TW202243427A - 用於定位的動態精確度要求和優選子陣列指示 - Google Patents

用於定位的動態精確度要求和優選子陣列指示 Download PDF

Info

Publication number
TW202243427A
TW202243427A TW111107803A TW111107803A TW202243427A TW 202243427 A TW202243427 A TW 202243427A TW 111107803 A TW111107803 A TW 111107803A TW 111107803 A TW111107803 A TW 111107803A TW 202243427 A TW202243427 A TW 202243427A
Authority
TW
Taiwan
Prior art keywords
requirements
network entity
accuracy
accuracy requirements
requirement
Prior art date
Application number
TW111107803A
Other languages
English (en)
Inventor
維珊森 瑞格哈芬
索尼 阿卡拉力南
濤 駱
君毅 李
穆罕默德 阿里 塔蘇吉
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202243427A publication Critical patent/TW202243427A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公開用於無線通信的技術。在一方面中,一種由具有天線元件陣列的使用要求的網路實體執行的方法,包括:決定多個天線子陣列配置,每個天線子陣列配置包括天線元件陣列中的天線元件的不同子集。該方法還包括:從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求。該方法還包括:決定產生滿足精確度要求集合的波束的天線子陣配置,並且使用該天線子陣配置來執行定位操作;或者決定沒有天線子陣列配置產生滿足精確度要求集合的波束,並且向提供要求的網路實體通知該事實。

Description

用於定位的動態精確度要求和優選子陣列指示
概括而言,本公開內容的各方面涉及無線通信。
無線通信系統已經歷數代的發展,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括暫時的2.5G和2.75G網路)、第三代(3G)高速資料、支援網際網路的無線服務和第四代(4G)服務(例如,長期演進(LTE)或WiMax)。當前,使用許多不同類型的無線通信系統,包括蜂巢式和個人通信服務(PCS)系統。已知蜂巢式系統的示例包括蜂巢式類比進階行動電話系統(AMPS)以及基於分碼多重存取(CDMA)、分頻多重存取(FDMA)、分時多重存取(TDMA)、全球行動通信系統(GSM)等的數位蜂巢式系統。
第五代(5G)無線標準(被稱為新無線電(NR))要求更高的資料傳送速度、更大數量的連接和更好的覆蓋、以及其它改進。根據下一代行動網路聯盟所說,5G標準被設計為向數以萬計的用戶中的每一者提供每秒數十百萬位元的資料速率,其中向一個辦公室樓層的數十員工提供每秒1吉(十億)位元的資料速率。為了支援大型感測器部署,應當支援數十萬個同時連接。因此,與當前4G標準相比,應當顯著地增強5G行動通信的頻譜效率。此外,與當前標準相比,應當增強信令效率並且應當大幅度減少延遲。
下文給出與本文公開的一個或多個方面相關的簡化概述。因此,以下概述不應當被認為是與所有預期方面相關的詳盡綜述,而且以下概述既不應當被認為識別與所有預期方面相關的關鍵或重要元素,也不應當被認為描繪與任何特定方面相關聯的範圍。相應地,以下概述的唯一目的是以簡化的形式給出與涉及本文公開的機制的一個或多個方面相關的某些概念,作為下文給出的詳細描述的前序。
在一方面中,一種由具有天線元件陣列的使用要求的網路實體(requirements-using network entity)執行的無線通信的方法包括:決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;從提供要求的網路實體(requirements-providing network entity)接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;響應於存在產生滿足所述精確度要求集合的波束的天線子陣列配置,使用所述天線子陣列配置中的所述天線元件來執行定位操作;以及響應於不存在產生滿足所述精確度要求集合的波束的天線子陣列配置,向所述提供要求的網路實體通知不能夠滿足所述精確度要求集合。
在一方面中,一種由提供要求的網路實體執行的無線通信的方法包括:決定使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
在一方面中,一種使用要求的網路實體包括:天線元件陣列;記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;經由所述至少一個收發機從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;響應於存在產生滿足所述精確度要求集合的波束的天線子陣列配置,使用所決定的天線子陣列配置中的所述天線元件來執行定位操作;以及響應於不存在產生滿足所述精確度要求集合的波束的天線子陣列配置,向所述提供要求的網路實體通知不能夠滿足所述精確度要求集合。
在一方面中,一種提供要求的網路實體包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:決定使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
基於圖式和詳細描述,與本文公開的各方面相關聯的其它目的和優勢對於本領域技術人員而言將是顯而易見的。
在涉及出於說明的目的而提供的各個示例的下文描述和相關圖式中提供本公開內容的各方面。可以在不脫離本公開內容的範圍的情況下,設計替代的各方面。另外,將不詳細地描述或者將省略本公開內容的習知的元素,以避免使本公開內容的相關細節模糊不清。
本文使用“示例性”和/或“示例”的詞語來意指“充當示例、實例或說明”。本文中被描述為“示例性”和/或“示例”的任何方面不必被解釋為相對於其它各方面優選或具有優勢。同樣,用語“本公開內容的各方面”不要求本公開內容的所有方面都包括所論述的特徵、優勢或操作模式。
本領域技術人員將認識到的是,下文描述的資訊和信號可以使用各種不同的技術和方法中的任何技術和方法來表示。例如,可能遍及下文描述所提及的資料、指令、命令、資訊、信號、位元、符號和晶片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任意組合來表示,這部分地取決於特定應用,部分地取決於期望設計,部分地取決於對應技術,等等。
此外,按照要由例如計算設備的元素執行的動作的序列來描述許多方面。將認識到的是,本文描述的各個動作可以由特定電路(例如,特殊應用積體電路(ASIC))、由一個或多個處理器執行的程式指令、或者由兩者的組合來執行。另外,本文描述的這些動作的序列可以被認為是完全體現在任何形式的非暫時性計算機可讀儲存媒體中,所述非暫時性計算機可讀儲存媒體具有儲存在其中的相應的計算機指令的集合,所述計算機指令的集合在被執行時將使得或指示設備的相關聯的處理器執行本文描述的功能。因此,本公開內容的各個方面可以在多種不同的形式中體現,所有這些形式被預期在所主張保護的標的的範圍內。另外,對於本文描述的各方面中的每個方面,任何這樣的方面的相應形式在本文中可以被描述為例如“邏輯地被配置為”執行所描述的動作。
如本文使用的,除非另外指出,否則用語“用戶設備”(UE)和“基地台”不旨在是特定於或以其它方式限於任何特定的無線電存取技術(RAT)。通常,UE可以是被用戶用來在無線通信網路上進行通信的任何無線通信設備(例如,行動電話、路由器、平板型計算機、膝上型計算機、消費者資產定位設備、穿戴式設備(例如,智慧型手錶、眼鏡、擴增實境(AR)/虛擬實境(VR)頭戴式耳機等)、車輛(例如,汽車、摩托車、自行車等)、物聯網(IoT)設備等)。UE可以是移動的或者(例如,在某些時間處)可以是靜止的,並且可以與無線電存取網路(RAN)進行通信。如本文中使用的,用語“UE”可以可互換地被稱為“存取終端”或“AT”、“客戶端設備”、“無線設備”、“訂戶設備”、“訂戶終端”、“訂戶站”、“用戶終端”或UT、“行動設備”“行動終端”、“行動站”或其變型。通常,UE能夠經由RAN與核心網路進行通信,以及透過核心網路能夠將UE與諸如網際網路的外部網路以及與其它UE連接。當然,對於UE而言,連接到核心網路和/或網際網路的其它機制也是可能的,諸如在有線存取網路、無線區域網路(WLAN)網路(例如,基於電機與電子工程師協會(IEEE)802.11規範等)上等等。
基地台在與UE的通信中可以根據若干RAT中的一種RAT來進行操作,這取決於基地台部署在其中的網路,並且基地台可以被替代地稱為存取點(AP)、網路節點、節點B、演進型節點B(eNB)、下一代eNB(ng-eNB)、新無線電(NR)節點B(也被稱為gNB或gNodeB)等。基地台可以主要用於支援UE的無線存取,包括支援針對所支援的UE的資料、語音和/或信令連接。在一些系統中,基地台可以提供純邊緣節點信令功能,而在其它系統中,其可以提供另外的控制和/或網路管理功能。UE可以透過其來向基地台發送信號的通信鏈路被稱為上行鏈路(UL)信道(例如,反向流量信道、反向控制信道、存取信道等)。基地台可以透過其來向UE發送信號的通信鏈路被稱為下行鏈路(DL)或前向鏈路信道(例如,傳呼信道、控制信道、廣播信道、前向流量信道等)。如本文中使用的,用語流量信道(TCH)可以指上行鏈路/反向流量信道或者下行鏈路/前向流量信道。
用語“基地台”可以是指單個實體發送接收點(TRP),或者是指可以是共置的或可以不是共置的多個實體TRP。例如,在用語“基地台”是指單個實體TRP的情況下,實體TRP可以是基地台的、與基地台的小區(或若干小區扇區)相對應的天線。在用語“基地台”是指多個共置的實體TRP的情況下,實體TRP可以是基地台的天線陣列(例如,如在多輸入多輸出(MIMO)系統中或者在基地台採用波束成形的情況下)。在用語“基地台”是指多個非共置的實體TRP的情況下,實體TRP可以是分散式天線系統(DAS)(經由傳輸媒體連接到公共來源的在空間上分離的天線的網路)或遠程無線頭端(RRH)(被連接到服務基地台的遠程基地台)。替代地,非共置的實體TRP可以是從UE接收測量報告的服務基地台和UE正在測量其參考射頻(RF)信號的鄰居基地台。因為如本文所使用的,TRP是基地台從其發送和接收無線信號的點,所以對來自基地台的發送或者在基地台處的接收的提及要被理解為指基地台的特定TRP。
在支援UE的定位的一些實現方式中,基地台可能不支援UE的無線存取(例如,可能不支援針對UE的資料、語音和/或信令連接),但是可以替代地向UE發送參考信號以由UE測量,和/或可以接收和測量由UE發送的信號。這樣的基地台可以被稱為定位信標(例如,當向UE發送信號時)和/或位置測量單元(例如,當接收和測量來自UE的信號時)。
“RF信號”包括透過發射機與接收機之間的空間來傳輸資訊的具有給定頻率的電磁波。如本文中使用的,發射機可以向接收機發送單個“RF信號”或多個“RF信號”。然而,由於RF信號透過多路徑信道的傳播特性,因此接收機可以接收與每個所發送的RF信號相對應的多個“RF信號”。在發射機與接收機之間的不同路徑上所發送的相同的RF信號可以被稱為“多路徑”RF信號。
圖1示出根據本公開內容的各方面的示例無線通信系統100。無線通信系統100(其也可以被稱為無線廣域網路(WWAN))可以包括各種基地台102(標記為“BS”)和各種UE 104。基地台102可以包括宏小區基地台(高功率蜂巢式基地台)和/或小型小區基地台(低功率蜂巢式基地台)。在一方面中,宏小區基地台可以包括eNB和/或ng-eNB(其中無線通信系統100對應於LTE網路)或gNB(其中無線通信系統100對應於NR網路)或兩者的組合,以及小型小區基地台可以包括毫微微小區、微微小區、微小區等。
基地台102可以共同地形成RAN並且透過回傳鏈路122與核心網路170(例如,演進封包核心(EPC)或5G核心(5GC))以介面方式連接,並且透過核心網路170以介面方式連接到一個或多個位置伺服器172(例如,位置管理功能單元(LMF)或安全用戶平面位置(SUPL)位置平台(SLP))。位置伺服器172可以是核心網路170的一部分或者可以在核心網路170的外部)。除了其它功能之外,基地台102還可以執行與以下各項中的一項或多項相關的功能:對用戶資料的傳送、無線電信道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,切換、雙重連接)、小區間干擾協調、連接建立和釋放、負載平衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共用、多媒體廣播多播服務(MBMS)、訂戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位、以及對警告訊息的遞送。基地台102可以透過回傳鏈路134(其可以是有線的或無線的)來直接或間接地(例如,透過EPC/5GC)相互通信。
基地台102可以與UE 104無線地進行通信。基地台102中的每個基地台102可以為各自的地理覆蓋區域110提供通信覆蓋。在一方面中,基地台102在每個地理覆蓋區域110中可以支援一個或多個小區。“小區”是用於與基地台進行通信(例如,在某個頻率資源(被稱為載波頻率、分量載波、載波、頻帶等)上)的邏輯通信實體,並且可以與用於區分經由相同或不同的載波頻率進行操作的小區的識別符(例如,實體小區識別符(PCI)、虛擬小區識別符(VCI)、小區全域識別符(CGI))相關聯。在一些情況下,不同的小區可以是根據可以提供針對不同類型的UE的存取的不同的協定類型(例如,機器類型通信(MTC)、窄頻IoT(NB-IoT)、增強型行動寬頻(eMBB)或其它協定類型)來配置的。因為小區是特定基地台所支援的,所以用語“小區”可以指邏輯通信實體和支援其的基地台中的任一者或兩者,這取決於上下文。在一些情況下,用語“小區”還可以是指基地台的地理覆蓋區域(例如,扇區),其中在該範圍內,載波頻率可以被偵測到並且用於地理覆蓋區域110的某個部分內的通信。
雖然相鄰的宏小區基地台102地理覆蓋區域110可以部分地重疊(例如,在切換區域中),但是地理覆蓋區域110中的一些地理覆蓋區域110可以與較大的地理覆蓋區域110大幅度地重疊。例如,小型小區(SC)基地台102'可以具有與一個或多個宏小區基地台102的地理覆蓋區域110大幅度地重疊的地理覆蓋區域110'。包括小型小區基地台和宏小區基地台兩者的網路可以被稱為異質網路。異質網路還可以包括家庭eNB(HeNB),其可以向被稱為封閉用戶組(CSG)的受限群組提供服務。
在基地台102和UE 104之間的通信鏈路120可以包括從UE 104到基地台102的上行鏈路(也被稱為反向鏈路)傳輸和/或從基地台102到UE 104的下行鏈路(也被稱為前向鏈路)傳輸。通信鏈路120可以使用MIMO天線技術,其包括空間多工、波束成形和/或發射分集。通信鏈路120可以是透過一個或多個載波頻率的。對載波的分配可以關於下行鏈路和上行鏈路是不對稱的(例如,與針對上行鏈路相比,可以針對下行鏈路分配更多或更少的載波)。
無線通信系統100還可以包括無線區域網路(WLAN)存取點(AP)150,其在非授權頻譜(例如,5 GHz)中經由通信鏈路154來與WLAN站(STA)152相通信。當在非授權頻譜中進行通信時,WLAN STA 152和/或WLAN AP 150可以在進行通信之前執行閒置信道評估(CCA)或先聽後說(LBT)程序,以便決定信道是否是可用的。
小型小區基地台102'可以在經授權和/或非授權頻譜中進行操作。當在非授權頻譜中進行操作時,小型小區基地台102'可以採用LTE或NR技術並且使用與由WLAN AP 150所使用的5 GHz非授權頻譜相同的5 GHz非授權頻譜。採用在非授權頻譜中的LTE/5G的小型小區基地台102'可以提升對存取網路的覆蓋和/或增加存取網路的容量。在非授權頻譜中的NR可以被稱為NR-U。在非授權頻譜中的LTE可以被稱為LTE-U、授權輔助存取(LAA)或MulteFire。
無線通信系統100還可以包括與UE 182進行通信的毫米波(mmW)基地台180,其可以在mmW頻率和/或近mmW頻率中操作。極高頻(EHF)是RF在電磁頻譜中的一部分。EHF具有30 GHz到300 GHz的範圍並且具有在1毫米和10毫米之間的波長。在該頻帶中的無線電波可以被稱為毫米波。近mmW可以向下擴展到3 GHz的頻率,具有100毫米的波長。超高頻(SHF)頻帶在3 GHz和30 GHz之間擴展,也被稱為釐米波。使用mmW/近mmW射頻頻帶的通信具有高路徑損耗和相對短的距離。mmW基地台180和UE 182可以利用mmW通信鏈路184上的波束成形(發送和/或接收)來補償極高的路徑損耗和短距離。此外,將瞭解到的是,在替代配置中,一個或多個基地台102還可以使用mmW或近mmW和波束成形來進行發送。相應地,將領會的是,前述說明僅是示例並且不應當被解釋為限制本文所公開的各個方面。
發送波束成形是一種用於將RF信號聚集在特定方向上的技術。傳統地,當網路節點(例如,基地台)廣播RF信號時,其在所有方向上(全向地)廣播該信號。利用發送波束成形,網路節點決定給定的目標設備(例如,UE)位於何處(相對於發送網路節點而言)並且將較強的下行鏈路RF信號投影在該特定方向上,從而為接收設備提供更快(在資料速率方面)且更強的RF信號。為了在進行發送時改變RF信號的方向,網路節點可以在廣播RF信號的一個或多個發射機中的每個發射機處控制RF信號的相位和相對幅度。例如,網路節點可以使用天線的陣列(被稱為“相控陣列”或“天線陣列”),其創建能夠被“引導”到不同方向上的點的RF波的波束,而不需要實際地行動天線。具體而言,將來自發射機的RF電流饋送至具有正確的相位關係的個體天線,使得來自單獨天線的無線電波加在一起以在期望的方向上增加輻射,而在不期望的方向上相消以抑制輻射。
發射波束可以是準共置的,這意味著其在接收機(例如,UE)看來是具有相同的參數,而不管網路節點的發射天線本身是否是實體地共置的。在NR中,存在四種類型的準共置(QCL)關係。具體而言,給定類型的QCL關係意味著關於目標波束上的目標參考RF信號的某些參數可以是根據關於來源波束上的來源參考RF信號的資訊推導出的。如果來源參考RF信號是QCL類型A,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的目標參考RF信號的都卜勒頻移、都卜勒擴展、平均延遲和延遲擴展。如果來源參考RF信號是QCL類型B,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的目標參考RF信號的都卜勒頻移和都卜勒擴展。如果來源參考RF信號是QCL類型C,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的目標參考RF信號的都卜勒頻移和平均延遲。如果來源參考RF信號是QCL類型D,則接收機可以使用來源參考RF信號來估計在相同的信道上發送的目標參考RF信號的空間接收參數。
在接收波束成形中,接收機使用接收波束來對在給定信道上偵測到的RF信號進行放大。例如,接收機可以在特定方向上增加增益設置和/或調整天線陣列的相位設置,以對從該方向接收的RF信號進行放大(例如,以增加該RF信號的增益位準)。因此,當說明接收機在某個方向進行波束成形時,其意味著該方向上的波束增益相對於沿著其它方向的波束增益而言是高的,或者該方向上的波束增益與可用於接收機的所有其它接收波束在該方向上的波束增益相比是最高的。這導致從該方向接收的RF信號的較強的接收信號強度(例如,參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、信號與干擾加雜訊比(SINR)等)。
接收波束在空間上可以是相關的。空間關聯意味著針對用於第二參考信號的發射波束的參數可以是根據關於用於第一參考信號的接收波束的資訊來推導的。例如,UE可以使用特定接收波束來從基地台接收一個或多個參考下行鏈路參考信號(例如,定位參考信號(PRS)、追蹤參考信號(TRS)、相位追蹤參考信號(PTRS)、特定於小區的參考信號(CRS)、信道狀態資訊參考信號(CSI-RS)、主同步信號(PSS)、輔同步信號(SSS)、同步信號區塊(SSB)等)。然後,UE可以基於接收波束的參數來形成用於向該基地台發送一個或多個上行鏈路參考信號(例如,上行鏈路定位參考信號(UL-PRS)、探測參考信號(SRS)、解調參考信號(DMRS)、PTRS等)的發射波束。
要注意的是,“下行鏈路”波束可以是發射波束或者接收波束,這取決於形成其的實體。例如,如果基地台正在形成用於向UE發送參考信號的下行鏈路波束,則下行鏈路波束是發射波束。然而,如果UE正在形成下行鏈路波束,則其是用於接收下行鏈路參考信號的接收波束。類似地,“上行鏈路”波束可以是發射波束或接收波束,這取決於形成其的實體。例如,如果基地台正在形成上行鏈路波束,則其是上行鏈路接收波束,並且如果UE正在形成上行鏈路波束,則其是上行鏈路發射波束。
在5G中,無線節點(例如,基地台102/180、UE 104/182)在其中操作的頻譜被劃分成多個頻率範圍:FR1(從450到6000 MHz)、FR2(從24250到52600 MHz)、FR3(在FR1與FR2之間)和FR4(高於52600 MHz)。在多載波系統(諸如5G)中,載波頻率中的一個載波頻率被稱為“主載波”或“錨載波”或“主服務小區”或“PCell”,並且剩餘的載波頻率被稱為“輔載波”或“輔服務小區”或“SCell”。在載波聚合中,錨載波是在由UE 104/182利用的主頻率(例如,FR1)和UE 104/182在其中執行初始無線電資源控制(RRC)連接建立程序或發起RRC連接重建立程序的小區上操作的載波。主載波攜帶所有公共和特定於UE的控制信道,並且可以是在經授權頻率中的載波(然而,不總是這種情況)。輔載波是在第二頻率(例如,FR2)上操作的載波,其中可以一旦在UE 104與錨載波之間建立RRC連接就配置第二頻率,並且可以用於提供另外的無線電資源。在一些情況下,輔載波可以是在非授權頻率中的載波。輔載波可以僅包含必要的信令資訊和信號,例如,在輔載波中可能不存在特定於UE的信令資訊和信號,這是因為主上行鏈路載波和主下行鏈路載波兩者通常是特定於UE的。這意味著小區中的不同的UE 104/182可以具有不同的下行鏈路主載波。這對於上行鏈路主載波也是成立的。網路能夠在任何時間處改變任何UE 104/182的主載波。這麼做是為了例如平衡不同載波上的負載。由於“服務小區”(無論是PCell還是SCell)與某個基地台正在其上進行通信的載波頻率/分量載波相對應,因此用語“小區”、“服務小區”、“分量載波”、“載波頻率”等可以可互換地使用。
例如,仍然參照圖1,宏小區基地台102利用的頻率中的一個頻率可以是錨載波(或“PCell”),並且宏小區基地台102和/或mmW基地台180利用的其它頻率可以是輔載波(“SCell”)。對多個載波的同時發送和/或接收使UE 104/182能夠顯著地增加其資料發送和/或接收速率。例如,多載波系統中的兩個20 MHz聚合載波在理論上將帶來資料速率的兩倍增加(即,40 MHz)(與單個20 MHz載波所達到的資料速率相比)。
無線通信系統100還可以包括UE 164,其可以在通信鏈路120上與宏小區基地台102進行通信和/或在mmW通信鏈路184上與mmW基地台180進行通信。例如,宏小區基地台102可以支援用於UE 164的PCell和一個或多個SCell,並且mmW基地台180可以支援用於UE 164的一個或多個SCell。
在圖1的示例中,一個或多個地球軌道衛星定位系統(SPS)太空載具(SV)112(例如,衛星)可以被用作任何所示UE(為了簡單起見,在圖1中示為單個UE 104)的位置資訊的獨立來源。UE 104可以包括一個或多個專用SPS接收機,其被專門設計為從SV 112接收用於推導地理位置資訊的SPS信號124。SPS通常包括發射機(例如,SV 112)的系統,其被定位為使接收機(例如,UE 104)能夠至少部分地基於從發射機接收的信號(例如,SPS信號124)來決定其在地球上或地球上方的位置。這樣的發射機通常發送利用設定數量的晶片的重複偽隨機雜訊(PN)碼標記的信號。雖然發射機通常位於SV 112中,但是有時可以位於基於地面的控制站、基地台102和/或其它UE 104上。
對SPS信號124的使用可以由各種基於衛星的增強系統(SBAS)增強,SBAS可以與一個或多個全球和/或區域導航衛星系統相關聯或以其它方式實現與一個或多個全球和/或區域導航衛星系統一起使用。例如,SBAS可以包括提供完整性資訊、差分校正等的增強系統,諸如廣域增強系統(WAAS)、歐洲同步衛星導航覆蓋服務(EGNOS)、多功能衛星增強系統(MSAS)、全球定位系統(GPS)輔助地理增強導航或GPS和地理增強導航系統(GAGAN)等。因此,如本文所使用的,SPS可以包括一個或多個全球和/或區域導航衛星系統和/或增強系統的任何組合,並且SPS信號124可以包括SPS、類SPS和/或與這樣一個或多個SPS相關聯的其它信號。
無線通信系統100還可以包括經由一個或多個設備對設備(D2D)點對點(P2P)鏈路(被稱為“側行鏈路”)間接地連接到一個或多個通信網路的一個或多個UE(諸如UE 190)。在圖1的示例中,UE 190具有與連接到基地台102中的一個基地台102的UE 104中的一個UE 104的D2D P2P鏈路192(例如,透過D2D P2P鏈路192,UE 190可以間接地獲得蜂巢式連接性)和與連接到WLAN AP 150的WLAN STA 152的D2D P2P鏈路194(透過D2D P2P鏈路194,UE 190可以間接地獲得基於WLAN的網際網路連接性)。在一示例中,可以利用任何習知的D2D RAT(諸如LTE直連(LTE-D)、WiFi直連(WiFi-D)、藍牙®等等)來支援D2D P2P鏈路192和194。無線通信系統100可以包括一個或多個應用伺服器196或與其進行通信。
圖2A示出示例無線網路結構200。例如,可以在功能上將5GC 210(也被稱為“下一代核心(NGC)”)視為控制平面功能單元214(例如,UE註冊、認證、網路存取、閘道選擇等)和用戶平面功能單元212(例如,UE閘道功能、對資料網路的存取、IP路由等),控制平面功能單元214和用戶平面功能單元212合作地操作以形成核心網路。用戶平面介面(NG-U)213和控制平面介面(NG-C)215將gNB 222連接到5GC 210,以及具體而言,連接到控制平面功能單元214和用戶平面功能單元212。在另外的配置中,還可以經由到控制平面功能單元214的NG-C 215和到用戶平面功能單元212的NG-U 213將ng-eNB 224連接到5GC 210。此外,ng-eNB 224可以經由回傳連接223直接與gNB 222進行通信。在一些配置中,下一代RAN(NG-RAN)220可以僅具有一個或多個gNB 222,而其它配置包括ng-eNB 224和gNB 222兩者中的一項或多項。gNB 222或者ng-eNB 224可以與UE 204(例如,圖1中描繪的任何UE)進行通信。另一選擇性方面可以包括位置伺服器230,其可以與5GC 210相通信以為UE 204提供位置幫助。位置伺服器230可以被實現為多個分離的伺服器(例如,在實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者替代地,可以各自對應於單個伺服器。位置伺服器230可以被配置為支援針對可以經由核心網路、5GC 210和/或經由網際網路(未示出)連接到位置伺服器230的UE 204的一種或多種位置服務。此外,位置伺服器230可以被整合到核心網路的組件中,或者替代地,可以在核心網路外部。
圖2B示出另一示例無線網路結構250。5GC 260(其可以對應於圖2A中的5GC 210)可以在功能上被視為由存取和行動性管理功能單元(AMF)264提供的控制平面功能單元、以及由用戶平面功能單元(UPF)262提供的用戶平面功能單元,它們協同操作以形成核心網路(即,5GC 260)。用戶平面介面263和控制平面介面265將ng-eNB 224連接到5GC 260,並且具體地分別連接到UPF 262和AMF 264。在另外的配置中,gNB 222也可以經由去往AMF 264的控制平面介面265以及去往UPF 262的用戶平面介面263被連接到5GC 260。此外,ng-eNB 224可以經由回傳連接223直接與gNB 222進行通信,無論gNB是否有到5GC 260的直接連接。在一些配置中,NG-RAN 220可以僅具有一個或多個gNB 222,而其它配置包括ng-eNB 224和gNB 222兩者中的一項或多項。gNB 222或者ng-eNB 224可以與UE 204(例如,圖1中描繪的UE中的任何UE)進行通信。NG-RAN 220的基地台在N2介面上與AMF 264進行通信,並且在N3介面上與UPF 262進行通信。
AMF 264的功能包括註冊管理、連接管理、可到達性管理、行動性管理、合法偵聽、在UE 204與對話管理功能單元(SMF)266之間傳輸對話管理(SM)訊息、用於路由SM訊息的透明代理服務、存取認證和存取授權、在UE 204與簡訊服務功能單元(SMSF)(未示出)之間傳送簡訊服務(SMS)訊息、以及安全性錨功能(SEAF)。AMF 264還與認證伺服器功能單元(AUSF)(未示出)和UE 204進行交互,並且接收作為UE 204認證程序的結果被建立的中間密鑰。在基於UMTS(通用行動電信系統)訂戶身份模組(USIM)的認證的情況下,AMF 264從AUSF取得安全性材料。AMF 264的功能還包括安全性上下文管理(SCM)。SCM從SEAF接收密鑰,其中SCM使用該密鑰來推導特定於存取網路的密鑰。AMF 264的功能還包括針對管理服務的位置服務管理、在UE 204與LMF 270(其充當位置伺服器230)之間傳送位置服務訊息、在NG-RAN 220與LMF 270之間傳送位置服務訊息、用於與演進封包系統(EPS)互通的EPS承載識別符分配、以及UE 204行動性事件通知。另外,AMF 264還支援針對非3GPP(第三代合作夥伴計劃)存取網路的功能。
UPF 262的功能包括:充當用於RAT內/RAT間行動性(在適用時)的錨點,充當互連到資料網路(未示出)的外部協定資料單元(PDU)對話點,提供封包路由和轉發、封包檢驗、用戶平面策略規則實施(例如,閘控、重定向、流量引導)、合法偵聽(用戶平面收集)、流量利用率報告、用於用戶平面的服務品質(QoS)處理(例如,上行鏈路/下行鏈路速率實施、下行鏈路中的反映性QoS標誌)、上行鏈路流量驗證(服務資料流(SDF)到QoS流映射)、上行鏈路和下行鏈路中的傳輸位準封包標誌、下行鏈路封包緩衝和下行鏈路資料通知觸發,以及向來源RAN節點發送和轉發一個或多個“結束標誌”。UPF 262還可以支援在UE 204與位置伺服器(諸如SLP 272)之間在用戶平面上傳送位置服務訊息。
SMF 266的功能包括對話管理、UE網際網路協定(IP)位址分配和管理、對用戶平面功能的選擇和控制、在UPF 262處將流量引導配置為向正確的目的地路由流量、對策略實現和QoS的部分的控制、以及下行鏈路資料通知。SMF 266在其上與AMF 264進行通信的介面被稱為N11介面。
另一個選擇性方面可以包括LMF 270,其可以與5GC 260通信,以向UE 204提供位置幫助。LMF 270能夠被實現為多個分離的伺服器(例如,在實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者替代地,可以各自對應於單個伺服器。LMF 270可以被配置為支援用於UE 204的一個或多個位置服務,UE 204可以經由核心網路、5GC 260和/或經由網際網路(未示出)連接到LMF 270。SLP 272可以支援與LMF 270類似的功能,但是LMF 270可以在控制平面上與AMF 264、NG-RAN 220和UE 204進行通信(例如,使用旨在傳送信令訊息而不是語音或資料的介面和協定),SLP 272可以在用戶平面上與UE 204和外部客戶端(圖2B中未示出)進行通信(例如,使用旨在攜帶語音和/或資料的協定,諸如傳輸控制協定(TCP)和/或IP)。
圖3A、圖3B和圖3C示出可以併入到UE 302(其可以對應於本文描述的任何UE)、基地台304(其可以對應於本文描述的任何基地台)和網路實體306(其可以對應於或體現本文描述的任何網路功能單元(包括位置伺服器230和LMF 270),或者替代地,可以獨立於圖2A和圖2B中描繪的NG-RAN 220和/或5GC 210/260基礎設施(諸如專用網路))中以支援如本文所教導的文件傳輸操作的若干示例組件(由對應的區塊表示)。將領會的是,這些組件可以在不同的實現中(例如,在ASIC中、在單晶片系統(SoC)中等)在不同類型的裝置中實現。所示出的組件還可以併入到通信系統中的其它裝置中。例如,系統中的其它裝置可以包括與所描述的那些組件類似的組件,以提供類似的功能。另外,給定裝置可以包含組件中的一個或多個組件。例如,裝置可以包括使該裝置能夠在多個載波上操作和/或經由不同技術進行通信的多個收發機組件。
UE 302和基地台304各自分別包括至少一個無線廣域網路(WWAN)收發機310和350,其提供用於經由一個或多個無線通信網路(未示出)(諸如NR網路、LTE網路、GSM網路等)進行通信的構件(例如,用於發送的構件、用於接收的構件、用於測量的構件、用於調諧的構件、用於避免發送的構件等)。WWAN收發機310和350可以分別連接到一個或多個天線或天線元件陣列316和356,以在感興趣的無線通信媒體(例如,特定頻譜中的某個時間/頻率資源集合)上經由至少一個指定的RAT(例如,NR、LTE、GSM等)與其它網路節點(諸如其它UE、存取點、基地台(例如,eNB、gNB)等)進行通信。WWAN收發機310和350可以不同地被配置用於根據指定的RAT來分別發送和編碼信號318和358(例如,訊息、指示、資訊等)以及相反地分別接收和解碼信號318和358(例如,訊息、指示、資訊、導頻等)。具體地,WWAN收發機310和350分別包括一個或多個發射機314和354,其分別用於發送和編碼信號318和358,並且分別包括一個或多個接收機312和352,其分別用於接收和解碼信號318和358。
至少在一些情況下,UE 302和基地台304各自還分別包括至少一個短距離無線收發機320和360。短距離無線收發機320和360可以分別連接到一個或多個天線326和366,並且提供用於在感興趣的無線通信媒體上經由至少一個指定的RAT(例如,WiFi、LTE-D、藍牙®、紫蜂®、Z-Wave®、PC5、專用短距離通信(DSRC)、車輛環境無線存取(WAVE)、近場通信(NFC)等)與其它網路節點(諸如其它UE、存取點、基地台等)進行通信的構件(例如,用於發送的構件、用於接收的構件、用於測量的構件、用於調諧的構件、用於避免發送的構件等)。短距離無線收發機320和360可以不同地被配置用於根據指定的RAT來分別發送和編碼信號328和368(例如,訊息、指示、資訊等)以及相反地分別接收和解碼信號328和368(例如,訊息、指示、資訊、導頻等)。具體地,短距離無線收發機320和360分別包括一個或多個發射機324和364,其分別用於發送和編碼信號328和368,並且分別包括一個或多個接收機322和322,其分別用於接收和解碼信號328和368。作為具體示例,短距離無線收發機320和360可以是WiFi收發機、藍牙®收發機、紫蜂®和/或Z-Wave®收發機、NFC收發機或車輛對車輛(V2V)和/或車輛對萬物(V2X)收發機。
包括至少一個發射機和至少一個接收機的收發機電路在一些實現中可以包括整合設備(例如,被體現為單個通信設備的發射機電路和接收機電路),在一些實現中可以包括單獨的發射機設備和單獨的接收機設備,或者在其它實現中可以以其它方式體現。在一方面中,發射機可以包括或耦接到多個天線(例如,天線316、326、356、366)(諸如天線陣列),這允許相應的裝置執行發送“波束成形”,如本文描述的。類似地,接收機可以包括或耦接到多個天線(例如,天線316、326、356、366)(諸如天線陣列),這允許相應的裝置執行接收波束成形,如本文描述的。在一方面中,發射機和接收機可以共用相同的多個天線(例如,天線316、326、356、366),使得相應的裝置在給定時間只能進行接收或發送,而不是同時進行接收或發送。UE 302和/或基地台304的無線通信設備(例如,收發機310和320和/或350和360中的一者或兩者)還可以包括用於執行各種測量的網路監聽模組(NLM)等。
至少在一些情況下,UE 302和基地台304還包括衛星定位系統(SPS)接收機330和370。SPS接收機330和370可以分別連接到一個或多個天線336和376,並且可以分別提供用於接收和/或測量SPS信號338和378(諸如全球定位系統(GPS)信號、全球導航衛星系統(GLONASS)信號、伽利略信號、北斗信號,印度區域導航衛星系統(NAVIC)、準天頂衛星系統(QZSS)等)的構件。SPS接收機330和SPS接收機370可以包括分別用於接收和處理SPS信號338和378的任何合適的硬體和/或軟體。SPS接收機330和370根據需要從其它系統請求資訊和操作,並且使用透過任何合適的SPS演算法獲得的測量來執行決定UE 302和基地台304的位置所需的計算。
基地台304和網路實體306各自分別包括至少一個網路介面380和390,其提供用於與其它網路實體進行通信的構件(例如,用於發送的構件、用於接收的構件等)。例如,網路介面380和網路介面390(例如,一個或多個網路存取埠)可以被配置為經由基於有線的回傳連接或無線回傳連接與一個或多個網路實體進行通信。在一些方面中,網路介面380和網路介面390可以被實現為收發機,其被配置為支援基於有線的信號通信或無線信號通信。該通信可以涉及例如發送和接收訊息、參數和/或其它類型的資訊。
在一方面中,至少一個WWAN收發機310和/或至少一個短距離無線收發機320可以形成UE 302的(無線)通信介面。類似地,至少一個WWAN收發機350、至少一個短距離無線收發機360和/或至少一個網路介面380可以形成基地台304的(無線)通信介面。類似地,至少一個網路介面390可以形成網路實體306的(無線)通信介面。各種無線收發機(例如,收發機310、320、350和360)和有線收發機(例如,網路介面380和390)通常可以被表徵為至少一個收發機,或者替代地,被表徵為至少一個通信介面。照此,可以根據所執行的通信的類型來推斷特定收發機或通信介面是否分別與有線或無線收發機或通信介面有關(例如,網路設備或伺服器之間的回傳通信通常將涉及經由至少一個有線收發機的信令)。
UE 302、基地台304和網路實體306還包括可以結合本文所公開的操作使用的其它組件。UE 302、基地台304和網路實體306分別包括至少一個處理器332、384和394,用於提供與例如無線通信有關的功能,以及用於提供其它處理功能。因此,處理器332、384和394可以提供用於處理的構件,諸如用於決定的構件、用於計算的構件、用於接收的構件、用於發送的構件、用於指示的構件等。在一方面中,處理器332、384和394可以包括例如至少一個通用處理器、多核心處理器、中央處理單元(CPU)、ASIC、數位信號處理器(DSP)、場域可程式化閘陣列(FPGA)、其它可程式化邏輯設備或處理電路、或其各種組合。
UE 302、基地台304和網路實體306分別包括實現用於維護資訊(例如,指示預留資源、閾、參數等的資訊)的記憶體組件340、386和396(例如,各自包括記憶體設備)的記憶體電路。因此,記憶體組件340、386和396可以提供用於儲存的構件、用於提取的構件、用於維護的構件等。在一些情況下,UE 302、基地台304和網路實體306可以分別包括天線子陣列配置模組342、388和398。天線子陣列配置模組342、388和398可以分別是作為處理器332、384和394的一部分或耦接到處理器332、384和394的硬體電路,其在被執行時使得UE 302、基地台304和網路實體306執行本文描述的功能。在其它方面中,天線子陣列配置模組342、388和398可以在處理器332、384和394的外部(例如,可以是數據機處理系統的一部分,與另一處理系統整合,等等)。替代地,天線子陣列配置模組342、388和398可以分別是儲存在記憶體組件340、386和396中的記憶體模組,其在由處理器332、384和394(或數據機處理系統、另一處理系統等)執行時使得UE 302、基地台304以及網路實體306執行本文描述的功能。圖3A示出天線子陣列配置模組342的可能位置,天線子陣列配置模組342可以是例如至少一個WWAN收發機310、記憶體組件340、至少一個處理器332或其任何組合的一部分,或者可以是獨立組件。圖3B示出天線子陣列配置模組388的可能位置,天線子陣列配置模組388可以是例如至少一個WWAN收發機350、記憶體組件386、至少一個處理器384或其任何組合的一部分,或者可以是獨立組件。圖3C示出天線子陣列配置模組398的可能位置,天線子陣列配置模組398可以是例如至少一個網路介面390、記憶體組件396、至少一個處理器394或其任何組合的一部分,或者可以是獨立組件。
UE 302可以包括耦接到至少一個處理器332的一個或多個感測器344,以提供用於感測或偵測獨立於根據由至少一個WWAN收發機310、至少一個短距離無線收發機320和/或SPS接收機330接收的信號推導出的運動資料的行動和/或方向資訊的構件。舉例而言,感測器344可以包括加速計(例如,微電子機械系統(MEMS)設備)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)和/或任何其它類型的運動偵測感測器。此外,感測器344可以包括多個不同類型的設備並且組合它們的輸出以提供運動資訊。例如,感測器344可以使用多軸加速計和方向感測器的組合來提供在二維(2D)和/或三維(3D)座標系中計算位置的能力。
此外,UE 302包括用戶介面346,用戶介面346提供用於向用戶提供指示(例如,聽覺和/或視覺指示)和/或用於接收用戶輸入(例如,在用戶啟動諸如鍵盤、觸控螢幕、麥克風等之類的感測設備時)的構件。儘管未示出,但是基地台304和網路實體306還可以包括用戶介面。
更詳細地參照至少一個處理器384,在下行鏈路中,來自網路實體306的IP封包可以被提供給至少一個處理器384。至少一個處理器384可以實現針對RRC層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層的功能。至少一個處理器384可以提供:與以下各項相關聯的RRC層功能:對系統資訊(例如,主資訊區塊(MIB)、系統資訊區塊(SIB))的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改、以及RRC連接釋放)、RAT間行動性、以及用於UE測量報告的測量配置;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓、安全性(加密、解密、完整性保護、完整性驗證)、以及切換支援功能;與以下各項相關聯的RLC層功能:對上層PDU的傳送、透過自動重傳請求(ARQ)的偵錯、對RLC服務資料單元(SDU)的序連、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;以及與以下各項相關聯的MAC層功能:在邏輯信道和傳輸信道之間的映射、排程資訊報告、偵錯、優先級處置、以及邏輯信道優先化。
發射機354和接收機352可以實現與各種信號處理功能相關聯的層1(L1)功能。層1(其包括實體(PHY)層)可以包括在傳輸信道上的錯誤偵測、傳輸信道的前向偵錯(FEC)編碼/解碼,交織、速率匹配、映射到實體信道上、實體信道的調變/解調、以及MIMO天線處理。發射機354處理基於各種調變方案(例如,二進制相移鍵控(BPSK)、正交相移鍵控(QPSK)、M-相移鍵控(M-PSK)、M-正交振幅調變(M-QAM))的到信號群集的映射。經編碼且經調變的符號隨後可以被拆分成並行的串流。每個串流隨後可以被映射到正交分頻多工(OFDM)子載波,與在時域和/或頻域中的參考信號(例如,導頻)多工,以及隨後使用快速傅立葉逆轉換(IFFT)組合到一起,以產生用於攜帶時域OFDM符號串流的實體信道。OFDM符號串流被空間預編碼以產生多個空間串流。來自信道估計器的信道估計可以用於決定編碼和調變方案,以及用於空間處理。可以根據由UE 302發送的參考信號和/或信道狀況反饋推導信道估計。可以隨後將每一個空間串流提供給一個或多個不同的天線356。發射機354可以利用各自的空間串流來對RF載波進行調變以用於傳輸。
在UE 302處,接收機312透過其各自的天線316接收信號。接收機312恢復出被調變到RF載波上的資訊,以及將該資訊提供給至少一個處理器332。發射機314和接收機312實現與各種信號處理功能相關聯的層1功能。接收機312可以執行對該資訊的空間處理以恢復出以UE 302為目的地的任何空間串流。如果多個空間串流以UE 302為目的地,則可以由接收機312將所述多個空間串流合併成單個OFDM符號串流。接收機312隨後使用快速傅立葉轉換(FFT)將該OFDM符號串流從時域轉換到頻域。頻域信號包括針對該OFDM信號的每一個子載波的單獨的OFDM符號串流。透過決定由基地台304發送的最有可能的信號群集點來對在每個子載波上的符號和參考信號進行恢復和解調。這些軟決策可以基於由信道估計器計算的信道估計。該軟決策隨後被解碼和解交織以恢復出由基地台304最初在實體信道上發送的資料和控制信號。隨後將該資料和控制信號提供給至少一個處理器332,其實現層3(L3)和層2(L2)功能。
在上行鏈路中,至少一個處理器332提供在傳輸信道和邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、以及控制信號處理,以恢復出來自核心網路的IP封包。至少一個處理器332還負責錯誤偵測。
與結合由基地台304進行的下行鏈路傳輸所描述的功能類似,至少一個處理器332提供:與以下各項相關聯的RRC層功能:系統資訊(例如,MIB、SIB)獲得、RRC連接、以及測量報告;與以下各項相關聯的PDCP層功能:標頭壓縮/解壓縮、以及安全性(加密、解密、完整性保護、完整性驗證);與以下各項相關聯的RLC層功能:對上層PDU的傳送、透過ARQ的偵錯、對RLC SDU的序連、分段和重組、對RLC資料PDU的重新分段、以及對RLC資料PDU的重新排序;以及與以下各項相關聯的MAC層功能:在邏輯信道和傳輸信道之間的映射、MAC SDU到傳輸區塊(TB)上的多工、MAC SDU從TB的解多工、排程資訊報告、透過混合自動重傳請求(HARQ)的偵錯、優先級處置、以及邏輯信道優先化。
發射機314可以使用由信道估計器根據由基地台304發送的參考信號或反饋來推導出的信道估計來選擇適當的編碼和調變方案,並且促進空間處理。可以將由發射機314產生的空間串流提供給不同的天線316。發射機314可以利用各自的空間串流來對RF載波進行調變,以用於傳輸。
在基地台304處,以與結合在UE 302處的接收機功能所描述的方式相類似的方式來處理上行鏈路傳輸。接收機352透過其各自的天線356接收信號。接收機352恢復出被調變到RF載波上的資訊並且將該資訊提供給至少一個處理器384。
在上行鏈路中,至少一個處理器384提供在傳輸信道和邏輯信道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復出來自UE 302的IP封包。可以將來自至少一個處理器384的IP封包提供給核心網路。至少一個處理器384還負責錯誤偵測。
為了方便起見,在圖3A至圖3C中將UE 302、基地台304和/或網路實體306示為包括可以根據本文描述的各個示例進行配置的各種組件。然而,將領會的是,所示出的組件在不同的設計中可以具有不同的功能。
UE 302、基地台304和網路實體306的各種組件可以分別在資料匯流排334、382和392上彼此進行通信。在一方面中,資料匯流排334、382和392可以分別形成UE 302、基地台304和網路實體306的通信介面或作為其一部分。例如,在相同的設備中體現不同邏輯實體的情況下(例如,gNB和位置伺服器功能單元併入到相同的基地台304中),資料匯流排334、382和392可以提供所述不同邏輯實體之間的通信。
圖3A至圖3C的組件可以以各種方式來實現。在一些實現中,圖3A至圖3C的組件可以是在一個或多個電路中實現的,諸如一個或多個處理器和/或一個或多個ASIC(其可以包括一個或多個處理器)。此處,每個電路可以使用和/或合併有用於儲存由該電路用來提供這種功能的資訊或可執行碼的至少一個記憶體組件。例如,由方塊310至346表示的一些或全部功能可以由UE 302的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過對處理器組件的適當配置)。類似地,由方塊350至388表示的一些或全部功能可以由基地台304的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過對處理器組件的適當配置)。此外,由方塊390至398表示的一些或全部功能可以由網路實體306的處理器和記憶體組件來實現(例如,透過執行適當的碼和/或透過對處理器組件的適當配置)。為了簡單起見,本文將各種操作、動作和/或功能描述為“由UE”、“由基地台”、“由網路實體”等來執行。然而,將領會的是,這樣的操作、動作和/或功能實際上可以由UE 302、基地台304、網路實體306等的特定組件或組件的組合來執行,諸如處理器332、384、394、收發機310、320、350和360、記憶體組件340、386和396、天線子陣列配置模組342、388和398等。
在一些設計中,網路實體306可以被實現為核心網路組件。在其它設計中,網路實體306可以不同於網路運營商或蜂巢式網路基礎設施(例如,NG RAN 220和/或5GC 210/260)的操作。例如,網路實體306可以是專用網路的組件,該專用網路可以被配置為經由基地台304與UE 302進行通信,或者獨立於基地台304(例如,透過諸如WiFi之類的非蜂巢式通信鏈路)與UE 302進行通信。
市場上可獲得對毫米波(mmW)系統的商業實現,並且下一代mmW系統將覆蓋更寬的範圍(例如,FR4,其跨度為52.6 GHz到114.25 GHz),具有更大數量的天線元件,其可以部署在與第一代mmW系統當前使用的相同孔徑上。例如,60 GHz處的8x2天線陣列可以與30 GHz處的4x1天線陣列安裝在相同的孔徑內。然而,使用8x2陣列的所有16個天線元件可能導致高功耗和相關聯的熱負擔。因此,除了要求峰值性能的場景之外,使用可用天線元件子集是有益的,與使用所有可用天線元件相比,這減少電池消耗並且產生更少的熱量。
圖4A和圖4B示出透過使用來自4x4陣列的不同天線子集產生的波束模式的示例。在這些圖中,4x4陣列中的16個天線元件由16個方框表示,其中選定/有效元件被示為黑色填充方框。在圖4A中,圖4A頂部所示的2x2天線元件子集在圖4A底部產生球形覆蓋圖(球體上的陣列增益)。波束模式圖將陣列增益顯示為與天線陣列的某個方向相對應的方位角Φ和仰角θ的函數。在圖4B中,圖4B頂部所示的4x1天線單元子集在圖4B底部產生球形覆蓋圖。這兩個圖都假定沿Y軸具有大小為4的類比波束成形碼本的視軸,其中每個波束在所考慮的天線陣列的覆蓋區域內將能量轉向特定方向。
兩個不同的四元件子集消耗相同的功率量並且具有類似的熱負擔,但是其具有不同的波束成形特性,例如波束寬度。波束模式圖中的虛線橢圓指示每個配置中的典型波束的覆蓋區域。由4x1陣列產生的波束在一個維度上具有窄波束寬度(BWN)並且在另一維度上具有更寬的波束寬度(BWW),而由2x2陣列產生的波束與波束寬度BW對稱,其中BWN < BW < BWW。4x1陣列提供大約25度的BWN,並且2x2陣列提供大約50度的BW。
在一些情況下,可能更期望2x2陣列波束模式,而在其它情況下,可能更期望4x1陣列波束模式。波束的寬度決定使用該波束的角度定位測量(例如,AoA、AoD等)的角度解析度:窄波束提供與寬波束相比更好的角度解析度,但是寬波束潛在地到達更大數量的接收設備。因此,在定位的背景下,波束的波束寬度決定定位精確度。假設Φ是方位角並且θ是仰角,4x1子陣列將提供更好的方位角解析度並且更差的仰角解析度。在UE位於建築物中的示例中,2x2子陣列可能是優選的,因為其具有更好的仰角解析度(以犧牲方位角解析度為代價),並且因此能夠更好地決定UE位於哪個樓層,或者更好地將傳輸聚焦到特定樓層上的UE,等等。在UE位於行動車輛內的示例中,4x1子陣列可能是優選的,因為其提供更好的方位角解析度(以犧牲仰角解析度為代價),這對於決定車輛在道路上的位置(position)或位置(location)、行人的位置等可能很重要。
圖5示出根據本公開內容的一些方面的用於不同目的不同子陣列的使用。在圖5中,設備500(其可以是UE)包括三個模組,每個模組位於設備的不同邊緣,每個模組包含4x4天線元件陣列。在圖5所示的示例中,在具有十四個OFDM符號的一個時隙中,模組2可以針對前七個符號使用2x2子陣列配置並且針對後七個符號使用4x1子陣列配置。如圖5所示的示例中進一步所示,2x2子陣列配置和4x1子陣列配置在不同的符號間隔期間發送不同的波束。在圖5中,2x2子陣列配置在符號1-3期間發送波束B1,在符號4-6期間發送波束B2,並且在符號7期間發送波束B3;4x1子陣列配置在符號8-12期間發送波束B4並且在符號13和符號14期間發送波束B5。
由一個子陣列配置產生的波束可能具有與由另一子陣列配置產生的波束不同的特性。例如,由4x1子陣列產生的較窄的波束B4和B5可以提供更好的定位精確度,而較寬的波束B1、B2和B3可以產生更好的資料速率。因此,在一個示例中,UE 500在OFDM符號1-7期間發送資料並且在OFDM符號8-14期間發送定位信號。在一些方面中,位置管理功能單元(LMF)可以向UE 500提供定位要求或參數,並且基於這些輸入,UE 500可以選擇4x1子陣列來執行定位任務。要注意的是,2x2和4x1子陣列配置是說明性的而不是限制性的。子陣列配置可以包括任何天線元件子集,包括任意數量的天線元件和以實體天線陣列所支援的任何模式佈置的天線元件。
不同的陣列配置導致不同的定位精確度,其可能滿足或者可能不滿足定位要求。因此,期望設備能夠基於波束成形特性來為定位應用選擇優選的子陣列配置,以便滿足可以動態地指示的定位要求。當前標準允許針對gNB而不針對UE來單獨地指定方位角和仰角的靜態定位精確度要求。此外,當前標準沒有定義用於改變定位精確度要求或測量精確度要求的任何動態機制,即,不存在用於一個設備向另一設備通知動態地變化的定位精確度要求或測量精確度要求以便可以選擇合適的子陣列配置來解決例如動態地變化的環境的機制。
為了解決這一技術挑戰,本文給出用於定位的優選子陣列指示的技術,包括用於傳送精確度要求的技術。基於這樣的動態指示,UE或其它設備可以做出關於使用哪個(哪些)子陣列的決策,包括出於不同目的使用不同的子陣列,例如,使用一個子陣列進行定位並且使用另一子陣列進行資料通信。
圖6是與用於定位的動態(例如,動態地改變或動態地變化)精確度要求和優選子陣列指示相關聯的示例程序600的流程圖。在一些方面中,圖6的一個或多個程序方塊可以由使用要求的網路實體(例如,UE 104、基地台102、UE 104、客戶駐地設備(CPE)、智慧型反射面(IRS)、中繼器節點或整合的存取和回傳(IAB)節點等)來執行。在一些方面中,圖6的一個或多個程序方塊可以由與使用要求的網路實體分離或包括使用要求的網路實體的另一設備或一組設備來執行。另外地或替代地,圖6的一個或多個程序方塊可以由設備302或設備304的一個或多個組件來執行,諸如:至少一個處理器332或384;記憶體340或386;至少一個WWAN收發機310或350;至少一個短距離無線收發機320或350;SPS接收機330或360;天線子陣列配置模組342或388;用戶介面346;和/或至少一個網路介面380;其中的任何一者或全部可以被視為用於執行該操作的構件。
如圖6所示,程序600可以包括:決定多個天線子陣列配置,每個天線子陣列配置包括天線元件陣列中的天線元件的不同子集(方塊610)。用於執行方塊610處的操作的構件可以包括設備302的至少一個處理器332、設備304的至少一個處理器384或設備306的至少一個處理器394。例如,在設備302是UE的情況下,UE 302的至少一個處理器332可以讀取表,該表包含可用天線子陣列配置的表,並且還可以包含與每個子陣列配置相關聯的資訊(諸如方位角、仰角或兩者中的角度解析度)或者與測量精確度或定位精確度相關的其它資訊。
如圖6中進一步所示,程序600可以包括:從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括定位精確度要求或測量精確度要求,並且每個精確度要求指定方位角、仰角或兩者的精確度要求(方塊620)。在一些方面中,定位精確度要求包括以度為單位的精確度。在一些方面中,測量精確度要求包括以分貝為單位的精確度。用於執行方塊620處的操作的構件可以包括設備302的至少一個WWAN收發機310、設備304的至少一個WWAN收發機350或設備304的至少一個網路介面380。繼續其中設備302是UE的示例,設備302的接收機312可以從LMF 270接收精確度要求集合。在一些方面中,一個或多個精確度要求的集合可以是響應由使用要求的網路實體發送給提供要求的網路實體的針對精確度要求的請求而被接收的,但是在其它方面中,精確度要求集合是在不存在針對精確度要求的請求的情況下被接收的。在一些方面中,在UE 104內執行並且與應用伺服器196進行通信的應用可以向應用伺服器196指示該應用需要對UE的當前位置或位置的更準確的估計。應用伺服器196可以向位置伺服器172發送針對對UE的當前位置的準確估計的請求,並且響應於該請求,位置伺服器172可以向UE 104發送更新的精確度要求。
如圖6中進一步所示,程序600可以包括:響應於存在產生滿足精確度要求集合的波束的天線子陣列配置,使用天線子陣列配置中的天線元件來執行定位操作(方塊630)。用於執行方塊630處的操作的構件可以包括設備302的至少一個處理器332或設備304的至少一個處理器384。繼續其中設備302是UE的示例,至少一個處理器332可以決定可用天線子陣列配置之一滿足定位精確度要求,並且使用該天線子陣列配置不超過功耗預算或熱操作限制。
如圖6中進一步所示,程序600可以包括:響應於不存在產生滿足精確度要求集合的波束的天線子陣列配置,向提供要求的網路實體通知不能夠滿足精確度要求集合(方塊640)。用於執行方塊640處的操作的構件可以包括設備302的至少一個處理器332或設備304的至少一個處理器384。繼續其中設備302是UE的示例,至少一個處理器332可以決定可用天線子陣列配置中沒有一個滿足動態定位精確度要求。在一些方面中,可能存在滿足定位精確度要求的可用天線子陣列配置,但是使用該天線子陣列配置將超過熱限制,或者使用該天線子陣列配置要求比UE當前具有的電池功率更多的電池功率。在一些方面中,設備302可以不僅向提供要求的網路實體通知不能夠滿足精確度要求集合,並且還可以告訴提供要求的網路實體其可以滿足什麼精確度要求。
程序600可以包括額外的方面,諸如在下文和/或結合本文在別處描述的一個或多個其它程序描述的任何單個方面或各方面的任何組合。雖然圖6示出程序600的示例方塊,但是在一些方面中,程序600可以包括與圖6中描繪的那些方塊相比另外的方塊、更少的方塊、不同的方塊或者以不同方式佈置的方塊。另外地或替代地,程序600的方塊中的兩個或更多個方塊可以並行地執行。
在一些方面中,精確度要求可能包括定位精確度要求、測量精確度要求或兩者。精確度要求可以被定義用於多個軸或方向,諸如方位角和仰角。位置精確度可以被指定為按照度的精確度,並且測量精確度可以被指定為按照分貝(dB)的功率。例如: - UE可能要求更好的要求(例如,應用可能在定位方面要求額外的精確度)。 - LMF可能想要更精確的定位。 - LMF可能想要更高的資料速率,而不是更精確的定位。
在一些方面中,網路實體(諸如基地台(BS)(諸如gNodeB(gNB))、位置伺服器(諸如位置管理功能單元(LMF))、應用伺服器或其它實體)可以向UE提供此類要求,並且UE可以選擇滿足這些要求的子陣列配置。例如: - gNB可以在蜂巢式存取設置中用信號向UE或網路中的其它設備通知動態地變化的要求。 - UE可以從LMF請求特定精確度要求(例如,針對UE輔助定位),並且LMF可以提供該輔助資訊。 - 一個UE可以在側行鏈路設置中向另一UE/設備用信號通知要求。 - 動態要求可以來自網路伺服器(例如,當用戶在其手機上打開應用時的應用伺服器),並且該應用具有特定精確度要求;然後,應用或應用伺服器可以將要求傳送給網路伺服器,網路伺服器通知gNB或UE。
響應於該信令,UE或gNB可以選擇特定天線子陣列配置,以滿足(或嘗試滿足)動態地變化的精確度要求。在一些方面中,例如,在多個天線子陣列配置滿足精確度要求的情況下,可以基於功率熱分佈來進一步選擇天線子陣列配置,例如,以便不超過特定功率閾、熱閾或兩者。
在一些方面中,基地台或位置伺服器可以改變精確度要求。例如,如果UE或其它設備在市中心場景中移動,則由於環境中存在高層建築物和混亂,因此精確的位置估計可能不可行。因此,可以向設備用信號通知精確的位置要求可能不是必要的。響應於該信令,設備可以改變天線子陣列配置,以滿足新的定位精確度要求。同樣,可以向設備用信號通知現在要求更高的定位精確度,或者在不同的方向上要求更高的定位精確度,並且作為響應,設備可以選擇新的天線子陣列配置。
在一些方面中,UE可以觸發精確度要求的變化。例如,由UE主控的應用可以請求或要求額外的定位精確度。
在gNB側,方位角和仰角容易地映射到座標系,因為gNB通常是固定的。例如,如果在gNB側命令方位角定位精確度高(精確度好),則水平4x1子陣列與2x2子陣列相比是更好的選擇。另一方面,如果在gNB側命令仰角定位精確度高(精確度好),則2x2子陣列與4x1子陣列相比是更好的選擇。
在UE側,方位角和仰角精確度可能在全域座標系中,並且局部座標系(UE的方向)可能與其不匹配。這可能是因為UE旋轉或移動。因此,取決於UE方向模式,某些子陣列結構可能優於其它結構。例如,在特定方向上命令高精確度的情況下,UE可以嘗試4x1子陣列配置或1x4子陣列配置,這取決於UE當時的特定方向。同樣,UE可以嘗試一系列子陣列配置,直到找到滿足精確度要求的子陣列,或者決定其不能夠滿足這些要求。
當設備決定其不能夠滿足精確度要求時,存在設備可以響應的多種方式。例如,在一些方面中,如果設備在不改變子陣列的情況下不能夠滿足定位和/或測量精確度要求(資料速率損失、可靠性損失等),則設備將反饋“未能滿足定位和測量精確度要求”指示和實際能夠滿足的可能定位精確度。在一些方面中,設備可以指示其能夠滿足精確度,但是將超過熱或功率限制,或者其能夠滿足精確度,但是僅在有限的時間內。
在一個示例中,UE可以向位置伺服器報告定位測量或其它測量,並且位置伺服器可以決定測量的精確度不足,並且向UE提供定位關鍵性能指示符(KPI)或要求並且讓UE選擇適當的子陣列配置,或者請求UE使用或選擇特定子陣列配置。
圖7是與用於定位的動態精確度要求和優選子陣列指示相關聯的示例程序700的流程圖。在一些方面中,圖7的一個或多個程序方塊可以由提供要求的網路實體(例如,位置伺服器172、基地台102、LMF 270等)來執行。在一些方面中,圖7的一個或多個程序方塊可以由與提供要求的網路實體分離或包括提供要求的網路實體的另一設備或一組設備來執行。另外地或替代地,圖7的一個或多個程序方塊可以由設備304或設備306的一個或多個組件執行,諸如:至少一個處理器384或394;記憶體386或396、至少一個WWAN收發機350;至少一個短距離無線收發機350;360;天線子陣列配置模組388或398;和/或至少一個網路介面380或390;其中的任何一者或全部可以被視為用於執行該操作的構件。
如圖7所示,程序700可以包括:決定使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括方位角、仰角或兩者的定位精確度要求或測量精確度要求(方塊710)。用於執行方塊710處的操作的構件可以包括至少一個處理器384或394。例如,位置伺服器172可以決定UE 104位於具有許多建築物或其它多路徑反射來源的區域中,在這種情況下,針對高定位精確度的要求是不可行的,或者從處理或功耗的角度來看是繁重的,在這種情況下,為UE 104選擇新的、不太嚴格的精確度要求,例如放寬定位精確度。在另一示例中,位置伺服器172可以決定UE 104位於高層建築物內的某處,在這種情況下,可以放寬針對服務於該UE 104的基地台102的方位角精確度要求,以有利於提高仰角精確度要求,使得基地台102可以將波束引導去往建築物的正確樓層。在該示例中,可以將產生方位角為15度並且仰角為30度的波束的天線配置改變為產生方位角為30度並且仰角為15度的波束的天線配置,例如,以高層建築物的較少樓層為目標。這些示例是說明性的而不是限制性的。可以動態地調整定位精確度、測量精確度或兩者,以彼此獨立地增加或減少方位角和仰角的精確度。
如圖7中進一步所示,程序700可以包括:向使用要求的網路實體發送位置精確度要求集合(方塊730)。用於執行方塊730處的操作的構件可以包括至少一個處理器384或394、至少一個網路介面380或390以及至少一個WWAN收發機350。例如,位置伺服器172可以經由至少一個網路介面380和390向基地台102發送位置精確度要求集合,並且基地台102可以經由至少一個WWAN收發機350和360將位置精確度要求集合轉發給UE 104。在一些方面中,一個或多個精確度要求的集合可以是響應於從使用要求的網路實體接收到針對精確度要求的請求而被發送到使用要求的網路實體的,但是在其它方面中,精確度要求集合可以是在不存在來自使用要求的網路實體的這樣的請求的情況下發送的。
程序700可以包括額外的方面,諸如在下文和/或結合本文在別處描述的一個或多個其它程序描述的任何單個方面或各方面的任何組合。雖然圖7示出程序700的示例方塊,但是在一些方面中,程序700可以包括與圖7中描繪的那些方塊相比另外的方塊、更少的方塊、不同的方塊或者以不同方式佈置的方塊。另外地或替代地,程序700的方塊中的兩個或更多個方塊可以並行地執行。
圖8是與用於定位的動態精確度要求和優選子陣列指示相關聯的示例程序800的流程圖,其選擇性地在圖7的方塊720之後由提供要求的網路實體執行。如圖8所示,程序800可以包括:從使用要求的網路實體接收關於不能夠滿足精確度要求集合中的一個或多個精確度要求的指示(選擇性方塊810)。用於執行方塊810處的操作的構件可以包括至少一個WWAN收發機350或至少一個網路介面380或390。在一些方面中,關於不能夠滿足精確度要求集合的通知指示使用要求的網路實體不能夠滿足的定位或測量精確度要求、使用要求的網路實體能夠滿足的定位或測量精確度要求、或其組合。
如圖8中進一步所示,程序800可以包括:基於能夠滿足的定位或測量精確度要求來決定使用要求的網路實體的一個或多個精確度要求的第二集合(選擇性方塊820)。用於執行方塊820處的操作的構件可以包括至少一個處理器384或394。例如,在網路節點306是位置伺服器172的情況下,至少一個處理器394可以調整第一集合中定義的一個或多個精確度要求,以產生經修改的第二集合,例如,基於來自UE 104的關於UE 104能夠滿足什麼精確度要求的反饋。
如圖8中進一步所示,程序800可以包括:向使用要求的網路實體發送精確度要求的第二集合(選擇性方塊830)。用於執行方塊830處的操作的構件可以包括至少一個處理器384或394、至少一個網路介面380或390以及至少一個WWAN收發機350。例如,在網路節點306是位置伺服器172的情況下,其可以經由網路介面380和網路介面390向基地台102發送精確度要求的第二集合,並且基地台102可以經由WWAN收發機310和WWAN收發機350向UE 104發送精確度要求的第二集合。
程序800可以包括額外的方面,諸如在下文和/或結合本文在別處描述的一個或多個其它程序描述的任何單個方面或各方面的任何組合。雖然圖8示出程序800的示例方塊,但是在一些方面中,程序800可以包括與圖8中描繪的那些方塊相比另外的方塊、更少的方塊、不同的方塊或者以不同方式佈置的方塊。另外地或替代地,程序800的方塊中的兩個或更多個方塊可以並行地執行。
如將理解的是,本文給出的方法和技術的技術優勢包括UE或其它設備接收精確度要求的能力,並且響應於接收這些精確度要求,UE可以做出關於要使用哪個天線子陣配置的決策,包括出於不同目的使用不同的子陣列,例如,使用一個子陣列進行定位並且使用另一子陣列進行資料通信。從網路的角度來看,本文給出的方法和技術提供一種機制,透過該機制,網路節點可以動態地調整UE的精確度要求,例如,響應於變化的環境條件、響應於UE的特定請求、響應於UE正與之進行通信的應用伺服器的特定請求、或出於其它原因。
在上面的詳細描述中可以看出的是,不同的特徵在示例中被分組在一起。這種公開方式不應被理解為示例條款具有比在每個條款中明確提及的更多特徵的意圖。相反,本公開內容的各個方面可以包括少於所公開的單獨示例條款的所有特徵。因此,以下條款據此應被視為併入到描述中,其中每個條款本身可以作為單獨的示例。儘管每個附屬條款在條款中都可以指與其它條款之一的特定組合,但是該附屬條款的各方面不限於特定組合。將理解的是,其它示例條款也可以包括附屬條款方面與任何其它附屬條款或獨立條款的標的的組合,或者任何特徵與其它附屬條款和獨立條款的組合。本文公開的各個方面明確地包括這些組合,除非明確地表示或可以容易地推斷出特定組合不是預期的(例如,矛盾的方面,諸如將元件定義為絕緣體和導體兩者)。此外,還預期在任何其它獨立條款中包括條款的各方面,即使該條款不直接取決於獨立條款。
在一方面中,一種使用要求的網路實體包括:用於決定多個天線子陣列配置的構件,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;用於從提供要求的網路實體接收一個或多個精確度要求的集合的構件,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;用於使用產生滿足所述一個或多個精確度要求的集合的波束的所述天線子陣列配置中的所述天線元件來執行定位操作的構件;以及用於向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合的構件。在一些方面中,用於向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合的構件還包括:用於向所述提供要求的網路實體指示能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合的構件。在一些方面中,所述使用要求的網路實體響應於向所述提供要求的網路實體發送針對精確度要求的請求來接收所述一個或多個精確度要求的集合。在一些方面中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、基地台、智慧型反射面(IRS)、中繼器節點或整合的存取和回傳(IAB)節點。在一些方面中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器或應用伺服器。在一些方面中,定位精確度要求包括以度為單位的精確度。在一些方面中,測量精確度要求包括以分貝為單位的精確度。
在一方面中,一種提供要求的網路實體包括:用於決定使用要求的網路實體的一個或多個精確度要求的集合的構件,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及用於向所述使用要求的網路實體發送所述一個或多個精確度要求的集合的構件。在一些方面中,所述提供要求的網路實體響應於從所述使用要求的網路實體接收針對精確度要求的請求來發送所述一個或多個精確度要求的集合。在一些方面中,所述方法包括:用於從所述使用要求的網路實體接收關於不能夠滿足所述一個或多個精確度要求的集合的通知的構件。在一些方面中,關於不能夠滿足所述一個或多個精確度要求的集合的所述通知指示不能夠滿足的定位精確度要求、不能夠滿足的測量精確度要求、能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。在一些方面中,該方法包括:用於基於所述不能夠滿足的定位精確度要求、所述不能夠滿足的測量精確度要求、所述能夠滿足的定位精確度要求、或所述能夠滿足的測量精確度要求、或其組合,來決定所述使用要求的網路實體的一個或多個精確度要求的第二集合的構件;以及用於向所述使用要求的網路實體發送所述一個或多個精確度要求的第二集合的構件。在一些方面中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器或應用伺服器。在一些方面中,所述使用要求的網路實體包括用戶設備、客戶駐地設備或基地台。
在一方面中,一種使用要求的網路實體包括:天線元件陣列;記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:用於決定多個天線子陣列配置的構件,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;用於經由所述至少一個收發機從提供要求的網路實體接收一個或多個精確度要求的集合的構件,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;用於使用產生滿足所述一個或多個精確度要求的集合的波束的所述天線子陣列配置中的所述天線元件來執行定位操作的構件;以及用於向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合的構件。在一些方面中,所述至少一個處理器被配置為向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合包括:所述至少一個處理器被配置為向所述提供要求的網路實體指示能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合的構件。在一些方面中,所述使用要求的網路實體響應於經由所述至少一個收發機向所述提供要求的網路實體發送針對精確度要求的請求來接收所述一個或多個精確度要求的集合。在一些方面中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、基地台、智慧型反射面(IRS)、中繼器節點或整合的存取和回傳(IAB)節點。在一些方面中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器或應用伺服器。在一些方面中,定位精確度要求包括以度為單位的精確度。在一些方面中,測量精確度要求包括以分貝為單位的精確度。
在一方面中,一種提供要求的網路實體包括:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:用於決定針對使用要求的網路實體的一個或多個精確度要求的集合的構件,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及用於經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的集合的構件。在一些方面中,所述至少一個處理器還被配置為:響應於從所述使用要求的網路實體接收針對精確度要求的請求來發送所述一個或多個精確度要求的集合。在一些方面中,所述至少一個處理器還被配置為:用於經由所述至少一個收發機從所述使用要求的網路實體接收關於不能夠滿足所述一個或多個精確度要求的集合的通知的構件。在一些方面中,關於不能夠滿足所述一個或多個精確度要求的集合的所述通知指示不能夠滿足的定位精確度要求、不能夠滿足的測量精確度要求、能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。在一些方面中,所述至少一個處理器還被配置為:用於基於所述不能夠滿足的定位精確度要求、所述不能夠滿足的測量精確度要求、所述能夠滿足的定位精確度要求、或所述能夠滿足的測量精確度要求、或其組合,來決定針對所述使用要求的網路實體的一個或多個精確度要求的第二集合的構件;以及用於經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的第二集合的構件。在一些方面中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器或應用伺服器。在一些方面中,所述使用要求的網路實體包括用戶設備、客戶駐地設備或基地台。
在一方面中,一種儲存計算機可執行指令的非暫時性計算機可讀媒體,所述計算機可執行指令在由使用要求的網路實體執行時,使得所述使用要求的網路實體進行以下操作:決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;使用產生滿足所述一個或多個精確度要求的集合的波束的所述天線子陣列配置中的所述天線元件來執行定位操作;以及向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合。
在一方面中,一種儲存計算機可執行指令的非暫時性計算機可讀媒體,所述計算機可執行指令在由提供要求的網路實體執行時,使得所述提供要求的網路實體進行以下操作:決定針對使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
在一方面中,一種儲存計算機可執行指令的非暫時性計算機可讀媒體,所述計算機可執行指令在由使用要求的網路實體執行時,使得所述使用要求的網路實體進行以下操作:天線元件陣列;記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;經由所述至少一個收發機從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;使用產生滿足所述一個或多個精確度要求的集合的波束的所述天線子陣列配置中的所述天線元件來執行定位操作;以及向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合。
在一方面中,一種儲存計算機可執行指令的非暫時性計算機可讀媒體,所述計算機可執行指令在由提供要求的網路實體執行時,使得所述提供要求的網路實體進行以下操作:記憶體;至少一個收發機;以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述至少一個處理器被配置為:決定使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
在以下編號條款中描述實現示例:
條款1、一種由具有天線元件陣列的使用要求的網路實體執行的無線通信的方法,所述方法包括:決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集;從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;響應於存在產生滿足所述精確度要求集合的波束的天線子陣列配置,使用所述天線子陣列配置中的所述天線元件來執行定位操作;以及響應於不存在產生滿足所述精確度要求集合的波束的天線子陣列配置,向所述提供要求的網路實體通知不能夠滿足所述精確度要求集合。
條款2、根據條款1所述的方法,其中,向所述提供要求的網路實體通知不能夠滿足所述精確度要求集合還包括:向所述提供要求的網路實體指示能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
條款3、根據條款1至2中任一項所述的方法,其中,所述使用要求的網路實體響應於向所述要求提供實體發送針對精確度要求的請求來接收所述一個或多個精確度要求的集合。
條款4、根據條款1至3中任一項所述的方法,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、基地台、智慧型反射面(IRS)、中繼器節點、或整合的存取和回傳(IAB)節點。
條款5、根據條款1至4中任一項所述的方法,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
條款6、根據條款1至5中任一項所述的方法,其中,定位精確度要求包括以度為單位的精確度。
條款7、根據條款1至6中任一項所述的方法,其中,測量精確度要求包括以分貝為單位的精確度。
條款8、一種由提供要求的網路實體執行的無線通信的方法,所述方法包括:決定使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
條款9、根據條款8所述的方法,其中,所述提供要求的網路實體響應於從所述使用要求的網路實體接收針對精確度要求的請求來發送所述精確度要求集合。
條款10、根據條款8至9中任一項所述的方法,還包括:從所述使用要求的網路實體接收關於不能夠滿足所述精確度要求集合的通知。
條款11、根據條款10所述的方法,其中,關於不能夠滿足所述精確度要求集合的所述通知指示不能夠滿足的定位精確度要求、不能夠滿足的測量精確度要求、能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
條款12、根據條款11所述的方法,還包括:基於所述不能夠滿足的定位精確度要求、所述不能夠滿足的測量精確度要求、所述能夠滿足的定位精確度測量、或所述能夠滿足的測量精確度要求、或其組合,來決定所述使用要求的網路實體的一個或多個精確度要求的第二集合;以及向所述使用要求的網路實體發送所述一個或多個精確度要求的第二集合。
條款13、根據條款8至12中任一項所述的方法,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
條款14、根據條款8至13中任一項所述的方法,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、或基地台。
條款15、一種裝置,包括記憶體、至少一個收發機以及通信地耦接到所述記憶體和所述至少一個收發機的至少一個處理器,所述記憶體、所述至少一個收發機和所述至少一個處理器被配置為執行根據條款1至14中任一項所述的方法。
條款16、一種裝置,包括用於執行根據條款1至14中任一項所述的方法的構件。
條款17、一種儲存計算機可執行指令的非暫時性計算機可讀媒體,所述計算機可執行包括用於使得計算機或處理器執行根據條款1至34中任一項所述的方法的至少一個指令。
本領域技術人員將明白的是,資訊和信號可以使用多種不同的技術和方法中的任何一種來表示。例如,可能貫穿以上描述所提及的資料、指令、命令、資訊、信號、位元、符號和晶片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任意組合來表示。
此外,本領域技術人員將明白的是,結合本文所公開的方面描述的各種說明性的邏輯方塊、模組、電路和演算法步驟可以實現為電子硬體、計算機軟體或兩者的組合。為了清楚地說明硬體和軟體的這種可互換性,上文已經圍繞各種說明性的組件、方塊、模組、電路和步驟的功能,對它們進行總體描述。至於這樣的功能是實現為硬體還是軟體,取決於特定的應用以及施加在整個系統上的設計限制。熟練的技術人員可以針對每個特定的應用,以變通的方式來實現所描述的功能,但是這樣的實現決策不應當被解釋為導致脫離本公開內容的範圍。
結合本文公開的各方面所描述的各種說明性的邏輯方塊、模組和電路可以利用被設計成執行本文所描述的功能的通用處理器、數位信號處理器(DSP)、ASIC、場域可程式化閘陣列(FPGA)或其它可程式化邏輯設備、離散閘或電晶體邏輯、離散硬體組件、或者其任意組合來實現或執行。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何常規處理器、控制器、微控制器或狀態機。處理器還可以實現為計算設備的組合(例如,DSP與微處理器的組合、多個微處理器、一個或多個微處理器結合DSP核心、或任何其它這樣的配置)。
結合本文公開的各方面描述的方法、序列和/或演算法可以直接地體現在硬體中、由處理器執行的軟體模組中、或者兩者的組合中。軟體模組可以位於隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可擦除可程式化ROM(EPROM)、電可擦除可程式化ROM(EEPROM)、暫存器、硬碟、可移式磁碟、CD-ROM或者本領域已知的任何其它形式的儲存媒體中。示例儲存媒體耦接到處理器,以使處理器可以從儲存媒體讀取資訊,以及向儲存媒體寫入資訊。在替代的方式中,儲存媒體可以是處理器的組成部分。處理器和儲存媒體可以位於ASIC中。ASIC可以位於用戶終端(例如,UE)中。在替代的方式中,處理器和儲存媒體可以是用戶設備中的離散組件。
在一個或多個示例方面中,所描述的功能可以用硬體、軟體、韌體或其任意組合來實現。如果用軟體來實現,則所述功能可以作為一個或多個指令或碼儲存在計算機可讀媒體上或者透過其進行傳輸。計算機可讀媒體可以包括計算機儲存媒體和通信媒體兩者,所述通信媒體包括促進計算機程式從一個地方傳送到另一個地方的任何媒體。儲存媒體可以是可由計算機存取的任何可用的媒體。透過舉例而非限制性的方式,這樣的計算機可讀媒體可以包括RAM、ROM、EEPROM、CD-ROM或其它光碟儲存、磁碟儲存或其它磁儲存設備、或者可以用於以指令或資料結構的形式攜帶或儲存期望的程式碼以及可以由計算機存取的任何其它媒體。此外,任何連接被適當地稱為計算機可讀媒體。例如,如果使用同軸電纜、光纖光纜、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外線、無線電和微波)從網站、伺服器或其它遠程來源發送軟體,則同軸電纜、光纖光纜、雙絞線、DSL或無線技術(諸如紅外線、無線電和微波)被包括在媒體的定義中。如在本文中使用的,磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地複製資料,而光盤利用雷射來光學地複製資料。上述的組合也應當包括在計算機可讀媒體的範圍內。
雖然前面的公開內容示出本公開內容的說明性方面,但是應當注意的是,在不脫離由所附申請專利範圍所限定的本公開內容的範圍的情況下,可以在本文中進行各種改變和修改。根據本文所描述的公開內容的各方面的方法請求項的步驟和/或動作不需要以任何特定次序執行。此外,儘管可能以單數形式描述或要求保護本公開內容的各元素,但是複數形式是可預期的,除非明確地聲明限於單數形式。
100:無線通信系統 102:基地台 102':小型小區(SC)基地台 104:用戶設備(UE) 110:地理覆蓋區域 110':地理覆蓋區域 112:太空載具(SV) 120:通信鏈路 122:回傳鏈路 124:SPS信號 134:回傳鏈路 150:無線區域網路(WLAN)存取點(AP) 152:WLAN站(STA) 154:通信鏈路 164:UE 170:核心網路 172:位置伺服器 180:毫米波(mmW)基地台 182:UE 184:mmW通信鏈路 190:UE 192:D2D P2P鏈路 194:D2D P2P鏈路 196:應用伺服器 200:無線網路結構 204:UE 210:5G核心(5GC) 212:用戶平面功能單元 213:用戶平面介面(NG-U) 214:控制平面功能單元 215:控制平面介面(NG-C) 220:下一代RAN(NG-RAN) 222:gNB 223:回傳連接 224:ng-eNB 230:位置伺服器 250:無線網路結構 260:5GC 262:用戶平面功能單元(UPF) 263:用戶平面介面 264:存取和行動性管理功能單元(AMF) 265:控制平面介面 266:對話管理功能單元(SMF) 270:LMF 272:SLP 302:UE 304:基地台 306:網路實體 310:無線廣域網路(WWAN)收發機 312:接收機 314:發射機 316:天線或天線元件陣列 318:信號 320:短距離無線收發機 322:接收機 324:發射機 326:天線 328:信號 330:衛星定位系統(SPS)接收機 332:處理器 334:資料匯流排 336:天線 338:SPS信號 340:記憶體組件 342:天線子陣列配置模組 344:感測器 346:用戶介面 350:無線廣域網路(WWAN)收發機 352:接收機 354:發射機 356:天線或天線元件陣列 358:信號 360:短距離無線收發機 362:接收機 364:發射機 366:天線 368:信號 370:衛星定位系統(SPS)接收機 376:天線 378:SPS信號 380:網路介面 382:資料匯流排 384:處理器 386:記憶體組件 388:天線子陣列配置模組 390:網路介面 392:資料匯流排 394:處理器 396:記憶體組件 398:天線子陣列配置模組 600:程序 610:步驟 620:步驟 630:步驟 640:步驟 700:程序 710:步驟 720:步驟 800:程序 810:步驟 820:步驟 830:步驟
給出圖式以輔助描述本公開內容的各個方面,並且提供圖式僅用於說明各方面而不是對其進行限制。
圖1示出根據本公開內容的各方面的示例無線通信系統。
圖2A和圖2B示出根據本公開內容的各方面的示例無線網路結構。
圖3A至圖3C是組件的若干示例方面的簡化方塊圖,這些組件可以分別在用戶設備(UE)、基地台和網路實體中採用並且被配置為支援如本文所教導的通信。
圖4A和圖4B示出透過使用來自4x4陣列的不同天線子集產生的波束模式的示例。
圖5示出根據本公開內容的一些方面的用於不同目的的不同子陣列的使用。
圖6是根據本公開內容的一些方面的與用於定位的精確度要求和優選子陣列指示相關聯的示例程序的流程圖。
圖7是根據本公開內容的一些方面的與用於定位的精確度要求和優選子陣列指示相關聯的示例程序的流程圖。
圖8是根據本公開內容的一些方面的與用於定位的精確度要求和優選子陣列指示相關聯的示例程序的流程圖。
600:程序
610:步驟
620:步驟
630:步驟
640:步驟

Claims (28)

  1. 一種由具有天線元件陣列的使用要求的網路實體執行的無線通信的方法,所述方法包括: 決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的天線元件的不同子集; 從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求; 響應於存在產生滿足所述一個或多個精確度要求的集合的波束的天線子陣列配置,使用所述天線子陣列配置中的所述天線元件來執行定位操作;以及 響應於不存在產生滿足所述一個或多個精確度要求的集合的波束的天線子陣列配置,向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合。
  2. 根據請求項1所述的方法,其中,向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合還包括:向所述提供要求的網路實體指示能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
  3. 根據請求項1所述的方法,其中,所述使用要求的網路實體響應於向所述提供要求的網路實體發送針對精確度要求的請求來接收所述一個或多個精確度要求的集合。
  4. 根據請求項1所述的方法,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、基地台、智慧型反射面(IRS)、中繼器節點、或整合的存取和回傳(IAB)節點。
  5. 根據請求項1所述的方法,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
  6. 根據請求項1所述的方法,其中,定位精確度要求包括以度為單位的精確度。
  7. 根據請求項1所述的方法,其中,測量精確度要求包括以分貝為單位的精確度。
  8. 一種由提供要求的網路實體執行的無線通信的方法,所述方法包括: 決定針對使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及 向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
  9. 根據請求項8所述的方法,其中,所述提供要求的網路實體響應於從所述使用要求的網路實體接收針對精確度要求的請求來發送所述一個或多個精確度要求的集合。
  10. 根據請求項8所述的方法,還包括: 從所述使用要求的網路實體接收關於不能夠滿足所述一個或多個精確度要求的集合的通知。
  11. 根據請求項10所述的方法,其中,關於不能夠滿足所述一個或多個精確度要求的集合的所述通知指示不能夠滿足的定位精確度要求、不能夠滿足的測量精確度要求、能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
  12. 根據請求項11所述的方法,還包括: 基於所述不能夠滿足的定位精確度要求、所述不能夠滿足的測量精確度要求、所述能夠滿足的定位精確度要求、或所述能夠滿足的測量精確度要求、或其組合,來決定針對所述使用要求的網路實體的一個或多個精確度要求的第二集合;以及 向所述使用要求的網路實體發送一個或多個精確度要求的所述第二集合。
  13. 根據請求項8所述的方法,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
  14. 根據請求項8所述的方法,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、或基地台。
  15. 一種使用要求的網路實體,包括: 天線元件陣列; 記憶體; 至少一個收發機;以及 至少一個處理器,其通信地耦接到所述記憶體和所述至少一個收發機,所述至少一個處理器被配置為進行以下操作: 決定多個天線子陣列配置,每個天線子陣列配置包括所述天線元件陣列中的所述天線元件的不同子集; 經由所述至少一個收發機從提供要求的網路實體接收一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求; 響應於存在產生滿足所述一個或多個精確度要求的集合的波束的天線子陣列配置,使用產生滿足所述一個或多個精確度要求的集合的波束的所述天線子陣列配置中的所述天線元件來執行定位操作;以及 響應於不存在產生滿足所述一個或多個精確度要求的集合的波束的天線子陣列配置,向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合。
  16. 根據請求項15所述的使用要求的網路實體,其中,所述至少一個處理器被配置為向所述提供要求的網路實體通知不能夠滿足所述一個或多個精確度要求的集合包括:所述至少一個處理器被配置為向所述提供要求的網路實體指示能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
  17. 根據請求項15所述的使用要求的網路實體,其中,所述使用要求的網路實體響應於經由所述至少一個收發機向所述提供要求的網路實體發送針對精確度要求的請求來接收所述一個或多個精確度要求的集合。
  18. 根據請求項15所述的使用要求的網路實體,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、基地台、智慧型反射面(IRS)、中繼器節點、或整合的存取和回傳(IAB)節點。
  19. 根據請求項15所述的使用要求的網路實體,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
  20. 根據請求項15所述的使用要求的網路實體,其中,定位精確度要求包括以度為單位的精確度。
  21. 根據請求項15所述的使用要求的網路實體,其中,測量精確度要求包括以分貝為單位的精確度。
  22. 一種提供要求的網路實體,包括: 記憶體; 至少一個收發機;以及 至少一個處理器,其通信地耦接到所述記憶體和所述至少一個收發機,所述至少一個處理器被配置為進行以下操作: 決定針對使用要求的網路實體的一個或多個精確度要求的集合,每個精確度要求包括針對方位角、仰角或兩者的定位精確度要求或測量精確度要求;以及 經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的集合。
  23. 根據請求項22所述的提供要求的網路實體,其中,所述至少一個處理器還被配置為:響應於從所述使用要求的網路實體接收針對精確度要求的請求來發送所述一個或多個精確度要求的集合。
  24. 根據請求項22所述的提供要求的網路實體,其中,所述至少一個處理器還被配置為: 經由所述至少一個收發機從所述使用要求的網路實體接收關於不能夠滿足所述一個或多個精確度要求的集合的通知。
  25. 根據請求項24所述的提供要求的網路實體,其中,關於不能夠滿足所述一個或多個精確度要求的集合的所述通知指示不能夠滿足的定位精確度要求、不能夠滿足的測量精確度要求、能夠滿足的定位精確度要求、或能夠滿足的測量精確度要求、或其組合。
  26. 根據請求項25所述的提供要求的網路實體,其中,所述至少一個處理器還被配置為進行以下操作: 基於所述不能夠滿足的定位精確度要求、所述不能夠滿足的測量精確度要求、所述能夠滿足的定位精確度要求、或所述能夠滿足的測量精確度要求、或其組合,來決定針對所述使用要求的網路實體的一個或多個精確度要求的第二集合;以及 經由所述至少一個收發機向所述使用要求的網路實體發送所述一個或多個精確度要求的第二集合。
  27. 根據請求項22所述的提供要求的網路實體,其中,所述提供要求的網路實體包括用戶設備、客戶駐地設備、基地台、位置伺服器、或應用伺服器。
  28. 根據請求項22所述的提供要求的網路實體,其中,所述使用要求的網路實體包括用戶設備、客戶駐地設備、或基地台。
TW111107803A 2021-04-22 2022-03-03 用於定位的動態精確度要求和優選子陣列指示 TW202243427A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/237,942 US11621761B2 (en) 2021-04-22 2021-04-22 Dynamic accuracy requirements and preferred subarray indication for positioning
US17/237,942 2021-04-22

Publications (1)

Publication Number Publication Date
TW202243427A true TW202243427A (zh) 2022-11-01

Family

ID=80953287

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107803A TW202243427A (zh) 2021-04-22 2022-03-03 用於定位的動態精確度要求和優選子陣列指示

Country Status (7)

Country Link
US (1) US11621761B2 (zh)
EP (1) EP4327471A1 (zh)
KR (1) KR20230172481A (zh)
CN (1) CN117157908A (zh)
BR (1) BR112023021025A2 (zh)
TW (1) TW202243427A (zh)
WO (1) WO2022226442A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098590B2 (en) * 2008-06-13 2012-01-17 Qualcomm Incorporated Apparatus and method for generating performance measurements in wireless networks
US10411775B2 (en) 2011-07-15 2019-09-10 Samsung Electronics Co., Ltd. Apparatus and method for beam locking in a wireless communication system
US20180160377A1 (en) * 2016-12-07 2018-06-07 Qualcomm Incorporated Techniques for mitigating radio frequency exposure of objects proximate to a wireless device
US11418973B2 (en) 2019-08-28 2022-08-16 Qualcomm Incorporated Hierarchical beam search
US11239877B1 (en) * 2020-11-24 2022-02-01 At&T Intellectual Property I, L.P. Local oscillator synchronization for coherent phased-array system

Also Published As

Publication number Publication date
BR112023021025A2 (pt) 2023-12-12
EP4327471A1 (en) 2024-02-28
KR20230172481A (ko) 2023-12-22
WO2022226442A1 (en) 2022-10-27
US11621761B2 (en) 2023-04-04
CN117157908A (zh) 2023-12-01
US20220345192A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP2022519545A (ja) ポジショニングのためのサウンディング基準信号(srs)リソースおよびリソースセットコンフィギュレーション
JP2022550079A (ja) プレミアムユーザ機器支援による低ティアユーザ機器測位
JP7483860B2 (ja) マルチビームユーザ機器ベースの測位シナリオにおける測位参照信号(prs)リソースについてのロケーション支援情報の階層型報告
JP2023541783A (ja) サイドリンクラウンドトリップ時間測定
JP2022543407A (ja) 受信または送信ビームロック情報の報告
KR20230134493A (ko) 바이스태틱 감지-추적 기준 신호
TW202341765A (zh) 動態感測配置
TW202305399A (zh) 使用短程雷達的人體接近感測器
TW202306414A (zh) 基於精度衰減因數(dop)的可配置智慧表面(ris)的選擇
KR20240065242A (ko) 밀리미터파 (mmw) 통신들을 위한 다중-센서 보조 최대 전력 노출 (mpe) 동작들
KR20240022493A (ko) 사이드링크 포지셔닝 자원 구성의 사용자 장비 개시 선택
EP4314892A1 (en) Positioning of a used equipment by round trip time with a reconfigurable intelligent surface (ris)
WO2022203754A1 (en) Reconfigurable intelligent surface (ris) aided round-trip- time (rtt)-based user equipment (ue) positioning
US11621761B2 (en) Dynamic accuracy requirements and preferred subarray indication for positioning
US11711772B2 (en) Power control scheme for active bandwidth part transition
US11895668B2 (en) Uplink power change capability indication
US20240039584A1 (en) Method and apparatus for multiple-input multiple-output (mimo) radar sensing with reconfigurable intelligent surface (ris)
US20240073850A1 (en) Reference signal received power measurement based on peak of earliest path
TW202349995A (zh) 蜂巢式系統中的機會rf感測
TW202308433A (zh) 重疊定位方法請求的優先化和執行
KR20240022495A (ko) 포지셔닝을 위한 보조 데이터의 요청을 통한 사이드링크 사용자 장비 보고, 및 그 용도들
KR20230134478A (ko) 모바일 디바이스 위치를 위한 빔 형상 보조 데이터에대한 시그널링의 최적화
KR20240064640A (ko) 업링크 전력-제한 사용자 장비를 위한 포지셔닝 방법
WO2023278910A1 (en) Reconfigurable intelligent surface (ris)-assisted positioning reference signal (prs) transmission and assistance data
WO2024054708A1 (en) Reconfigurable intelligent surface (ris)-assisted sensing