TW202239179A - 用於訊息分配之系統及方法 - Google Patents
用於訊息分配之系統及方法 Download PDFInfo
- Publication number
- TW202239179A TW202239179A TW110111642A TW110111642A TW202239179A TW 202239179 A TW202239179 A TW 202239179A TW 110111642 A TW110111642 A TW 110111642A TW 110111642 A TW110111642 A TW 110111642A TW 202239179 A TW202239179 A TW 202239179A
- Authority
- TW
- Taiwan
- Prior art keywords
- message
- user terminal
- feedback
- preference
- evaluation unit
- Prior art date
Links
Images
Landscapes
- Information Transfer Between Computers (AREA)
Abstract
本申請案係關於一種訊息分配系統及訊息分配方法。該訊息分配系統包含一收集單元及一評估單元。該收集單元經組態以自一使用者終端機收集對一訊息之一回饋。該評估單元經連接至該收集單元,且經組態以根據該回饋來評估該使用者終端機對該訊息之一偏好。該回饋包含一回應動作回饋及/或一影響動作回饋。根據本申請案,提高使用者終端機正在尋找之內容的可發現性,且亦改良給該使用者終端機該訊息的滿意度。
Description
本發明係關於資訊及通信技術,且特定言之係關於一種用於訊息分配之系統及方法。
隨著網際網路及行動網路之蓬勃發展,具有一網路存取功能之電子產品(諸如一行動電話、一平板電腦、一桌上型電腦、一筆記型電腦及一智慧家電)已被公眾廣泛使用。另外,資訊大量存在於網路上且可方便地獲得。為了吸引人們的注意力,一些應用程式(APP)或平台總是藉由推播通知來向使用者終端機分配訊息。
自動地或手動地發送當前推播通知以將使用者帶回平台且建立/增加其等對於平台之親和力。當前系統並非個人化的,且其限於使用者關注(follow)之直播主(streamer)、高表演性(high performing)直播主或優惠/促銷(offers/promotions)。
然而,在錯誤的時間具有不適切內容之通知完全不會吸引人們的注意力,有時令使用者感到惱火。因此,在一適當時間具有適當內容之個人化通知係一非常重要的問題。
本申請案之一實施例係關於一種訊息分配系統,其包含一收集單元及一評估單元。該收集單元經組態以自一使用者終端機收集對一訊息之一回饋。該評估單元連接至該收集單元,且經組態以根據該回饋評估該使用者終端機對該訊息之一偏好。該回饋包含一回應動作回饋及/或一影響動作回饋。該回應動作回饋包含藉由該使用者終端機對該訊息進行之一操作。該影響動作回饋包含該操作之後接著的一行為。
本申請案之另一實施例係關於一種訊息分配方法,其包含:自一使用者終端機收集對一訊息之一回饋;及根據該回饋評估該使用者終端機對該訊息之一偏好。該回饋包含一回應動作回饋及一影響動作回饋。該回應動作回饋包含藉由該使用者終端機對該訊息進行之一操作。該影響動作回饋包含該操作之後接著的一行為。
本發明提高使用者正在尋找之內容之可發現性,且進一步改良訊息對使用者而言之滿意度且最佳化使用者體驗。
圖1係根據本申請案之一些實施例之一通信系統1之一示意性組態。通信系統1包含一使用者終端機10及一伺服器20。使用者終端機10及伺服器20經由一網路90連接,網路90例如係網際網路。伺服器20包含一訊息分配系統100。訊息分配系統100經組態以將一訊息M發送至使用者終端機10且自使用者終端機10接收對訊息M之回饋F。在一些實施例中,訊息M可為文字訊息、郵件、聊天氣泡(chat bubble)、推播訊息、推播通知及類似者。在一些實施例中,訊息M之內容可為文字、圖片、聲音、音訊、視訊、實況直播(live streaming)、播客、銷售及類似者。在一些實施例中,使用者終端機10可為一使用者使用之一裝置。裝置可為電子產品。使用者可被稱為一觀看者(viewer)、直播主、播客創作者(podcaster)、觀眾(audience)、收聽者(listener)或類似者。通信系統1可包含複數個使用者終端機10,且為簡單起見在圖1及圖2中展示一使用者終端機10。
圖2係根據本申請案之一些實施例之訊息分配系統100之一示意性方塊圖。訊息分配系統100包含一收集單元110、一評估單元120及一推播單元130。收集單元110經組態以自一使用者終端機10收集對一訊息M之一回饋F。評估單元120連接至收集單元110,且經組態以根據回饋F評估使用者終端機10對訊息M之一偏好P。推播單元130連接至評估單元120,且經組態以向使用者終端機10推播訊息M。
如圖2中所展示,推播單元130向使用者終端機10推播一訊息M且收集單元110自使用者終端機10收集對訊息M之回饋F。收集單元110將對訊息M之回饋F傳輸至評估單元120且評估單元120根據回饋F評估使用者終端機10對訊息M之一偏好P。接著,推播單元130自評估單元120接收偏好P。若使用者終端機10具有對訊息M之偏好P,則推播單元130向使用者終端機10推播訊息M。另一方面,若使用者終端機10不具有對訊息M之偏好P,則推播單元130停止向使用者終端機10推播訊息M。
回饋F可指代使用者終端機10針對訊息M採取之一動作。在一些實施例中,回饋F可包含一回應動作回饋Fr及一影響動作回饋Fi。回應動作回饋Fr可指代藉由使用者終端機10操作之對訊息M之一操作。影響動作回饋Fi可指代操作之後接著的一行為。一旦使用者終端機10針對訊息M採取動作,使用者終端機10便將資料傳輸至訊息分配系統100。不同資料對應於不同類型之動作。評估單元120根據資料之不同類型來評估對訊息M之偏好P。
在一些實施例中,操作可包含點選、滑移、刪除、忽略、靜音(silencing)、關閉通知、展開、最小化,或使用者終端機10可對訊息M操作之其他操作,及上述之組合。例如,操作可包含點選訊息M或滑移以刪除訊息M。在一些實施例中,操作亦可包含忽略訊息M、關閉裝置之推播通知功能或取消訂用(unsubscribe)訊息M之推播通知,或類似者。在一些實施例中,可將訊息M從一簡化訊息M展開為一完整訊息M。操作可進一步包含展開並點選訊息M、展開並滑移以刪除訊息M等等。
在一些實施例中,評估單元120根據操作評估使用者終端機10之偏好P。例如,若使用者終端機10操作訊息M且打開應用程式,則表明使用者終端機10具有對訊息M之偏好P。另一方面,若使用者終端機10操作訊息但未打開應用程式,則表明使用者終端機10不具有對訊息M之偏好P。例如,若使用者終端機10點選訊息M,則評估單元120評估使用者終端機10具有對訊息M之一偏好P,且若使用者終端機10滑移以刪除訊息M,則評估使用者終端機10不具有對訊息M之偏好P。一旦使用者終端機10以一操作操作訊息M,使用者終端機10便將資料傳輸至訊息分配系統100。不同資料對應於不同類型之操作。評估單元120根據資料之不同類型來評估對訊息M之偏好P。
在一些實施例中,偏好P可包含對簡化訊息M之偏好P及對完整訊息M之偏好P。例如,若使用者終端機10將簡化訊息M展開為一完整訊息M且點選訊息M,則表明使用者終端機10具有對簡化及完整訊息M兩者之偏好P。另一方面,若使用者終端機10將簡化訊息M展開為一完整訊息M但未點選訊息M,則表明使用者終端機10具有對簡化訊息M之偏好P但不具有對完整訊息M之偏好。若使用者終端機10既未展開亦未點選訊息M,則表明使用者終端機10完全不具有對簡化訊息M及完整訊息M之偏好P。
在一些實施例中,行為可包含閒置、搜尋、造訪、關注、購買、發送、觀看、評論、支援、標記、收集、聲明(claiming)或使用者可在應用程式中執行之動作,及上述之組合。換言之,行為可為使用者終端機10採取之一動作或使用者終端機10在操作訊息M之後所處之一狀態。例如,使用者終端機10可能在首頁(front page)閒置片刻且關掉應用程式(app)。在一些實施例中,使用者終端機10可搜尋直播主或事件,或造訪直播主之設定檔或探索區段。在一些實施例中,使用者終端機10可進入一實況室(live room)且與直播主聊天,或向直播主發送禮物。在一些實施例中,使用者終端機10可對物品或事件進行評論。在一些實施例中,使用者終端機10可在線上商店中購買禮物、積分或會員資格。在一些實施例中,使用者終端機10可關注特定直播主、支援一直播主,或將使用者標記為忠實粉絲或最愛直播主等等。
在一些實施例中,評估單元120根據行為評估使用者終端機10之偏好P。若使用者終端機10在應用程式中花費時間且採取一些動作,則表明使用者終端機10具有對訊息M之一偏好P。另一方面,若使用者終端機10處於閒置而未進行任何事情且關掉應用程式,則表明使用者終端機10不具有對訊息M之偏好P。例如,若使用者終端機10打開應用程式且搜尋一直播主,則評估單元120評估使用者終端機10具有對訊息M之偏好P。另一方面,儘管使用者終端機10打開應用程式,但其很快退出應用程式而未觀看任何串流(stream),評估單元120評估使用者終端機10不具有對訊息M之偏好P。一旦使用者終端機10在操作訊息M之後執行一行為,使用者終端機10便將資料傳輸至訊息分配系統100。不同資料對應於不同類型之行為。評估單元120根據資料之不同類型來評估對訊息M之偏好P。
在一些實施例中,收集單元110動態地自使用者終端機10收集對訊息M之回饋F。更明確言之,收集單元110不僅收集即時回饋F,而且收集歷史回饋F。換言之,回饋F包含即時回饋F及歷史回饋F。更明確言之,回應動作回饋Fr進一步包含即時回應動作回饋Fr及歷史回應動作回饋Fr。同樣地,影響動作回饋Fi進一步包含即時影響動作回饋Fi及歷史影響動作回饋Fi。
如圖2中所展示,評估單元120進一步包含一訊息分析元件121、一頻率分析元件122及一相關性分析元件123。訊息分析元件121經組態以分析、過濾及/或篩選使用者終端機10在應用程式中留下之一使用者訊息Mu。頻率分析元件122經組態以識別使用者終端機10對訊息M之回饋F的一頻率Freq。相關性分析元件123經組態以分析訊息M與回饋F之間之一相關性R。
在一些實施例中,訊息分析元件121經組態以識別由使用者終端機10留下之使用者訊息Mu之內容。使用者訊息Mu可為文章、評論、聊天氣泡、表情符號等等,且使用者訊息Mu之內容可為文字、圖片、聲音、音訊、視訊訊息等等。訊息分析元件121可經組態以判定使用者訊息Mu (諸如一段聊天內容)是積極的、負面的還是中立的。在一些實施例中,訊息分析元件121具有一關鍵字識別部分,以識別使用者訊息Mu中之一關鍵字,且基於關鍵字評估偏好P。例如,訊息分析元件121可在一使用者訊息Mu中識別積極內容,諸如「做(do)」、「好」、「喜歡」、「喜愛」、「有趣」、微笑表情符號及類似者,且評估使用者訊息Mu係積極的。另一方面,訊息分析元件121可在一使用者訊息Mu中識別負面內容,諸如「不」、「不好」、「不喜歡」、「無聊」、悲傷表情符號及類似者,且評估使用者訊息Mu係負面的。在一些實施例中,若未識別到積極或負面內容,則訊息分析元件121可評估使用者訊息Mu係中立的。
在一些實施例中,評估單元120根據使用者訊息Mu評估使用者終端機10之偏好P。例如,若使用者終端機10在一直播室中對一直播主進行評論且評論係積極的(此意謂使用者終端機10喜歡該直播主),則評估單元120評估使用者終端機10具有對訊息M之一偏好P。另一方面,若使用者終端機10對直播主進行評論且評論係負面的,則表明使用者終端機10不具有對訊息M之偏好P。在一些實施例中,若使用者訊息Mu係中立的,則使用者訊息Mu對偏好P無貢獻。
在一些實施例中,頻率分析元件122可識別回饋F之頻率Freq。更明確言之,頻率分析元件122可識別回應動作回饋Fr及/或影響動作回饋Fi之頻率Freq。頻率分析元件122可經組態以計算使用者終端機10之操作及/或行為之頻率Freq,且判定頻率Freq是積極的、負面的還是中立的。
在一些實施例中,評估單元120根據來自頻率分析元件122之頻率Freq評估使用者終端機10之偏好P。若使用者終端機10頻繁地具有一特定操作及/或行為,則表明使用者具有對訊息M之偏好P。例如,使用者終端機10每次在點選訊息M之後皆觀看一直播主,因此頻率分析元件122分析頻率Freq係積極的,且評估單元120評估使用者終端機10具有對訊息M之一偏好P。在一些實施例中,頻率Freq可被稱為一特定操作及/或行為之次數。若次數高於、介於或低於一特定範圍,則表明頻率Freq係高的、中等的或低的。一旦評估單元120接收到使用者終端機10之資料,評估單元120便評估關於訊息M之資料類型之相似性。若存在關於訊息M之類似或相同類型之資料,則頻率分析元件122開始計算頻率Freq。在具有不同頻率Freq之情況下,可對偏好P貢獻一不同增量或減量。
在一些實施例中,頻率分析元件122可進一步偵測操作及/或行為的連續性。例如,若使用者終端機10頻繁地(諸如每天)觀看一直播主,但使用者終端機10在某一天未觀看該直播主,則頻率分析元件122偵測到頻率Freq並不是連續的。在此情境中,使用者終端機10可能忙碌且忘記觀看直播主,推播單元130可向使用者終端機10推播訊息M或一提醒訊息。然而,若使用者終端機10未點選訊息M且不再觀看該直播主,則頻率分析元件122分析頻率Freq係負面的。另一方面,若使用者終端機10開始點選訊息M且觀看直播主,則頻率分析元件122可分析頻率Freq係積極的。
在一些實施例中,頻率分析元件122進一步偵測操作及/或行為的一致性。例如,若使用者終端機10每次在點選訊息M時皆觀看一直播主,但使用者終端機10並未關注該直播主,則頻率分析元件122可偵測到觀看一直播主與關注一直播主之間的不一致性。在此情境中,推播單元130可推播與訊息M相關之一訊息M’,諸如推薦關注直播主、關注直播主免費贈禮,或類似者。在一些實施例中,收集單元110可進一步收集對訊息M’之一回饋F’,且評估單元120可進一步評估使用者終端機10對訊息M’之偏好P’。
在一些實施例中,相關性分析元件123可經組態以識別訊息M與回饋F之間的相關性R。更明確言之,相關性分析元件123經組態以識別訊息M之內容以及使用者終端機10之操作及/或行為,且判定訊息M回饋F之間的相關性R。相關性分析元件123可經組態以判定相關性R是相關或還是不相關的。
在一些實施例中,評估單元120根據來自相關性分析元件123的相關性R來評估使用者終端機10的偏好P。有時,使用者終端機10之行為與訊息M之內容毫無關係。例如,訊息M可推薦使用者終端機10觀看一直播主的實況直播。雖然使用者終端機10點選訊息M,但使用者終端機10觀看另一直播主而非觀看所推薦直播主。在此情境中,訊息M及行為的相關性R係不相關的,且回饋F對偏好P無貢獻。另一方面,若相關性R係相關的,則回饋F可對偏好P有貢獻。藉此,可改良偏好P之準確度。
在一些實施例中,若相關性R係相關的,則其可進一步分類為正相關或負相關。例如,訊息M可推薦使用者終端機10觀看一直播主之實況直播。在點選並觀看直播主之後,使用者終端機10可能訂用或取消訂用該直播主。相關性分析元件123可將相關性R判定為正相關或負相關,且接著分別對偏好P貢獻一增量或減量。
在一些實施例中,回饋F可進一步包含時間資訊。評估單元120進一步根據時間資訊評估偏好P。更明確言之,評估單元120進一步根據回應動作回饋Fr及一影響動作回饋Fi之一時間資訊評估偏好P。時間資訊可指代諸如在晚上、在早上、在中午、在夜間、在工作日、在週末或在度假之一時段。時間資訊亦可指代參與應用程式之一時間跨度,諸如1分鐘、10分鐘、1小時或更多。時間資訊亦可指代使用者終端機10之時區,諸如日本時區或美國時區。例如,使用者終端機10趨於在夜間點選訊息M並觀看實況直播,因此評估單元120評估使用者終端機10具有在夜間操作訊息M並執行行為之偏好P。使用者終端機10總是在早上滑移以刪除訊息M,因此表明使用者終端機10在早上不具有對訊息M之偏好P。
在一些實施例中,回饋F可進一步包含一位置資訊。評估單元120進一步根據位置資訊評估偏好P。更明確言之,評估單元120進一步根據回應動作回饋Fr及一影響動作回饋Fi之一位置資訊評估偏好P。位置資訊可指代國家、城市、城鎮、家、工作地點、餐廳或類似者。位置資訊亦可指代一交通工具(transportation means),諸如汽車、公共汽車、鐵路、輪船、飛機或類似者。例如,使用者終端機10在家點選訊息M且觀看直播,因此評估單元120評估使用者終端機10具有在家操作訊息M之偏好P。使用者終端機10總是在工作地點滑移以刪除訊息M,因此表明使用者終端機10在工作地點不具有對訊息M之偏好P。在一些實施例中,推播單元130可進一步向具有類似位置資訊之其他使用者推播訊息M。例如,台北市的大量使用者已造訪Arthur之設定檔,推播單元130可向台北市的其他使用者推播訊息M以推薦其等觀看該直播主。
在一些實施例中,回饋F可進一步包含裝置資訊。評估單元120進一步根據裝置資訊評估偏好P。更明確言之,評估單元120進一步根據回應動作回饋Fr及一影響動作回饋Fi之一裝置資訊評估偏好P。使用者終端機10可藉由諸如行動電話、平板、智慧家電及類似者之一裝置產生應用程式。裝置資訊可指代裝置之一當前模式,諸如處於一關閉模式、待用模式、閒置模式、忙碌模式或類似者。裝置資訊亦可指代使用者終端機10設定之一模式,諸如勿擾模式、安靜模式、靜音模式或類似者。例如,使用者在處於忙碌模式中時趨於滑移以刪除訊息,因此表明使用者終端機10在處於忙碌模式中時不具有對訊息M之偏好P。
在一些實施例中,裝置資訊亦可包含從訊息被讀取至訊息被操作之一操作時間。評估單元120可根據操作時間評估偏好P。在一些實施例中,若在讀取訊息M之後立即操作訊息M,則可表明使用者終端機10趨於不檢查訊息M之內容或甚至不喜歡任何種類之訊息。例如,若使用者終端機10在不到1秒內點選訊息M,則可表明使用者終端機10趨於不檢查訊息M且總是點選任何種類之訊息M,因此回饋F可對偏好無貢獻。若使用者終端機10在不到1秒內滑移以刪除訊息M而未檢查訊息M之內容,則可表明使用者終端機10不喜歡接收任何種類之訊息。
在一些實施例中,評估單元120可進一步根據上述資訊之組合評估偏好P。例如,紐約市的使用者終端機10在晚上頻繁地點選訊息M且觀看實況直播,評估單元120運用「在晚上」之時間資訊及「紐約市」之位置資訊評估使用者終端機10具有對訊息M之一偏好P。在一些實施例中,可根據實際需求決定上述資訊之組合。
在一些實施例中,可根據使用者終端機之一保留率評估偏好P。保留率可指代使用者終端機10在接收到訊息M之後返回並打開應用程式之比率。在一些實施例中,保留率可為在一時段期間打開應用程式之次數或參與應用程式之時長。在一些實施例中,該時段可為3天、7天、14天或類似者。例如,若在接收到訊息M之後,在接下來的7天內打開應用程式之次數或參與應用程式之時長增加,則表明使用者終端機10具有對訊息M之偏好P。
在一些實施例中,亦可根據其他準則來評估偏好P,諸如推播通知點選率、推播通知取消訂用率、透過推播通知打開應用程式並參與應用程式之對話時長、打開應用程式之頻率或類似者。若推播通知點選率增加,則表明使用者終端機10具有對訊息M之偏好P。若推播通知取消訂用率增加,則表明使用者不具有對訊息M之偏好P。若藉由點選訊息M來打開應用程式之次數增加,則表明使用者終端機10具有對訊息M之偏好P。若參與應用程式之時間長度增加,則表明使用者終端機10具有對訊息M之偏好P。若打開應用程式之頻率增加,則表明使用者終端機10具有對訊息M之偏好P。
在一些實施例中,評估單元120可進一步包含一偏好評估元件124。偏好評估元件124經組態以藉由上述準則來根據回饋F評估偏好P。在一些實施例中,偏好評估元件124可分別藉由準則或上述準則之一組合來評估偏好P。圖5係根據本申請案之一些實施例之偏好評估元件124之一示意性方塊圖。評估元件124包含一準則計算器1241、一準則評估器1242、一準則模組1243及一權重模組1244。準則計算器1241經組態以根據準則或準則組合來計算偏好P。準則評估器1242經組態以評估準則及各準則之對應權重以計算偏好P。準則模組1243經組態以儲存用於計算偏好P之準則。權重模組1244經組態以儲存各準則之權重。
如圖5中所展示,準則評估器1242自準則模組1243及權重模組1244擷取準則及對應權重。準則評估器1242可評估各準則之對應權重以判定各準則之適合權重。在判定各準則之權重之後,準則評估器1242可更新權重模組1244。接著,準則計算器1241可擷取準則及對應權重以計算偏好P。例如,準則評估器1242可自準則模組1243擷取一些準則,諸如準則C1、準則C2及準則C3。在一些實施例中,準則C1可為推播通知點選率,準則C2可為透過推播通知參與應用程式之對話時長,且準則C3可為打開應用程式之頻率。
一旦準則被判定,準則評估器1242便可評估各準則之權重。例如,準則評估器1242可分別評估準則C1、準則C2及準則C3之權重W1、權重W2及權重W3。例如,在一些實施例中,在預設情況下,權重W1、W2及W3之總和可為1,且權重W1、W2及W3可為0.3、0.3及0.4。在一些實施例中,可基於實際需求來判定權重之預設值。因此,在一些實施例中,權重可動態地變化。
在一些實施例中,準則評估器1242可根據來自一真實環境資料庫之一真實環境資料來評估權重。如圖5中所展示,準則評估器1242可自真實環境資料庫擷取真實環境資料。在一些實施例中,真實環境資料可包含應用程式之真實環境資料。例如,真實環境資料可為使用者終端機10參與應用程式之時間長度,或使用者10對應用程式貢獻之總利潤。更明確言之,使用者10貢獻之利潤可為使用者終端機10所購買、捐贈或接收之禮物或獎賞,或應用程式之商業價值。若真實環境資料減少或未如預期般增加,則準則評估器1242可調整各準則之權重。準則評估器1242可進一步觸發準則計算器1241以產生用於計算偏好P之一公式。公式可如下式:
偏好P = W1* C1 + W2* C2 + W3*C3...........(1)
在一些實施例中,評估元件124可進一步包含一訓練配對元件1245及一模型產生器1246。準則評估器1242可評估準則C1至C3,調整權重W1至W3且觸發準則計算器1241以更新訓練配對單元1245。訓練配對單元1245經組態以對由準則計算器1241更新之偏好P及回饋F進行訓練及配對。模型產生器1246經組態以產生關於回饋F之偏好P之一模型。在一些實施例中,訓練配對單元1245匯入回饋F,訓練由準則計算器1241更新之偏好P,且對回饋F之偏好P進行配對。模型產生器1246擷取偏好P及回饋F且產生偏好P及回饋F之一模型。例如,在一些實施例中,權重相對於真實環境資料動態地變化。更明確言之,準則計算器1241、準則評估器1242、訓練配對單元1245及模型產生器1246動態地工作以產生關於回饋F之偏好P之一適合模型。最終,自模型產生器1246得出經良好訓練之模型。根據本發明,可評估回饋F之一更準確偏好P且可改良對訊息M (諸如推播通知)之使用者滿意度。此外,可因此改良訊息之點選率,應用程式之點選率、參與時間及商業價值。
在一些實施例中,評估單元120可進一步經組態以識別一使用者之操作及/或行為是否存在導致增加的或減小的保留率之一變化。在此情境中,推播單元130可藉由推播一對應訊息來將使用者終端機10導向一特定回饋,以增加保留率或其他準則。
在一些實施例中,訊息分配系統100可為行為導向的。更明確言之,訊息分配系統100可藉由推播具有積極偏好Po之一導向訊息Mo而將使用者終端機10導向一特定行為。例如,訊息分配系統100可將使用者終端機10導向觀看一直播主之實況直播。為了將使用者終端機10導向觀看直播主,推播單元130將向使用者終端機10推播一導向訊息Mo。導向訊息Mo具有來自大多數使用者或來自相同於使用者終端機10之群組的一積極偏好Po。推播單元130向使用者終端機10推播導向訊息Mo以將使用者終端機10導向類似操作及/或行為。在一些實施例中,收集單元110可進一步收集對導向訊息Mo之一回饋Fo,且評估單元120可進一步評估使用者終端機10對導向訊息Mo之偏好Po。
在一些實施例中,評估單元120評估對訊息M之偏好P且判定推播單元130是否向使用者終端機10推播訊息M。在一些實施例中,推播單元130可進一步基於偏好P推播與訊息M相關之一訊息M’。例如,訊息M推薦John觀看Paul之直播,John點選直播且在直播期間向Paul贈送禮物。接著,下次Paul再次進行直播時,可向John推播訊息M。此外,可在將來向John推播關於免費禮物或折扣資訊之一訊息M’。在一些實施例中,推播單元130可進一步根據應用程式中之一操作及/或行為來將一推薦訊息Mr推薦給使用者終端機10。例如,使用者終端機10打開應用程式且向下捲動饋送但退出而沒有觀看任何串流,推播單元130可推播一推薦訊息Mr以向使用者終端機10推薦另一串流或折扣資訊。
在一些實施例中,偏好P可被表達為一百分比且偏好P之一預設值可為50%。可將回饋F分類為積極、負面或中立回饋F。更明確言之,可將操作分類為積極、負面及中立操作。可將行為分類為積極、負面及中立行為。一旦操作一積極、負面或中立操作,偏好P便可增加一增量、減小一減量或恆定。類似地,一旦執行一積極、負面或中立行為,偏好P便可增加一增量、減小一減量或恆定。
若偏好P高於一臨限值Th,則評估單元120評估使用者終端機10具有一偏好P,且推播單元130可進一步在將來向使用者終端機10推播訊息M。另一方面,若偏好P低於一臨限值Tl,則評估單元120評估使用者終端機10不具有偏好P,且推播單元130可停止向使用者終端機10推播訊息M。此外,若偏好P在臨限值Th及臨限值Tl內,則推播單元130及收集單元110可繼續推播訊息M及收集回饋F,以及評估單元120可繼續評估使用者終端機10對訊息M之偏好P,以判定使用者終端機10是否具有對訊息M之一偏好P。
在一些實施例中,增量及減量可為3%、5%、10%或類似者。臨限值Tl可為20%、30%、40%或類似者。臨限值Th可為60%、70%、80%或類似者。在一些實施例中,可取決於實際需求來判定偏好P、增量、減量、臨限值Tl或臨限值Th之預設值。
圖3係根據本申請案之一些實施例之一通信系統1’之一示意性組態。圖4係根據本申請案之一些實施例之訊息分配系統100’之一示意性方塊圖。為了促進理解,已在可能情況下使用相同元件符號來指定圖中所共有之相同元件。如圖3中所展示,通信系統1’包含使用者終端機10A、使用者終端機10B、使用者終端機10C及一伺服器20。使用者終端機10A至10C及伺服器20經由例如一網路90 (其係例如網際網路)連接。伺服器20包含一訊息分配系統100’。通信系統1’可包含複數個使用者,且為簡單起見在圖3中展示使用者終端機10A、使用者終端機10B及使用者終端機10C。
訊息分配系統100’包含一收集單元110、一評估單元120、一推播單元130及一比較單元140。收集單元110經組態以分別自一使用者終端機10A、10B及10C收集對一訊息M之回饋F1、F2及F3。評估單元120連接至收集單元110,且經組態以根據回饋F1、F2及F3評估使用者終端機10A、10B及10C對訊息M之一偏好P1、P2及P3。
如圖4中所展示,比較單元140分別經連接至收集單元110及評估單元120,且經組態以比較來自收集單元110之回饋F1、F2及/或F3,與來自評估單元120之回饋F1、F2及/或F3之偏好P1、P2及P3。更明確言之,比較單元140比較自複數個使用者收集的回饋F及由評估單元120評估之回饋F的偏好P。推播單元130經連接至比較單元140,且經組態以向使用者終端機10推播訊息M。
在一些實施例中,比較單元140比較來自一個特定使用者(諸如使用者終端機10A)之回饋F1與偏好P1。更明確言之,比較單元140比較偏好P1是否與回饋F1一致。例如,使用者終端機10A是否點選訊息M並購買一超值會員資格(premium membership),且評估單元120評估使用者終端機10A具有對訊息M之一偏好P。點選訊息M可被稱為一積極操作,且購買一超值會員資格可被稱為一積極行為。因此,比較單元140比較回饋F與偏好P,且確認偏好P與回饋F一致。
在一些實施例中,比較單元140可經組態以偵測使用者終端機10A對訊息M之偏好P1是否已改變。比較單元140可比較來自使用者終端機10A之即時回饋F1與歷史回饋F1。若即時回饋F1與歷史回饋F1一致,則表明偏好P1未改變。另一方面,若即時回饋F1與歷史回饋F1不一致,則可預測對訊息之偏好P1可能改變。例如,使用者終端機10A過去曾經點選訊息M,因此表明使用者終端機10A曾具有對訊息M之偏好P。然而,使用者終端機10A正滑移以刪除訊息M,則表明使用者終端機10A不具有對訊息M之偏好P1。因此,比較單元140比較即時回饋F1 (其正滑移以刪除訊息M)與歷史回饋F1 (其點選訊息M),且偵測到對訊息M之偏好P1已改變。
在一些實施例中,比較單元140比較來自複數個使用者(諸如使用者終端機10A、10B及10C)之對訊息M的回饋F1、F2及F3。若回饋F1類似於回饋F2,則可將使用者終端機10A及使用者終端機10B分類至相同群組中。若回饋F1不同於回饋F3,則可將使用者終端機10A及使用者終端機10C分類至不同群組中。例如,若使用者終端機10A點選訊息M並關注一直播主且使用者終端機10B亦如此做,則表明使用者終端機10A及使用者終端機10B具有對訊息M之類似偏好。在此情境中,可將使用者終端機10A及使用者終端機10B分類至相同群組中。另一方面,若使用者終端機10C滑移並刪除訊息M,則表明使用者終端機10A及使用者終端機10C具有對訊息M之不同偏好,且可將使用者終端機10A及使用者終端機10C分類至不同群組中。在此,類似可被稱為具有相同操作及/或行為,而不同可被稱為具有不同操作及/或行為。
如圖4中所展示,推播單元130可分別向使用者終端機10A、10B及10C推播訊息M1、M2及M3。收集單元110可分別自一使用者終端機10A、10B及10C收集對訊息M1、M2及M3之回饋F1、F2及F3。評估單元120可根據回饋F1、F2及F3評估使用者終端機10A、10B及10C對訊息M1、M2及M3之一偏好P1、P2及P3。若根據回饋F1,使用者終端機10A具有對訊息M1之一偏好P1,則可進一步將訊息M1推薦給在相同群組中之使用者,諸如使用者終端機10B。在一些實施例中,收集單元110可進一步收集對於使用者終端機10B而言對訊息M1之回饋,且評估單元120可進一步評估使用者終端機10B對訊息M1之偏好。此外,可進一步向在相同群組中之使用者(諸如使用者終端機10A及使用者終端機10B)推播與訊息M1相關之一訊息M’。另一方面,若使用者終端機10A及使用者終端機10C屬於不同群組,則可不將訊息M1及相關訊息M’推薦給使用者終端機10C。
在一些實施例中,比較單元140可比較來自複數個使用者(諸如使用者終端機10A、10B及10C)之對訊息M之即時回饋F1、F2及F3與歷史回饋F1、F2及F3。若即時回饋F2類似於歷史回饋F1,則可預測使用者終端機10B具有類似於使用者終端機10A之偏好P1之偏好P2。此外,若即時回饋F2類似於歷史回饋F1,則可將使用者終端機10B分類至相同於使用者終端機10A之群組中。另一方面,若即時回饋F3不同於歷史回饋F1,則可能無法根據使用者終端機10A之偏好P1預測使用者終端機10C之偏好P3,可將使用者終端機10C分類至不同於使用者終端機10A之群組中。
在一些實施例中,比較單元140可比較來自複數個使用者(諸如使用者終端機10A、10B及10C)之對訊息M之偏好P1、P2及P3。即使使用者終端機10A、10B及10C具有不同回饋F1、F2及F3,其等仍可能具有對訊息M之相同偏好P1、P2及P3。例如,訊息M向使用者終端機10A及使用者終端機10B推薦一直播主。關於訊息M,使用者終端機10A檢查直播主之設定檔且使用者終端機10B觀看直播主。即使其等之行為不同,但其等兩者之行為皆為積極的。因此,對訊息M之偏好P1、P2係類似的。若偏好P1類似於偏好P2,則可將使用者終端機10A及使用者終端機10B分類至相同群組中。另一方面,若偏好P1不同於偏好P3,則可將使用者終端機10A及使用者終端機10C分類至不同群組中。
在一些實施例中,即使使用者終端機10A、10B及10C具有類似回饋F1、F2及F3,其等仍可能具有對訊息M之不同偏好P1、P2及P3。例如,訊息M推薦使用者終端機10A及使用者終端機10B觀看一直播主。關於訊息M,使用者終端機10A用一憤怒表情符號對直播主進行評論,而使用者終端機10B用一微笑表情符號進行評論。即使其等之行為相同,但其等對訊息M之偏好P1、P2不同。因此,對於在相同群組中之使用者,可將其等進一步分類為子群組。例如,若使用者終端機10A、10B及10C具有對訊息之類似偏好P1、P2及P3,則可將使用者終端機10A、10B及10C分類至相同群組中。關於類似偏好P1、P2及P3,若回饋F1及回饋F2係類似的,則可將使用者終端機10A及使用者終端機10B進一步分類至相同子群組中。在子群組中之使用者將比未在子群組中之使用者具有更多相似性。
在一些實施例中,若訊息M與一直播主相關,則推播單元130可進一步向直播主推播來自複數個使用者終端機10之對訊息M之回饋F。直播主可採取回饋F作為參考以改良其表現。例如,訊息M可推薦觀看者檢查直播主之歌唱。然而,大多數觀看者不點選訊息M。此表明大多數觀看者對直播主之歌唱不感興趣。推播單元130可向直播主推播回饋F及偏好P,且直播主可理解觀看者對其歌唱不感興趣。直播主下次可表演舞蹈而非歌唱。在一些實施例中,訊息M可包含對直播主之一報告及建議。報告可包含直播主之月度報告,諸如直播主已收到的錢幣、直播時長或直播有效時長。
此外,上述實施例中所描述之系統及方法可具備一電腦可讀非暫時性儲存裝置,諸如一固態記憶體裝置、一光碟儲存裝置或一磁碟儲存裝置。替代地,可經由網際網路自一伺服器下載程式。
儘管上文描述本發明之技術內容及特徵,但在不違背本發明之教示及揭示內容之情況下,在本發明之技術領域中之有常識技術者(person having common knowledge)仍可作出許多變動及修改。因此,本發明之範疇不限於已揭示之實施例,而是包含不違背本發明之另一變動及修改,且為由以下專利申請範疇涵蓋之範疇。
1:通信系統
1’:通信系統
10:使用者終端機/使用者
10A:使用者終端機
10B:使用者終端機
10C:使用者終端機
20:伺服器
90:網路
100:訊息分配系統
100’:訊息分配系統
110:收集單元
120:評估單元
121:訊息分析元件
122:頻率分析元件
123:相關性分析元件
124:偏好評估元件/評估元件
130:推播單元
140:比較單元
1241:準則計算器
1242:準則評估器
1243:準則模組
1244:權重模組
1245:訓練配對元件/訓練配對單元
1246:模型產生器
F:回饋
F1:回饋
F2:回饋
F3:回饋
Freq:頻率
M:訊息
M1:訊息
M2:訊息
M3:訊息
Mu:使用者訊息
P:偏好
圖1係根據本申請案之一些實施例之一通信系統1之一示意性組態;
圖2係根據本申請案之一些實施例之訊息分配系統100之一示意性方塊圖;
圖3係根據本申請案之一些實施例之一通信系統1’之一示意性組態;
圖4係根據本申請案之一些實施例之訊息分配系統100’之一示意性方塊圖;
圖5係根據本申請案之一些實施例之偏好評估元件124之一示意性方塊圖。
1:通信系統
10:使用者終端機/使用者
100:訊息分配系統
110:收集單元
120:評估單元
121:訊息分析元件
122:頻率分析元件
123:相關性分析元件
124:偏好評估元件/評估元件
130:推播單元
F:回饋
M:訊息
Claims (20)
- 一種訊息分配系統,其包括: 一收集單元,其經組態以自一使用者終端機收集對一訊息之回饋;及 一評估單元,其經連接至該收集單元,且經組態以根據該回饋來評估該使用者終端機對該訊息之一偏好;其中 該回饋包含一回應動作回饋及/或一影響動作回饋,該回應動作回饋包含藉由該使用者終端機對該訊息進行之一操作,且該影響動作回饋包含接著該操作之後之一行為。
- 如請求項1之訊息分配系統,其中該評估單元進一步根據該操作或該行為來評估該偏好。
- 如請求項1之訊息分配系統,其中該回饋進一步包含一裝置資訊,該裝置資訊包含一操作時間,該操作時間係從該訊息被讀取至該訊息被操作,且該評估單元進一步根據該裝置資訊來評估該偏好。
- 如請求項1之訊息分配系統,其中該回饋指代由該使用者終端機傳輸之資料,且該評估單元(120)根據該資料之不同類型來評估對該訊息M之該偏好P。
- 如請求項4之訊息分配系統,其中該行為包括以下之至少一或多者:閒置、搜尋、造訪、關注、購買、發送、觀看、評論、支援、標記、收集、聲明等等。
- 如請求項4之訊息分配系統,其中該回饋進一步包含一時間資訊及/或一位置資訊,該評估單元進一步根據該時間資訊及/或該位置資訊來評估該偏好。
- 如請求項4之訊息分配系統,其中該評估單元包括一訊息分析元件,該訊息分析元件經組態以分析由該使用者終端機留下之一使用者訊息,且該評估單元根據該使用者訊息來評估該偏好。
- 如請求項4之訊息分配系統,其中該評估單元包括一頻率分析元件,該頻率分析元件經組態以分析對該訊息之該回饋之一頻率,且該評估單元根據該頻率來評估該偏好。
- 如請求項4之訊息分配系統,其中該評估單元包括一相關性分析元件,該相關性分析元件經組態以識別該訊息與該回饋之間的相關性,且該評估單元根據該相關性來評估該偏好。
- 如請求項1之訊息分配系統,進一步包括一推播單元,其中該推播單元經連接至該評估單元,且經組態以在該使用者終端機具有對該訊息之該偏好的情況下,向該使用者終端機推播該訊息。
- 如請求項1之訊息分配系統,進一步包括一偏好評估元件,該偏好評估元件根據以下之至少一或多者來評估該偏好:該使用者終端機之保留率、該訊息之點選率、該訊息之取消訂用率、透過該訊息打開一應用程式並參與該應用程式之對話時長、打開該應用程式之頻率,或類似者。
- 如請求項1之訊息分配系統,其中該收集單元及該評估單元動態地收集該回饋且評估該偏好,且該回饋包含歷史回饋及即時回饋。
- 如請求項1之訊息分配系統,進一步包括一比較單元,比較元件分別經連接至該收集單元及該評估單元,且經組態以比較來自不同使用者終端機之該回饋,且將該等使用者終端機分類為群組。
- 如請求項1之訊息分配系統,其中該訊息係一推播通知,且該訊息之內容係與實況直播相關。
- 一種訊息分配方法,其包括: 自一使用者終端機收集對一訊息之回饋;及 根據該回饋來評估該使用者終端機對該訊息之一偏好;其中 該回饋包含一回應動作回饋及一影響動作回饋,該回應動作回饋包含藉由該使用者終端機對該訊息進行之一操作,且該影響動作回饋包含接著該操作之後的一行為。
- 如請求項15之訊息分配方法,進一步包括分析由該使用者終端機留下之一使用者訊息,及根據該使用者訊息來評估該偏好。
- 如請求項15之訊息分配方法,進一步包括分析對該訊息之該回饋的頻率,及根據該頻率來評估該偏好。
- 如請求項15之訊息分配方法,進一步包括識別該訊息與該回饋之間之一相關性,及根據該相關性來評估該偏好。
- 如請求項15之訊息分配方法,進一步包括若該使用者終端機具有對該訊息之該偏好,則向該使用者終端機推播該訊息。
- 如請求項15之訊息分配方法,其中該訊息係一推播通知,且該訊息之內容係與實況直播相關。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110111642A TW202239179A (zh) | 2021-03-30 | 2021-03-30 | 用於訊息分配之系統及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110111642A TW202239179A (zh) | 2021-03-30 | 2021-03-30 | 用於訊息分配之系統及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202239179A true TW202239179A (zh) | 2022-10-01 |
Family
ID=85460337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110111642A TW202239179A (zh) | 2021-03-30 | 2021-03-30 | 用於訊息分配之系統及方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202239179A (zh) |
-
2021
- 2021-03-30 TW TW110111642A patent/TW202239179A/zh unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11334718B2 (en) | Automatic generation of statement-response sets from conversational text using natural language processing | |
KR101240122B1 (ko) | 애드보케이트 추천을 이용한 소셜 네트워크 마케팅 방법 및 장치 | |
US11074636B1 (en) | Recommendations based on mined conversations | |
US20170093967A1 (en) | Systems and methods for managing group activities over a data network | |
JP5166539B2 (ja) | リコメンデーション生成システム、装置、及び方法 | |
CA2757668C (en) | Systems, methods and apparatus for providing media content | |
CN108369715B (zh) | 基于视频内容特性的交互式评述 | |
US8560390B2 (en) | Method and apparatus for social network marketing with brand referral | |
US20140089081A1 (en) | Asynchronous advertising placement based on metadata | |
CN104919481B (zh) | 通过识别有影响的消费者来找出趋势 | |
US20070094083A1 (en) | Matching ads to content and users for time and space shifted media network | |
US20120271884A1 (en) | User Preference Surveys | |
WO2009111167A2 (en) | Method and apparatus for social network marketing with consumer referral | |
US20150058148A1 (en) | Systems and methods for automatically adjusting pricing for group activities over a data network | |
US9430560B2 (en) | Earned media generation | |
US20220318828A1 (en) | System and method for highlight detection | |
WO2014005231A1 (en) | System and method for generating a digital content interface | |
TW202239179A (zh) | 用於訊息分配之系統及方法 | |
JP7402444B2 (ja) | メッセージ配布システム及びメッセージ配布方法 | |
CN113396432A (zh) | 用于艺术内容的激励评价的方法和系统 | |
Bhagwan et al. | Sound index: Charts for the people, by the people | |
Pfeiffer III et al. | Optimizing the effectiveness of incentivized social sharing | |
KR20220147320A (ko) | 인공지능 ai 알고리즘을 활용한 행사 이벤트 큐레이팅 서비스 솔루션 제공장치 및 제공방법 | |
De Pessemier | Improved online services by personalized recommendations and optimal quality of experience parameters | |
Dillon | Marketing communication strategies for mobile online services |