TW202241838A - 有機半導體裝置 - Google Patents

有機半導體裝置 Download PDF

Info

Publication number
TW202241838A
TW202241838A TW110115650A TW110115650A TW202241838A TW 202241838 A TW202241838 A TW 202241838A TW 110115650 A TW110115650 A TW 110115650A TW 110115650 A TW110115650 A TW 110115650A TW 202241838 A TW202241838 A TW 202241838A
Authority
TW
Taiwan
Prior art keywords
moieties
semiconductor device
organic semiconductor
organic
electron
Prior art date
Application number
TW110115650A
Other languages
English (en)
Inventor
張怡鳴
蔡坤偉
吳昭霖
李威龍
蕭育堂
廖椿毅
Original Assignee
天光材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天光材料科技股份有限公司 filed Critical 天光材料科技股份有限公司
Priority to TW110115650A priority Critical patent/TW202241838A/zh
Priority to US17/482,868 priority patent/US20220376181A1/en
Publication of TW202241838A publication Critical patent/TW202241838A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本發明係關於一種有機半導體裝置,其係包含一第一電極、一電子傳輸層、一主動層、一電洞傳輸層以及一第二電極,其中該主動層係包含一電子供體、一或多個電子受體,且該電子供體之HOMO能階與該電洞傳輸層所使用之PEDOT:PSS或其衍生物之能階間之階屏障高度小於0.4 eV。本發明進一步關於應用於本有機半導體裝置之用途,以及該主動層使用之材料形成之一配方。

Description

有機半導體裝置
本發明關於一種有機半導體裝置,特別係一種包含電極、電子傳輸層、主動層和一電洞傳輸層,並含有特定之化合物混合條件之有機半導體裝置,和該等有機半導體裝置之用途。
自第一個有機光電二極管器件被證明以來,已經過去了三十多年。近年來,電子產品已經十分普及,許多裝置因為改採電子式而得以小型化和輕量化,為了降低成本,實現相關產品之多樣化,已開發出有機半導體(OSC)材料。該等材料因材料特性而有廣泛且多樣化之應用方式,普遍用於各類型之裝置或設備中,常見者包含有機場效電晶體(OFET)、有機發光二極體(OLED)、有機光伏打(OPV)電池、感測器、記憶體元件和邏輯電路等,其中目前有機光伏打電池(OPV)器件的最佳功率轉換效率(PCEs)已經達到17%以上。這一突破顯示本研究領域係具有光明前景。與傳統光電二極管之單調設計相比,OPV和有機光感測器(OPD)係具有優異之能量採集和光學傳感性質,亦提供了寬廣之設計自由度。
為了實現高效能、穩定且具有高性能/價格比的OPV或OPD產品,現有策略係以使用新型材料和優化架構為主。在新型材料方面,目前已發現可將共軛聚合物應用於OPV中。使用共軛聚合物之優點,在於其可溶於溶劑中,並以旋轉澆注、浸塗或噴墨印刷等溶液加工技術進行加工及生產裝置,從而實現大量高速生產之效果,相較於先前技術使用無機材料以蒸鍍技術製造無機薄膜裝置,共軛聚合物更為優異。而非富勒烯(non-fullerene)材料體系亦為OPV和OPD技術的下一個重要進展,該類材料可藉由調整能階來擴展吸收光譜而提高短路電流密度(short-circuit current density)和光譜響應性(spectra responsivity),或是提高內置電壓以增強開路電壓(V OC)。
在優化架構方面,於設計裝置時,引進了倒置架構之作法,其相較於傳統之有機半導體結構,係藉由置換兩側電極的位置,使作為電極之氧化銦錫(ITO)不與內層之聚苯乙烯磺酸酯(PEDOT:PSS)直接接觸,避免氧化銦錫受酸性之聚苯乙烯磺酸酯腐蝕,以提高器件的穩定性;此外,還將不穩定的材料也替換掉。另外,為了最大限度地降低成本,生產時應盡可能於室溫下以溶液加工技術進行生產,因此可分散於水中之聚(3,4-亞乙基二氧噻吩):聚苯乙烯磺酸酯(PEDOT:PSS)成為OPV和OPD使用溶液加工技術生產時之一代表性材料,該材料目前已被全世界廣泛採用。由於PEDOT:PSS穩定地分散在水中,可直接設置在散裝異質結(BHJ)層之上而不影響底層薄膜,因此PEDOT:PSS已被廣泛應用於倒置OPV和OPD中,並與市售之光活性層之混合物兼容。
然而,大多數基於非富勒烯之高效OPV和OPD裝置係應用於傳統架構中,或於倒置結構中使用三氧化鉬(MoO 3)以熱蒸鍍技術形成電洞傳輸層。從發展策略的角度來看,新發現之寬能隙聚合物供體和小能隙非富勒烯受體(NFAs)之組合能帶來較高之功率轉換效率(Power Conversion Efficiency, PCE),而目前已知用於搭配NF受體的最佳聚合物供體需要一極低的最高佔用分子軌道(HOMO)能階,其負值大於-5.4 eV,以最大限度地提高裝置之內置電壓。因此主動層之低HOMO能階在該電子供體之HOMO和PEDOT:PSS之功函數(Work Function, WF)間形成了巨大的能量障壁(文獻中大多記載WF約為-5.0 eV),導致倒置型裝置之電性表現較差。
若對材料能階之搭配和各層間之介面性質進行調整,可進一步提升OPV裝置之功率轉換效率。因此目前多針對倒置式裝置架構中本體異質接面(bulk heterojunction)之材料搭配進行研究。然而現今普遍使用之電洞傳輸層材料和電子供體聚合物之間係具有高能量障壁,嚴重影響此類裝置之電性表現,顯示本領域慣用之PEDOT:PSS若搭配具有較深之HOMO能階之電子供體時,無法發揮其性質。
因此,開發出一種可與PEDOT:PSS若搭配以發揮材料性能、且可溶液加工之電洞傳輸層材料係有其需求,以加快OPV/OPD技術的產業化進程。最值得關注的是,電洞傳輸層的功函數和供體材料的HOMO水平必須相互搭配。
本發明之主要目的,係提供一種有機半導體裝置,可改善有機半導體裝置中電子供體之HOMO和PEDOT:PSS之功函數間之能量障壁問題,以提升其電性表現,以及提升半導體裝置之壽命。
本發明之另一目的,係提供一種用於如本發明之有機半導體裝置之材料配方,其係提供該有機半導體裝置所欲之電性表現,並可溶解於有機溶劑中以濕式加工技術進行生產。
為達到上述之主要目的,本發明揭示了一種有機半導體裝置,包含 一基板 一第一電極; 一電子傳輸層,其係設置於該第一電極上; 一主動層,其係設置於該電子傳輸層上; 一電洞傳輸層,其係設置於該主動層上,且其成分係選自PEDOT:PSS或其衍生物;及 一第二電極,其係設置於該電洞傳輸層上; 其中,該主動層包含一電子供體、一或多個電子受體,以及 該電子供體之HOMO能階與該電洞傳輸層之能階間之能階屏障高度小於0.4 eV。
於本發明所提供之一實施例中,所述之有機半導體裝置中該電子供體係由至少二種單體組成之一共軛聚合物,且該單體係包含一第一單體和一第二單體。
於本發明所提供之一實施例中,所述之有機半導體裝置中該電子供體之第一單體係選自以下部分體組成之群組:苯並二噻吩(benzodithiophene)部分體、咔唑(carbazole)部分體、矽雜環戊二噻吩部分體、噻吩部分體、環戊二噻吩部分體、硒吩部分體、二噻吩並吡咯部分體、環戊二噻唑和二苯並矽唑部分體。
於本發明所提供之一實施例中,所述之有機半導體裝置中該電子供體之第二單體係選自以下部分體組成之群組:苯並噻二唑部分體、噻二唑喹喔啉部分體、苯並異噻唑部分體、苯並噻唑部分體、噻吩並噻吩部分體、四氫異吲哚部分體、噻唑並噻唑部分體、噻吩並吡嗪部分體、苯並噁唑部分體、喹喔啉部分體、噻二唑吡啶部分體、苯並噁二唑部分體、苯並硒二唑部分體、噻吩並噻二唑部分體和噻吩並吡酮部分體、苯并二噻吩二酮部分體、吡嗪部分體。
於本發明所提供之一實施例中,所述之有機半導體裝置中該電子供體係選自下列式D1-D25組成之群組。
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image049
於本發明所提供之一實施例中,所述之有機半導體裝置中該電子受體包含一第一電子受體和一第二電子受體。
於本發明所提供之一實施例中,所述之有機半導體裝置中該第一電子受體係選自下列式A1-A25組成之群組:
Figure 02_image051
Figure 02_image053
Figure 02_image055
Figure 02_image057
Figure 02_image059
Figure 02_image061
Figure 02_image063
Figure 02_image065
Figure 02_image067
Figure 02_image069
Figure 02_image071
Figure 02_image073
Figure 02_image075
Figure 02_image077
Figure 02_image079
Figure 02_image081
Figure 02_image083
Figure 02_image085
Figure 02_image087
Figure 02_image089
Figure 02_image091
Figure 02_image093
Figure 02_image095
Figure 02_image097
Figure 02_image099
於本發明所提供之一實施例中,所述之有機半導體裝置中該第二電子受體係選自下列式A26-A40組成之群組:
Figure 02_image101
Figure 02_image103
Figure 02_image105
Figure 02_image107
Figure 02_image109
Figure 02_image111
Figure 02_image113
Figure 02_image115
Figure 02_image117
Figure 02_image119
Figure 02_image121
Figure 02_image123
Figure 02_image125
Figure 02_image127
Figure 02_image129
於本發明所提供之一實施例中,所述之有機半導體裝置中該第二電子受體之重量比小於該第一電子受體。
於本發明所提供之一實施例中,所述之有機半導體裝置之該電洞傳輸層係使用溼式製程製備。
於本發明所提供之一實施例中,所述之有機半導體裝置之該電子供體之能隙大於1.50 eV,且該第一電子受體之能隙小於1.49 eV。
於本發明所提供之一實施例中,所述之有機半導體裝置係選自有機場效應晶體管(OFET)、積體電路(IC)、薄膜晶體管(TFT)、射頻識別(RFID)標籤、有機發光二極管(OLED)、有機發光晶體管(OLET)、電致發光顯示器、有機光伏(OPV)電池、有機太陽能電池(OSC)。柔性OPV和OSC、有機激光二極管(O-laser)、有機積體電路(OIC)、光裝置、傳感器裝置、電極材料、光電導體、光感測器、電光記錄裝置、電容器、電荷注入層、肖特基二極管、平面化層、抗靜電薄膜、導電基板、導電圖案、有機記憶裝置、生物傳感器或生物晶片。
為了達到上述之另一目的,本發明揭示了一種配方,包含前述之該有機半導體裝置中包含之該電子供體和該電子受體,且包含一或多種選自芳香族溶劑之溶劑。
於本發明所提供之一實施例中,該配方所包含之芳香族溶劑選自甲苯、鄰二甲苯、對二甲苯、間二甲苯、三甲苯、氯苯、二氯苯、三氯苯或四氫萘、苯甲醚、甲氧基甲苯及其衍生物、萘、1-甲基萘及其衍生物。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,在下文中,將藉由圖式來說明本發明之各種實施例來詳細描述本發明。然而本發明之概念可能以許多不同型式來體現,且不應解釋為限於本文中所闡述之例示性實施例。
本文所用的術語「聚合物」是指相對分子質量高的分子,其結構係實質上包含實際上或概念上衍生自相對分子質量低的分子之多個重複單元( Pure Appl. Chem., 1996, 68, 2291)。術語「低聚物」是指相對分子質量中等之分子,其結構主要包含實際上或概念上衍生自較低相對分子質量的分子之少量多個單元( Pure Appl. Chem., 1996, 68, 2291)。在本發明所採用之較佳含義中,聚合物係指具有 > 1,即至少2個重複單元,較佳 ≥5,非常佳者 ≥10之重複單元化合物,並且低聚物係指具有>1且<10,較佳<5重複單元之化合物。
此外,本文所用的術語「聚合物」是指包含一種或多種不同類型重複單元(分子的最小構成單元)之主鏈分子。並且包括通常已知的術語「低聚物」、「共聚物」、「均聚物」、「無規聚合物」等。此外,術語「聚合物」另包含引發劑、催化劑和與該聚合物之合成有關之其他元素的殘基,且此類殘基未與之共價結合。此外,雖然通常在後聚合純化過程中除去這些殘餘物和其他元素,但通常將它們與聚合物混合或共混,使其在容器之間或在溶劑或分散介質之間轉移時,通常與聚合物一起保留。
本文所用的術語「重複單元」和「單體單元」可互換使用,並且表示結構重複單元(CRU),它是最小的結構單元,重複構成規則的大分子、規則的低聚物分子,規則的嵌段或規則的鏈( Pure Appl. Chem., 1996, 68, 2291)。本文進一步使用的術語「單元」是指結構單元,其可以是自身之重複單元,或與其他單元一起形成結構之重複單元。
如本文所用,術語「供體」或「供給」和「受體」或「接受」將分別解釋為電子供體或電子受體。「電子供體」應解釋為將電子給另一種化合物或該化合物之另一組原子提供電子的化學實體。「電子受體」應解釋為一種化學實體,其接受從另一種化合物或該化合物的另一組原子轉移給它的電子。另請參見 International Union of Pure and Applied Chemistry, Compendium of Chemical Technology, Gold Book, Ver. 2.3.2, 2012/8/19, 477-480。
如本文所用,術語「n型」或「n型半導體」係解釋為導電電子密度高於可移動電洞密度之非本徵半導體,而術語「p型」或「p型半導體」係解釋為一種非本徵半導體,其中可移動之電洞密度高於傳導電子密度(另見J. Thewlis, Concise Dictionary of Physics, Pergamon Press, Oxford,1973)。
本文所述之術語「共軛」係指主要包含具有sp 2混成(或選擇性地包含具有sp混成)之C原子化合物(例如聚合物),其中該些C原子也可以雜原子取代;共軛之簡單舉例包含例如具有交替之C-C單鍵和雙鍵(或三鍵)之化合物,或具有芳族單元的化合物,例如1,4-亞苯基。於此,術語「主要」應解釋為具有天然(自發)出現之缺陷或具有設計中包括之缺陷(其可能導致共軛中斷)之化合物仍應被視為共軛化合物。
現今使用之有機半導體裝置,係如前所述,具有主動層之低HOMO能階在該電子供體之HOMO和PEDOT:PSS之功函數間形成巨大能量障壁,導致倒置型裝置之電性表現較差之問題,因此本發明人經研究後,結果得知如下情況:只要該有機半導體裝置中該電子供體之HOMO能階與該電洞傳輸層之能階間之能階屏障高度小於0.4 eV,即可得到優異之電性表現,遂提出一種具有良好電性表現之有機半導體裝置結構,其係具有特定之半導體材料搭配。
首先,請參閱第1圖,其為本發明之一實施例之結構示意圖。
如圖所示,本發明之該有機半導體裝置結構10係包含一基板100、一第一電極110、一電子傳輸層120、一主動層130、一電洞傳輸層140以及一第二電極150。其中,該第一電極110係設置於該基板100之上,該電子傳輸層120係設置於該第一電極110之上,該主動層130係設置於該電子傳輸層120上,該電洞傳輸層140係設置於該主動層130上,且該第二電極150係設置於該電洞傳輸層140上。
該有機半導體裝置10之該主動層130作為主要之光致電反應層,其係包含一電子供體以及一或多個電子受體。其中,該電子供體使用之材料係一共軛聚合物,較佳地,該電子供體使用之材料係由至少二種單體組成之一共軛聚合物,其中該單體包含一第一單體和一第二單體。
該共軛聚合物之第一單體係選自以下部分體組成之群組:苯並二噻吩(benzodithiophene)部分體、咔唑(carbazole)部分體、矽雜環戊二噻吩部分體、噻吩部分體、環戊二噻吩部分體、硒吩部分體、二噻吩並吡咯部分體、環戊二噻唑和二苯並矽唑部分體。
該共軛聚合物之第二單體係選自以下部分體組成之群組:苯並噻二唑部分體、噻二唑喹喔啉部分體、苯並異噻唑部分體、苯並噻唑部分體、噻吩並噻吩部分體、四氫異吲哚部分體、噻唑並噻唑部分體、噻吩並吡嗪部分體、苯並噁唑部分體、喹喔啉部分體、噻二唑吡啶部分體、苯並噁二唑部分體、苯並硒二唑部分體、噻吩並噻二唑部分體和噻吩並吡酮部分體、苯并二噻吩二酮部分體、吡嗪部分體。
較佳地,該共軛聚合物係經由上述之單體聚合後形成如下列式D1-D25組成之群組。
Figure 02_image131
Figure 02_image003
Figure 02_image005
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image156
此外,該主動層130中係包含一或多個電子受體。於本發明之一實施態樣中,該主動層130係包含一第一電子受體,且該第一電子受體係選自下列式A1-A25組成之群組:
Figure 02_image051
Figure 02_image053
Figure 02_image055
Figure 02_image057
Figure 02_image059
Figure 02_image061
Figure 02_image063
Figure 02_image065
Figure 02_image067
Figure 02_image069
Figure 02_image071
Figure 02_image073
Figure 02_image075
Figure 02_image077
Figure 02_image079
Figure 02_image081
Figure 02_image083
Figure 02_image175
Figure 02_image087
Figure 02_image089
Figure 02_image091
Figure 02_image093
Figure 02_image095
Figure 02_image097
Figure 02_image099
於本發明之另一實施態樣中,該主動層130除了包含該第一電子受體,進一步包含一第二電子受體,且該第二電子受體係選自下列式A26-A40組成之群組:
Figure 02_image101
Figure 02_image103
Figure 02_image186
Figure 02_image188
Figure 02_image190
Figure 02_image192
Figure 02_image194
Figure 02_image196
Figure 02_image198
Figure 02_image200
Figure 02_image202
Figure 02_image204
Figure 02_image206
Figure 02_image208
Figure 02_image210
較佳地,於本發明之有機半導體裝置10之該主動層130中,該第二電子受體之重量比係小於該第一受體。
較佳地,於本發明之有機半導體裝置10之該主動層130中使用之該電子供體之能隙大於1.50 eV,且該第一電子受體之能隙小於1.49 eV。
作為與該主動層130中之該電子供體搭配之該電洞傳輸層140,且其成分係選自PEDOT:PSS或其衍生物,因與習知之三氧化鉬(MoO 3) 相比,PEDOT:PSS具有更高之真空能階 (約為-5.00 eV,MoO 3則為-5.50 eV),應用於有機半導體裝置中後可將功率轉換效率之損失降至最低。
具體而言,本發明之有機半導體裝置10之該電洞傳輸層140可藉由任意之合適方式形成,而使用溼式製程較其他方式更合乎需要。該電洞傳輸層140可使用多種溼式製程,例如 (但不限於) 旋轉澆注、浸塗或噴墨印刷、噴嘴印刷、凸版印刷、絲網印刷、凹版印刷、刮刀塗布、輥印刷、反向輥印刷、平版微影印刷、捲筒紙印刷、噴塗、簾式塗布、刷塗、狹縫式染料塗布或移印等溶液加工技術等溼式製程製備,較佳係使用旋轉塗布法進行加工。
本發明之有機半導體裝置中,基於裝置之耐用性和高透光性需求,該基板係選自機械强度及熱强度較高且材質透明之玻璃基板或透明性軟性基板;其中較佳地,該透明性軟性材質係選自以下化合物群組之一或多者:聚乙烯、乙烯-乙酸乙烯酯共聚物、乙烯-乙烯醇共聚物、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、聚乙烯醇、聚乙烯基丁醛、尼龍、聚醚醚酮、聚碸、聚醚碸、四氟乙烯-全氟烷基乙烯基醚共聚物、聚氟乙烯、四氟乙烯-乙烯共聚物、四氟乙烯-六氟丙烯共聚物、聚氯三氟乙烯、聚偏二氟乙烯、聚酯、聚碳酸酯、聚氨基甲酸酯和聚醯亞胺。
本發明之有機半導體裝置之其中一種實施態樣中,請參閱第1a圖,所述第一電極110之材料需具有相對於電洞傳輸層材料之相對安定性,並以具有良好之透光性為佳,常選用透明導電材料,較佳為選自由以下導電材料群組之一者:銦氧化物、錫氧化物、摻雜鹵素之錫氧化物衍生物 (Florine Doped Tin Oxide,FTO)、或複合金屬氧化物,如銦錫氧化物(Indium Tin Oxide,ITO)和銦鋅氧化物(Indium Zinc Oxide,IZO)。而所述第二電極150之材料係選用導電金屬,較佳為選用銀或鋁,更佳為銀。
在本發明之有機半導體裝置之另一種實施態樣中,請參閱第1b圖,該有機半導體裝置10結構之第一電極110係設置於該電子傳輸層140之上;而該第二電極150係設置於該機板100之上,且該電洞傳輸層120係設置於該第二電極150上。
本發明之有機半導體裝置,其可應用之範圍十分廣泛,較佳可應用於有機場效應晶體管(OFET)、積體電路(IC)、薄膜晶體管(TFT)、射頻識別(RFID)標籤、有機發光二極管(OLED)、有機發光晶體管(OLET)、電致發光顯示器、有機光伏(OPV)電池、有機太陽能電池(OSC)。柔性OPV和OSC、有機激光二極管(O-laser)、有機積體電路(OIC)、光裝置、傳感器裝置、電極材料、光電導體、光感測器、電光記錄裝置、電容器、電荷注入層、肖特基二極管、平面化層、抗靜電薄膜、導電基板、導電圖案、有機記憶裝置、生物傳感器或生物晶片。
使用於本發明之有機半導體裝置10之該主動層130之材料,於製備時係以溶液加工方式製備,因此可先將前述之該電子供體和該電子受體依所需之比例,溶解於溶劑中形成一配方再進行加工。該配方所使用之溶劑,係包含一或多種選自芳香族溶劑之溶劑,較佳選自甲苯、鄰二甲苯、對二甲苯、間二甲苯、三甲苯、氯苯、二氯苯、三氯苯、四氫萘或其混合物、苯甲醚、甲氧基甲苯及其衍生物、萘、1-甲基萘及其衍生物。
本發明之有機半導體裝置,因其優異之電性表現,可廣泛應用做為多種其係選自有機場效應晶體管(OFET)、積體電路(IC)、薄膜晶體管(TFT)、射頻識別(RFID)標籤、有機發光二極管(OLED)、有機發光晶體管(OLET)、電致發光顯示器、有機光伏(OPV)電池、有機太陽能電池(OSC)。柔性OPV和柔性OSC、有機激光二極管(O-laser)、有機積體電路(OIC)、光裝置、傳感器裝置、電極材料、光電導體、光感測器、電光記錄裝置、電容器、電荷注入層、肖特基二極管、平面化層、抗靜電薄膜、導電基板、導電圖案、有機記憶裝置、生物傳感器或生物晶片。
現將參照下列實施例更詳細地描述本發明,該等實施例僅為說明性,且並不限制本發明範圍。 實施例1    本發明之有機光伏打電池使用材料之能階驗證
本實施例係以本發明之有機光伏打電池之材料D1和D17進行能階驗證,以循環伏安法(cyclic voltammetry, CV)使用CH Instruments之電化學分析儀進行。實驗時係以玻璃碳電極作為工作電極,銀 /氯化銀電極用作參考電極,溶解於除水乙腈中之0.1 M四丁基六氟磷酸銨作為電解質,並使用二茂鐵作為內標校準CV曲線。其中,相對於真空能階之HOMO能階為4.7 eV,有機光伏打電池之HOMO能階係以式I計算而得: HOMO= -(E ox onset- E (二茂鐵) onset+ 4.7) eV                     I, 而其LUMO能階則係以式II計算而得: LUMO = (-E g+ HOMO) eV                                        II。 材料D1和D17之驗證結果如表一: 表一     本發明使用之材料能隙結果
材料 能隙 (eV) HOMO (eV) LUMO (eV)
D1 1.70 5.35 3.65
D17 1.75 5.38 3.63
實施例2    製備有機光伏打電池對照組C1
製備有機光伏打電池對照組C1。先將氧化銦錫(ITO)玻璃基材進行清潔和前處理作為該第一電極,並將氧化鋅(ZnO)前驅物溶液以旋轉塗布方式塗布於玻璃上,形成之薄層以120 ℃退火處理10分鐘後成為該電子傳輸層。接下來以旋轉塗布方式將主動層材料塗布於氧化鋅層上,該主動層材料係包含D1、A1和A26之混合物,其係以重量比D1:A1:A26 = 1:1:0.2溶解於鄰二甲苯(o-xylene)後以旋轉塗布法(spin coating)加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層。該主動層形成後將半成品轉移至蒸鍍機中,於約10 -7Torr之壓力下以熱蒸鍍法先設置8奈米厚度之三氧化鉬(MoO 3)於主動層上成為該電洞傳輸層,再設置100奈米厚度之金屬銀於三氧化鉬層上成為該第二電極,從而得到該有機光伏打電池對照組C1。其中,有機光伏打電池之活性區係以一影遮罩(shadow mask)和一外加之光圈遮罩(aperture mask)決定。 上述各層依序製備並設置後,使用玻璃外層和過氧化密封膠封裝以形成有機光伏打電池。 實施例3    製備有機光伏打電池樣本1
製備有機光伏打電池樣本1,先將氧化銦錫(ITO)玻璃基材進行清潔和前處理作為該第一電極,並將氧化鋅(ZnO)前驅物溶液以旋轉塗布方式塗布於玻璃上,形成之薄層以120 ℃退火處理10分鐘後成為該電子傳輸層。接下來以旋轉塗布方式將主動層材料塗布於氧化鋅層上,該主動層材料係包含D1、A1和A26之混合物,其係以重量比D1:A1:A26 = 1:1:0.2溶解於鄰二甲苯(o-xylene)後以旋轉塗布法(spin coating)加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層。該主動層形成後,使用PEDOT:PSS(商品名Clevios™ HTL Solar #388)以旋轉塗布法加工(於空氣環境中,轉速3000rpm,溫度21 oC,相對溼度40%)後,在氮氣環境下於110 oC烘烤5分鐘,形成一厚度60-70奈米之薄層。將半成品轉移至蒸鍍機中,於約10 -7Torr之壓力下以熱蒸鍍法設置100奈米厚度之金屬銀於該主動層上成為該第二電極,從而得到該有機光伏打電池樣本1。其中,有機光伏打電池之活性區係以一影遮罩(shadow mask)和一外加之光圈遮罩(aperture mask)決定。 上述各層依序製備並設置後,使用玻璃外層和過氧化密封膠封裝以形成有機光伏打電池。 實施例4    製備有機光伏打電池對照組C2
製備有機光伏打電池對照組C2,製備方法同實施例2,其中該主動層包含D1和A26之混合物,其係以重量比D1: A26 = 1:1.5溶解於鄰二甲苯後以旋轉塗布法加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層; 該電洞傳輸層包含三氧化鉬(MoO 3),其係以熱蒸鍍法加工而得;而該第二電極為銀。 實施例5    製備有機光伏打電池樣本2
製備有機光伏打電池樣本2,製備方法同實施例3,其中該主動層包含D1和A26之混合物,其係以重量比D1: A26 = 1:1.5溶解於鄰二甲苯後以旋轉塗布法加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層; 該電洞傳輸層為包含PEDOT:PSS (商品名Clevios™ HTL Solar #388) ,其係以旋轉塗布法加工並於120 oC烘烤3分鐘; 該第二電極為銀。 實施例6    製備有機光伏打電池對照組C3
製備有機光伏打電池對照組C3,製備方法同實施例2,其中該主動層包含D17和A26之混合物,其係以重量比D17:A26 = 1: 2溶解於鄰二甲苯/1-甲基萘(1-Methyl Naphthalene, 1-MN)後以旋轉塗布法加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層; 該電洞傳輸層包含三氧化鉬(MoO 3),其係以蒸發法加工而得;而該第二電極為銀。 實施例7    製備有機光伏打電池樣本3
製備有機光伏打電池樣本3,製備方法同實施例3,其中該主動層包含D1、A1和A26之混合物,其係以重量比D1:A1:A26 = 1:1:0.2溶解於鄰二甲苯/1-甲基萘後以旋轉塗布法加工並於氮氣環境中於125 oC退火5-10分鐘形成該主動層; 該電洞傳輸層為包含PEDOT:PSS (商品名Clevios™ HTL Solar #388) ,其係以旋轉塗布法加工並於120 oC烘烤3分鐘; 該第二電極為銀。 實施例8    有機光伏打電池對照組和樣本之功率轉換效率測試
將以上述材料及方式製備而得之有機光伏打電池對照組C1-C3和有機光伏打電池樣本1-3,分別進行元件效率測試。測試時採用鹵化金屬燈做為光源,以100 mW/cm 2之條件對該光伏打電池進行照射,並記錄其功率轉換效率(power conversion efficiency),以計算功率轉換效率漏失比例,其公式為: **[(PCE MoO3—PCE PEDOT:PSS)╱PCE MoO3]*100           III 其結果如第2a、2b、2c圖所示,數據結果整理如表一。 表二   有機光伏打電池之性能測試比較
OPV cell # Voc (V) Jsc (mA/cm 2) FF (%) PCE (%)* PCE loss** (%)
C1 0.70 24.7 75.1 13.0 STD
1 0.69 24.0 69.8 11.6 10.7%
C2 0.78 14.7 76.1 8.72 STD
2 0.75 14.6 71.7 7.83 10.2%
C3 0.82 13.3 75.5 8.23 STD
3 0.81 12.6 72.5 7.38 10.3%
由表二結果可知,與使用三氧化鉬作為電洞傳輸層之對照組C1-C3相比,依據本發明之有機半導體裝置之樣本1-3之元件效率降幅介於10.2-10.7%,較諸先前技術更為優異。 實施例9    有機光伏打電池之使用壽命測試
以實施例3之步驟製備有機光伏打電池樣本1,進行使用壽命測試。測試時採用鹵化金屬燈做為光源,以100 mW/cm 2之條件對該光伏打電池進行持續照射,並記錄其餘不同照射時間下之功率轉換效率。其結果如第3圖所示,數據結果整理如表三。 表三     樣本1元件之長時間照光與元件效率變化
照射時間 ( 小時 ) 元件效率(%)
0 11.0
96 10.82
408 10.07
800 9.97
1080 9.70
作為本發明之有機光伏打電池之使用壽命對照,J. Cai等人於 J. Mater. Chem. A, 2020, 8, 4230-4238中揭示一種有機太陽能電池,其係使用MoO 3作為其電洞傳輸層之倒置式有機半導體元件,結果顯示該種有機太陽能電池於30天後元件的效率僅剩下原本的80% (見該文獻Fig. 6)。而本發明中揭示之有機光伏打電池經過1080小時照光測試後,元件效率仍保有88.2%,顯著優於J. Cai等人之對照組。
由上述實施例可知,本發明之有機光伏打電池樣本其元件效率降幅皆優於對照組;此外,有機光伏打電池樣本1進行長時間照光測試之結果亦顯示,使用本發明之技術可有效抑制元件效率損失和大幅增加元件穩定度,皆為先前技術之有機半導體裝置無法達致之結果。
上述裝置數據顯示本發明之有機半導體裝置確實具有較現有裝置更佳之電性表現,顯示其在OPV裝置中係具有實現高性能之潛力。故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈  鈞局早日賜准專利,至感為禱。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
10:有機半導體裝置 100:基板 110:第一電極 120:電子傳輸層 130:主動層 140:電洞傳輸層 150:第二電極
第1a圖為本發明之有機半導體裝置之結構示意圖; 第1b圖為本發明之有機半導體裝置之結構示意圖; 第2a圖為樣本C1和樣本1之電性比較圖; 第2b圖為樣本C2和樣本2之電性比較圖; 第2c圖為樣本C3和樣本3之電性比較圖; 第3圖為樣本1之使用壽命測試圖。
10:有機半導體裝置
100:基板
110:第一電極
120:電子傳輸層
130:主動層
140:電洞傳輸層
150:第二電極

Claims (16)

  1. 一種有機半導體裝置,包含 一基板; 一第一電極; 一電子傳輸層,其係設置於該第一電極上; 一主動層,其係設置於該電子傳輸層上; 一電洞傳輸層,其係設置於該主動層上,且其成分係選自PEDOT:PSS或其衍生物;及 一第二電極,其係設置於該電洞傳輸層上; 其中,該主動層包含一電子供體、一或多個電子受體,以及 該電子供體之HOMO能階與該電洞傳輸層之能階間之能階屏障高度小於0.4 eV。
  2. 如請求項1所述之有機半導體裝置,其中該電子供體係由至少二種單體組成之一共軛聚合物,且該單體係包含一第一單體和一第二單體。
  3. 如請求項2所述之有機半導體裝置,其中該共軛聚合物之第一單體係選自以下部分體組成之群組:苯並二噻吩(benzodithiophene)部分體、咔唑(carbazole)部分體、矽雜環戊二噻吩部分體、噻吩部分體、環戊二噻吩部分體、硒吩部分體、二噻吩並吡咯部分體、環戊二噻唑和二苯並矽唑部分體。
  4. 如請求項2所述之有機半導體裝置,其中該共軛聚合物之第二單體係選自以下部分體組成之群組:苯並噻二唑部分體、噻二唑喹喔啉部分體、苯並異噻唑部分體、苯並噻唑部分體、噻吩並噻吩部分體、四氫異吲哚部分體、噻唑並噻唑部分體、噻吩並吡嗪部分體、苯並噁唑部分體、喹喔啉部分體、噻二唑吡啶部分體、苯並噁二唑部分體、苯並硒二唑部分體、噻吩並噻二唑部分體和噻吩並吡酮部分體、苯并二噻吩二酮部分體、吡嗪部分體。
  5. 如請求項2所述之有機半導體裝置,其中該電子供體係選自下列式D1-D25組成之群組。
    Figure 03_image212
    Figure 03_image003
    Figure 03_image005
    Figure 03_image007
    Figure 03_image009
    Figure 03_image011
    Figure 03_image013
    Figure 03_image015
    Figure 03_image017
    Figure 03_image019
    Figure 03_image021
    Figure 03_image023
    Figure 03_image025
    Figure 03_image027
    Figure 03_image029
    Figure 03_image031
    Figure 03_image033
    Figure 03_image035
    Figure 03_image037
    Figure 03_image039
    Figure 03_image041
    Figure 03_image043
    Figure 03_image045
    Figure 03_image047
    Figure 03_image237
  6. 如請求項1所述之有機半導體裝置,其中該電子受體包含一第一電子受體和一第二電子受體。
  7. 如請求項6所述之有機半導體裝置,其中該第一電子受體係選自下列式A1-A25組成之群組:
    Figure 03_image051
    Figure 03_image053
    Figure 03_image055
    Figure 03_image057
    Figure 03_image059
    Figure 03_image061
    Figure 03_image063
    Figure 03_image065
    Figure 03_image067
    Figure 03_image069
    Figure 03_image071
    Figure 03_image073
    Figure 03_image075
    Figure 03_image077
    Figure 03_image079
    Figure 03_image081
    Figure 03_image083
    Figure 03_image175
    Figure 03_image087
    Figure 03_image089
    Figure 03_image091
    Figure 03_image093
    Figure 03_image095
    Figure 03_image097
    Figure 03_image099
  8. 如請求項6所述之有機半導體裝置,其中該第二電子受體係選自下列式A26-A40組成之群組:
    Figure 03_image264
    Figure 03_image266
    Figure 03_image268
    Figure 03_image270
    Figure 03_image272
    Figure 03_image274
    Figure 03_image276
    Figure 03_image278
    Figure 03_image280
    Figure 03_image282
    Figure 03_image284
    Figure 03_image286
    Figure 03_image288
    Figure 03_image290
    Figure 03_image292
  9. 如請求項6所述之有機半導體裝置,其中該第二電子受體之重量比小於該第一電子受體。
  10. 如請求項1所述之有機半導體裝置,其中該電洞傳輸層係使用濕式製程製備。
  11. 如請求項1之有機半導體裝置,其中該電子供體之能隙大於1.50 eV,且該第一電子受體之能隙小於1.49 eV。
  12. 如請求項1之有機半導體裝置,其中該第一電極之材料係選自由以下導電材料群組之一者:銦氧化物、錫氧化物、摻雜鹵素之錫氧化物衍生物、銦錫氧化物和銦鋅氧化物。
  13. 如請求項1之有機半導體裝置,其中該第二電極之材料係選自銀或鋁
  14. 如請求項1-13所述之有機半導體裝置,其係選自有機場效應晶體管(OFET)、積體電路(IC)、薄膜晶體管(TFT)、射頻識別(RFID)標籤、有機發光二極管(OLED)、有機發光晶體管(OLET)、電致發光顯示器、有機光伏(OPV)電池、有機太陽能電池(OSC)。柔性OPV和OSC、有機激光二極管(O-laser)、有機積體電路(OIC)、光裝置、傳感器裝置、電極材料、光電導體、光感測器、電光記錄裝置、電容器、電荷注入層、肖特基二極管、平面化層、抗靜電薄膜、導電基板、導電圖案、有機記憶裝置、生物傳感器或生物晶片。
  15. 一種配方,包含根據請求項1-10任一項中所述之該電子供體和該電子受體,且包含一或多種選自芳香族溶劑之溶劑。
  16. 如請求項11所述之有機半導體裝置,其中該溶劑係選自以下有機溶劑組成之群組:甲苯、鄰二甲苯、對二甲苯、間二甲苯、三甲苯、氯苯、二氯苯、三氯苯或四氫萘、苯甲醚、甲氧基甲苯及其衍生物、萘、1-甲基萘及其衍生物。
TW110115650A 2021-04-29 2021-04-29 有機半導體裝置 TW202241838A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110115650A TW202241838A (zh) 2021-04-29 2021-04-29 有機半導體裝置
US17/482,868 US20220376181A1 (en) 2021-04-29 2021-09-23 Organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110115650A TW202241838A (zh) 2021-04-29 2021-04-29 有機半導體裝置

Publications (1)

Publication Number Publication Date
TW202241838A true TW202241838A (zh) 2022-11-01

Family

ID=84103164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115650A TW202241838A (zh) 2021-04-29 2021-04-29 有機半導體裝置

Country Status (2)

Country Link
US (1) US20220376181A1 (zh)
TW (1) TW202241838A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023091753A (ja) * 2021-12-20 2023-06-30 住友化学株式会社 化合物及びこれを用いた光電変換素子
GB2623329A (en) * 2022-10-11 2024-04-17 Sumitomo Chemical Co Composition

Also Published As

Publication number Publication date
US20220376181A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advance in solution‐processed organic interlayers for high‐performance planar perovskite solar cells
Huo et al. Organic solar cells based on a 2D benzo [1, 2‐b: 4, 5‐b′] difuran‐conjugated polymer with high‐power conversion efficiency
Liu et al. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells
Ye et al. 2D-conjugated benzodithiophene-based polymer acceptor: design, synthesis, nanomorphology, and photovoltaic performance
Nam et al. All-polymer solar cells with bulk heterojunction films containing electron-accepting triple bond-conjugated perylene diimide polymer
Park et al. Recently Advanced Polymer Materials Containing Dithieno [3, 2‐b: 2′, 3′‐d] phosphole Oxide for Efficient Charge Transfer in High‐Performance Solar Cells
Peng et al. Thiophene and diketopyrrolopyrrole based conjugated polymers as efficient alternatives to spiro-OMeTAD in perovskite solar cells as hole transporting layers
US20190229269A1 (en) Ternary blend organic solar cells based on one donor polymer and two acceptors
Morvillo et al. Influence of annealing treatments on solution-processed ZnO film deposited on ITO substrate as electron transport layer for inverted polymer solar cells
Chen et al. Molecular engineering of triphenylamine-based non-fullerene electron-transport materials for efficient rigid and flexible perovskite solar cells
WO2011160021A2 (en) Fullerene derivatives
Seo et al. Blending of n-type semiconducting polymer and PC61BM for an efficient electron-selective material to boost the performance of the planar perovskite solar cell
Chen et al. Tuning the frontier molecular orbital energy levels of n‐type conjugated copolymers by using angular‐shaped naphthalene tetracarboxylic diimides, and their use in all‐polymer solar cells with high open‐circuit voltages
US20080083455A1 (en) Organic photovoltaic cell and manufacturing method therefor
Hsieh et al. Two-dimensional polythiophene homopolymer as promising hole transport material for high-performance perovskite solar cells
Nam et al. Pronounced cosolvent effects in polymer: polymer bulk heterojunction solar cells with sulfur-rich electron-donating and imide-containing electron-accepting polymers
TW202241838A (zh) 有機半導體裝置
KR20120130706A (ko) 전자 공여체 고분자 및 이를 포함하는 태양 전지
Chen et al. Dibenzothiophene-S, S-dioxide and bispyridinium-based cationic polyfluorene derivative as an efficient cathode modifier for polymer solar cells
KR20170049359A (ko) 그래핀을 전도성 투명전극으로 사용하는 페로브스카이트 기반 태양전지
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
Pan et al. Phenylfluorenamine-functionalized poly (N-vinylcarbazole) s as dopant-free polymer hole-transporting materials for inverted quasi-2D perovskite solar cells
Singh et al. Influence of molar mass ratio, annealing temperature and cathode buffer layer on power conversion efficiency of P3HT: PC71BM based organic bulk heterojunction solar cell
Tong et al. Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池