TW202240198A - Doppler signal processing device and doppler signal processing method - Google Patents

Doppler signal processing device and doppler signal processing method Download PDF

Info

Publication number
TW202240198A
TW202240198A TW110133880A TW110133880A TW202240198A TW 202240198 A TW202240198 A TW 202240198A TW 110133880 A TW110133880 A TW 110133880A TW 110133880 A TW110133880 A TW 110133880A TW 202240198 A TW202240198 A TW 202240198A
Authority
TW
Taiwan
Prior art keywords
signal
interference
domain
frequency
suppressed
Prior art date
Application number
TW110133880A
Other languages
Chinese (zh)
Other versions
TWI802001B (en
Inventor
紀翔峰
Original Assignee
立積電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/228,722 external-priority patent/US20210231789A1/en
Application filed by 立積電子股份有限公司 filed Critical 立積電子股份有限公司
Publication of TW202240198A publication Critical patent/TW202240198A/en
Application granted granted Critical
Publication of TWI802001B publication Critical patent/TWI802001B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Noise Elimination (AREA)

Abstract

The Doppler signal processing device includes a frequency analyzer, an interference suppressor, an interference baseline estimator and a synthesizer. The frequency analyzer can generate a frequency domain signal according to a digital signal. The interference suppressor can perform a suppression operation to generate an interference suppressed frequency domain signal. The interference baseline estimator can generate or update the frequency domain interference estimation signal according to the frequency domain signal. The synthesizer can generate an interference suppressed time domain digital signal according to the interference suppressed frequency domain signal, where the interference suppressed time domain digital signal is related to the digital signal with the interference energy suppressed.

Description

都普勒訊號處理裝置及都普勒訊號處理方法Doppler signal processing device and Doppler signal processing method

本發明關於一種都普勒訊號處理裝置,尤指一種用以抑制背景中的干擾的都普勒訊號處理裝置。The invention relates to a Doppler signal processing device, in particular to a Doppler signal processing device for suppressing background interference.

當使用雷達裝置偵測物體時,背景干擾常造成問題。舉例而言,若使用雷達裝置偵測生命跡象或人體,背景干擾常甚為顯著,導致偵測結果不正確。為了減少背景干擾之影響,可使用訊號能量門檻值裝置或頻率能量偵測方法,以判斷偵測結果。然而,這些方法都無法提供高精確度的偵測結果。Background interference often causes problems when using radar devices to detect objects. For example, if a radar device is used to detect vital signs or human bodies, background interference is often significant, resulting in incorrect detection results. In order to reduce the influence of background interference, a signal energy threshold device or a frequency energy detection method can be used to judge the detection result. However, none of these methods can provide high-precision detection results.

實施例提供一種都普勒訊號處理裝置,用以根據一接收無線訊號抑制一背景之干擾,該都普勒訊號處理裝置包含一頻率分析器、一干擾抑制器、一干擾基線估測器及一合成器。該頻率分析器用以根據一數位訊號產生一頻域訊號,其中該數位訊號對應於該接收無線訊號,且該數位訊號包含該背景之該干擾產生之干擾能量。該干擾抑制器用以根據該頻域訊號及一頻域干擾估測訊號執行一抑制操作以產生一干擾抑制頻域訊號,其中於該干擾抑制頻域訊號中,該干擾能量於頻域係被該頻域干擾估測訊號所抑制。該干擾基線估測器用以根據該頻域訊號產生或更新該頻域干擾估測訊號,其中該頻域干擾估測訊號對應於該干擾於該頻域之一能量分佈。該合成器用以根據該干擾抑制頻域訊號產生一干擾抑制時域數位訊號,其中該干擾抑制時域數位訊號係相關於該干擾能量已被抑制之該數位訊號。The embodiment provides a Doppler signal processing device for suppressing a background interference according to a received wireless signal, the Doppler signal processing device includes a frequency analyzer, an interference suppressor, an interference baseline estimator and a synthesizer. The frequency analyzer is used to generate a frequency domain signal according to a digital signal, wherein the digital signal corresponds to the received wireless signal, and the digital signal contains interference energy generated by the interference of the background. The interference suppressor is used to perform a suppression operation according to the frequency-domain signal and a frequency-domain interference estimation signal to generate an interference-suppressed frequency-domain signal, wherein in the interference-suppressed frequency-domain signal, the interference energy in the frequency domain is suppressed by the The frequency-domain interference estimation signal is suppressed. The interference baseline estimator is used for generating or updating the frequency domain interference estimation signal according to the frequency domain signal, wherein the frequency domain interference estimation signal corresponds to an energy distribution of the interference in the frequency domain. The synthesizer is used to generate an interference-suppressed time-domain digital signal according to the interference-suppressed frequency-domain signal, wherein the interference-suppressed time-domain digital signal is related to the digital signal whose interference energy has been suppressed.

另一實施例提供一種都普勒訊號處理方法,用以根據一接收無線訊號抑制一背景之干擾,該都普勒訊號處理方法包含根據一數位訊號產生一頻域訊號,其中該數位訊號對應於該接收無線訊號,且該數位訊號包含該背景之該干擾產生之干擾能量;根據該頻域訊號及一頻域干擾估測訊號執行一抑制操作以產生一干擾抑制頻域訊號,其中於該干擾抑制頻域訊號中,該干擾能量於頻域係被抑制;根據該頻域訊號產生或更新該頻域干擾估測訊號,其中該頻域干擾估測訊號對應於該干擾於該頻域之一能量分佈;及根據該干擾抑制頻域訊號產生一干擾抑制時域數位訊號,其中該干擾抑制時域數位訊號係相關於該干擾能量已被抑制之該數位訊號。Another embodiment provides a Doppler signal processing method for suppressing background interference based on a received wireless signal, the Doppler signal processing method includes generating a frequency domain signal based on a digital signal, wherein the digital signal corresponds to The received wireless signal, and the digital signal contains interference energy generated by the background interference; performing a suppression operation according to the frequency domain signal and a frequency domain interference estimation signal to generate an interference suppressed frequency domain signal, wherein in the interference In suppressing the frequency domain signal, the interference energy is suppressed in the frequency domain; generating or updating the frequency domain interference estimation signal according to the frequency domain signal, wherein the frequency domain interference estimation signal corresponds to the interference in one of the frequency domains energy distribution; and generating an interference-suppressed time-domain digital signal based on the interference-suppressed frequency-domain signal, wherein the interference-suppressed time-domain digital signal is related to the digital signal whose interference energy has been suppressed.

下文將參照附圖以詳細描述示例性實施例,以便本領域一般技術人員易於實現。本發明之構思可以各種形式體現,而不限於本文闡述之示例性實施例。為清楚起見,已省略習知部件之描述,且相同之附圖標記係意指相同之元件。Exemplary embodiments will be described in detail below with reference to the accompanying drawings for easy implementation by those skilled in the art. The inventive concept can be embodied in various forms without being limited to the exemplary embodiments set forth herein. For clarity, descriptions of well-known components have been omitted, and like reference numbers refer to like elements.

第1圖係實施例中,用以偵測物體Obj之訊號偵測裝置10的示意圖。訊號偵測裝置10可為雷達。訊號偵測裝置10可包含天線ANtx及ANrx、放大裝置Atx及Arx、振盪器OSC、接收單元1066,及都普勒訊號處理裝置100。都普勒訊號處理裝置100可抑制干擾,如下所述。訊號偵測裝置10可另包含數位轉類比轉換器15及16,及數位串行干擾單位17。該些元件之耦接關係可如第1圖所示。FIG. 1 is a schematic diagram of a signal detection device 10 for detecting an object Obj in an embodiment. The signal detection device 10 can be a radar. The signal detection device 10 may include antennas ANtx and ANrx, amplifiers Atx and Arx, an oscillator OSC, a receiving unit 1066 , and a Doppler signal processing device 100 . The Doppler signal processing device 100 can suppress interference, as described below. The signal detection device 10 may further include digital-to-analog converters 15 and 16 , and a digital serial interference unit 17 . The coupling relationship of these components can be shown in FIG. 1 .

振盪器OSC可提供載波訊號fc,且載波訊號fc實質上具有固定頻率。放大裝置Atx(例如功率放大器)可輸出無線訊號d(例如射頻發射訊號),由天線ANtx發射。無線訊號d可根據載波訊號fc而產生。產生無線訊號d之產生器可根據載波訊號fc選擇性設置於振盪器OSC及放大裝置Atx之間。若物體Obj(例如人體)位於訊號偵測裝置10之偵測範圍中,則物體Obj可反射無線訊號d,以產生接收無線訊號d’,例如為射頻接收訊號。天線ANrx可接收反射的接收無線訊號d’,放大裝置Arx(例如低雜訊放大器)可放大接收無線訊號d’,且接收無線訊號d’可輸入至接收單元1066。The oscillator OSC can provide a carrier signal fc, and the carrier signal fc has a substantially fixed frequency. The amplifying device Atx (such as a power amplifier) can output a wireless signal d (such as a radio frequency transmission signal), which is transmitted by the antenna ANtx. The wireless signal d can be generated according to the carrier signal fc. The generator for generating the wireless signal d can be selectively arranged between the oscillator OSC and the amplifying device Atx according to the carrier signal fc. If the object Obj (such as a human body) is within the detection range of the signal detection device 10, the object Obj can reflect the wireless signal d to generate a received wireless signal d', such as a radio frequency received signal. The antenna ANrx can receive the reflected received wireless signal d', the amplifying device Arx (such as a low noise amplifier) can amplify the received wireless signal d', and the received wireless signal d' can be input to the receiving unit 1066.

接收單元1066可根據載波訊號fc及接收無線訊號d’產生至少一數位訊號。舉例而言,接收單元1066可包含混合器1071及1072、相位調整單元1073、及類比轉數位轉換器(ADC)1074及1075。混合器1071可混合載波訊號fc及接收無線訊號d’,且將結果由類比轉數位轉換器1074轉為數位訊號S1。相位調整單元1073可將載波訊號fc的相位旋轉特定相位(例如90度)以產生調整後載波訊號fc’。混合器1072可混合調整後載波訊號fc’及接收無線訊號d’,且將結果由類比轉數位轉換器1075轉為數位訊號S2。接收單元1066輸出的至少一數位訊號可包含類比轉數位轉換器1074及/或1075輸出的數位訊號S1及/或S2。The receiving unit 1066 can generate at least one digital signal according to the carrier signal fc and the received wireless signal d'. For example, the receiving unit 1066 may include mixers 1071 and 1072 , a phase adjustment unit 1073 , and analog-to-digital converters (ADCs) 1074 and 1075 . The mixer 1071 can mix the carrier signal fc and the received wireless signal d', and convert the result into a digital signal S1 by the analog-to-digital converter 1074. The phase adjusting unit 1073 can rotate the phase of the carrier signal fc by a specific phase (for example, 90 degrees) to generate an adjusted carrier signal fc'. The mixer 1072 can mix the adjusted carrier signal fc' and the received wireless signal d', and convert the result into a digital signal S2 by the analog-to-digital converter 1075. The at least one digital signal output by the receiving unit 1066 may include the digital signals S1 and/or S2 output by the analog-to-digital converters 1074 and/or 1075 .

舉例而言,數位訊號S1及S2可為時域信號,分別相關於正交/同相(In-phase/quadrature,I/Q)調變之同相通道及正交通道。都普勒訊號處理裝置100可對數位訊號S1及S2進行處理以抑制數位訊號S1及S2之干擾部份,以產生數位訊號S1’及S2’。For example, the digital signals S1 and S2 can be time-domain signals, which are respectively related to an in-phase channel and a quadrature channel of In-phase/quadrature (I/Q) modulation. The Doppler signal processing device 100 can process the digital signals S1 and S2 to suppress the interference part of the digital signals S1 and S2, so as to generate digital signals S1' and S2'.

數位訊號S1’及S2’可為時域信號,分別由數位轉類比轉換器15及16進行處理以產生類比訊號S1a及S2a。舉例而言,類比訊號S1a及S2a可分別相關於正交/同相(I/Q)調變之同相通道及正交通道。數位串行干擾單元(digital serial interference unit)17可對數位訊號S1’及S2’進行處理以產生用以偵測物體之資料。數位串行干擾單元17產生的資料可透過序列周邊介面(SPI)或積體電路間(I 2C)介面傳送至外部,例如是由使用者選用的裝置,以進行分析。舉例而言,微控制器(MCU)可用以分析數位串行干擾單元17產生之資料以偵測物體Obj。因為時域信號中干擾部份已被抑制,相較於數位訊號S1及S2,數位訊號S1’及S2’可較為「乾淨」(也就是在時域包含較少的干擾能量),且使用者可允許使用相對較為簡易的硬體/軟體以處理相關於偵測物體Obj之資料。第1圖之接收單元1066之架構僅為舉例,而非用以限制電路的構造。 The digital signals S1 ′ and S2 ′ can be time-domain signals, which are respectively processed by the digital-to-analog converters 15 and 16 to generate the analog signals S1 a and S2 a. For example, the analog signals S1a and S2a may relate to the in-phase channel and the quadrature channel of quadrature/in-phase (I/Q) modulation, respectively. The digital serial interference unit 17 can process the digital signals S1 ′ and S2 ′ to generate data for detecting objects. The data generated by the digital serial interference unit 17 can be transmitted to the outside through the serial peripheral interface (SPI) or the inter-integrated circuit (I 2 C) interface, such as a device selected by the user for analysis. For example, a microcontroller (MCU) can be used to analyze the data generated by the serial jamming unit 17 to detect the object Obj. Because the interference part of the time-domain signal has been suppressed, compared with the digital signals S1 and S2, the digital signals S1' and S2' can be "cleaner" (that is, contain less interference energy in the time domain), and the user It allows relatively simple hardware/software to process data related to the detected object Obj. The structure of the receiving unit 1066 in FIG. 1 is just an example, not intended to limit the structure of the circuit.

第2圖為第1圖之都普勒訊號處理裝置100的示意圖。都普勒訊號處理裝置100可根據接收無線訊號d’抑制背景中之干擾。被抑制的干擾可為固定干擾(stationary interference),例如,可為干擾頻率大致不變或變化不大的準固定干擾(quasi-stationary interference)。都普勒訊號處理裝置100可包含頻率分析器(frequency analyzer)110、干擾抑制器(interference suppressor)120、干擾基線估測器(interference baseline estimator)130及合成器(synthesizer)140。第2圖中,i可為時間之索引,n可為時域區塊之索引,且k可為頻率之索引,亦即頻格(frequency bin)。FIG. 2 is a schematic diagram of the Doppler signal processing device 100 in FIG. 1 . The Doppler signal processing device 100 can suppress background interference according to the received wireless signal d'. The suppressed interference may be stationary interference (stationary interference), for example, may be quasi-stationary interference (quasi-stationary interference) whose interference frequency is substantially constant or does not change much. The Doppler signal processing device 100 may include a frequency analyzer 110 , an interference suppressor 120 , an interference baseline estimator 130 and a synthesizer 140 . In FIG. 2, i can be an index of time, n can be an index of a time domain block, and k can be an index of frequency, that is, a frequency bin.

頻率分析器110可根據數位訊號x(i)產生頻域訊號X n(k)。第2圖之數位訊號x(i)可對應於第1圖之數位訊號S1及/或S2,且為相關於正交/同相(I/Q)調變之同相通道及正交通道的原始資料。數位訊號x(i)可對應於接收無線訊號d’,且包含背景中的干擾產生之(待抑制的)干擾能量。 The frequency analyzer 110 can generate a frequency-domain signal Xn (k) according to the digital signal x(i). The digital signal x(i) in Figure 2 can correspond to the digital signal S1 and/or S2 in Figure 1, and is the original data of the in-phase channel and quadrature channel related to quadrature/in-phase (I/Q) modulation . The digital signal x(i) may correspond to the received wireless signal d' and contains interference energy (to be suppressed) caused by interference in the background.

干擾抑制器120可根據頻域訊號X n(k)及頻域干擾估測訊號U n(k)執行抑制操作以產生干擾抑制頻域訊號Y n(k)。干擾抑制頻域訊號Y n(k)中,干擾能量於頻域可藉由使用頻域干擾估測訊號U n(k)而被抑制。 The interference suppressor 120 can perform a suppression operation according to the frequency-domain signal X n (k) and the frequency-domain interference estimation signal U n (k) to generate the interference-suppressed frequency-domain signal Y n (k). In the interference-suppressed frequency-domain signal Y n (k), the interference energy in the frequency domain can be suppressed by using the frequency-domain interference estimation signal U n (k).

干擾基線估測器130可根據頻域訊號X n(k)產生或更新頻域干擾估測訊號U n(k)。頻域干擾估測訊號U n(k)可對應於干擾在頻域中的能量分佈(例如,準固定干擾能量)。 The interference baseline estimator 130 can generate or update the frequency-domain interference estimation signal U n (k) according to the frequency-domain signal X n (k). The frequency-domain interference estimation signal U n (k) may correspond to the energy distribution of the interference in the frequency domain (eg, quasi-stationary interference energy).

合成器140可根據干擾抑制頻域訊號Y n(k)產生干擾抑制時域數位訊號y(i)。干擾抑制時域數位訊號y(i)可相關於干擾能量已被抑制的數位訊號x(i)。第1圖及第2圖中,第2圖之干擾抑制時域數位訊號y(i)可對應於第1圖之數位訊號S1’及S2’。 The synthesizer 140 can generate an interference-suppressed time-domain digital signal y(i) according to the interference-suppressed frequency-domain signal Y n (k). The interference-suppressed time-domain digital signal y(i) can be related to the digital signal x(i) whose interference energy has been suppressed. In FIG. 1 and FIG. 2, the interference-suppressed time-domain digital signal y(i) in FIG. 2 may correspond to the digital signals S1' and S2' in FIG. 1.

第2圖至第6圖中,頻域訊號X n(k)可包含頻域訊號向量,且頻域干擾估測訊號U n(k)可包含頻域干擾估測訊號向量。 From FIG. 2 to FIG. 6, the frequency-domain signal X n (k) may include a frequency-domain signal vector, and the frequency-domain interference estimation signal U n (k) may include a frequency-domain interference estimation signal vector.

第3圖為一實施例中,第1圖及第2圖之都普勒訊號處理裝置100的示意圖。如第3圖所示,頻率分析器110可執行短時距傅立葉轉換1102以使用數位訊號x(i)產生頻域訊號X n(k)。頻率分析器110可另執行緩衝操作1101以收集相異時點之數位訊號x(i)以作為短時距傅立葉轉換1102之輸入。 FIG. 3 is a schematic diagram of the Doppler signal processing device 100 shown in FIG. 1 and FIG. 2 in an embodiment. As shown in FIG. 3 , frequency analyzer 110 may perform STFT 1102 to generate frequency-domain signal Xn (k) using digital signal x(i). The frequency analyzer 110 can further perform a buffering operation 1101 to collect the digital signal x(i) at different time points as the input of the STFT 1102 .

如第3圖所示,合成器140可使用干擾抑制頻域訊號Y n(k)執行逆快速傅立葉轉換(Inverse FFT)1401以產生相關於干擾抑制時域數位訊號y(i)之時域訊號y n(m)。合成器140另可使用時域訊號y n(m)執行重疊累加操作1402以產生干擾抑制時域數位訊號y(i)。 As shown in FIG. 3 , the synthesizer 140 can use the interference-suppressed frequency-domain signal Y n (k) to perform an inverse fast Fourier transform (Inverse FFT) 1401 to generate a time-domain signal corresponding to the interference-suppressed time-domain digital signal y(i) y n (m). The synthesizer 140 can also use the time-domain signal y n (m) to perform an overlap-and-accumulate operation 1402 to generate an interference-suppressed time-domain digital signal y(i).

第4圖為相關於第3圖之短時距傅立葉轉換(STFT)的訊號處理的示意圖。第4圖中,M、K、L及O可為相關於離散時間訊號的索引。表示為X的訊號可相關於頻域,表示為x的訊號可相關於時域,且m及n可為時域區塊的索引。FIG. 4 is a schematic diagram of signal processing related to the short-time Fourier transform (STFT) in FIG. 3 . In FIG. 4, M, K, L, and O may be indexes related to discrete-time signals. A signal denoted X may be related to the frequency domain, a signal denoted x may be related to the time domain, and m and n may be indexes of time domain blocks.

於第3圖及第4圖中,舉例而言,緩衝操作1101可包含收集數位訊號x(i)之K個樣本,以產生訊號x n(m)。頻域訊號X n(k)可表示為{X n(k): k = 0~(K-1)},且干擾抑制頻域訊號Y n(k)可表示為{Y n(k): k = 0~(K-1)}。 In FIGS. 3 and 4, for example, buffering operation 1101 may include collecting K samples of digital signal x(i) to generate signal xn( m ). The frequency domain signal X n (k) can be expressed as {X n (k): k = 0~(K-1)}, and the interference suppressed frequency domain signal Y n (k) can be expressed as {Y n (k): k = 0~(K-1)}.

第3圖中,干擾抑制頻域訊號Y n(k)可表示為Y n(k) = A n(k) × e j Xn(k),或表示為Y n(k) = B n(k) × e j Xn(k),如後文所述。 In Figure 3, the interference suppression frequency domain signal Y n (k) can be expressed as Y n (k) = A n (k) × e j Xn(k) , or as Y n (k) = B n ( k) × e j ∠Xn (k) , as described later.

根據實施例,可根據頻譜相減方法,將干擾抑制頻域訊號Y n(k)表示為Y n(k) = A n(k) × e j Xn(k),其中A n(k) = MAX {|X n(k)| - α•U n(k),η }。參數η可為A n(k)之最小值,且參數α可被調整以控制訊雜比(SNR),以達到目標訊雜比。 According to an embodiment, the interference-suppressed frequency-domain signal Y n (k) can be expressed as Y n (k) = A n (k) × e j Xn(k) according to the spectral subtraction method, where A n (k) = MAX {|X n (k)| - α•U n (k),η }. The parameter η can be the minimum value of A n (k), and the parameter α can be adjusted to control the signal-to-noise ratio (SNR) to achieve a target SNR.

根據實施例,可根據頻譜加權方法,將干擾抑制頻域訊號Y n(k)表示為Y n(k) = B n(k) × e j Xn(k),其中B n(k) = (|X n(k)| / (1+ β•U n(k))。參數β可被調整以控制訊雜比(SNR),以達到目標訊雜比。 According to an embodiment, the interference-suppressed frequency-domain signal Y n (k) can be expressed as Y n (k) = B n (k) × e j Xn(k) according to the spectrum weighting method, where B n (k) = (|X n (k)| / (1+ β·U n (k)). The parameter β can be adjusted to control the signal-to-noise ratio (SNR) to achieve the target SNR.

第3圖中,短時距傅立葉轉換1102可分析及轉換時域的資料(例如,訊號x n(m))以產生頻域的資料(例如,頻域訊號X n(k))。干擾基線估測器130可估測相關於固定頻率範圍之干擾基線。舉例而言,所述的干擾可為(但不限於)來自風扇、日光燈、空調適配器之干擾。干擾可被抑制,以改善偵測物體Obj的精確度。第3圖中,干擾抑制頻域訊號Y n(k)之干擾部份已被減少,且可執行逆快速傅立葉轉換1401以處理頻域的干擾抑制頻域訊號Y n(k)以產生時域的時域訊號y n(m)。 In FIG. 3 , STFT 1102 can analyze and convert time-domain data (eg, signal xn( m )) to generate frequency-domain data (eg, frequency-domain signal Xn (k)). The interference baseline estimator 130 can estimate the interference baseline relative to a fixed frequency range. For example, the interference may be (but not limited to) interference from fans, fluorescent lamps, and air conditioner adapters. Interference can be suppressed to improve the accuracy of detecting the object Obj. In Fig. 3, the interference part of the interference-suppressed frequency-domain signal Y n (k) has been reduced, and an inverse fast Fourier transform 1401 can be performed to process the interference-suppressed frequency-domain signal Y n (k) in the frequency domain to generate the time-domain The time-domain signal y n (m) of .

第3圖之短時距傅立葉轉換1102可如第4圖所示。第4圖僅為舉例,而非限制實施例的範圍。第4圖說明六個區塊B0至B5之操作。第4圖之橫軸可對應於時域之樣本索引,其係用於數位訊號處理(DSP)。區塊B0可對應於n=1,區塊B1可對應於n=2,依此類推。關於區塊B0,可具有K個樣本,其中L個樣本並無重疊,但O個樣本與區塊B1之一部分樣本重疊。The STFT 1102 in FIG. 3 can be as shown in FIG. 4 . Figure 4 is only an example, not limiting the scope of the embodiment. Figure 4 illustrates the operation of the six blocks B0 to B5. The horizontal axis of Fig. 4 may correspond to a sample index in the time domain, which is used in digital signal processing (DSP). Block B0 may correspond to n=1, block B1 may correspond to n=2, and so on. Regarding block BO, there may be K samples, of which L samples do not overlap, but O samples overlap with some samples of block B1.

根據實施例,前文述及的訊號x n(m)、X n(k)、y n(m)及y(i)可根據下文之等式eq-1至eq-3予以表示及求得: x n(m) =

Figure 02_image001
…eq-1; X n(k) = FFT {x n(m)} =
Figure 02_image003
n(m)•exp (-j
Figure 02_image005
)   …eq-2; y n(m) = IFFT{Y n(k)}=
Figure 02_image007
…eq-3; y(i) =
Figure 02_image009
…eq-4; According to an embodiment, the aforementioned signals x n (m), X n (k), y n (m) and y (i) can be expressed and obtained according to the following equations eq-1 to eq-3: x n (m) =
Figure 02_image001
…eq-1; X n (k) = FFT {x n (m)} =
Figure 02_image003
n (m)·exp (-j
Figure 02_image005
) …eq-2; y n (m) = IFFT{Y n (k)}=
Figure 02_image007
...eq-3; y(i) =
Figure 02_image009
...eq-4;

其中M及K可為正整數,M ≤ K,且M可選擇性地等於K。等式eq-1可相關於第3圖之緩衝操作1101,其中窗格訊號w(m)可為已知的窗格訊號,如第4圖所示。等式eq-2可相關於第3圖所示之短時距傅立葉轉換。等式eq-3可相關於第3圖所示之逆快速傅立葉轉換1401。等式eq-4可相關於第3圖所示之重疊累加操作1402。等式eq-1至eq-4可描述都普勒訊號處理裝置100的操作原理。Wherein M and K can be positive integers, M ≤ K, and M can be optionally equal to K. Equation eq-1 may be related to the buffering operation 1101 of FIG. 3 , where the pane signal w(m) may be a known pane signal, as shown in FIG. 4 . Equation eq-2 can be related to the short-time Fourier transform shown in Fig. 3 . Equation eq-3 can be related to the inverse fast Fourier transform 1401 shown in FIG. 3 . Equation eq-4 may be related to the overlap-accumulate operation 1402 shown in FIG. 3 . Equations eq-1 to eq-4 can describe the operation principle of the Doppler signal processing device 100 .

第5圖為實施例中,第1圖及第2圖之都普勒訊號處理裝置100的示意圖。如第5圖所示,頻率分析器110可包含濾波器組(filter bank)110A,用以對數位訊號x(i)進行濾波以產生頻域訊號X n(k)。如第5圖所示,合成器140可包含濾波器組140A,用以對干擾抑制頻域訊號Y n(k)進行濾波以產生干擾抑制時域數位訊號y(i)。根據實施例,濾波器組110A可為分析濾波器組(analysis filter bank),且濾波器組140A可為合成濾波器組(synthesis filter bank)。舉例而言,濾波器組110A可被抽取(decimated),且濾波器組140A可對應地被內插(interpolated);或者,濾波器組110A可被非抽取(non-decimated),且濾波器組140A可對應地被非內插(non-interpolated)。 Fig. 5 is a schematic diagram of the Doppler signal processing device 100 in Fig. 1 and Fig. 2 in the embodiment. As shown in FIG. 5 , the frequency analyzer 110 may include a filter bank (filter bank) 110A for filtering the digital signal x(i) to generate a frequency domain signal X n (k). As shown in FIG. 5, the synthesizer 140 may include a filter bank 140A for filtering the interference-suppressed frequency-domain signal Yn (k) to generate the interference-suppressed time-domain digital signal y(i). According to an embodiment, the filter bank 110A may be an analysis filter bank, and the filter bank 140A may be a synthesis filter bank. For example, the filter bank 110A may be decimated, and the filter bank 140A may be interpolated accordingly; or, the filter bank 110A may be non-decimated, and the filter bank 140A may be interpolated accordingly; 140A may be correspondingly non-interpolated.

第5圖中,干擾抑制頻域訊號Y n(k)可表示為Y n(k) = A n(k)•e j Xn(k),或表示為Y n(k) = B n(k)•e j Xn(k),如下所述。 In Figure 5, the interference suppression frequency domain signal Y n (k) can be expressed as Y n (k) = A n (k)·e j Xn(k) , or as Y n (k) = B n ( k)•e j ∠Xn (k) , as described below.

根據實施例,可根據頻譜相減方法,將干擾抑制頻域訊號Y n(k)表示為Y n(k) = A n(k)•e j Xn(k),其中A n(k) = MAX {|X n(k)| - α•U n(k),η}。參數η可為A n(k)之最小值,且參數α可被調整以控制訊雜比(SNR),以達到目標訊雜比。 According to an embodiment, the interference-suppressed frequency-domain signal Y n (k) can be expressed as Y n (k) = A n (k)•e j ∠Xn (k) according to the spectral subtraction method, where A n (k) = MAX {|X n (k)| - α•U n (k),η}. The parameter η can be the minimum value of A n (k), and the parameter α can be adjusted to control the signal-to-noise ratio (SNR) to achieve a target SNR.

根據實施例,可根據頻譜加權方法,將干擾抑制頻域訊號Y n(k)表示為Y n(k) = B n(k)•e j Xn(k),其中B n(k) = (|X n(k)| / (1+β•U n(k))。參數β可被調整以控制訊雜比(SNR),以達到目標訊雜比。在此情況中,可使用零強制(zero-forcing)法。舉例而言,此情況可相關於維納(Wiener)解法之相關濾波器。此情況中,可在保持相位之同時,衰減訊號強度。 According to an embodiment, the interference-suppressed frequency-domain signal Y n (k) can be expressed as Y n (k) = B n (k)·e j Xn(k) according to the spectrum weighting method, where B n (k) = (|X n (k)| / (1+β·U n (k)). The parameter β can be adjusted to control the signal-to-noise ratio (SNR) to achieve the target SNR. In this case, zero can be used Zero-forcing method. For example, this case can be related to the correlation filter of the Wiener (Wiener) solution. In this case, the signal strength can be attenuated while maintaining the phase.

第6圖為第2圖、第3圖及第5圖所述的干擾基線估測器130的示意圖。如第6圖所示,干擾基線估測器130可包含絕對值資料單元610、濾波單元620、減法器630、控制單元640、加法器650及延遲單元660。FIG. 6 is a schematic diagram of the interference baseline estimator 130 described in FIG. 2 , FIG. 3 and FIG. 5 . As shown in FIG. 6 , the interference baseline estimator 130 may include an absolute value data unit 610 , a filter unit 620 , a subtractor 630 , a control unit 640 , an adder 650 and a delay unit 660 .

絕對值資料單元610可產生頻域訊號X n(k)之絕對值資料|X n(k)|。濾波單元620可根據絕對值資料|X n(k)|產生濾波訊號(R n(k)或E n(k))。減法器630可產生濾波訊號(R n(k)或E n(k))及頻域干擾估測訊號U n(k)之差值資料Δ n(k)。控制單元640可處理差值資料Δ n(k)以產生調整資料Q n(k)。加法器650可相加調整資料Q n(k)及頻域干擾估測訊號U n(k)以產生更新頻域干擾估測訊號U n+1(k)。延遲單元660可使用更新頻域干擾估測訊號U n+1(k)以置換頻域干擾估測訊號U n(k)。換言之,頻域干擾估測訊號U n(k)及更新頻域干擾估測訊號U n+1(k)可分別相關於時間線上的一頻域訊號區塊索引及下一頻域訊號區塊索引,其中兩頻域訊號區塊索引之間的差值可相關於延遲單元660。 The absolute value data unit 610 can generate absolute value data |X n (k)| of the frequency domain signal X n (k). The filtering unit 620 can generate a filtering signal (R n (k) or E n (k)) according to the absolute value data |X n (k)|. The subtractor 630 can generate difference data Δ n (k) between the filtered signal (R n (k) or E n (k)) and the frequency-domain interference estimation signal U n (k). The control unit 640 can process the difference data Δ n (k) to generate the adjustment data Q n (k). The adder 650 can add the adjustment data Q n (k) and the frequency-domain interference estimation signal U n (k) to generate an updated frequency-domain interference estimation signal U n+1 (k). The delay unit 660 can use the updated frequency-domain interference estimation signal U n+1 (k) to replace the frequency-domain interference estimation signal U n (k). In other words, the frequency-domain interference estimation signal U n (k) and the updated frequency-domain interference estimation signal U n+1 (k) can be respectively related to a frequency-domain signal block index and the next frequency-domain signal block on the time line index, wherein the difference between the two frequency-domain signal block indices can be related to the delay unit 660 .

根據實施例,絕對值資料|X n(k)|包含絕對值,差值資料Δ n(k)包含差值,調整資料Q n(k)包含調整值,且濾波訊號R n(k)或E n(k)包含濾波資料向量。 According to an embodiment, the absolute value data | Xn (k)| contains absolute values, the difference data Δn (k) contains difference values, the adjustment data Qn (k) contains adjustment values, and the filtered signal Rn (k) or En (k) contains the filtered data vector.

關於濾波單元620,濾波單元620可至少包含濾波器6201及選擇性地另包含包絡偵測器6202。濾波器6201可執行於時間線上之區塊索引n進行之濾波操作,及/或於頻格(frequency bin)k進行之濾波操作。Regarding the filtering unit 620 , the filtering unit 620 may at least include a filter 6201 and optionally further include an envelope detector 6202 . The filter 6201 can perform a filtering operation at block index n on the timeline, and/or a filtering operation at frequency bin k.

若濾波單元620包含濾波器6201且不包含包絡偵測器6202,濾波器6201可對絕對值資料|X n(k)|進行濾波以產生濾波訊號R n(k),且濾波訊號R n(k)可被輸入至減法器630。 If the filtering unit 620 includes a filter 6201 and does not include an envelope detector 6202, the filter 6201 can filter the absolute value data |X n (k)| to generate a filtered signal R n (k), and the filtered signal R n ( k) may be input to the subtractor 630 .

另一情況中,若濾波單元620包含濾波器6201及包絡偵測器6202,濾波器6201可對絕對值資料|X n(k)|進行濾波以產生濾波訊號R n(k)以作為初步濾波訊號,其中初步濾波訊號可包含初步濾波訊號向量。包絡偵測器6202可求得初步濾波訊號R n(k)之包絡資訊,以產生濾波訊號E n(k)。包絡偵測器6202可使結果於時間線上更為平滑,且可減少突發雜訊造成的非預期的抖動,因為系統主要是用以處理固定雜訊。 In another case, if the filtering unit 620 includes a filter 6201 and an envelope detector 6202, the filter 6201 can filter the absolute value data |X n (k)| to generate a filtered signal R n (k) as a preliminary filter signal, wherein the preliminary filtered signal may include a preliminary filtered signal vector. The envelope detector 6202 can obtain the envelope information of the preliminary filtered signal R n (k) to generate the filtered signal E n (k). The envelope detector 6202 can make the result smoother on the timeline, and can reduce unexpected jitter caused by burst noise, because the system is mainly used to deal with fixed noise.

第7圖為第6圖之控制單元640的有限狀態機(FSM)的示意圖。控制單元640可用於追蹤控制。第k頻格的追蹤控制有限狀態機可如第7圖所示。有限狀態機可包含狀態710至730。FIG. 7 is a schematic diagram of a finite state machine (FSM) of the control unit 640 in FIG. 6 . The control unit 640 can be used for tracking control. The tracking control finite state machine of the k-th frequency grid can be shown in FIG. 7 . A finite state machine may include states 710-730.

狀態710可為閒置狀態,對應於都普勒訊號處理裝置100為閒置的情況。當都普勒訊號處理裝置100啟動時,可發出啟動訊號S system_startup。當接收物體Obj的資訊時,可求得頻域估測訊號U n(k)之初始資料U initial(k),然後進入狀態715。控制單元640可根據一時段之差值資料Δ n(k)及濾波訊號R n(k) or E n(k)求得初始資料U initial(k)。根據實施例,初始資料U initial(k)可包含初始值。 The state 710 can be an idle state, corresponding to the situation that the Doppler signal processing device 100 is idle. When the Doppler signal processing device 100 starts up, it can send out the startup signal S system_startup . When receiving the information of the object Obj, the initial data U initial (k) of the frequency-domain estimation signal U n (k) can be obtained, and then enter the state 715 . The control unit 640 can obtain the initial data U initial (k) according to the difference data Δ n (k) and the filter signal R n (k) or E n (k) for a period of time. According to an embodiment, the initial data U initial (k) may include an initial value.

舉例而言,若濾波訊號為第6圖的包絡偵測器6202產生的濾波訊號E n(k),上述相關於濾波訊號E n(k)的時段可為訊號E 0(k),E 1(k),E 2(k)…E Nacq-1(k)所經過的時間,也就是,時域區塊之索引n從0變為Nacq-1的時間。狀態715可為資訊獲取狀態,其中U initial可為複數個振幅值(也就是訊號強度)之平均。舉例而言, U initial(k)可為AVG{E 0(k), E 1(k), E 2(k)…E Nacq-1(k)},且AVG{}可為平均函數。 For example, if the filtered signal is the filtered signal En ( k ) generated by the envelope detector 6202 in FIG. (k), E 2 (k)...E Nacq-1 (k) elapsed time, that is, the time when the index n of the time domain block changes from 0 to Nacq-1. The state 715 may be an information acquisition state, where U initial may be an average of a plurality of amplitude values (ie, signal strength). For example, U initial (k) may be AVG{E 0 (k), E 1 (k), E 2 (k) . . . E Nacq-1 (k)}, and AVG{} may be an average function.

於狀態715之後,有限狀態機可進入狀態720。狀態720可為慢追蹤狀態。控制單元640可進入慢追蹤狀態(狀態720)以使用第一速度更新頻域干擾估測訊號U n(k)。此情況中,訊號之更新可較慢,且可保留訊號中較多的原始部份。 After state 715 , the finite state machine may enter state 720 . State 720 may be a slow tracking state. The control unit 640 can enter a slow tracking state (state 720 ) to update the frequency-domain interference estimation signal U n (k) at a first speed. In this case, the update of the signal can be slower and more original parts of the signal can be preserved.

於狀態720之後,有限狀態機可根據訊號S to_fast進入狀態725。狀態725可為快追蹤狀態。控制單元640可進入快追蹤狀態(狀態725)以使用第二速度更新頻域干擾估測訊號U n(k),其中第二速度高於第一速度。此情況中,訊號之更新可較快,且可保留訊號中較少的原始部份。 After state 720, the finite state machine can enter state 725 according to the signal S to_fast . State 725 may be a fast track state. The control unit 640 can enter the fast tracking state (state 725 ) to update the frequency-domain interference estimation signal U n (k) at a second speed, wherein the second speed is higher than the first speed. In this case, the update of the signal can be faster and less original parts of the signal can be preserved.

於狀態720之後,有限狀態機可根據訊號S ~to_fast進入狀態725。如第7圖所示,有限狀態機可根據需求交替地進入狀態720或狀態725。 After state 720, the finite state machine can enter state 725 according to the signal S ~to_fast . As shown in FIG. 7, the finite state machine can alternately enter state 720 or state 725 as desired.

於狀態720之後,有限狀態機可根據訊號S ~(to_slow|to_fast)進入狀態730。狀態730可為凍結狀態,用以停止更新頻域干擾估測訊號U n(k)。有限狀態機可根據訊號S to_slow從狀態730進入狀態720。 After the state 720, the finite state machine can enter the state 730 according to the signal S ~(to_slow|to_fast) . The state 730 may be a freezing state, which is used to stop updating the frequency-domain interference estimation signal Un (k). The finite state machine can enter the state 720 from the state 730 according to the signal S to_slow .

第8圖為第6圖的濾波單元620產生的濾波訊號之範圍示意圖。第8圖之範圍可相關於第7圖所示的狀態。如上述,濾波訊號可為第6圖之濾波訊號R n(k)或E n(k),在此以濾波訊號E n(k)為例。當濾波訊號E n(k)的強度介於第一門檻值及高於第一門檻值之第二門檻值之間,控制單元640可進入慢追蹤狀態(例如,第7圖之有限狀態機的狀態720)。舉例而言,如第8圖所示,第一門檻值可為–λ•U n(k),且第二門檻值可為γ•U n(k),其中λ及γ可為給定的正值。當濾波訊號E n(k)的強度低於第一門檻值–λ•U n(k),控制單元640進入快追蹤狀態(例如,第7圖之有限狀態機的狀態725)。當濾波訊號E n(k)的強度高於第二門檻值γ•U n(k),控制單元640可進入凍結狀態(例如,第7圖之有限狀態機的狀態730)。換言之,上述的訊號S to_slow可相關於E n(k) < γ•U n(k)且E n(k) ≥ –λ•U n(k)之情況。上述的訊號S to_fast可相關於另一情況,即E n(k) < –λ•U n(k)之情況。上述的訊號S ~(to_slow|to_fast)可相關於另一情況,即E n(k) ≥ γ•U n(k)之情況。 FIG. 8 is a schematic diagram of the range of the filtered signal generated by the filtering unit 620 in FIG. 6 . The range of FIG. 8 can be related to the state shown in FIG. 7 . As mentioned above, the filtered signal can be the filtered signal R n (k) or E n (k) in FIG. 6 , and the filtered signal E n (k) is taken as an example here. When the intensity of the filtered signal E n (k) is between the first threshold value and the second threshold value higher than the first threshold value, the control unit 640 can enter the slow tracking state (for example, the finite state machine in FIG. 7 status 720). For example, as shown in FIG. 8, the first threshold may be -λ U n (k), and the second threshold may be γ U n (k), where λ and γ may be given Positive value. When the intensity of the filtered signal En(k) is lower than the first threshold value -λ•U n ( k), the control unit 640 enters a fast-tracking state (eg, the state 725 of the finite state machine in FIG. 7 ). When the intensity of the filtered signal En(k) is higher than the second threshold γ•U n ( k), the control unit 640 may enter into a freezing state (eg, the state 730 of the finite state machine in FIG. 7 ). In other words, the above-mentioned signal S to_slow may be related to the condition of E n (k) < γ • U n (k) and E n (k) ≥ -λ • U n (k). The above-mentioned signal S to_fast may be related to another situation, that is, the situation of E n (k) < -λ·U n (k). The above signal S ~(to_slow|to_fast) can be related to another situation, that is, the situation of E n (k) ≥ γ•U n (k).

關於第6圖的調整資料Q n(k),調整資料Q n(k)可表示為以下的等式eq-5: Q n(k) =

Figure 02_image011
…eq-5; Regarding the adjustment data Q n (k) in Fig. 6, the adjustment data Q n (k) can be expressed as the following equation eq-5: Q n (k) =
Figure 02_image011
...eq-5;

其中α fast及α slow為介於0至1之間的正值,且可為選用以產生調整資料Q n(k)。舉例而言,等式eq-5所述之「快追蹤」狀態、「慢追蹤」狀態及「凍結」狀態可分別對應於第7圖的狀態725、狀態720及狀態730。 Wherein α fast and α slow are positive values between 0 and 1, and can be selected to generate the adjustment data Q n (k). For example, the "fast track" state, "slow track" state, and "freeze" state described in equation eq-5 may correspond to state 725, state 720, and state 730 of FIG. 7, respectively.

第1圖至第7圖可描述實施例提供的裝置之架構及狀態。第1圖之都普勒訊號處理裝置100中,第2圖、第3圖、第5圖及第6圖之各方塊可用適當的硬體(例如電路)搭配適宜的控制軟體及/或韌體而實現,或可用微處理器(MCU)或數位訊號處理器(DSP)內嵌的軟體功能而實現。Figures 1 to 7 can describe the structure and state of the device provided by the embodiment. In the Doppler signal processing device 100 in FIG. 1, the blocks in FIG. 2, FIG. 3, FIG. 5 and FIG. and implemented, or can be implemented with software functions embedded in a microprocessor (MCU) or a digital signal processor (DSP).

第9圖為第1圖中,根據接收無線訊號d’抑制背景之干擾的都普勒訊號處理方法900的流程圖。都普勒訊號處理方法900可藉由上述訊號偵測裝置10及都普勒訊號處理裝置100而執行,且可包含以下步驟。FIG. 9 is a flowchart of a Doppler signal processing method 900 for suppressing background interference according to the received wireless signal d' in FIG. 1 . The Doppler signal processing method 900 can be implemented by the above-mentioned signal detection device 10 and the Doppler signal processing device 100 , and can include the following steps.

步驟910:根據數位訊號x(i)產生頻域訊號X n(k),其中數位訊號x(i)可對應於接收無線訊號d’,且數位訊號x(i)包含背景之干擾產生之干擾能量; Step 910: Generate a frequency-domain signal X n (k) according to the digital signal x(i), wherein the digital signal x(i) can correspond to the received wireless signal d', and the digital signal x(i) includes interference caused by background interference energy;

步驟920:根據頻域訊號X n(k)及頻域干擾估測訊號U n(k)執行抑制操作以產生干擾抑制頻域訊號Y n(k),其中於干擾抑制頻域訊號Y n(k)中,干擾能量於頻域可被抑制; Step 920: Perform a suppression operation according to the frequency-domain signal X n (k) and the frequency-domain interference estimation signal U n (k) to generate an interference-suppressed frequency-domain signal Y n (k), wherein the interference-suppressed frequency-domain signal Y n ( In k), the interference energy can be suppressed in the frequency domain;

步驟930:根據頻域訊號X n(k)產生或更新頻域干擾估測訊號U n(k),其中頻域干擾估測訊號U n(k)對應於干擾於頻域之能量分佈;及 Step 930: Generate or update a frequency-domain interference estimation signal U n (k) according to the frequency-domain signal X n (k), wherein the frequency-domain interference estimation signal U n (k) corresponds to the energy distribution of the interference in the frequency domain; and

步驟940:根據干擾抑制頻域訊號Y n(k)產生干擾抑制時域數位訊號y(i),其中干擾抑制時域數位訊號y(i)係相關於干擾能量已被抑制之數位訊號x(i)。 Step 940: Generate an interference-suppressed time-domain digital signal y(i) according to the interference-suppressed frequency-domain signal Y n (k), wherein the interference-suppressed time-domain digital signal y(i) is related to the digital signal x( i).

步驟910、920、930及940可分別相關於第2圖、第3圖及第5圖所示的頻率分析器110、干擾抑制器120、干擾基線估測器130及合成器140。相關的細節可如上述,故不重述。Steps 910, 920, 930, and 940 may be associated with the frequency analyzer 110, the interference suppressor 120, the interference baseline estimator 130, and the synthesizer 140 shown in FIG. 2, FIG. 3, and FIG. 5, respectively. Relevant details can be as above, so it will not be repeated.

總結而言,實施例提供的訊號偵測裝置10、都普勒訊號處理裝置100及都普勒訊號處理方法900可有效地藉由抑制干擾以更新偵測結果,時域信號中的固定干擾(例如背景中的準固定干擾)可大幅減低,因此,可達到精確的追蹤控制。此外,干擾抑制計算可降低時域信號中背景中特定頻段對應的干擾能量,故可改善偵測精準度。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, the signal detection device 10, the Doppler signal processing device 100 and the Doppler signal processing method 900 provided by the embodiment can effectively update the detection result by suppressing the interference, and the fixed interference in the time-domain signal ( For example, quasi-stationary disturbances in the background) can be greatly reduced and, therefore, precise tracking control can be achieved. In addition, the interference suppression calculation can reduce the interference energy corresponding to a specific frequency band in the background in the time domain signal, so the detection accuracy can be improved. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:訊號偵測裝置 100:都普勒訊號處理裝置 1066:接收單元 1071,1072:混合器 1073:相位調整單元 1074,1075:類比轉數位轉換器 110:頻率分析器 1101:緩衝操作 1102:短時距傅立葉轉換 110A,140A:濾波器組 120:干擾抑制器 130:干擾基線估測器 140:合成器 1401:逆快速傅立葉轉換 1402:重疊累加操作 15,16:數位轉類比轉換器 17:數位串行干擾單元 610:絕對值資料單元 620:濾波單元 6201:濾波器 6202:包絡偵測器 630:減法器 640:控制單元 650:加法器 660:延遲單元 710,715,720,725,730:狀態 900:都普勒訊號處理方法 910,920,930,940:步驟 ANtx,ANrx:天線 Atx,Arx:放大裝置 B0,B1,B2,B3,B4,B5:區塊 d:無線訊號 d':接收無線訊號 fc:載波訊號 fc':調整後載波訊號 Obj:物體 OSC:振盪器 Q n(k):調整資料 R n(k),E n(k):濾波訊號 S1,S2,x(i),S1',S2':數位訊號 S1a,S2a:類比訊號 S system_startup:啟動訊號 U n(k):頻域干擾估測訊號 U n+1(k):更新頻域干擾估測訊號 w(m):窗格訊號 X n(k):頻域訊號 x n(m),S to_fast,S ~to_fast,S to_slow,S ~(to_slow|to_fast):訊號 x(i):數位訊號 y(i):干擾抑制時域數位訊號 Y n(k):干擾抑制頻域訊號 y n(m):時域訊號 |X n(k)|:絕對值資料 Δ n(k):差值資料 10: signal detection device 100: Doppler signal processing device 1066: receiving unit 1071, 1072: mixer 1073: phase adjustment unit 1074, 1075: analog to digital converter 110: frequency analyzer 1101: buffer operation 1102: short Time-distance Fourier Transform 110A, 140A: Filter Bank 120: Interference Suppressor 130: Interference Baseline Estimator 140: Synthesizer 1401: Inverse Fast Fourier Transform 1402: Overlap-Accumulate Operation 15, 16: Digital-to-Analog Converter 17: Digital Serial interference unit 610: absolute value data unit 620: filter unit 6201: filter 6202: envelope detector 630: subtractor 640: control unit 650: adder 660: delay unit 710, 715, 720, 725, 730: state 900: Doppler signal processing Methods 910, 920, 930, 940: Steps ANtx, ANrx: Antenna Atx, Arx: Amplifying devices B0, B1, B2, B3, B4, B5: Block d: Wireless signal d': Received wireless signal fc: Carrier signal fc': Adjusted carrier signal Obj: Object OSC: Oscillator Q n (k): Adjustment data R n (k), E n (k): Filtered signals S1, S2, x(i), S1', S2': Digital signals S1a, S2a: Analog signal S system_startup : start signal U n (k): frequency domain interference estimation signal U n+1 (k): update frequency domain interference estimation signal w(m): pane signal X n (k): frequency domain Signal x n (m), S to_fast , S ~to_fast , S to_slow , S ~(to_slow|to_fast) : Signal x(i): Digital signal y(i): Interference suppression time-domain digital signal Y n (k): Interference suppression frequency domain signal y n (m): time domain signal |X n (k)|: absolute value data Δ n (k): difference data

第1圖係實施例中,用以偵測物體之訊號偵測裝置的示意圖。 第2圖為第1圖之都普勒訊號處理裝置的示意圖。 第3圖為一實施例中,第1圖及第2圖之都普勒訊號處理裝置的示意圖。 第4圖為相關於第3圖之短時距傅立葉轉換的訊號處理的示意圖。 第5圖為一實施例中,第1圖及第2圖之都普勒訊號處理裝置的示意圖。 第6圖為第2圖、第3圖及第5圖所述的干擾基線估測器的示意圖。 第7圖為第6圖之控制單元的有限狀態機的示意圖。 第8圖為第6圖的濾波單元產生的濾波訊號之範圍示意圖。 第9圖為一實施例中,抑制干擾的都普勒訊號處理方法的流程圖。 Fig. 1 is a schematic diagram of a signal detection device for detecting objects in an embodiment. Fig. 2 is a schematic diagram of the Doppler signal processing device in Fig. 1. Fig. 3 is a schematic diagram of the Doppler signal processing device in Fig. 1 and Fig. 2 in an embodiment. FIG. 4 is a schematic diagram of signal processing related to the short-time Fourier transform in FIG. 3 . Fig. 5 is a schematic diagram of the Doppler signal processing device in Fig. 1 and Fig. 2 in an embodiment. FIG. 6 is a schematic diagram of the interference baseline estimator described in FIG. 2 , FIG. 3 and FIG. 5 . FIG. 7 is a schematic diagram of the finite state machine of the control unit in FIG. 6 . FIG. 8 is a schematic diagram of the scope of the filtered signal generated by the filtering unit in FIG. 6 . FIG. 9 is a flowchart of a Doppler signal processing method for suppressing interference in an embodiment.

100:都普勒訊號處理裝置 100: Doppler signal processing device

110:頻率分析器 110:Frequency Analyzer

120:干擾抑制器 120: Interference suppressor

130:干擾基線估測器 130: Interference baseline estimator

140:合成器 140: Synthesizer

Un(k):頻域干擾估測訊號 U n (k): frequency domain interference estimation signal

Xn(k):頻域訊號 X n (k): frequency domain signal

x(i):數位訊號 x(i): digital signal

y(i):干擾抑制時域數位訊號 y(i): Interference suppressed time-domain digital signal

Yn(k):干擾抑制頻域訊號 Y n (k): Interference suppression frequency domain signal

Claims (20)

一種都普勒訊號處理裝置,用以根據一接收無線訊號抑制一背景中之干擾,該都普勒訊號處理裝置包含: 一頻率分析器,用以根據一數位訊號產生一頻域訊號,其中該數位訊號對應於該接收無線訊號,且該數位訊號包含該背景之該干擾產生之干擾能量; 一干擾抑制器,用以根據該頻域訊號及一頻域干擾估測訊號執行一抑制操作以產生一干擾抑制頻域訊號,其中於該干擾抑制頻域訊號中,該干擾能量於頻域係被該頻域干擾估測訊號所抑制; 一干擾基線估測器,用以根據該頻域訊號產生或更新該頻域干擾估測訊號,其中該頻域干擾估測訊號對應於該干擾在該頻域中之一能量分佈;及 一合成器,用以根據該干擾抑制頻域訊號產生一干擾抑制時域數位訊號,其中該干擾抑制時域數位訊號係相關於該干擾能量已被抑制之該數位訊號。 A Doppler signal processing device for suppressing interference in a background according to a received wireless signal, the Doppler signal processing device comprising: a frequency analyzer for generating a frequency-domain signal based on a digital signal corresponding to the received wireless signal, and the digital signal includes interference energy generated by the interference of the background; An interference suppressor for performing a suppression operation according to the frequency domain signal and a frequency domain interference estimation signal to generate an interference suppressed frequency domain signal, wherein in the interference suppressed frequency domain signal, the interference energy is in the frequency domain system suppressed by the frequency-domain interference estimate signal; an interference baseline estimator for generating or updating the frequency-domain interference estimation signal according to the frequency-domain signal, wherein the frequency-domain interference estimation signal corresponds to an energy distribution of the interference in the frequency domain; and A synthesizer is used for generating an interference-suppressed time-domain digital signal according to the interference-suppressed frequency-domain signal, wherein the interference-suppressed time-domain digital signal is related to the digital signal whose interference energy has been suppressed. 如請求項1所述的都普勒訊號處理裝置,其中該頻域訊號包含一頻域訊號向量,且該頻域干擾估測訊號包含一頻域干擾估測訊號向量。The Doppler signal processing device as claimed in claim 1, wherein the frequency-domain signal includes a frequency-domain signal vector, and the frequency-domain interference estimation signal includes a frequency-domain interference estimation signal vector. 如請求項1所述的都普勒訊號處理裝置,其中該頻率分析器用以執行一短時距傅立葉轉換以使用該數位訊號產生該頻域訊號。The Doppler signal processing device as claimed in claim 1, wherein the frequency analyzer is used to perform a short-time Fourier transform to generate the frequency domain signal using the digital signal. 如請求項3所述的都普勒訊號處理裝置,其中該頻率分析器另用以執行一緩衝操作以收集相異時點之該數位訊號以作為該短時距傅立葉轉換之一輸入。The Doppler signal processing device as claimed in claim 3, wherein the frequency analyzer is further configured to perform a buffering operation to collect the digital signals at different time points as an input of the short-time-distance Fourier transform. 如請求項3所述的都普勒訊號處理裝置,其中該合成器用以使用該干擾抑制頻域訊號執行一逆快速傅立葉轉換以產生相關於該干擾抑制時域數位訊號之一時域訊號。The Doppler signal processing device as claimed in claim 3, wherein the synthesizer is used to perform an inverse fast Fourier transform using the interference-suppressed frequency-domain signal to generate a time-domain signal corresponding to the interference-suppressed time-domain digital signal. 如請求項5所述的都普勒訊號處理裝置,其中該合成器另用以使用該時域訊號執行一重疊累加操作以產生該干擾抑制時域數位訊號。The Doppler signal processing device as claimed in claim 5, wherein the synthesizer is further used to perform an overlap-and-accumulate operation using the time-domain signal to generate the interference-suppressed time-domain digital signal. 如請求項1所述的都普勒訊號處理裝置,其中該頻率分析器包含一濾波器組,用以對該數位訊號進行濾波以產生該頻域訊號。The Doppler signal processing device as claimed in claim 1, wherein the frequency analyzer includes a filter bank for filtering the digital signal to generate the frequency domain signal. 如請求項7所述的都普勒訊號處理裝置,其中該合成器包含一濾波器組,用以對該干擾抑制頻域訊號進行濾波以產生該干擾抑制時域數位訊號。The Doppler signal processing device as claimed in claim 7, wherein the synthesizer includes a filter bank for filtering the interference-suppressed frequency-domain signal to generate the interference-suppressed time-domain digital signal. 如請求項1所述的都普勒訊號處理裝置,其中該干擾基線估測器包含: 一絕對值資料單元,用以產生該頻域訊號之一絕對值資料; 一濾波單元,用以根據該絕對值資料產生一濾波訊號; 一減法器,用以產生該濾波訊號及該頻域干擾估測訊號之一差值資料; 一控制單元,用以處理該差值資料以產生一調整資料; 一加法器,用以相加該調整資料及該頻域干擾估測訊號以產生一更新頻域干擾估測訊號;及 一延遲單元,用以使用該更新頻域干擾估測訊號以置換該頻域干擾估測訊號。 The Doppler signal processing device as described in Claim 1, wherein the interference baseline estimator includes: an absolute value data unit for generating an absolute value data of the frequency domain signal; a filter unit, used to generate a filter signal according to the absolute value data; a subtractor for generating difference data between the filtered signal and the frequency-domain interference estimation signal; a control unit for processing the difference data to generate an adjustment data; an adder for adding the adjustment data and the frequency domain interference estimation signal to generate an updated frequency domain interference estimation signal; and A delay unit is used for replacing the frequency domain interference estimation signal with the updated frequency domain interference estimation signal. 如請求項9所述的都普勒訊號處理裝置,其中該絕對值資料包含一絕對值,該差值資料包含一差值,該調整資料包含一調整值,且該濾波訊號包含一濾波資料向量。The Doppler signal processing device as described in claim 9, wherein the absolute value data includes an absolute value, the difference data includes a difference value, the adjustment data includes an adjustment value, and the filtered signal includes a filter data vector . 如請求項9所述的都普勒訊號處理裝置,其中該濾波單元包含: 一濾波器,用以對該絕對值資料進行濾波以產生該濾波訊號。 The Doppler signal processing device as described in Claim 9, wherein the filtering unit includes: A filter is used for filtering the absolute value data to generate the filtered signal. 如請求項9所述的都普勒訊號處理裝置,其中該濾波單元包含: 一濾波器,用以對該絕對值資料進行濾波以產生一初步濾波訊號;及 一包絡偵測器,用以求得該初步濾波訊號之一包絡資訊以產生該濾波訊號。 The Doppler signal processing device as described in Claim 9, wherein the filtering unit includes: a filter for filtering the absolute value data to generate a preliminary filtered signal; and An envelope detector is used to obtain envelope information of the preliminary filtered signal to generate the filtered signal. 如請求項12所述的都普勒訊號處理裝置,其中該初步濾波訊號包含一初步濾波訊號向量。The Doppler signal processing device as claimed in claim 12, wherein the preliminary filtered signal comprises a preliminary filtered signal vector. 如請求項12所述的都普勒訊號處理裝置,其中該控制單元另用以: 根據一時段之該差值資料及該濾波訊號求得一初始資料,進入一慢追蹤狀態以使用一第一速度更新該頻域干擾估測訊號,進入一快追蹤狀態以使用高於該第一速度之一第二速度更新該頻域干擾估測訊號,及進入一凍結狀態以停止更新該頻域干擾估測訊號。 The Doppler signal processing device as described in claim 12, wherein the control unit is additionally used for: Obtain an initial data according to the difference data and the filtered signal of a period, enter a slow tracking state to use a first speed to update the frequency domain interference estimation signal, and enter a fast tracking state to use a speed higher than the first A second one of the speeds updates the frequency-domain interference estimation signal and enters a freeze state to stop updating the frequency-domain interference estimation signal. 如請求項14所述的都普勒訊號處理裝置,其中該初始資料包含一初始值。The Doppler signal processing device as claimed in claim 14, wherein the initial data includes an initial value. 如請求項14所述的都普勒訊號處理裝置,其中: 當該濾波訊號的強度介於一第一門檻值及高於該第一門檻值之一第二門檻值之間,該控制單元進入該慢追蹤狀態; 當該濾波訊號的強度低於該第一門檻值,該控制單元進入該快追蹤狀態;及 當該濾波訊號的強度高於該第二門檻值,該控制單元進入該凍結狀態。 The Doppler signal processing device as described in claim 14, wherein: when the strength of the filtered signal is between a first threshold and a second threshold higher than the first threshold, the control unit enters the slow tracking state; when the strength of the filtered signal is lower than the first threshold, the control unit enters the fast tracking state; and When the intensity of the filtered signal is higher than the second threshold, the control unit enters the freezing state. 一種都普勒訊號處理方法,用以根據一接收無線訊號抑制一背景之干擾,該都普勒訊號處理方法包含: 根據一數位訊號產生一頻域訊號,其中該數位訊號對應於該接收無線訊號,且該數位訊號包含該背景之該干擾產生之干擾能量; 根據該頻域訊號及一頻域干擾估測訊號執行一抑制操作以產生一干擾抑制頻域訊號,其中於該干擾抑制頻域訊號中,該干擾能量於頻域係被抑制; 根據該頻域訊號產生或更新該頻域干擾估測訊號,其中該頻域干擾估測訊號對應於該干擾於該頻域之一能量分佈;及 根據該干擾抑制頻域訊號產生一干擾抑制時域數位訊號,其中該干擾抑制時域數位訊號係相關於該干擾能量已被抑制之該數位訊號。 A Doppler signal processing method for suppressing a background interference according to a received wireless signal, the Doppler signal processing method comprising: generating a frequency domain signal based on a digital signal, wherein the digital signal corresponds to the received wireless signal, and the digital signal includes interference energy generated by the background interference; performing a suppression operation based on the frequency-domain signal and a frequency-domain interference estimation signal to generate an interference-suppressed frequency-domain signal, wherein the interference energy is suppressed in the frequency domain in the interference-suppressed frequency-domain signal; generating or updating the frequency domain interference estimation signal according to the frequency domain signal, wherein the frequency domain interference estimation signal corresponds to an energy distribution of the interference in the frequency domain; and An interference-suppressed time-domain digital signal is generated according to the interference-suppressed frequency-domain signal, wherein the interference-suppressed time-domain digital signal is related to the digital signal whose interference energy has been suppressed. 如請求項17所述的都普勒訊號處理方法,其中: 根據該數位訊號產生該頻域訊號係對該數位訊號執行一短時距傅立葉轉換以產生該頻域訊號;及 該方法另包含使用該干擾抑制頻域訊號執行一逆快速傅立葉轉換以產生相關於該干擾抑制時域數位訊號之一時域訊號。 The Doppler signal processing method as described in Claim 17, wherein: generating the frequency domain signal from the digital signal by performing a short-time Fourier transform on the digital signal to generate the frequency domain signal; and The method further includes performing an inverse fast Fourier transform using the interference-suppressed frequency-domain signal to generate a time-domain signal related to the interference-suppressed time-domain digital signal. 如請求項18所述的都普勒訊號處理方法,另包含: 使用該時域訊號執行一重疊累加操作以產生該干擾抑制時域數位訊號。 The Doppler signal processing method as described in Claim 18, further comprising: An overlap-and-accumulate operation is performed using the time-domain signal to generate the interference-suppressed time-domain digital signal. 如請求項17所述的都普勒訊號處理方法,其中: 根據該數位訊號產生該頻域訊號係對該數位訊號進行濾波以產生該頻域訊號;及 根據該干擾抑制頻域訊號產生該干擾抑制時域數位訊號係對該干擾抑制頻域訊號進行濾波以產生該干擾抑制時域數位訊號。 The Doppler signal processing method as described in Claim 17, wherein: generating the frequency domain signal from the digital signal filters the digital signal to generate the frequency domain signal; and Generating the interference-suppressed time-domain digital signal based on the interference-suppressed frequency-domain signal is filtering the interference-suppressed frequency-domain signal to generate the interference-suppressed time-domain digital signal.
TW110133880A 2021-04-13 2021-09-11 Doppler signal processing device and doppler signal processing method TWI802001B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/228,722 2021-04-13
US17/228,722 US20210231789A1 (en) 2018-06-28 2021-04-13 Doppler signal processing device and method thereof for interference suppression

Publications (2)

Publication Number Publication Date
TW202240198A true TW202240198A (en) 2022-10-16
TWI802001B TWI802001B (en) 2023-05-11

Family

ID=83573759

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133880A TWI802001B (en) 2021-04-13 2021-09-11 Doppler signal processing device and doppler signal processing method

Country Status (2)

Country Link
CN (1) CN115201763A (en)
TW (1) TWI802001B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669522B (en) * 2018-06-28 2019-08-21 立積電子股份有限公司 Doppler signal processing device and signal processing method
EP3637127A1 (en) * 2018-10-12 2020-04-15 Axis AB Method, device, and system for interference reduction in a frequency-modulated continuous-wave radar unit
DE102018126034A1 (en) * 2018-10-19 2020-04-23 Infineon Technologies Ag FMCW RADAR WITH INTERFERENCE CANCELLATION

Also Published As

Publication number Publication date
CN115201763A (en) 2022-10-18
TWI802001B (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP7327880B2 (en) Noise reduction in radar systems
JP7064111B2 (en) Interference detection in a continuously wave (FMWC) radar system
TWI669522B (en) Doppler signal processing device and signal processing method
US20210231789A1 (en) Doppler signal processing device and method thereof for interference suppression
US11209468B2 (en) Apparatus and method for detecting object features
Maskell et al. The discrete-time quadrature subsample estimation of delay
KR20120080064A (en) Object detection method and radar system for providing the same method
AU2015290213B2 (en) Improved signal detection and characterization
US20060273942A1 (en) Linearization system and method
JP2011520392A (en) Frequency spurious detection and suppression
JP2009058308A (en) Method and device for eliminating chirp radar incoming interference wave
CN111693136B (en) Acoustic surface wave resonator frequency estimation algorithm adopting echo signal autocorrelation phase spectrum
TWI802001B (en) Doppler signal processing device and doppler signal processing method
JP2012247303A (en) Frequency detection method and device
CN115903588B (en) Signal acquisition method and device of azimuth electromagnetic wave resistivity instrument while drilling
JPH06216773A (en) A/d coding circuit with automatic zero-offset compenzating function
JP2022120352A (en) Radar signal processing device, radar device, radar signal processing method, and radar signal processing program
TWI660591B (en) Phase information extraction circuit and phase information extraction method for object movement
CN116148779B (en) Power frequency filtering method, system, storage medium and electronic equipment
CN103654844A (en) Doppler sound processing method and device
JP2014168158A (en) Receiver
US20220252710A1 (en) Radar signal processing device, radar device, radar signal processing method and non-transitory computer-readable medium
CN105933032B (en) A kind of solution in frequency domain algorithm under power enhancing background
JP2007093490A (en) Am/fm mixed signal processor
CN116343817A (en) Convolution blind source separation method for gas turbine related noise source identification