TW202246641A - 在劇烈天氣條件下運行風力渦輪機 - Google Patents
在劇烈天氣條件下運行風力渦輪機 Download PDFInfo
- Publication number
- TW202246641A TW202246641A TW111111635A TW111111635A TW202246641A TW 202246641 A TW202246641 A TW 202246641A TW 111111635 A TW111111635 A TW 111111635A TW 111111635 A TW111111635 A TW 111111635A TW 202246641 A TW202246641 A TW 202246641A
- Authority
- TW
- Taiwan
- Prior art keywords
- wind
- wind turbine
- severe weather
- information
- weather conditions
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000011156 evaluation Methods 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 230000000977 initiatory effect Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 abstract description 5
- 238000005096 rolling process Methods 0.000 description 9
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 230000009118 appropriate response Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/048—Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
- F05B2270/1077—Storm protection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/32—Wind speeds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
敘述一種運行風力渦輪機(3a、3b、3c)、尤其是風力發電場(1)之複數台風力渦輪機的方法,此方法包含:藉由風力渦輪機(3a)或風力發電場控制器從風力渦輪機(3a)外部之外部來源(10)接收安全性相關資訊(9、9a);取決於所接收的資訊,藉由風力渦輪機(3a)或風力發電場控制器啟動安全運行模式,其中外部來源(10)係與風力發電場控制器不同。
Description
本發明有關運行風力渦輪機、尤其是用於防範劇烈天氣條件的方法及裝置。再者,本發明亦有關包括此裝置之風力發電場。
US 2020/0332766 A1提供風力渦輪機的控制方法,包括當接收颱風預警信號時,獲取風力渦輪機之動力系統、橫搖系統及通訊系統的當前工作條件;根據控制策略與動力系統、橫搖系統及通訊系統的工作條件之間的預設對應關係,決定對應於當前工作條件之目標控制策略,其中控制策略可包括用於控制橫搖系統以面朝颱風方向的主動迎風策略、用於控制橫搖系統以面朝與颱風方向相反之受控被動背風策略、及用於調整橫搖系統以面朝與颱風方向相反的被動背風策略;及藉由使用目標控制策略來控制風力渦輪機。
在像暴風雨、氣旋之劇烈天氣條件下,風力渦輪機或整個風力渦輪機發電場可能有被損壞的風險。例如,即將到來之暴風雨及/或熱帶氣旋可能對風力渦輪機造成非常高的負載。
當於逆風向空轉時沒有設計用於這些負載位準之渦輪機可藉由橫搖至順風位置來保護它們自己。然而,由於橫搖至順風位置可能需要一些時間,這取決於橫搖系統,因此風力渦輪機可能沒有足夠的時間藉由橫搖此渦輪機來保護自己,例如,如果暴風雨離風力發電場太近或以太高速率接近。
尤其是,當風力渦輪機一般未處於逆風橫搖位置時,這可導致非常高負載。高負載可導致風力渦輪機及支撐結構之沉重設計。這在有氣旋或颱風的風險之風力發電場上增加大量成本。
傳統上,風力渦輪機可已基於個別測量結果(例如風速、葉片負載或其他信號)橫搖至順風位置。因此,傳統上,順風位置或一般的安全運行狀態可能無法在暴風雨接近風力渦輪機之前足夠早地達到。一般來說,傳統的安全性系統可已被引入,其可對異常情況做出反應並使渦輪機進入安全狀態。傳統上,異常事件或劇烈天氣條件需要藉由每一個別之風力渦輪機所偵測,且接著風力渦輪機可進入安全運行狀態。然而,如果劇烈天氣條件或尤其是暴風雨正在快速逼近,安全性系統的反應行為可能只能提供有限之負載減少。
因此,可能有需要運行風力渦輪機的方法及對應配置,其中於潛在之破壞性天氣條件的案例中,像暴風雨、氣旋或颱風,亦可確保風力渦輪機之可靠性及安全性。尤其是,可有對於此方法及對應配置的需要,其中當與先前技術之系統相比時,風力渦輪機能夠更早地採用安全運行狀態。
藉由根據獨立請求項的主題可滿足此需求。本發明之有利實施例係藉由附屬請求項所敘述。
根據本發明的實施例,提供運行風力渦輪機、尤其是風力發電場之複數台風力渦輪機的方法,此方法包含:藉由風力渦輪機或風力發電場控制器從風力渦輪機外部之來源接收安全性相關資訊;取決於所接收的資訊,藉由風力渦輪機或風力發電場控制器啟動安全運行模式,其中外部來源係與風力發電場控制器不同。
此方法可藉由風力渦輪機及/或風力發電場控制器所施行。尤其是,風力發電場中之每一台風力渦輪機可個別地並獨立於任何另一風力渦輪機來施行此方法。在其他實施例中,僅只風力渦輪機群組施行此方法,而其他群組的風力渦輪機例如向此群組提供施行此方法之安全性相關資訊。此方法可於軟體及/或硬體中實施。
例如,安全性相關資訊可為呈電及/或光及/或無線信號的形式。安全性相關資訊可包含與所考慮之風力渦輪機的安全性相關之資訊。安全性相關資訊可包含不同種類的資訊,如下文將詳細說明。接收安全性相關資訊可使風力渦輪機或風力發電場控制器能夠決定是否應進入或採用安全運行模式,以便保護風力渦輪機免受損壞。
外部來源在不同實施例中可採取不同之形式,如下文將詳細說明。外部來源可於空間上與風力渦輪機分開,例如分開至少1公里或例如至少10公里、或甚至至少100公里。當外部來源係與風力渦輪機分開並隔開時,外部來源可在所考慮的風力渦輪機之前,存取與所考慮的風力渦輪機之安全性相關的資訊。例如,外部來源可能比所考慮之風力渦輪機更接近即將到來的暴風雨,且例如,可具有關於風速及/或風紊流之測量值或即將到來的劇烈天氣條件之其他特徵的測量值之資訊。此資訊可包括在安全性相關資訊中,並可例如藉由外部來源經由一個以上的中間電腦節點供應至所考慮之風力渦輪機控制器或風力發電場控制器。
因此,風力渦輪機可於所考慮的風力渦輪機之地點在劇烈天氣條件發生之前很早就接收安全性相關資訊。因此,風力渦輪機可於劇烈天氣條件抵達其本身坐落地點之前的好時機,能夠啟用或觸發或採用安全運行模式。尤其是,啟動安全運行模式可能花費相當長之持續時間。因此,及時接收安全性相關資訊係有利的,使得有足夠之時間來實際達到安全運行模式。啟動安全運行模式至少可包含啟動最終達到安全運行模式所需的任何作用。在其他實施例中,啟動安全運行模式亦可包含建立安全運行模式。
安全運行模式可被認為是風力渦輪機之運行模式,其中風力渦輪機被有效地保護免受可藉由劇烈天氣條件、尤其是高風力負載所造成的損壞。安全運行模式能以不同方式實現,如下文將詳細說明。再者,例如可於一順序中採用一個以上之任何變型的安全運行模式。採用安全運行模式可保護風力渦輪機之組件免受損壞,否則會因高風力負載而面臨風險。
根據本發明的實施例,是否啟動或採用安全運行模式可能不僅取決於所接收之資訊,亦可能取決於進一步的資訊或自身之測量結果。
啟動安全運行模式或採用安全運行模式可包含啟動一個以上的致動器,像橫搖系統致動器及/或縱搖角致動器等。例如,安全運行模式可包含將轉子葉片向外傾斜,以減少葉片之升高力量。安全運行模式可更包含將轉子定向進入順風位置,其中藉由轉子葉片所跨越的轉子平面可在順風位置定向或定位。安全運行模式亦可包括降低功率及或轉子速率。
此方法可更包含處理及/或評估所接收之資訊,尤其是進一步與其他資訊相結合,以便決定是否應啟動安全運行模式。
當接收及/或啟動係藉由風力發電場控制器施行時,風力發電場控制器可與所考慮的風力渦輪機通訊地耦接。
當由外部來源接收安全性相關資訊時,可確保風力渦輪機足夠早地進入或採用安全運行模式,例如在劇烈天氣條件實際抵達風力渦輪機的安裝地點之前。因此,可保護風力渦輪機、且尤其是風力渦輪機的組件免受損壞。
根據本發明之實施例,安全性相關資訊包含以下至少一者:命令、警報,尤其是關於劇烈天氣條件;至少一台相鄰之風力渦輪機已進入或即將進入安全運行模式的指示;天氣資訊,尤其是與風有關的資料。
關於劇烈天氣條件之警報可包含例如劇烈天氣條件的特徵,包括預期或測量之風速、預期或測量的風紊流、預期或測量之風向等。再者,警報可包含預期的抵達日期及時間及/或所考慮的風力渦輪機與劇烈天氣條件之間的距離。此外或替代地,警報可包含預期之風對風力渦輪機的一個以上之組件造成的負載。
尤其是,當風力渦輪機係外部來源時,安全性相關資訊可包含此相鄰風力渦輪機已進入或將要進入安全運行模式之指示。尤其是,接收安全性相關資訊的風力渦輪機可從兩台以上之風力渦輪機、尤其是同一風力發電場中的風力渦輪機,接收風力渦輪機進入安全運行模式之警報及/或指示。取決於有關安全運行模式的警報數量及/或指示數量,所考慮之風力渦輪機可決定是否啟動或採用安全運行模式。
天氣資訊可包含任何類型的資訊,其以在一個以上之位置的當前及/或實際及/或預測及/或未來之天氣條件為特徵。天氣資訊亦可包含地理資訊。因此,天氣資訊可於空間上及/或暫時地解決。再者,安全性相關資訊不僅可從單一外部來源接收,而且可從多個外部來源接收。可處理及評估來自多個外部來源的安全性相關資訊,以便決定是否啟動安全運行模式。
因此,安全性相關資訊能以不同之方式配置,而增加此方法的靈活性。
根據本發明之實施例,天氣資訊包含關於以下至少一個的資訊:實際及/或預測之風速;實際及/或預測的風紊流;實際及/或預測之風加速度;至少一個實際及/或預測的風力負載;劇烈天氣條件中之抵達時間點;劇烈天氣條件的持續時間;劇烈天氣條件之傳播速率及/或方向;風力渦輪機與劇烈天氣條件間之距離;劇烈天氣條件的類型或特徵。
因此,可提供用於描述潛在破壞性天氣條件之特徵的相關資訊。因此,此方法可應用於許多不同之潛在破壞性天氣條件。所有關於風速、紊流、加速度、風力負載等的資訊類型可在空間解析度及時間解析度上給出。因此,能夠改進相關資訊之評估,用於提供是否採用安全運行模式的決定之堅實基礎。
根據本發明的實施例,劇烈天氣條件之特徵為或包含以下至少一者:風速高於風速閾值;風紊流高於風速閾值;風力負載高於負載閾值;暴風雨或氣旋。
亦可包括對天氣條件的任何特徵描述,其能夠從此中得出對風力渦輪機之至少一個組件的預期負載。因此,可適當及準確地評估風力渦輪機當遭受劇烈天氣條件時之潛在影響,因此進一步改進決定是否採用安全運行模式的可靠性。
根據本發明之實施例,此方法更包含尤其是藉由風力渦輪機及/或風力發電場控制器或操作裝置的組件處理安全性相關資訊、尤其是天氣資訊,使用評估邏輯以得出評估結果;其中啟動此安全性運行模式取決於評估結果。並且、亦包括電子儲存裝置,其中例如儲存可執行之軟體,此軟體係藉由處理器所執行。
此評估邏輯可例如基於訓練資料及/或模擬及/或物理模型已事先決定。因此,其能夠結合不同種類的天氣資訊部分,這些資訊部分可為尤其與用於評估對風力渦輪機組件之潛在損壞有關。當評估邏輯被應用至得出評估結果時,可啟用或簡化是否啟動安全運行模式的決定。
評估結果可例如指示當例如維持當前或實際之運行狀態或運行模式、例如額定運行模式時預期的損壞程度或等級。於其他實施例中,(例如二進制)評估結果可指示是否啟動或採用安全運行模式。
根據本發明之實施例,評估邏輯包含關於以下至少一者之至少一個閾值:風速;風紊流;風加速度;至少一個風力負載;距劇烈天氣條件的(預測)抵達時間點之剩餘持續時間;劇烈天氣條件的(預測)持續時間;劇烈天氣條件之傳播速率及/或方向;風力渦輪機與劇烈天氣條件之間的距離。
可啟用如藉由特定應用所要求之評估邏輯的配置(例如設置閾值),其可取決於風力渦輪機及其組件之物理結構。考慮到評估邏輯內的一個以上之閾值可能夠考慮到與風力渦輪機的一個以上之組件上的與風有關之一個以上的負載類型。因此,可改善對風力渦輪機組件之保護。
根據本發明的實施例,至少一個閾值取決於風力渦輪機之構成及/或完整性,其中對於具有較高程度的預損壞及/或預磨損及/或壽命之風力渦輪機,此閾值係更嚴格。
例如,對於相對較老舊的風力渦輪機,與較年輕之風力渦輪機相比可設定更多限制性閾值。每一台風力渦輪機可具有對於其複數個組件的配置資料或完整性資料之存取權。對於設定一個以上的閾值時,可考慮複數個組件之那些完整性資料。再者,閾值可藉由模擬或物理建模得出,其可涉及對於不同風速、風紊流及/或風加速度的風力負載之推導。
根據本發明的實施例,如果風速及/或風紊流及/或風加速度及/或風力負載係高於各自之閾值,且如果劇烈天氣條件的抵達時間點比剩餘時間閾值更接近,及/或如果劇烈天氣條件之持續時間超過持續時間閾值,則評估結果指示啟動安全性運行模式。
評估結果亦可指示應啟動哪一潛在的複數個可用之安全運行模式。取決於所評估的天氣條件,可建立複數個潛在評估結果之其中一者。例如,複數個評估結果的每一者可指示採用哪一潛在之複數個可用的安全運行模式,或貫穿哪一安全運行模式之順列。因此,提供很大靈活性,且其可為能夠以劇烈天氣條件的特定方式於特定之潛在劇烈天氣條件上作出具體反應。
根據本發明的實施例,啟動安全運行模式包括以下至少一者:削減風力渦輪機轉子之旋轉速率;削減風力渦輪機的功率輸出;停止風力渦輪機之功率輸出;停止轉子的旋轉;轉子之低空轉;轉子的快速空轉;將風力渦輪機與公用電網斷開;使轉子橫搖至順風定向。
因此,亦可支援傳統之安全運行模式。例如,取決於天氣條件的嚴重程度,可選擇相應之安全運行模式。不同的安全運行模式可具有特別的性質或優點。例如,在天氣條件不太嚴重之案例中,可僅只降低、亦即削減轉子的旋轉速率,而不完全停止藉由風力渦輪機之電力輸出。於此情況中,風力渦輪機可保持連接至公用電網。然而,在更嚴重的天氣條件下,風力渦輪機可為從公用電網斷開,且轉子可為具有相當低或相當快速之轉速的空轉。選擇可用之安全運行模式的其中一者,可對特定之劇烈天氣條件做出適當的反應,同時確保對風力渦輪機組件之保護。
根據本發明的實施例,外部來源包含以下之至少一者:遠離風力渦輪機的實體;另一台風力渦輪機、尤其是與此風力渦輪機相鄰;氣象服務;天氣預報系統;至少一個測風塔;尤其是本地雷達資訊系統;發送控制信號之操作員;風速預測系統;氣象參數測量感測器或站台。因此,達成極大靈活性。
根據本發明的實施例,所考慮之風力渦輪機可從兩個以上的不同外部來源接收安全性相關資訊。因此,可使其接收更完整之資訊,此資訊可準確地描述潛在接近的劇烈天氣條件之特徵。安全性相關資訊可經由包括以下至少一者的通訊網路來接收:網際網路;虛擬私人網路;私人網路;SCADA(監控和數據採集)網路;及/或其中複數台風力渦輪機係經由通訊網路進行通訊連接,用於傳達資訊。
因此,可採用傳統之可用通訊技術,從而簡化此方法。通訊網路可包含有線及/或無線及/或光學通訊網路。
根據本發明的實施例,安全運行模式係在劇烈天氣條件抵達風力渦輪機之前啟動。尤其是,風力渦輪機可未利用已藉由風力渦輪機風感測器所施行的任何風速或風紊流測量。尤其是,安全運行模式可在劇烈天氣條件抵達風力渦輪機之前建立。因此,可避免風力渦輪機組件的故障。
應理解的是,根據本發明之實施例,為運行風力渦輪機之方法所個別地或以任何組合方式來揭示、敘述、提供或解釋的特徵,亦可個別或以任何組合方式適用於運行風力渦輪機之配置,且反之亦然。
根據本發明的實施例,提供用於運行風力渦輪機之裝置,此裝置包含:輸入埠,適於從風力渦輪機外部之外部來源接收安全性相關資訊;啟動模組,適於取決於所接收的資訊來啟動安全性運行模式,其中外部來源係與風力發電場控制器不同。
例如,此裝置可為風力渦輪機控制器或風力發電場控制器之一部分。輸入埠可為有線/無線及/或光學輸入埠。啟動模組可為用軟體及/或硬體實施。為啟動安全運行模式可包含向驅動器或致動器供給一個以上的控制信號。
根據本發明之實施例,提供風力發電場,包括至少一台風力渦輪機;及至少一個根據前述實施例的裝置,構造成風力渦輪機控制器或風力發電場控制器。
上面所界定之態樣及本發明的進一步態樣係從下文將敘述之實施例的範例顯而易見,並參照實施例之範例來加以解釋。下文將參照實施例的範例更詳細地敘述本發明,但本發明不限於此。
圖1中所示意性例示之風力發電場1包含複數台風力渦輪機3a、3b、3c,並可潛在地包含大量風力渦輪機、例如在10與500之間。於本實施例中,複數台渦輪機3a、3b、3c各包含根據本發明的實施例之裝置5a、5b、5c,用於運行各自的風力渦輪機。在所例示之實施例中,裝置5a、5b、5c例如可為未詳細例示的風力渦輪機控制器之一部分。
裝置5a包含輸入埠7a,其係適於從風力渦輪機3a外部的外部來源10接收安全性相關資訊9a。同樣地,風力渦輪機3b包含從外部來源10接收安全性相關資訊9b之裝置5b。
應理解的是,在結構及/或功能上相似或相同之特徵於圖1中用相同的數字標出。未詳細敘述之一個元件或結構的敘述可從對應結構或元件之相應敘述取得。
風力渦輪機3c包含從外部來源10接收安全性相關資訊9c的裝置5c。安全性相關資訊9a、9b、9c尤其可為基本上完全相同。外部來源10例如可包含天氣預報服務或風資料測量站或系統。
每一個裝置5a、5b、5c更包含未詳細例示之啟動模組,此啟動模組適於取決於所接收的資訊9a、9b、9c分別啟動安全運行模式。
安全性相關資訊9a、9b、9c可例如指示具有特定速度12及具有特定方向之低壓區11正在向風力發電場1靠近。安全性相關資訊9a、9b、9c一般可包含關於風速、風紊流、風加速度及其他者的天氣資訊,如上面已解釋者。
裝置5a、5b、5c可為適於分別使用下面將參考圖2敘述之未詳細例示的評估邏輯來處理安全性相關資訊9a、9b、9c。各自風力渦輪機3a、3b、3c可更包含各自之致動器,以便採用安全運行模式,例如包括將機艙定向進入順風定向及/或用於削減轉子的旋轉速率,如上面已詳細解釋。
根據本發明之實施例,僅只一個以上但不是所有的風力發電場1之風力渦輪機接收安全性相關資訊。例如,根據一實施例,風力渦輪機3a在各自的裝置5a處從外部來源10接收安全性相關資訊9a。然而,不是從天氣預報服務10(外部來源之一範例)而是從風力渦輪機3a、亦於各自風力渦輪機3b、3c的外部,其他風力渦輪機3b、3c接收安全性相關資訊9a。
尤其是,風力發電場1之所有風力渦輪機可為相互通訊地耦接、或手動地耦接至風力發電場的任何其他風力渦輪機。藉由在風力發電場的所有風力渦輪機之間建立通訊通道,無論哪個渦輪機測量風速、負載或任何另一信號,造成其保護系統啟動,可將這傳達至風力發電場中的其他風力渦輪機。因此,風力發電場中之其他風力渦輪機可啟動相同的保護系統,或可採用安全運行模式,而不考慮它們自身之測量結果,僅只是基於另一渦輪機或其他渦輪機的測量結果之組合。
藉由接收及利用來自另一風力渦輪機或其他風力渦輪機的組合之資訊,所考慮的風力渦輪機可達成具有更多時間藉由啟動保護系統,例如藉由橫搖至順風位置來保護自身免受劇烈天氣(如熱帶暴風雨或氣旋)之優點。這尤其可代表一優點,因為從逆風橫搖位置過渡至順風橫搖位置可能花費相當長時間,如幾分鐘來完成。因此,可減少對大量渦輪機的損壞。
此外,可具有低風速和負載影響之渦輪機在暴風眼中橫搖回逆風的風險亦可能減少,因為風力渦輪機可由其他風力渦輪機得知暴風仍存在。因此,保護系統之穩健性可改善。相互的風力渦輪機之間的通訊通道可藉由風力渦輪機之間的安全通訊系統來實現,或亦可使用現有系統,例如風力發電場導向器及風力渦輪機通訊系統。尤其是,本發明之實施例可防止保護系統的錯誤停用,例如,如果風力渦輪機處於暴風眼內,傳統上可發生此情況。由於保護系統可比傳統上已知地更早啟用,因此在暴風雨期間損壞大量渦輪機之風險可減少。
藉由接收來自預報服務或風參數測量站10的安全性相關資訊9a、9b、9c,風力渦輪機3a、3b、3c可於暴風雨抵達風力發電場並損壞渦輪機之前提前啟用相應保護系統或採用安全運行模式來保護自身。可從一個以上的氣象服務、當地雷達資訊、來自操作員之手動控制、風速預測系統及其他者來接收資訊9a、9b、9c。安全性相關資訊9a、9b、9c亦可另外或替代地含有預測風速或風加速度資料、預期負載、紊流及/或暴風雨持續時間。此等資料可經過網際網路(VPN)連接及/或SCADA介面傳送至風力發電場控制器及/或個別風力渦輪機控制器。
風力發電場控制器及/或個別風力渦輪機控制器或各自裝置5a、5b、5c可包含內部邏輯,其決定何時啟動保護系統及啟動哪個保護系統或措施來啟動。因此,為了啟動保護系統或決定是否採用安全運行模式,必需超過數個預定的閾值或限制,如同風速、紊流位準及任何其他數據之物理量。這亦可結合或亦可與極端天氣條件的預期抵達時間上之時間限制結合起來施行,以便避免於其需要之前啟動。例如,對於業已偵測到結構疲勞、損壞或輕微錯誤的渦輪機,可減少預定之閾值。
圖2示意性例示根據本發明的實施例之風力渦輪機的運行方法之實施例15。外部氣象系統10可連續地測量風資料,並將風資料(安全性相關資料的範例)9供給至風力發電場控制器或風力渦輪機控制器,統稱為參考符號16。例如,根據本發明之一實施例,接收元件16可表示為或實施為例如圖1中所例示的裝置,並標有參考符號5a、5b、5c。
風力發電場控制器及/或風力渦輪機控制器16可對照預定之限制(閾值)評估資料。再者,可對照預定的限制或閾值評估預期之抵達時間。如果一個以上的評估指示風參數係高於一個以上之限制,可啟動保護系統及/或可啟動或採用安全運行模式。因此,風力發電場控制器及/或風力渦輪機控制器16可生成並供給控制信號,指示至風力渦輪機或每一個別渦輪機的命令17,於圖2中用參考符號3集體地標示。然後,個別風力渦輪機或所有風力渦輪機可啟動或採用安全運行模式,包括例如藉由削減速率及/或功率及/或藉由快速空轉停止功率輸出/及/或藉由慢速空轉隨後停止及/或藉由順風空轉或其他者隨後停止。
因此,預測資料可利用於控制器保護系統中,其可在極端天氣條件抵達風力渦輪機之前將風力發電場的風力渦輪機置於安全狀態。
藉由利用來自一個以上之外部系統的資訊,而此外部系統經過網際網路(VPN)或SCADA連接進行通訊,風力渦輪機可具有更多時間以經過啟動保護系統來保護自身免受熱帶暴風雨或氣旋之優點。風力渦輪機對極端負載的設計可因此而減少,且成本亦可降低。再者,渦輪機停用之風險係其保護系統於暴風眼中亦可減少,因為外部資訊將揭露暴風雨仍然存在。因此,保護系統的穩健性可普遍改善。於外部來源10與風力渦輪機之間,可建立安全通訊通道。
藉由本發明的實施例,可減少作用在風力渦輪機組件上之極端負載,其可降低渦輪機及支撐結構的成本。此外或替代地,如果操作員得知正在接近風力發電場之劇烈天氣條件,可使用來自風力發電場操作員的外部命令,以便啟動順風橫搖位置保護系統。
應理解的是,對於特別實施例,並不需要實施如圖1中所例示之所有通訊通道。例如,風力渦輪機可僅只被連接至外部來源10,但不一定需要相互連接。在其他實施例中,僅只一台或兩台或更多台風力渦輪機係通訊地連接至外部來源10,但其他風力渦輪機未連接至外部來源10,而僅只與那些連接至外部來源10的風力渦輪機中的一者連接。其他組合亦是可能的。
應注意的是,「包含」一詞並不排除其他元件或步驟,且「一」或「一個」並不排除複數個。另外與不同實施例相關地敘述之元件可結合起來。亦應注意的是,請求項中之參考符號不應解釋為對請求項的範圍之限制。
1:風力發電場
3:風力渦輪機
3a:風力渦輪機
3b:風力渦輪機
3c:風力渦輪機
5a:裝置
5b:裝置
5c:裝置
7a:輸入埠
9:安全性相關資訊
9a:安全性相關資訊
9b:安全性相關資訊
9c:安全性相關資訊
10:外部來源
11:低壓區
12:速度
15:實施例
16:接收元件
17:命令
現在參照附圖敘述本發明之實施例。本發明不限於所例示或敘述的實施例。
圖1示意性例示根據本發明之實施例的風力發電場,包括根據本發明之實施例的複數個裝置。
圖2示意性例示根據本發明之實施例的方法方案。
3:風力渦輪機
9:安全性相關資訊
10:外部來源
15:實施例
16:接收元件
17:命令
Claims (14)
- 一種運行風力渦輪機(3a、3b、3c)、尤其是風力發電場(1)之複數台風力渦輪機的方法,該方法包含: 藉由該風力渦輪機(3a)或風力發電場控制器從該風力渦輪機(3a)外部之外部來源(10)接收安全性相關資訊(9、9a); 取決於該接收的資訊,藉由該風力渦輪機(3a)或該風力發電場控制器啟動安全運行模式, 其中該外部來源(10)係與風力發電場控制器不同,且包含尤其是鄰接該風力渦輪機(3a)之另一台風力渦輪機(3b、3c)。
- 如請求項1的方法,其中該安全性相關資訊(9、9a)包含以下至少一者: 警報,尤其是關於劇烈天氣條件; 至少一台相鄰之風力渦輪機已進入或即將進入安全運行模式的指示; 天氣資訊,尤其是與風有關的資料。
- 如請求項2的方法,其中該天氣資訊(9、9a)包含關於以下至少一者之資訊: 實際及/或預測的風速; 實際及/或預測之風紊流; 實際及/或預測的風加速度; 至少一個實際及/或預測之風力負載; 劇烈天氣條件的抵達時間點; 劇烈天氣條件之持續時間; 劇烈天氣條件的傳播速率及/或方向; 該風力渦輪機與劇烈天氣條件之間的距離; 劇烈天氣條件之類型或特徵。
- 如請求項3的方法,其中該劇烈天氣條件之特徵在於或該劇烈天氣條件包含以下至少一者: 風速高於風速閾值; 風紊流高於風速閾值; 風力負載高於負載閾值; 暴風雨或氣旋。
- 如請求項1至4中任一項的方法,更包含: 尤其是藉由該風力渦輪機及/或該風力發電場控制器或操作裝置之組件使用評估邏輯來處理該安全性相關資訊(9、9a)、尤其是天氣資訊,以得出評估結果; 其中啟動該安全性運行模式取決於該評估結果。
- 如請求項5的方法,其中該評估邏輯包含關於以下至少一者之至少一個閾值: 風速; 風紊流; 風加速度; 至少一個風力負載; 距劇烈天氣條件的(預測)抵達時間點之剩餘持續時間; 劇烈天氣條件的(預測)持續時間; 劇烈天氣條件之傳播速率及/或方向; 該風力渦輪機與該劇烈天氣條件之間的距離。
- 如請求項6的方法,其中該至少一個閾值取決於該風力渦輪機之構成及/或完整性,其中對於具有較高程度的預損壞及/或預磨損及/或壽命之風力渦輪機,該閾值係更嚴格。
- 如請求項6至7中任一項的方法,其中, 如果風速及/或風紊流及/或風加速度及/或風力負載係高於各自的閾值,且 如果劇烈天氣條件的抵達時間點比剩餘時間閾值更接近,及/或 如果該劇烈天氣條件之持續時間超過持續時間閾值, 則該評估結果指示啟動該安全性運行模式。
- 如請求項1至8中任一項的方法,其中啟動該安全性運行模式包括以下至少一者: 削減該風力渦輪機轉子之旋轉速率; 削減該風力渦輪機的功率輸出; 停止風力渦輪機之功率輸出; 停止該轉子的旋轉; 該轉子之低空轉; 該轉子的快速空轉; 將該風力渦輪機與公用電網斷開; 使該轉子橫搖至順風定向。
- 如請求項1至9中任一項的方法,其中該外部來源(10)包含以下至少一者: 遠離該風力渦輪機之實體; 氣象服務; 天氣預報系統; 至少一個測風塔; 尤其是本地雷達資訊系統; 發送控制信號的操作員; 風速預測系統; 氣象參數測量感測器或站台。
- 如請求項1至10中任一項的方法,其中該安全性相關資訊(9、9a)係經由包括以下至少一者之通訊網路來接收: 網際網路; 虛擬私人網路; 私人網路; SCADA(監控和數據採集)網路;及/或 其中該複數台風力渦輪機係經由通訊網路進行通訊連接,用於傳達資訊。
- 如請求項1至11中任一項的方法,其中該安全性運行模式係在劇烈天氣條件抵達該風力渦輪機之前啟動。
- 一種用於運行風力渦輪機(3a、3b、3c)的裝置(5a、5b、5c),該裝置包含: 輸入埠(7a),適於從該風力渦輪機(3a)外部之外部來源(19)接收安全性相關資訊(9、9a); 啟動模組,適於取決於該接收的資訊(9、9a)來啟動安全性運行模式, 其中該外部來源(10)係與風力發電場控制器不同,且包含尤其是鄰接該風力渦輪機(3a)之另一台風力渦輪機(3b、3c)。
- 一種風力發電場(1),包括: 至少一台風力渦輪機(3a、3b、3c);及 至少一個如請求項13的裝置(5aq),構造成風力渦輪機控制器或風力發電場控制器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21166324.0A EP4067649A1 (en) | 2021-03-31 | 2021-03-31 | Operating a wind turbine in a severe weather condition |
EP21166324.0 | 2021-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202246641A true TW202246641A (zh) | 2022-12-01 |
TWI799210B TWI799210B (zh) | 2023-04-11 |
Family
ID=75339563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111111635A TWI799210B (zh) | 2021-03-31 | 2022-03-28 | 運行風力渦輪機的方法、用於運行風力渦輪機的裝置及風力發電場 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240167454A1 (zh) |
EP (2) | EP4067649A1 (zh) |
CN (1) | CN117413123A (zh) |
DK (1) | DK4295041T3 (zh) |
TW (1) | TWI799210B (zh) |
WO (1) | WO2022207262A1 (zh) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10137272A1 (de) * | 2001-07-31 | 2003-02-27 | Aloys Wobben | Frühwarnsystem für Windenergieanlagen |
US20090110539A1 (en) * | 2007-10-30 | 2009-04-30 | Ulrich Uphues | Wind farm and method for controlling same |
WO2010083835A2 (en) * | 2009-01-26 | 2010-07-29 | Vestas Wind Systems A/S | Wind turbine with warning system |
EP2467598A1 (en) * | 2009-08-21 | 2012-06-27 | Catch The Wind, Inc. | Wind and power forecasting using lidar distance wind sensor |
US9062653B2 (en) * | 2010-08-23 | 2015-06-23 | Vestas Wind Systems A/S | Changing a mode of operation of a wind turbine |
US20110193344A1 (en) * | 2010-12-29 | 2011-08-11 | Vestas Wind Systems A/S | Control Network for Wind Turbine Park |
ES2625057T3 (es) * | 2011-11-21 | 2017-07-18 | Vestas Wind Systems A/S | Controlador de apagado para una turbina eólica y método de apagado de una turbina eólica |
WO2013083131A1 (en) * | 2011-12-06 | 2013-06-13 | Vestas Wind Systems A/S | Methods and systems for warning a wind turbine generator in a wind park of an extreme wind event |
US9644610B2 (en) * | 2011-12-06 | 2017-05-09 | Vestas Wind Systems A/S | Warning a wind turbine generator in a wind park of an extreme wind event |
CN106677984B (zh) * | 2016-12-29 | 2019-05-03 | 北京金风科创风电设备有限公司 | 风力发电机组偏航控制的方法、设备和系统 |
JP2018178968A (ja) * | 2017-04-21 | 2018-11-15 | 株式会社日立製作所 | 発電量モニタリング装置及び発電量モニタリングシステム |
CN109989883B (zh) | 2017-12-29 | 2020-07-17 | 新疆金风科技股份有限公司 | 风力发电机组的控制方法、装置及系统 |
CN110094296B (zh) * | 2018-01-29 | 2020-06-09 | 江苏金风科技有限公司 | 风力发电机组在台风下的偏航控制方法和装置 |
JP7009237B2 (ja) * | 2018-01-31 | 2022-01-25 | 株式会社日立製作所 | 風力発電装置及び風力発電システム |
WO2019158171A1 (en) * | 2018-02-13 | 2019-08-22 | Vestas Wind Systems A/S | Systems and vehicles for managing wind turbine systems |
JP2020005476A (ja) * | 2018-07-02 | 2020-01-09 | 株式会社日立製作所 | ウィンドファーム及びウィンドファームの制御方法 |
CN109488529A (zh) * | 2018-11-29 | 2019-03-19 | 国电联合动力技术有限公司 | 一种风电机组及其抗台风智能控制方法 |
CN111779628B (zh) * | 2020-06-24 | 2024-07-26 | 国电电力浙江舟山海上风电开发有限公司 | 适用于海上风电场的含抗台风模式的偏航及轮毂控制系统 |
-
2021
- 2021-03-31 EP EP21166324.0A patent/EP4067649A1/en not_active Withdrawn
-
2022
- 2022-03-09 CN CN202280039258.5A patent/CN117413123A/zh active Pending
- 2022-03-09 WO PCT/EP2022/056047 patent/WO2022207262A1/en active Application Filing
- 2022-03-09 EP EP22710622.6A patent/EP4295041B1/en active Active
- 2022-03-09 DK DK22710622.6T patent/DK4295041T3/da active
- 2022-03-09 US US18/283,659 patent/US20240167454A1/en active Pending
- 2022-03-28 TW TW111111635A patent/TWI799210B/zh active
Also Published As
Publication number | Publication date |
---|---|
WO2022207262A1 (en) | 2022-10-06 |
US20240167454A1 (en) | 2024-05-23 |
EP4067649A1 (en) | 2022-10-05 |
DK4295041T3 (da) | 2024-09-09 |
EP4295041A1 (en) | 2023-12-27 |
TWI799210B (zh) | 2023-04-11 |
EP4295041B1 (en) | 2024-07-03 |
CN117413123A (zh) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2609326B1 (en) | Method of operating a wind turbine and wind turbine | |
US10871144B2 (en) | System and method for reducing loads during an idling or parked state of a wind turbine via yaw offset | |
EP3317516B1 (en) | Extreme load control | |
CN102782315B (zh) | 用于保护风力涡轮机免受损坏的方法和装置 | |
CN105134510A (zh) | 一种风力发电机组变桨系统的状态监测和故障诊断方法 | |
EP2836706B1 (en) | Method for controlling a profile of a blade on a wind turbine | |
DK2667023T3 (en) | Control of a wind energy system | |
CN113574272B (zh) | 用于识别在风能设施上积冰的方法 | |
EP3581795B1 (en) | System and method for controlling a wind turbine to minimize rotor blade damage | |
WO2018059259A1 (en) | Method and system of yaw control of wind turbines in a wind turbine farm | |
US11952985B2 (en) | Method for operating a cluster of wind turbines | |
WO2018233787A1 (en) | METHOD FOR DETERMINING LOAD RECURRENCE WITHIN THE DIRECTION OF WHEELED BLADE TRAIN | |
EP3737857B1 (en) | A method for controlling a wind energy farm taking wake effects into account | |
TWI799210B (zh) | 運行風力渦輪機的方法、用於運行風力渦輪機的裝置及風力發電場 | |
TWI707086B (zh) | 風力發電廠控制系統及風力發電廠的控制方法 | |
CN109578226B (zh) | 基于结冰探测器与场群互通的风电机组结冰状态检测方法 | |
CN114008319B (zh) | 用于在湍流风况下控制风电场的方法 | |
US20230126087A1 (en) | Systems and methods for controlling an industrial asset in the presence of a cyber attack | |
EP4151853A1 (en) | A method for controlling wind turbines of a wind park using a trained ai model | |
EP3394438B1 (en) | Method and system of controlling wind turbines in a wind turbine farm |