TW202246812A - 具有低醒目性的可適形電極 - Google Patents

具有低醒目性的可適形電極 Download PDF

Info

Publication number
TW202246812A
TW202246812A TW111116048A TW111116048A TW202246812A TW 202246812 A TW202246812 A TW 202246812A TW 111116048 A TW111116048 A TW 111116048A TW 111116048 A TW111116048 A TW 111116048A TW 202246812 A TW202246812 A TW 202246812A
Authority
TW
Taiwan
Prior art keywords
lens
examples
serpentine
electrode
display
Prior art date
Application number
TW111116048A
Other languages
English (en)
Inventor
安德魯 約翰 奧德克爾克
莉莉安納 路伊茲 狄耶茲
Original Assignee
美商元平台技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商元平台技術有限公司 filed Critical 美商元平台技術有限公司
Publication of TW202246812A publication Critical patent/TW202246812A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明提供一種實例設備,該實例設備可包括一顯示器及經組態以提供該顯示器之一影像的一光學組態。該光學組態可包括具有支撐至少一個蛇形電極的一透鏡表面之一透鏡。該至少一個蛇形電極可與一電組件電連通,該電組件諸如為一電光組件(例如,包括一雷射、發光二極體、光電二極體或影像感測器中之至少一者)或可在施加一電場情況下展示一或多維變化的一電活性組件。一實例設備亦可包括經由該至少一個蛇形電極與該電組件電連通的一控制器。在一些實例中,該蛇形電極可具有一大致正弦形狀。亦揭示其他裝置、方法、系統及電腦可讀取媒體。

Description

具有低醒目性的可適形電極
本發明係有關於具有低醒目性的可適形電極。 相關申請案
本申請案主張2021年4月29日申請之美國臨時申請案第63/181,370號及2022年3月25日申請之美國非臨時申請案第17/704,458號的權利,該等申請案之揭示內容出於所有目的以全文引用之方式併入。
場內照明、成像或二者典型地可能適用於各種應用,諸如運用近眼及寬視場(field-of-view;FOV)光學件的眼睛追蹤。場內照明可藉由在透鏡之表面上定位一或多個光源而達成。不幸的是,在彎曲表面上形成電路可具有挑戰性。因此,需要一種裝置及製造方法使得電路可適形於彎曲輪廓。
一種設備,其包含:顯示器;光學組態,其經組態以提供該顯示器之影像;及控制器,其中:該光學組態包含具有透鏡表面之透鏡;該透鏡表面支撐電組件及至少一個蛇形電極;且該控制器經由該蛇形電極與該電組件電連通。
一種方法,其包含:在透鏡之表面上提供至少一個蛇形電極;及在該透鏡之該表面上定位光源,該光源與該至少一個蛇形電極電連通。
一種方法,其包含:使用藉由可調整透鏡之彈性膜支撐之至少一個蛇形元件施加電信號至位於該彈性膜上的電活性元件以調整該可調整透鏡之光功率(optical power),其中該電活性元件包含安置於該彈性膜上之電致伸縮聚合物層。
本發明通常係關於光學組態、包括光學組態之裝置及相關聯方法。如在下文更詳細地解釋,本發明之具體實例可包括支撐一或多個蛇形電極之適合於虛擬及/或擴增實境系統的透鏡。
本發明提供一種用於在平坦表面上形成電路圖案(諸如一或多個電極),使得電路接著可適形彎曲輪廓(在一些實例中包括複合曲線)之方法。實例包括可位於透鏡表面(諸如凸形、凹形或平坦透鏡表面)上的蛇形電極。
在一些實例中,一種方法可包括在基板上形成一或多個蛇形電極(例如,作為電路圖案之部分),其中基板可在電極形成期間至少大致上平坦。電極可使用任何合適的技術來沈積。基板接著可扭曲成彎曲輪廓,例如作為透鏡之部分。電路可適形複合曲線,且至少一個蛇形電極可適形基板之彎曲表面輪廓。舉例而言,至少一個蛇形電極可形成於平坦彈性膜上(例如,藉由該平坦彈性膜支撐)且任何合適的電組件可與蛇形電極電連通而定位。可製造包括彈性膜之可調整透鏡,該彈性膜可在透鏡操作期間採用彎曲輪廓,且蛇形電極及相關聯電組件接著可為其中彈性膜可採用彎曲輪廓的可調整透鏡之組件。此方法允許電極及電組件在可調整透鏡之孔徑內支撐。
實例設備可包括顯示器及光學組態。光學組態可經配置以形成顯示器之影像在眼眶(eyebox)、設備內之可藉由使用者觀看顯示影像的部位處。設備可為或包括佩戴式設備,諸如頭戴式裝置,且顯示影像可在使用者佩戴設備時藉由使用者在眼眶處觀看。
在一些實例中,諸如透鏡表面之基板可支撐至少一個蛇形電極。蛇形電極可與至少一個電組件(諸如發光二極體、雷射或光學感測器)電連通。在一些實例中,基板可係可變形的且可包括例如可調整透鏡之可調整表面輪廓。在一些實例中,透鏡表面可支撐一第一蛇形電極及具有與該第一蛇形電極電連通的第一端子之電組件。該電組件可具有與第二電極(諸如第二蛇形電極)電連通之第二端子。
在一些實例中,基板可在具有第一彎曲輪廓之第一組態與具有第二彎曲輪廓之第二組態之間可調整。在一些實例中,第一及/或第二彎曲輪廓可具有小於約1000 mm(例如,小於約500 mm、小於約100 mm或小於約50 mm)之平均曲率半徑。在一些實例中,第一及/或第二彎曲輪廓可適形一複合曲線。在一些實例中,基板可包括彈性體層且可包括例如彈性膜。在一些實例中,基板可為透鏡(例如,可調整透鏡)之組件或諸如偏振器(例如,反射偏振器及/或多層偏振器)、窗、光學延遲器、繞射元件、鏡面或其他光學組件之另一光學組件。
在一些實例中,一種用於形成複合彎曲折射器或反射器之方法可包括在基板(諸如聚合物基板)上形成蛇形電極。在一些實例中,電組件可位於基板上或藉由基板以其他方式支撐且可與至少一個蛇形電極電連通。在一些實例中,基板可經修改以提供彎曲表面輪廓,例如包括複合曲線。在一些實例中,基板之修改可包括模製、加熱、施加電場(例如,至電活性元件)或施加力以誘發變形(諸如彎曲、延伸或其類似者)中之至少一者。蛇形電極可包括具有正弦形式之至少一部分。
以下參考圖1至圖21提供實例性具體實例之詳細描述。圖1展示根據各種具體實例之可包括至少一個蛇形電極的實例設備。圖2至圖4展示可位於諸如透鏡表面之基板上的蛇形電極之實例配置。圖5展示蛇形電極可如何位於可調整透鏡之彈性膜上。圖6A至圖11展示蛇形電極及電組件之實例配置。圖12及圖13說明包括控制器之實例設備組態。圖14展示根據各種具體實例之另一光學組態。圖15至圖17說明設備操作及製造之實例方法。圖18及圖19展示例示性擴增實境及虛擬實境頭戴裝置。圖20至圖21B展示實例眼睛追蹤子系統。
可需要光學組態之改良,諸如在裝置應用中減小重量及功率消耗。在一些實例中,透鏡可包括菲涅爾透鏡。在一些實例中,透鏡總成可包括偏振反射器、分束器、蛇形電極或藉由透鏡表面支撐之電組件中之每一者中之至少一者。在一些實例中,分束器可由偏振反射器替換以減小與分束器相關聯之損耗。
圖1展示可包括至少一個蛇形電極的實例設備。設備可包括顯示器及摺疊光學組態。實例設備100可包括顯示器105及光學組態110。在一些實例中,光學組態可具有摺疊光學配置,其中光傳播之方向可在一或多個出現時刻反向。顯示器105可發射偏振光,例如線性或圓形偏振光。在一些實例中,來自顯示器105之光入射於光學組態110上且該光學組態經組態以例如當裝置藉由使用者佩戴或以其他方式接合時提供顯示器之影像至使用者之眼睛130。光學組態110可包括分束器115(例如,其可包括部分透明反射器)、光學延遲器120(例如,四分之一波遲延器)及反射偏振器125(例如,線性反射偏振器)。在一些實例中,反射偏振器可對圓偏振光之一個偏手性(handedness)反射且對圓偏振光之第二偏手性透射。在一些實例中,可省略光學延遲器120。
諸如透鏡之光學組件可具有可由一或多個複合曲線界定的彎曲表面。在一些實例中,光學組件可具有其他形狀且可具有一或多個平坦表面。在一些實例中,在透鏡之孔徑內安裝電組件可能係適用的,經由該孔徑可形成一影像。電組件可包括諸如雷射、發光二極體、感測器或燈之電光組件。電組件可相對較小,例如具有大致等於或小於1 mm(諸如大致等於或小於500微米,例如大致等於或小於200微米,及在一些實例中,大致等於或小於100微米)之有效橫截面尺寸(例如,圓形輪廓之直徑、直徑或類似尺寸)。然而,至電組件之電連接可呈現問題。舉例而言,線性電極可係視覺上可辨別的且可分散設備使用者之注意力。如本文所描述之蛇形電極被認為對於特定軌道寬度或整個導電性係視覺上不大可辨別。在一些實例中,若透鏡之焦距例如藉由修改表面輪廓之曲率而調整,則藉由透鏡支撐之電組件與對應電接點(例如,在透鏡之邊緣處)之間的距離可改變。透鏡輪廓調整可例如歸因於過多張力、屈曲或其他失效模式而導致習知電極之失效。然而,蛇形電極可允許沿著蛇形電極之大體方向較大尺寸擴展(下文進一步論述)。
圖2展示包括支撐配置於基板205上之一或多個電極的基板205之設備200的一部分。在此實例中,設備200包括第一電極210及第二電極215,且第一電極210及第二電極215可各自為蛇形電極。在一些實例中,蛇形電極可與一或多個電組件(例如,電組件220或225或至其之電接點)(諸如光源、感測器(例如,光電二極體或影像感測器)、諸如電活性元件之其他電組件)電連通,或與用於任何其他電(例如,電光)組件之電接點(例如,電極)電連通。在一些實例中,蛇形電極可允許對光學延遲器(例如,上文關於圖1論述之光學延遲器120)或反射偏振器(例如,上文關於圖1論述之反射偏振器125),或包括至少一個電光層之任何合適電光層或多層結構進行控制。電光層可包括對於入射光具有可以電氣方式控制的有效光學性質(例如,折射率)的層。實例電光層可包括例如液晶層或其他電光材料。基板205可包括透鏡表面。在一些實例中,基板可在電極形成期間具有平坦組態且基板接著可適形彎曲表面,例如用於透鏡應用。
在一些情況下,蛇形電極可經組態以允許支撐蛇形電極的基板待拉伸至特定程度而不超出電極之失效應變。舉例而言,蛇形電極可經沈積於基板之大致上平坦表面上,且基板接著可經變形成大致上彎曲表面(例如,凸面或凹面)。在一些實例中,蛇形電極可經沈積於具有可調整曲率之表面上,例如當該表面處於大致上平坦狀態或其他彎曲狀態中時。
在一些實例中,電極可包括一電極材料,且該電極材料可包括諸如銅、銀、金或其他合適金屬(包括合金)之金屬。在一些實例中,蛇形電極可包括例如在多層或另外圖案化結構中之一或多個電極材料。在一些實例中,電極材料可包括以下各者中之一或多者:金屬(例如,銀、銅、金、其他過渡金屬、鋁或其他金屬)、透明導電氧化物(transparent conductive oxide;TCO)(諸如氧化銦錫(ITO)或氧化銦鎵鋅(IGZO))、導電聚合物、摻雜之半導體、導電纖維(例如,碳纖維)、石墨烯、導電奈米線(例如,金屬奈米線,諸如銀奈米線、銅奈米線或金奈米線)、導電奈米管(例如,奈米碳管)或其他導電材料。
在一些實例中,蛇形電極可沿著大體方向(general direction)(例如蛇形電極之平均方向)延伸。實例蛇形電極可具有由沿著與空間上不同橫向偏差(例如,垂直於局部大體方向之偏差)組合的大體方向之延伸界定的路徑(或形狀)。舉例而言,在周邊電接點與電組件之間在透鏡表面上方延伸的蛇形電極可具有沿著該電接點與該電組件之間的路徑延伸的大體方向,及具有垂直於大體方向之組件的橫向偏差。在一些實例中,蛇形電極可具有空間上振盪形式,其中關於大體路徑之橫向偏差可包括週期性或非週期性空間振盪。在一些實例中,蛇形電極可包括關於蛇形電極可有利地替換的線性或平滑彎曲電極之路徑的空間上振盪偏差。
在一些實例中,蛇形電極可具有大致上正弦形狀,及/或可包括具有大致上正弦形狀之至少一個電極部分。舉例而言,蛇形電極可具有包括可藉由D=A sin(b.d)描述之一橫向偏差的路徑,其中A可表示正弦波振幅(或類似參數),d可表示與沿著大體路徑(general path)(例如,沿著線性或平滑彎曲路徑)之距離相關的距離參數,且b可為與空間頻率相關的參數。振幅A可大致等於或小於1 mm,例如大致等於或小於500微米,及在一些實例中,大致等於或小於200微米。正弦蛇形電極路徑的重複距離(空間波長)可大致等於或小於2 mm,例如大致等於或小於1 mm、例如大致等於或小於500微米、例如大致等於或小於300微米。
如本文所描述之蛇形電極的應用可包括在可佩戴裝置(例如,頭戴式裝置)之光學組態中使用。在一些實例中,如本文所描述之蛇形電極可在經組態以在使用者佩戴可佩戴裝置時形成可藉由使用者檢視的顯示器之影像的光學組態內之透鏡表面上(或例如藉由另一光學元件)支撐。其他實例應用可包括信號至或自電組件的電連通。電組件可包括諸如光源或感測器之電光組件,或藉由諸如透鏡之光學組件之表面支撐的電活性組件(諸如一或多個電致伸縮層)。在一些實例中,電活性元件可包括電活性聚合物,諸如電致伸縮聚合物。實例電致伸縮聚合物包括鐵電聚合物,諸如各種鹵化亞乙烯基類聚合物及共聚物,包括聚(偏二氟乙烯)(PVDF)、其類似物、衍生物及共聚物。
在一些實例中,頭戴式裝置可使用眼睛之場內照明用於眼睛追蹤(例如,凝視方向偵測),且實例可提供具有低社交及使用者可見性的電連接件。在一些實例中,蛇形電極可包括透明電導體。透明蛇形電極可歸因於跨越界面之折射率差而具有視覺上可辨別之邊緣。在一些實例中,大致上透明材料可歸因於某一吸收率而具有視覺上可辨別的色調。然而,與線性或平滑彎曲電極相比,蛇形電極可不太容易在視覺上可辨別。
在一些實例中,電極之形狀、寬度或其他幾何特徵可使用有限元件分析(例如包括電極及基板之機械模型)來最佳化。
在一些實例中,蛇形電極可與一或多個電組件電連通。電組件之實例可包括諸如發光二極體(light-emitting diode;LED)、諸如垂直腔表面發射雷射(vertical cavity surface emitting laser;VCSEL)之雷射、雷射二極體、光感測器以及其組合之光學裝置。電組件亦可為積體電路或其他電組件,其用以轉換電力、提供類比至數位轉換、數位至類比轉換或傳輸資訊至該等組件之部件或自該等組件之部件傳輸資訊。
在一些實例中,基板可為透明的。在一些實例中,基板可包括聚合物,諸如丙烯酸酯聚合物(例如,聚甲基丙烯酸甲酯,PMMA)、聚碳酸酯(PC)、聚對苯二甲酸乙二酯(PET)、PEN、COC、COP、聚苯乙烯(PS)及其類似者。在一些實例中,基板可包括彈性體,例如矽酮、胺基甲酸酯或丙烯酸酯聚合物。在一些實例中,基板可包括彈性膜。基板可包括諸如多層光學膜之複合膜,且可包括反射層(例如,鏡面)及/或反射偏振器。在一些實例中,基板可包括諸如彈性體之聚合物或複合膜中之至少一者或其組合。在一些實例中,基板可包括塑膠層。舉例而言,基板可包括多層光學膜反射偏振器。在一些實例中,基板可包括諸如丙烯酸酯之彈性材料,在該彈性材料上置放至少一個蛇形電極。在一些實例中,蛇形電極可藉由印刷電路製程,例如藉由蝕刻或其他圖案化由基板支撐的導電層而形成。在一些實例中,基板可包括透明基板。在一些實例中,基板可包括彈性基板,諸如彈性透明基板。
實例基板可為可彈性地或可塑性地變形成彎曲輪廓(諸如包括複合曲線之輪廓)的材料。彎曲輪廓可具有小於約1000 mm(諸如小於約500 mm、小於約100 mm或小於約50 mm)之平均曲率半徑。
扭曲一基板(例如,將基板例如拉伸成複合曲線)可引起彈性體組件之局域化扭曲。光學效應可藉由施加大致折射率匹配塗層以包封電路及裝置來減輕。塗層可在基板形成為複合曲線之前或之後施加。在一些實例中,塗層可被稱為填充層,且可包括光學透明聚合物。
圖3進一步說明蛇形電極,諸如圖2中展示之電極。設備300可包括第一對蛇形電極(包括第一電極305及第二電極310)、第二對蛇形電極(包括第三電極315及第四電極320)以及電組件330及340。舉例而言,電組件330及340可包括可藉由經由各別蛇形電極藉由控制器(圖中未示)提供之電信號供能的光源。在一些實例中,電組件可包括可為眼睛追蹤器之組件的光源(例如,雷射或LED)、感測器(例如,光電二極體、影像感測器或其他光學感測器)、電活性組件(例如,電致伸縮元件)或其他電組件。
在一些實例中,改良之眼睛追蹤可包括藉由使用者視場內之透鏡支撐(例如,位於透鏡之表面上)的電組件(例如,光源及/或感測器)。在一些實例中,眼睛追蹤組件可位於AR/VR系統之透鏡之表面上,例如位於眼鏡透鏡或其他透鏡之表面上。位於透鏡上之電組件可比透鏡周邊周圍之部位更接近於眼睛中心而定位於諸如框架或其他支撐結構上。至使用者之視場內的任何電組件的電極可在視覺上分散注意力。然而,蛇形電極(諸如如本文中所描述之電極)的使用可極大地減小任何此類電極之使用者感知。
圖4展示包括蛇形電極的設備400之另一說明,該等蛇形電極包括第一電極對410(包括第一電極412及第二電極414)及第二電極對415。虛線416可表示蛇形電極對之平均軌跡。在一些實例中,至少一個電組件可經由第一電極對410(包括第一電極412及第二電極414)或第二電極對415提供電力及/或傳輸或接收資料,或二者。電接點420允許與至少一個電組件電連通。電連通可包括供電(例如,向電組件供能)、至電組件之資料傳輸,及/或自電組件之資料接收。
在一些實例中,電極可形成於具有中心之基板(諸如圓形基板)上,且電極可遠離或朝向基板中心(例如,沿著圓形基板之徑向方向)延伸。在一些實例中,電極可具有圍繞基板中心之大致上圓形路徑。在一些實例中,電極可具有延伸至電接點之大致上徑向部分及圍繞圓形基板安置的大致上圓形部分(例如,如圖4中所說明)。在一些實例中,基板可具有任何形狀且電極可包括:與在基板之周邊附近的電接點接觸之第一部分;例如圍繞周邊、圍繞中心延伸或以其他方式形成大致上迴圈型圖案的第二部分;及至在基板周邊附近之第二接點的第三部分。在一些實例中,電極或電極對可以任何適合方式(例如允許光源之配置待安置於基板上)跨越基板延伸。在一些實例中,基板可包括彈性膜或可另外可適形一彎曲表面輪廓,例如以用於透鏡應用。電極可具有可用以連接至在基板外之電路系統的相關聯電接點(例如,在圖4中之電接點420)。在一些實例中,至少一個電組件(圖中未示)可與至少一個蛇形電極電連通且可定位於一對蛇形電極之間。
圖5說明可與各種具體實例結合使用的例示性可調整流體透鏡之橫截面。在一些實例中,圖5可表示穿過圓形透鏡之橫截面,但實例亦可包括非圓形透鏡。可調整流體透鏡可包括可為至少一個電極(諸如該蛇形電極對570)提供基板的彈性膜550。在一些實例中,電極可在透鏡製造之前形成於彈性膜上,例如其中彈性膜處於平坦組態中。
透鏡500可為包括基底層502(其在此實例中可包括剛性、平坦、彎曲透鏡,及/或透明基板)、彈性膜550、流體508(由虛水平線表示)、邊緣密封件585及向大致上展示為撓曲件504之撓曲件提供剛性支撐的撓曲支撐件590之可調整流體透鏡。一對類似撓曲件504經展示在透鏡之相對側面上,且在一些實例中,撓曲件可圍繞透鏡周邊配置。在此實例中,撓曲件504可包括彈性元件510,且剛性元件540包括提供膜附接之剛性臂560。剛性臂提供用於膜之控制點,其中膜可在554處附接至剛性臂。基底層502可具有下部(如所說明)外表面,及可視情況支撐基板塗層之內表面。在此實例中基底層502之內表面可與流體508接觸。彈性膜550具有上部(如所說明)外表面及圍封流體508之內表面。外表面可用以支撐該蛇形電極對570。虛垂直線指示流體透鏡之中心及透鏡500之光軸。
流體508可圍封於至少部分由基底層502、彈性膜550及邊緣密封件585界定的空腔(例如,圍封之流體體積)內,其可協作地有助於界定其中定位流體之空腔。邊緣密封件585可圍繞空腔之周邊延伸,並在經圍封流體體積內保留(與基板及膜合作)流體。彈性膜550可具有彎曲輪廓,以使得與透鏡之周邊(例如,鄰近邊緣密封件585)相比,透鏡流體在透鏡之中心具有較大厚度(例如,沿著透鏡光軸量測的距離)。在一些實例中,流體透鏡可為平凸透鏡,其中平坦表面藉由基底層502提供,且凸表面藉由彈性膜550提供。平凸透鏡可在透鏡中心附近具有透鏡流體之較厚層。然而,其他組態係可能的,諸如其中所述膜朝向在透鏡中心附近之基板彎曲的平凹透鏡組態。基板亦可具有向流體透鏡提供光功率的彎曲表面。
實例流體透鏡可具有圍繞基底層502之周邊(或在周邊區內)配置的複數個撓曲件。撓曲件504可視情況經由撓曲支撐件590將膜附接至基板。致動器可用以調整透鏡之光功率。在一些實例中,藉由彈性膜支撐的一或多個電活性組件可用以調整透鏡輪廓及因此調整光功率。
透鏡500可包括一或多個致動器(圖5中未展示),其可定位於透鏡周邊周圍,且可為撓曲件504之部件或以機械方式耦接至該撓曲件。制動器可經由一或多個控制點(諸如控制點554)對彈性膜550施加一可控制力,該控制點可用以調整膜表面之曲率及因此透鏡之一或多個光學性質(例如,焦距、散光校正、圓柱度及其類似者)。舉例而言,致動器可以機械方式耦接至剛性元件540。在一些實例中,控制點可附接至膜之周邊部分,且可用於控制膜之曲率。
圖6A至圖6D展示根據各種具體實例之實例蛇形電極。在一些實例中,蛇形電極可具有大致上正弦形式。然而,如本文所論述可使用其他形狀。
圖6A展示包括形成於基板612上之一對蛇形電極610(包括第一電極602及第二電極604)的實例設備600之部件。該圖說明在一些實例中,蛇形振盪之空間間距可改變。舉例而言,第一正弦波部分614具有比第二正弦波部分616大的空間間距。以「X」表示之虛線表示電極之大體路徑,下文進一步論述。在一些實例中,蛇形電極之空間間距可經判定為其中蛇形電極跨越其大體路徑的相鄰部位之間的距離。舉例而言,大體路徑可包括一平滑曲線,蛇形電極具有圍繞該平滑曲線之空間上振盪路徑。在一些實例中,基板可為或包括光學元件(例如,透鏡、窗、偏振器或反射器)、電子顯示器或其他裝置。
圖6B展示形成於基板622上之實例蛇形電極對620。該圖說明在一些實例中,蛇形振盪之空間振幅可改變。舉例而言,正弦波部分626具有比正弦波部分624大的空間振幅。
圖6C展示形成於基板632上之實例蛇形電極對630。圖說明在一些實例中,蛇形電極可包括藉由彎曲部分634互連的線性部分,諸如線性部分636。在一些實例中,蛇形電極可具有類似於圓形三角波之形狀的形狀。
在一些實例中,蛇形電極可具有包括距大體路徑之橫向偏差的形狀。蛇形電極可沿著大體路徑之方向延伸且包括沿著垂直於大體路徑之方向的偏差。舉例而言,具有正弦形式之蛇形電極可具有表示為A的距大體路徑之最大偏差。在一些實例中,最大偏差A可表示正弦形式Asin(d)之振幅,其中A表示振幅且d為基於沿著大體路徑之距離(例如,與該距離成比例)的參數。舉例而言,在上文所論述之圖2中,蛇形電極之大體路徑可具有徑向方向。
在一些實例中,蛇形電極可包括沿著平行於大體路徑之方向的偏差且可例如包括S形部分。
圖6D展示支撐於基板642上之蛇形電極640。蛇形電極包括S形部分644,包括其中電極沿著大體路徑顛倒方向的一部分。
在一些實例中,大體路徑可沿著徑向方向延伸。在一些實例中,大體路徑可具有圍繞圓形路徑或其部分的圓周形式。關於圖6A至圖6D,大體路徑可為穿過如所說明在水平方向上延伸的蛇形電極路徑之中心的線性路徑。實例大體路徑經指示為在圖6A中標記為「X」之虛線。
在一些實例中,大體路徑可係彎曲的或自身可為蛇形。蛇形大體路徑可沿著可被稱為二階大體路徑的方向延伸,且二階大體路徑可為線性、彎曲或自身蛇形。
圖7展示根據各種具體實例的包括安裝至支撐電極之基板之電組件的實例設備之一部分。設備700包括圍封體積730(例如,其可為可調整流體透鏡之流體填充體積之一部分)的膜702,並在膜702之表面上支撐電極704及706。電組件710可藉由膜702支撐並與電極704及706電連通。電組件710內之內部電連接件展示,但在一些實例中可包括主動元件720與電極704及706之間的電連接。在一些實例中,主動元件720可包括光發射及/或光敏感元件。在一些實例中,電組件可包括諸如光發射裝置(諸如發光二極體(light-emitting diode;LED)、雷射(例如,半導體雷射,諸如VCSEL)或光學感測器)之電光組件。在一些實例中,電組件可包括諸如光阻器、光偵測器(例如,包括光電裝置)、影像感測器或其類似者之感光裝置。
圖8展示根據各種具體實例之使用附接層附接至基板之電極。設備800可包括附接至基板830之電極810及820。在一些實例中,電極810及820分別使用附接層812及822附接至基板830。在一些實例中,附接層812及822可包括黏著層。
在一些實例中,附接層可位於電極(諸如蛇形電極)與基板(諸如彈性膜)之間。在一些實例中,附接層可包括一彈性體,且該彈性體可減小藉由基板之任何特定變形施加至電極的彈性應變。在一些實例中,附接層可包括一相對剛性層(例如,比基板更剛性之層),其可獲得藉由基板之變形施加的應變之某一部分。在一些實例中,附接層可具有多層結構且可包括至少一個黏著層、至少一個彈性體層或至少一個剛性層中之一或多者。在一些實例中,附接層可具有適形蛇形電極或以其他方式與該蛇形電極位置對齊的蛇形形式。在一些實例中,附接層可側向地延伸超出蛇形電極。在一些實例中,附接層可支撐一或多個電極,諸如一或多個蛇形電極。
圖9展示根據各種具體實例之定位於一對電極之間的電活性元件。設備900包括基板920、第一電極902及第二電極904。電活性層910(例如,電致伸縮聚合物層)可位於第一電極902與第二電極904之間。第一電極或第二電極中之至少一者可為或包括蛇形電極。
在一些實例中,施加於第一電極902與第二電極904之間的電場可誘發電活性層910中之電活性效應。實例電活性效應可包括可誘發電活性層之電致伸縮(例如電活性層沿著電極之間的方向的壓縮)的電致伸縮。電活性層910可變得較厚。電致伸縮可誘發基板920之類似壓縮。在一些實例中,基板920可係彎曲的,且可為可調整流體透鏡之彎曲彈性膜。一或多個電活性層可用以控制例如與至少一個蛇形電極電接觸的可調整流體透鏡之光功率。
在一些實例中,設備可包括可用作用於第一電極及第二電極之基板的膜(例如,彈性膜)。電活性層可位於每一電極的至少一部分之間。電活性層可例如使用黏著層或其他方法附接至基板。在一些實例中,膜可為電活性且可省去單獨電活性層。在電極之間施加電壓可調整膜內之應變且可允許例如控制可調整流體透鏡之光功率。
圖10展示根據各種具體實例之不具有空間相位關係的實例相鄰蛇形電極(其可為電極對或獨立電極)。設備1000包括皆支撐於基板1030上的第一蛇形電極1010及第二蛇形電極1020。圖說明第一及第二蛇形電極之間距、振幅或相位中之一或多者可彼此不具有明顯相關。第一及第二蛇形電極可為基板上之相鄰電極。在一些實例中,電極可具有類似大體方向(例如,如所說明之平行水平大體方向)。在一些實例中,蛇形電極對之平均軌跡自身可並非為蛇形。
圖11展示根據各種具體實例之相鄰蛇形電極(其可為電極對或獨立電極)之實例,其中電組件定位於相鄰部分之間。設備1100包括第一蛇形電極1110、第二蛇形電極1120及與兩個電極電連通定位的電組件1130,該等電極藉由基板1140支撐。在一些實例中,電組件可位於其中電極靠近在一起的部位處。舉例而言,一個或兩個電極之橫向偏差可使電極在一起相對靠近,例如具有大致等於或小於5 mm(諸如大致等於或小於2 mm,例如大致等於或小於1 mm)之間隔。
圖12展示根據各種具體實例之包括控制器的實例設備之示意圖。設備1200包括經由至少一個蛇形電極(在此實例中,一對蛇形電極1220)與光源1230(或例如其他電組件)連通之控制器1210。控制器亦可經由至少一個蛇形電極(在此實例中,一對蛇形電極1240)與光感測器1250連通。蛇形電極1220及1240可為相同電極或不同電極。
圖13展示根據各種具體實例之包括控制器的另一實例設備。設備1300包括經由至少一個蛇形電極(在此實例中,一對蛇形電極1320)與電活性元件1330連通之控制器1310。控制器可施加控制電壓至電活性元件1330以調整裝置組態,諸如可調整透鏡之光功率。
在一些實例中,控制器可施加控制電壓以調整電活性元件之電致伸縮,例如以控制可調整流體透鏡之光功率。任何合適形狀的電致伸縮元件可位於第一電極與第二電極之間。一個或兩個電極可至少部分為蛇形電極。
圖14展示根據各種具體實例之另一光學組態。光學組態1400包括顯示器1405、分束器1420、透鏡1430及偏振反射器1440。藉由顯示器發射之光束經展示為虛線。光線1445係藉由顯示器1405之顯示部分1410發射,通過分束器1420及透鏡1430,並自偏振反射器1440作為射線1450反射回。為說明方便起見,並未展示透鏡表面處之折射。射線1450接著由分束器1420反射以得到射線1455,該射線1455通過偏振反射器1440且作為射線1460朝向使用者之眼睛引導。諸如光束1452之漫射光束可減小達至使用者之眼睛的光束強度。使用者之眼睛圖中未示,但諸如眼眶之觀看部位可如所說明定位於光學組態之右邊。在一些實例中,分束器1420可在透鏡1430之凸透鏡表面1425上形成為部分反射膜(例如,薄金屬膜)。在一些實例中,光學組態可進一步包括光學延遲器,可例如包括該光學延遲器作為形成於偏振反射器1440之表面1435上之層。在一些實例中,分束器1420可由偏振反射器(例如可減小與分束器相關聯之損耗且可不導電的第二偏振反射器)替換。在一些實例中,偏振反射器或分束器可具有不明顯電導率以免以電氣方式改變蛇形電極之性質。在一些實例中,可使用分束器替代偏振反射器1440。
光學組態1400之改良可係需要的,諸如電調整透鏡1430之光功率及/或使用與透鏡相關聯之光源及/或感測器供應眼睛追蹤系統。在一些實例中,透鏡1430可為可調整流體透鏡,例如如上文關於圖5所描述。在一些實例中,與眼睛追蹤相關聯之光源可位於透鏡之視場內且一或多個蛇形電極可有利地用於提供至光源之電連接。實例電極之蛇形形狀可在此組態中提供一或多個優勢,諸如減小電極之使用者感知、改良在底層透鏡表面(例如,在可調整透鏡中)變形情況下對損壞之機械抗性,及改良對彎曲表面之適形性。實例光源(諸如一或多個半導體雷射及/或發光二極體)可位於透鏡之彎曲表面上。在一些實例中,蛇形電極可支撐於透鏡1430之凸透鏡表面1425上,且此可包括藉由形成於透鏡表面(諸如分束器1420)上之額外層或適形透鏡表面之任何其他層支撐。在一些實例中,透鏡表面可為凸形、凹形或平坦,且任何此類表面可支撐蛇形電極。在一些實例中,藉由透鏡支撐之蛇形電極可藉由透鏡塗層(諸如抗刮擦塗層、抗反射塗層或其類似者)支撐。在一些實例中,蛇形電極可支撐於透鏡上且額外塗層可經形成以覆蓋透鏡,諸如分束器(例如,諸如多層分束器之不導電分束器)、反射偏振器或其他層。
在一些實例中,彎曲表面可係可調整的。蛇形電極可促進電連接之供應,從而改良可調整彎曲表面上之可靠性。在一些實例中,透鏡曲率之調整可包括施加電場至位於透鏡上或內之電活性元件。在一些實例中,至少一個致動器可用以調整透鏡之光功率,且蛇形電極可用以提供至藉由透鏡定位或以其他方式支撐的光源之電連接。蛇形電極可促進至與透鏡相關聯的電組件及/或電活性元件之電連接。
在一些實例中,透鏡可包括一菲涅爾透鏡且該菲涅爾透鏡之個別琢面(facet)之曲率可使用諸如本文所論述之方法的方法以電氣方式可調整。
製造之方法
圖15展示根據各種具體實例之製造設備的實例方法。方法1500包括形成具有透鏡表面之透鏡(1510)、在透鏡表面上沈積蛇形電極(1520),及在透鏡表面上定位與蛇形電極電連通之電組件(1530)。方法可進一步包括在與電組件電連通之表面上形成一第二電極,其可為第二蛇形電極。方法可進一步包括藉由控制器提供電信號至電組件(例如,以誘發光發射)及/或接收來自電組件(例如,光感測器)的信號(例如,感測器信號)。
在一些實例中,透鏡表面可藉由彈性膜提供。在一些實例中,電組件可包括可附接至彈性膜或以其他方式藉由彈性膜支撐的電活性元件。根據各種具體實例之製造設備的另一實例方法可包括形成包括一彈性膜之可調整透鏡、在該彈性膜上沈積一蛇形電極,及將一電組件定位於與該蛇形電極電連通的該彈性膜上。方法可進一步包括在與電組件電連通之表面上形成一第二電極,其可為第二蛇形電極。方法可進一步包括藉由控制器提供電信號至電組件。在一些實例中,電組件可為電活性元件且電信號可誘發電活性元件之電致伸縮。在一些實例中,電信號可至少部分用以控制可調整透鏡之光功率。
在一些實例中,一種用於形成複合彎曲光學元件之方法可包括在基板(諸如聚合物基板)上形成一蛇形電極,同時該基板處於平坦組態。在一些實例中,電組件可位於基板上或藉由基板以其他方式支撐且可與至少一個蛇形電極電連通。在一些實例中,基板可經修改以提供彎曲表面輪廓,例如包括複合曲線。舉例而言,蛇形電極可形成於處於平坦組態中之彈性膜上,且該彈性膜接著可在可調整透鏡應用中採用彎曲表面輪廓。在一些實例中,基板之修改可包括以下各者中之至少一者:模製、加熱、施加電場(例如,至電活性元件),或施加力以誘發基板之變形(諸如彎曲、拉伸)、形成彎曲表面輪廓(例如,凹形、凸形、圓柱形、圓錐、自由形式),或其類似者。蛇形電極可包括具有正弦形式之至少一部分。
電組件可包括諸如發光二極體(LED)或雷射之光源。在一些實例中,光源可包括可見光發射光源。在一些實例中,光源可包括IR發射(例如,近IR發射)光源。
在一些實例中,蛇形電極可藉由藉由基板支撐的導電層之微影而形成。導電材料可作為一層沈積於基板上且接著經處理以形成經適當組態之電極圖案。處理方法可包括雷射切除、微影、蝕刻、模切、機械劃刻或任何合適方法中之一或多者。在一些實例中,電極可形成於可包括彈性體層的轉移基板上,接著使用任何合適之方法轉移至設備基板。
在一些實例中,電極可使用任何合適的圖案化沈積方法來沈積。
在一些實例中,製造設備的方法可包括提供基板及附接一或多個電極至基板。基板可包括諸如透鏡或其組件之光學元件。電極可使用黏著層附接至基板。在一些實例中,電極可藉由包括加熱、施加壓力或曝露於輻射(諸如光或UV輻射)中之一或多者的製程黏著至基板。在一些實例中,電極可在施加壓力之前用一層黏著劑塗佈。舉例而言,與基板接觸推動的電極表面可用一層黏著劑塗佈。黏著劑可包括壓敏、熱活化或光固化材料。
在一些實例中,製造包括可調整基板之光學元件的方法可包括使至少一個電極適形基板並將該至少一個電極接合至該基板,該至少一個電極諸如至少一個蛇形電極。
操作設備的方法
圖16說明根據各種具體實例之操作設備的實例方法。方法(1600)包括經由至少一個蛇形電極施加電信號以向位於透鏡表面上之光源供能(1610)、接收來自感測器之感測器信號(1620),及基於感測器信號判定凝視方向(1630)。感測器信號可基於由使用光源照明物件(諸如使用者之眼睛)引起的偵測經反射光。
凝視方向可使用眼睛追蹤系統來判定,如在下文更詳細地論述。眼睛追蹤系統可包括位於透鏡表面上之至少一個光源及至少一個感測器。舉例而言,操作眼睛追蹤系統之方法可包括使用第一蛇形電極向光源供能以獲得一光束,及使用使用第二電極(諸如第二蛇形電極)所接收的感測器信號偵測光束自使用者之眼睛的反射。
操作之實例方法可例如藉由諸如頭戴式裝置(諸如AR/VR裝置)之設備執行。實例方法可包括自光源發射光線,及偵測由光線自眼睛之反射引起的反射線。在一些實例中,當使用者佩戴裝置時,使用者可觀看顯示器之影像。使用者之眼睛可位於眼眶(例如,顯示影像形成之部位)處以用於觀看顯示器之影像。光學總成可用以在眼眶處形成顯示器之影像,且光學總成可包括以摺疊光學件配置配置的至少一個透鏡、反射偏振器及分束器。
圖17說明根據各種具體實例之操作設備的另一實例方法。方法(1700)包括判定可調整透鏡之所要光功率(1710)、使用蛇形電極施加信號至電活性元件(1720),及調整(例如,電致伸縮)電活性元件以獲得所要光功率(1730)。
在一些實例中,調整透鏡之光功率的方法可藉由包括顯示器及包括透鏡之光學組態的頭戴式設備執行。實例方法可包括使用至少一個蛇形電極施加電信號至位於透鏡之孔徑內的電活性元件。在一些實例中,在透鏡之孔徑內可對應於用於形成可藉由設備之使用者觀看的顯示器之影像的透鏡之一部分內。在一些實例中,透鏡可為包括彈性膜之可調整透鏡。在一些實例中,電活性元件可包括與可調整透鏡之彈性膜機械相關聯(例如,附接至該彈性膜)的電致伸縮聚合物層。
在一些實例中,方法可進一步包括自顯示器發射具有圓偏振或線性偏振之光、將該光透射通過第一透鏡總成、自第二透鏡總成反射光,及通過第二透鏡總成並朝向使用者眼睛反射來自該第一透鏡總成之該光。設備可經組態以使得具有第一偏振之光透射通過第一透鏡總成並隨後由第一透鏡總成反射具有第二偏振之光。此可使用定位於第一透鏡總成與第二透鏡總成之間的光學延遲器及/或使用反射時偏振的變化而達成。顯示器可固有地發射偏振光或在一些實例中,合適之偏振器可與來自顯示器之光透射通過的表面相關聯(例如,附接至該表面)。
實例方法包括用於操作設備(諸如如本文所描述的設備(諸如頭戴式顯示器)或用於製造諸如本文所描述之設備的設備)之電腦實施方法。實例方法之步驟可藉由任何合適的電腦可執行碼及/或計算系統(包括諸如擴增實境及/或虛擬實境系統之設備)執行。在一些實例中,實例方法之步驟中之一或多者可表示其結構包括及/或可由多個子步驟表示之演算法。在一些實例中,一種用於使用摺疊光學件組態自一顯示器提供均勻影像亮度之方法可包括使用經組態以允許顯示器亮度之空間變化的顯示面板。
在一些實例中,諸如裝置或系統之設備可包括至少一個實體處理器及包括電腦可執行指令之實體記憶體,該等電腦可執行指令在由實體處理器執行時使實體處理器在顯示器上產生影像。影像可包括虛擬實境影像元件及/或擴增實境影像元件。設備可包括諸如本文所描述之光學組態。
在一些實例中,非暫時性電腦可讀取媒體可包括在由設備(例如,頭戴式裝置)之至少一個處理器執行時使該設備提供擴增實境影像或虛擬實境影像至使用者(例如,頭戴式裝置之佩戴者)的一或多個電腦可執行指令。設備可包括諸如本文所描述之光學組態。
在一些實例中,設備(例如頭戴式裝置,諸如AR及/或VR裝置)可包括包括餅狀透鏡(例如,透鏡與分束器之組合,其亦可被稱為分束器透鏡)及反射偏振器之光學組態。實例反射偏振器可經組態以反射光之第一偏振並透射光之第二偏振。舉例而言,反射偏振器可經組態以反射圓偏振光之一個偏手性(例如,右或左)並透射圓偏振光之其他偏手性(例如,分別左或右)。舉例而言,反射偏振器可經組態以反射經線性偏振光之一個方向(例如,垂直)並透射經線性偏振光之正交方向(例如,水平)。在一些實例中,反射偏振器可黏著至菲涅爾透鏡之琢面。
光學組態可被稱為摺疊光學件組態,且在此上下文中,摺疊光學件組態可提供包括一或多個反射及/或其他光束重定向的光路徑。具有摺疊光學件組態之設備可係緊湊型,具有寬視場(FOV),並允許高解析度影像之形成。較高透鏡系統效率可能適用於諸如頭戴式顯示器(head-mounted display;HMD)之應用,包括虛擬實境及/或擴增實境應用。
實例裝置可包括顯示器、餅狀透鏡(例如,包括分束器或偏振反射器,其可經形成為透鏡表面上之塗層)及反射偏振器(例如,經組態以反射光之第一偏振並透射光之第二偏振,其中第一偏振及第二偏振係不同的)。舉例而言,反射偏振器可經組態以反射圓偏振光之一個偏手性且透射圓偏振光之其他偏手性。
在一些實例中,光學延遲器可位於第一透鏡總成與第二透鏡總成之間,且來自顯示器之光可在朝向使用者之眼睛透射通過第二透鏡總成之前在複數個出現時刻(例如,三次)通過光學延遲器。在一些實例中,可自顯示器發射具有一偏振(諸如線性偏振或圓偏振)之光。每當光通過光學延遲器時,偏振可藉由光學延遲器而修改。反射亦可修改光之偏振。舉例而言,來自顯示器之光(例如,偏振光)可經透射通過第一菲涅爾透鏡總成,通過光學延遲器,由第二菲涅爾透鏡總成反射,通過光學延遲器,由第一菲涅爾透鏡總成反射,通過光學延遲器,且接著藉由第二菲涅爾透鏡總成朝向使用者眼睛透射,其中具有第一線性偏振之光可入射於反射偏振器,該光可由第二菲涅爾透鏡總成之反射偏振器反射。光可自第一菲涅爾透鏡總成之反射偏振器反射且可接著藉由反射偏振器透射。在一些實例中,菲涅爾透鏡總成中之至少一者可包括光學延遲器且單獨光學延遲器可自光學組態省去。
摺疊光學件組態可係緊湊型,具有寬視場(FOV),並對於在顯示器與觀看者之間的給定距離提供更高解析度。然而,包括餅狀透鏡之摺疊光學件組態可具有比包括折射透鏡但不包括反射元件之非摺疊光學組態低的效率。光學組態之系統效率例如對於頭戴式顯示器(HMD)中之應用係重要的。減小之效率可減小AR/VR裝置之可用性且可歸因於由於顯示器為提供所要影像亮度而需要增加功率消耗所造成的較高溫度而產生不適。在一些實例中,系統效率係使用包括一分束器之餅狀透鏡而增加,該分束器朝向分束器之邊緣比分束器之中心區內具有更高反射率。透鏡效率可使用包括一分束器之偏振轉換分束器透鏡而增加,該分束器朝向透鏡之邊緣比透鏡之中心區內具有更高反射率。在一些實例中,餅狀透鏡可包括折射透鏡及可經形成為透鏡之表面上的反射塗料的分束器。反射塗料可具有空間上變化反射率。在一些實例中,餅狀透鏡可包括偏振轉換分束器透鏡。
在一些實例中,諸如菲涅爾透鏡之結構化光學元件可包括具有包括琢面及台階之表面的基板,其中台階定位於相鄰(例如,附近或實質上鄰近)琢面之間。反射偏振器可鄰近琢面化表面的至少一部分而定位並適形琢面化表面的至少一部分。在一些實例中,琢面化表面可對應於折射透鏡之表面部分(諸如凸面或凹面),且可經彎曲。在一些實例中,琢面化表面可係平坦的並近似於折射透鏡之表面部分。舉例而言,平坦琢面化表面可具有至透鏡之光軸的定向,其隨琢面距透鏡之光學中心的平均(例如,均值)徑向距離而變化。在此上下文中結構化光學元件可包括由台階分開的表面琢面,且菲涅爾透鏡之至少一個琢面可支撐反射偏振器。填充材料接著可塗佈菲涅爾透鏡總成(例如,包括琢面、台階及反射偏振器)之表面。填充層可具有具有與菲涅爾透鏡總成互補之輪廓的第一表面,及可為平坦表面之第二表面(例如,外表面)。在一些實例中,填充材料之第二表面可具有彎曲表面(諸如凸表面、凹表面、圓柱形表面、自由形式表面或其他彎曲表面),或在一些實例中,可包括第二菲涅爾透鏡結構。
蛇形電極可形成於透鏡(諸如菲涅爾透鏡或任何其他透鏡)之一個或兩個表面上。
透鏡總成可包括透鏡及反射偏振器及/或分束器(例如,形成於透鏡表面上之部分反射膜)。透鏡表面可為平坦表面、圓柱形表面、自由形式表面、至少部分藉由任尼克函數定義之表面,或球面。蛇形電極可形成於任何形式透鏡表面(包括可調整透鏡之透鏡表面)上。
可調整透鏡可具有可包括彈性膜、彈性體或其他可調整形式的可調整表面。蛇形電極可用以提供至藉由可調整表面支撐之電組件的電接點,及/或使用與透鏡表面(例如,膜)機械連通的電活性元件控制曲率。在一些實例中,蛇形電極可用以提供信號至嵌入於透鏡中之電活性元件,或提供一信號至任何電活性透鏡組件。
在一些實例中,蛇形電極可例如藉由表面張力支撐於流體之表面上。在一些實例中,藉由蛇形電極所提供的電信號可用以控制液體小滴或液體層之曲率半徑。
在一些實例中,透鏡可包括具有複數個琢面及將另外形成連續透鏡表面之在琢面之間的台階的菲涅爾透鏡。菲涅爾透鏡可有效地將折射透鏡之彎曲表面分成複數個琢面。琢面可包括近似於凸表面之各別部分的彎曲部分(或其平坦近似)。在琢面之間可存在允許菲涅爾透鏡之厚度顯著小於傳統凸透鏡之厚度的台階。在一些實例中,蛇形電極可安置於菲涅爾透鏡之結構化表面、施加在菲涅爾透鏡之結構化表面上的填充層,或菲涅爾透鏡之非結構化表面(例如,直至亦包括在琢面之間包括台階的結構化表面的菲涅爾透鏡之平坦表面、凹表面或凸表面)上。
在一些實例中,(例如,AR/VR系統之)光學組態可包括透鏡(例如,菲涅爾透鏡或其他折射透鏡)。實例光學系統亦可包括分束器及/或偏振反射器。在一些實例中,透鏡可為凹形、凸形,可具有複雜光學輪廓,諸如自由形式表面。在一些實例中,可調整透鏡之表面可在一或多個輪廓之間(諸如兩個或多於兩個不同光功率之間)可調整。光學組態可用於擴增實境及/或虛擬實境(AR/VR)系統。在一些實例中,光學組態可包括透鏡及至少一個其他光學組件,諸如以下各者中之一或多者:反射偏振器、光學濾光器、吸收偏振器、繞射元件、額外折射元件、反射器、抗反射膜、機械保護膜(例如,抗刮擦膜)、分束器、其他光學組件,或其組合。包括透鏡之光學組態可進一步包括分束器、偏振反射器或光學延遲器中之至少一者。
在一些實例中,設備可包括可佩戴裝置(例如,頭戴式裝置)。實例設備可包括顯示器及經組態以形成當使用者佩戴可佩戴裝置時可藉由使用者觀看的顯示器之影像的光學組態。實例應用可包括用於例如成像、顯示或投影設備的可調整透鏡或眼睛追蹤系統。
在一些實例中,設備可包括反射偏振器。實例反射偏振器可經組態以反射光之一個偏振並透射光之另一偏振。舉例而言,實例反射偏振器可反射圓偏振光之一個偏手性且可透射圓偏振光之其他偏手性。在一些實例中,反射偏振器可反射一個線性偏振方向並透射正交線性偏振方向。在一些實例中,蛇形電極可位於諸如偏振器(例如,反射式或透射式偏振器)之光學組件上。在一些實例中,至少一個蛇形電極及至少一個電組件可支撐在偏振器之表面上。
實例反射偏振器包括(但不限於)膽固醇反射偏振器(cholesteric reflective polarizer;CLC)及/或多層雙折射反射偏振器。下文論述其他實例。舉例而言,反射偏振器可經組態以反射光之第一偏振並透射光之第二偏振。在此上下文中,反射可對應於入射光強度之至少60%的反射且透射可對應於入射光強度之至少60%的透射。在一些實例中,反射偏振器可反射圓偏振光之一個偏手性且透射圓偏振光之其他偏手性。在一些實例中,設備可包括分束器透鏡或在一些實例中第二菲涅爾透鏡總成。分束器透鏡可包括形成為透鏡上之塗層或藉由透鏡表面以其他方式支撐的分束器。
在一些實例中,反射偏振器可包括膽固醇型液晶,諸如聚合物膽固醇型液晶。在一些實例中,反射偏振器可包括雙折射多層反射偏振器。在一些實例中,設備可進一步包括定位於分束器與反射偏振器之間的光學延遲器,諸如四分之一波遲延器。
實例反射偏振器(或其他偏振器)可包括偏振膜。實例偏振膜可包括例如接合在一起的一或多個層,諸如包括反射偏振器及二色性偏振器之組合的光學偏振器。
在一些實例中,實例反射偏振器可包括膽固醇型液晶、雙折射多層光學膜、線柵或導電元件之其他配置。反射偏振器可包括雙折射多層薄膜,且一或多個表層可具有在多層薄膜之平均折射率0.2內的傳遞偏振折射率,及在一些實例中,不同於多層薄膜之平均折射率的折射率,至少大致0.02,諸如至少大致0.05,例如至少大致0.1。
在一些實例中,反射偏振器可經圖案化以與菲涅爾透鏡之琢面對齊。經圖案化反射偏振器可形成於彈性體元件上、與琢面對準,且接著該彈性體元件可經移動(例如,藉由致動器)以使得與菲涅爾透鏡之琢面接觸推動經圖案化反射偏振器。
在一些實例中,反射偏振器可藉由將對準層(例如,聚合物層或光柵)施加至表面(例如,透鏡或其他光學組件之表面)及施加可至少部分與對準層對準的膽固醇型液晶(CLC)層而製造。實例對準層可包括可沈積於基板上的光對準材料(photoalignment material;PAM),且所要分子定向可藉由將該PAM曝光至偏振光(諸如紫外光(ultraviolet ;UV)及/或可見光)而獲得。CLC層可經進一步處理以鎖定固體材料內CLC之分子對準,例如以提供諸如對掌性固體之對掌性材料。舉例而言,CLC可經聚合、交聯,及或一聚合物網路可經由CLC形成以穩定該對準。在一些實例中,CLC可使用對掌性摻雜劑之有效濃度形成於向列型液晶內,且對掌性向列型(膽固醇)混合物可進一步包括至少一種可聚合材料。
在一些實例中,反射偏振器可包括諸如具有類似於膽固醇型液晶之分子定序的分子定序之材料的對掌性材料,諸如源於冷卻、聚合、交聯或以其他方式穩定化膽固醇型液晶之分子排列的固體材料。舉例而言,對掌性固體為具有類似於膽固醇型液晶之螺旋光學結構的螺旋光學結構的固體。舉例而言,最大折射率之方向可描述圍繞垂直於分子定向之本端方向的螺旋。
在一些實例中,反射偏振器可包括可例如經由熱及壓力之組合適形透鏡表面的雙折射多層光學膜。在一些實例中,蛇形電極可藉由安置於透鏡表面上之光學膜支撐。
在一些實例中,偏振光束分裂器可包括具有第一及第二表面之透明透鏡,其中第一表面為菲涅爾透鏡,且第二表面鄰近於反射式偏振層。第一表面及第二表面中之至少一者可具有圓柱形、球形或非球形曲率。
蛇形電極可藉由透鏡或其他光學元件之一個或兩個表面支撐。
在一些實例中,(例如,AR/VR裝置之)光學組態可包括分束器(例如,替代偏振反射器或除偏振反射器外)。分束器可經組態以反射入射光之第一部分並透射入射光之第二部分。在一些實例中,分束器透鏡可與菲涅爾透鏡總成一起使用。分束器可使用自本文中所描述的彼等方法改編的方法形成於菲涅爾透鏡之琢面上。舉例而言,分束器可形成於彈性元件上。分束器可形成於諸如透鏡之基板上。在一些實例中,至少一個蛇形電極及至少一個電組件可支撐在分束器之表面上。
反射層可藉由製程中之一者或組合而形成,該等製程包括薄膜物理氣相沈積、化學氣相沈積,或用於沈積反射層(諸如高度及/或部分反射薄膜塗層)之其他合適製程。實例反射層可包括諸如鋁或銀之一或多種金屬,且可係金屬性。實例反射層可包括一或多個介電材料,諸如二氧化矽、氧化鋁、氧化鉿、二氧化鈦、氧化鎂、氟化鎂、氧化銦錫、氧化銦鎵鋅及其類似者,及其混合物。實例反射層可包括一或多個介電層,且可包括布拉格光柵結構或類似多層結構。
實例分束器可包括具有不同透射率及/或反射率之一或多個區,且可包括一或多個反射層。實例分束器可包括例如對於可見光或光之至少一個可見光波長具有不同反射率的第一區及第二區。分束器可包括形成於透鏡之表面上的塗層,諸如金屬塗層及/或介電塗層(諸如介電多層)。在一些實例中,分束器之反射率可依據分束器內之空間位置而改變。舉例而言,分束器可包括具有第一反射率之第一區及具有第二反射率之第二區。在一些實例中,與分束器之中心區內相比,分束器朝向分束器之邊緣可具有更高反射率。
實例分束器可包括部分透明且部分反射的塗層。實例分束器可包括包括諸如金、鋁或銀之金屬的薄塗層。薄塗層可具有介於大致10 nm至大致500 nm範圍內之塗層厚度。實例分束器可包括一或多個層,諸如介電薄膜層。在一些實例中,分束器可包括例如作為介電層或其組件的至少一種介電材料,諸如二氧化矽、氧化鋁、氧化鉿、二氧化鈦、氧化鎂、氟化鎂及其類似者。實例分束器可包括包括至少一個薄金屬塗層及/或至少一個介電塗層之一塗層。實例分束器可包括導電材料(例如,金屬、導電金屬氧化物(諸如氧化銦錫或氧化銦鎵鋅)或其他導電材料)及介電材料中之至少一者,且可包括導電材料與介電材料的組合(例如,作為包括至少一個層之塗層)。
在一些實例中,分束器可形成於透鏡之凸表面、平坦表面或凹表面上。在一些實例中,透鏡可包括菲涅爾透鏡。在一些實例中,偏振反射器可經組態以充當分束器,且可例如經組態以在透射一些、大多數或實際上全部非反射光的同時反射第一偏振光之第一百分比及第二偏振光之第二百分比,其中第一百分比及第二百分比可係不同的。
在一些實例中,實例反射器(例如,分束器、偏振反射器或其他反射器)可包括至少一第一及第二區,其中該第一區可包括反射器之中心區,且第二區可包括反射器之外區。在一些實例中,反射器(例如,分束器或用於特定偏振之偏振反射器)可具有約100%、約95%、約90%、約85%、約80%、約75%、約70%或在此等實例反射率值之任何兩個實例值之間的範圍內之反射率。舉例而言,第二區可具有大致75%與大致100%之間的反射率,諸如大致85%與大致100%之間的反射率。在一些實例中,第二區可具有比第一區更高的反射率,諸如高至少10%反射率。在一些實例中,反射率與距離之間的關係可為單調平滑曲線。在一些實例中,反射率與距離之間的關係可係不連續的或包括具有反射率之相對高改變速率的過渡區。在一些實例中,分束器之反射率自第一區至過渡區內之第二區可存在漸進過渡。過渡區可具有可小於約5 mm(諸如小於2 mm、諸如小於1 mm)之寬度(其可被稱為過渡距離)。在一些實例中,過渡區寬度可小於0.1 mm,諸如小於0.01 mm。
在一些實例中,反射器(例如,分束器或偏振反射器)可包括部分透明及部分反射的層。在一些實例中,反射器可包括形成於基板(諸如包括一或多個光學材料之基板)上之金屬膜。舉例而言,層可包括金屬層(例如,具有約5 nm與約500 nm之間的厚度,諸如10 nm與200 nm之間的厚度),諸如包括一或多種金屬(諸如鋁、銀、金或諸如合金之其他金屬)的層。該層可包括多層,且可包括藉由層(例如,在金屬層上)之曝露表面支撐的腐蝕保護層。在一些實例中,層可包括一或多個介電層,諸如介電薄膜層。介電層可包括一或多個介電層,諸如氧化物層(例如,金屬氧化物層或其他氧化層)、氮化物層、硼化物層、磷化物氮、鹵化物層(例如,金屬鹵化物層,諸如金屬氟化物層)或其他合適層。在一些實例中,裝置可包括一或多個金屬層及/或一或多個介電層。基板可包括玻璃或光學聚合物。
在一些實例中,設備可包括顯示器、包括偏振反射器之至少一個菲涅爾透鏡總成,及視情況包括分束器的分束器透鏡。分束器及/或偏振反射器之反射率可依據空間位置而改變;舉例而言,包括相對高光學透射之第一區及相對低光學透射(例如,相對較高反射率)之第二區。在此上下文中,分段反射器可例如對於一或多個可見波長具有具有不同光學性質之至少兩個區,諸如不同反射率值之區。
在一些實例中,使用一光學組態藉由一顯示器(例如,包括顯示面板)所提供的影像亮度可包括空間上調整光源(例如,背光)及/或發射顯示器之照明亮度的空間輪廓。顯示器亮度可依據一或多個顯示參數(諸如顯示器上之空間位置(例如,影像亮度之空間變化)、功率消耗、老化效應、眼睛響應函數及/或其他參數)而調整。
在一些實例中,裝置可包括反射器之反射率自第一區至第二區具有漸進或實際上不連續過渡的反射器。過渡區可位於第一區與第二區之間。當沿著特定方向(例如,徑向方向、垂直於第一區之周邊,或其他方向)量測時,過渡區可在第一區與第二區之間的過渡距離內延伸。在一些實例中,過渡距離可具有大致或小於5 mm、1 mm、0.1 mm或0.01 mm之長度。
在一些實例中,反射器可提供在特定波長範圍內及/或對於特定偏振的選擇性反射。舉例而言,反射器可包括布拉格反射器,且層組成物及/或尺寸可經組態以提供操作之所要頻寬。
在一些實例中,反射器可形成於諸如透鏡之光學基板上,且透鏡與反射器的組合可被稱為反射器透鏡。反射器透鏡可包括具有至少一個彎曲表面之光學元件。反射器可包括形成於諸如透鏡之光學元件之平坦或彎曲表面上或藉由該平坦或彎曲表面以其他方式支撐的反射塗層。
在反射器製造期間,具有不同光學反射率值之不同反射器區可由遮蔽沈積製程或使用光微影或其組合而界定。類似方法可用於製造蛇形電極。
在一些實例中,透鏡(諸如菲涅爾透鏡)可包括諸如凹表面、凸表面或平坦表面之表面。在一些實例中,裝置可包括一或多個會聚透鏡及/或一或多個發散透鏡。光學組態可包括一或多個透鏡且可經組態以在眼眶處形成顯示器之至少部分的影像。裝置可經組態以使得當裝置藉由使用者佩戴時使用者之眼睛位於眼眶內。在一些實例中,透鏡可包括具有形成於包括光學材料之基板上之琢面的菲涅爾透鏡。在一些實例中,光學組態可包括一或多個反射器,諸如鏡面及/或反射器。
在一些實例中,至少一個蛇形電極可形成於鏡面之平坦或彎曲(凹形或凸形)表面上。在一些實例中,鏡面可包括彈性膜且可係可調整的。
在一些實例中,蛇形電極可由導電表面(諸如金屬膜塗佈之基板(例如,鏡面))中之一對間隔開間隙界定。在一些實例中,至少一個蛇形電極可經形成於基於導電膜(例如,金屬膜)之反射器及/或分束器中。間隔開之蛇形間隙可藉由任何合適方法或方法之組合而形成,該等方法諸如微影(例如,使用光微影光阻)、蝕刻、切除(例如,雷射切除)、刻劃或其他合適方法。蛇形電極可經界定於間隔開之蛇形間隙(或任何其他非導電區)之間。在一些實例中,蛇形間隙可具有大致等於或小於250微米之厚度。
在一些實例中,蛇形電極可包括一或多個蛇形線(例如,適形蛇形路徑的複數個線),或非等向性導電元件(諸如奈米碳管)之蛇形配置。
在一些實例中,光學組態之組件可包括一或多個光學材料。舉例而言,光學材料可包括玻璃或光學塑膠。光學材料可在可見光譜中之一些或全部內大致上透射式。在一些實例中,包括大致上透射式材料之光學組件可對於可見光譜之一些全部內具有大於0.9之光學透射率。
在一些實例中,基板(例如,用於反射器)、光學材料及/或(例如,光學組件之)層可包括以下各者中之一或多者:氧化物(例如,二氧化矽、氧化鋁、二氧化鈦、諸如過渡金屬氧化物之其他金屬氧化物,或其他非金屬氧化物);半導體(例如,諸如矽(例如,非晶形或結晶矽)、碳、鍺之固有或摻雜半導體、磷族元素化物半導體、硫族化物半導體或其類似者);氮化物(例如,氮化矽、氮化硼,或包括氮化物半導體之其他氮化物);碳化物(例如,碳化矽)、氮氧化物(例如,氮氧化矽);聚合物;玻璃(例如,諸如硼矽酸鹽玻璃之矽玻璃、氟化物玻璃或其他玻璃);或其他材料。
在一些實例中,光學材料可經選擇以提供低雙折射率(例如,小於四分之一波長光學延遲,諸如小於大致λ/10,例如小於大致λ/20)例如用於包括光學材料之組件。光學材料可包括聚矽氧聚合物,諸如聚二甲基矽氧烷(PDMS)、環烯烴聚合物(COP)、環烯烴共聚物(COC)、聚丙烯酸酯、聚胺基甲酸酯、聚碳酸酯或其他聚合物。舉例而言,聚矽氧聚合物(例如,PDMS)光學組件可經支撐於諸如玻璃之剛性基板或聚合物(例如,與聚矽氧聚合物相比較,相對剛性聚合物)上。用於蛇形電極之基板可包括一或多個此類光學組件。
在一些實例中,設備可包括顯示器(例如,顯示面板)及視情況具有諸如本文所描述之分段反射率的摺疊光學件透鏡。入射於摺疊光學件透鏡的來自顯示面板之光可經圓形偏振。顯示器可為發射顯示器或可包括背光。發射顯示器可包括發光二極體(LED)陣列,諸如有機發光二極體(organic light-emitting diode;OLED)陣列。在一些實例中,LED陣列可包括微型LED陣列,且LED可具有大致或小於100微米(例如,大致或小於50微米、大致或小於20微米、大致或小於10微米、大致或小於5微米、大致或小於2微米、大致或小於1微米,或其他間距值)之間距。在一些實例中,至少一個蛇形電極及至少一個電組件可支撐在顯示器之表面(諸如光發射表面)上。舉例而言,一或多個感測器可用以監視光發射強度且控制器可沿著蛇形電極接收來自感測器之光發射強度資料。控制器可偵測光發射強度之老化效應或其他變化且可修改經發送至顯示器驅動器之視訊信號以補償任何此類效應。
在一些實例中,顯示器可發射圓偏振光。在一些實例中,顯示器可發射經線性偏振光且光學延遲器可將線性偏振轉換成正交線性偏振。在一些實例中,光學延遲器與線性反射偏振器之組合可由一替代組態替換,該替代組態諸如為可包括膽固醇型液晶反射偏振器之圓偏振反射偏振器。
在一些實例中,反射偏振器可包括膽固醇型液晶,諸如聚合物膽固醇型液晶,諸如交聯聚合物膽固醇型液晶。在一些實例中,反射偏振器可包括與置放於反射偏振器與第二反射器(例如,分束器或其他反射偏振器)之間的四分之一波遲延器組合的雙折射多層反射偏振器。
在一些實例中,顯示器可包括透射式顯示器(諸如液晶顯示器)及諸如背光之光源。在一些實例中,顯示器可包括空間光調變器及光源。實例空間光調變器可包括反射式或透射式可切換液晶陣列。
在一些實例中,設備可包括經組態以提供偏振光(諸如圓偏振光)之顯示器。顯示器可包括發射顯示器(例如,發光顯示器)或與背光組合使用之顯示器(例如,液晶顯示器)。
在一些實例中,自顯示器入射於分束器透鏡上的顯示光經圓偏振。顯示器可包括發射顯示器(諸如發光二極體顯示器)或與背光組合之光吸收面板(諸如液晶面板)。發射顯示器可包括至少一個LED陣列,諸如有機LED(OLED)陣列。LED陣列可包括微型LED陣列。LED陣列可包括具有小於約100微米(例如,約50微米、約20微米、約10微米、約5微米、約2微米或約1微米等)之間距的LED。
在一些實例中,顯示器可包括空間光調變器及光源(例如,背光)。空間光調變器可包括反射式或透射式可切換液晶陣列。在一些實例中,光源(例如,背光)可具有及/或允許光照強度在顯示器內之空間變化。在一些實例中,光源可包括諸如經掃描雷射之經掃描源。在一些實例中,光源可包括光發射元件(諸如光發射元件之陣列)之配置。光發射元件之陣列可包括迷你LED及/或微型LED發射元件之陣列。
在一些實例中,顯示器可包括一或多個波導顯示器。波導顯示器可包括多色顯示器或單色顯示器之配置。波導顯示器可經組態以將來自一或多個波導之顯示光投影至經組態以在眼框處形成顯示器之至少部分的影像的光學組態中。
在一些實例中,顯示器亮度可空間上變化以將成像顯示器亮度均勻性增加至少例如約10%、例如約20%、例如約30%、例如約40%或某一其他值。顯示器照明變化可例如藉由控制器而動態地控制。在一些實例中,動態照明變化可藉由接收藉由眼睛追蹤系統提供的眼睛追蹤信號的控制器調整。
在一些實例中,顯示器可具有空間上可調整亮度(例如,光照強度之空間變化)。在一些實例中,可調整亮度可藉由空間上改變發射顯示器或背光之亮度而達成。顯示器亮度及/或任何空間變化可例如藉由控制電路而可調整。在一些實例中,光源可包括諸如雷射之可掃描光源。在一些實例中,光源可包括光源(諸如LED背光)之陣列。舉例而言,光源之陣列可包括迷你LED或微型LED陣列。顯示器照明可在空間上改變以將成像顯示器亮度均勻性增加至少約10%(例如,約20%、約30%、約40%或其他值)。來自背光之照明的空間變化可經動態調整,且動態調整可藉由眼睛追蹤系統控制。
在一些實例中,設備可包括一或多個致動器。舉例而言,一或多個致動器可用以相對於菲涅爾透鏡定位反射偏振器(例如,以將反射偏振器部分及菲涅爾透鏡之琢面對齊)及/或抵著菲涅爾透鏡(例如,使用彈性體元件)推動反射偏振器。
實例制動器可包括壓電致動器,其可包括諸如晶體或陶瓷材料之壓電材料。實例制動器可包括諸如以下各者中之一或多者的致動器材料:氧化鉛鎂鈮、氧化鉛鋅鈮、氧化鉛鈧鉭、氧化鉛鑭鋯鈦、氧化鋇鈦鋯、氧化鋇鈦錫、氧化鉛鎂鈦、氧化鉛鈧鈮、氧化鉛銦鈮、氧化鉛銦鉭、氧化鉛鐵鈮、氧化鉛鐵鉭、氧化鉛鋅鉭、氧化鉛鐵鎢、氧化鋇鍶鈦、氧化鋇鋯、氧化鉍鎂鈮、氧化鉍鎂鉭、氧化鉍鋅鈮、氧化鉍鋅鉭、氧化鉛鐿鈮、氧化鉛鐿鉭、氧化鍶鈦、氧化鉍鈦、氧化鈣鈦、氧化鉛鎂鈮鈦、氧化鉛鎂鈮鈦鋯、氧化鉛鋅鈮鈦、氧化鉛鋅鈮鈦鋯以及先前中的任一者與先前及/或傳統鐵電體中的任一者混合,該等傳統鐵電體包括氧化鉛鈦、氧化鉛鋯鈦、氧化鋇鈦、氧化鉍鐵、氧化鈉鉍鈦、氧化鋰鉭、氧化鈉鉀鈮及氧化鋰鈮。又,鈦酸鉛、鋯酸鉛、鈦酸鉛鋯、鈮酸鉛鎂、鈮酸鉛鎂-鈦酸鉛、鈮酸鉛鋅、鈮酸鉛鋅-鈦酸鉛、鉭酸鉛鎂、鈮酸鉛銦、鉭酸鉛銦、鈦酸鋇、鈮酸鋰、鈮酸鉀、鈮酸鈉鉀、鈦酸鉍鈉或鉍鐵氧體。以上列舉實例致動器材料中之一或多者亦可用作光學材料、層(例如,光學組件之層)或基板材料(例如,用作分束器之基板)。在一些實例中,致動器可經組態以調整光學元件(諸如透鏡)之位置及/或構形。
場內照明及/或成像可能適用於各種應用,諸如運用近眼及寬視場(FOV)光學件的眼睛追蹤。場內照明可藉由在透鏡之表面上定位一或多個光源而達成。然而,在彎曲表面上形成電路可具有挑戰性。
在一些實例中,用於製造光學元件的方法可包括在具有平坦表面之基板上形成一或多個電極(例如,電路圖案),及接著使基板變形以使得基板表面採用彎曲輪廓,例如作為透鏡。在一些實例中,彎曲基板可經變形(例如,使用拉伸力)以具有平坦基板,沈積之電極且基板接著可經恢復以具有平坦基板。電極可包括蛇形電極。接著可製造適形例如透鏡之彎曲表面的實例電路。舉例而言,至少一個電極可形成於一彈性膜上同時該膜以及任何合適的電組件處於平坦組態中。彈性膜可為可調整透鏡之組件且可採用彎曲輪廓,可調整透鏡之一可操作形式。
在一些實例中,設備可包括擴增實境及/或虛擬實境(AR/VR)頭戴裝置。在一些實例中,設備可包括顯示器及經配置以向設備之使用者提供顯示器之影像的光學組態。實例光學組態可包括透鏡及反射偏振器及/或分束器。實例設備可包括顯示器,諸如液晶顯示器或電致發光顯示器(例如,LED顯示器),且顯示器可經組態以發射偏振光。
在一些實例中,設備可包括顯示器及經組態以例如在頭戴式裝置中提供顯示器之影像的光學組態。光學組態可包括透鏡。設備亦可包括一眼睛追蹤器(有時被稱作眼睛追蹤系統),其包括藉由透鏡支撐之一或多個光源,及視情況,亦可藉由透鏡(例如,眼鏡透鏡或AR/VR系統之透鏡)支撐的一或多個感測器。可使用包括至少一個蛇形電極之電極連接件製成與該等光源中之至少一者的電連接。
在一些實例中,透鏡可包括具有包括複數個琢面之結構化表面的菲涅爾透鏡,且可存在相鄰琢面之對之間的步驟。實例設備亦可包括反射偏振器及/或分束器,且光學組態可經配置為摺疊光學件。光學組態可形成在使用者佩戴設備時可藉由使用者觀看顯示器之影像。實例亦包括其他裝置、方法、系統及電腦可讀取媒體。在一些實例中,菲涅爾透鏡之琢面可使用填充層平滑,且蛇形電極位於該填充層及/或平坦表面上。
在一些實例中,蛇形電極可位於光學元件之兩個表面上並用以控制定位於蛇形電極之間的電光元件。
實例設備可包括一顯示器及經組態以提供該顯示器之一影像的一光學組態。該光學組態可包括具有支撐至少一個蛇形電極的一透鏡表面之一透鏡。該至少一個蛇形電極可與一電組件電連通,該電組件諸如為一電光組件(例如,包括一雷射、發光二極體、光電二極體或影像感測器中之至少一者)或可在施加一電場情況下展示一或多維變化的一電活性組件。一實例設備亦可包括經由該至少一個蛇形電極與該電組件電連通的一控制器。在一些實例中,實例蛇形電極之至少一部分可具有大致正弦形狀或其他空間上振盪的形狀。
實例具體實例
實例1:一種設備可包括:一顯示器;一光學組態,其經組態以提供該顯示器之一影像;及一控制器,其中該光學組態包括具有一透鏡表面之一透鏡;該透鏡表面支撐一電組件及至少一個蛇形電極;且該控制器經由該蛇形電極與該電組件電連通。
實例2:如實例1之設備,其中該蛇形電極具有一大致正弦形狀。
實例3:如實例1及2之設備,其中該蛇形電極包括一金屬、一透明導電氧化物、石墨烯或一導電聚合物中之至少一者。
實例4:如實例1至3中之任一者的設備,其中該透鏡表面支撐一第一蛇形電極及一第二蛇形電極;該電組件具有與該第一蛇形電極電連通的一第一端子;且該電組件具有與該第二蛇形電極電連通的一第二端子。
實例5:如實例1至4中之任一者的設備,其中該設備經組態以使得該顯示器之該影像由來自該顯示器之通過該透鏡表面的光形成。
實例6:如實例1至5中之任一者的設備,其中該電組件包括一光源。
實例7:如實例6之設備,其中該控制器經組態以使用經由該至少一個蛇形電極提供的一電信號向該光源供能。
實例8:如實例6及7中之任一者的設備,其中該光源包括一雷射。
實例9:如實例6至8中之任一者的設備,其中該設備包括一眼睛追蹤子系統,該眼睛追蹤子系統包括該光源及一感測器且該感測器經組態以提供一感測器信號至該控制器。
實例10:如實例9之設備,其中該控制器經進一步組態以基於該感測器信號判定一凝視方向。
實例11:如實例1至10中之任一者的設備,其中該透鏡為包括一彈性膜之一可調整透鏡且該蛇形電極係藉由該彈性膜支撐。
實例12:如實例1至11中之任一者的設備,其中該電組件包括一電活性元件且該控制器經組態以藉由經由該蛇形電極提供一電信號至該電活性元件調整該透鏡之一光功率。
實例13:如實例12之設備,其中該控制器經組態以施加一控制信號至該電活性元件且該控制信號在該電活性元件中誘發一電致伸縮。
實例14:如實例12及13中之任一者的設備,其中該電活性元件包括安置於該彈性膜上之一電活性聚合物層。
實例15:如實例1及14中之任一者的設備,其中該顯示器之該影像係藉由藉由該顯示器發射之通過該透鏡表面的光形成。
實例16:如實例1及15中之任一者的設備,其中該設備包括一頭戴式裝置且該顯示器之該影像在該使用者佩戴該頭戴式裝置時可藉由該設備之一使用者觀看。
實例17:如實例1至16中任一項之設備,其中該設備包括一擴增實境裝置或一虛擬實境裝置。
實例18:一種方法可包括在一透鏡之一表面上提供至少一個蛇形電極及在該透鏡之該表面上定位一光源,該光源與該至少一個蛇形電極電連通。
實例19:如實例18之方法,其中該光源包括一雷射且該蛇形電極具有一正弦形電極部分。
實例20:一種方法可包括使用藉由該彈性膜支撐的至少一個蛇形元件施加一電信號至位於一可調整透鏡之一彈性膜上的一電活性元件以調整該可調整透鏡之一光功率,其中該電活性元件包含安置於該彈性膜上之一電致伸縮聚合物層。
本發明之具體實例可包括各種類型的人工實境系統或結合各種類型的人工實境系統加以實施。人工實境為在向使用者呈現之前已以某一方式調整的實境形式,其可包括例如虛擬實境、擴增實境、混合實境、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全由電腦產生之內容或與所俘獲之(例如,真實世界)內容組合之電腦產生之內容。人工實境內容可包括視訊、音訊、觸覺反饋或其某一組合,其中之任一者可在單通道中或在多個通道中(諸如,對觀看者產生三維(three-dimensional;3D)效應之立體視訊)呈現。另外,在一些具體實例中,人工實境亦可與用以例如在人工實境中產生內容及/或另外用於人工實境中(例如,在人工實境中執行活動)之應用、產品、配件、服務或其某一組合相關聯。
人工實境系統可以各種不同外觀尺寸及組態來實施。一些人工實境系統可經設計以在無近眼顯示器(near-eye display;NED)之情況下起作用。其他人工實境系統可包括NED,其亦提供對真實世界(諸如圖18中之擴增實境系統1800)之可見性或在視覺上使使用者沉浸在人工實境(諸如圖19中之虛擬實境系統1900)中。雖然一些人工實境裝置可為自含式系統,但其他人工實境裝置可與外部裝置通信及/或協調以向使用者提供人工實境體驗。此類外部裝置之實例包括手持式控制器、行動裝置、桌上型電腦、由使用者佩戴之裝置、由一或多個其他使用者佩戴之裝置,及/或任何其他適合之外部系統。
轉向圖18,擴增實境系統1800可包括具有框架1810之眼鏡裝置1802,該框架經組態以將左側顯示裝置1815(A)及右側顯示裝置1815(B)固持在使用者眼睛前方。顯示裝置1815(A)及1815(B)可共同地或獨立地起作用以向使用者呈現影像或一系列影像。雖然擴增實境系統1800包括兩個顯示器,但本發明之具體實例可實施於具有單個NED或多於兩個NED之擴增實境系統中。
在一些具體實例中,擴增實境系統1800可包括一或多個感測器,諸如感測器1840。感測器1840可回應於擴增實境系統1800之運動而產生量測信號,且可位於框架1810之實質上任何部分上。感測器1840可表示多種不同感測機構中之一或多者,該等感測機構諸如位置感測器、慣性量測單元(inertial measurement unit;IMU)、深度攝影機總成、結構化光發射器及/或偵測器,或其任何組合。在一些具體實例中,擴增實境系統1800可或可不包括感測器1840或可包括多於一個感測器。在其中感測器1840包括IMU之具體實例中,IMU可基於來自感測器1840之量測信號而產生校準資料。感測器1840之實例可包括但不限於加速計、陀螺儀、磁力計、偵測運動之其他合適類型的感測器、用於IMU之誤差校正的感測器,或其某一組合。
在一些實例中,擴增實境系統1800亦可包括具有統稱為聲音換能器1820之複數個聲音換能器1820(A)至1820(J)的麥克風陣列。聲音換能器1820可表示偵測由聲波誘發之氣壓變化的換能器。每一聲音換能器1820可經組態以偵測聲音且將經偵測聲音轉換為電子格式(例如,類比或數位格式)。圖18中之麥克風陣列可包括例如十個聲音換能器:1820(A)及1820(B),其可經設計以置放在使用者之對應的耳朵內部;聲音換能器1820(C)、1820(D)、1820(E)、1820(F)、1820(G)及1820(H),其可定位於框架1810上之各種部位處;及/或聲音換能器1820(I)及1820(J),其可定位於對應的頸帶1805上。
在一些具體實例中,聲音換能器1820(A)至1820(J)中之一或多者可用作輸出換能器(例如,揚聲器)。舉例而言,聲音換能器1820(A)及/或1820(B)可為耳塞或任何其他合適類型的耳機或揚聲器。
麥克風陣列之聲音換能器1820的組態可不同。雖然擴增實境系統1800在圖18中展示為具有十個聲音換能器1820,但聲音換能器1820之數目可大於或小於十。在一些具體實例中,使用較高數目個聲音換能器1820可增加經收集音訊資訊之量及/或提高音訊資訊之敏感度及準確度。相比之下,使用較低數目個聲音換能器1820可減小相關聯控制器1850處理經收集音訊資訊所需之計算能力。另外,麥克風陣列之聲音換能器1820的位置可不同。舉例而言,聲音換能器1820之位置可包括關於使用者之經界定位置、關於框架1810之經界定座標、與每一聲音換能器1820相關聯之定向,或其某一組合。
聲音換能器1820(A)及1820(B)可位於使用者耳朵之不同部分上,諸如耳廓後方、耳屏後方及/或在外耳或窩內。或者,除了耳道內部之聲音換能器1820以外,耳朵上或周圍亦可存在額外聲音換能器1820。使聲音換能器1820緊鄰使用者之耳道定位可使得麥克風陣列能夠收集關於聲音如何到達耳道之資訊。藉由將聲音換能器1820中之至少兩者定位在使用者頭部之任一側上(例如,作為雙耳麥克風),擴增實境裝置1800可模擬雙耳聽覺且俘獲使用者頭部周圍的3D立體聲聲場。在一些具體實例中,聲音換能器1820(A)及1820(B)可經由有線連接1830連接至擴增實境系統1800,且在其他具體實例中,聲音換能器1820(A)及1820(B)可經由無線連接(例如,藍芽連接)連接至擴增實境系統1800。在再其他具體實例中,聲音換能器1820(A)及1820(B)可根本不結合擴增實境系統1800來使用。
框架1810上之聲音換能器1820可以多種不同方式定位,包括沿著鏡腿之長度、跨越橋接件、在顯示裝置1815(A)及1815(B)上方或下方,或其某一組合。聲音換能器1820亦可定向成使得麥克風陣列能夠在環繞佩戴擴增實境系統1800之使用者的廣泛範圍的方向上偵測聲音。在一些具體實例中,可在擴增實境系統1800之製造期間執行最佳化程序以判定麥克風陣列中之每一聲音換能器1820的相對定位。
在一些實例中,擴增實境系統1800可包括或連接至外部裝置(例如,成對裝置),諸如頸帶1805。頸帶1805大致上表示任何類型或形式的成對裝置。因此,頸帶1805之以下論述亦可適用於各種其他成對裝置,諸如充電箱、智慧型手錶、智慧型手機、腕帶、其他佩戴式裝置、手持式控制器、平板電腦、膝上型電腦、其他外部計算裝置等。
如所展示,頸帶1805可經由一或多個連接器耦接至眼鏡裝置1802。連接器可為有線或無線的,並且可包括電及/或非電(例如,結構化)組件。在一些情況下,眼鏡裝置1802及頸帶1805可在其間無任何有線或無線連接之情況下獨立地操作。雖然圖18說明處於眼鏡裝置1802及頸帶1805上之實例部位中之眼鏡裝置1802及頸帶1805的組件,但組件可定位於其他地方及/或以不同方式分佈在眼鏡裝置1802及/或頸帶1805上。在一些具體實例中,眼鏡裝置1802及頸帶1805之組件可位於與眼鏡裝置1802、頸帶1805或其某一組合配對的一或多個額外周邊裝置上。
使諸如頸帶1805之外部裝置與擴增實境眼鏡裝置配對可使得眼鏡裝置能夠實現一副眼鏡之外觀尺寸,同時仍為擴展能力提供足夠的電池功率及計算能力。擴增實境系統1800之電池功率、計算資源及/或額外特徵中之一些或全部可由成對裝置提供或在成對裝置與眼鏡裝置之間共用,因此整體上減小眼鏡裝置之重量、熱分佈及外觀尺寸,同時仍保持所要功能性。舉例而言,頸帶1805可允許原本將包括在眼鏡裝置上之組件包括於頸帶1805中,此係由於使用者可在其肩部上承受比其將在其頭部上承受的更重的重量負載。頸帶1805亦可具有較大表面區域,以在該表面區域之上將熱擴散且分散至周圍環境。因此,頸帶1805可允許比獨立眼鏡裝置上可能另外存在的電池及計算容量大的電池及計算容量。由於頸帶1805中所攜載之重量相比於眼鏡裝置1802中所攜載之重量對於使用者之侵入性可更小,因此使用者可承受佩戴較輕眼鏡裝置且承受攜載或佩戴成對裝置之時間長度大於使用者將承受佩戴較重的獨立式眼鏡裝置之時間長度,藉此使得使用者能夠將人工實境環境更充分地併入至其日常活動中。
頸帶1805可以通信方式與眼鏡裝置1802及/或其他裝置耦接。此等其他裝置可向擴增實境系統1800提供某些功能(例如,追蹤、定位、深度映射、處理、儲存等)。在圖18之具體實例中,頸帶1805可包括兩個聲音換能器(例如,1820(I)及1820(J)),其為麥克風陣列之部分(或可能形成其自身的麥克風子陣列)。頸帶1805亦可包括控制器1825及電源1835。
頸帶1805之聲音換能器1820(I)及1820(J)可經組態以偵測聲音且將經偵測聲音轉換為電子格式(類比或數位)。在圖18之具體實例中,聲音換能器1820(I)及1820(J)可位於頸帶1805上,藉此增加頸帶聲音換能器1820(I)及1820(J)與位於眼鏡裝置1802上之其他聲音換能器1820之間的距離。在一些情況下,增加麥克風陣列之聲音換能器1820之間的距離可改良經由麥克風陣列執行之波束成形之準確度。舉例而言,若聲音係由聲音換能器1820(C)及1820(D)偵測到且聲音換能器1820(C)與1820(D)之間的距離大於例如聲音換能器1820(D)與1820(E)之間的距離,則偵測到之聲音之經判定源部位可比聲音由聲音換能器1820(D)及1820(E)偵測到之情況更準確。
頸帶1805之控制器1825可處理由頸帶1805及/或擴增實境系統1800上之感測器產生的資訊。舉例而言,控制器1825可處理來自麥克風陣列之描述由麥克風陣列偵測到之聲音的資訊。對於每一經偵測聲音,控制器1825可執行到達方向(direction-of-arrival;DOA)估計以估計經偵測聲音自哪一方向到達麥克風陣列。當麥克風陣列偵測到聲音時,控制器1825可用資訊填充音訊資料集。在擴增實境系統1800包括慣性量測單元之具體實例中,控制器1825可根據位於眼鏡裝置1802上之IMU計算所有慣性及空間計算。連接器可在擴增實境系統1800與頸帶1805之間及在擴增實境系統1800與控制器1825之間傳送資訊。該資訊可呈光學資料、電資料、無線資料或任何其他可傳輸資料形式之形式。將由擴增實境系統1800產生的資訊之處理移動至頸帶1805可減小眼鏡裝置1802中之重量及熱,從而使該眼鏡裝置對於使用者而言更舒適。
頸帶1805中之電源1835可將電力提供至眼鏡裝置1802及/或頸帶1805。電源1835可包括但不限於鋰離子電池、鋰聚合物電池、鋰原電池、鹼性電池或任何其他形式之電力儲存器。在一些情況下,電源1835可為有線電源。將電源1835包括於頸帶1805上而非眼鏡裝置1802上可有助於較佳地分佈由電源1835產生之重量及熱。
如所提及,代替將人工實境與實際實境摻合,一些人工實境系統可實質上用虛擬體驗來替換使用者對真實世界之感測感知中之一或多者。此類型系統之一個實例為頭戴式顯示系統,諸如圖19中之虛擬實境系統1900,其主要或完全地覆蓋使用者之視場。虛擬實境系統1900可包括塑形成圍繞使用者頭部裝配之前剛體1902及帶1904。虛擬實境系統1900亦可包括輸出音訊換能器1906(A)及1906(B)。此外,雖然圖19中未展示,但前剛體1902可包括一或多個電子元件,其包括一或多個電子顯示器、一或多個慣性量測單元(inertial measurement unit;IMU)、一或多個追蹤發射器或偵測器及/或用於產生人工實境體驗之任何其他合適的裝置或系統。
人工實境系統可包括多種類型的視覺反饋機構。舉例而言,擴增實境系統1800及/或虛擬實境系統1900中之顯示裝置可包括一或多個液晶顯示器(liquid crystal displays;LCD)、發光二極體(light emitting diode;LED)顯示器、微型LED顯示器、有機LED(organic LED;OLED)顯示器、數位光投影(digital light project;DLP)微顯示器、矽上液晶(liquid crystal on silicon;LCoS)微顯示器,及/或任何其他適合類型的顯示螢幕。此等人工實境系統可包括用於兩隻眼睛之單一顯示螢幕或可為每一隻眼睛提供顯示螢幕,此可允許用於變焦調整或用於校正使用者之屈光不正的額外靈活性。此等人工實境系統中之一些亦可包括具有一或多個透鏡(例如,凹透鏡或凸透鏡、菲涅耳透鏡、可調整液體透鏡等)之光學子系統,使用者可經由該等透鏡觀看顯示螢幕。此等光學子系統可用於各種目的,包括使光準直(例如,使物件出現在比其實體距離更大的距離處)、放大光(例如,使物件看起來比其實際大小大)及/或中繼光(將光中繼至例如檢視者之眼睛)。此等光學子系統可用於非光瞳形成架構(諸如直接使光準直但產生所謂的枕形畸變之單透鏡組態)及/或光瞳形成架構(諸如產生所謂的桶形畸變以消除枕形畸變之多透鏡組態)中。
除了使用顯示螢幕以外或代替使用顯示螢幕,本文中所描述之一些人工實境系統亦可包括一或多個投影系統。舉例而言,擴增實境系統1800及/或虛擬實境系統1900中之顯示裝置可包括微型LED投影儀,其(使用例如波導)將光投影至顯示裝置中,該等顯示裝置諸如允許環境光通過之清晰的組合器透鏡。顯示裝置可將經投影光朝向使用者瞳孔折射且可使得使用者能夠同時觀看人工實境內容及真實世界兩者。顯示裝置可使用多種不同光學組件中之任一者來實現此情形,該等光學組件包括波導組件(例如,全像、平面、繞射、偏振及/或反射波導元件)、光操縱表面及元件(諸如繞射、反射及折射元件以及光柵)、耦合元件等。人工實境系統亦可經組態成具有任何其他合適類型或形式之影像投影系統,諸如用於虛擬視網膜顯示器中之視網膜投影儀。
本文中所描述之人工實境系統亦可包括各種類型之電腦視覺組件及子系統。舉例而言,擴增實境系統1800及/或虛擬實境系統1900可包括一或多個光學感測器,諸如二維(2D)或3D攝影機、結構化光傳輸器及偵測器、飛行時間深度感測器、單束或掃掠雷射測距儀、3D雷射雷達感測器及/或任何其他合適類型或形式的光學感測器。人工實境系統可處理來自此等感測器中之一或多者之資料以識別使用者之部位、繪製真實世界、向使用者提供關於真實世界環境之情境及/或執行多種其他功能。
本文中所描述之人工實境系統亦可包括一或多個輸入及/或輸出音訊換能器。輸出音訊換能器可包括音圈揚聲器、帶式揚聲器、靜電揚聲器、壓電揚聲器、骨傳導換能器、軟骨傳導換能器、耳屏振動換能器及/或任何其他適合類型或形式的音訊換能器。類似地,輸入音訊換能器可包括電容式麥克風、動態麥克風、帶式麥克風及/或任何其他類型或形式之輸入換能器。在一些具體實例中,單一換能器可用於音訊輸入及音訊輸出兩者。
在一些具體實例中,本文中所描述的人工實境系統亦可包括觸感(亦即,觸覺)反饋系統,其可併入至頭飾、手套、連體套裝、手持式控制器、環境裝置(例如,椅子、地墊等)及/或任何其他類型的裝置或系統中。觸覺反饋系統可提供各種類型之皮膚反饋,包括振動、力、牽引力、紋理及/或溫度。觸覺反饋系統亦可提供各種類型之動覺反饋,諸如運動及順應性。觸覺反饋可使用馬達、壓電致動器、流體系統及/或各種其他類型之範饋機構來實施。觸覺反饋系統可獨立於其他人工實境裝置、在其他人工實境裝置內及/或結合其他人工實境裝置來實施。
藉由提供觸覺感覺、可聽內容及/或視覺內容,人工實境系統可在多種情境及環境中產生完整虛擬體驗或增強使用者之真實世界體驗。舉例而言,人工實境系統可輔助或擴展使用者在特定環境內之感知、記憶或認知。一些系統可增強使用者與真實世界中之其他人的互動或可實現與虛擬世界中之其他人的更具沉浸式之互動。人工實境系統亦可用於教學目的(例如,用於在學校、醫院、政府組織、軍事組織、商業企業等中進行教學或訓練)、娛樂目的(例如,用於播放視訊遊戲、聽音樂、觀看視訊內容等)及/或用於可存取性目的(例如,作為助聽器、視覺輔助物等)。本文中所揭示之具體實例可在此等情境及環境中之一或多者中及/或在其他情境及環境中實現或增強使用者之人工實境體驗。
眼睛追蹤系統
在一些具體實例中,本文中所描述的系統亦可包括經設計以識別並追蹤使用者眼睛之各種特性(諸如使用者之凝視方向)的眼睛追蹤子系統(其亦可稱為眼睛追蹤器)。片語「眼睛追蹤」可在一些實例中,指量測、偵測、感測、判定及/或監視眼睛之位置、定向及/或運動所藉以的過程。所揭示系統可以多種不同方式量測眼睛之位置、定向及/或運動,該等方式包括經由使用各種基於光學之眼睛追蹤技術、基於超音波之眼睛追蹤技術等。眼睛追蹤子系統可以數個不同方式組態且可包括多種不同眼睛追蹤硬體組件或其他電腦視覺組件。舉例而言,眼睛追蹤子系統可包括多種不同光學感測器,諸如二維(two-dimensional;2D)或3D攝影機、飛行時間深度感測器、單光束或掃描雷射測距儀、3D雷射雷達感測器及/或任何其他合適類型或形式之光學感測器。在此實例中,處理子系統可處理來自此等感測器中之一或多者的資料以量測、偵測、判定及/或另外監視使用者眼睛之位置、定向及/或運動。
圖20為併入能夠追蹤使用者眼睛之眼睛追蹤子系統的例示性系統2000之說明。如圖20中所描繪,系統2000可包括光源2002、光學子系統2004、眼睛追蹤子系統2006及/或控制子系統2008。在一些實例中,光源2002可產生光以用於一影像(例如,待顯現給觀看者之眼睛2001)。光源2002可表示多種合適裝置中之任一者。舉例而言,光源2002可包括二維投影器(例如,LCoS顯示器)、掃描源(例如,掃描雷射)或其他裝置(例如,LCD、LED顯示器、OLED顯示器、主動矩陣OLED顯示器(active-matrix OLED display;AMOLED)、透明OLED顯示器(transparent OLED display;TOLED)、波導或能夠產生光以用於將影像呈現給觀看者的某一其他顯示器)。在一些實例中,影像可表示虛擬影像,相較於由光線之實際發散形成的影像,該虛擬影像可指由來自空間中之點的光線之明顯發散形成的光學影像。
在一些具體實例中,光學子系統2004可接收藉由光源2002產生之光並基於所接收之光產生包括影像之會聚光2020。在一些實例中,光學子系統2004可包括任何數目個透鏡(例如,菲涅爾透鏡、凸透鏡、凹透鏡)、孔徑、濾光器、鏡面、稜鏡及/或其他光學組件、可能與制動器及/或其他裝置組合。詳言之,制動器及/或其他裝置可平移及/或旋轉光學組件中之一或多者以改變會聚光2020之一或多個態樣。另外,各種機械耦接可用以維持任何合適組合中之光學組件之相對間距及/或定向。
在一個具體實例中,眼睛追蹤子系統2006可產生指示觀看者之眼睛2001之凝視角的追蹤資訊。在此具體實例中,控制子系統2008可至少部分地基於此追蹤資訊控制光學子系統2004之態樣(例如,會聚光2020之入射角)。另外,在一些實例中,控制子系統2008可儲存並利用歷史追蹤資訊(例如,在給定持續時間內的追蹤資訊之歷史,諸如前一秒或其部分)以預期眼睛2001之凝視角(例如,眼睛2001之視軸與解剖軸之間的角)。在一些具體實例中,眼睛追蹤子系統2006可偵測來源於眼睛2001之某一部分(例如,角膜、虹膜、瞳孔或其類似者)之輻射以判定眼睛2001之當前凝視角。在其他實例中,眼睛追蹤子系統2006可採用波前感測器以追蹤瞳孔之當前部位。
任何數目個技術可用以追蹤眼睛2001。一些技術可涉及運用紅外光照明眼睛2001及運用經調節以對紅外光敏感的至少一個光學感測器量測反射。關於紅外光如何自眼睛2001反射的資訊可經分析以判定一或多個眼睛特徵(諸如角膜、瞳孔、虹膜及/或視網膜血管)之位置、定向及/或運動。
在一些實例中,由眼睛追蹤子系統2006之感測器俘獲的輻射可經數位化(亦即,轉換成電子信號)。另外,感測器可傳輸此電子信號之數位表示至一或多個處理器(例如,與包括眼睛追蹤子系統2006之裝置相關聯的處理器)。眼睛追蹤子系統2006可包括呈多種不同組態之多種感測器中之任一者。舉例而言,眼睛追蹤子系統2006可包括對紅外線輻射有反應的紅外線偵測器。紅外線偵測器可為熱偵測器、光子偵測器及/或任何其他合適類型之偵測器。熱偵測器可包括對入射紅外線輻射之熱效應有反應的偵測器。
在一些實例中,一或多個處理器可處理藉由用以追蹤眼睛2001之移動的眼睛追蹤子系統2006之感測器產生的數位表示。在另一實例中,此等處理器可藉由實行由儲存於非暫時性記憶體上的電腦可實行指令表示之演算法追蹤眼睛2001之移動。在一些實例中,晶片上邏輯(例如,特殊應用積體電路或ASIC)可用以執行此類演算法之至少部分。如所提及,眼睛追蹤子系統2006可經程式化以使用感測器之輸出以追蹤眼睛2001之移動。在一些具體實例中,眼睛追蹤子系統2006可分析藉由感測器產生的數位表示以自反射之變化提取眼睛旋轉資訊。在一個具體實例中,眼睛追蹤子系統2006可使用角膜反射或閃光(亦稱為浦金埃氏影像)及/或眼睛瞳孔2022之中心作為特徵以隨時間追蹤。
在一些具體實例中,眼睛追蹤子系統2006可使用眼睛瞳孔2022之中心及紅外或近紅外非準直光以產生角膜反射。在此等具體實例中,眼睛追蹤子系統2006可使用眼睛瞳孔2022之中心與角膜反射之間的向量以計算眼睛2001之凝視方向。在一些具體實例中,所揭示系統可在追蹤使用者眼睛之前執行用於個人之校準程序(使用例如監督或無監督技術)。舉例而言,校準程序可包括引導使用者查看顯示於顯示器上之一或多個點同時眼動追蹤系統記錄對應於與每一點相關聯之每一凝視位置的值。
在一些具體實例中,眼睛追蹤子系統2006可使用兩種類型之紅外及/或近紅外(亦稱為主動光)眼睛追蹤技術:亮瞳孔及暗瞳孔眼睛追蹤,其可基於照明源相對於所使用光學元件之部位而區分。若照明與光學路徑同軸,則眼睛2001可在光反射出視網膜時充當回反射器,藉此建立類似於攝影中之紅眼效應的亮瞳孔效應。若照明源自光學路徑偏移,則眼睛瞳孔2022可顯現暗此係因為來自視網膜之回反射經引導遠離感測器。在一些具體實例中,亮瞳孔追蹤可產生較大虹膜/瞳孔對比度,從而允許運用虹膜色素沉著更穩固眼睛追蹤,且可提供減小之干擾(例如,由睫毛及其他遮擋特徵所引起的干擾)。亮瞳孔追蹤亦可允許在介於全暗至非常亮環境範圍內之照明條件下追蹤。
在一些具體實例中,控制子系統2008可控制光源2002及/或光學子系統2004以減小可由眼睛2001引起或影響的影像之光學像差(例如,色像差及/或單色像差)。在一些實例中,如上文所提及,控制子系統2008可使用來自眼睛追蹤子系統2006之追蹤資訊以執行此類控制。舉例而言,在控制光源2002中,控制子系統2008可改變藉由光源2002(例如,借助於影像顯現)產生之光以修改(例如,預扭曲)影像以使得由眼睛2001所引起的影像之像差得以減小。
所揭示系統可追蹤瞳孔之位置及相對大小兩者(此係由於例如瞳孔擴大及/或收縮)。在一些實例中,用於偵測及/或追蹤瞳孔之眼睛追蹤裝置及組件(例如,感測器及/或源)可對於不同類型眼睛而不同(或以不同方式校準)。舉例而言,感測器之頻率範圍可對於不同色彩及/或不同瞳孔類型、大小及/或其類似者的眼睛而不同(或經單獨地校準)。因而,本文中所描述的各種眼睛追蹤組件(例如,紅外源及/或感測器)可需要針對每一個別使用者及/或眼睛而校準。
所揭示系統可運用或不運用眼科校正(諸如藉由藉由使用者佩戴之隱形眼鏡提供)追蹤兩個眼睛。在一些具體實例中,眼科校正元件(例如,可調整透鏡)可直接併入至本文中所描述的人工實境系統中。在一些實例中,使用者眼睛之色彩可需要修改對應眼睛追蹤演算法。舉例而言,眼睛追蹤演算法可需要至少部分地基於棕色眼睛與例如藍色眼睛之間的不同色彩對比度而修改。
圖21A為圖20中所說明之眼睛追蹤子系統的各種態樣之更詳細說明。如此圖中所展示,眼睛追蹤子系統2100可包括至少一個源2104及至少一個感測器2106。源2104大致上表示能夠發射輻射的任何類型或形式之元件。在一個實例中,源2104可產生可見光、紅外光及/或近紅外光輻射。在一些實例中,源2104可朝向使用者之眼睛2102輻射電磁波譜之非準直紅外光及/或近紅外光部分。源2104可利用多種取樣速率及速度。舉例而言,所揭示系統可使用具有較高取樣速率之源以便俘獲使用者眼睛2102之注視眼睛運動及/或正確地量測使用者眼睛2102之眼跳動力學。如上文所提及,任何類型或形式之眼睛追蹤技術可用以追蹤使用者之眼睛2102,包括基於光學之眼睛追蹤技術、基於超音波之眼睛追蹤技術等。
感測器2106大致上表示能夠偵測輻射(諸如自使用者眼睛2102反射的輻射)的任何類型或形式之元件。感測器2106之實例包括(但不限於)電荷耦合裝置(charge coupled device;CCD)、光電二極體陣列、基於互補金屬氧化物半導體(complementary metal-oxide-semiconductor ;CMOS)之感測器裝置,及/或其類似者。在一個實例中,感測器2106可表示具有預定參數之感測器,包括(但不限於)動態解析度範圍、線性及/或經選擇及/或特定設計用於眼睛追蹤的其他特性。
如上文所詳述,眼睛追蹤子系統2100可產生一或多個閃光。如上文所詳述,閃光2103可表示輻射(例如,來自諸如源2104之紅外光源之紅外光輻射)自使用者眼睛之結構的反射。在各種具體實例中,閃光2103及/或使用者之瞳孔可使用藉由處理器(在人工實境裝置內或外部)實行之眼睛追蹤演算法來追蹤。舉例而言,人工實境裝置可包括為了在本端執行眼睛追蹤之處理器及/或記憶體裝置及/或用以發送及接收為在外部裝置(例如,行動電話、雲端伺服器或其他計算裝置)上執行眼睛追蹤所必需之資料的一收發器。
圖21B展示由眼睛追蹤子系統(諸如眼睛追蹤子系統2100)俘獲之實例影像2105。在此實例中,影像2105可包括使用者之瞳孔2108及在該瞳孔附近的閃光2110兩者。在一些實例中,可使用基於人工智慧之演算法(諸如基於電腦視覺之演算法)識別瞳孔2108及/或閃光2110。在一個具體實例中,影像2105可表示可經不斷地分析以便追蹤使用者之眼睛2102的一系列訊框中之單一訊框。另外,瞳孔2108及/或閃光2110可在一段時間內被追蹤以判定使用者之凝視。
在一個實例中,眼睛追蹤子系統2100可經組態以識別並量測使用者之瞳孔間距離(inter-pupillary distance;IPD)。在一些具體實例中,在使用者佩戴人工實境系統的同時,眼睛追蹤子系統2100可量測及/或計算使用者之IPD。在此等具體實例中,眼睛追蹤子系統2100可偵測使用者眼睛之位置且可使用此資訊以計算使用者之IPD。
如所提及,本文所揭示之眼睛追蹤系統或子系統可以多種方式追蹤使用者之眼睛位置及/或眼睛運動。在一個實例中,一或多個光源及/或光學感測器可俘獲使用者眼睛之影像。眼睛追蹤子系統接著可使用所俘獲資訊以判定使用者之瞳孔間距離、眼間距離及/或每一眼睛之3D位置(例如出於畸變調整目的),包括扭轉及旋轉(亦即,橫搖、縱搖及偏航)之量值及/或用於每一眼睛之凝視方向。在一個實例中,紅外光可藉由眼睛追蹤子系統發射並自每一眼睛反射。反射光可藉由光學感測器接收或偵測並經分析以自由每一眼睛反射的紅外光之變化提取眼睛旋轉資料。
眼睛追蹤子系統可使用多種不同方法中之任一者以追蹤使用者之眼睛。舉例而言,光源(例如,紅外發光二極體)可發射點圖案至使用者之每一眼睛上。眼睛追蹤子系統接著可偵測(例如,經由耦接至人工實境系統之光學感測器)並分析點圖案自使用者之每一眼睛的反射以識別使用者之每一瞳孔的部位。因此,眼睛追蹤子系統可追蹤每一眼睛之至多六個自由度(亦即,3D位置、橫搖、縱搖及偏航)且追蹤量之至少一子集可自使用者之兩個眼睛組合以估計凝視點(亦即,使用者觀看的虛擬場景中之3D部位或位置)及/或IPD。
在一些情況下,當使用者之眼睛移動以在不同方向中觀看時使用者瞳孔與顯示器之間的距離可改變。當觀看方向變化時瞳孔與顯示器之間的變化距離可被稱作「瞳孔遊動」且可促成藉由使用者感知的畸變,畸變係由於當瞳孔與顯示器之間的距離變化時光聚焦在不同部位中而引起。因此,量測在相對於顯示器的不同眼睛位置及瞳孔距離處之畸變及產生不同位置及距離之畸變校正可允許藉由追蹤使用者眼睛之3D位置及在給定時間點施加對應於使用者眼睛中之每一者之3D位置的畸變校正而減輕由瞳孔遊動所引起之畸變。因此,知曉使用者眼睛中之每一者的3D位置可允許藉由施加用於每一3D眼睛位置之畸變校正而減輕由眼睛之瞳孔與顯示器之間的距離之變化所引起之畸變。此外,如上文所提及,知曉使用者眼睛中之每一者的位置亦可使得眼睛追蹤子系統能夠對於使用者之IPD進行自動調整。
在一些具體實例中,顯示子系統可包括可結合本文中所描述之眼睛追蹤子系統工作的多種額外子系統。舉例而言,顯示子系統可包括變焦子系統、場景顯現模組及/或聚散度處理模組。變焦子系統可使左右顯示元件改變顯示裝置之焦距。在一個具體實例中,變焦子系統可藉由移動顯示器、光學件或二者實體地改變顯示器與光學件之間的距離,經由光學件觀看。另外,相對於彼此移動或平移兩個透鏡亦可用以改變顯示器之焦距。因此,變焦子系統可包括移動顯示器及/或光學件以改變其之間的距離的制動器或馬達。此變焦子系統可與顯示子系統分開或整合至顯示子系統中。變焦子系統亦可整合至其致動子系統及/或本文中所描述的眼睛追蹤子系統中或與其分開。
在一個實例中,顯示子系統可包括經組態以基於凝視點及/或藉由眼睛追蹤子系統判定的凝視線之估計相交點判定使用者凝視之聚散度深度的聚散度處理模組。聚散度可指是兩眼在相反方向上同時移動或旋轉以維持單雙目視覺,此由人眼自然地及/或自動地執行。因此,使用者眼睛靠近之部位係使用者正在觀看之部位,且典型地亦為使用者眼睛聚焦的部位。舉例而言,聚散度處理模組可對凝視線進行三角量測以估計與凝視線之相交點相關聯之距使用者的距離或深度。與凝視線之相交點相關聯之深度可接著用作調節距離的近似值,其可識別使用者眼睛所指向之距使用者的距離。因此,聚散度距離可允許使用者之眼睛應聚焦的部位及眼睛聚焦所在的距使用者眼睛之深度的判定,藉此提供資訊(諸如物件或焦點之平面)以用於顯現對虛擬場景之調整。
聚散度處理模組可與本文中所描述的眼睛追蹤子系統協調以對顯示子系統進行調整以考慮使用者之聚散度深度。當使用者聚焦於在一距離處之某物時,使用者之瞳孔可比當使用者聚焦於附近某物時稍微更遠間隔。眼睛追蹤子系統可獲得關於使用者之聚散度或聚焦深度的資訊且可調整顯示子系統以當使用者之眼睛聚焦或接近於附近某物時更靠近在一起並當使用者之眼睛聚焦或接近於在一距離處之某物時更遠間隔。
藉由上文所描述之眼睛追蹤子系統產生的眼睛追蹤資訊亦可例如用以修改如何呈現不同電腦產生之影像的各種態樣。舉例而言,顯示子系統可經組態以基於藉由眼睛追蹤子系統產生之資訊修改電腦產生之影像如何呈現的至少一個態樣。舉例而言,電腦產生之影像可基於使用者之眼睛運動而修改,使得若使用者正查找,則電腦產生之影像可在螢幕上朝上移動。類似地,若使用者向側面或下面觀看,則電腦產生之影像可在螢幕上向側面或下面移動。若使用者之眼睛閉合,則電腦產生之影像可暫停或自顯示器移除並在使用者之眼睛再張開後恢復。
上文所描述之眼睛追蹤子系統可以多種方式併入至本文中所描述的各種人工實境系統中之一或多者中。舉例而言,系統2000及/或眼睛追蹤子系統2100之各種組件中之一或多者可併入至圖18中之擴增實境系統1800及/或圖19中之虛擬實境系統1900中以使此等系統能夠執行各種眼睛追蹤任務(包括本文中所描述的眼睛追蹤操作中之一或多者)。
如上文所詳述,本文中描述及/或說明的計算裝置及系統廣泛地表示能夠實行電腦可讀取指令(諸如在本文中所描述之模組內含有的彼等指令)的任何類型或形式之計算裝置或系統。在其最基本組態中,此等計算裝置可各自包括至少一個記憶體裝置及至少一個實體處理器。
在一些實例中,術語「記憶體裝置」一般指能夠儲存資料及/或電腦可讀取指令之任何類型或形式之揮發性或非揮發性儲存裝置或媒體。在一個實例中,記憶體裝置可儲存、加載及/或維持本文中所描述的模組中之一或多者。記憶體裝置之實例包括但不限於隨機存取記憶體(Random Access Memory;RAM)、唯讀記憶體(Read Only Memory;ROM)、快閃記憶體、硬碟機(Hard Disk Drive;HDD)、固態磁碟機(Solid-State Drive;SSD)、光碟機、快取記憶體、前述記憶體裝置中之一或多者的變化或組合,或任何其他合適的儲存記憶體。
在一些實例中,術語「實體處理器」一般係指能夠解譯及/或實行電腦可讀取指令的任何類型或形狀之硬體實施處理單元。在一個實例中,實體處理器可存取及/或修改儲存在上述記憶體裝置中的一或多個模組。實體處理器的實例包括但不限於微處理器、微控制器、中央處理單元(Central Processing Unit;CPU)、實施軟核處理器之場可程式化閘陣列(Field-Programmable Gate Array;FPGA)、特殊應用積體電路(Application-Specific Integrated Circuit;ASIC)、上述實體處理器中之一或多者的部分、上述實體處理器中之一或多者的變化或組合,或任何其他合適的實體處理器。
儘管經說明為單獨元件,但本文中描述及/或說明的模組可表示單一模組或應用之部分。另外,在某些具體實例中,此等模組中之一或多者可表示在由一計算裝置實行時可使得該計算裝置執行一或多個任務的一或多個軟體應用程序或程式。舉例而言,本文中所描述及/或說明的模組中之一或多者可表示經儲存於本文中所描述及/或說明的計算裝置或系統中之一或多者上且經組態以在本文中所描述及/或說明的計算裝置或系統中之一或多者上執行的模組。此等模組中之一或多者亦可表示經組態以執行一或多個任務的一或多個專用電腦之全部或部分。
另外,本文中所描述的模組中之一或多者可將資料、實體裝置及/或實體裝置之表示自一種形式變換至另一形式。舉例而言,本文中所列舉之模組中之一或多者可接收待變換之資料(例如,眼睛追蹤感測器資料)、變換資料(例如,成凝視方向、經觀看物件或其他視覺相關參數中之一或多者)、輸出變換之結果以執行一功能(例如,修改擴增實境環境、修改真實環境、修改真實或虛擬裝置之操作參數、提供控制信號至一設備,該設備諸如電子裝置、車輛或其他設備)、使用變換之結果以執行一功能,並儲存變換之結果以執行一功能(例如,在記憶體裝置中)。另外或替代地,本文中所列舉的模組中之一或多者可藉由在計算裝置上實行、將資料儲存於計算裝置上及/或另外與計算裝置相互作用而將處理器、揮發性記憶體、非揮發性記憶體及/或實體計算裝置之任何其他部分自一種形式變換至另一形式。
在一些具體實例中,術語「電腦可讀取媒體」一般係指能夠儲存或攜載電腦可讀取指令的任何形式之裝置、載體或媒體。電腦可讀取媒體之實例包括但不限於傳輸型媒體,諸如載波;及非暫時性型媒體,諸如磁性儲存媒體(例如,硬碟機、磁帶機及軟碟)、光學儲存媒體(例如,緊密光碟(Compact Disk;CD)、數位視訊光碟(Digital Video Disk;DVD)及藍光光碟)、電子儲存媒體(例如,固態磁碟機及快閃媒體)及其他分佈系統。
本文中所描述及/或說明的程序參數及步驟序列僅作為實例給出且可按需要變化。舉例而言,即使本文中所說明及/或描述之步驟可以特定次序展示或論述,但此等步驟未必需要以所說明或論述之次序執行。本文中所描述及/或說明之各種例示性方法亦可省略本文中所描述或說明之步驟中之一或多者或包括除所揭示之彼等步驟之外的額外步驟。
先前描述已經提供以使所屬領域中具有通常知識者能夠最佳利用本文中所揭示之例示性具體實例的各種態樣。此例示性描述並不意欲為詳盡的或限制於所揭示之任何精確形式。在不脫離本發明之精神及範圍之情況下,許多修改及變化係可能的。本文所揭示之具體實例在全部方面可視為說明性且非限制性的。在判定本發明之範疇時可參考附加至此之任何申請專利範圍及其等效物。
除非另外指出,否則如說明書及/或申請專利範圍中所使用的術語「連接至」及「耦接至」(及其衍生詞)被解釋為准許直接及間接(亦即,經由其他元件或組件)連接兩者。另外,如說明書及/或申請專利範圍中所使用之術語「一(a或an)」應被視為意謂「中之至少一者」。最後,為易於使用,如說明書及/或申請專利範圍中所使用之術語「包括」及「具有」(及其衍生詞)可與字組「包含」互換且具有與其相同之含義。
100,200,300,400,600,700,800,900,1000,1200,1300:設備 105:顯示器 110:光學組態 115:分束器 120:光學延遲器 125:反射偏振器 130,2001,2102:眼睛 205,612:基板 210,305,412,602,902:第一電極 215,310,414,604,904:第二電極 220,225,330,340,710,1130:電組件 315:第三電極 320:第四電極 410:第一電極對 415:第二電極對 416:虛線 420:電接點 500,1430:透鏡 502:基底層 504:撓曲件 508:流體 510:彈性元件 540:剛性元件 550:彈性膜 554:控制點 560:剛性臂 570,620,630:蛇形電極對 585:邊緣密封件 590:撓曲支撐件 610,1220,1240,1320:一對蛇形電極 614:第一正弦波部分 616:第二正弦波部分 622,632,642,830,920,1030,1140:基板 624,626:正弦波部分 634:彎曲部分 636:線性部分 640:蛇形電極 644:S形部分 702:膜 704,706,810,820:電極 720:主動元件 730:體積 812,822:附接層 910:電活性層 1010,1110:第一蛇形電極 1020,1120:第二蛇形電極 1210,1310:控制器 1230:光源 1250:光感測器 1330:電活性元件 1400:光學組態 1405:顯示器 1420:分束器 1425:凸透鏡表面 1435:表面 1440:偏振反射器 1445:光線 1450,1455,1460:射線 1452:光束 1500,1600,1700:方法 1800:擴增實境系統 1802:眼鏡裝置 1805:頸帶 1810:框架 1815(A):左側顯示裝置 1815(B):右側顯示裝置 1820(A),1820(B),1820(C),1820(D),1820(E),1820(F),1820(G),1820(H),1820(I),1820(J):聲音換能器 1825,1850:控制器 1830:有線連接 1840,2106:感測器 1900:虛擬實境系統 1902:前剛體 1904:帶 1906(A),1906(B):輸出音訊換能器 2000:系統 2002:光源 2004:光學子系統 2006,2100:眼睛追蹤子系統 2008:控制子系統 2020:會聚光 2022,2108:瞳孔 2103,2110:閃光 2104:源 2105:影像
隨附圖式說明數個例示性具體實例且為本說明書之一部分。連同以下描述,此等圖式展現及解釋本發明之各種原理。
[圖1]展示根據各種具體實例之可包括至少一個蛇形電極的實例設備。
[圖2]為根據各種具體實例之具有支撐一或多個蛇形電極之基板的實例裝置之說明。
[圖3]展示根據各種具體實例之另外實例蛇形電極。
[圖4]展示根據各種具體實例之包括蛇形電極的實例裝置,其中該等電極具有一主要徑向配置。
[圖5]為可與本發明之具體實例結合使用的例示性可調整流體透鏡之圖示。
[圖6A]至[圖6D]展示根據各種具體實例之實例蛇形電極。
[圖7]展示根據各種具體實例的安裝至支撐電極之基板的電組件。
[圖8]展示根據各種具體實例之使用附接層附接至基板之電極。
[圖9]展示根據各種具體實例之定位於一對電極之間的電致伸縮元件。
[圖10]展示根據各種具體實例之不具有空間相位關係的實例相鄰蛇形電極。
[圖11]展示根據各種具體實例之其中電組件定位於相鄰部分之間的實例相鄰蛇形電極。
[圖12]展示根據各種具體實例之包括控制器的實例設備。
[圖13]展示根據各種具體實例之包括控制器的另一實例設備。
[圖14]展示根據各種具體實例之光學組態。
[圖15]及[圖16]說明根據各種具體實例之操作設備的實例方法。
[圖17]展示根據各種具體實例之製造設備的實例方法。
[圖18]為可結合本發明之具體實例使用的例示性擴增實境眼鏡之說明。
[圖19]為可結合本發明之具體實例使用的例示性虛擬實境頭戴裝置之說明。
[圖20]為根據各種具體實例之併入能夠追蹤使用者之眼睛的眼睛追蹤器子系統之例示性系統的說明。
[圖21A]及[圖21B]展示根據各種具體實例之圖20中所說明的眼睛追蹤器之各種態樣的更詳細說明。
貫穿圖式,相同參考標號及描述指示類似但未必相同的元件。雖然本文中所描述的例示性具體實例易受各種修改及替代形式之影響,但在圖式中已以舉例方式展示了特定具體實例,且在本文中對其進行詳細描述。然而,本文中所描述之例示性具體實例並不意欲限於所揭示之特定形式。實際上,本發明可包括屬於所附申請專利範圍之範疇內之全部修改、等效物及替代方式。
300:設備
305:第一電極
310:第二電極
315:第三電極
320:第四電極
330,340:電組件

Claims (20)

  1. 一種設備,其包含: 顯示器; 光學組態,其經組態以提供該顯示器之影像;及 控制器,其中: 該光學組態包含具有透鏡表面之透鏡; 該透鏡表面支撐電組件及至少一個蛇形電極;且 該控制器經由該蛇形電極與該電組件電連通。
  2. 如請求項1之設備,其中該蛇形電極具有大致正弦形狀。
  3. 如請求項1之設備,其中該蛇形電極包含金屬、透明導電氧化物、石墨烯或導電聚合物中之至少一者。
  4. 如請求項1之設備,其中: 該透鏡表面支撐第一蛇形電極及第二蛇形電極; 該電組件具有與該第一蛇形電極電連通之第一端子;且 該電組件具有與該第二蛇形電極電連通之第二端子。
  5. 如請求項1之設備,其中該設備經組態以使得該顯示器之該影像由來自該顯示器之通過該透鏡表面的光形成。
  6. 如請求項1之設備,其中該電組件包含光源。
  7. 如請求項6之設備,其中該控制器經組態以使用經由該至少一個蛇形電極提供的電信號向該光源供能。
  8. 如請求項6之設備,其中該光源包含雷射。
  9. 如請求項6之設備,其中: 該設備包含眼睛追蹤子系統,該眼睛追蹤子系統包含該光源及感測器;且 該感測器經組態以提供感測器信號至該控制器。
  10. 如請求項9之設備,其中該控制器經進一步組態以基於該感測器信號判定凝視方向。
  11. 如請求項1之設備,其中: 該透鏡為包含彈性膜之可調整透鏡;且 該蛇形電極係藉由該彈性膜支撐。
  12. 如請求項11之設備,其中: 該電組件包含電活性元件;且 該控制器經組態以藉由經由該蛇形電極提供電信號至該電活性元件而調整該透鏡之光功率。
  13. 如請求項12之設備,其中: 該控制器經組態以施加控制信號至該電活性元件,該控制信號誘發該電活性元件中之電致伸縮。
  14. 如請求項12之設備,其中該電活性元件包含安置於該彈性膜上之電活性聚合物層。
  15. 如請求項1之設備,其中: 該顯示器之該影像係藉由該顯示器發射的通過該透鏡表面之光形成。
  16. 如請求項1之設備,其中: 該設備包含頭戴式裝置;且 當該設備之使用者佩戴該頭戴式裝置時,該顯示器之該影像可藉由該使用者觀看。
  17. 如請求項1之設備,其中該設備包含擴增實境裝置或虛擬實境裝置。
  18. 一種方法,其包含: 在透鏡之表面上提供至少一個蛇形電極;及 在該透鏡之該表面上定位光源,該光源與該至少一個蛇形電極電連通。
  19. 如請求項18之方法,其中: 該光源包含雷射;且 該蛇形電極具有正弦形電極部分。
  20. 一種方法,其包含: 使用藉由可調整透鏡之彈性膜支撐之至少一個蛇形元件施加電信號至位於該彈性膜上的電活性元件以調整該可調整透鏡之光功率, 其中該電活性元件包含安置於該彈性膜上之電致伸縮聚合物層。
TW111116048A 2021-04-29 2022-04-27 具有低醒目性的可適形電極 TW202246812A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163181370P 2021-04-29 2021-04-29
US63/181,370 2021-04-29
US17/704,458 2022-03-25
US17/704,458 US20220350147A1 (en) 2021-04-29 2022-03-25 Conformable electrodes with low conspicuity

Publications (1)

Publication Number Publication Date
TW202246812A true TW202246812A (zh) 2022-12-01

Family

ID=83808445

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111116048A TW202246812A (zh) 2021-04-29 2022-04-27 具有低醒目性的可適形電極

Country Status (5)

Country Link
US (1) US20220350147A1 (zh)
EP (1) EP4330755A1 (zh)
CN (1) CN117280265A (zh)
TW (1) TW202246812A (zh)
WO (1) WO2022232461A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11022804B2 (en) * 2017-07-20 2021-06-01 Lg Electronics Inc. Head-mounted display and method of controlling the same
KR20190044966A (ko) * 2017-10-23 2019-05-02 전북대학교산학협력단 유체 렌즈
WO2019226733A1 (en) * 2018-05-22 2019-11-28 Corning Incorporated Electrowetting devices

Also Published As

Publication number Publication date
WO2022232461A1 (en) 2022-11-03
EP4330755A1 (en) 2024-03-06
US20220350147A1 (en) 2022-11-03
CN117280265A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US11650403B2 (en) Optical elements for beam-shaping and illumination
JP2021535588A (ja) ウエハーツーウエハーボンディングのためのメサ形成
US20230037329A1 (en) Optical systems and methods for predicting fixation distance
US20220342219A1 (en) Apparatus, system, and method for disposing photonic integrated circuits on surfaces
EP4312064A1 (en) Reflective fresnel folded optic display
US20240094594A1 (en) Gradient-index liquid crystal lens having a plurality of independently-operable driving zones
US11782279B2 (en) High efficiency pancake lens
US11740391B1 (en) Fluid lens operational feedback using sensor signal
US20220350147A1 (en) Conformable electrodes with low conspicuity
US20240053598A1 (en) Pancake lens with controlled curvature
US20230367041A1 (en) Reflective polarizer coated fresnel lens
TW202244566A (zh) 高效率的餅乾透鏡
CN117242387A (zh) 高效率薄饼透镜
US11415808B1 (en) Illumination device with encapsulated lens
US20230341812A1 (en) Multi-layered polarization volume hologram
US11262487B1 (en) Display device including lens array with independently operable array sections
US11906747B1 (en) Head-mounted device having hinge assembly with wiring passage
US20240231162A1 (en) Gradient-index liquid crystal lens system including guest-host liquid crystal layer for reducing light leakage
US20230411932A1 (en) Tunable laser array
US20240085756A1 (en) Gradient-index liquid crystal lens having lens segments with optical power gradient
TW202305425A (zh) 用於在表面上設置光子積體電路的設備、系統及方法
TW202315398A (zh) 用於預測凝視距離的光學系統和方法
CN117280261A (zh) 用于在表面上设置光子集成电路的装置、系统和方法
CN117882032A (zh) 用于执行眼动追踪的系统和方法
CN117882246A (zh) 在增强现实设备的透镜上实施的可调谐透明天线