TW202306758A - 具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品 - Google Patents

具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品 Download PDF

Info

Publication number
TW202306758A
TW202306758A TW111123602A TW111123602A TW202306758A TW 202306758 A TW202306758 A TW 202306758A TW 111123602 A TW111123602 A TW 111123602A TW 111123602 A TW111123602 A TW 111123602A TW 202306758 A TW202306758 A TW 202306758A
Authority
TW
Taiwan
Prior art keywords
article
layer
low
less
incidence
Prior art date
Application number
TW111123602A
Other languages
English (en)
Inventor
尚登笛 哈特
卡爾威廉 科赫三世
卡洛安東尼科希 威廉斯
林琳
詹姆士喬瑟夫 布萊斯
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW202306758A publication Critical patent/TW202306758A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

描述了一種製品,其包含:一基板,具有相對的主表面;及一光學膜結構,與一第一主表面直接接觸且包括自約50 nm至小於500 nm的一實體厚度;高折射率(RI)及低RI層,具有直接位於該第一主表面上的一第一低RI層;及一頂蓋低RI層。該等高及低RI層總共三(3)層至九(9)層,其中每一低RI層及該頂蓋低RI層包括一含矽氧化物,且每一高RI層包括一含矽氮化物或氮氧化物。該製品表現出在≥約50 nm的一壓痕深度上量測的8 GPa或更大的一Berkovich最大硬度。該製品在0°入射時表現出在自840至860 nm及自930至950 nm的紅外波長下> 85%的一兩側平均透射。

Description

具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品
優先權主張
本申請案根據專利法主張2021年7月2日申請的美國臨時申請案第63/217,967號的優先權益,該申請案的內容在此作為參考且以全文引用的方式併入本文中。
本發明係關於具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品。
本發明係關於具有帶延伸紅外(infrared,IR)透射的薄、耐久性抗反射塗層的製品,且更特定言之,係關於具有帶此類性質的薄、多層抗反射塗層的製品。
覆蓋製品通常用於保護電子產品內的裝置及組件,提供用於輸入及/或顯示的使用者介面,保護相機蓋及/或感測器,及/或用於許多其他功能。此類產品包含行動裝置,例如智慧型手機、智慧型手錶、mp3播放機及電腦平板。覆蓋製品亦包含建築製品、運輸製品(例如用於汽車應用、列車、飛機、海輪等的內部及外部顯示及非顯示製品)、電器製品或可受益於某種透明度、耐刮擦性、耐磨性或其組合的任何製品。就最大透光率及最小反射而言,此等應用程式通常需要耐刮擦性及強大的光學效能特性。在一些顯示器、相機及感測器應用程式中,覆蓋此等元件中的一或多者的製品應提供機械保護以及高可見光透射(例如在相機及顯示器上)及高IR波長透射(例如940 nm) (例如用於感測器應用程式,諸如近接、光達(light-detection and ranging,LIDAR)及飛行時間感測器)。
此外,對於一些覆蓋應用,在反射及/或透射中表現或感知的顏色不隨視角的改變而明顯改變係有益的。在顯示應用中,此係因為若反射或透射中的顏色隨視角而發生明顯變化,產品的使用者將感知顯示器的顏色或亮度的變化,此可降低顯示器的感知品質。在其他應用中,顏色變化可對裝置的美學外觀或其他功能態樣產生負面影響。
此等顯示及非顯示製品通常用於具有封裝約束的應用程式(例如行動裝置)中。特定言之,此等應用程式中的大多數可顯著受益於整體厚度的減小,甚至減小幾個百分比。此外,採用此類顯示及非顯示製品的大多數應用程式例如經由原材料成本的最小化、製程複雜性的最小化及產率提高而受益於低製造成本。具有與現存顯示及非顯示製品相當的光學及機械性質效能屬性的較小封裝亦可服務於降低製造成本的需求(例如經由較少原材料成本、經由減少抗反射結構中的層數等)。
覆蓋製品的光學效能可藉由使用各種抗反射塗層來改進;然而,已知的抗反射塗層易磨損或磨耗。此磨耗可損害由抗反射塗層實現的任何光學效能改進。磨耗損壞可包含來自配合端面物件(例如手指)的往復滑動接觸。此外,磨耗損壞可產生熱量,此可減少膜材料中的化學鍵且導致蓋玻璃剝落及其他類型的損壞。由於磨耗損壞通常比導致刮擦的單一事件發生的時間更長,因此經受磨耗損壞的所安置塗層材料亦可氧化,此進一步降低了塗層的耐久性。
因此,需要新的覆蓋製品,其係耐磨的,具有可接受的或改進的光學效能(包含IR透射)且係較薄光學結構。
根據本發明的一些態樣,提供一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
根據本發明的一些態樣,提供一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。此外,高RI層的組合實體厚度為光學膜結構的實體厚度的約40%至60%。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
根據本發明的一些態樣,提供一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。此外,最厚的高RI層具有自120 nm至180 nm的實體厚度,直接位於第一主表面上且與第一主表面接觸的第一低RI層具有自15 nm至35 nm的實體厚度,且頂蓋低RI層具有自80 nm至100 nm的厚度。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
附加特徵及優點將在以下詳細描述中闡述,且部分地將為熟習此項技術者根據該描述而容易地顯而易見或藉由實踐包含以下詳細描述、申請專利範圍以及隨附圖式的如本文中所描述的實施例而認識到。
應理解,前述一般描述及以下詳細描述兩者僅僅係示例性的,且意欲提供用於理解申請專利範圍的性質及特徵的概述或框架。
包含隨附圖式係為了提供進一步理解,且隨附圖式併入本說明書中且構成本說明書的一部分。圖式說明一或多個實施例,且與描述一起用於藉助於實例解釋本發明的原理及操作。應理解,在本說明書中及圖式中所揭示的本發明的各種特徵可以任何及所有組合使用。藉助於非限制性實例,本發明的各種特徵可根據以下實施例彼此組合。
在以下詳細描述中,出於解釋而非限制的目的,闡述了揭示具體細節的實例實施例以提供對本發明的各種原理的徹底理解。然而,對於受益於本發明的熟習此項技術者而言將顯而易見的係,可在背離本文中所揭示的具體細節的其他實施例中實踐本發明。此外,可省略對熟知裝置、方法及材料的描述,以免混淆對本發明的各種原理的描述。最終,在適用時,相似附圖標記係指相似元件。
範圍在本文中可表示為自「約」一個特定值及/或至「約」另一特定值。如本文中所使用,術語「約」意指量、大小、配方、參數以及其他量及特性不係且不需要係精確的,但根據需要,可為近似的及/或更大或更小的,從而反映公差、轉換因數、四捨五入、量測誤差及類似者以及熟習此項技術者已知的其他因數。當術語「約」用於描述範圍的值或端點時,本發明應被理解為包含所提及的具體值或端點。無論本說明書中的範圍的數值或端點是否敘述了「約」,範圍的數值或端點意欲包含兩個實施例:一個被「約」修飾,而一個未被「約」修飾。應進一步理解,範圍中的每一者的端點相對於另一個端點及獨立於另一個端點係重要的。
如本文中所使用的術語「實質」、「實質上」及其變化意欲指出所描述特徵等於或約等於值或描述。舉例而言,「實質上平坦的」表面意欲表示平坦或大致平坦的表面。此外,「實質上」意欲表示兩個值相等或大致相等。在一些實施例中,「實質上」可表示彼此相差約10%,例如彼此相差約5%,或彼此相差約2%的值。
如本文中所使用的方向性術語——例如「上」、「下」、「右」、「左」、「前」、「後」、「頂部」、「底部」——僅參考所繪製的諸圖做出且不意欲暗示絕對取向。
除非另有明確說明,否則本文中所闡述的任何方法不意欲以任何方式被解釋為要求其步驟按特定次序進行。因此,在方法請求項實際上沒有敘述其步驟所遵循的次序或在請求項或描述中沒有另外具體說明此等步驟將被限制於特定次序的情況下,不意欲以任何方式推斷次序。此適用於任何可能的非明確解釋依據,包含:關於步驟的配置或操作流程的邏輯問題;源自語法組織或標點符號的簡單含義;說明書中所描述的實施例的數目或類型。
如本文中所使用,除非上下文另有明確規定,否則單數形式「一」、「一個」及「該」亦包含複數指稱。因此,例如,除非上下文另有明確指示,否則對「組件」的提及包含具有兩個或更多個此類組件的實施例。
本發明的實施例係關於具有薄、耐久性抗反射結構的製品,且更特定言之,係關於具有薄、多層抗反射塗層的製品,該等塗層表現出耐磨性、低反射、無色透射、無色反射及/或高IR光譜透射。此等製品的實施例具有總實體厚度為約50 nm至小於500 nm的抗反射光學結構,同時維持與此等製品(例如作為顯示器、相機及感測器蓋、顯示裝置的外殼及基板、內部及外部汽車組件等)的預期應用相關聯的硬度、耐磨性及光學性質。
參看第1圖,根據一或多個實施例的製品100可包含基板110及安置於基板上的抗反射塗層120 (在本文中亦表示為「光學膜結構」)。基板110包含相對的主表面112、114及相對的次表面116、118。抗反射塗層120在第1圖中示出為安置於第一相對主表面112上;然而,除了安置於第一相對主表面112上之外或代替安置於第一相對主表面112上,抗反射塗層120可安置於第二相對主表面114及/或相對的次表面116、118 (例如與主表面112、114成90°的表面)中的一者或兩者上。此外,抗反射塗層120形成抗反射表面122。
抗反射塗層120包含至少三(3)層。術語「層」可包含單個層或可包含一或多個子層。此類子層可彼此直接接觸。子層可由相同材料或兩種或更多種不同材料形成。在一或多個替代實施例中,此類子層可具有安置於其間的不同材料的中間層。在一或多個實施例中,層可包含一或多個連續且不間斷的層及/或一或多個不連續且間斷的層(亦即,具有彼此相鄰形成的不同材料的層)。層或子層可藉由離散沉積或連續沉積製程來形成。在一或多個實施例中,層可僅使用連續沉積製程來形成,或替代地,僅使用離散沉積製程來形成。
如本文中所使用,術語「安置」包含在表面上塗佈、沉積及/或形成材料。如本文中所定義,所安置材料可構成層。片語「安置於」包含在表面上形成材料以使得材料與表面直接接觸的例項,且亦包含在使一或多種中間材料位於所安置材料與表面之間的情況下在表面上形成材料的例項。如本文中所定義,中間材料可構成層。
根據一或多個實施例,製品100的抗反射塗層120 (例如結合第1圖所示出及描述的)可根據氧化鋁SCE測試以耐磨性為特徵。如本文中所使用,使用由Taber Industries 5750線性研磨機提供動力的約1’’衝程長度,「氧化鋁SCE測試」藉由使樣品經受總重量為0.7 kg的商用800粒度氧化鋁砂紙(10 mm × 10 mm)來進行五十(50)次磨耗循環。然後,根據氧化鋁SCE測試,藉由根據本發明領域的一般熟習此項技術者所理解的原理量測來自磨耗樣品的反射鏡面分量排除(specular component excluded,SCE)值來表徵耐磨性。更特定言之,SCE為對抗反射塗層120的表面的漫反射的量測,如使用具有6 mm直徑孔徑的Konica-Minolta CM700D量測的。根據一些實施方式,製品100的抗反射塗層120可表現出如自氧化鋁SCE測試獲得的小於0.4%、小於0.2%、小於0.18%、小於0.16%或甚至小於0.08%的SCE值。磨耗引起的損壞增加了表面粗糙度,從而導致漫反射增加(亦即,SCE值)。較低SCE值指示不太嚴重的損壞,此指示耐磨性提高。
抗反射塗層120及製品100可就由Berkovich壓頭硬度測試量測的硬度而言進行描述。另外,一般熟習此項技術者可認識到,抗反射塗層120及製品100的耐磨性可與此等元件的硬度相關。如本文中所使用,「Berkovich壓頭硬度測試」包含藉由用金剛石Berkovich壓頭壓凹表面來量測其表面上的材料的硬度。Berkovich壓頭硬度測試包含用金剛石Berkovich壓頭壓凹製品100的抗反射表面122或抗反射塗層120的表面(或抗反射塗層中的層中的任何一或多者的表面)以形成壓痕,壓痕深度介於約50 nm至約500 nm的範圍內(或抗反射塗層或層的整個厚度,取較小值),且通常使用Oliver, W.C.及Pharr, G. M.,「使用載荷及位移感測壓痕實驗判定硬度及彈性模量的改進技術(An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments)」, 材料研究學報,第7卷,1992年第6期,1564至1583;及Oliver, W.C.及Pharr, G.M.,「藉由儀器壓痕量測硬度及彈性模量:對方法的理解及改進的進展(Measurement of Hardness and Elastic Modulus by Instrument Indentation: Advances in Understanding and Refinements to Methodology)」, 材料研究學報,第19卷,2004年第1期,3至20中所闡述的方法來沿著整個壓痕深度範圍、沿著該壓痕深度的指定段(例如在自約100 nm至約500 nm的深度範圍內)或在特定壓痕深度下(例如在50 nm、100 nm、150 nm、200 nm、250 nm、300 nm、350 nm、400 nm、450 nm、500 nm等的深度下)在各個點處量測該壓痕的硬度。另外,當在壓痕深度範圍內(例如在自約50 nm至約500 nm的深度範圍內)量測硬度時,結果可報導為指定範圍內的最大硬度,其中最大硬度選自在該範圍內的每一深度下進行的量測。如本文中所使用,「硬度」及「最大硬度」均係指所量測硬度值,而非硬度值的平均值。類似地,當在壓痕深度下量測硬度時,自Berkovich壓頭硬度測試獲得的硬度的值係針對該特定壓痕深度給出的。
通常,在比下伏基板更硬的塗層的奈米壓痕量測方法(諸如藉由使用Berkovich壓頭)中,所量測硬度最初可能由於塑膠區在淺壓痕深度下的發展而增加,且然後在更深的壓痕深度下增大且達到最大值或趨於平穩。此後,由於下伏基板的影響,因此硬度在甚至更深的壓痕深度下開始下降。在利用相較於塗層具有增加的硬度的基板時,可看到相同效果;然而,由於下伏基板的影響,硬度在更深的壓痕深度下增加。
可選擇壓痕深度範圍及特定壓痕深度範圍處的硬度值,以在沒有下伏基板的影響的情況下標識本文中所描述的光學膜結構及其層的特定硬度回應。當用Berkovich壓頭量測光學膜結構的硬度(當安置於基板上時)時,材料的永久變形區(塑膠區)與材料的硬度相關聯。在壓痕期間,彈性應力場遠遠超出該永久變形區。隨著壓痕深度的增加,表觀硬度及模量受到應力場與下伏基板相互作用的影響。基板對硬度的影響發生在更深的壓痕深度下(亦即,通常在大於光學膜結構或層厚度的約10%的深度下)。此外,另一複雜性在於硬度回應在壓痕製程期間利用特定最小載荷來產生全塑性。在該特定最小載荷之前,硬度示出大體上增加的趨勢。
在小壓痕深度(其亦可表徵為小載荷) (例如至多約50 nm)下,材料的表觀硬度似乎相對於壓痕深度而急劇增加。該小壓痕深度狀態不表示真正的硬度指標;而相反,其反映了前述塑膠區的發展,此與壓頭的有限曲率半徑相關。在中間壓痕深度下,表觀硬度接近最大級別。在更深的壓痕深度下,隨著壓痕深度的增加,基板的影響變得更加明顯。一旦壓痕深度超過光學膜結構厚度或層厚度的約30%,硬度便可開始急劇下降。
如上面所提到,一般熟習此項技術者可考慮各種測試相關的考慮,以確保自Berkovich壓頭硬度測試獲得的塗層120及製品100的硬度及最大硬度值指示此等元件,而非受到例如基板110的過度影響。另外,本發明的製品的實施例出人意料地展示了與抗反射塗層120相關聯的高硬度值(例如8 GPa或更大的最大硬度),而不管塗層120的相對較低的厚度(亦即,< 500 nm)。實際上,如下面在後續部分中詳述的實例所證明的,抗反射塗層(參見例如第2A圖至第2C圖)內的高折射率(refractive index,RI)層130B的硬度可顯著地影響抗反射塗層120及製品100的整體硬度及最大硬度,而不管與此等層相關聯的相對較低的厚度值。由於以上測試相關的考慮,此係出人意料的,該等測試相關的考慮詳述了所量測硬度如何直接受到塗層(例如抗反射塗層120)的厚度的影響。通常,隨著塗層(在較厚基板上方)在厚度方面減小且隨著塗層中較硬材料的體積(例如相較於塗層內具有較低硬度的其他層)減小,將預期塗層的所量測硬度將趨向於下伏基板的硬度。然而,本發明的製品100,如包含抗反射塗層120 (且亦如下面詳細概述的實例所例示)與下伏基板相比出人意料地表現出顯著較高的硬度值,因此展現了塗層厚度(< 500 nm)、較高硬度材料的容積分率及光學性質的獨特組合。
在一些實施例中,製品100的抗反射塗層120可表現出大於約8 GPa的硬度或最大硬度,如藉由Berkovich壓頭硬度測試在約50 nm或更大的壓痕深度下在抗反射表面122上量測的。抗反射塗層120可藉由Berkovich壓頭硬度測試在約50 nm或更大的壓痕深度下表現出約8 GPa或更大、約9 GPa或更大、約10 GPa或更大、約11 GPa或更大、約12 GPa或更大、約13 GPa或更大、約14 GPa或更大、約15 GPa或更大或約16 GPa或更大的硬度或最大硬度。如本文中所描述,包含抗反射塗層120及任何附加塗層的製品100可表現出約8 GPa或更大、約9 GPa或更大、約10 GPa或更大、約11 GPa或更大、約12 GPa或更大、約13 GPa或更大或約14 GPa或更大的硬度或最大硬度,如藉由Berkovich壓頭硬度測試在約50 nm或更大的壓痕深度下在抗反射表面122上量測的。此類所量測硬度及最大硬度值可由抗反射塗層120及/或製品100在約50 nm或更大、約100 nm或更大(例如自約100 nm至約300 nm、自約100 nm至約400 nm、自約100 nm至約500 nm、自約100 nm至約600 nm、自約200 nm至約300 nm、自約200 nm至約400 nm、自約200 nm至約500 nm或自約200 nm至約600 nm)的壓痕深度上表現出。
抗反射塗層120可具有至少一個層,該至少一個層由本身具有約18 GPa或更大、約19 GPa或更大、約20 GPa或更大、約21 GPa或更大、約22 GPa或更大、約23 GPa或更大、約24 GPa或更大、約25 GPa或更大及其間的所有硬度值的最大硬度(如在此層的表面(例如第2A圖的第二高RI層130B的表面)上量測的)的材料製成,如藉由Berkovich壓頭硬度測試在約50 nm或更大的壓痕深度上量測的。此等量測係在硬度測試堆疊上進行的,該硬度測試堆疊包括抗反射塗層120在約2微米的實體厚度下的指定層(如安置於基板110上),以使先前描述的厚度相關的硬度量測效果最小化。此層的最大硬度可介於約18 GPa至約26 GPa的範圍內,如藉由Berkovich壓頭硬度測試在自約50 nm至約500 nm的壓痕深度上量測的。此類最大硬度值可由至少一個層(例如高RI層130B,如在第2A圖中所示出)的材料在約50 nm或更大或100 nm或更大(例如自約100 nm至約300 nm、自約100 nm至約400 nm、自約100 nm至約500 nm、自約100 nm至約600 nm、自約200 nm至約300 nm、自約200 nm至約400 nm、自約200 nm至約500 nm或自約200 nm至約600 nm)的壓痕深度上表現出。在一或多個實施例中,製品100表現出大於基板的硬度(其可在與抗反射表面相對的表面上量測)的硬度。類似地,硬度值可由至少一個層(例如高RI層130B,如在第2A圖至第2C圖中所示出)的材料在約50 nm或更大或約100 nm或更大(例如自約100 nm至約300 nm、自約100 nm至約400 nm、自約100 nm至約500 nm、自約100 nm至約600 nm、自約200 nm至約300 nm、自約200 nm至約400 nm、自約200 nm至約500 nm或自約200 nm至約600 nm)的壓痕深度上表現出。此外,亦可在所量測壓痕深度範圍內的特定壓痕深度下(例如在25 nm下、在50 nm下、在75 nm下、在100 nm下、在200 nm下等)觀察與至少一個層(例如高RI層130B)相關聯的此等硬度及/或最大硬度值。
來自抗反射塗層120與空氣之間的介面的反射波與來自抗反射塗層120與基板110之間的介面的反射波之間的光學干涉可導致在製品100中產生明顯顏色的光譜反射及/或透射振盪。如本文中所使用,術語「透射」被定義為在給定波長範圍內透射穿過材料(例如製品、基板或光學膜或其部分)的入射光功率的百分比。術語「反射」類似地被定義為在給定波長範圍內自材料(例如製品、基板或光學膜或其部分)反射的入射光功率的百分比。在一或多個實施例中,透射及反射的表徵的光譜解析度小於5 nm或0.02 eV。顏色可在反射時更為明顯。由於光譜反射振盪隨著入射照明角度的移位,角度顏色在反射時隨著視角移位。角度顏色在透射時隨著視角移位亦係由於光譜透射振盪隨著入射照明角度的相同移位。觀察到的顏色及角度顏色隨著入射照明角度移位通常會使裝置使用者分心或反感,尤其係在具有清晰光譜特徵的照明下,例如在螢光燈及一些LED燈下。在透射方面的角度色移(angular color shift)亦可作為在反射方面的角度色移中的因素,反之亦然。在透射及/或反射方面的角度色移中的因素亦可包含由於視角而引起的角度色移或偏離某個白點的色移,該白點可由特定光源或測試系統定義的材料吸收(略微與角度無關)引起。
振盪可就幅度而言進行描述。如本文中所使用,術語「幅度」包含在反射或透射方面的峰谷變化。片語「平均幅度」包含在光學波長狀態內平均的反射或透射方面的峰谷變化。如本文中所使用,「光學波長狀態」包含自約400 nm至約800 nm (且更具體地,自約450 nm至約650 nm)的波長範圍。根據一些實施例,光學波長範圍進一步包含自800 nm至1000 nm的紅外光譜。
當在不同光源下以與法線入射相差的不同入射照明角度觀察時,本發明的實施例包含抗反射塗層(例如抗反射塗層120或光學膜結構120)以就無色及/或較小角度色移而言提供改進的光學效能。
本發明的一個態樣係關於一種製品,即使在光源下以不同入射照明角度觀察時,該製品亦在反射及/或透射方面表現出無色。在一或多個實施例中,在本文中所提供的範圍內,在參考照明角度與任何附帶照明角度之間,製品表現出在反射及/或透射方面為約5或更小或約2或更小的角度色移。如本文中所使用,片語「色移」(角度或參考點)係指在反射及/或透射方面,根據國際照明委員會(International Commission on Illumination,CIE) L*、a*、b*比色系統的a*及b*兩者的變化。應理解,除非另有說明,否則本文中所描述的製品的L*座標在任何角度或參考點上係相同的且不影響色移。舉例而言,可使用以下等式(1)來判定角度色移: (1) √((a* 2-a* 1) 2+(b* 2-b* 1) 2) 其中a* 1及b* 1表示製品在以參考照明角度(其可包含法線入射)觀察時的a*及b*座標,且a* 2及b* 2表示製品在以入射照明角度觀察時的a*及b*座標,其限制條件為入射照明角度與參考照明角度不同且在一些情況下與參考照明角度相差約1度或更大、2度或更大、約5度或更大、約10度或更大、約15度或更大或約20度或更大。在一些情況下,當在光源下以來自反射照明角度的各種入射照明角度觀察時,在反射及/或透射時為約10或更小、9或更小、8或更小、7或更小、6或更小、5或更小、4或更小、3或更小或甚至2或更小的角度色移由製品表現出。在一些情況下,在反射及/或透射方面的角度色移為約1.9或更小、1.8或更小、1.7或更小、1.6或更小、1.5或更小、1.4或更小、1.3或更小、1.2或更小、1.1或更小、1或更小、0.9或更小、0.8或更小、0.7或更小、0.6或更小、0.5或更小、0.4或更小、0.3或更小、0.2或更小或0.1或更小。在一些實施例中,角度色移可為約0。光源可包含如由CIE判定的標準光源,包含A光源(表示鎢絲燈)、B光源(日光模擬光源)、C光源(日光模擬光源)、D系列光源(表示自然日光)及F系列光源(表示各種類型的螢光燈)。在具體實例中,當在CIE F2、F10、F11、F12或D65光源下或更具體地在CIE F2光源下以來自參考照明角度的入射照明角度觀察時,製品表現出在反射及/或透射方面為約2或更小的角度色移。
參考照明角度可包含法線入射(亦即,0度)或與法線入射相差5度、與法線入射相差10度、與法線入射相差15度、與法線入射相差20度、與法線入射相差25度、與法線入射相差30度、與法線入射相差35度、與法線入射相差40度、與法線入射相差50度、與法線入射相差55度或與法線入射相差60度,其限制條件為參考照明角度同入射照明角度與參考照明角度之間的差值之間的差值為約1度或更大、2度或更大、約5度或更大、約10度或更大、約15度或更大或約20度或更大。相對於參考照明角度,入射照明角度可介於約5度至約80度、約5度至約75度、約5度至約70度、約5度至約65度、約5度至約60度、約5度至約55度、約5度至約50度、約5度至約45度、約5度至約40度、約5度至約35度、約5度至約30度、約5度至約25度、約5度至約20度、約5度至約15度及其間的遠離法線入射的所有範圍及子範圍的範圍內。當參考照明角度為法線入射時,製品可在自約2度至約80度,或自約5度至約80度,或自約10度至約80度,或自約15度至約80度,或自約20度至約80度的範圍內的所有入射照明角度下及沿著前述所有入射照明角度表現出在本文中所描述的反射及/或透射方面的角度色移。在一些實施例中,當入射照明角度與參考照明角度之間的差值為約1度或更大、2度或更大、約5度或更大、約10度或更大、約15度或更大或約20度或更大時,製品可在自約2度至約80度,或自約5度至約80度,或自約10度至約80度,或自約15度至約80度,或自約20度至約80度的範圍內的所有入射照明角度下及沿著前述所有入射照明角度表現出在本文中所描述的反射及/或透射方面的角度色移。在一個實例中,製品可在遠離等於法線入射的參考照明角度自約2度至約60度、自約5度至約60度或自約10度至約60度的範圍內的任何入射照明角度下表現出在反射及/或透射方面為2或更小的角度色移。在其他實例中,當參考照明角度為10度且入射照明角度為在遠離參考照明角度自約12度至約60度、自約15度至約60度或自約20度至約60度的範圍內的任何角度下時,製品可表現出在反射及/或透射方面為2或更小的角度色移。
在一些實施例中,可在參考照明角度(例如法線入射)與在自約20度至約80度的範圍內的入射照明角度之間的所有角度下量測角度色移。換言之,在自約0度至約20度、自約0度至約30度、自約0度至約40度、自約0度至約50度、自約0度至約60度或自約0度至約80度的範圍內的所有角度下,角度色移可被量測且可小於約5或小於約2。
在一或多個實施例中,製品100在反射及/或透射方面表現出CIE L*、a*、b*比色系統中的顏色,使得在光源(其可包含如由CIE判定的標準光源,包含A光源(表示鎢絲燈)、B光源(日光模擬光源)、C光源(日光模擬光源)、D系列光源(表示自然日光)及F系列光源(表示各種類型的螢光燈))下,透射顏色或反射座標與參考點之間的距離或參考點色移小於約10、小於約8、小於約6、小於約5、小於約4、小於約3或小於約2。在具體實例中,當在CIE F2、F10、F11、F12或D65光源下或更具體地在CIE F2光源下以來自參考照明角度的入射照明角度觀察時,製品表現出在反射及/或透射方面為約2或更小的色移。換言之,製品可表現出在抗反射表面122處量測的透射顏色(或透射顏色座標)及/或反射顏色(或反射顏色座標),該抗反射表面122具有距參考點小於約2的參考點色移,如本文中所定義。除非另有說明,否則透射顏色或透射顏色座標係在製品的兩個表面上量測的,包含在製品的抗反射表面122及相對的裸露表面(亦即,114)處量測。除非另有說明,否則僅在製品的抗反射表面122上量測反射顏色或反射顏色座標。
在一或多個實施例中,參考點可為CIE L*、a*、b*比色系統中的原點(0, 0) (或顏色座標a* = 0, b* = 0)、顏色座標(a* = -2, b* = -2)或基板的透射或反射顏色座標。應理解,除非另有說明,否則本文中所描述的製品的L*座標與參考點相同且不影響色移。在製品的參考點色移相對於基板定義的情況下,將製品的透射顏色座標與基板的透射顏色座標進行比較,且將製品的反射顏色座標與基板的反射顏色座標進行比較。
在一或多個具體實施例中,透射顏色及/或反射顏色的參考點色移可小於1或甚至小於0.5。在一或多個具體實施例中,透射顏色及/或反射顏色的參考點色移可為1.8、1.6、1.4、1.2、0.8、0.6、0.4、0.2、0及其間的所有範圍及子範圍。在參考點為顏色座標a*=0, b*=0的情況下,參考點色移由等式(2)計算: (2) 參考點色移 = √(( a* article) 2+ ( b* article) 2)
在一些實施例中,製品100可表現出透射顏色(或透射顏色座標)及反射顏色(或反射顏色座標),使得當參考點為基板的顏色座標、顏色座標a* = 0, b* = 0及顏色座標a* = -2, b* = -2中的任一者時,參考點色移小於2。
在一些實施例中,製品100可針對6°及20°入射表現出小於5、小於4、小於3、小於2或甚至小於1的由以下等式(3)給出的第一表面反射顏色。在一些實施方式中,製品100可針對自0°至60°入射的所有角度表現出小於10、小於9、小於8、小於7、小於6、小於5或甚至小於4的由以下等式(3)給出的第一表面反射顏色。 (3) 第一表面反射顏色 = √(( a* article) 2+ ( b* article) 2) 其中CIE L*、a*、b*比色系統中的反射顏色座標係在一或多個入射角度下量測的。
在一些實施例中,製品100可針對0°或接近法線入射表現出小於2、小於1.8、小於1.6、小於1.4、小於1.2、小於1.0或甚至小於0.8的由以下等式(4)給出的雙表面透射顏色。 (4) 雙表面透射顏色 = √(( a* article) 2+ ( b* article) 2) 其中CIE L*、a*、b*比色系統中的透射顏色座標係在0°或接近法線入射時量測的。
一或多個實施例的製品100或一或多個製品的抗反射表面122可在0°或接近法線入射時表現出約93%或更大、約94%或更大(例如約94%或更大、約95%或更大、約96%或更大、約96.5%或更大、約97或更大、約97.5%或更大、約98%或更大、約98.5%或更大或約99%或更大)的雙表面(例如經由兩個主表面112、114,且此等表面中的一者具有抗反射塗層120)適光平均透光率。
在一些實施例中,製品100或一或多個製品的抗反射表面122可在自約400 nm至約800 nm的範圍內的光學波長狀態內表現出約1%或更小(例如1%、0.9%、0.8%、0.75%、0.6%、0.5%或更小或0.25%或更小)的平均光反射。此等透光率及光反射值可在整個光學波長狀態內或在光學波長狀態的選定範圍內(例如100 nm波長範圍、150 nm波長範圍、200 nm波長範圍、250 nm波長範圍、280 nm波長範圍或300 nm波長範圍,在光學波長狀態內)觀察到。在一些實施例中,此等光反射及透射值可為總反射或總透射(考慮到抗反射表面122及相對的主表面114兩者上的反射或透射)。除非另有說明,否則平均反射或透射係在0度的入射照明角度下量測的(然而,此類量測可在45度或60度的入射照明角度下提供)。
一或多個實施例的製品100或一或多個製品的抗反射表面122可在0°或接近法線入射時在自約800 nm至約1000 nm、自約900 nm至1000 nm、自840 nm至860 nm或自930 nm至950 nm的紅外光譜中的光學波長狀態內表現出約93%或更大、約94%或更大或約95%或更大的雙表面平均透光率。在其他實施方式中,製品100可在0°或接近法線入射時在自約800 nm至約1000 nm、自約900 nm至1000 nm、自840 nm至860 nm或自930 nm至950 nm的紅外光譜中的光學波長狀態內表現出約85%或更大、約87%或更大、約89%或更大、約91%或更大、約93%或更大或約95%或更大的雙表面平均透光率。在一些實施例中,製品100或一或多個製品的抗反射表面122可在6°入射時在自約800 nm至約1000 nm、自約900 nm至1000 nm、自840 nm至860 nm或自930 nm至950 nm的紅外光譜內表現出約3%或更小、2.5%或更小、2%或更小、1.5%或更小、1%或更小、0.75%或更小或甚至約0.5%或更小的平均光反射。此等透光率及光反射值可在整個光學波長狀態內或在光學波長狀態的選定範圍內(例如100 nm波長範圍、150 nm波長範圍、200 nm波長範圍、250 nm波長範圍、280 nm波長範圍或300 nm波長範圍,在光學波長狀態內)觀察到。在此等實施例中的一些中,此等光反射及透射值可為總反射或總透射(考慮到抗反射表面122及相對的主表面114兩者上的反射或透射)。除非另有說明,否則此等實施例的平均反射或透射係在0度的入射照明角度下量測的(然而,此類量測可在45度或60度的入射照明角度下提供)。
在一些實施例中,一或多個實施例的製品100或一或多個製品的抗反射表面122可在6°及20°入射時在光學波長狀態內表現出約1%或更小、約0.9%或更小、約0.8%或更小、約0.7%或更小、約0.6%或更小、約0.5%或更小、約0.4%或更小、約0.3%或更小或約0.2%或更小的可見適光平均反射。可在自約0°至約20°、自約0°至約40°或自約0°至約60°的範圍內的入射照明角度下表現出此等適光平均反射值。如本文中所使用,「適光平均反射」藉由根據人眼的敏感度針對波長光譜對反射進行加權來模擬人眼的回應。根據已知慣例(例如CIE顏色空間慣例),適光平均反射亦可被定義為反射光的亮度或三色Y值。適光平均反射在等式(5)中被定義為光譜反射 R( λ)乘以光源光譜 I( λ)及與眼睛的光譜回應相關的CIE的顏色匹配函數
Figure 02_image001
( λ): (5) <R p> =
Figure 02_image003
在一些實施例中,一或多個製品的抗反射表面122 (亦即,當僅經由單側量測來量測抗反射表面122時)可表現出約1%或更小、約0.9%或更小、約0.7%或更小、約0.5%或更小、約0.45%或更小、約0.4%或更小、約0.35%或更小、約0.3%或更小、約0.25%或更小或約0.2%或更小的可見適光平均反射。在如本發明中所描述的此類「單側」量測中,藉由將該表面耦接至折射率匹配的吸收器來移除來自第二主表面(例如第1圖中所示出的表面114)的反射。
基板
基板110可包含無機氧化物材料且可包含非晶基板、結晶基板或其組合。在一或多個實施例中,基板表現出在自約1.45至約1.55的範圍內的折射率,例如1.45、1.46、1.47、1.48、1.49、1.50、1.51、1.52、1.53、1.54、1.55及其間的所有折射率。
合適的基板110可表現出在自約30 GPa至約120 GPa的範圍內的彈性模量(或楊氏模量)。在一些情況下,基板的彈性模量可介於約30 GPa至約110 GPa、約30 GPa至約100 GPa、約30 GPa至約90 GPa、約30 GPa至約80 GPa、約30 GPa至約70 GPa、約40 GPa至約120 GPa、約50 GPa至約120 GPa、約60 GPa至約120 GPa、約70 GPa至約120 GPa及其間的所有範圍及子範圍的範圍內。如本發明中所敘述的基板本身的楊氏模量值係指如由名稱為「用於金屬零件及非金屬零件兩者中的缺陷偵測的共振超音光譜的標準指南」的ASTM E2001-13中闡述的通用類型的共振超音光譜技術量測的值。
在一或多個實施例中,非晶基板可包含玻璃,其可為強化的或非強化的。合適玻璃的實例包含鈉鈣玻璃、鹼性鋁矽酸鹽玻璃、含鹼硼矽酸鹽玻璃及鹼性鋁硼矽酸鹽玻璃。在一些變體中,玻璃可不含鋰。在一或多個替代實施例中,基板110可包含結晶基板,例如玻璃陶瓷或陶瓷基板(其可為強化的或非強化的),或可包含單晶結構,例如藍寶石。在一或多個具體實施例中,基板110包含非晶基底(例如玻璃)及結晶包覆層(例如藍寶石層、多晶氧化鋁層及/或尖晶石(MgAl 2O 4)層)。
基板110可為實質上平坦的或薄片狀的,但其他實施例可利用彎曲或其他形狀的或雕塑般的基板。基板110可為實質上光學透明的、透明的且沒有光散射。在此類實施例中,基板可在光學波長狀態內表現出約85%或更大、約86%或更大、約87%或更大、約88%或更大、約89%或更大、約90%或更大、約91%或更大或約92%或更大的平均透光率。在一或多個替代實施例中,基板110可為不透明的或在光學波長狀態內表現出小於約10%、小於約9%、小於約8%、小於約7%、小於約6%、小於約5%、小於約4%、小於約3%、小於約2%、小於約1%或小於約0%的平均透光率。在一些實施例中,此等光反射及透射值可為總反射或總透射(考慮到基板的兩個主表面上的反射或透射)或可在基板的單側(亦即,僅在抗反射表面122上,而不考慮相對表面)觀察到。除非另有說明,否則平均反射或透射係在0度的入射照明角度下量測的(然而,此類量測可在45度或60度的入射照明角度下提供)。基板110可視情況表現出顏色,例如白色、黑色、紅色、藍色、綠色、黃色、橙色等。
另外或替代地,出於美觀及/或功能原因,基板110的實體厚度可沿著其尺寸中的一或多者改變。舉例而言,相較於基板110的更中心區,基板110的邊緣可更厚。基板110的長度、寬度及實體厚度尺寸亦可根據製品100的應用或用途而改變。
可使用各種不同製程來設置基板110。舉例而言,在基板110包含非晶基板(例如玻璃)的情況下,各種形成方法可包含浮法玻璃製程、滾軋製程、上拉製程及下拉製程,例如熔融拉製及狹縫拉製。
一旦形成,基板110可被強化以形成強化基板。如本文中所使用,術語「強化基板」可指已例如經由用較大離子對基板的表面中的較小離子進行離子交換而經化學強化的基板。然而,例如熱回火或利用基板的部分之間的熱膨脹係數的失配來產生壓縮應力及中心張力區的此項技術中已知的其他強化方法可用於形成強化基板。
在藉由離子交換製程對基板進行化學強化的情況下,基板的表面層中的離子被具有相同價或氧化態的較大離子替換或交換。離子交換製程通常藉由將基板浸入含有待與基板中的較小離子交換的較大離子的熔鹽浴中來進行。熟習此項技術者應瞭解,用於離子交換製程的參數(包含但不限於浴組成物及溫度、浸沒時間、基板在鹽浴(或浴)中的浸沒次數、多個鹽浴的使用及任何附加步驟(例如退火、洗滌等))通常由基板的組成物、所需壓縮應力(compressive stress,CS)及由強化操作產生的基板的壓縮應力(compressive stress,CS)層的所需深度(或層的深度)判定。作為實例,含鹼金屬玻璃基板的離子交換可藉由浸入含有鹽的至少一個熔融浴中來實現,該鹽例如但不限於較大鹼金屬離子的硝酸鹽、硫酸鹽及氯化物。熔融鹽浴的溫度通常介於約380℃至約450℃的範圍內,而浸沒時間的範圍介於約15分鐘至約40小時。然而,亦可使用與上述溫度及浸沒時間不同的溫度及浸沒時間。
此外,在浸沒之間利用洗滌及/或退火步驟將玻璃基板浸入多個離子交換浴中的離子交換製程的非限制性實例被描述於由Douglas C. Allan等人於2009年7月10日申請的名稱為「用於消費性應用的具有壓縮表面的玻璃(Glass with Compressive Surface for Consumer Applications)」的美國專利申請案第12/500,650號中(該申請案主張於2008年7月11日申請的美國臨時專利申請案第61/079,995號的優先權,其中玻璃基板藉由以多次連續離子交換處理浸入不同濃度的鹽浴中來進行強化);及由Christopher M. Lee等人於2012年11月20日發佈的名稱為「用於玻璃的化學強化的雙階段離子交換(Dual Stage Ion Exchange for Chemical Strengthening of Glass)」的美國專利第8,312,739號(該專利主張於2008年7月29日申請的美國臨時專利申請案第61/084,398號的優先權,其中玻璃基板藉由在用流出離子稀釋的第一浴中進行離子交換,然後浸入第二浴中來進行強化,該第二浴具有比第一浴更低濃度的流出離子)中。美國專利申請案第12/500,650號及美國專利第8,312,739號的內容以全文引用的方式併入本文中。
藉由離子交換實現的化學強化程度可基於中心張力(central tension,CT)、峰值CS、壓縮深度(depth of compression,DOC,其為沿著厚度的壓縮改變為張力的點)及離子層深度(depth of ion layer,DOL)的參數來量化。可在基板110的表面附近或在不同深度下的強化玻璃內量測峰值CS,該峰值CS為最大觀察壓縮應力。峰值CS值可包含強化基板的表面(CS s)處的所量測CS。在其他實施例中,峰值CS係在強化基板的表面下方量測的。壓縮應力(包含表面CS)藉由表面應力計(surface stress meter,FSM)使用諸如由Orihara產業株式會社(日本)製造的FSM-6000的市售儀器來量測。表面應力量測依賴於與玻璃的雙折射相關的應力光學係數(stress optical coefficient,SOC)的準確量測。SOC繼而根據ASTM標準C770-16 (名稱為「用於量測玻璃應力光學係數的標準測試方法(Standard Test Method for Measurement of Glass Stress-Optical Coefficient)」,其全部內容以引用的方式併入本文中)中所描述的程序C (玻璃盤法)量測。如本文中所使用,DOC意指本文中所描述的化學強化鹼性鋁矽酸鹽玻璃製品中的應力自壓縮改變為拉伸的深度。DOC可藉由FSM或散射光偏光鏡(scattered light polariscope,SCALP)取決於離子交換處理進行量測。在藉由將鉀離子交換至玻璃製品中來產生玻璃製品中的應力的情況下,FSM用於量測DOC。在藉由將鈉離子交換至玻璃製品中來產生應力的情況下,SCALP用於量測DOC。在藉由將鉀離子及鈉離子兩者交換至玻璃中來產生玻璃製品中的應力的情況下,藉由SCALP來量測DOC,此係由於據信,鈉的交換深度指示DOC,而鉀離子的交換深度指示壓縮應力的量值的變化(而非應力自壓縮至拉伸的變化);藉由FSM來量測此類玻璃製品中的鉀離子的交換深度。使用此項技術中已知的散射光偏光鏡(scattered light polariscope,SCALP)技術量測最大CT值。折射近場(Refracted near-field,RNF)方法或SCALP可用於量測(用圖表表示、視覺描繪或以其他方式繪製)完整的應力分佈。當利用RNF方法來量測應力分佈時,在RNF方法中利用由SCALP提供的最大CT值。特定言之,由RNF量測的應力分佈係力平衡的且被校準至由SCALP量測提供的最大CT值。RNF方法被描述於名稱為「用於量測玻璃樣品的輪廓特性的系統及方法(Systems and methods for measuring a profile characteristic of a glass sample)」的美國專利第8,854,623號中,該專利以全文引用的方式併入本文中。特定言之,RNF方法包含:將玻璃製品與參考塊相鄰置放;產生以自1 Hz至50 Hz的速率在正交極化之間切換的極化切換光束;量測極化切換光束中的功率量;及產生極化切換參考訊號,其中在正交極化中的每一者中的所量測功率量在彼此的50%內。該方法進一步包含將極化切換光束穿過不同深度的玻璃樣品及參考塊透射至玻璃樣品中,然後使用中繼光學系統將所透射極化切換光束中繼至訊號光電偵測器,其中訊號光電偵測器產生極化切換偵測器訊號。該方法亦包含將偵測器訊號除以參考訊號以形成標準化偵測器訊號及根據標準化偵測器訊號來判定玻璃樣品的輪廓特性。
在一些實施例中,強化基板110可具有250 MPa或更大、300 MPa或更大、400 MPa或更大、450 MPa或更大、500 MPa或更大、550 MPa或更大、600 MPa或更大、650 MPa或更大、700 MPa或更大、750 MPa或更大或800 MPa或更大的峰值CS。強化基板可具有10 μm或更大、15 μm或更大、20 μm或更大(例如25 μm、30 μm、35 μm、40 μm、45 μm、50 μm或更大)的DOC及/或10 MPa或更大、20 MPa或更大、30 MPa或更大、40 MPa或更大(例如42 MPa、45 MPa或50 MPa或更大)但小於100 MPa (例如95、90、85、80、75、70、65、60、55 MPa或更小)的CT。在一或多個具體實施例中,強化基板具有以下中的一或多者:大於500 MPa的峰值CS、大於15 μm的DOC及大於18 MPa的CT。
可用於基板中的實例玻璃可包含鹼性鋁矽酸鹽玻璃組成物或鹼性鋁硼矽酸鹽玻璃組成物,但亦考慮其他玻璃組成物。此類玻璃組成物能夠藉由離子交換製程進行化學強化。一種實例玻璃組成物包括SiO 2、B 2O 3及Na 2O,其中(SiO 2+ B 2O 3) ≥ 66莫耳%且Na 2O ≥ 9莫耳%。在一些實施例中,玻璃組成物包含約6重量%的氧化鋁或更多。在一些實施例中,基板包含具有一或多種鹼土金屬氧化物的玻璃組成物,使得鹼土金屬氧化物的含量為約5重量%或更多。在一些實施例中,合適的玻璃組成物進一步包括K 2O、MgO或CaO中的至少一者。在一些實施例中,用於基板中的玻璃組成物可包括61至75莫耳%的SiO 2;7至15莫耳%的Al 2O 3;0至12莫耳%的B 2O 3;9至21莫耳%的Na 2O;0至4莫耳%的K 2O;0至7莫耳%的MgO;及0至3莫耳%的CaO。
適合於基板的另一實例玻璃組成物包括:60至70莫耳%的SiO 2;6至14莫耳%的Al 2O 3;0至15莫耳%的B 2O 3;0至15莫耳%的Li 2O;0至20莫耳%的Na 2O;0至10莫耳%的K 2O;0至8莫耳%的MgO;0至10莫耳%的CaO;0至5莫耳%的ZrO 2;0至1莫耳%的SnO 2;0至1莫耳%的CeO 2;小於50 ppm的As 2O 3;及小於50 ppm的Sb 2O 3;其中12莫耳% ≤ (Li 2O + Na 2O + K 2O) ≤ 20莫耳%且0莫耳% ≤ (MgO + CaO) ≤ 10莫耳%。
適合於基板的又一實例玻璃組成物包括:63.5至66.5莫耳%的SiO 2;8至12莫耳%的Al 2O 3;0至3莫耳%的B 2O 3;0至5莫耳%的Li 2O;8至18莫耳%的Na 2O;0至5莫耳%的K 2O;1至7莫耳%的MgO;0至2.5莫耳%的CaO;0至3莫耳%的ZrO 2;0.05至0.25莫耳%的SnO 2;0.05至0.5莫耳%的CeO 2;小於50 ppm的As 2O 3;及小於50 ppm的Sb 2O 3;其中14莫耳% ≤ (Li 2O + Na 2O + K 2O) ≤ 18莫耳%且2莫耳% ≤ (MgO + CaO) ≤ 7莫耳%。
在一些實施例中,適合於基板110的鹼性鋁矽酸鹽玻璃組成物包括氧化鋁、至少一種鹼金屬,且在一些實施例中,大於50莫耳%的SiO 2,在其他實施例中,58莫耳%的SiO 2或更多,且在又一些實施例中,60莫耳%的SiO 2或更多,其中比率(Al 2O 3+ B 2O 3)/∑改性劑(亦即,改性劑之和)大於1,其中此等組成物的比率以莫耳%表示,且改性劑為鹼金屬氧化物。在特定實施例中,玻璃組成物包括:58至72莫耳%的SiO 2;9至17莫耳%的Al 2O 3;2至12莫耳%的B 2O 3;8至16莫耳%的Na 2O;及0至4莫耳%的K 2O,其中比率(Al 2O 3+ B 2O 3)/∑改性劑(亦即,改性劑之和)大於1。
在一些實施例中,基板110可包含鹼性鋁矽酸鹽玻璃組成物,該鹼性鋁矽酸鹽玻璃組成物包括:64至68莫耳%的SiO 2;12至16莫耳%的Na 2O;8至12莫耳%的Al 2O 3;0至3莫耳%的B 2O 3;2至5莫耳%的K 2O;4至6莫耳%的MgO;及0至5莫耳%的CaO,其中:66莫耳% ≤ SiO 2+ B 2O 3+ CaO ≤ 69莫耳%;Na 2O + K 2O + B 2O 3+ MgO + CaO + SrO > 10莫耳%;5莫耳% ≤ MgO + CaO + SrO ≤ 8莫耳%;(Na 2O + B 2O 3) - Al 2O 3≤ 2莫耳%;2莫耳% ≤ Na 2O - Al 2O 3≤ 6莫耳%;且4莫耳% ≤ (Na 2O + K 2O) - Al 2O 3≤ 10莫耳%。
在一些實施例中,基板110可包括鹼性鋁矽酸鹽玻璃組成物,該鹼性鋁矽酸鹽玻璃組成物包括:2莫耳%或更多的Al 2O 3及/或ZrO 2,或4莫耳%或更多的Al 2O 3及/或ZrO 2
在基板110包含結晶基板的情況下,基板可包含單晶,其可包含Al 2O 3。此類單晶基板被稱為藍寶石。用於結晶基板的其他合適材料包含多晶氧化鋁層及/或尖晶石(MgAl 2O 4)。
視情況,結晶基板110可包含玻璃陶瓷基板,其可為強化的或非強化的。合適的玻璃陶瓷的實例可包含Li 2O-Al 2O 3-SiO 2系統(亦即,LAS系統)玻璃陶瓷、MgO-Al 2O 3-SiO 2系統(亦即,MAS系統)玻璃陶瓷及/或包含主要晶相的玻璃陶瓷,主要晶相包含β-石英固溶體、β-鋰輝石ss、堇青石及二矽酸鋰。可使用本文中所揭示的化學強化製程來強化玻璃陶瓷基板。在一或多個實施例中,MAS系統玻璃陶瓷基板可在Li 2SO 4熔鹽中經強化,由此可發生2Li +與Mg 2+的交換。
根據一或多個實施例,基板110可具有範圍介於約50 μm至約5 mm的實體厚度。實例基板110的實體厚度的範圍介於約50 μm至約500 μm (例如50、100、200、300、400或500 μm)。另一實例基板110的實體厚度的範圍介於約500 μm至約1000 μm (例如500、600、700、800、900或1000 μm)。基板110可具有大於約1 mm (例如約2、3、4或5 mm)的實體厚度。在一或多個具體實施例中,基板110可具有2 mm或更小或小於1 mm的實體厚度。基板110可被酸拋光或以其他方式處理以移除或減少表面缺陷的影響。
抗反射塗層
如第1圖中所示出,製品100的抗反射塗層120可包含複數個層120A、120B、120C。在一些實施例中,一或多個層可安置於基板110的與抗反射塗層120相對的一側(亦即,安置於第二主表面114上) (第1圖中未示出)。在製品100的一些實施例中,層120C (如第1圖中所示出)可充當頂蓋層(例如第2A圖至第2C圖中所示出且在以下部分中描述的頂蓋層131)。
抗反射塗層120的實體厚度可介於約50 nm至小於500 nm的範圍內。在一些情況下,抗反射塗層120的實體厚度可介於約10 nm至小於500 nm、約50 nm至小於500 nm、約75 nm至小於500 nm、約100 nm至小於500 nm、約125 nm至小於500 nm、約150 nm至小於500 nm、約175 nm至小於500 nm、約200 nm至小於500 nm、約225 nm至小於500 nm、約250 nm至小於500 nm、約300 nm至小於500 nm、約350 nm至小於500 nm、約400 nm至小於500 nm、約450 nm至小於500 nm、約200 nm至約450 nm及其間的所有範圍及子範圍的範圍內。舉例而言,抗反射塗層120的實體厚度可為:自10 nm至490 nm、自10 nm至480 nm、自10 nm至475 nm、自10 nm至460 nm、自10 nm至450 nm、自10 nm至430 nm、自10 nm至425 nm、自10 nm至420 nm、自10 nm至410 nm、自10 nm至400 nm、自10 nm至350 nm、自10 nm至300 nm、自10 nm至250 nm、自10 nm至225 nm、自10 nm至200 nm、自15 nm至490 nm、自20 nm至490 nm、自25 nm至490 nm、自30 nm至490 nm、自35 nm至490 nm、自40 nm至490 nm、自45 nm至490 nm、自50 nm至490 nm、自55 nm至490 nm、自60 nm至490 nm、自65 nm至490 nm、自70 nm至490 nm、自75 nm至490 nm、自80 nm至490 nm、自85 nm至490 nm、自90 nm至490 nm、自95 nm至490 nm、自100 nm至490 nm、自10 nm至485 nm、自15 nm至480 nm、自20 nm至475 nm、自25 nm至460 nm、自30 nm至450 nm、自35 nm至440 nm、自40 nm至430 nm、自50 nm至425 nm、自55 nm至420 nm、自60 nm至410 nm、自70 nm至400 nm、自75 nm至400 nm、自80 nm至390 nm、自90 nm至380 nm、自100 nm至375 nm、自110 nm至370 nm、自120 nm至360 nm、自125 nm至350 nm、自130 nm至325 nm、自140 nm至320 nm、自150 nm至310 nm、自160 nm至300 nm、自170 nm至300 nm、自175 nm至300 nm、自180 nm至290 nm、自190 nm至280 nm、自200 nm至275 nm、自275 nm至350 nm。另外,在第1圖(及如隨後的對應描述中詳述的第2A圖至第2C圖)中所示出的製品100的一些實施方式中,抗反射塗層120 (同樣,在本文中亦被稱為光學膜結構120)的實體厚度可為50 nm、75 nm、100 nm、125 nm、150 nm、160 nm、170 nm、180 nm、190 nm、200 nm、210 nm、220 nm、230 nm、240 nm、250 nm、260 nm、270 nm、280 nm、290 nm、300 nm、310 nm、320 nm、330 nm、340 nm、350 nm、360 nm、370 nm、380 nm、390 nm、400 nm、410 nm、420 nm、430 nm、440 nm、450 nm、475 nm及500 nm以及前述厚度之間的所有實體厚度值。
在一或多個實施例中,如第2A圖、第2B圖及第2C圖中所示出,製品100的抗反射塗層120可包含階段130,該階段130包括兩個或更多個層。在一或多個實施例中,兩個或更多個層可表徵為具有彼此不同的折射率。在一些實施例中,階段130包含第一低RI層130A及第二高RI層130B。第一低RI層130A及第二高RI層130B的折射率的差值可為約0.01或更大、0.05或更大、0.1或更大或甚至0.2或更大。在一些實施方式中,低RI層130A的折射率在基板110的折射率內,使得低RI層130A的折射率小於或等於約1.8;且高RI層130B具有大於1.8、大於1.9、大於2.0、大於2.1或甚至大於2.2的折射率。
如第2A圖中所示出,製品100的抗反射塗層120可包含複數個階段(130)。單個階段包含第一低RI層130A及第二高RI層130B,使得當提供複數個階段時,第一低RI層130A (出於說明而指定為「L」)及第二高RI層130B (出於說明而指定為「H」)按以下層順序交替:L/H/L/H,使得第一低RI層及第二高RI層看起來沿著抗反射塗層120的實體厚度交替。在第2A圖中的實例中,抗反射塗層120包含兩(2)個階段130,使得分別存在兩對低RI及高RI層130A及130B (亦即,在頂蓋層131下方的總共四層的130A、130B)。在第2B圖中的實例中,抗反射塗層120包含三(3)個階段130,使得分別存在三對低RI及高RI層130A及130B (亦即,在頂蓋層131下方的總共六層的130A、130B)。在第2C圖中的實例中,抗反射塗層120包含四(4)個階段130,使得分別存在四對低RI及高RI層130A及130B (亦即,在頂蓋層131下方的總共八層的130A、130B)。在一些實施例中,抗反射塗層120可包含一(1)個階段、兩(2)個階段、三(3)個階段或四(4)個階段130。 較佳地,抗反射塗層120包含兩(2)個階段或三(3)個階段130。
在第2A圖至第2C圖中所示出的製品100的實施例中,抗反射塗層120包含附加頂蓋層131,該附加頂蓋層131可包含比第二高RI層130B更低的折射率材料。在一些實施方式中,頂蓋層131的折射率與低RI層130A的折射率相同或實質上相同。亦即,頂蓋層131可為低RI層,該低RI層具有低RI層130A的相同組成物、結構及折射率。
在第2A圖至第2C圖中所示出的製品100的實施例中,抗反射塗層120經組態以使得一個低RI層130A直接位於基板110的主表面(例如主表面112)上且安置成與基板110的主表面(例如主表面112)接觸。根據實施例,直接位於基板110的主表面112、114中的一者上且安置成與基板110的主表面112、114中的一者接觸的低RI層130A可具有與其他低RI層130A相同的組成物,或其可具有不同組成物,其限制條件為低RI層130A具有小於或等於約1.8的折射率。
如本文中所使用,術語「低RI」及「高RI」係指抗反射塗層120內的每一層的RI相對於另一層的RI的相對值(例如低RI <高RI)。在一或多個實施例中,術語「低RI」在與第一低RI層130A或頂蓋層131一起使用時包含自約1.3至約1.8的範圍。在一或多個實施例中,術語「高RI」在與高RI層130B一起使用時包含自大於約1.8至約2.5的範圍,例如約1.9、2.0、2.1、2.2、2.3、2.4或2.5。
適合用於抗反射塗層120中的示例性材料包含:SiO 2、Al 2O 3、GeO 2、SiO x、AlO xN y、AlN、氧摻雜的SiN x、SiN x、SiO xN y、Si uAl vO xN y、TiO 2、ZrO 2、TiN、MgO、HfO 2、Y 2O 3、ZrO 2、類金剛石碳及MgAl 2O 4
用於低RI層130A中的合適材料的一些實例包含SiO 2、Al 2O 3、GeO 2、SiO x、AlO xN y、SiO xN y、Si uAl vO xN y、MgO及MgAl 2O 4。可使用於第一低RI層130A (亦即,與基板110接觸的層130A)中的材料的氮含量最小化(例如在材料中,例如Al 2O 3及MgAl 2O 4)。在一些實施例中,抗反射塗層120中的低RI層130A及頂蓋層131可包括含矽氧化物(例如二氧化矽)、含矽氮化物(例如氧化物摻雜的氮化矽、氮化矽等)及含矽氮氧化物(例如氮氧化矽)中的一或多者。在製品100的一些實施例中,低RI層130A及頂蓋層131包括含矽氧化物,例如SiO 2或SiO x
用於高RI層130B中的合適材料的一些實例包含Si uAl vO xN y、AlN、氧摻雜的SiN x、Si 3N 4、AlO xN y、SiO xN y、HfO 2、TiO 2、ZrO 2、Y 2O 3、ZrO 2、Al 2O 3及類金剛石碳。可使用於高RI層130B的材料的氧含量最小化,尤其係在SiN x或AlN x材料中。前述材料可被氫化至多約30重量%。在一些實施例中,抗反射塗層120中的高RI層130B可包括含矽氧化物(例如二氧化矽)、含矽氮化物(例如氧化物摻雜的氮化矽、氮化矽等)及含矽氮氧化物(例如氮氧化矽)中的一或多者。在製品100的一些實施例中,高RI層130B包括含矽氮化物或含矽氮氧化物,例如Si 3N 4或SiO xN y。可具體地表徵高RI層的硬度。在一些實施例中,如藉由Berkovich壓頭硬度測試在約50 nm或更大的壓痕深度上(亦即,如在具有安置於基板110上的層130B的材料的2微米厚的層的硬度測試堆疊上)量測的高RI層130B的最大硬度可為約18 GPa或更大、約20 GPa或更大、約22 GPa或更大、約24 GPa或更大、約26 GPa或更大及其間的所有值。
如本文中所使用,本發明中的「AlO xN y」、「SiO xN y」及「Si uAl xO yN z」材料包含根據下標「u」、「x」、「y」及「z」的特定數值及範圍描述的各種氮氧化鋁、氮氧化矽及氮氧化矽鋁材料,如本發明領域的一般熟習此項技術者所理解的。亦即,利用「整數式」描述來描述固體係常見的,例如Al 2O 3。使用等效的「原子分率式(atomic fraction formula)」描述來描述固體亦係常見的,例如Al 0.4O 0.6,其等價於Al 2O 3。在原子分率式中,式中的所有原子之和為0.4 + 0.6 = 1,且式中的Al及O的原子分率分別為0.4及0.6。原子分率描述在許多通用教科書中進行了描述,且原子分率描述通常用於描述合金。 參見例如:(i) Charles Kittel,固態物理學導論(Introduction to Solid State Physics),第七版,John Wiley及Sons公司,紐約,1996年,第611至627頁;(ii) Smart及Moore,固態化學(Solid State Chemistry),Chapman及Hall大學及專業部介紹(An introduction, Chapman & Hall University and Professional Division),倫敦,1992年,第136至151頁;及(iii) James F. Shackelford,工程師材料科學導論(Introduction to Materials Science for Engineers),第六版,社會學(Pearson Prentice Hall),新澤西,2005年,第404至418頁。
再次提及本發明中的「AlO xN y」、「SiO xN y」及「Si uAl xO yN z」材料,下標允許一般熟習此項技術者將此等材料稱為沒有指定特定下標值的一類材料。關於沒有指定特定下標值的合金(例如氧化鋁)一般來說,我們可談及Al vO x。描述Al vO x可表示Al 2O 3或Al 0.4O 0.6中任一者。若將v + x選擇成總和為1 (亦即,v + x = 1),則式將為原子分率描述。類似地,可描述更複雜的混合物,例如Si uAl vO xN y,若總和u + v + x + y等於1,則我們將具有原子分率描述情況。
再次提及本發明中的「AlO xN y」、「SiO xN y」及「Si uAl xO yN z」材料,此等符號允許一般熟習此項技術者容易地與此等材料及其他材料進行比較。亦即,原子分率式有時更易於用於比較。舉例而言,由(Al 2O 3) 0.3(AlN) 0.7組成的實例合金接近地等價於式描述Al 0.448O 0.31N 0.241且亦等價於Al 367O 254N 198。由(Al 2O 3) 0.4(AlN) 0.6組成的另一實例合金接近地等價於式描述Al 0.438O 0.375N 0.188及Al 37O 32N 16。原子分率式Al 0.448O 0.31N 0.241及Al 0.438O 0.375N 0.188相對易於相互比較。舉例而言,Al的原子分率減少了0.01,O的原子分率增加了0.065且N的原子分率減少了0.053。比較整數式描述Al 367O 254N 198及Al 37O 32N 16需要更詳細的計算及考慮。因此,有時較佳地使用固體的原子分率式描述。儘管如此,Al vO xN y的使用係普遍的,此係由於其捕獲含有Al、O及N原子的任何合金。
如本發明領域的一般熟習此項技術者所理解的,關於用於抗反射塗層120的前述材料(例如AlN)中的任一者,下標「u」、「x」、「y」及「z」中的任一者可在0至1之間變化,下標之和將小於或等於一,且組成物的差額為材料中的第一元素(例如Si或Al)。此外,一般熟習此項技術者可認識到,「Si uAl xO yN z」可經組態以使得「u」等於零且材料可被描述為「AlO xN y」。更進一步地,用於抗反射塗層120的前述組成物不包括會導致純元素形式(例如純矽、純鋁金屬、氧氣等)的下標組合。最終,一般熟習此項技術者亦將認識到,前述組成物可包含未明確表示的其他元素(例如氫),此可產生非化學計量組成物(例如SiN x相對於Si 3N 4)。因此,用於光學膜的前述材料可指示SiO 2-Al 2O 3-SiN x-AlN或SiO 2-Al 2O 3-Si 3N 4-AlN相圖內的可用空間,此取決於前述組成物表示中的下標的值。
在一或多個實施例中,製品100的抗反射塗層120的層中的一或多者(例如第2A圖至第2C圖中所示出)可包含特定光學厚度範圍。如本文中所使用,術語「光學厚度」由(n*d)判定,其中「n」係指子層的RI,且「d」係指層的實體厚度。在一或多個實施例中,抗反射塗層120的層中的至少一者可包含介於約2 nm至約200 nm、約10 nm至約100 nm或約15 nm至約100 nm的範圍內的光學厚度。在一些實施例中,抗反射塗層120中的所有層具有介於約2 nm至約200 nm、約10 nm至約100 nm或約15 nm至約100 nm的範圍內的光學厚度。在一些情況下,抗反射塗層120的至少一個層具有約50 nm或更大的光學厚度。在一些情況下,低RI層130A及頂蓋層131中的每一者具有介於約2 nm至約200 nm、約10 nm至約100 nm或約15 nm至約100 nm的範圍內的光學厚度。在其他情況下,高RI層130B中的每一者具有介於約2 nm至約200 nm、約10 nm至約100 nm或約15 nm至約100 nm的範圍內的光學厚度。在一些實施例中,高RI層130B中的每一者具有介於約2 nm至約500 nm,或約10 nm至約490 nm,或約15 nm至約480 nm,或約25 nm至約475 nm,或約25 nm至約470 nm,或約30 nm至約465 nm,或約35 nm至約460 nm,或約40 nm至約455 nm,或約45 nm至約450 nm及此等值之間的任何及所有子範圍的範圍內的光學厚度。在一些實施例中,頂蓋層131 (參見第2A圖至第2C圖及第3圖)或用於沒有頂蓋層131的組態的最外部低RI層130A具有小於約100 nm、小於約90 nm、小於約 85 nm或小於80 nm的實體厚度。在製品100的其他實施例中,頂蓋層131具有自80 nm至100 nm或自85 nm至95 nm的實體厚度。在一些實施方式中,頂蓋層131具有70 nm、75 nm、80 nm、85 nm、90 nm、95 nm、100 nm、105 nm、110 nm、115 nm、120 nm、125 nm或前述厚度之間的厚度值中的任一者的實體厚度。
如先前所提及,製品100的實施例經組態以使得抗反射塗層120的層中的一或多者的實體厚度最小化。在一或多個實施例中,使高RI層130B及/或低RI層130A的實體厚度最小化,以使得其總和為約50 nm至小於約500 nm。在一或多個實施例中,高RI層130B、低RI層130A及任何頂蓋層131的組合實體厚度可為:自10 nm至490 nm、自10 nm至480 nm、自10 nm至475 nm、自10 nm至460 nm、自10 nm至450 nm、自10 nm至430 nm、自10 nm至425 nm、自10 nm至420 nm、自10 nm至410 nm、自10 nm至400 nm、自10 nm至350 nm、自10 nm至300 nm、自10 nm至250 nm、自10 nm至225 nm、自10 nm至200 nm、自15 nm至490 nm、自20 nm至490 nm、自25 nm至490 nm、自30 nm至490 nm、自35 nm至490 nm、自40 nm至490 nm、自45 nm至490 nm、自50 nm至490 nm、自55 nm至490 nm、自60 nm至490 nm、自65 nm至490 nm、自70 nm至490 nm、自75 nm至490 nm、自80 nm至490 nm、自85 nm至490 nm、自90 nm至490 nm、自95 nm至490 nm、自100 nm至490 nm、自10 nm至485 nm、自15 nm至480 nm、自20 nm至475 nm、自25 nm至460 nm、自30 nm至450 nm、自35 nm至440 nm、自40 nm至430 nm、自50 nm至425 nm、自55 nm至420 nm、自60 nm至410 nm、自70 nm至400 nm、自75 nm至400 nm、自80 nm至390 nm、自90 nm至380 nm、自100 nm至375 nm、自110 nm至370 nm、自120 nm至360 nm、自125 nm至350 nm、自130 nm至325 nm、自140 nm至320 nm、自150 nm至310 nm、自160 nm至300 nm、自170 nm至300 nm、自175 nm至300 nm、自180 nm至290 nm、自190 nm至280 nm、自200 nm至275 nm、自275 nm至350 nm。另外,在第1圖(及如隨後的對應描述中詳述的第2A圖至第2C圖)中所示出的製品100的一些實施方式中,高RI層130B、低RI層130A及任何頂蓋層131的組合實體厚度可為50 nm、75 nm、100 nm、125 nm、150 nm、160 nm、170 nm、180 nm、190 nm、200 nm、210 nm、220 nm、230 nm、240 nm、250 nm、260 nm、270 nm、280 nm、290 nm、300 nm、310 nm、320 nm、330 nm、340 nm、350 nm、360 nm、370 nm、380 nm、390 nm、400 nm、410 nm、420 nm、430 nm、440 nm、450 nm、475 nm及500 nm以及前述厚度之間的所有實體厚度值。
在一或多個實施例中,可表徵第2A圖至第2C圖中所示出的製品100的抗反射塗層120的高RI層130B的組合實體厚度。舉例而言,在一些實施例中,高RI層130B的組合實體厚度可為約90 nm或更大、約100 nm或更大、約150 nm或更大、約200 nm或更大、約250 nm或更大或約300 nm或更大,但小於500 nm。組合實體厚度為抗反射塗層120中的個別高RI層130B的實體厚度的計算組合,即使在存在中間低RI層130A或其他層時亦係如此。在一些實施例中,亦可包括高硬度材料(例如氮化物或氮氧化物)的高RI層130B的組合實體厚度可為抗反射塗層的總實體厚度(或替代地,在體積的上下文中亦提及)的約30%至約60%。在一些實施方式中,亦可包括高硬度材料(例如氮化物或氮氧化物)的高RI層130B的組合實體厚度可為抗反射塗層的總實體厚度的約40%至約60%或約45%至約55%。舉例而言,高RI層130B的組合實體厚度(或體積)抗反射塗層120的總實體厚度(或體積)的可為約30%、35%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%或60%。在不受理論的束縛的情況下,製品100的實施例經組態以具有高RI層130B的組合厚度級別,以維持耐磨性及光學性質的周密平衡(例如,如在紅外光譜中的最大硬度級別及光透射所表明的,如亦在本發明中詳述的)。在> 60%的較高組合厚度級別下,耐磨性可為可接受的,但相對於本發明中概述的級別,光學性質可能會有所降低。相反,在> 40%的較低組合厚度級別下,光學性質可為可接受的,但機械性質可能會降低至低於本發明中概述的彼等級別的級別。
在第2A圖至第2C圖中所示出的製品100的一或多個實施例中,抗反射塗層120中的最厚的高RI層130B (例如頂蓋層131下方的高RI層130B)可經組態以具有範圍介於100 nm至250 nm、120 nm至180 nm或125 nm至160 nm的實體厚度。在第2A圖至第2C圖中所示出的製品100的一些實施方式中,直接位於基板110的第一主表面112及第二主表面114上且安置成與基板110的第一主表面112及第二主表面114接觸的第一低RI層130A可經組態以具有範圍介於10 nm至40 nm、15 nm至35 nm或20 nm至30 nm的實體厚度。在不受理論的束縛的情況下,製品100的在前述實體厚度中的一或多者的範圍介於直接位於基板110的第一主表面112及第二主表面114上且安置成與基板110的第一主表面112及第二主表面114接觸的最厚的高RI層130B及低RI層130A的情況下組態的實施例可表現出耐磨性及光學性質的優異組合(例如,如在紅外光譜中的最大硬度級別及光反射及/或透射所表明的,如亦在本發明中詳述的)。
製品100 (例如以第2A圖至第2C圖中的示例性形式示出)可包含安置於抗反射塗層上的一或多個附加塗層140,如第3圖中所示出。在一或多個實施例中,附加塗層可包含易清潔塗層。合適的易清潔塗層的實例被描述於2012年11月30日申請的名稱為「具有光學及易清潔塗層的玻璃製品的製造製程(PROCESS FOR MAKING OF GLASS ARTICLES WITH OPTICAL AND EASY-TO-CLEAN COATINGS)」的美國專利申請案第13/690,904號中,該專利申請案以引用的方式全部併入本文中。易清潔塗層可具有介於約5 nm至約50 nm的範圍內的實體厚度且可包含已知材料,例如氟化矽烷。在一些實施例中,易清潔塗層可具有介於約1 nm至約40 nm、約1 nm至約30 nm、約1 nm至約25 nm、約1 nm至約20 nm、約1 nm至約15 nm、約1 nm至約10 nm、約5 nm至約50 nm、約10 nm至約50 nm、約15 nm至約50 nm,約7 nm至約20 nm、約7 nm至約15 nm、約7 nm至約12 nm或約7 nm至約10 nm及其間的所有範圍及子範圍的範圍內的實體厚度。
附加塗層140可包含耐刮擦塗層。用於耐刮擦塗層中的示例性材料可包含無機碳化物、氮化物、氧化物、類金剛石材料或此等的組合。用於耐刮擦塗層的合適材料的實例包含金屬氧化物、金屬氮化物、金屬氮氧化物、金屬碳化物、金屬碳氧化物及/或其組合。示例性金屬包含B、Al、Si、Ti、V、Cr、Y、Zr、Nb、Mo、Sn、Hf、Ta及W。可用於耐刮擦塗層中的材料的具體實例可包含Al 2O 3、AlN、AlO xN y、Si 3N 4、SiO xN y、Si uAl vO xN y、金剛石、類金剛石碳、Si xC y、Si xO yC z、ZrO 2、TiO xN y及其組合。
在一些實施例中,附加塗層140包含易清潔材料與耐刮擦材料的組合。在一個實例中,該組合包含易清潔材料及類金剛石碳。此類附加塗層140可具有介於約5 nm至約20 nm的範圍內的實體厚度。附加塗層140的成分可設置於分離層中。舉例而言,類金剛石碳材料可安置為第一層,且易清潔材料可安置為類金剛石碳的第一層上的第二層。第一層及第二層的實體厚度可介於上面為附加塗層提供的範圍內。舉例而言,第一層的類金剛石碳可具有約1 nm至約20 nm或自約4 nm至約15 nm (或更具體地約10 nm)的實體厚度,而第二層的易清潔材料可具有約1 nm至約10 nm (或更具體地約6 nm)的實體厚度。類金剛石塗層可包含四面體非晶碳(tetrahedral amorphous carbon,Ta-C)、Ta-C:H及/或Ta-C-H。
本發明的另一態樣係關於一種用於形成本文中所描述的製品100 (例如第1圖至第3圖中所示出)的方法。在一些實施例中,該方法包含:在塗層腔室中設置具有主表面的基板;在塗層腔室中形成真空;在主表面上形成具有約500 nm或更小的實體厚度的耐久性抗反射塗層,視情況形成附加塗層,該附加塗層包括易清潔塗層及耐刮擦塗層中的至少一者,如位於抗反射塗層上;及自塗層腔室移除基板。在一或多個實施例中,抗反射塗層及附加塗層形成於相同塗層腔室中或在分離塗層腔室中不破壞真空。
在一或多個實施例中,該方法可包含將基板裝載於載體上,然後在裝載閘條件下,使用該等載體來將基板移入及移出不同塗層腔室,以使得在移動基板時保留真空。
抗反射塗層120 (例如包含層130A、130B及頂蓋層131)及/或附加塗層140可使用各種沉積方法來形成,例如真空沉積技術、化學氣相沉積(例如電漿增強型化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)、低壓化學氣相沉積、大氣壓化學氣相沉積及電漿增強型大氣壓化學氣相沉積)、物理氣相沉積(例如反應性或非反應性濺鍍或雷射剝蝕)、熱或電子束蒸發及/或原子層沉積。亦可使用基於液體的方法,例如噴塗或狹縫塗佈。在利用真空沉積的情況下,在線製程可用於在一次沉積運行中形成抗反射塗層120及/或附加塗層140。在一些情況下,真空沉積可由線性PECVD源進行。在方法及根據方法製造的製品100的一些實施方式中,可使用濺鍍製程(例如反應性濺鍍製程)、化學氣相沉積(chemical vapor deposition,CVD)製程、電漿增強型化學氣相沉積製程或此等製程的某種組合來製備抗反射塗層120。在一種實施方式中,可根據反應性濺鍍製程來製備包括低RI層130A、高RI層130B及頂蓋層131的抗反射塗層120。根據一些實施例,製品100的抗反射塗層120 (包含低RI層130A、高RI層130B及頂蓋層131)在轉鼓式塗佈機中使用金屬模式反應性濺鍍來製程。反應性濺鍍製程條件係經由仔細實驗定義的,以實現硬度、折射率、光學透明度、低顏色及受控膜應力的所需組合。
在一些實施例中,方法可包含控制抗反射塗層120 (例如包含其低RI層130A、高RI層130B及頂蓋層131)及/或附加塗層140的實體厚度以使得其沿著抗反射表面122的約80%或更多的區域的變化不超過約4%,或在沿著基板區域的任何點處與每一層的目標實體厚度的變化不超過約4%。在一些實施例中,控制抗反射層塗層120及/或附加塗層140的實體厚度以使得其沿著抗反射表面122的約95%或更多的區域的變化不超過約4%。
本文中所揭示的製品100 (例如第1圖至第3圖中所示出)可結合於裝置製品中,該裝置製品例如具有顯示器的裝置製品(或顯示裝置製品)及一或多個相機及/或感測器(例如消費性電子產品,包含行動電話、平板、電腦、導航系統、可穿戴裝置(例如手錶)及類似者)、擴增實境顯示器、抬頭顯示器、基於眼鏡的顯示器、建築裝置製品、運輸裝置製品(例如汽車、列車、飛機、海輪等)、電器裝置製品或受益於某種透明度、耐刮擦性、耐磨性或其組合的任何裝置製品。如先前所提及,此等顯示裝置可包含在可見光譜中操作的顯示器及主要在紅外光譜中操作的一或多個感測器及/或相機。在第4A圖及第4B圖中示出結合本文中所揭示的製品中的任一者(例如與第1圖至第3圖中所描繪的製品100一致)的示例性裝置製品。具體而言,第4A圖及第4B圖示出消費性電子裝置400,其包含具有前表面404、後表面406及側表面408的外殼402;至少部分地位於外殼內部或完全位於外殼內且至少包含控制器、記憶體及位於外殼的前表面處或與外殼的前表面相鄰的顯示器410的電組件(未示出);及覆蓋基板412,其位於外殼的前表面處或上方,使得其位於顯示器上方。在一些實施例中,覆蓋基板412可包含本文中所揭示的製品中的任一者。在一些實施例中,外殼或蓋玻璃的一部分中的至少一者包括本文中所揭示的製品。
根據一些實施例,製品100 (例如第1圖至第3圖中所示出)可結合在具有車輛內部系統的車輛內部,如第5圖中所描繪。更特定言之,製品100可與各種車輛內部系統結合使用。描繪了車輛內部540,其包含車輛內部系統544、548、552的三個不同實例。車輛內部系統544包含中央控制台底座556,其具有包含顯示器564的表面560。車輛內部系統548包含儀錶板底座568,其具有包含顯示器576的表面572。儀錶板底座568通常包含儀器面板580,其亦可包含顯示器。車輛內部系統552包含具有表面588及顯示器592的儀錶板方向盤底座584。在一或多個實例中,車輛內部系統可包含底座,該底座為扶手、支柱、座椅靠背、地板、頭枕、車門或車輛內部的包含表面的任何部分。應理解,本文中所描述的製品100可在車輛內部系統544、548及552中的每一者中互換使用。
根據一些實施例,製品100 (例如第1圖至第3圖中所示出)可用於無源光學元件,例如透鏡、窗戶、燈蓋、眼鏡或太陽鏡,該無源光學元件可或可不與電子顯示器或電有源裝置整合。 實例
各種實施例將由以下實例進一步闡明。 實例1
實例1A (「Ex. 1A」)的所製造樣品藉由設置具有69莫耳%的SiO 2、10莫耳%的Al 2O 3、15莫耳%的Na 2O及5莫耳%的MgO的標稱組成物的玻璃基板且將具有五(5)層的抗反射塗層安置於玻璃基板上來形成,如第2A圖中所示出及表1A中所列出。將模型樣品(「Ex. 1B」及「Ex. 1C」)假設為具有Ex. 1A的相同玻璃基板組成物且假設為具有分別在表1B及1C中列出的抗反射塗層結構。根據本發明的方法使用反應性濺鍍製程來沉積Ex. 1A的樣品中的每一者的抗反射塗層(例如與本發明中概述的抗反射塗層120一致);且將Ex. 1B及1C的抗反射塗層假設為根據本發明的方法使用反應性濺度製程來沉積。 表1A:Ex. 1A的抗反射塗層屬性
附圖標記(參見第2A圖) 材料 折射率(@ 550 nm) 消光係數(@ 550 nm) 厚度(nm)
N/A Air 1 0   
131 SiO 2 1.471 0 94.6
130B SiN x 2.028 0.00057 158.5
130A SiO 2 1.456 0 37.2
130B SiN x 2.041 0.00057 23.1
130A SiO 2 1.449 0 25.0
110 玻璃基板 1.508 0   
總厚度          338.4
高RI層130B的總厚度%          181.6 / 338.4 = 53.7%
表1B:Ex. 1B的抗反射塗層屬性
附圖標記(參見第2A圖) 材料 折射率(@ 550 nm) 厚度(nm)
N/A Air 1   
131 SiO 2 1.477 87.7
130B SiN x 2.041 135.0
130A SiO 2 1.477 38.6
130B SiN x 2.041 15.2
130A SiO 2 1.477 25.0
110 玻璃基板 1.506   
總厚度       301.48
高RI層130B的總厚度%       150.2 / 301.48 = 49.8%
表1C:Ex. 1C的抗反射塗層屬性
附圖標記(參見第2A圖) 材料 折射率(@ 550 nm) 厚度(nm)
N/A Air 1   
131 SiO 2 1.465 90.4
130B SiN x 2.043 128.0
130A SiO 2 1.465 37.8
130B SiN x 2.043 14.4
130A SiO 2 1.465 25.0
110 玻璃基板 1.506   
總厚度       295.5
高RI層130B的總厚度%       142.4 / 295.5 =48.2%
現參看第6圖,提供了Ex. 1A的所製造製品的硬度(GPa)及彈性模量(GPa)與壓痕深度(nm)的關係的曲線圖。第6圖中所示出的資料藉由採用Berkovich壓頭硬度測試來產生,如先前在本發明中概述的。如自第6圖可明顯看出,在自140至160 nm的壓痕深度下觀察到11.8 GPa的最大硬度。
現參看下表2A至2C,光學性質在該實例(亦即,Ex. 1A至1C)的樣品上進行量測且在此等表中進行報導。在表2A至2C中,將反射及透射值報導為極化平均值,亦即,將s極化值及p極化值組合為單個平均值的平均值。適光平均值(Y)、L*、a*及b*值係經由10°觀察者及D65光源根據CIE 1964標準使用已知方法而根據所量測樣品資料計算的。此等根據人眼對可見光的回應來產生加權值。使用Agilent Cary 5000 UV-Vis- NIR分光光度計在+/- 2.5度的角度範圍內量測鏡面反射。藉由使用折射率匹配油將玻璃樣品的後表面耦接至光吸收劑來獲得第1表面反射值。 表2A:具有Ex. 1A的抗反射塗層的顯示製品的光學性質
第1表面反射%平均值 20° 40° 45° 60°
R% (適光, Y) 0.71 0.69 1.12 1.53 5.30
R% (840至860nm) 1.37 1.50 2.41 3.02 7.48
R% (930至950nm) 2.17 2.49 4.08 4.92 10.02
第1表面反射亮度及顏色指標 20° 40° 45° 60°
L* 6.43 6.27 9.97 12.77 27.56
a* -2.72 -2.54 3.85 5.27 5.27
b* -1.16 1.48 3.27 2.95 2.83
2表面透射光指標,僅在1個表面上塗佈   
T% (適光, Y) 94.51
T% (840至860nm) 93.89
T% (930至950nm) 93.15
L* 97.84
a* 0.06
b* 0.46
表2B:具有Ex. 1B的抗反射塗層的顯示製品的光學性質
第1表面反射%平均值 20° 40° 45° 60°
R% (適光, Y) 0.68 0.65 0.92 1.24 4.42
R% (840至860nm) 3.80 4.33 6.66 7.72 13.70
R% (930至950nm) 7.04 7.64 10.14 11.22 17.03
第1表面反射亮度及顏色指標 20° 40° 45° 60°
L* 6.14 5.83 8.32 10.82 25.01
a* -4.26 -3.88 -3.86 -3.39 -1.58
b* -4.41 -4.30 -2.81 -2.17 -1.49
2表面透射光指標,僅在1個表面上塗佈   
T% (適光, Y) 95.13
T% (840至860nm) 92.43
T% (930至950nm) 89.45
L* 98.09
a* 0.14
b* 0.40
表2C:具有Ex. 1C的抗反射塗層的顯示製品的光學性質
第1表面反射%平均值 20° 40° 45° 60°
R% (適光, Y) 0.80 0.82 1.30 1.70 5.24
R% (840至860nm) 2.99 3.44 5.55 6.55 12.39
R% (930至950nm) 5.97 6.55 8.99 10.08 15.97
第1表面反射亮度及顏色指標 20° 40° 45° 60°
L* 7.22 7.41 11.28 13.81 27.41
a* -2.80 -2.40 -2.50 -2.65 -2.46
b* 1.87 1.87 2.66 2.63 1.45
2表面透射光指標,僅在1個表面上塗佈  
T% (適光, Y) 95.10  
T% (840至860nm) 93.15  
T% (930至950nm) 90.40  
L* 98.07  
a* 0.12  
b* -0.01  
現參看第7A圖,提供了該實例中的Ex. 1A樣品在6°入射時的第一表面反射(%)與波長(nm)的關係的曲線圖。如自該圖可明顯看出,Ex. 1A表現出0.71%的可見適光平均第一表面反射。Ex. 1A亦表現出在850 nm的IR波長下小於1.5%且在940 nm的IR波長下小於2.5%的第一表面反射。
現參看第7B圖,提供了該實例中的Ex. 1A樣品在0°入射時的雙表面透射(%)與波長(nm)的關係的曲線圖。此等樣品的一側包含Ex 1A (參見表1A)的抗反射塗層,而另一側為裸玻璃。裸玻璃表面具有約4%的反射,因此將該樣品的最大透射限制為約96%。Ex. 1A樣品的可見適光平均透射為94.51%。此外,Ex. 1A樣品在850 nm下的透射大於93.5%,而在940 nm下的透射大於92.5%。
現參看第7C圖,提供了該實例中的Ex. 1A樣品在6°、20°、45°及60°入射時的第一表面反射(%)與波長(nm)的關係的曲線圖。對於自0°至20°的入射角度,在自425至950 nm的整個波長範圍內的反射保持在3.0%以下。對於自0°至45°的所有入射角度,在自425 nm至950 nm的整個波長範圍內的反射保持在5.5%以下。
現參看第8A圖,提供了該實例中的Ex. 1B樣品在自8°至80°入射時的第一表面反射(%)與波長(nm)的關係的曲線圖。對於自0°至20°的入射角度,在自425至950 nm的整個波長範圍內的反射保持在3.0%以下。對於自0°至20°的所有入射角度,在自425 nm至950 nm的整個波長範圍內的反射保持在5.5%以下。
現參看第8B圖,提供了該實例的Ex. 1B樣品在自8°至80°入射時的雙表面透射(%)與波長(nm)的關係的曲線圖。此等樣品的一側包含Ex. 1B (參見表1B)的抗反射塗層,而另一側為裸玻璃。裸玻璃表面具有約4%的反射,因此將該樣品的最大透射限制為約96%。Ex. 1B樣品的可見適光平均透射為95.13%。此外,Ex. 1B樣品自840至860 nm的透射大於92.43%,而自930至950 nm的透射大於89.45%。
現參看第8C圖,提供了該實例的Ex. 1B樣品在8°入射時的雙表面反射(%)與波長(nm)的關係的曲線圖。如自該圖可明顯看出,Ex. 1B的雙表面反射級別自450 nm至750 nm保持在5%以下。
現參看第8D圖,提供了該實例的Ex. 1B樣品在D65光源下在自0°至90°入射時的第一表面反射顏色的曲線圖。如自該圖可明顯看出,對於自0°至90°的所有入射角度,a*小於-3且b*小於+3。
現參看第9A圖,提供了該實例中的Ex. 1C樣品在自8°至80°入射時的第一表面反射(%)與波長(nm)的關係的曲線圖。對於自0°至20°的入射角度,在自425至約825 nm的整個波長範圍內的反射保持在3.0%以下。對於自0°至20°的所有入射角度,在自425 nm至950 nm的整個波長範圍內的反射保持在約8%以下。
現參看第9B圖,提供了該實例的Ex. 1C樣品在自8°至80°入射時的雙表面透射(%)與波長(nm)的關係的曲線圖。此等樣品的一側包含Ex. 1C (參見表1C)的抗反射塗層,而另一側為裸玻璃。裸玻璃表面具有約4%的反射,因此將該樣品的最大透射限制為約96%。Ex. 1C樣品的可見適光平均透射為95.10%。此外,Ex. 1C樣品自840至860 nm的透射為93.15%,而自930至950 nm的透射大於90.40%。
現參看第9C圖,提供了該實例的Ex. 1C樣品在8°入射時的雙表面反射(%)與波長(nm)的關係的曲線圖。如自該圖可明顯看出,Ex. 1C的雙表面反射級別自450 nm至750 nm保持在5%以下。
現參看第9D圖,提供了該實例的Ex. 1C樣品在D65光源下在自0°至90°入射時的第一表面反射顏色的曲線圖。如自該圖可明顯看出,對於自0°至90°的所有入射角度,a*小於或等於約-4且b*小於或等於約-4。
實施例1:提供了一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
實施例2:提供如實施例1的製品,其中製品表現出在約50 nm或更大的壓痕深度上量測的10 GPa或更大的最大硬度。
實施例3:提供如實施例1或實施例2的製品,其中製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的單側平均反射。
實施例4:提供如實施例1至實施例3中任一者的製品,其中製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於92%且在自930 nm至950 nm的紅外波長下大於89%的兩側平均透射。
實施例5:提供如實施例1至實施例4中任一者的製品,其中製品表現出在6°入射及20°入射時小於1%的單側適光平均反射及在0°入射時大於93%的雙表面適光平均透射。
實施例6:提供如實施例1至5中任一者的製品,其中製品表現出在6°及20°入射時小於5的第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的雙表面透射顏色(√(a* 2+b* 2))。
實施例7:提供如實施例1至6中任一者的製品,其中基板為玻璃基板或玻璃陶瓷基板。
實施例8:提供如實施例1至7中任一者的製品,其中頂蓋低RI層及複數個交替的高RI及低RI層總共五(5)層至七(7)層。
實施例9:提供如實施例1至8中任一者的製品,其中光學膜結構包括自275 nm至350 nm的實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且頂蓋低RI層為SiO 2
實施例10:提供一種消費性電子產品,其包含:外殼,包括前表面、後表面及側表面;電組件,至少部分地位於外殼內,該等電組件包括控制器、記憶體及顯示器,該顯示器位於外殼的前表面處或與外殼的前表面相鄰;及覆蓋基板,安置於顯示器上方。外殼的一部分或覆蓋基板中的至少一者包括如實施例1至9中任一者的製品。
實施例11:提供了一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。此外,高RI層的組合實體厚度為光學膜結構的實體厚度的約40%至60%。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
實施例12:提供如實施例11的製品,其中製品表現出在約50 nm或更大的壓痕深度上量測的10 GPa或更大的最大硬度。
實施例13:提供如實施例11或實施例12的製品,其中製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的單側平均反射。
實施例14:提供如實施例11至實施例13中任一者的製品,其中製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於89%且在自930 nm至950 nm的紅外波長下大於92%的兩側平均透射。
實施例15:提供如實施例11至實施例14中任一者的製品,其中製品表現出在6°入射及20°入射時小於1%的單側適光平均反射及在0°入射時大於93%的雙表面適光平均透射。
實施例16:提供如實施例11至15中任一者的製品,其中製品表現出在6°及20°入射時小於5的第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的雙表面透射顏色(√(a* 2+b* 2))。
實施例17:提供如實施例11至16中任一者的製品,其中基板為玻璃基板或玻璃陶瓷基板。
實施例18:提供如實施例11至17中任一者的製品,其中頂蓋低RI層及複數個交替的高RI及低RI層總共五(5)層至七(7)層。
實施例19:提供如實施例11至18中任一者的製品,其中光學膜結構包括自275 nm至350 nm的實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且頂蓋低RI層為SiO 2
實施例20:提供如實施例11至19中任一者的製品,其中高RI層的組合實體厚度為光學膜結構的實體厚度的約45%至55%。
實施例21:提供一種消費性電子產品,其包含:外殼,包括前表面、後表面及側表面;電組件,至少部分地位於外殼內,該等電組件包括控制器、記憶體及顯示器,該顯示器位於外殼的前表面處或與外殼的前表面相鄰;及覆蓋基板,安置於顯示器上方。外殼的一部分或覆蓋基板中的至少一者包括如實施例11至20中任一者的製品。
實施例22:提供了一種製品,其包含:基板,具有相對的主表面,該等主表面包含第一主表面及第二主表面;及光學膜結構,與基板的第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的實體厚度;複數個交替的高折射率(refractive index,RI)及低RI層,具有直接位於第一主表面上且與第一主表面接觸的第一低RI層;及頂蓋低RI層。頂蓋低RI層及複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及頂蓋低RI層包括含矽氧化物,且每一高RI層包括含矽氮化物或含矽氮氧化物。製品表現出在約50 nm或更大的壓痕深度上量測的8 GPa或更大的最大硬度,該最大硬度由Berkovich壓頭硬度測試量測。此外,最厚的高RI層具有自120 nm至180 nm的實體厚度,直接位於第一主表面上且與第一主表面接觸的第一低RI層具有自15 nm至35 nm的實體厚度,且頂蓋低RI層具有自80 nm至100 nm的厚度。另外,製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的兩側平均透射。
實施例23:提供如實施例22的製品,其中製品表現出在約50 nm或更大的壓痕深度上量測的10 GPa或更大的最大硬度。
實施例24:提供如實施例22或實施例23的製品,其中製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的單側平均反射。
實施例25:提供如實施例22至實施例24中任一者的製品,其中製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於89%且在自930 nm至950 nm的紅外波長下大於92%的兩側平均透射。
實施例26:提供如實施例22至實施例25中任一者的製品,其中製品表現出在6°入射及20°入射時小於1%的單側適光平均反射及在0°入射時大於93%的雙表面適光平均透射。
實施例27:提供如實施例22至26中任一者的製品,其中製品表現出在6°及20°入射時小於5的第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的雙表面透射顏色(√(a* 2+b* 2))。
實施例28:提供如實施例22至27中任一者的製品,其中基板為玻璃基板或玻璃陶瓷基板。
實施例29:提供如實施例22至28中任一者的製品,其中頂蓋低RI層及複數個交替的高RI及低RI層總共五(5)層至七(7)層。
實施例30:提供如實施例22至29中任一者的製品,其中光學膜結構包括自275 nm至350 nm的實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且頂蓋低RI層為SiO 2
實施例31:提供如實施例22至30中任一者的製品,其中最厚的高RI層具有自125 nm至160 nm的實體厚度,直接位於第一主表面上且與第一主表面接觸的第一低RI層具有自20 nm至30 nm的實體厚度,且頂蓋低RI層具有自85 nm至95 nm的厚度。
實施例32:提供一種消費性電子產品,其包含:外殼,包括前表面、後表面及側表面;電組件,至少部分地位於外殼內,該等電組件包括控制器、記憶體及顯示器,該顯示器位於外殼的前表面處或與外殼的前表面相鄰;及覆蓋基板,安置於顯示器上方。外殼的一部分或覆蓋基板中的至少一者包括如實施例22至31中任一者的製品。
可在不實質上背離本發明的精神及各種原理的情況下對本發明的上述實施例進行許多變化及修改。所有此類修改及變化皆意欲包含於本發明的範圍內且受以下申請專利範圍保護。舉例而言,可根據以下實施例組合本發明的各種特徵。
100:製品 110:基板 112,114:主表面 116,118:次表面 120:抗反射塗層 120A,120B,120C:層 122:抗反射表面 130:階段 130A:第一低RI層 130B:第二高RI層 131:頂蓋層 140:附加塗層 400:消費性電子裝置 402:外殼 404:前表面 406:後表面 408:側表面 410,564,576,592:顯示器 412:覆蓋基板 540:車輛內部 544,548,552:車輛內部系統 556:中央控制台底座 560,572,588:表面 568:儀錶板底座 580:儀器面板 584:儀錶板方向盤底座
本發明的此等及其他特徵、態樣及優點在參考隨附圖式閱讀本發明的以下詳細描述時得到更佳地理解,在隨附圖式中:
第1圖為根據一或多個實施例的製品的側視圖;
第2A圖為根據一或多個實施例的製品的側視圖;
第2B圖為根據一或多個實施例的製品的側視圖;
第2C圖為根據一或多個實施例的製品的側視圖;
第3圖為根據一或多個實施例的製品的側視圖;
第4A圖為包含本文中所揭示的製品中的任一者的示例性電子裝置的平面圖;
第4B圖為第4A圖的示例性電子裝置的透視圖;
第5圖為具有車輛內部系統的車輛內部的透視圖,該車輛內部系統可包含本文中所揭示的製品中的任一者;
第6圖為本文中所揭示的製品的硬度及模量與壓痕深度的關係的曲線圖;
第7A圖為本文中所揭示的製品在6°入射時的第一表面反射與波長的關係的曲線圖;
第7B圖為本文中所揭示的製品在0°入射時的雙表面透射與波長的關係的曲線圖;
第7C圖為本文中所揭示的製品在6°、20°、45°及60°入射時的第一表面反射與波長的關係的曲線圖;
第8A圖為本文中所揭示的製品在自8°至80°入射時的第一表面反射與波長的關係的曲線圖;
第8B圖為本文中所揭示的製品在自8°至80°入射時的雙表面透射與波長的關係的曲線圖;
第8C圖為本文中所揭示的製品在8°入射時的雙表面反射與波長的關係的曲線圖;
第8D圖為本文中所揭示的製品在D65光源下在自0°至90°入射時的第一表面反射顏色的曲線圖;
第9A圖為本文中所揭示的製品在自8°至80°入射時的第一表面反射與波長的關係的曲線圖;
第9B圖為本文中所揭示的製品在自8°至80°入射時的雙表面透射與波長的關係的曲線圖;
第9C圖為本文中所揭示的製品在8°入射時的雙表面反射與波長的關係的曲線圖;及
第9D圖為本文中所揭示的製品在D65光源下在自0°至90°入射時的第一表面反射顏色的曲線圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:製品
110:基板
112,114:主表面
116,118:次表面
120:抗反射塗層
120A,120B,120C:層
122:抗反射表面

Claims (32)

  1. 一種製品,包括: 一基板,包括相對的主表面,該等主表面包含一第一主表面及一第二主表面;及 一光學膜結構,與該基板的該第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的一實體厚度;複數個交替的高折射率(RI)及低RI層,具有直接位於該第一主表面上且與該第一主表面接觸的一第一低RI層;及一頂蓋低RI層, 其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及該頂蓋低RI層包括一含矽氧化物,且每一高RI層包括一含矽氮化物或一含矽氮氧化物, 其中該製品表現出在約50 nm或更大的一壓痕深度上量測的8 GPa或更大的一最大硬度,該最大硬度由Berkovich壓頭硬度測試量測,且 另外其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的一兩側平均透射。
  2. 如請求項1所述之製品,其中該製品表現出在約50 nm或更大的一壓痕深度上量測的10 GPa或更大的一最大硬度。
  3. 如請求項1所述之製品,其中該製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的一單側平均反射。
  4. 如請求項1所述之製品,其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於92%且在自930 nm至950 nm的紅外波長下大於89%的一兩側平均透射。
  5. 如請求項1所述之製品,其中該製品表現出在6°入射及20°入射時小於1%的一單側適光平均反射及在0°入射時大於93%的一雙表面適光平均透射。
  6. 如請求項1所述之製品,其中該製品表現出在6°及20°入射時小於5的一第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的一第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的一雙表面透射顏色(√(a* 2+b* 2))。
  7. 如請求項1至6中任一項所述之製品,其中該基板為一玻璃基板或一玻璃陶瓷基板。
  8. 如請求項1至6中任一項所述之製品,其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共五(5)層至七(7)層。
  9. 如請求項1至6中任一項所述之製品,其中該光學膜結構包括自275 nm至350 nm的一實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且該頂蓋低RI層為SiO 2
  10. 一種消費性電子產品,包括: 一外殼,包括一前表面、一後表面及側表面; 電組件,至少部分地位於該外殼內,該等電組件包括一控制器、一記憶體及一顯示器,該顯示器位於該外殼的該前表面處或與該外殼的該前表面相鄰;及 一覆蓋基板,安置於該顯示器上方, 其中該外殼的一部分或該覆蓋基板中的至少一者包括如請求項1至6中任一項所述之製品。
  11. 一種製品,包括: 一基板,包括相對的主表面,該等主表面包含一第一主表面及一第二主表面;及 一光學膜結構,與該基板的該第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的一實體厚度;複數個交替的高折射率(RI)及低RI層,具有直接位於該第一主表面上且與該第一主表面接觸的一第一低RI層;及一頂蓋低RI層, 其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及該頂蓋低RI層包括一含矽氧化物,且每一高RI層包括一含矽氮化物或一含矽氮氧化物, 其中該製品表現出在約50 nm或更大的一壓痕深度上量測的8 GPa或更大的一最大硬度,該最大硬度由Berkovich壓頭硬度測試量測, 其中該等高RI層的一組合實體厚度為該光學膜結構的該實體厚度的約40%至60%,且 另外其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的一兩側平均透射。
  12. 如請求項11所述之製品,其中該製品表現出在約50 nm或更大的一壓痕深度上量測的10 GPa或更大的一最大硬度。
  13. 如請求項11所述之製品,其中該製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的一單側平均反射。
  14. 如請求項11所述之製品,其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於89%且在自930 nm至950 nm的紅外波長下大於92%的一兩側平均透射。
  15. 如請求項11所述之製品,其中該製品表現出在6°入射及20°入射時小於1%的一單側適光平均反射及在0°入射時大於93%的一雙表面適光平均透射。
  16. 如請求項11所述之製品,其中該製品表現出在6°及20°入射時小於5的一第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的一第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的一雙表面透射顏色(√(a* 2+b* 2))。
  17. 如請求項11至16中任一項所述之製品,其中該基板為一玻璃基板或一玻璃陶瓷基板。
  18. 如請求項11至16中任一項所述之製品,其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共五(5)層至七(7)層。
  19. 如請求項11至16中任一項所述之製品,其中該光學膜結構包括自275 nm至350 nm的一實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且該頂蓋低RI層為SiO 2
  20. 如請求項11至16中任一項所述之製品,其中該等高RI層的該組合實體厚度為該光學膜結構的該實體厚度的約45%至55%。
  21. 一種消費性電子產品,包括: 一外殼,包括一前表面、一後表面及側表面; 電組件,至少部分地位於該外殼內,該等電組件包括一控制器、一記憶體及一顯示器,該顯示器位於該外殼的該前表面處或與該外殼的該前表面相鄰;及 一覆蓋基板,安置於該顯示器上方, 其中該外殼的一部分或該覆蓋基板中的至少一者包括如請求項11至16中任一項所述之製品。
  22. 一種製品,包括: 一基板,包括相對的主表面,該等主表面包含一第一主表面及一第二主表面;及 一光學膜結構,與該基板的該第一主表面直接接觸,該光學膜結構包括自約50 nm至小於500 nm的一實體厚度;複數個交替的高折射率(RI)及低RI層,具有直接位於該第一主表面上且與該第一主表面接觸的一第一低RI層;及一頂蓋低RI層, 其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共三(3)層至九(9)層,其中每一低RI層及該頂蓋低RI層包括一含矽氧化物,且每一高RI層包括一含矽氮化物或一含矽氮氧化物, 其中該製品表現出在約50 nm或更大的一壓痕深度上量測的8 GPa或更大的一最大硬度,該最大硬度由Berkovich壓頭硬度測試量測, 其中最厚的高RI層具有自120 nm至180 nm的一實體厚度,直接位於該第一主表面上且與該第一主表面接觸的該第一低RI層具有自15 nm至35 nm的一實體厚度,且該頂蓋低RI層具有自80 nm至100 nm的一厚度,且 另外其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於85%且在自930 nm至950 nm的紅外波長下大於85%的一兩側平均透射。
  23. 如請求項22所述之製品,其中該製品表現出在約50 nm或更大的一壓痕深度上量測的10 GPa或更大的一最大硬度。
  24. 如請求項22所述之製品,其中該製品在6°入射時表現出在自840 nm至860 nm的紅外波長下小於1.5%且在自930 nm至950 nm的紅外波長下小於3%的一單側平均反射。
  25. 如請求項22所述之製品,其中該製品在0°入射時表現出在自840 nm至860 nm的紅外波長下大於89%且在自930 nm至950 nm的紅外波長下大於92%的一兩側平均透射。
  26. 如請求項22所述之製品,其中該製品表現出在6°入射及20°入射時小於1%的一單側適光平均反射及在0°入射時大於93%的一雙表面適光平均透射。
  27. 如請求項22所述之製品,其中該製品表現出在6°及20°入射時小於5的一第一表面反射顏色(√(a* 2+b* 2))、針對自0°至60°入射的所有角度小於10的一第一表面反射顏色(√(a* 2+b* 2))及在0°入射時小於2的一雙表面透射顏色(√(a* 2+b* 2))。
  28. 如請求項22至27中任一項所述之製品,其中該基板為一玻璃基板或一玻璃陶瓷基板。
  29. 如請求項22至27中任一項所述之製品,其中該頂蓋低RI層及該複數個交替的高RI及低RI層總共五(5)層至七(7)層。
  30. 如請求項22至27中任一項所述之製品,其中該光學膜結構包括自275 nm至350 nm的一實體厚度,每一高RI層為SiN x,每一低RI層為SiO 2且該頂蓋低RI層為SiO 2
  31. 如請求項22至27中任一項所述之製品,其中該最厚的高RI層具有自125 nm至160 nm的一實體厚度,直接位於該第一主表面上且與該第一主表面接觸的該第一低RI層具有自20 nm至30 nm的一實體厚度,且該頂蓋低RI層具有自85 nm至95 nm的一厚度。
  32. 一種消費性電子產品,包括: 一外殼,包括一前表面、一後表面及側表面; 電組件,至少部分地位於該外殼內,該等電組件包括一控制器、一記憶體及一顯示器,該顯示器位於該外殼的該前表面處或與該外殼的該前表面相鄰;及 一覆蓋基板,安置於該顯示器上方, 其中該外殼的一部分或該覆蓋基板中的至少一者包括如請求項22至27中任一項所述之製品。
TW111123602A 2021-07-02 2022-06-24 具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品 TW202306758A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163217967P 2021-07-02 2021-07-02
US63/217,967 2021-07-02

Publications (1)

Publication Number Publication Date
TW202306758A true TW202306758A (zh) 2023-02-16

Family

ID=82694137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123602A TW202306758A (zh) 2021-07-02 2022-06-24 具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品

Country Status (5)

Country Link
US (1) US20230010461A1 (zh)
KR (1) KR20240019853A (zh)
CN (1) CN117836674A (zh)
TW (1) TW202306758A (zh)
WO (1) WO2023278224A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
JP2018536177A (ja) 2015-09-14 2018-12-06 コーニング インコーポレイテッド 高光線透過性かつ耐擦傷性反射防止物品
KR102591065B1 (ko) * 2018-08-17 2023-10-19 코닝 인코포레이티드 얇고, 내구성 있는 반사-방지 구조를 갖는 무기산화물 물품

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928461B1 (fr) * 2008-03-10 2011-04-01 Saint Gobain Substrat transparent comportant un revetement antireflet
EP2321230A4 (en) 2008-07-29 2012-10-10 Corning Inc TWO-STAGE ION EXCHANGE FOR GLASS CHEMICAL REINFORCEMENT
JP5326407B2 (ja) * 2008-07-31 2013-10-30 セイコーエプソン株式会社 時計用カバーガラス、および時計
KR102591065B1 (ko) * 2018-08-17 2023-10-19 코닝 인코포레이티드 얇고, 내구성 있는 반사-방지 구조를 갖는 무기산화물 물품

Also Published As

Publication number Publication date
CN117836674A (zh) 2024-04-05
KR20240019853A (ko) 2024-02-14
US20230010461A1 (en) 2023-01-12
WO2023278224A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
TWI849492B (zh) 具有薄且耐久之抗反射結構的無機氧化物物件
US20200158916A1 (en) Optical film structures, inorganic oxide articles with optical film structures, and methods of making the same
US20190339425A1 (en) Coated articles with light-altering features and methods for the production thereof
US11378719B2 (en) Optical film structures and articles for hidden displays and display devices
TW202306758A (zh) 具有帶延伸紅外透射的薄、耐久性抗反射塗層的製品
US20170355172A1 (en) Scratch-resistant and optically transparent materials and articles
US20200310000A1 (en) Optical coatings of non-planar substrates and methods for the production thereof
US20230301002A1 (en) Cover articles with high hardness and anti-reflective properties for infrared sensors
US20230273345A1 (en) Coated articles having non-planar substrates and methods for the production thereof
TWI856144B (zh) 具有受控色彩的低反射率、防反射的膜結構及具有該等膜結構的製品
US11815657B2 (en) Low reflectance, anti-reflective film structures with controlled color and articles with the same