜環烷基,其中該雜環烷基為一單環或雙環且包括1至3個雜原子。 The compound as claimed in claim 58, wherein two R 14 form an optionally substituted C 4-10 heterocycloalkyl with its adjacent nitrogen atom, wherein the heterocycloalkyl is a monocyclic or bicyclic and Including 1 to 3 heteroatoms. 如請求項59所述之化合物,其中該雜環烷基經至少一個選自F、OH、側氧基、CN、C 1-4烷基及OC 1-4烷基之取代基取代,其中該C 1-4烷基視情況經進一步取代(例如經F、OH、OC 1-3烷基等取代)。 The compound as described in claim item 59, wherein the heterocycloalkyl group is substituted by at least one substituent selected from F, OH, side oxy group, CN, C 1-4 alkyl and OC 1-4 alkyl, wherein the C 1-4 alkyl is optionally further substituted (eg, substituted with F, OH, OC 1-3 alkyl, etc.). 如請求項58至60中任一項所述之化合物,其中該雜環烷基選自哌啶基團、哌嗪基團、硫代嗎啉基團及嗎啉基團,或為含有哌啶、哌嗪、硫代嗎啉或嗎啉環之一雙環結構(橋聯或螺環接)。The compound as described in any one of claims 58 to 60, wherein the heterocycloalkyl group is selected from piperidine group, piperazine group, thiomorpholine group and morpholine group, or contains piperidine , piperazine, thiomorpholine or one of the bicyclic structures (bridged or spiro-connected) of the morpholine ring. 如請求項1至32中任一項所述之化合物,其中R 1選自:
Figure 03_image1363
其中R 14如本文所定義且(---)表示一鍵。
The compound as described in any one of claims 1 to 32, wherein R is selected from:
Figure 03_image1363
wherein R 14 is as defined herein and (---) represents a bond.
如請求項62所述之化合物,其中R 1選自:
Figure 03_image1365
; 其中R 14如本文所定義且(---)表示一鍵。
The compound as described in claim item 62, wherein R is selected from:
Figure 03_image1365
; wherein R 14 is as defined herein and (---) represents a bond.
如請求項1至32中任一項所述之化合物,其中R 1為具有下式之一基團:
Figure 03_image183
其中: X 15、X 16、X 17及X 18獨立地選自O、N、S及CR 17,其中R 17如先前所定義; 其中X 15、X 16、X 17及X 18中之至多兩者為O、N或S。
The compound as described in any one of claims 1 to 32, wherein R 1 is a group with the following formula:
Figure 03_image183
Wherein: X 15 , X 16 , X 17 and X 18 are independently selected from O, N, S and CR 17 , wherein R 17 is as previously defined; wherein at most two of X 15 , X 16 , X 17 and X 18 Either O, N or S.
如請求項1至32中任一項所述之化合物,其中R 1選自基團C1至C493。 The compound as described in any one of claims 1 to 32, wherein R is selected from groups C1 to C493. 如請求項65所述之化合物,其中R 1選自基團C1至C23、C27、C60、C69、C71至C73、C81至C83、C88、C114、C182至C184、C196、C220、C223至C226、C275、C292、C310、C312、C313、C323、C346、C376、C402、C404、C414、C418、C419、C434、C435、C438、C440、C441、C472、C483、C488及C490。 The compound as claimed in claim 65, wherein R is selected from groups C1 to C23, C27, C60, C69, C71 to C73, C81 to C83, C88, C114, C182 to C184, C196, C220, C223 to C226, C275, C292, C310, C312, C313, C323, C346, C376, C402, C404, C414, C418, C419, C434, C435, C438, C440, C441, C472, C483, C488 and C490. 如請求項65所述之化合物,其中R 1選自基團C1、C3、C5、C7、C22、C23、C27、C60、C69、C73、C81至C83、C88、C182至C184、C196、C224-C226、C313、C323、C376、C402、C404、C414、C418、C419、C438及C488。 The compound as claimed in claim 65, wherein R is selected from groups C1, C3, C5, C7, C22, C23, C27, C60, C69, C73, C81 to C83, C88, C182 to C184, C196, C224- C226, C313, C323, C376, C402, C404, C414, C418, C419, C438 and C488. 如請求項65所述之化合物,其中R 1選自基團C7、C22、C23及C60或選自C183、C323、C376、C414、C418、C419、C438及C488。 The compound as claimed in claim 65, wherein R is selected from groups C7, C22, C23 and C60 or selected from C183, C323, C376, C414, C418, C419, C438 and C488. 如請求項1至68中任一項所述之化合物,其中X 1為Cl且X 2為F。 The compound as described in any one of claims 1 to 68, wherein X 1 is Cl and X 2 is F. 如請求項1至68中任一項所述之化合物,其中X 1為F且X 2為H。 The compound as described in any one of claims 1 to 68, wherein X 1 is F and X 2 is H. 如請求項1至68中任一項所述之化合物,其中X 1及X 2兩者均為F。 The compound as described in any one of claims 1 to 68, wherein X 1 and X 2 are both F. 如請求項1至71中任一項所述之化合物,其中X 3及X 4各自為H。 The compound as described in any one of claims 1 to 71, wherein X 3 and X 4 are each H. 如請求項1至71中任一項所述之化合物,其中X 3為F且X 4為H。 The compound as described in any one of claims 1 to 71, wherein X 3 is F and X 4 is H. 如請求項1至73中任一項所述之化合物,其中Y為H。The compound as described in any one of claims 1 to 73, wherein Y is H. 如請求項1至73中任一項所述之化合物,其中Y為NH 2The compound as described in any one of claims 1 to 73, wherein Y is NH 2 . 如請求項71所述之化合物,其中該化合物具有式II:
Figure 03_image019
式II 其中R 1、R 4、R 5及R 6各自獨立地如本文所定義,較佳地,R 4選自Cl、Br及甲基;R 5選自H、F、Cl及甲基;R 6選自H、F、Cl、Me及OMe。
The compound as described in claim item 71, wherein the compound has formula II:
Figure 03_image019
Formula II wherein R 1 , R 4 , R 5 and R 6 are each independently as defined herein, preferably, R 4 is selected from Cl, Br and methyl; R 5 is selected from H, F, Cl and methyl; R6 is selected from H, F, Cl, Me and OMe.
如請求項76所述之化合物,其中該化合物具有式IV:
Figure 03_image185
式IV 其中X 6、X 7、R 4、R 5、R 6、R 17及R 18各自獨立地如先前所定義。
The compound as described in claim item 76, wherein the compound has formula IV:
Figure 03_image185
Formula IV wherein X 6 , X 7 , R 4 , R 5 , R 6 , R 17 and R 18 are each independently as previously defined.
如請求項76所述之化合物,其中該化合物若為具有式V之一化合物:
Figure 03_image187
式V 其中R 4、R 5、R 6、X 15、X 16、X 17及X 18各自獨立地如先前所定義。
The compound as described in claim 76, wherein if the compound is a compound of formula V:
Figure 03_image187
Formula V wherein R 4 , R 5 , R 6 , X 15 , X 16 , X 17 and X 18 are each independently as previously defined.
如請求項71所述之化合物,其中該化合物具有式III:
Figure 03_image021
式III 其中R 1、R 9、R 10、R 12及X 5各自獨立地如先前所定義。
The compound as described in claim item 71, wherein the compound has formula III:
Figure 03_image021
Formula III wherein R 1 , R 9 , R 10 , R 12 and X 5 are each independently as previously defined.
如請求項79所述之化合物,其中該化合物具有式VI:
Figure 03_image189
式VI 其中R 9、R 10、R 12、R 17、R 18、X 5、X 6及X 7各自獨立地如先前所定義。
The compound as described in claim item 79, wherein the compound has formula VI:
Figure 03_image189
Formula VI wherein R 9 , R 10 , R 12 , R 17 , R 18 , X 5 , X 6 and X 7 are each independently as previously defined.
如請求項79所述之化合物,其中該化合物具有式VII:
Figure 03_image191
式VII 其中R 9、R 10、R 12、X 5、X 15、X 16、X 17及X 18各自獨立地如先前所定義。
The compound as described in claim item 79, wherein the compound has formula VII:
Figure 03_image191
Formula VII wherein R 9 , R 10 , R 12 , X 5 , X 15 , X 16 , X 17 and X 18 are each independently as previously defined.
如請求項1所述之化合物,其中該化合物選自如本文所定義之實例1至163,或其一鹽及/或溶劑合物。The compound as described in claim 1, wherein the compound is selected from Examples 1 to 163 as defined herein, or a salt and/or solvate thereof. 如請求項82所述之化合物,其中該化合物選自實例31、36、40、51、55至60、69、72、80至83、88、93、94、96至122、124至147、149、151至160、162及163,或其一鹽及/或溶劑合物。The compound as described in claim 82, wherein the compound is selected from examples 31, 36, 40, 51, 55 to 60, 69, 72, 80 to 83, 88, 93, 94, 96 to 122, 124 to 147, 149 , 151 to 160, 162 and 163, or a salt and/or solvate thereof. 如請求項82所述之化合物,其中該化合物選自選自80至83、93、94、96、98至101、104、106、111、112、114至116、119、120、122、125、128至134、139、142、144至146、153、155、157、159及162,或其一鹽及/或溶劑合物。The compound as described in claim 82, wherein the compound is selected from the group consisting of 80 to 83, 93, 94, 96, 98 to 101, 104, 106, 111, 112, 114 to 116, 119, 120, 122, 125, 128 to 134, 139, 142, 144 to 146, 153, 155, 157, 159 and 162, or a salt and/or solvate thereof. 一種醫藥組成物,其包含如請求項1至84中任一項所定義之一化合物,以及一醫藥學上可接受之載劑、稀釋劑或賦形劑。A pharmaceutical composition comprising a compound as defined in any one of claims 1 to 84, and a pharmaceutically acceptable carrier, diluent or excipient. 一種如請求項1至84中任一項所定義之一化合物用於治療一疾病或病症的用途,該疾病或病症選自:一增殖性疾病或病症、RAS-ERK傳訊級聯失調所致的一發育異常(RAS病),或一發炎性疾病或一免疫系統失調。A use of a compound as defined in any one of claims 1 to 84 for the treatment of a disease or disorder selected from the group consisting of: a proliferative disease or disorder, RAS-ERK signaling cascade disorder A developmental abnormality (RAS disease), or an inflammatory disease or a disorder of the immune system. 如請求項86所述之用途,其中該疾病或病症選自選自一贅瘤及一發育異常。The use as claimed in claim 86, wherein the disease or condition is selected from a neoplasm and a dysplasia. 如請求項86或87所述之方法,其中該疾病或病症與一RAF基因突變(例如ARAF、BRAF或CRAF)相關。The method of claim 86 or 87, wherein the disease or condition is associated with a RAF gene mutation (eg ARAF, BRAF or CRAF). 如請求項86至88中任一項所述之用途,其中該疾病或病症與一RAS基因突變(例如KRAS)相關。The use according to any one of claims 86 to 88, wherein the disease or disorder is associated with a RAS gene mutation (eg KRAS). 如請求項86至89中任一項所述之用途,其中該疾病或病症與一受體酪胺酸激酶突變或擴增(例如EGFR、HER2)或該受體下游RAS之一調節因子的一突變或擴增(例如SOS1功能獲得、NF1功能喪失)相關。Use according to any one of claims 86 to 89, wherein the disease or disorder is associated with a receptor tyrosine kinase mutation or amplification (e.g. EGFR, HER2) or a regulator of the receptor downstream RAS. Mutation or amplification (eg, SOS1 gain-of-function, NF1 loss-of-function) is associated. 如請求項86至90中任一項所述之用途,其中該疾病或病症為一贅瘤。The use according to any one of claims 86 to 90, wherein the disease or condition is a neoplasm. 如請求項91所述之用途,其中該贅瘤選自黑色素瘤、甲狀腺癌(例如乳突甲狀腺癌)、結腸直腸癌、卵巢癌、乳癌、子宮內膜癌、肝癌、肉瘤、胃癌、胰臟癌、巴瑞特氏腺癌、神經膠質瘤(例如室管膜瘤)、肺癌(例如非小細胞肺癌)、頭頸癌、急性淋巴母細胞白血病、急性骨髓性白血病、非何杰金氏淋巴癌及毛細胞白血病。The use as described in claim 91, wherein the neoplasm is selected from melanoma, thyroid cancer (such as papillary thyroid cancer), colorectal cancer, ovarian cancer, breast cancer, endometrial cancer, liver cancer, sarcoma, gastric cancer, pancreatic cancer Carcinoma, Barrett's adenocarcinoma, glioma (eg, ependymoma), lung cancer (eg, non-small cell lung cancer), head and neck cancer, acute lymphoblastic leukemia, acute myeloid leukemia, non-Hodgkin's lymphoma and hairy cell leukemia. 如請求項91所述之用途,其中該贅瘤選自結腸癌或結腸直腸癌、肺癌、胰臟癌、甲狀腺癌、乳癌及黑色素瘤。The use as described in claim 91, wherein the neoplastic tumor is selected from colon cancer or colorectal cancer, lung cancer, pancreatic cancer, thyroid cancer, breast cancer and melanoma. 如請求項86至93中任一項所述之用途,其中該治療包括抑制該RAS-ERK信號傳遞路徑而基本上不誘導一反常路徑。The use according to any one of claims 86 to 93, wherein the treatment comprises inhibiting the RAS-ERK signaling pathway without substantially inducing an abnormal pathway. 一種用於治療一疾病或病症的方法,該疾病或病症選自一增殖性疾病或病症、RAS-ERK傳訊級聯失調所致的一發育異常(RAS病),或一發炎性疾病或一免疫系統失調,該方法包括向一有需要之受試者投與如請求項1至84中任一項所定義之一化合物。A method for treating a disease or disorder selected from a proliferative disease or disorder, a dysregulation of the RAS-ERK signaling cascade (RAS disease), or an inflammatory disease or an immune A systemic disorder, the method comprising administering a compound as defined in any one of claims 1 to 84 to a subject in need thereof. 如請求項95所述之方法,其中該疾病或病症選自選自一贅瘤及一發育異常。The method of claim 95, wherein the disease or condition is selected from a neoplasm and a dysplasia. 如請求項95或96所述之方法,其中該疾病或病症與一RAF基因突變(例如ARAF、BRAF或CRAF)相關。The method of claim 95 or 96, wherein the disease or condition is associated with a RAF gene mutation (eg ARAF, BRAF or CRAF). 如請求項95至97中任一項所述之方法,其中該疾病或病症與一RAS基因突變(例如KRAS)相關。The method of any one of claims 95 to 97, wherein the disease or condition is associated with a RAS gene mutation (eg KRAS). 如請求項95至98中任一項所述之方法,其中該疾病或病症與一受體酪胺酸激酶突變或擴增(例如EGFR、HER2)或該受體下游RAS之一調節因子的一突變或擴增(例如SOS1功能獲得、NF1功能喪失)相關。The method of any one of claims 95 to 98, wherein the disease or disorder is associated with a receptor tyrosine kinase mutation or amplification (e.g. EGFR, HER2) or a regulator of the receptor downstream RAS Mutation or amplification (eg, SOS1 gain-of-function, NF1 loss-of-function) is associated. 如請求項95至99中任一項所述之方法,其中該疾病或病症為一贅瘤。The method of any one of claims 95 to 99, wherein the disease or condition is a neoplasm. 如請求項100所述之方法,其中該贅瘤選自黑色素瘤、甲狀腺癌(例如乳突甲狀腺癌)、結腸直腸癌、卵巢癌、乳癌、子宮內膜癌、肝癌、肉瘤、胃癌、胰臟癌、巴瑞特氏腺癌、神經膠質瘤(例如室管膜瘤)、肺癌(例如非小細胞肺癌)、頭頸癌、急性淋巴母細胞白血病、急性骨髓性白血病、非何杰金氏淋巴癌及毛細胞白血病。The method of claim 100, wherein the neoplasm is selected from the group consisting of melanoma, thyroid cancer (e.g., papillary thyroid cancer), colorectal cancer, ovarian cancer, breast cancer, endometrial cancer, liver cancer, sarcoma, gastric cancer, pancreatic cancer Carcinoma, Barrett's adenocarcinoma, glioma (eg, ependymoma), lung cancer (eg, non-small cell lung cancer), head and neck cancer, acute lymphoblastic leukemia, acute myeloid leukemia, non-Hodgkin's lymphoma and hairy cell leukemia. 如請求項100所述之方法,其中該贅瘤選自結腸癌或結腸直腸癌、肺癌、胰臟癌、甲狀腺癌、乳癌及黑色素瘤。The method of claim 100, wherein the neoplasm is selected from colon or colorectal cancer, lung cancer, pancreatic cancer, thyroid cancer, breast cancer, and melanoma. 如請求項95至102中任一項所述之方法,其中該方法包括抑制該RAS-ERK信號傳遞路徑而基本上不誘導一反常路徑。The method of any one of claims 95 to 102, wherein the method comprises inhibiting the RAS-ERK signaling pathway without substantially inducing an aberrant pathway. 一種用於抑制細胞異常增殖的方法,其包括使該等細胞與如請求項1至84中任一項所定義之一化合物接觸。A method for inhibiting abnormal proliferation of cells comprising contacting the cells with a compound as defined in any one of claims 1 to 84. 如請求項104所述之方法,其中該等細胞包含一突變的RAF蛋白激酶(例如一突變的ARAF、BRAF或CRAF)。The method of claim 104, wherein the cells comprise a mutated RAF protein kinase (eg, a mutated ARAF, BRAF or CRAF). 如請求項104或105所述之方法,其中該等細胞包含一突變的RAS基因(例如突變的KRAS)。The method of claim 104 or 105, wherein the cells comprise a mutated RAS gene (eg, mutated KRAS). 如請求項104至106中任一項所述之方法,其中該異常增殖與一受體酪胺酸激酶突變或擴增(例如EGFR、HER2)或該受體下游RAS之一調節因子的一突變或擴增(例如SOS1功能獲得、NF1功能喪失)相關。The method of any one of claims 104 to 106, wherein the abnormal proliferation is associated with a receptor tyrosine kinase mutation or amplification (e.g. EGFR, HER2) or a mutation of a regulator of the receptor downstream RAS or amplification (eg SOS1 gain-of-function, NF1 loss-of-function). 如請求項104至107中任一項所述之方法,其中該等細胞選自黑色素瘤細胞、甲狀腺癌細胞(例如乳突甲狀腺癌細胞)、結腸直腸癌細胞、卵巢癌細胞、乳癌細胞、子宮內膜癌細胞、肝癌細胞、肉瘤細胞、胃癌細胞、胰臟癌細胞、巴瑞特氏腺癌細胞、神經膠質瘤細胞(例如室管膜瘤細胞)、肺癌細胞(例如非小細胞肺癌細胞)、頭頸癌細胞、急性淋巴母細胞白血病細胞、急性骨髓性白血病細胞、非何杰金氏淋巴癌細胞及毛細胞白血病細胞。The method according to any one of claims 104 to 107, wherein the cells are selected from the group consisting of melanoma cells, thyroid cancer cells (e.g. papillary thyroid cancer cells), colorectal cancer cells, ovarian cancer cells, breast cancer cells, uterine Endometrial cancer cells, liver cancer cells, sarcoma cells, gastric cancer cells, pancreatic cancer cells, Barrett's adenocarcinoma cells, glioma cells (such as ependymoma cells), lung cancer cells (such as non-small cell lung cancer cells) , head and neck cancer cells, acute lymphoblastic leukemia cells, acute myeloid leukemia cells, non-Hodgkin's lymphoma cells and hairy cell leukemia cells. 如請求項104至108中任一項所述之方法,其中該等細胞選自結腸癌或結腸直腸癌細胞、肺癌細胞、胰臟癌細胞、甲狀腺癌細胞、乳癌細胞及黑色素瘤細胞。The method according to any one of claims 104 to 108, wherein the cells are selected from colon or colorectal cancer cells, lung cancer cells, pancreatic cancer cells, thyroid cancer cells, breast cancer cells and melanoma cells. 如請求項104至109中任一項所述之方法,其中該方法包括抑制該RAS-ERK信號傳遞路徑而基本上不誘導一反常路徑。The method of any one of claims 104 to 109, wherein the method comprises inhibiting the RAS-ERK signaling pathway without substantially inducing an aberrant pathway. 如請求項104至110中任一項所述之方法,其中該接觸係活體內進行。The method of any one of claims 104 to 110, wherein the contacting is performed in vivo. 如請求項104至110中任一項所述之方法,其中該接觸係離體進行。The method of any one of claims 104 to 110, wherein the contacting is performed ex vivo.
TW111114784A 2021-04-19 2022-04-19 Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof TW202309037A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163201222P 2021-04-19 2021-04-19
US63/201,222 2021-04-19

Publications (1)

Publication Number Publication Date
TW202309037A true TW202309037A (en) 2023-03-01

Family

ID=83723499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111114784A TW202309037A (en) 2021-04-19 2022-04-19 Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof

Country Status (8)

Country Link
EP (1) EP4326723A1 (en)
JP (1) JP2024517505A (en)
CN (1) CN117177975A (en)
AR (1) AR125385A1 (en)
AU (1) AU2022260863A1 (en)
CA (1) CA3215223A1 (en)
TW (1) TW202309037A (en)
WO (1) WO2022221940A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201014860A (en) * 2008-09-08 2010-04-16 Boehringer Ingelheim Int New chemical compounds
JP5603883B2 (en) * 2009-02-17 2014-10-08 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pyrimidopyrimidine derivatives for inhibiting B-Raf kinase
US20130023531A1 (en) * 2011-01-27 2013-01-24 Boehringer Ingelheim International Gmbh Pyrimido[5,4-d]pyrimidylamino phenyl sulfonamides as serine/threonine kinase inhibitors

Also Published As

Publication number Publication date
AU2022260863A1 (en) 2023-11-02
EP4326723A1 (en) 2024-02-28
WO2022221940A1 (en) 2022-10-27
CA3215223A1 (en) 2022-10-27
CN117177975A (en) 2023-12-05
AR125385A1 (en) 2023-07-12
JP2024517505A (en) 2024-04-22

Similar Documents

Publication Publication Date Title
EP3173412B1 (en) 2,4-disubstituted 7h-pyrrolo[2,3-d]pyrimidine derivative, preparation method and medicinal use thereof
EP2590942B1 (en) Rho kinase inhibitors
CN113164761A (en) Modulators of alpha-1 antitrypsin
US9487529B2 (en) Macrocyclic compounds as ALK, FAK and JAK2 inhibitors
CA2813607C (en) Substituted pyridazine carboxamide compounds
AU2011377440A1 (en) Hydroxamic acid compound containing quinolyl and preparation method thereof, and pharmaceutical composition containing this compound and use thereof
JP6896701B2 (en) Imidazolylamide derivative
TW200307535A (en) Therapeutic agent for cancer
JP2019518077A (en) Heterocyclic compounds as FGFR4 inhibitors
AU2015402778B2 (en) Aminonapthoquinone compounds and pharmaceutical composition for blocking ubiquitination-proteasome system in diseases
KR20170139073A (en) Maleate salts of B-RAF kinase inhibitors, crystalline forms, methods of preparation, and uses thereof
EP3938362A1 (en) Fused ring pyrimidone derivatives for use in the treatment of hbv infection or of hbv-induced diseases
CA2990583A1 (en) 1,4-disubstituted imidazole derivative
TW201917129A (en) Triacyclic derivatives containing pyrazole, their preparation methods and applications thereof
CN113454081A (en) Imidazopyridinyl compounds and their use for the treatment of proliferative diseases
JP7201800B2 (en) 3,9-diazaspiro[5,5]undecane-based compounds as inhibitors of FLT3 and AXL
US11427559B2 (en) Substituted quinolines useful as kinase inhibitors
WO2020135203A1 (en) Pharmaceutical compound, composition thereof, and application
JP2014521705A (en) (N-Benzimidazol-2-yl) -cyclopropanecarboxamide as a lysophosphatidic acid antagonist
TW202309037A (en) Pyrimido[5,4,d]pyrimidine compounds, compositions comprising them and uses thereof
TW201720433A (en) Aminonaphthoquinone compounds for treatment and/or prevention of fibrosis diseases
WO2021088845A1 (en) Imidazolidinone compound and preparation method and application thereof
WO2021088839A1 (en) Imidazolidinone compound, preparation method therefor and use thereof
TW202309024A (en) Pyrido[3,2-d]pyrimidine compounds, compositions comprising them and uses thereof
WO2024077391A1 (en) Thiazolo[5,4-d]pyrimidine compounds, compositions comprising them and uses thereof