TW202237068A - 製備脂質奈米顆粒的高通量方法及其用途 - Google Patents

製備脂質奈米顆粒的高通量方法及其用途 Download PDF

Info

Publication number
TW202237068A
TW202237068A TW110145739A TW110145739A TW202237068A TW 202237068 A TW202237068 A TW 202237068A TW 110145739 A TW110145739 A TW 110145739A TW 110145739 A TW110145739 A TW 110145739A TW 202237068 A TW202237068 A TW 202237068A
Authority
TW
Taiwan
Prior art keywords
solution
payload
lipid
lnp
various embodiments
Prior art date
Application number
TW110145739A
Other languages
English (en)
Inventor
范玉成
春萬 顏
科 張
Original Assignee
美商建南德克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商建南德克公司 filed Critical 美商建南德克公司
Publication of TW202237068A publication Critical patent/TW202237068A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

本文提供用於最佳化和製造各種脂質奈米顆粒 (LNP) 組成物的高通量方法及其用途。例如,在一些實施例中,本揭示提供一種用於製造 LNP 組成物的高通量篩選方法,該方法包括:獲得至少兩種包含有效負載和多個能夠自組裝的分子之可混合的溶液,並在一組受控條件下混合該至少兩種溶液,其中注入順序、速度、體積、相的比率 和混合持續時間是不同的。在各種實施例中,本揭示使得能夠確定最佳化囊封效率、粒徑分佈、純化和顆粒回收率及調配物穩定性。本文揭示之方法使得能夠有效最佳化用於製備基於 LNP 的治療劑的製造條件。

Description

製備脂質奈米顆粒的高通量方法及其用途
本文提供用於最佳化和製造各種脂質奈米顆粒 (LNP) 組成物的高通量方法及其用途。例如,在一些實施例中,本揭示提供一種用於製造 LNP 組成物的高通量篩選方法,該方法包括:獲得至少兩種包含有效負載和多個能夠自組裝的分子之可混合的溶液,並在一組受控條件下混合該至少兩種溶液,其中注入順序、速度、體積、相的比率 和混合持續時間是不同的。在各種實施例中,本揭示使得能夠確定最佳化囊封效率、粒徑分佈、純化和顆粒回收率及調配物穩定性。本文揭示之方法使得能夠有效最佳化用於製備基於 LNP 的治療劑的製造條件。
脂質奈米顆粒 (LNP) 已被廣泛開發為生物相容性且穩定的醫藥遞送平台。用於製備脂質奈米顆粒的脂質通常為低毒性的生理性脂質 (具有生物相容性及可生物降解性)。脂質的理化多樣性和生物相容性及其增強藥物口服生體可用率的能力,使脂質奈米顆粒成為非常有吸引力的藥物遞送載劑。此外,基於脂質的調配物可通過多種方式對藥物吸收產生積極影響,包括:提高溶解能力、防止藥物在腸道稀釋時沉澱、增強膜通透性、抑制流出轉運蛋白、減少 CYP 酶、增強乳糜微粒的產生及淋巴轉運。LNP 為用於 siRNA 遞送的主要非病毒載劑,截至 2019 年被用於 70% 的奈米醫學臨床試驗。Anselmo S 等人, 2019, Bioeng. Transl.Med. 4(3):e10143。
由於其複雜的理化性質,基於脂質的奈米載劑給藥品的質量控制帶來了額外的挑戰。根據美國 FDA 最近發布的微脂體藥品指南,這些調配物應明確以下質量屬性:顆粒結構及粒徑分佈、顆粒表面理化性質、脂質含量、遊離 API 含量及囊封效率以及物理和化學穩定性。不同的製備條件及參數可能影響 LNP 調配物的質量屬性。例如,脂質組成物,特別是摻入不同含量及/或分子量的經聚乙二醇化之脂質,顯著影響微脂體之膠體穩定性、細胞吸收及藥物動力學 ( 參見例如Allen 等人, 1991, Biochem Biophys Acta, 1066(1):29-36;Garbuzenko 等人, 2005, Chem Phys Lipids, 135(2): 117-29;Immordino 等人, Int J Nanomedicine 1(3) (2006) 297-315),而 siRNA 或 ASO 載量可藉由電荷所介導之與陽離子脂質的交互作用進行控制。Schroeder 等人, 2010, J Intern Med 267(1): 9-21;Cullis 等人, 2017, Mol Ther 25(7):1467-1475。LNP 之下游性能亦受其質量屬性的重要影響。因此,篩選各種水平的這些參數非常需要一種具有簡便程序及多種分析輸出的高通量方法。
為解決篩選並最佳化基於脂質的奈米醫學的需求,本揭露提供一種用於製備該等囊封各種治療有效負載的基於脂質的奈米顆粒的高通量篩選 (HTS) 工作流程。在各種實施例中,本發明提供一種使用機器人液體處理器促進 LNP 之自組裝的最佳化溶劑注入方法。在各種實施例中,闡述了最佳脂質組成物、總脂質濃度及有效負載之載量。
在各種實施例中,本揭露涉及一種用於製造脂質奈米顆粒 (LNP) 製劑之最佳化高通量篩選方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為長度約 500 至約 3000 個核苷酸。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子或可電離脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種最佳化用於製造脂質奈米顆粒 (LNP) 製劑之製程的高通量方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於將有效負載囊封於液態奈米顆粒 (LNP) 製劑中的最佳化高通量方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種向有需要之患者投予 LNP 製劑的方法,其中該 LNP 製劑藉由以下方式製造:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於將有效負載囊封於液態奈米顆粒 (LNP) 製劑中的最佳化高通量方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於製造脂質奈米顆粒 (LNP) 製劑之最佳化高通量篩選方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於將有效負載囊封於液態奈米顆粒 (LNP) 製劑中的最佳化高通量方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種最佳化脂質奈米顆粒 (LNP),其藉由包含以下步驟之製程製造:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於將有效負載囊封於液態奈米顆粒 (LNP) 製劑中的最佳化高通量方法,其包含:a. 獲得包含水相的第一溶液;b. 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;c. 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;d. 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;e. 在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;f. 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;g. 確定用於製造該 LNP 製劑的最佳參數;和 h. 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。在各種實施例中,寡核苷酸的長度在約 10 至約 30 個核苷酸之間。在各種實施例中,有效負載為 mRNA。在各種實施例中,mRNA 的大小為約 1 kb 至約 2 kb。在各種實施例中,有效負載為多肽。在各種實施例中,該多肽在約 1000 Da 與約 10000 Da 之間。在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。
在各種實施例中,有效負載溶解於第一溶液中。在各種實施例中,有效負載溶解於第二溶液中。在各種實施例中,第一溶液為水性緩衝劑。在各種實施例中,第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。在各種實施例中,第二溶液之有機相包含甲醇。在各種實施例中,第二溶液之有機相包含乙醇。
在各種實施例中,自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。在各種實施例中,該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。在各種實施例中,該第二溶液包含多於一種類型的脂質。在各種實施例中,脂質的總濃度是變化的。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,經聚乙二醇化之脂質的百分比是變化的。在各種實施例中,經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。
在各種實施例中,LNP 為聚合物脂質奈米顆粒。在各種實施例中,LNP 為微脂體。在各種實施例中,LNP 為脂蛋白奈米顆粒。在各種實施例中,該第一溶液被注入該第二溶液中。在各種實施例中,該第二溶液被注入該第一溶液中。在各種實施例中,最佳參數為產生大於 80% 的有效負載囊封效率的參數。在各種實施例中,最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。在各種實施例中,LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
在各種實施例中,本揭露涉及一種用於 LNP 形成的多個參數的 HTS 篩選之工作流程,其包含:(i) 機器人液體處理器;(ii) 至少一台儀器,其能夠測量所需 LNP 特性;及 (iii) 至少一個微量盤,其包含多個微孔;其中該機器人液體處理器能夠將多種溶液注入該等微孔中的每個微孔中;其中該等參數在微孔之間系統性地變化;並且其中能夠針對各微孔測量該等所需 LNP 特性。
在各種實施例中,該等多個參數選自總脂質含量、自組裝分子的類型;該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度;相的選擇、緩衝劑類型和 pH 值、注入順序、體積和速度以及混合持續時間。在各種實施例中,該等所需 LNP 特性選自由以下所組成之群組:平均粒徑、粒徑分佈、囊封效率及粒子穩定性。在各種實施例中,該儀器能夠進行動態光散射 (DLS)、紫外光-可見光 (UV-Vis) 或螢光光譜法。
由於其複雜的理化性質受各種調配參數的影響,用於藥物遞送的脂質奈米顆粒 (LNP) 製造具有挑戰性。顆粒結構及粒徑分佈、顆粒表面理化性質、脂質含量、遊離 API 量及囊封效率以及 LNP 製造中的物理和化學穩定性的控制困難且復雜。藉由習用批次方法篩選 LNP 調配參數 (包括脂質種類、百分比、濃度及藥物載量) 需要大量時間及原料。因此,較佳的是採用具有極少材料輸入及高效製備和分析輸出的高通量篩選方法來確定具有最佳質量屬性的先導候選調配物。機器人液體處理器主要用於液體添加及轉移,尚未用為具有微調之儀器參數的 LNP 調配器。此外,缺乏集成 LNP 製備與分析兩者的簡化的高通量工作流程。本文提供用於基於所需特性優化 LNP 製造的高通量方法,該方法使用機器人液體處理器進行基於注入的 LNP 形成。  本文進一步提供最佳化 LNP 顆粒及其製造的方法。
應理解,本文的描述僅為例示性和說明性的,並不限制本發明要求保護的範圍。在本申請案中,除非另外具體陳述,否則所用的單數包括複數。
本文使用的章節標題僅用於組織目的,而不應被解釋為限制所描述的標的。本案中所引用的所有文件或文件的部分,包括但不限於專利案、專利申請案、文章、書籍和論文,於此明確地出於所有目的藉由引用全文併入本文。應理解,除非另外指示,否則根據本揭露所用之下列術語具有下列含義:
在本申請案中,除非另外陳述,否則所用之「或」意指「及/或」。此外,術語「包括 (including)」及其他形式諸如「所包括 (includes)」及「包括在內 (included)」的使用並非限制性的。同樣,除非另外具體陳述,否則諸如「要素」或「組分」等術語涵蓋包含一個單元之要素及組分以及包含多於一個次單元之要素及組分兩種情況。
如本文所用,術語「受試者」是指任何動物 (例如哺乳動物),包括但不限於人類、非人類靈長類動物、囓齒動物等,其將作為特定治療的接受者。通常,術語「受試者」及「患者」在本文中就人類受試者而言可互換使用。
術語「多核苷酸」、「核苷酸」或「核酸」包括單股及雙股核苷酸聚合物。包含多核苷酸的核苷酸可為核糖核苷酸或去氧核糖核苷酸或任一類型的核苷酸的修飾形式。該等修飾包括鹼基修飾 (諸如溴尿核苷及肌苷衍生物)、核糖修飾 (諸如 2',3'-雙去氧核糖) 及核苷間鍵結修飾 (諸如硫代磷酸酯、二硫代磷酸酯、硒代磷酸酯 (phosphoroselenoate)、二硒代磷酸酯 (phosphoro-diselenoate)、縮苯胺硫代磷酸酯 (phosphoro-anilothioate)、縮苯胺磷酸酯 (phoshoraniladate) 及醯胺磷酸酯 (phosphoroamidate))。
術語「寡核苷酸」是指包含 200 個或更少核苷酸的多核苷酸。寡核苷酸可為單股或雙股,例如,用於構建突變基因。寡核苷酸可為有義或反義寡核苷酸。寡核苷酸可包括標記 (包括放射性標記、螢光標記、不完全抗原或抗原標記),其用於檢測分析。寡核苷酸可用為例如 PCR 引子、選殖引子或雜交探針。
術語「多肽」或「蛋白質」是指具有蛋白質之胺基酸序列的大分子,包括天然序列之一個或多個胺基酸的缺失、添加及/或取代。術語「多肽」及「蛋白質」具體包括抗原結合分子、抗體或具有抗原結合蛋白之一個或多個胺基酸的缺失、添加及/或取代的序列。術語「多肽片段」是指與全長天然蛋白質相比具有胺基末端缺失、羧基末端缺失及/或內部缺失的多肽。該等片段亦可包含與天然蛋白質相比經修飾之胺基酸。可用多肽片段包括抗原結合分子之免疫功能片段。
術語「經分離」意指 (i) 不含至少一些通常與其一起發現的其他蛋白質,(ii) 基本上不含來自相同來源 (例如來自相同物種) 的其他蛋白質,(iii) 與至少約 50% 的多核苷酸、脂質、碳水化合物或與其在自然界中相關的其他材料分離,(iv) 與在自然界中與其無關的多肽可操作地相關聯 (藉由共價或非共價交互作用),或 (v) 不存在於自然界。
多肽 ( 例如,抗原結合分子) 之「變異體」包含胺基酸序列,其中相對於另一多肽序列,一個或多個胺基酸殘基被插入、缺失及/或取代至該胺基酸序列中。變異體包括例如融合蛋白。
術語「同一性」是指藉由比對和比較序列所確定的兩個或更多個多肽分子或兩個或更多個核酸分子的序列之間的關係。「同一性百分比」意指與所比較之分子中胺基酸或核苷酸相同的殘基的百分比,係基於所比較之分子中最小的分子大小來計算。在這些計算,比對中的差距 (如果有的話) 較佳的是藉由特定的數學模型或計算機程式 ( 亦即「算法」)來解決。
為計算同一性百分比,所比較之序列通常以提供序列間最大匹配的方式進行比對。可用於確定百分比同一性的計算機程式的一個示例為 GCG 程式包,其中包括 GAP (Devereux 等人, Nucl. Acid Res., 1984, 12, 387;Genetics Computer Group, University of Wisconsin, Madison, Wis.)。利用計算機算法 GAP 比對要確定其百分比序列同一性的兩個多肽或多核苷酸。比對序列以獲得它們相應的胺基酸或核苷酸的最佳匹配 (「匹配範圍」,如藉由算法所確定)。在某些實施例中,算法亦使用標準比較矩陣 ( 參見例如:Dayhoff 等人, 1978, Atlas of Protein Sequence and Structure, 5:345-352 所述的 PAM 250 比較矩陣;Henikoff 等人, 1992, Proc. Natl. Acad. Sci. U.S.A., 89, 10915-10919 所述的 BLO-SUM 62 比較矩陣)。
術語「衍生物」是指包括除胺基酸 (或核酸) 插入、缺失或取代之外的化學修飾的分子。在某些實施例中,衍生物包含共價修飾,其包括但不限於與聚合物、脂質或其他有機或無機部分的化學鍵合。在某些實施例中,經化學修飾之抗原結合分子可具有比未經化學修飾的抗原結合分子更長的循環半衰期。在一些實施例中,衍生抗原結合分子經共價修飾以包括一種或多種水溶性聚合物連接,包括但不限於聚乙二醇、聚氧乙烯醇或聚丙二醇。
肽類似物通常作為非肽類藥物用於製藥工業中,其性質類似於模板肽。這些類型的非肽化合物稱為「肽模擬物」或「擬肽物」。Fauchere, J. L., 1986, Adv. Drug Res., 1986, 15, 29;Veber, D. F. 及 Freidinger, R. M., 1985, Trends in Neuroscience, 8, 392-396;及 Evans, B. E. 等人, 1987, J. Med. Chem ., 30, 1229-1239,其出於所有目的藉由引用併入本文。
術語「治療有效量」是指確定在哺乳動物中產生治療反應的免疫細胞或其他治療劑的量。該等治療有效量易於由本領域普通技術人員確定。
術語「患者」與「受試者」可互換使用,並包括人類及非人類動物受試者以及那些被正式診斷出病症的受試者、那些未正式確診的受試者、那些接受醫療照顧的受試者、那些有罹患疾病風險的受試者等。
術語「治療」和「治療方法」包括治療性治療、預防性治療及降低受試者罹患疾病的風險或其他風險因素的應用。治療無需完全治癒病症並且涵蓋減輕症狀或潛在風險因素的實施例。術語「預防」不要求 100% 消除事件發生的可能性。相反,它表示在化合物或方法的存在下,降低了事件發生的可能性。
標準技術可用於重組 DNA、寡核苷酸合成及組織培養和轉化 ( 例如,電穿孔、脂質轉染)。酶促反應及純化技術可根據製造商的說明書或如本領域中通常實現或如本文所述的方法進行。上述方法及程序通常根據本領域所熟知的習用方法執行,並如本說明書通篇所引用和所討論的各種一般性和更具體的參考文獻中所述。 參見例如:Sambrook 等人, Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(1989)),其出於所有目的藉由引用併入本文。.
如本文所用,術語「實質上」或「基本上」是指數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度為參考數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度的約 90%、91%、92%、93%、94%、95%、96%、97%、98% 或 99%。在一個實施例中,術語「基本上相同」或「實質上相同」是指數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度與參考數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度大致相同。
如本文所用,術語「實質上不含」與「基本上不含」可互換使用,並且當用於描述組成物諸如細胞群或培養基時,是指組成物不含指定物質,諸如 95%、96%、97%、98%、99% 不含指定物質,或藉由習用方法測量時無法檢出。類似的含義可應用於術語「不存在」,其是指不存在組成物的特定物質或成分。
如本文所用,術語「明顯的」是指藉由一種或多種標準方法易於檢出的數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度的範圍或事件。術語「不明顯的」和「不明顯」及其等同形式是指藉由標準方法不易檢出或無法檢出的數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度的範圍或事件。在一個實施例中,如果事件發生的時間少於 5%、4%、3%、2%、1%、0.1%、0.001% 或更少,則其不明顯。
在整個說明書中,除非上下文另有要求,否則詞語「包含 (comprise/comprises/comprising)」將被理解為暗示包括所述步驟或要素或步驟組或要素組,但不排除任何其他步驟或要素或步驟組或要素組。在特定實施例中,術語「包括」、「具有」、「含有」和「包含」同義使用。
如本文所用,「由……組成」意指包括並限於「由……組成」之後的任何內容。因此,短語「由……組成」表示所列要素為必需或強制性的,並且不得存在其他要素。
「基本上由……組成」意指包括在該短語之後列出的任何藥物,並且限於不干擾或有助於本揭露中針對所列要素所規定的活動或作用的其他元素。因此,短語「基本上由……組成」表示所列要素為必需的或強制性的,但沒有其他要素視情況存在,並且其他要素可能存在或不存在,取決於它們是否影響所列要素的活動或作用。
在本說明書中對「一個實施例」、「一實施例」、「實施例」、「相關實施例」、「某個實施例」、「一個附加實施例」或「另一個實施例」或其組合的引用意指結合該實施例所述的特定特徵、結構或特性包括在本發明的至少一個實施例中。因此,在本說明書各處出現的上述短語不一定指同一個實施例。此外,特定特徵、結構或特性可在一個或多個實施例中以任何合適的方式組合。
如本文所用,術語「約」或「大約」是指數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度相對於參考數量、含量、值、數值、頻率、百分比、尺寸、大小、量、重量或長度變化多達 30%、25%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2% 或 1%。在特定實施例中,當在數值之前時,術語「約」或「大約」表示該值加上或減去 15%、10%、5% 或 1% 的範圍或其任何中間範圍。
用於最佳化脂質奈米顆粒之製造的高通量篩選方法
為解決基於脂質的奈米醫學的篩選及最佳化的需求,本揭露提供了用於製備脂質奈米顆粒的高通量篩選 (HTS) 工作流程及其粒徑分佈及有效負載囊封的表徵。
在各種實施例中,本揭露涉及用於最佳化脂質奈米顆粒 (LNP) 之製造的高通量篩選方法。在各種實施例中,本文所揭示的方法利用一種高通量篩選 (HTS) 工作流程,該工作流程包括:(i) 機器人液體處理器;(ii) 至少一台能夠測量所需 LNP 特性的儀器;及 (iii) 至少一個微量盤,其中該微量盤包含多個微孔。在各種實施例中,LNP 通過上述 HTS 過濾工作流程使用溶劑注入法形成。 參見例如:Gentine 等人, 2012, J Liposome Res. 22, 18-30;Schubert 及 Muller-Goymann, 2003, Eur. J. Pharm. Biopharm.55, 125-131。
在各種實施例中,HTS 工作流程包括能夠測量所需 LNP 特性的儀器。該等特性包括囊封效率、平均粒徑及粒徑分佈。物理穩定性亦可藉由測量儲存後不同時間點的粒徑及有效負載釋放來確定。該等分析技術為本領域已知的,並且包括掃描/透射電子顯微鏡 (SEM/TEM)、原子力顯微鏡 (AFM)、分析型超速離心 (AUC)、動態光散射 (DLS)、紫外 (UV) 光譜及流場分級 (FFF)。在各種實施例中,HTS 工作流程包括能夠實施 DLS、UV-Vis 或螢光光譜法的儀器。在各種實施例中,本文所揭示的方法利用一種高通量篩選 (HTS) 工作流程,該工作流程包括:(i) 機器人液體處理器;(ii) 能夠執行 DLS 的儀器;(iii) 能夠對樣品進行 UV-Vis 或螢光光譜法分析的儀器;及 (iv) 至少一個微量盤,其中該微量盤包含多個微孔。
在各種實施例中,HTS 工作流程提供一種使用溶劑注入系統最佳化 LNP 製造的方法。如本文所用,「溶劑注入系統」意指將包含自組裝分子 (包含脂質) 的第一溶液快速注入第二溶液中。在各種實施例中,溶液為可混合的或可混溶的。在各種實施例中,第一溶液為水溶性溶劑。在各種實施例中,至少一種溶液為有機相溶劑。丙酮、乙醇、異丙醇及甲醇皆為適用於 LNP 製劑的溶劑。在各種實施例中,第一溶液為醇。在各種實施例中,第一溶液為乙醇。在各種實施例中,第一溶液為甲醇。
在各種實施例中,將 LNP 所囊封之有效負載溶解於該第二溶液中。在各種實施例中,將 LNP 所囊封之有效負載溶解於該第一溶液中。在各種實施例中,有效負載由第三水溶性溶劑囊封。
在各種實施例中,溶液中之至少兩種為不同的相。在各種實施例中,將三種溶液注入彼此之中。在各種實施例中,將至少四種溶液注入彼此之中。在各種實施例中,存在至少一個有機相及至少一個水相。
在各種實施例中,溶液中之一種包含水性溶劑。在各種實施例中,水性溶劑為水性緩衝劑。
一種溶液注入另一種溶液的過程由機器人液體處理器控制。如本文所用,術語「機器人液體處理器」意指能夠將液體自動平行移取、轉移並混合到多個孔、微孔或其他儲液器中的裝置。在各種實施例中,機器人液體處理器能夠將不同組成或不同量的液體平行遞送至不同的孔、微孔或儲液器。在各種實施例中,機器人液體處理器能夠以變化的速度或持續時間將液體平行移取、轉移和混合至不同的孔、微孔或儲液器。
在各種實施例中,將該一種溶液注入該第二溶液後,機器人液體處理器反復吸取並重新注入該溶液,從而將該至少兩種溶液混合。在各種實施例中,改變該注入及/或混合的速度及持續時間以確定用於 LNP 形成的最佳參數。在各種實施例中,注入及/或混合的速度在 0.1 ml/s 至 0.9 ml/s 之間變化。在各種實施例中,初始注入速度 (即首次注入液體) 以 0.1 ml/s 至 0.9 ml/s 的速度進行。參見圖 1。在各種實施例中,後續注入/混合在 1 s 至 10 s 的範圍內進行 (以 0.1 ml/s 至 0.9 ml/s 混合 10 次)。
在各種實施例中,LNP 形成在至少一個微量盤中完成。在各種實施例中,微量盤由多個微孔組成,其中各微孔之間的形成條件 (例如脂質種類、脂質組成物、總脂質濃度、有效負載、有效負載、載量比率、相種類) 為變化的。微量盤可具有任何尺寸,並包含任意數量的微孔。在各種實施例中,微量盤包含 4、6、8、12、24、48、96、384、1536 個微孔。
本文所述之 HTS 方法的一個優勢在於 LNP 形成能夠在少量溶液中迅速發生。本文所揭示的方法將材料消耗量減少 10 倍,並將工藝輸出提高了 100 倍 (參見圖 11)。在微孔中形成 LNP 所用的材料比例如使用基於微流體的製備方法形成 LNP 所用的材料少得多。在各種實施例中,微孔的體積為約 10 μL、約 20 μL、約 30 μL、約 40 μL、約 50 μL、約 60 μL、約 70 μL、約 80 μL、約 90 μL、約 100 μL、約 125 μL、約 150 μL、約 175 μL、約 200 μL、約 250 μL、約 350 μL、約 360 μL、約 400 μL、約 500 μL、約 1000 μL、約 2000 μL、約 3000 μL、約 4000 μL。
脂質奈米顆粒 (LNP)
本文提供了最佳化脂質奈米顆粒以及最佳化這些脂質奈米顆粒「LNP」之製造的方法。如本文所用,術語「脂質奈米顆粒」或「LNP」是指包括以下的組成物:(i) 多個 自組裝分子,其中該等自組裝分子包括;及 (ii) 有效負載。其製造使用本發明得到最佳化的 LNP 可用於任何目的。在各種實施例中,最佳化 LNP 可用於遞送疫苗。在各種實施例中,最佳化 LNP 可用於將藥物遞送至有需要之患者。LNP 可攜帶任何有效負載,包括但不限於核酸、多肽、蛋白質及小分子。此外,LNP 可僅由脂質 (例如微脂體) 組成,亦可包括能夠自組裝的其他成分諸如聚合物或蛋白質。
在各種實施例中,LNP 為使用上述技術製造的最佳化 LNP。  在各種實施例中,最佳化 LNP 藉由包含以下步驟之製程製造:(i) 獲得包含水相的第一溶液;(ii) 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;(iii) 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;(iv) 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;(v) 在適合 LNP 形成的條件下,使用該機器人處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間;(vi) 測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性;(vii) 確定用於製造該 LNP 製劑的最佳參數;和 (viii) 基於該等最佳參數製造該 LNP 製劑。
在各種實施例中,本發明涉及使用包含以下步驟的高通量方法製造 LNP 的方法:(i) 獲得包含水相的第一溶液;(ii) 獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的;(iii) 將至少一個有效負載分子溶解於該第一溶液或該第二溶液中;(iv) 使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中;(v) 在適合 LNP 形成的條件下,使用該機器人處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒。
自組裝分子
如本文所用,術語「自組裝分子」是指任何能夠在沒有外源引導或管理的情況下實現確定的排列的分子。最佳化 LNP 可由單一種類的自組裝分子組成,或者可由多個種類的自組裝分子組成。在各種實施例中,最佳化 LNP 包括脂質成分與至少一種脂質分子。在各種實施例中,LNP 可包括聚合物分子及/或蛋白質/肽分子。在各種實施例中,LNP 的自組裝分子可以僅包括脂質分子。
脂質組分可包含單一脂質種類,或者可包括多於一種類型的脂質。在本發明之各種實施例中,LNP 製劑中脂質的相對組成將是變化的。在各種實施例中,當考慮用於製造給定 LNP 調配物的最佳參數時,將評估不同種類的脂質或不同的脂質種類組合。在各種實施例中,至少一個脂質分子經聚乙二醇化。在各種實施例中,脂質組分可包括磷脂。
在各種實施例中,LNP 調配物可包含一種或多種陽離子或可電離脂質。在一些實施例中,該等一種或多種陽離子脂質選自由以下所組成之群組:cKK-E12、OF-02、C12-200、MC3、DLinDMA、DLinkC2DMA、ICE (基於咪唑)、HGT5000、HGT5001、HGT4003、DODAC、DDAB、DMRIE、DOSPA、DOGS、DODAP、DODMA 及 DMDMA、DODAC、DLenDMA、DMRIE、CLinDMA、CpLinDMA、DMOBA、DOcarbDAP、DLinDAP、DLincarbDAP、DLinCDAP、KLin-K-DMA、DLin-K-XTC2-DMA、3-(4-(雙(2-羥基十二烷基)胺基)丁基)-6-(4-((2-羥基十二烷基)(2-羥基十一烷基)胺基)丁基)-1,4-二㗁烷-2,5-二酮 (標靶 23)、3-(5-(雙(2-羥基十二烷基)胺基)戊-2-基)-6-(5-((2-羥基十二烷基)(2-羥基十一烷基)胺基)戊-2-基)-1,4-二㗁烷-2,5-二酮 (標靶 24)、N1GL、N2GL、V1GL 及其組合。
在一些實施例中,該等一種或多種陽離子或可電離脂質為胺基脂質。在各種實施例中,胺基脂質為一級胺、二級胺、三級胺、四級胺、吡咯啶或哌啶。適用於本發明的胺基脂質包括 WO2017180917 中所述的那些,該專利藉由引用併入本文。WO2017180917 中的例示性胺基脂質包括段落 [0744] 中所述的那些,諸如 DLin-MC3-DMA(MC3)、(13Z,16Z)-N,N-二甲基-3-壬基二十二碳-13,16-二烯-1-胺 (L608) 及化合物 18。其他胺基脂質包括化合物 2、化合物 23、化合物 27、化合物 10 及化合物 20。適用於本發明的另外的胺基脂質包括 WO2017112865 中所述的那些,該專利藉由引用併入本文。WO2017112865 中的例示性胺基脂質包括如式 (I)、(Ia1) 至 (Ia6)、(lb)、(II)、(Ila)、(III)、(Ilia)、(IV)、(17-1)、(19-1)、(19-11) 及 (20-1) 之一的化合物以及段落 [00185]、[00201]、[0276] 的化合物。在一些實施例中,適用於本發明的陽離子脂質包括 WO2016118725 中所述的那些,該專利藉由引用併入本文。WO2016118725 中的例示性陽離子脂質包括諸如 KL22 及 KL25 的那些。在一些實施例中,適用於本發明的陽離子脂質包括 WO2016118724 中所述的那些,該專利藉由引用併入本文。WO2016118725 中的例示性陽離子脂質包括諸如 KL10、1,2-二亞油醯氧基-N,N-二甲胺基丙烷 (DLin-DMA) 及 KL25。
在一些實施例中,LNP 調配物將包含一種或多種非陽離子脂質。在一些實施例中,該等一種或多種非陽離子脂質選自:DSPC (1,2-二硬脂醯基-sn-甘油基-3-磷酸膽鹼)、DPPC (1,2-二棕櫚醯基-sn-甘油基-3-磷酸膽鹼)、DOPE (1,2-二油基-sn-甘油基-3-磷酸乙醇胺)、DOPC (1,2-二油基-sn-甘油基-3-磷脂醯膽鹼)、DPPE (1,2-二棕櫚醯-sn-甘油基-3-磷酸乙醇胺)、DMPE (1,2-二肉荳蔻醯基-sn-甘油基-3-磷酸乙醇胺)、DOPG (1,2-二油醯基-sn-甘油基-3-磷酸-(1′-外消旋(rac)-甘油))。
在一些實施例中,LNP 調配物包含一種或多種經 PEG 修飾之脂質。在一些實施例中,該等一種或多種經 PEG 修飾之脂質包含長度達 5 kDa 的聚乙二醇鏈,該聚乙二醇鏈共價連接至具有長度為 C 6-C 20的烷基鏈的脂質。PEG 脂質可選自由以下所組成之非限制性組:經 PEG 修飾之磷脂醯乙醇胺(phosphatidyletanolamines)、經 PEG 修飾之磷脂酸、經 PEG 修飾之神經醯胺、經 PEG 修飾之二烷基胺、經 PEG 修飾之二醯基甘油以及經 PEG 修飾之二烷基甘油。例如,PEG 脂質可為 PEG-c-DOMG、PEG-DMG、PEG-DLPE、PEG-DMPE、PEG-DPPC 或 PEG-DSPE 脂質。
在各種實施例中,LNP 內經聚乙二醇化之脂質的百分比 ( 亦即PEG 密度) 是變化的。已發現 LNP 中的聚乙二醇 (PEG) 密度影響粒徑、表面電荷及穩定性。在各種實施例中,PEG 密度在約 0.1% 與約 10% 之間變化。在各種實施例中,PEG 密度在約 0.2% 與約 9% 之間變化。在各種實施例中,PEG 密度在約 0.3% 與約 8% 之間變化。在各種實施例中,PEG 密度在約 0.4% 與約 7% 之間變化。在各種實施例中,PEG 密度在約 0.5% 與約 6% 之間變化。在各種實施例中,PEG 密度在約 0.5% 與約 5% 之間變化。
在各種實施例中,改變存在於 LNP 製劑溶液中的脂質組分的總濃度以便實現任何給定 LNP 的最佳特性。在各種實施例中,脂質的總濃度在約 0.1 mM 與約 8 mM 之間變化。在各種實施例中,脂質的總濃度在約 0.2 mM 與約 7 mM 之間變化。在各種實施例中,脂質的總濃度在約 0.3 mM 與約 6 mM 之間變化。在各種實施例中,脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。在各種實施例中,脂質的總濃度在約 0.5 mM 與約 3 mM 之間變化。
在各種實施例中,LNP 將包含多於一種類型或多於一種的脂質。在各種實施例中,LNP 將包含至少 2 種類型的脂質。在各種實施例中,LNP 將包含至少 3 種類型的脂質。在各種實施例中,LNP 將包含至少 4 種類型的脂質。在各種實施例中,LNP 將包含至少 5 種類型的脂質。在各種實施例中,LNP 將包含至少 6 種類型的脂質。在各種實施例中,LNP 將包含至少 7 種類型的脂質。
奈米顆粒組成物的脂質組分可包括一種或多種結構脂質。本發明之奈米顆粒組成物可包括結構脂質 (例如,膽固醇糞甾醇(fecosterol)、植物固醇、菜油固醇、豆甾醇、蕓苔甾醇、麥角甾醇、番茄生僉、番茄鹼、熊果酸或 α-生育酚)。
奈米顆粒組成物之脂質組分可包括一種或多種磷脂,諸如一種或多種 (多)不飽和脂質。一般而言,該等脂質可包括磷脂部分及一個或多個脂肪酸部分。
磷脂部分可選自由以下所組成之非限制性組:磷脂醯膽鹼、磷脂醯乙醇胺、磷脂醯甘油、磷脂醯絲胺酸、磷脂酸、2-溶血磷脂醯膽鹼及鞘磷脂。脂肪酸部分可選自由以下所組成之非限制性組:月桂酸、肉豆蔻酸、肉荳蔻油酸、棕櫚酸、棕櫚油酸、硬脂酸、油酸、次亞麻油酸、α-次亞麻油酸、芥子酸、植烷酸、花生酸、花生四烯酸、二十碳五烯酸、二十二酸、二十二碳五烯酸及二十二碳六烯酸。亦考慮非天然種類,包括具有包括支化、氧化、環化及炔烴在內的修飾及取代的天然種類。
在一些實施例中,奈米顆粒組成物可包括 1,2-二硬脂醯-sn-甘油基-3-磷酸膽鹼 (DSPC)、1,2-二油醯基-sn-甘油基-3-磷酸乙醇胺 (DOPE) 或 DSPC 與 DOPE 兩者。可用於本發明之組成物和方法的磷脂可選自由以下所組成之非限制性組:DSPC、DOPE、1,2-二亞油醯基-sn-甘油基-3-磷酸膽鹼 (DLPC), 1,2-二肉荳蔻醯基-sn-甘油基-磷酸膽鹼 (DMPC)、1,2-二油醯基-sn-甘油基-3-磷酸膽鹼 (DOPC)、1,2-二棕櫚醯基-sn-甘油基-3-磷酸膽鹼 (DPPC)、1,2-雙十一烷醯基-sn-甘油基-磷酸膽鹼 (DUPC)、1-棕櫚醯基-2-油醯基-sn-甘油基-3-磷酸膽鹼 (POPC)、1,2-二-O-十八碳烯基-sn-甘油基-3-磷酸膽鹼 (18:0 二醚 PC)、1-油醯基-2-膽固醇基半琥珀琥醯基-sn-甘油基-3-磷酸膽鹼 (OChemsPC)、1-十六基-sn-甘油基-3-磷酸膽鹼 (C16 Lyso PC)、1,2-二亞麻醯基-sn-甘油基-3-磷酸膽鹼、1,2-二花生四烯醯基-sn-甘油基-3-磷酸膽鹼、1,2-雙二十二碳六烯醯基-sn-甘油基-3-磷酸膽鹼、1,2-二植烷醯基-sn-甘油基-3-磷酸乙醇胺 (ME 16.0 PE)、1,2-二硬脂醯-sn-甘油基-3-磷酸乙醇胺、1,2-二亞油醯基-sn-甘油基-3-磷酸乙醇胺、1,2-二亞麻醯基-sn-甘油基-3-磷酸乙醇胺、1,2-二花生四烯醯基-sn-甘油基-3-磷酸乙醇胺、1,2-雙二十二碳六烯醯基-sn-甘油基-3-磷酸乙醇胺、1,2-二油醯基-sn-甘油基-3-磷酸-外消旋-(1-甘油) 鈉鹽 (DOPG) 及鞘磷脂。
LNP 組成物可包括一種或多種除上述部分中所述的成分之外的成分。例如,奈米顆粒組成物可包括一種或多種疏水小分子,諸如維生素 (例如,維生素 A 或維生素 E) 或甾醇。
LNP 組成物亦可包括一種或多種通透性增強劑分子、碳水化合物、聚合物、治療劑、表面改性劑或其他成分。通透性增強劑分子可為例如美國專利申請公開號 2005/0222064 中所述的分子。碳水化合物可包括單糖 (例如,葡萄糖) 及多醣 (例如,糖原及其衍生物和類似物)。
聚合物可包括在內及/或用於囊封或部分囊封 LNP 組成物。聚合物可以是可生物降解的及/或生物相容的。聚合物可選自但不限於聚胺、聚醚、聚醯胺、聚酯、聚胺基甲酸酯、聚脲、聚碳酸酯、聚苯乙烯、聚醯亞胺、聚碸、聚胺甲酸酯、聚乙炔、聚乙烯、聚乙烯亞胺、聚異氰酸酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯腈及聚芳酯。例如,聚合物可包括聚(己內酯) (PCL)、乙烯醋酸乙烯聚合物 (EVA)、聚(乳酸) (PLA)、聚(L-乳酸) (PLLA)、聚(乙醇酸) (PGA)、聚(乳酸-共-乙醇酸) (PLGA)、聚(L-乳酸-共-乙醇酸) (PLLGA)、聚(D,L-丙交酯) (PDLA)、聚(L-丙交酯) (PLLA)、聚(D,L-丙交酯-共-己內酯)、聚(D,L-丙交酯-共-己內酯-共-乙交酯)、聚(D,L-丙交酯-共-PEO-共- D,L-丙交酯)、聚(D,L-丙交酯-共-PPO-共-D,L-丙交酯)、聚氰基丙烯酸烷基酯、聚胺甲酸酯、聚-L-離胺酸 (PLL)、甲基丙烯酸羥丙酯 (HPMA)、聚乙二醇、聚-L-麩胺酸、聚(羥基酸)、聚酐、聚原酸酯、聚(酯醯胺)、聚醯胺、聚(酯醚)、聚碳酸酯、聚烯烴諸如聚乙烯和聚丙烯、聚亞烷基二醇諸如聚(乙二醇) ( PEG)、聚環氧烷 (PEO)、聚亞烷基對苯二甲酸酯諸如聚(乙烯對苯二甲酸酯)、聚乙烯醇 (PVA)、聚乙烯醚、聚乙烯酯諸如聚(醋酸乙烯酯)、聚鹵乙烯諸如聚(氯乙烯) (PVC)、聚乙烯吡咯烷酮、聚矽氧烷、聚苯乙烯 (PS)、聚胺甲酸酯、衍生化纖維素諸如烷基纖維素、羥烷基纖維素、纖維素醚、纖維素酯、硝基纖維素、羥丙基纖維素、羧甲基纖維素、丙烯酸聚合物諸如聚(甲基)丙烯酸甲酯 (PMMA)、聚((甲基)丙烯酸乙酯)、聚((甲基)丙烯酸丁酯)、聚((甲基)丙烯酸異丁酯)、聚((甲基)丙烯酸己酯)、聚((甲基)丙烯酸異癸酯)、聚((甲基)丙烯酸月桂酯)、聚((甲基)丙烯酸苯酯)、聚(丙烯酸甲酯)、聚(丙烯酸異丙酯)、聚(丙烯酸異丁酯)、聚(丙烯酸十八酯) 及其共聚物和混合物、聚二氧雜環己酮及其共聚物、聚羥基股烷酸酯、丙烯富馬酸聚合體、聚甲醛、泊洛沙姆(poloxamer)、聚㗁胺 (polyoxamine)、聚(原)酯、聚(丁酸)、聚(戊酸)、聚(丙交酯-共-己內酯) 及三亞甲基碳酸酯、聚乙烯吡咯烷酮。
治療劑可包括但不限於細胞毒劑、化療劑及其他治療劑。細胞毒性劑可包括例如紫杉醇、細胞鬆弛素 B、短桿菌肽 D、溴化乙錠、吐根鹼、絲裂黴素、依托泊苷(etoposide)、替尼泊苷( teniposide)、長春新鹼、長春鹼、秋水仙鹼、多柔比星(doxorubicin)、柔紅黴素(daunorubicin)、二羥基蒽醌(dihydroxyanthracinedione)、米托蒽醌(mithramycin)、光神黴素(mithramycin)、放線菌素 D、1-脫氫睾酮、糖皮質激素、普魯卡因(procaine)、四卡因(tetracaine)、利多卡因(lidocaine)、普萘洛爾( propranolol)、嘌呤黴素、美登素(maytansinoid)、雷切黴素(rachelmycin)及其類似物。放射性離子亦可用為治療劑,並可包括例如放射性碘、鍶、磷、鈀、銫、銥、鈷、釔、釤及鐠。其他治療劑可包括例如抗代謝藥 (例如胺甲喋呤、6-巰嘌呤、6-硫鳥嘌呤、阿糖胞苷(cytarabine)和 5-氟尿嘧啶及達卡巴仁(decarbazine))、烷化劑 (例如,甲氯乙胺、噻替哌( thiotepa)、苯丁酸氮芥、雷切黴素、黴法蘭(melphalan)、雙氯乙基亞硝脲、洛莫司汀(lomustine)、環磷醯胺、硫酸布他卡因(busulfan)、二溴甘露醇、鏈佐黴素、絲裂黴素 C 及順式二氯二胺鉑 (II) (DDP) 及順鉑(cisplatin))、蒽環類 (例如柔紅黴素及阿黴素)、抗生素 (例如,放線菌素、博來黴素、光神黴素和蒽黴素) 及抗有絲分裂劑 (例如,長春新鹼、長春鹼、紫杉醇及美登素)。
表面修飾劑可包括但不限於陰離子蛋白質 (例如牛血清白蛋白)、界面活性劑 (例如,陽離子界面活性劑諸如二甲基二十八烷基溴化銨)、糖或糖衍生物 (例如,環糊精)、核酸、聚合物 (例如,肝素、聚乙二醇及泊洛沙姆)、黏液溶解劑 (例如,乙醯半胱胺酸、艾、鳳梨酶、木瓜蛋白酶、花環菌素 (clerodendrum)、溴己新 (carbocisteine)、羧甲司坦 (carbocisteine)、依拉嗪酮 (eprazinone)、美司鈉 (mesna)、氨溴索 (ambroxol)、索布羅爾 (sobrerol)、多碘醇 (domiodol)、萊托司坦 (letosteine)、司替羅寧 (stepronin)、硫普羅寧 (tiopronin)、凝溶膠蛋白 (gelsolin)、胸腺素 134、阿法鏈道酶 (dornase alfa)、奈替克新 (neltenexine) 及厄司坦 (erdosteine)) 及 DNase (例如,rhDNase)。表面修飾劑可佈置在 LNP 內及/或 LNP 組成物的表面上 (例如,藉由塗覆、吸附、共價鍵結或其他方法)。
除這些成分之外,本發明之 LNP 組成物可包括任何可用於醫藥組成物的物質。例如,LNP 組成物可包括一種或多種醫藥上可接受至賦形劑或輔助成分,諸如但不限於一種或多種溶劑、分散介質、稀釋劑、分散助劑、懸浮助劑、造粒助劑、崩解劑、填充劑、助滑劑、液體載體、黏合劑、界面活性劑、等滲劑、增稠劑或乳化劑、緩衝劑、潤滑劑、油、防腐劑及其他物質。亦可包括賦形劑,諸如蠟、黃油、著色劑、包衣劑、調味劑及香化劑。醫藥上可接受之賦形劑為本領域中所熟知 ( 參見例如:Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro;Lippincott, Williams & Wilkins, Baltimore, Md., 2006)。
稀釋劑之實例可包括但不限於碳酸鈣、碳酸鈉、磷酸鈣、磷酸二鈣、硫酸鈣、磷酸氫鈣、磷酸乳糖鈉、蔗糖、纖維素、微晶纖維素、高嶺土、甘露醇、山梨醇、肌醇、氯化鈉、乾澱粉、玉米澱粉、糖粉及/或它們的組合。造粒劑及分散劑可選自由以下各項所組成的非限制性列表:馬鈴薯澱粉、玉米澱粉、木薯澱粉、羥基乙酸澱粉鈉、黏土、海藻酸、瓜爾膠、柑橘渣、瓊脂、膨土、纖維素及木製品、天然海綿、陽離子交換樹脂、碳酸鈣、矽酸鹽、碳酸鈉、交聯聚(乙烯吡咯烷酮) (交聯聚維酮)、羧甲基澱粉鈉 (羥基乙酸澱粉鈉)、羧甲基纖維素、交聯羧甲基纖維素鈉 (交聯羧甲基纖維素)、甲基纖維素、預膠化澱粉 (澱粉 1500)、微晶澱粉、水不溶性澱粉、羧甲基纖維素鈣、矽酸鋁鎂 (VEEGUM®)、月桂硫酸鈉、四級銨化合物及/或它們的組合。
界面活性劑及/或乳化劑可包括但不限於天然乳化劑 (例如阿拉伯膠、瓊脂、海藻酸、海藻酸鈉、黃蓍膠、軟骨素、膽固醇、黃原膠、果膠、明膠、蛋黃、酪蛋白、毛脂、膽固醇、蠟及卵磷脂)、膠體黏土 (例如膨土 [矽酸鋁] 及 VEEGUM® [矽酸鋁鎂])、長鏈胺基酸衍生物、高分子量醇 (例如硬脂醇、鯨蠟醇、油醇、單硬脂酸甘油三酸乙酯、二硬脂酸乙二醇酯、單硬脂酸甘油酯及單硬脂酸丙二醇酯、聚乙烯醇)、卡波姆(carbomer) (例如羧基聚亞甲基、聚丙烯酸、丙烯酸聚合物及羧乙烯基聚合物)、鹿角菜膠、纖維素衍生物 (例如羧甲基纖維素鈉、粉狀纖維素、羥甲基纖維素、羥丙基纖維素、羥丙基甲基纖維素、甲基纖維素)、山梨糖醇脂肪酸酯 (例如聚氧乙烯山梨糖醇單月桂酸酯 [TWEEN®20]、聚氧乙烯山梨糖醇 [TWEEN® 60]、聚氧乙烯山梨糖醇單油酸酯 [TWEEN®80]、山梨糖醇單棕櫚酸酯 [SPAN®40]、山梨糖醇單硬脂酸酯 [SPAN®60]、山梨糖醇三硬脂酸酯 [SPAN®65]、單油酸甘油酯、山梨糖醇單油酸酯 [SPAN®80])、聚氧乙烯酯 (例如聚氧乙烯單硬脂酸酯 [MYRJ® 45]、聚氧乙烯氫化蓖麻油、聚乙氧基化蓖麻油、聚氧亞甲基硬脂酸酯及 SOLUTOL®)、蔗糖脂肪酸酯、聚乙二醇脂肪酸酯 (例如 CREMOPHOR®)、聚氧乙烯醚 (例如聚氧乙烯月桂基醚 [BRIJ® 30])、聚(乙烯基-吡咯烷酮)、二乙二醇單月桂酸酯、油酸三乙醇胺、油酸鈉、油酸鉀、油酸乙酯、油酸、月桂酸乙酯、月桂硫酸鈉、PLURONIC®F 68、POLOXAMER® 188、西曲溴銨(cetrimonium bromide)、氯化十六烷基吡啶、殺藻胺、多庫酯鈉及/或它們的組合。
黏合劑可為澱粉 (例如玉米澱粉及澱粉糊);明膠;糖 (例如,蔗糖、葡萄糖、右旋糖、糊精、糖蜜、乳糖、乳糖醇、甘露醇);天然及合成膠 (例如,阿拉伯膠、海藻酸鈉、愛爾蘭苔萃取物、panwar 膠、甘地膠、車前子黏液(mucilage of isapol husks)、羧甲基纖維素、甲基纖維素、乙基纖維素、羥乙基纖維素、羥丙基纖維素、羥丙基甲基纖維素、微晶纖維素、醋酸纖維素、聚(乙烯基吡咯烷酮)、矽酸鎂鋁 (VEEGUM®) 及落葉松阿拉伯半乳聚糖(larch arabinogalactan));藻酸鹽;聚環氧乙烷;聚乙二醇;無機鈣鹽;矽酸;聚甲基丙烯酸酯;蠟;水;醇;及其組合,或任何其他合適的黏合劑。
防腐劑包括但不限於抗氧化劑、螯合劑、抗菌防腐劑、抗真菌防腐劑、酒精防腐劑、酸性防腐劑及/或其他防腐劑。抗氧化劑包括但不限於 α-生育酚、抗壞血酸、抗壞血酸棕櫚酸酯、丁基羥基大茴香醚、丁基羥基甲苯、硫代甘油、偏二亞硫酸鉀、丙酸、五倍子酸丙酯、抗壞血酸鈉、亞硫酸氫鈉、偏二亞硫酸鈉及/或亞硫酸鈉。螯合劑包括乙二胺四乙酸 (EDTA)、檸檬酸一水合物、依地酸二鈉(disodium edetate)、依地酸二鉀、依地酸、延胡索酸、蘋果酸、磷酸、依地酸鈉、酒石酸及/或依地酸三鈉。抗菌防腐劑包括但不限於殺藻胺、氯化苯索寧,、苯甲醇、溴硝醇、溴化十六基三甲銨、氯化十六烷基吡啶、洛赫西定(chlorhexidine)、氯丁醇、氯甲酚、氯二甲酚、甲酚、乙醇、甘油、海克替啶(hexetidine)、 咪唑烷基脲(imidurea)、苯酚、苯氧乙醇、苯乙醇、硝酸苯汞、丙二醇及/或乙汞硫柳酸鈉。抗真菌防腐劑包括但不限於對羥基苯甲酸丁酯、對羥基苯甲酸甲酯、對羥基苯甲酸乙酯、對羥基苯甲酸丙酯、苯甲酸、羥基苯甲酸、苯甲酸鉀、山梨酸鉀、苯甲酸鈉、丙酸鈉及/或山梨酸。醇類防腐劑的實例包括但不限於乙醇、聚乙二醇、苯酚、苯甲醇、酚類化合物、雙酚、氯丁醇、羥基苯甲酸酯及/或苯乙醇。酸性防腐劑的實例包括但不限於維生素 A、維生素 C、維生素 E、β-胡蘿蔔素、檸檬酸、乙酸、脫氫抗壞血酸、抗壞血酸、山梨酸及/或植酸。其他防腐劑包括但不限於生育酚、生育酚乙酸酯、甲磺酸得立肟 (deteroxime mesylate)、溴化十六基三甲銨、丁基羥基大茴香醚 (BHA)、丁基羥基甲苯 (BHT)、乙二胺、月桂硫酸鈉 (SLS)、月桂醇聚醚硫酸酯鈉 (SLES)、亞硫酸氫鈉、偏二亞硫酸鈉、亞硫酸鉀、偏二亞硫酸鉀、GLYDANT PLUS®、PHENONIP®、對羥基苯甲酸甲酯、GERMALL® 115、GERMABEN®II、NEOLONE™、KATHON™ 及/或 EUXYL®。
緩衝劑的實例包括但不限於檸檬酸鹽緩衝劑溶液、乙酸鹽緩衝劑溶液、磷酸鹽緩衝劑溶液、氯化銨、碳酸鈣、氯化鈣、檸檬酸鈣、葡乳醛酸鈣( calcium glubionate)、葡庚糖酸鈣、葡萄糖酸鈣、d-葡萄糖酸、甘油磷酸鈣、乳酸鈣、乳糖酸鈣、丙酸、乙醯丙酸鈣、戊酸、磷酸氫鈣、磷酸、磷酸三鈣、氫氧化磷酸鈣、醋酸鉀、氯化鉀、葡萄糖酸鉀、鉀混合物、磷酸氫二鉀、磷酸二氫鉀、磷酸鉀混合物、乙酸鈉、碳酸氫鈉、氯化鈉、檸檬酸鈉、乳酸鈉、磷酸氫二鈉、磷酸二氫鈉、磷酸鈉混合物、三木甲胺、胺基磺酸緩衝劑 (例如 HEPES)、氫氧化鎂、氫氧化鋁、海藻酸、無熱原水、等滲鹽水、林格氏溶液(Ringer's solution)、乙醇及/或其組合。潤滑劑可選自由以下所組成之非限制性組:硬脂酸鎂、硬脂酸鈣、硬脂酸、二氧化矽、滑石、麥芽、二十二酸甘油酯、氫化植物油、聚乙二醇、苯甲酸鈉、乙酸鈉、氯化鈉、白胺酸、月桂硫酸鎂、月桂硫酸鈉及其組合。
油的實例包括但不限於杏仁油、杏核油、鱷梨油、巴巴蘇油、佛手柑油、黑木耳油、琉璃苣油、杜松油、甘菊油、油菜油、香菜油、巴西棕櫚油、蓖麻油、肉桂油、可可脂油、椰子油、鱈魚肝油、咖啡油、玉米油、棉籽油、鴯鶓油、桉樹油、月見油、魚油、亞麻籽油、香葉醇油、葫蘆油、葡萄籽油、榛子油、牛膝草油、肉荳蔻酸異丙酯、荷荷芭油、苦葵果油、熏衣花油、熏衣草油、檸檬油、山胡椒油、澳洲堅果油、錦葵油、芒果籽油、白芒花籽油、水貂油、肉荳蔻油、橄欖油、橙油、大西洋胸棘鯛油、棕櫚油、棕櫚仁油、桃仁油、花生油、罌粟籽油、南瓜籽油、油菜籽油、米糠油、迷迭香油、紅花油、檀香油、sasquana 油、歐洲薄荷油、沙棘油、芝麻油、乳木果油、矽油、大豆油、葵花油、茶樹油、薊油、椿油、香根草油、核桃油和小麥胚芽油以及硬脂酸丁酯、辛酸甘油三酯、癸酸甘油三酯、環甲基矽油、癸二酸二乙酯、二甲基矽油 360、甲基矽油、肉荳蔻酸異丙酯、礦物油、辛基十二烷醇、油醇、矽油及/或其組合。
在各種實施例中,LNP 可為微脂體。在各種實施例中,LNP 可為聚合物-脂質奈米顆粒。在各種實施例中,LNP 可包括其他蛋白質或肽分子。
有效負載
本發明之 LNP 被製造成囊封有效負載。術語「有效負載」是指與本揭露所述的脂質奈米顆粒調配物複合的任何化學實體、醫藥、藥物 (該等藥物可為但不限於小分子、無機固體、聚合物或生物聚合物)、小分子、核酸 (例如,DNA、RNA、siRNA 等)、蛋白質、肽等。有效負載亦涵蓋用於治療或預防疾病、病症、病痛或身體機能障礙的候選物 (例如,具有未知結構及/或功能),包括但不限於作為已知與潛在治療化合物的測試化合物。測試化合物可藉由本揭露之篩選方法進行篩選以確定其具有治療作用。
在各種實施例中,有效負載由一種或多種核苷酸組成。  例如,在各種實施例中,有效負載為寡核苷酸。  在各種實施例中,該等囊封有效負載的 LNP 的特徵可在於 N:P 比率。  如本文所用,「N/P 比率」是指帶正電荷的聚合物胺 (N=氮) 基團與帶負電荷的核酸磷酸酯 (P) 基團的比率。  N/P 比率在細胞內有效負載遞送中發揮重要作用。  在各種實施例中,有效負載的 N:P 比率是變化的。在各種實施例中,N:P 比率在約 0.5 至約 5 之間變化。  在各種實施例中,N:P 比率在約 0.25 與約 10 之間變化。  在各種實施例中,N:P 比率為約 0.1、約 0.2、約 0.25、約 .5、約 1、約 1.5、約 2、約 2.5、約 3、約 3.5、約 4、約 4.5、約 5、約 6、約 7、約 8、約 9 或約 10。
在各種實施例中,有效負載為寡核苷酸。在各種實施例中,寡核苷酸為反義分子。在各種實施例中,寡核苷酸為 siRNA。在各種實施例中,寡核苷酸為 shRNA。寡核苷酸可具有變化的長度。在各種實施例中,寡核苷酸的長度為約 1、約 2、約 3、約 4、約 5、約 6、約 7、約 8、約 9、約 10、約 11、約 12、約 13、約 14、約 15、約 16、約 17、約 18、約 19、約 20、約 21、約 22、約 23、約 24、約 25、約 26、約 27、約 28、約 29、約 30、約 31、約 32、約 33、約 34、約 35、約 36、約 37、約 38、約 39 或約 40 個核苷酸。在各種實施例中,寡核苷酸的長度在約 2 與約 40 個核苷酸之間。在各種實施例中,寡核苷酸的長度在約 4 與約 35 個核苷酸之間。在各種實施例中,寡核苷酸的長度在約 10 與約 30 個核苷酸之間。在各種實施例中,寡核苷酸的長度在約 12 與約 17 個核苷酸之間。
在各種實施例中,有效負載為 mRNA。在各種實施例中,該 mRNA 的長度為約 500 至 3000 個核苷酸。在各種實施例中,mRNA 的長度為 500 個核苷酸、1000 個核苷酸、1500 個核苷酸、2000 個核苷酸、2500 個核苷酸、3000 個核苷酸。在各種實施例中,mRNA 編碼抗原肽。在各種實施例中,mRNA 為疫苗的一部分。
在各種實施例中,有效負載為多肽。在各種實施例中,多肽在約 1,000 Da 與 10,000 Da 之間。在各種實施例中,多肽為約 500 Da、約 600 Da、約 700 Da、約 800 Da、約 900 Da、約 1,000 Da、約 1,500 Da、約 2,000 Da、約 2,500 Da、約 3,000 Da、約 3,500 Da、約 4,000 Da、約 4,500 Da、約 5,000 Da、約 5,500 Da、約 6,000 Da、約 6,500 Da、約 7,000 Da、約 7,500 Da、約 8,000 Da、約 8,500 Da、約 9,000 Da、約 9,500 Da、約 10,000 Da、約 15,000 Da 或約 20,000 Da。
在各種實施例中,有效負載為小分子。在各種實施例中,小分子在約 100 Da 與 1000 Da 之間。在各種實施例中,小分子為約 50 Da、約 60 Da、約 70 Da、約 80 Da、約 90 Da、約 100 Da、約 150 Da、約 200 Da、約 250 Da、約 300 Da、約 350 Da、約 400 Da、約 450 Da、約 500 Da、約 550 Da、約 600 Da、約 650 Da、約 700 Da、約 750 Da、約 800 Da、約 850 Da、約 900 Da、約 950 Da、約 1,000 Da、約 1,500 Da 或約 2,000 Da。
醫藥製劑
在各種實施例中,最佳化脂質奈米顆粒可整體或部分調配為醫藥製劑。本發明之醫藥製劑可包括一種或多種奈米顆粒組成物。例如,醫藥組成物可包括一種或多種奈米顆粒組成物,該等奈米顆粒組成物包括一種或多種有效負載。本發明之醫藥組成物可進一步包括一種或多種醫藥上可接受之賦形劑或輔助成分 (諸如本文所述的那些)。調配及製造醫藥組成物及藥劑的一般指南可參見例如:Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro;Lippincott, Williams & Wilkins, Baltimore, Md., 2006。習用賦形劑及輔助成分可用於本發明的任何醫藥組成物中,除非任何習用賦形劑或輔助成分可能與本發明之奈米顆粒組成物的一種或多種成分不相容。如果賦形劑或輔助成分與奈米顆粒組成物的成分結合可能導致任何不良生物效應或其他有害影響,則該賦形劑或輔助成分與奈米顆粒組成物的該成分不相容。
在一些實施例中,一種或多種賦形劑或輔助成分可佔包括本發明之奈米顆粒組成物的醫藥組成物的總質量或總體積的 50% 以上。例如,一種或多種賦形劑或輔助成分可佔醫藥慣例的 50%、60%、70%、80%、90% 或更多。在一些實施例中,醫藥上可接受之賦形劑的純度為至少 95%、至少 96%、至少 97%、至少 98%、至少 99% 或 100%。在一些實施例中,賦形劑獲批用於人用藥品或獸用藥品。在一些實施例中,賦形劑獲得美國食品暨藥物管理局批准。在一些實施例中,賦形劑為醫藥級。在一些實施例中,賦形劑符合美國藥典 (USP)、歐洲藥典 (EP)、英國藥典及/或國際藥典標準。
如本揭露中之醫藥組成物中的一種或多種奈米顆粒組成物、一種或多種醫藥上可接受之賦形劑及/或任何其他成分的相對量將是變化的,取決於接受治療的受試者的身份、體型及/或疾病,並進一步取決於組成物的給藥途徑。例如,醫藥組成物可包含 0.1% 至 100% (wt/wt) 的一種或多種奈米顆粒組成物。
奈米顆粒組成物及/或包括一種或多種奈米顆粒組成物的醫藥組成物可投予任何患者或受試者,包括可能受益於藉由將 mRNA 遞送至一個或多個特定細胞、組織、器官或其係統或組 (諸如腎系統) 而提供的治療效果的那些患者或受試者。儘管本文所提供的奈米顆粒組成物及包括奈米顆粒組成物的醫藥組成物的描述主要涉及適合於投予人類的組成物,但本領域技術人員將理解該等組成物通常適合於投予任何其他哺乳動物。為使適於投予各種動物的組成物適於投予人類的組成物的修改為人所熟知,并且普通技術程度的獸醫藥理學家可僅藉由普通實驗 (如果有的話) 來設計及/或執行該等修改。預期接受組成物投予的受試者包括但不限於人類、其他靈長類動物及其他哺乳動物 (包括商業相關的哺乳動物,諸如牛、豬、馬、綿羊、貓、狗、小鼠及/或大鼠)。
包括一種或多種奈米顆粒組成物的醫藥組成物可藉由藥理學領域已知或此後開發的任何方法製備。一般而言,該等製備方法包括使活性成分與賦形劑及/或一種或多種其他輔助成分結合,然後,如果需要或必要,將產品分割、成型及/或包裝成所需的單一或多劑量單位。
如本揭露之醫藥組成物可作為單一單位劑量及/或作為多個單一單位劑量進行製備、包裝及/或批量銷售。如本文所用,「單位劑量」為包含預定量的活性成分 (例如,奈米顆粒組成物) 的離散量的醫藥組成物。活性成分的量通常等於將投予受試者的活性成分的劑量及/或該等劑量的方便部分,例如該等劑量的二分之一或三分之一。
本發明之醫藥組成物可製備成適合多種投予途徑及方法的多種形式。例如,本發明之醫藥組成物可製備成液體劑型 (例如,乳劑、微乳劑、奈米乳劑、溶液、懸液劑、糖漿及酏劑)、注射劑形式、固體劑型 (例如,膠囊、片劑、丸劑、粉劑及顆粒劑)、用於局部及/或經皮投予的劑型 (例如,軟膏、糊劑、乳膏、洗劑、凝膠、粉劑、溶液、噴霧劑、吸入劑及貼劑)、懸液劑、粉劑及其他形式。
用於口服和腸胃外投予的液體劑型包括但不限於醫藥上可接受之乳劑、微乳劑、奈米乳劑、溶液、懸液劑、糖漿及/或酏劑。除活性成分之外,液體劑型可包含本領域常用的惰性稀釋劑,諸如水或其他溶劑;增溶劑及乳化劑,諸如乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸芐酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油 (特定而言為棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚乙二醇及山梨糖醇脂肪酸酯以及它們的混合物。除惰性稀釋劑外,口服組成物亦可包括佐劑,諸如潤濕劑、乳化劑及懸浮劑、甜味劑、調味劑及/或香化劑。在腸胃外投予的某些實施例中,將組成物與增溶劑 (諸如 Cremophor®、醇、油、改性油、二醇、聚山梨醇酯、環糊精、聚合物及/或它們的組合) 混合。
可根據已知技術使用合適的分散劑、潤濕劑及/或懸浮劑調配可注射製劑,例如無菌可注射水性或油質懸浮液。無菌注射製劑可為無毒腸胃外可接受之稀釋劑及/或溶劑中的無菌注射溶液、混懸液及/或乳劑,例如 1,3-丁二醇中的溶液。可採用的可接受之載體和溶劑包括水、林格氏溶液、USP 及等滲氯化鈉溶液。通常可採用無菌的不揮發油作為溶劑或懸浮介質。為此目的,可使用任何溫和的不揮發性油,包括合成的單甘油酯或雙甘油酯。脂肪酸諸如油酸可用於製備注射劑。
注射用調配物可經過滅菌,例如,藉由細菌截留過濾器過濾,及/或藉由摻入無菌固體組成物形式的滅菌劑,其在使用前可溶解或分散於無菌水或其他無菌可注射介質中。
為延長活性成分的作用,通常需要減緩皮下或肌內注射時對活性成分的吸收。這可以藉由使用水溶性差的結晶或無定形材料的液體懸浮液來實現。藥物之吸收速率取決於其溶解率,其溶解率繼而可能取決於晶體大小及晶型。可替代地,腸胃外給藥的藥物形式之延遲吸收藉由將藥物溶解或懸浮在油性載體中來實現。可注射儲庫型藉由在可生物降解的聚合物 (如聚丙交酯-聚乙交酯) 中形成藥物的微囊化基質製成。根據藥物與聚合物的比率以及所採用的特定聚合物的性質,可控製藥物釋放速率。其他生物可降解的聚合物的實例包括聚(原酸酯) 及聚(酐)。可注射儲庫型調配物藉由將藥物囊封在與身體組織相容的微脂體或微乳液中來製備。
用於直腸或陰道投予的組成物通常是栓劑,其可藉由將組成物與合適的無刺激性賦形劑諸如可可脂、聚乙二醇或栓劑蠟 (其在環境溫度下為固體,但在體溫下為液體並因此在直腸或陰道腔內融化並釋放活性成分) 混合來製備。
口服固體劑型包括膠囊、片劑、丸劑、膜劑、粉劑及顆粒劑。在該等固體劑型中,活性成分與至少一種惰性、醫藥上可接受之賦形劑諸如檸檬酸鈉或磷酸二鈣及/或填充劑或增量劑 (例如澱粉、乳糖、蔗糖、葡萄糖、甘露醇及矽酸)、黏合劑 (例如羧甲基纖維素、藻酸鹽、明膠、聚乙烯吡咯烷酮、蔗糖及阿拉伯膠)、保濕劑 (例如甘油)、崩解劑 (例如瓊脂、碳酸鈣、馬鈴薯或木薯澱粉、海藻酸、某些矽酸鹽及碳酸鈉)、溶液阻滯劑 (例如石蠟)、吸收促進劑 (例如四級銨化合物)、潤濕劑 (例如鯨蠟醇及單硬脂酸甘油酯)、吸收劑 (例如高嶺土及膨土、矽酸鹽) 及潤滑劑 (例如滑石、硬脂酸鈣、硬脂酸鎂、固體聚乙二醇、月桂硫酸鈉) 以及它們的混合物混合。在膠囊、片劑和丸劑的情況下,劑型可包含緩衝劑。
類似類型的固體組成物可用為軟、硬填充明膠膠囊的填充劑,使用賦形劑諸如乳糖或牛奶糖以及高分子量聚乙二醇等。片劑、糖衣錠、膠囊、丸劑及顆粒劑的固體劑型可製備成包含包衣及外殼,諸如腸溶衣及醫藥調配領域所熟知的其他包衣。它們可視情況包含遮光劑,並且可為僅釋放活性成分,或較佳的是在腸道的特定部分中釋放,且視情況以延遲方式釋放。可使用的嵌入組成物的實例包括聚合物及蠟。類似類型的固體組成物可用為軟、硬填充明膠膠囊的填充劑,使用賦形劑諸如乳糖或牛奶糖以及高分子量聚乙二醇等。
用於外用及/或透皮投予組成物的劑型可包括軟膏、糊劑、乳膏、洗劑、凝膠、粉劑、溶液、噴霧劑、吸入劑及/或貼劑。一般而言,活性成分在無菌條件下與醫藥上可接受之賦形劑及/或任何所需的防腐劑及/或可能需要的緩衝劑混合。此外,本揭露考慮使用透皮貼劑,其通常具有將化合物受控遞送至身體的額外優勢。該等劑型可例如藉由將化合物溶解及/或分散在適當的介質中來製備。可替代地或此外,可藉由提供速率控制膜及/或藉由將化合物分散在聚合物基質及/或凝膠中來控制速率。
用於遞送本文所述的皮內醫藥組成物的合適裝置包括短針裝置,諸如美國專利第 4,886,499、5,190,521、5,328,483、5,527,288、4,270,537、5,015,235、5,141,496 及 5,417,662 號中所述的那些。皮內組成物可藉由限製針頭進入皮膚的有效穿透長度的裝置投予,諸如在 PCT 公開 WO 99/34850 中所述的那些及其功能等同形式。經由液體噴射注射器及/或經由刺穿角質層並產生到達真皮的射流的針頭將液體組分遞送至真皮的射流注入裝置是合適的。射流注入裝置描述於例如美國專利第 5,480,381、5,599,302、5,334,144、5,993,412、5,649,912、5,569,189、5,704,911、5,383,851、5,893,397、5,466,220、5,339,163、5,312,335、5,503,627、5,064,413、5,520,639、4,596,556、4,790,824、4,941,880、4,940,460 號以及 PCT 公開 WO 97/37705 及 WO 97/13537 中。使用壓縮氣體加速粉劑形式的疫苗穿過皮膚外層到達真皮的彈道粉末/顆粒遞送裝置是合適的。可替代地或此外,習用注射器可用於皮內投予的結核菌素皮內試驗方法中。
適用於局部投予的調配物包括但不限於液體及/或半液體製劑,諸如擦劑、洗劑、水包油及/或油包水乳劑,諸如乳膏、軟膏及/或糊劑及/或溶液及/或懸液劑。可局部投予的調配物可例如包含約 1% 至約 10% (wt/wt) 活性成分,儘管活性成分的濃度可與活性成分在溶劑中的溶解度極限一樣高。用於局部投予的調配物可進一步包含一種或多種如本文所述之其他成分。
醫藥組成物可製備、包裝成適於經由頰腔進行肺部投予的調配物及/或以該形式銷售。該等調配物可包含乾顆粒,其包含活性成分並且其直徑在約 0.5 nm 至約 7 nm 或約 1 nm 至約 6 nm 的範圍內。該等組成物方便地為乾粉形式,使用包含乾粉儲存器的裝置進行投予,推進劑流可被引導至該儲存器以分散粉末,及/或使用自推進溶劑/粉末分配容器 (諸如包含溶解及/或懸浮在密封容器中的低沸點推進劑中的活性成分的裝置) 進行投予。該等粉末包含其中按重量計至少 98% 的顆粒具有大於 0.5 nm 的直徑且按數量計至少 95% 的顆粒具有小於 7 nm 的直徑的顆粒。可替代地,按重量計至少 95% 的顆粒具有大於 1 nm 的直徑且按數量計至少 90% 的顆粒具有小於 6 nm 的直徑。乾粉組成物可包括固體細粉稀釋劑諸如糖,並且方便地以單位劑型提供。
低沸點推進劑通常包括在大氣壓下沸點低於 65℉ 的液體推進劑。一般而言,推進劑可以佔組成物的 50% 至 99.9% (wt/wt),且活性成分可以佔組成物的 0.1% 至 20% (wt/wt)。推進劑可進一步包含其他成分,諸如液體非離子及/或固體陰離子界面活性劑及/或固體稀釋劑 (其可具有與包含活性成分的顆粒相同數量級的粒徑)。
針對肺部遞送調配的醫藥組成物可以溶液及/或懸浮液的液滴形式提供活性成分。該等調配物可製備、包裝成水性及/或稀釋的醇溶液及/或懸液劑及/或以該形式銷售,其視情況為無菌的,包含活性成分,並可方便地使用任何霧化及/或原子化裝置投予。該等調配物可進一步包含一種或多種其他成分,該等成分包括但不限於調味劑諸如糖精鈉、揮發油、緩衝劑、界面活性劑及/或防腐劑諸如羥基苯甲酸甲酯。藉由該投予途徑提供的液滴的平均直徑可在約 1 nm 至約 200 nm 的範圍內。
本文所述之可用於肺部遞送的調配物可用於鼻內遞送醫藥組成物。另一種適於鼻內投予的調配物為粗粉,其包含活性成分並具有約 0.2 μm 至 500 μm 的平均粒徑。該調配物以吸入鼻煙的方式投予,亦即藉由鼻道從靠近鼻子的粉末容器快速吸入。
適於經鼻投予的調配物可例如包含少至約 0.1% (wt/wt) 及多至 100% (wt/wt) 的活性成分,並可包含一種或多種如本文所述之其他成分。醫藥組成物可製備、包裝成適於口頰投予的調配物及/或以該形式銷售。該等調配物可為例如使用習用方法製成的片劑及/或錠劑的形式,並可包含例如 0.1% 至 20% (wt/wt) 的活性成分,餘量包括可口服溶解的及/或可降解的組成物及視情況存在的一種或多種本文所述的其他成分。可替代地,適於口頰投予的調配物可包含粉末及/或氣霧化及/或霧化溶液及/或懸浮液,其包含活性成分。該等粉狀、氣霧化及/或霧化調配物在分散時可具有約 0.1 nm 至約 200 nm 範圍內的平均顆粒及/或液滴尺寸,並還進一步包含本文所述的任何其他成分中之一種或多種。
醫藥組成物可製備、包裝成適於經眼投予的調配物及/或以該形式銷售。該等調配物可為例如滴眼劑的形式,其包括例如在水性或油性液體賦形劑中的 0.1/1.0% (wt/wt) 的活性成分溶液及/或懸浮液。該等滴劑可進一步包含緩衝劑、鹽及/或本文所述的任何其他成分中之一種或多種。其他可用的經眼投予的調配物包括那些包含微晶形式及/或脂質體製劑中的活性成分的那些。滴耳劑及/或滴眼劑被視為在本揭露的範圍內。
包括一種或多種有效負載的奈米顆粒組成物可藉由任何途徑投予。在一些實施例中,本發明之組成物,包括預防、診斷或成像組成物 (包括一種或多種本發明之奈米顆粒組成物) 藉由多種途徑中的一種或多種投予,這些投予途徑包括經口、靜脈內、肌內、動脈內、髓內、鞘內、皮下、心室內、透皮或皮內、皮間、直腸、陰道內、腹膜內、局部 (例如藉由粉劑、軟膏、乳膏、凝膠、洗劑及/或滴劑)、黏膜、鼻腔、口腔、腸內、玻璃體、瘤內、舌下、鼻內;藉由氣管內滴注、支氣管滴注及/或吸入;作為口腔噴霧劑及/或粉劑、鼻腔噴霧劑及/或噴霧劑及/或經由門靜脈導管。在一些實施例中,組成物可經靜脈內、肌內、皮內或皮下投予。然而,本揭露涵蓋藉由任何適當的途徑遞送本發明之組成物,考慮到藥物遞送科學的可能的進步。一般而言,最合適的投予途徑將取決於多種因素,包括含有一種或多種 mRNA 的奈米顆粒組成物的性質 (例如,其在各種身體環境諸如血液及胃腸道中的穩定性)、患者的疾病 (例如,患者能否耐受特定的投予途徑) 等。
在某些實施例中,如本揭露之組成物能夠以在給定劑量下遞送約 0.0001 mg/kg 至約 10 mg/kg、約 0.001 mg/kg 至約 10 mg/kg、約 0.005 mg/kg 至約 10 mg/kg、約 0.01 mg/kg 至約 10 mg/kg、約 0.1 mg/kg 至約 10 mg/kg、約 1 mg/kg 至約 10 mg/kg、約 2 mg/kg 至約 10 mg/kg、約 5 mg/kg 至約 10 mg/kg、約 0.0001 mg/kg 至約 5 mg/kg、約 0.001 mg/kg 至約 5 mg/kg、約 0.005 mg/kg 至約 5 mg/kg、約 0.01 mg/kg 至約 5 mg/kg、約 0.1 mg/kg 至約 10 mg/kg、約 1 mg/kg 至約 5 mg/kg、約 2 mg/kg 至約 5 mg/kg、約 0.0001 mg/kg 至約 1 mg/kg、約 0.001 mg/kg 至約 1 mg/kg、約 0.005 mg/kg 至約 1 mg/kg、約 0.01 mg/kg 至約 1 mg/kg 或約 0.1 mg/kg 至約 1 mg/kg 的劑量水平投予,其中 1 mg/kg 的劑量為每 1 kg 受試者體重提供 1 mg 組成物。在特定實施例中,可投予劑量約 0.005 mg/kg 至約 5 mg/kg 的本發明之奈米顆粒組成物。可每天以相同或不同的量投予一次或多次劑量,以獲得所需的 mRNA 表現位準及/或治療、診斷、預防或成像效果。可遞送所需的劑量,例如每天三次、每天兩次、每天一次、每隔一天一次、每三天一次、每週一次、每兩週一次、每三週一次或每四週一次。在某些實施例中,可使用多次投予 (例如,兩次、三次、四次、五次、六次、七次、八次、九次、十次、十一次、十二次、十三次、十四次或更多次投予) 以遞送所需之劑量。在一些實施例中,可例如在外科手術之前或之後或在急性疾病、病症或病狀的情況下投予單劑量。
包括一種或多種有效負載的奈米顆粒組成物可與一種或多種其他治療、預防、診斷或顯像劑組合使用。「組合」並非旨在暗示必須同時投予及/或調配成一起遞送,儘管這些遞送方式在本揭露的範圍內。例如,可組合投予包括一種或多種不同 mRNA 的一種或多種奈米顆粒組成物。組成物可與一種或多種其他所需的治療劑或醫療程序同時投予或在其之前或之後投予。一般而言,各藥劑將以針對該藥劑確定的劑量及/或時間表投予。在一些實施例中, 本揭露涵蓋本發明之組成物或其成像、診斷或預防性組成物與提高其生體可用率、減少及/或改變其代謝、抑制其排泄及/或改變其體內的分佈的藥劑的組合遞送。
還應當理解的是,組合使用的治療、預防、診斷或成像活性劑可在單一組成物中一起投予或在不同組成物中分開投予。一般而言,預期組合使用的藥劑的使用含量不超過其單獨使用時的含量。在一些實施例中,組合使用的含量可低於單獨使用時的含量。
在組合方案中採用的療法 (治療劑或程序) 的特定組合將考慮所需治療劑及/或程序的相容性以及要實現的所需治療效果。還應當理解的是,所採用的療法可能對相同的病症實現所需的效果 (例如,用於治療癌症的組成物可與化療劑同時投予),或者它們可能實現不同的效果 (例如,控制任何不良反應)。
實例
以下實例並非旨在限制,其目的在於為本發明提供更多資訊及支持。以下實例證明最佳化 LNP 形成以獲得最佳有效負載載量及粒徑分佈的 HTS 方法可直接轉化為放大的製造工藝,諸如基於微流體的方法。該 HTS 方法將材料消耗量減少約 10 倍,並將工藝輸出提高了約 100 倍。這些結果表明 HTS 方法在最佳化 LNP 製造方面的穩健性及實用性,從而促進了它們的臨床轉化。
材料與方法
材料
脂質包括 1,2-二硬脂醯-sn-甘油基-3-磷酸膽鹼 (DSPC)、1,2-二硬脂醯基-sn-甘油基-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (DSPE-PEG 2000) 及陽離子 1,2-二油醯基-3-三甲基銨丙烷 (DOTAP) 購自 Avanti Polar Lipids (AL, USA)。可電離脂質二亞油基甲基-4-二甲胺基丁酸酯 (DLin-MC3-DMA, MC3) 購自 MCE (NJ, USA),且膽固醇購自 Sigma (MO, USA)。在內部合成了兩種 ASO,亦即 ASO-1 (13-mer,鈉鹽形式) 和 ASO-2 (16-mer,鈉鹽形式)。所有其他試劑至少為試劑級且不含 DNase/RNAse。
負載 ASO 的 LNP 的高通量製備
使用 LEA Library Studio 軟體 (Unchained Labs, CA, USA),對 96 孔板基質中設計的包含不同脂質組成物、總脂質濃度及 ASO 載量的 LNP 調配物進行篩選。在典型的負載 ASO-1 的 MC3 LNP 的篩選中,將 ASO 溶解於檸檬酸鹽緩衝劑 (25 mM, pH 4) 中,其濃度對應於 N/P 比率為 5、2、1 和 0.5,並使用機器人液體處理器 (TECAN ®Freedom EVO, NC, USA) 將其以 150 µl/孔的濃度分配至 96 孔板 (Greiner Bio One 655101, NC, USA) 中。藉由使用 TECAN ®混合單個脂質儲備液 (20 mg/ml,於乙醇中) 並用乙醇稀釋,製備包含不同總脂質含量 (0.2 µmol/孔或 0.4 µmol/孔) 及 DSPE-PEG 2000含量 (0、1.5、3 或 5 mol% 的總脂質) 的脂質混合物。然後,將 50 µl 脂質以 0.5 ml/s 的速度快速分配至 ASO 板中,然後使用 TECAN ®機器人藉由 10 輪移液 (每次 100 µl) 進行相混合,以促進負載 ASO 的 LNP 的自組裝。所得板含有 96 個 LNP 樣品 (200 μl/孔),其在 32 個條件下平行變化 (4 個位準的 ASO 載量,2 個位準的總脂質濃度,4 個位準的脂質組成物,n = 3)。在其他實驗中,將可電離脂質 MC3 替換為永久陽離子脂質 DOTAP,或將 13-mer ASO-1 替換為 16-mer ASO-2,對相似的調配參數進行篩選。亦探討了反向分配順序 (將 ASO 溶液注入脂質混合物中) 及不同的混合速度和輪次,以最佳化相混合方法。
負載 ASO 的 LNP 的表徵
負載 ASO 的 LNP 的結構藉由低溫透射電子顯微鏡 (cyro-TEM) 確定。使用 DLS 測量粒徑分佈。簡言之,使用 TECAN ®機器人,將負載 ASO 的 LNP 在 96 孔玻璃底微量盤 (Greiner Bio One 655892, NC, USA) 中用磷酸鹽緩衝鹽水 (PBS, pH 7.4) 稀釋 40 倍,並使用 DynaPro ®酶標儀 III (Wyatt Technology, CA, USA) 分析平均粒徑及粒徑分佈 (以多分散性百分比 (%PD) 表示)。藉由添加 15 µl 0.5 M 磷酸鹽緩衝劑 (pH 7.4),將 60 µl 等分試樣調節至中性 pH,然後將其轉移至濾板 (MWCO 100 kD; AcroPrep, PALL, NY, USA) 並離心 (2,000 xg,10 分鐘) 得到濾液。然後使用 UV 酶標儀 (TECAN ®Spark, NC, USA) 藉由 OD 260對 50 µl 濾液中未囊封之 ASO 進行定量,並計算 ASO 的囊封效率百分比 (%EE):
Figure 02_image001
ASO 標準品採用與 LNP 樣品相同的緩衝劑製備並經過相同的過濾過程。在穩定性實驗,將 60 μl 製備的 N/P 比率為 1 的 LNP 用 PBS 直接稀釋 10 倍,並儲存於 4℃ 或 40℃ 下,在 2 週內分析其粒徑及 ASO 釋放。
負載 ASO 的 LNP 的微流體製備
使用微流體方法放大製備按上述高通量方法篩選的 ASO 負載的 LNP。簡言之,藉由微流體裝置 (NanoAssemblr ®, Precision NanoSystems, BC, Canada) 在水性緩衝劑/乙醇相的比率為 3/1 且總流速恆定為 12 ml/min 的條件下混合包含不同總脂質濃度及 DSPE-PEG 2000含量的不同濃度的 ASO-1 (溶解於檸檬酸鹽緩衝劑中) 與脂質 (溶解於乙醇中)。將收集的 LNP 藉由基於離心機 (2,000 xg,30 分鐘) 的超濾 (MWCO 10 kD; Amicon, MilliporeSigma, MA, USA) 純化,以去除遊離 ASO 及脂質,然後將緩衝劑交換為 PBS。藉由 DLS 分析 LNP 的粒徑分佈,並藉由親水作用液相層析 (HILIC) 分析 ASO 囊封。簡言之,藉由溶解於 0.75% Triton 溶液中,從純化後的 LNP 中提取經囊封的 ASO。利用 HILIC 管柱 (Waters ACQUITY UPLC BEH Amide, 130Å, 1.7 µm, 3 mm x 50 mm)、流動相 A (25 mM 乙酸銨,溶於乙腈/水 (80/20, v/v) 中) 及移動相 B (25 mM 乙酸銨,溶於乙腈/水 (40/60, v/v) 中) 在 10 分鐘內以 0 至 100% 的移動相 B 進行梯度洗脫,流速為 0.8 ml/min,柱溫為 40℃,且檢測波長為 260 nm。
統計分析
所有結果皆表示為平均值 ± SD,n = 3。使用 Prism 8.0 (GraphPad Software),藉由單向或雙向方差分析 (ANOVA) 對資料進行分析,然後進行 TurkeySidakDunnett後檢驗以實施多組比較。 P值小於 0.05 被視為具有統計學顯著性。
實例 1
藉由機器人液體處理器最佳化相混合過程
為開發用於 LNP 製劑的高通量溶劑注入法,首先研究了相混合對粒徑及 ASO 囊封的影響。在 N/P 比率為 1 的條件下,藉由電荷介導的複合將 ASO-1 負載到由 0.4 µmol 總脂質及 1.5 mol% DSPE-PEG 2000所組成的 LNP 中。使用 TECAN ®液體處理器以不同的移液速度 (從最小值 0.1 ml/s 到最大值 0.9 ml/s,取決於儀器設置) 分配含有脂質的乙醇相,並與水性 ASO 相混合,反之亦然。在低、中或高注入速度下將乙醇注入緩衝劑中,然後混合 10 輪,產生了類似的 LNP,其平均直徑為約 145 nm (圖 1A),%PD 為約 18% (圖 1B),且 ASO 的 %EE 約為 83% (圖 1C)。相比之下,在低速 (0.1 ml/s) 下將緩衝劑注入乙醇中,產生了更大 (平均直徑約 220 nm)、多分散性更高 (%PD 約 41%) 且具有更低 %EE (約 43%) 的顆粒 (圖 1A 至圖 1C)。然而,提高注入速度所產生的 LNP 與將乙醇注入緩衝劑中所得到的 LNP 相似,表明形成負載 ASO 的 LNP 需要在水性緩衝劑中快速消散濃脂質。接下來,將乙醇注入緩衝劑中,之後在不同的移液輪次及速度下進行相混合以製備 LNP。中等速度 (0.5 ml/s) 及 10 輪混合足以產生具有高 ASO 載量的均質 LNP,而進一步增加混合速度或輪次對粒徑及 %EE 無影響 (圖 1D-1F)。因此,選擇將乙醇注入緩衝劑中並之後以 0.5 ml/s 混合 10 輪的條件進行後續研究。
實例 2
負載 ASO 的 LNP 調配物的 HTS
為研究調配參數對 LNP 的主要質量屬性的影響,設計一種 HTS 工作流程,其能夠簡化這些調配物的製備及表徵 (圖 2)。ASO 最初溶解於檸檬酸鹽緩衝劑中,該緩衝劑的 pH 為 4.0,低於 MC3 的 pKa (6.4),使得脂質帶有正電荷以促進電荷介導的複合。然後在後續分析之前,藉由磷酸鹽緩衝劑將溶液 pH 值調節至中性。
在典型篩選中,在 96 孔板中平行篩選 32 個不同的樣品 (每個樣品重複 3 次),這些樣品具有不同的 2 個位準的總脂質濃度、4 個位準的 ASO 載量 (由 N/P 比率控制) 以及4 個位準的經聚乙二醇化之脂質含量 (圖 3A)。在研究的三種調配參數中,經聚乙二醇化之脂質對於 LNP 形成必不可少,因為在 PEG 不摻入脂質組成物的情況下,產生多峰、大的聚集體 (圖 3C 至圖 3D 及圖 4)。增加經聚乙二醇化之脂質含量顯著 ( P< 0.0001) 減小了平均粒徑,亦即含有 1.5、3 及 5 mol%的 DSPE-PEG 2000的脂質導致 LNP 直徑分別為約 120 nm、約 80 nm 及約 60 nm (圖 3C 至圖 3D)。然而,多分散性亦增加,5 mol% 的 DSPE-PEG 2000甚至產生一個亞群,可能是由於形成了小的 DSPE-PEG 2000膠束 (圖 3C)。 參見例如:Johnsson 等人, 2003, Biophys J 85(6):3839-47;Gill 等人, 2015, J Drug Target 23(3):222-31。
另一方面,ASO 的 %EE 主要由 N/P 比率決定。N/P 比率高於 1 時,MC3 中的複合位點過多,導致 %EE > 80%;而電荷平衡點以上過量兩倍的 ASO-1 使 %EE 顯著降低至約 50% (圖 3E)。將 MC3 替換為另一種陽離子脂質 DOTAP (圖 5A 至圖 5C) 或將 ASO-1 替換為 ASO-2 (圖 6A 至圖 6C) 時也發現類似的結果,證明了 HTS 結果的穩健性。
實例 3
經由放大 LNP 製備來驗證 HTS 結果
然後藉由比較 HTS 方法所得到的結果與微流體調制器所得到的結果,驗證所篩選的調配參數對 LNP 質量屬性的影響。這兩種方法表現出相似的結果:(1) 隨著 PEG 含量的增加,LNP 粒徑減小,但多分散性增加 (圖7A);(2) 隨著總濃度增加至高達 2 mM,LNP 粒徑保持穩定 (圖 7B);(3) 當 N/P 比率 < 2 時,LNP 粒徑保持穩定 (圖 7C);(4) 過量的 ASO 載量 (N/P 比率 < 1) 導致 %EE 顯著降低 (圖7D);及 (5) 使用相同的 N/P 比率與經聚乙二醇化之脂質含量製備的 LNP 表現出相似的結構 (圖 7E)。此外,HTS 方法成功預測了粒徑及多分散性對經聚乙二醇化之脂質含量的依賴性,表現為線性回歸的強相關性 (R 2> 0.9) (圖 7A)。
實例 4
負載 ASO 的 LNP 的穩定性篩選
為進一步研究不同粒徑對調配物穩定性的影響,將製備的具有不同 PEG 含量的負載 ASO-1 的 LNP 用 PBS 稀釋 10 倍,在 4℃ 或 40℃ 下孵育,並監測 2 週內的粒徑分佈。N/P 比率保持為 ≥1 且 ASO 的 %EE 為約 90%,因此可對穩定性研究期間從 LNP 中洩漏的 ASO 進行定量。如圖 8A 至圖 8B 所示,藉由高通量溶劑注入或 NanoAssemblr ®製備的包含 1.5 mol% 或 3 mol% DSPE-PEG 2000的 LNP 在 4℃ 下孵育期間同樣保持其初始平均粒徑 (圖 8A) 及多分散性 (圖 8B)。在 40℃ 下,含有 1.5 mol% DSPE-PEG 2000的 LNP 在 1 週後表現出粒徑增加,同時保持恆定的多分散性 (圖 9)。包含 1.5 mol% DSPE-PEG 2000的 LNP 在前 3 天內亦表現出極小的 ASO 洩漏,但在 2 週後,ASO 洩漏含量與包含 3 mol% 及 5 mol% DSPE-PEG 2000的 LNP 相似 (圖 10)。在 1 個月內,未檢測到 4℃ 下的 ASO 洩漏。
選擇溶劑注入法進行 LNP 調配物的高通量製備的原因在於,相混合過程可藉由機器人液體處理器執行。與手動移液相比,多通道液體處理器能夠以高通量、並行處理 96 個樣品,並實現均勻的液體分配及跨孔混合。關鍵過程涉及混溶相的快速、充分混合,例如乙醇溶解脂質及水性緩衝劑溶解核酸,以便促進脂質自組裝為球形脂質層及奈米顆粒結構。該方法已廣泛用於製備微脂體,當乙醇相控制在 50 vol% 以下時,生成均勻的奈米顆粒。提高乙醇相的比率 及/或脂質濃度將產生大顆粒或聚集體,其可能的原因是相混合不充分,亦如低速條件下緩衝劑注入乙醇中所得到的結果所示 (圖 1A 至圖 1B)。藉由液體處理器實施自動混合過程所得到的結果與藉由微流體方法製備的 LNP 的結果高度相關。流速比 (FRR,水相注入有機相的流速) 是微流體製備期間的關鍵調配參數之一,且低 FRR 產生較大的顆粒。在低速條件下將緩衝劑注入乙醇中,代表性了低 FRR 的條件。因此,自動混合條件經最佳化,並將乙醇注入緩衝劑的流速設定為 0.5 ml/s,乙醇/水性體積比為 1/3 (25 vol% 乙醇),然後進行 10 輪移液以實現有效的相混合,產生了具有高囊封效率的均勻顆粒。
接下來,開發出一種簡化的工作流程篩選調配變量,以獲得負載 ASO 的 LNP 的最佳質量屬性,該等調配變量包括總脂質濃度、脂質組成物及 ASO 載量。為此,分別採用高通量 DLS 及 OD 260測量粒徑分佈及 ASO 的 %EE,以確定能夠產生具有高 ASO 載量的均勻奈米顆粒的條件。篩選結果表明,經聚乙二醇化之脂質含量顯著影響粒徑分佈 (圖 3B 至圖 3D、圖 5A 至圖 5B 及圖 6A 至圖 6B)。以總脂質的 1.5 mol% 摻入的 DSPE-PEG 2000產生了平均直徑為約 120 nm 的單峰奈米顆粒,而更高的 PEG 導致多分散性增加。由三級胺結構組成的可電離脂質越來越多地用於基於脂質的核苷酸遞送系統,其與永久帶電荷的陽離子脂質相比,表現出更出色的細胞內遞送效率及更低的細胞毒性。 參見例如:Cullis 及 Hope, 2017, Mol. Ther. 25(7):1467-1475;Sabnis 等人2018, Mol Ther. 26(6):1509-1519;Semple 等人, 2010, Nature Biotechnology, 28(2): 172-176。與電荷介導的複合的負載機制一致,篩選結果,表明 N/P 比率決定了 ASO 囊封,當 N/P 比率 = 1 時,%EE 為約 90% (圖 3E、圖 5C 及圖 6C),對應的載量為 0.29 mg RTR3833/mg 脂質 (2 mM 總脂質,包含 1.5 mol% DSPE-PEG 2000)。
重要的是,由 HTS 方法所得到的結果成功預測了由微流體調制器得到的結果,其已經越來越多地用於製備具有可擴展的生產規模的奈米顆粒調配物。 參見例如:Belliveau 等人, 2012, Mol. Ther. Nucleic Acids, 1, e37;van Swaay 及 deMellow, 2013, Lab Chip 13(5):752-67.在兩種方法中,LNP 粒徑表現出對經聚乙二醇化之脂質含量 (圖 7A)、總脂質濃度 (圖 7B) 及 N/P 比率 (圖 7C) 相似的依賴性,且 ASO 的 %EE 類似地由 N/P 比率控制 (圖 7D)。這兩種方法亦在相同的調配參數下產生了結構相似的 LNP (圖 7E)。此外,這些負載 ASO 的 LNP 在 40℃ 下儲存 2 週後表現出穩定的粒徑分佈 (圖 8A 至圖 8B) 以及約 20% 的囊封 ASO 洩漏 (圖 10)。然而,與微流體製備相比,HTS 方法表現出以下顯著優勢:節省原料約 10 倍,同時將製備及分析輸出提高約 100 倍 (與單次微流體運行相比,在微量盤中並行處理 96 個樣品),表明其用於早期調配篩選的巨大潛力 (圖 11)。基於篩選結果,確定 1.5 mol% DSPE-PEG2000 及 N/P 比率 ≥ 1 將產生具有均勻和穩定的粒徑以及高 ASO 載量的最佳 LNP 調配物。在 HTS 系統中引入不同脂質及其他 ASO 後,同樣的表述仍然有效,表明該篩選平台可將其應用擴展到各種類型的載劑及物質諸如 siRNA 及單一導向 RNA。
HTS 篩選方法表現為一種可重現的調配平台來製備 LNP。從自動注入平台到微流體配製的可轉化的結果創建了一種無縫工作流程,其支持篩選及放大製備調配物,並避免了因調配物不一致所引起的橋接研究。下一步是將當前的工作流程與下游 活體外篩選相結合,以將負載 ASO 的 LNP 的理化屬性與其治療功效相關聯。此外,可進一步改善工作流程以解決更多的調配物屬性諸如 ζ 電位,並藉由液相層析策略同時定量 API 及賦形劑。Yamamoto 等人, 2011 J Chromatogr B Analyt Technol Biomed Life Sci 879(20), 3620-5;Li 等人, 2019, J Chromator A 1601:145-154。
在本實例中,開發出一種高通量方法以篩選調配參數並解決負載 ASO 的 LNP 的質量屬性。簡化的工作流程從自動液體分配及混合開始,然後進行高通量粒徑及 ASO 囊封分析,確定經聚乙二醇化之脂質含量及 N/P 比率分別是粒徑分佈及囊封效率的主要決定因素。此外,HTS 結果成功預測了使用微流體放大製備的結果。穩健的篩選結果以及顯著的材料節省及分析輸出的改善表明,該方法在推進基於脂質的奈米顆粒調配物的開發方面具有廣闊的前景。
實例 5
定量 ASO 囊封的替代方法
使用螢光酶標儀定量測定 ASO 囊封。簡言之,藉由高通量溶劑注入法製備負載 ASO 的 LNP,然後將其用 TE 緩衝劑稀釋 50 倍,與等體積 5000 倍稀釋的螢光探針 Sybr-gold 混合,並使用螢光酶標儀 (Ex/Em = 495/550 nm) 定量分析未囊封的 ASO。然後藉由添加等體積的在 1 vol% Triton TE 中稀釋 10000 倍的 Sybr-gold 來破壞 LNP (亦即,最終探針稀釋度保持為 10000 倍,且 Triton 濃度為 0.5 vol%) (圖 12A)。然後進行螢光測量以定量分析總 ASO。囊封效率百分比 (%EE) 計算式如下:
Figure 02_image001
計算表明,使用螢光及 UV-Vis 方法得到的以不同 N/P 比率製備的兩種不同調配物的 %EE 結果相當 (圖 12B)。結果表示為平均值 ± SD,n = 2;ns,不顯著,藉由雙向 ANOVA 及之後的 Sidak 多重比較進行分析。
實例 6
負載 HiBiT 肽的 LNP 調配物的 HTS
為研究調配參數對微脂體的主要質量屬性的影響,設計一種 HTS 工作流程,其能夠簡化這些調配物的製備及表徵。將 HiBiT 最初溶解在補充有 150 mM NaCl (pH 5.5) 的 20 mM 組胺-乙酸鹽緩衝劑中,並使用機器人液體處理器將其分配至微孔板中。按照與實例 2 類似的方法製備脂質混合物 (圖 13A)。 在典型篩選中,在 96 孔板中平行篩選 32 個不同的樣品 (每個樣品重複 3 次),這些樣品包含 4 種類型的 LNP 調配物及 8 種經聚乙二醇化之脂質的組合,屏蔽經聚乙二醇化之脂質及經聚乙二醇化之脂質與疊氮化物結合 (圖 13B)。在研究的 8 種參數中,經聚乙二醇化之脂質是 LNP 形成所必需的,因為在 PEG 不摻入脂質組成物的情況下,產生多峰、大的聚集體 (圖 13C)。純化前及純化後遊離肽濃度的定量結果表明,凝膠過濾及透析的平均純化效率分別為約 98% 及約 61% (圖13D 至圖 13F)。顆粒回收率一般在 80% 至 120% 之間,但不使用經聚乙二醇化之脂質所製備的聚集樣品的回收率較低 (圖 13G)。此外,藉由凝膠過濾後,粒徑分佈保持恆定 (圖 13H)。
參考文獻 K. Sridharan, N.J.Gogtay, Therapeutic nucleic acids: current clinical status, Br J Clin Pharmacol 82(3) (2016) 659-72. A. Goyon, P. Yehl, K. Zhang, Characterization of therapeutic oligonucleotides by liquid chromatography, J Pharm Biomed Anal 182 (2020) 113105. C. Chakraborty, A.R. Sharma, G. Sharma, C.G.P.Doss, S.S.Lee, Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine, Mol Ther Nucleic Acids 8 (2017) 132-143. C.I.E.Smith, R. Zain, Therapeutic Oligonucleotides: State of the Art, Annu Rev Pharmacol Toxicol 59 (2019) 605-630. D. Adams, A. Gonzalez-Duarte, W.D.O'Riordan, C.C.Yang, M. Ueda, A.V.Kristen, I. Tournev, H.H.Schmidt, T. Coelho, J.L.Berk, K.P.Lin, G. Vita, S. Attarian, V. Plante-Bordeneuve, M.M.Mezei, J.M.Campistol, J. Buades, T.H.Brannagan, 3rd, B.J.Kim, J. Oh, Y. Parman, Y. Sekijima, P.N.Hawkins, S.D.Solomon, M. Polydefkis, P.J.Dyck, P.J.Gandhi, S. Goyal, J. Chen, A.L.Strahs, S.V.Nochur, M.T.Sweetser, P.P.Garg, A.K.Vaishnaw, J.A.Gollob, O.B.Suhr, Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis, N Engl J Med 379(1) (2018) 11-21. U. Sahin, K. Kariko, O. Tureci, mRNA-based therapeutics--developing a new class of drugs, Nat Rev Drug Discov 13(10) (2014) 759-80. U. Sahin, E. Derhovanessian, M. Miller, B.P. Kloke, P. Simon, M. Lower, V. Bukur, A.D.Tadmor, U. Luxemburger, B. Schrors, T. Omokoko, M. Vormehr, C. Albrecht, A. Paruzynski, A.N.Kuhn, J. Buck, S. Heesch, K.H.Schreeb, F. Muller, I. Ortseifer, I. Vogler, E. Godehardt, S. Attig, R. Rae, A. Breitkreuz, C. Tolliver, M. Suchan, G. Martic, A. Hohberger, P. Sorn, J. Diekmann, J. Ciesla, O. Waksmann, A.K.Bruck, M. Witt, M. Zillgen, A. Rothermel, B. Kasemann, D. Langer, S. Bolte, M. Diken, S. Kreiter, R. Nemecek, C. Gebhardt, S. Grabbe, C. Holler, J. Utikal, C. Huber, C. Loquai, O. Tureci, Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer, Nature 547(7662) (2017) 222-226. N. Pardi, M.J. Hogan, F.W.Porter, D. Weissman, mRNA vaccines - a new era in vaccinology, Nat Rev Drug Discov 17(4) (2018) 261-279. K.A. Dowd, S.Y.Ko, K.M. Morabito, E.S.Yang, R.S.Pelc, C.R.DeMaso, L.R.Castilho, P. Abbink, M. Boyd, R. Nityanandam, D.N.Gordon, J.R.Gallagher, X. Chen, J.P. Todd, Y. Tsybovsky, A. Harris, Y.S.Huang, S. Higgs, D.L.Vanlandingham, H. Andersen, M.G. Lewis, R. De La Barrera, K.H.Eckels, R.G.Jarman, M.C.Nason, D.H.Barouch, M. Roederer, W.P.Kong, J.R.Mascola, T.C.Pierson, B.S.Graham, Rapid development of a DNA vaccine for Zika virus, Science 354(6309) (2016) 237-240. J.M.Richner, S. Himansu, K.A. Dowd, S.L.Butler, V. Salazar, J.M.Fox, J.G.Julander, W.W.Tang, S. Shresta, T.C.Pierson, G. Ciaramella, M.S.Diamond, Modified mRNA Vaccines Protect against Zika Virus Infection, Cell 168(6) (2017) 1114-1125 e10. A. Patel, E.L.Reuschel, K.A. Kraynyak, T. Racine, D.H.Park, V.L.Scott, J. Audet, D. Amante, M.C.Wise, A.A.Keaton, G. Wong, D.O.Villarreal, J. Walters, K. Muthumani, D.J.Shedlock, M.A. de La Vega, R. Plyler, J. Boyer, K.E.Broderick, J. Yan, A.S.Khan, S. Jones, A. Bello, G. Soule, K.N.Tran, S. He, K. Tierney, X. Qiu, G.P.Kobinger, N.Y.Sardesai, D.B.Weiner, Protective Efficacy and Long-Term Immunogenicity in Cynomolgus Macaques by Ebola Virus Glycoprotein Synthetic DNA Vaccines, J Infect Dis 219(4) (2019) 544-555. M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K.Chan, O.A.Ortega-Rivera, D.M.Wirth, A. Chen, M. Sack, J.K. Pokorski, N.F.Steinmetz, COVID-19 vaccine development and a potential nanomaterial path forward, Nat Nanotechnol (2020). J. Wang, Z. Lu, M.G. Wientjes, J.L.Au, Delivery of siRNA therapeutics: barriers and carriers, The AAPS journal 12(4) (2010) 492-503. M. Durymanov, J. Reineke, Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers, Front Pharmacol 9 (2018) 971. A. Akinc, M.A. Maier, M. Manoharan, K. Fitzgerald, M. Jayaraman, S. Barros, S. Ansell, X. Du, M.J. Hope, T.D.Madden, B.L.Mui, S.C.Semple, Y.K.Tam, M. Ciufolini, D. Witzigmann, J.A.Kulkarni, R. van der Meel, P.R.Cullis, The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs, Nat Nanotechnol 14(12) (2019) 1084-1087. A.C.Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update, Bioeng Transl Med 4(3) (2019) e10143. Liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation, U.S. Food and Drug Administration, 2018. T.M.Allen, C. Hansen, F. Martin, C. Redemann, A. Yau-Young, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim Biophys Acta 1066(1) (1991) 29-36. O. Garbuzenko, Y. Barenholz, A. Priev, Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer, Chem Phys Lipids 135(2) (2005) 117-29. M.L.Immordino, F. Dosio, L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential, Int J Nanomedicine 1(3) (2006) 297-315. A. Schroeder, C.G.Levins, C. Cortez, R. Langer, D.G.Anderson, Lipid-based nanotherapeutics for siRNA delivery, J Intern Med 267(1) (2010) 9-21. P.R.Cullis, M.J. Hope, Lipid Nanoparticle Systems for Enabling Gene Therapies, Mol Ther 25(7) (2017) 1467-1475. M. Johnsson, K. Edwards, Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids, Biophys J 85(6) (2003) 3839-47. K.K.Gill, A. Kaddoumi, S. Nazzal, PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication, J Drug Target 23(3) (2015) 222-31. K. Yang, J.T.Delaney, U.S. Schubert, A. Fahr, Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method, J Liposome Res 22(1) (2012) 31-41. M.A. Schubert, C.C.Muller-Goymann, Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters, Eur J Pharm Biopharm 55(1) (2003) 125-31. A.A.Mokhtarieh, J. Lee, S. Kim, M.K.Lee, Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing, Biochim Biophys Acta Biomembr 1860(6) (2018) 1318-1325. C. Jaafar-Maalej, R. Diab, V. Andrieu, A. Elaissari, H. Fessi, Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation, J Liposome Res 20(3) (2010) 228-43. I.V.Zhigaltsev, N. Belliveau, I. Hafez, A.K.Leung, J. Huft, C. Hansen, P.R.Cullis, Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing, Langmuir 28(7) (2012) 3633-40. S. Sabnis, E.S.Kumarasinghe, T. Salerno, C. Mihai, T. Ketova, J.J.Senn, A. Lynn, A. Bulychev, I. McFadyen, J. Chan, O. Almarsson, M.G. Stanton, K.E.Benenato, A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates, Mol Ther 26(6) (2018) 1509-1519. S.C.Semple, A. Akinc, J. Chen, A.P.Sandhu, B.L.Mui, C.K.Cho, D.W.Sah, D. Stebbing, E.J.Crosley, E. Yaworski, I.M.Hafez, J.R.Dorkin, J. Qin, K. Lam, K.G.Rajeev, K.F.Wong, L.B.Jeffs, L. Nechev, M.L.Eisenhardt, M. Jayaraman, M. Kazem, M.A. Maier, M. Srinivasulu, M.J. Weinstein, Q. Chen, R. Alvarez, S.A. Barros, S. De, S.K.Klimuk, T. Borland, V. Kosovrasti, W.L.Cantley, Y.K.Tam, M. Manoharan, M.A. Ciufolini, M.A. Tracy, A. de Fougerolles, I. MacLachlan, P.R.Cullis, T.D.Madden, M.J. Hope, Rational design of cationic lipids for siRNA delivery, Nature biotechnology 28(2) (2010) 172-6. N.M.Belliveau, J. Huft, P.J.Lin, S. Chen, A.K.Leung, T.J. Leaver, A.W.Wild, J.B.Lee, R.J.Taylor, Y.K.Tam, C.L.Hansen, P.R.Cullis, Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA, Mol Ther Nucleic Acids 1 (2012) e37. D. van Swaay, A. deMello, Microfluidic methods for forming liposomes, Lab Chip 13(5) (2013) 752-67. E. Yamamoto, K. Hyodo, N. Ohnishi, T. Suzuki, H. Ishihara, H. Kikuchi, N. Asakawa, Direct, simultaneous measurement of liposome-encapsulated and released drugs in plasma by on-line SPE-SPE-HPLC, J Chromatogr B Analyt Technol Biomed Life Sci 879(30) (2011) 3620-5. L. Li, J.P. Foley, R. Helmy, Simultaneous separation of small interfering RNA and lipids using ion-pair reversed-phase liquid chromatography, J Chromatogr A 1601 (2019) 145-154.
1A 至圖 1F由高速、乙醇到緩衝劑注入且之後經多輪混合產生具有高 ASO 載量的均勻 LNP 得到的資料。使用不同的混合條件,將 0.4 µmol 總脂質及 1.5 mol% DSPE-PEG2000 所組成的 LNP 與 ASO-1 在 N/P 比率為 1 的條件下混合。使用 TECAN 機器人研究以下條件下的反向注入順序 (乙醇到緩衝劑或緩衝劑到乙醇):速度為 0.1、0.5 或 0.9 ml/s,然後重複混合 10 次 (圖 1A 至圖 1C);或研究以下條件下的乙醇到緩衝劑注入:速度為 0.5 或 0.9 ml/s,然後重複混合 10 次或 20 次 (圖 1D 至圖 1F)。藉由動態光散射 (DLS) 測量粒徑 (圖 1A 及圖 1D) 及多分散性 (圖 1B 及圖 1E)。藉由 OD260 測量遊離 ASO-1 並計算囊封效率 (圖 1C 及圖 1F)。結果為平均值 ± SD,n = 3;ns,不顯著,**** P < 0.0001,藉由 (圖 1A 至圖 1C) 雙向或單向 (圖 1D 至圖 1F) ANOVA 及之後的 Tukey 多重比較進行分析。 2示出負載 ASO 的 LNP 調配物的 HTS 工作流程。96 個樣品 (32 種條件,n = 3) 隨 4 個位準的脂質組成物、2 個位準的總脂質濃度及 4 個位準的 ASO 載量而變化,其藉由使用 TECAN ®液體處理機的自動溶劑注入方法進行製備,然後藉由 DLS 表徵粒徑分佈,並藉由 260 nm 下的吸光度表徵 ASO 囊封。顯示了樣品板的代表性 LEA (Laboratory Execution and Analysis) Library Studio 設計佈局。 3A 至圖 3E為負載 ASO-1 的 LNP 調配物的 HTS 分析。圖 3A 為示出篩選設計的影像。在 96 孔板中篩選總脂質濃度 (2 個位準)、摻入脂質組成物中的經聚乙二醇化之脂質含量 (4 個位準) 及 ASO 載量比 (4 個位準) 等調配參數,每種條件下重複 3 次。圖 3B 至圖 3D 示出樣品在 PBS 中稀釋並藉由 DLS 表徵其粒徑分佈。圖 3B 為示出代表性粒徑分佈的圖片,其中示出添加至脂質組成物中的經聚乙二醇化之脂質的含量不斷增加的小顆粒群。圖 3C 至圖 3D 為熱圖,示出當 DSPE-PEG2000 未摻入脂質組成物中時,具有 45 nm 至 145 nm 的平均直徑和 10% 至 50% 的 PD 百分比的 LNP,但具有多峰粒徑分佈的大聚集體 (直徑為 500 nm 至 1500 nm) 除外,如「超出範圍」的黑點所示。還示出總脂質濃度為 2 mM 的樣品的定量分析。圖 3E 為條形圖,示出藉由 OD260 測量樣品等分試樣 (總脂質濃度為 2 mM) 中未囊封的 ASO 量以計算囊封濃度。結果為平均值 ± SD,n = 3;ns,不顯著,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.0001,藉由雙向 ANOVA 及之後的 Tukey 多重比較進行分析。這些資料得到 LC 的確認。 4為條形圖,示出在不使用經聚乙二醇化之脂質所製備的 LNP,其產生大聚集體。在不使用 DSPE-PEG2000 的條件下 (篩選條件顯示在圖 3C 至圖 3D 中的 A 行及 E 行中) 所製備的負載 ASO-1 的 LNP 的平均粒徑顯示為平均值 ± SD,n = 3;ns,不顯著,* P < 0.05,*** P < 0.001,藉由雙向 ANOVA 及之後的 Sidak 多重比較進行分析。 5A 至圖 5C為負載 ASO-1 的陽離子 LNP 調配物的 HTS 分析。篩選的陽離子 LNP 表現出 60 nm 至 120 nm 的平均直徑 (圖 5A)、10% 至 50% 的多分散性 (圖 5B),並且在經聚乙二醇化之脂質的不斷增加的含量方面與 MC3 LNP 具有類似的趨勢。不存在 DSPE-PEG2000 時,產生具有如「超出範圍」的之黑點所示的多峰粒徑分佈或白點所示的不完整測量 (由於大聚集體) 所示的大聚集體。還示出總脂質濃度為 2 mM 的樣品的定量分析。(圖 5C) 藉由 OD260 測量樣品中未囊封之 ASO 的量以計算囊封效率。結果為平均值 ± SD,n = 3;ns,不顯著,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.0001,藉由雙向 ANOVA 及之後的 Tukey (圖 5A 至圖 5B) 或 Sidak (圖 5C) 多重比較進行分析。 6A 至圖 6C為用總脂質濃度 2 mM 的可電離脂質、不同含量的 DSPE-PEG2000 與不同載量的寡核苷酸所調配的負載 ASO-2 的 LNP 的 HTS 分析。結果在粒徑 (圖 6A)、多分散性 (圖 6B) 及 ASO 的囊封效率 (圖 6C) 方面與負載 ASO-1 的 LNP (圖 3A 至圖 3E) 顯示出相似的趨勢。結果為平均值 ± SD,n = 3;ns,不顯著,* P < 0.05,** P < 0.01,*** P < 0.001,**** P < 0.0001,藉由雙向 ANOVA 及之後的 Tukey 多重比較進行分析。 7A 至圖 7E是與使用 NanoAssemblr ®得到的微流體製劑的結果相關的 HTS 分析結果。圖 7A 為示出不斷減小之粒徑、不斷增加之多分散性與含量不斷增加之經聚乙二醇化之脂質的關係圖。LNP 由不同莫耳比的 DSPE-PEG2000 與固定 N/P 比率 (2) 製備。圖 7B 為示出在總脂質濃度下保持穩定的粒徑的圖。LNP 在總脂質濃度為 0.4、0.7、1 或 2 mM、DSPE-PEG2000 固定含量為 1.5 mol% 且 N/P 比率為 2 的條件下製備。圖 7C 至圖 7D 示出粒徑 (圖 7C) 保持穩定,而 ASO 的 %EE (圖 7D) 在高及過量的 ASO 載量下降低。LNP 在 N/P 比率為 5、2、1 或 0.5 且 DSPE-PEG2000 為 1.5 mol% 的條件下製備。圖 7E.藉由 nanoassemblr 或高通量溶劑注入在不同調配參數下製備的負載 ASO-1 的 LNP 的代表性低溫 TEM 影像。放大影像示出使用兩種方法以相同的調配參數製備的代表性 LNP (由藍色箭頭指示) 的相似結構模式。圖 (圖 7A、7C 及 7D) 中的 HTS 結果由圖 3 所示的相同的篩選實驗得到。結果為平均值 ± SD,n = 3,不同的是圖 7D 中的微流體結果 n = 1。 8A 至圖 8B示出藉由高通量溶劑注入法或 NanoAssemblr ®製備的負載 ASO-1 的 MC3 LNP 在 4℃ 下儲存 2 週的穩定性。圖 8A 示出平均粒徑,圖 8B 為示出 2 週後之多分散性的圖。總脂質濃度為 2 mM,N/P 比率為 1 (HTS 樣品) 或 0.5 (NanoAssemblr ®樣品),且 PEG 含量在 1.5 mol% 至 5 mol% 之間變化。結果為平均值 ± SD,n = 3;與各組第 0 天的結果相比,* P < 0.05 且 ** P < 0.01,藉由單向 ANOVA 及之後的 Dunnett 多重比較進行分析。隨後的研究 (未示出) 證明在 4℃ 下儲存 1 個月後得到了類似的結果。 9為示出圖 8A 至圖 8B 所示的 HTS LNP 在 40℃ 下儲存 2 週後的穩定性圖。結果為平均值 ± SD,n = 3;與各組第 0 天的結果相比,* P < 0.05,藉由單向 ANOVA 及之後的 Dunnett 多重比較進行分析。 10為示出 40℃ 下 LNP ASO 洩漏的圖。2 週內由 LNP 釋放的 ASO-1 藉由 OD260 測得。結果為平均值 ± SD,n = 3;與 1.5 mol% DSPE-PEG2000 相比,* P < 0.05 且 ns (不顯著),藉由雙向 ANOVA 及之後的 Dunnett 多重比較進行分析。 11表明,與負載 ASO 的 LNP 的微流體製劑相比,HTS 方法顯著節省了原料並改善了分析輸出。計算包含 1.5 mol% DSPE-PEG2000 且 N/P 比率 (基於 MC3 及 ASO-1) 為 1 的 2 mM 總脂質的典型樣品所需的材料。 12A 至圖 12B示出定量分析 ASO 囊封的替代方法。圖 12A 為工作流程之示意圖。藉由高通量溶劑注入法製備負載 ASO 的 LNP,並與螢光探針 Sybr-gold 混合,然後使用螢光酶標儀進行定量 (Ex/Em = 495/550 nm)。圖 12B 為示出在不同 N/P 比率下製備的兩種不同 LNP 調配物的可比的 % 囊封效率的圖。結果為平均值 ± SD,n = 2;ns,不顯著。 13A示出負載 HiBiT 肽的微脂體調配物的 HTS 工作流程。對兩種純化方法 (包括高通量凝膠過濾及 96 孔板規格的透析) 進行了比較。LNP 藉由高通量溶劑注入法合成,然後藉由 DLS 表徵粒徑分佈,藉由 UV-Vis、發光及螢光表徵遊離物含量。然後使用高通量凝膠過濾或透析純化 LNP,然後分別使用 UV-Vis、螢光及 DLS 分析純化效率、顆粒回收率及粒徑穩定性。 13B為示出篩選設計的影像。在 96 孔板中篩選調配參數,包括不含 MC3 的 DPPC LNP、含 MC3 的 DPPC LNP、不含 MC3 的DSPC LNP 及含 MC3 的 DSPC LNP,與皆保護經聚乙二醇化之脂質及與疊氮化物結合之經聚乙二醇化之脂質,每種條件下重複 3 次。 13C為熱圖,示出當 DSPE-PEG2000 未摻入脂質組成物中時,具有 50 nm 至 200 nm 的平均直徑的 LNP,但具有多峰粒徑分佈的大聚集體除外,如「超出範圍」的黑點所示。 13D 至圖 13F為示出純化前 (圖13D) 及純化後遊離肽濃度的定量結果表。凝膠過濾及透析分別導致平均純化效率為約 98% (圖 13E) 及約 61% (圖 13F)。使用 MWCO 為 40 kD 的 96 小柱板進行凝膠過濾,並用 PBS 洗脫。使用 MWCO 為 10 kD 的 96 孔透析板在 3 L PBS 中透析過夜,其間更換介質 3 次。透析後丟失的資料點是由於樣品回收率低。 13G 至圖 13H為藉由凝膠過濾純化後顆粒回收率及粒徑的定量結果的資料。圖 13G 回收率一般在 80% 至 120% 之間,但不使用經聚乙二醇化之脂質所製備的聚集樣品的回收率較低。圖 13H 粒徑分佈在藉由凝膠過濾純化後保持恆定。

Claims (214)

  1. 一種用於製造脂質奈米顆粒 (LNP) 製劑之最佳化高通量篩選方法,其包含: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  2. 如請求項 1 之方法,其中該有效負載為寡核苷酸。
  3. 如請求項 2 之方法,其中該寡核苷酸為反義分子。
  4. 如請求項 2 之方法,其中該寡核苷酸為 siRNA。
  5. 如請求項 3 之方法,其中該寡核苷酸為 shRNA。
  6. 如請求項 2 至 5 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  7. 如請求項 1 之方法,其中該有效負載為 mRNA。
  8. 如請求項 7 之方法,其中 mRNA 的大小為長度約 500 至約 3000 個核苷酸。
  9. 如請求項 1 之方法,其中該有效負載為多肽。
  10. 如請求項 9 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  11. 如請求項 1 之方法,其中該有效負載為小分子。
  12. 如請求項 11 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  13. 如請求項 1 之方法,其中該有效負載溶解於該第一溶液中。
  14. 如請求項 1 之方法,其中該有效負載溶解於該第二溶液中。
  15. 如請求項 1 之方法,其中該第一溶液為水性緩衝劑。
  16. 如請求項 1 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  17. 如請求項 1 之方法,其中該第二溶液之該有機相包含甲醇。
  18. 如請求項 1 之方法,其中該第二溶液之該有機相包含乙醇。
  19. 如請求項 1 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  20. 如請求項 19 之方法,其中該至少一種脂質分子選自由陽離子脂質種類、可電離脂質種類、非陽離子脂質種類、磷脂質種類和非磷脂質種類所組成之群組。
  21. 如請求項 19 或 20 之方法,其中該第二溶液包含多於一種類型的脂質。
  22. 如請求項 1 之方法,其中脂質的總濃度是變化的。
  23. 如請求項 22 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  24. 如請求項 1 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  25. 如請求項 24 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  26. 如請求項 2 至 8 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  27. 如請求項 26 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  28. 如前述請求項中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  29. 如請求項 1 至 27 之方法,其中該 LNP 為微脂體。
  30. 如請求項 1 至 27 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  31. 如請求項 1 之方法,其中該第一溶液被注入該第二溶液中。
  32. 如請求項 1 之方法,其中該第二溶液被注入該第一溶液中。
  33. 如前述請求項中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  34. 如請求項 1 至 32 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  35. 如請求項 1 至 32 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  36. 一種最佳化用於製造脂質奈米顆粒 (LNP) 製劑之製程的高通量方法,其包含: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  37. 如請求項 36 之方法,其中該有效負載為寡核苷酸。
  38. 如請求項 37 之方法,其中該寡核苷酸為反義分子。
  39. 如請求項 37 之方法,其中該寡核苷酸為 siRNA。
  40. 如請求項 38 之方法,其中該寡核苷酸為 shRNA。
  41. 如請求項 37 至 42 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  42. 如請求項 36 之方法,其中該有效負載為 mRNA。
  43. 如請求項 42 之方法,其中 mRNA 的大小為約 1 kb 至約 2 kb。
  44. 如請求項 36 之方法,其中該有效負載為多肽。
  45. 如請求項 45 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  46. 如請求項 36 之方法,其中該有效負載為小分子。
  47. 如請求項 46 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  48. 如請求項 36 之方法,其中該有效負載溶解於該第一溶液中。
  49. 如請求項 36 之方法,其中該有效負載溶解於該第二溶液中。
  50. 如請求項 36 之方法,其中該第一溶液為水性緩衝劑。
  51. 如請求項 36 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  52. 如請求項 36 之方法,其中該第二溶液之該有機相包含甲醇。
  53. 如請求項 36 之方法,其中該第二溶液之該有機相包含乙醇。
  54. 如請求項 36 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  55. 如請求項 54 之方法,其中該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。
  56. 如請求項 54 或 55 之方法,其中該第二溶液包含多於一種類型的脂質。
  57. 如請求項 36 之方法,其中脂質的總濃度是變化的。
  58. 如請求項 57 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  59. 如請求項 54 或 55 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  60. 如請求項 59 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  61. 如請求項 37 至 42 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  62. 如請求項 61 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  63. 如請求項 36 至 62 中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  64. 如請求項 36 至 62 之方法,其中該 LNP 為微脂體。
  65. 如請求項 36 至 62 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  66. 如請求項 36 之方法,其中該第一溶液被注入該第二溶液中。
  67. 如請求項 36 之方法,其中該第二溶液被注入該第一溶液中。
  68. 如請求項 36 至 67 中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  69. 如請求項 36 至 67 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  70. 如請求項 36 至 67 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  71. 一種用於將有效負載囊封於液態奈米顆粒 (LNP) 製劑中的最佳化高通量方法,其包含: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  72. 如請求項 71 之方法,其中該有效負載為寡核苷酸。
  73. 如請求項 72 之方法,其中該寡核苷酸為反義分子。
  74. 如請求項 73 之方法,其中該寡核苷酸為 siRNA。
  75. 如請求項 73 之方法,其中該寡核苷酸為 shRNA。
  76. 如請求項 72 至 75 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  77. 如請求項 71 之方法,其中該有效負載為 mRNA。
  78. 如請求項 77 之方法,其中 mRNA 的大小為約 1 kb 至約 2 kb。
  79. 如請求項 71 之方法,其中該有效負載為多肽。
  80. 如請求項 79 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  81. 如請求項 71 之方法,其中該有效負載為小分子。
  82. 如請求項 81 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  83. 如請求項 71 之方法,其中該有效負載溶解於該第一溶液中。
  84. 如請求項 71 之方法,其中該有效負載溶解於該第二溶液中。
  85. 如請求項 71 之方法,其中該第一溶液為水性緩衝劑。
  86. 如請求項 71 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  87. 如請求項 71 之方法,其中該第二溶液之該有機相包含甲醇。
  88. 如請求項 71 之方法,其中該第二溶液之該有機相包含乙醇。
  89. 如請求項 71 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  90. 如請求項 89 之方法,其中該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。
  91. 如請求項 89 或 90 之方法,其中該第二溶液包含多於一種類型的脂質。
  92. 如請求項 89 或 90 之方法,其中脂質的總濃度是變化的。
  93. 如請求項 92 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  94. 如請求項 89 或 90 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  95. 如請求項 94 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  96. 如請求項 72 至 78 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  97. 如請求項 96 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  98. 如請求項 71 至 97 中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  99. 如請求項 71 至 97 之方法,其中該 LNP 為微脂體。
  100. 如請求項 71 至 97 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  101. 如請求項 71 之方法,其中該第一溶液被注入該第二溶液中。
  102. 如請求項 71 之方法,其中該第二溶液被注入該第一溶液中。
  103. 如請求項 71 至 102 中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  104. 如請求項 71 至 102 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  105. 如請求項 71 至 102 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  106. 一種向有需要之患者投予 LNP 製劑的方法,其中該 LNP 製劑藉由以下方式製造: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  107. 如請求項 106 之方法,其中該有效負載為寡核苷酸。
  108. 如請求項 107 之方法,其中該寡核苷酸為反義分子。
  109. 如請求項 108 之方法,其中該寡核苷酸為 siRNA。
  110. 如請求項 108 之方法,其中該寡核苷酸為 shRNA。
  111. 如請求項 107 至 110 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  112. 如請求項 106 之方法,其中該有效負載為 mRNA。
  113. 如請求項 112 之方法,其中 mRNA 的大小為約 1 kb 至約 2 kb。
  114. 如請求項 106 之方法,其中該有效負載為多肽。
  115. 如請求項 114 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  116. 如請求項 106 之方法,其中該有效負載為小分子。
  117. 如請求項 116 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  118. 如請求項 106 之方法,其中該有效負載溶解於該第一溶液中。
  119. 如請求項 106 之方法,其中該有效負載溶解於該第二溶液中。
  120. 如請求項 106 之方法,其中該第一溶液為水性緩衝劑。
  121. 如請求項 106 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  122. 如請求項 106 之方法,其中該第二溶液之該有機相包含甲醇。
  123. 如請求項 106 之方法,其中該第二溶液之該有機相包含乙醇。
  124. 如請求項 106 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  125. 如請求項 124 之方法,其中該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。
  126. 如請求項 124 或 125 之方法,其中該第二溶液包含多於一種類型的脂質。
  127. 如請求項 124 或 125 之方法,其中脂質的總濃度是變化的。
  128. 如請求項 127 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  129. 如請求項 124 或 125 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  130. 如請求項 129 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  131. 如請求項 107 至 113 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  132. 如請求項 131 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  133. 如請求項 106 至 132 中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  134. 如請求項 106 至 132 之方法,其中該 LNP 為微脂體。
  135. 如請求項 106 至 132 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  136. 如請求項 106 之方法,其中該第一溶液被注入該第二溶液中。
  137. 如請求項 106 之方法,其中該第二溶液被注入該第一溶液中。
  138. 如請求項 106 至 137 中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  139. 如請求項 106 至 137 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  140. 如請求項 106 至 137 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  141. 一種用於製造脂質奈米顆粒 (LNP) 製劑之最佳化高通量篩選方法,其包含: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  142. 如請求項 141 之方法,其中該有效負載為寡核苷酸。
  143. 如請求項 142 之方法,其中該寡核苷酸為反義分子。
  144. 如請求項 142 之方法,其中該寡核苷酸為 siRNA。
  145. 如請求項 142 之方法,其中該寡核苷酸為 shRNA。
  146. 如請求項 142 至 145 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  147. 如請求項 141 之方法,其中該有效負載為 mRNA。
  148. 如請求項 147 之方法,其中 mRNA 的大小為約 1 kb 至約 2 kb。
  149. 如請求項 141 之方法,其中該有效負載為多肽。
  150. 如請求項 149 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  151. 如請求項 141 之方法,其中該有效負載為小分子。
  152. 如請求項 151 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  153. 如請求項 141 之方法,其中該有效負載溶解於該第一溶液中。
  154. 如請求項 141 之方法,其中該有效負載溶解於該第二溶液中。
  155. 如請求項 141 之方法,其中該第一溶液為水性緩衝劑。
  156. 如請求項 141 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  157. 如請求項 141 之方法,其中該第二溶液之該有機相包含甲醇。
  158. 如請求項 141 之方法,其中該第二溶液之該有機相包含乙醇。
  159. 如請求項 141 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  160. 如請求項 159 之方法,其中該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。
  161. 如請求項 159 或 160 之方法,其中該第二溶液包含多於一種類型的脂質。
  162. 如請求項 159 或 160 之方法,其中脂質的總濃度是變化的。
  163. 如請求項 162 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  164. 如請求項 159 或 160 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  165. 如請求項 164 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  166. 如請求項 142 至 150 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  167. 如請求項 166 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  168. 如請求項 141 至 167 中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  169. 如請求項 141 至 167 之方法,其中該 LNP 為微脂體。
  170. 如請求項 141 至 167 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  171. 如請求項 141 之方法,其中該第一溶液被注入該第二溶液中。
  172. 如請求項 141 之方法,其中該第二溶液被注入該第一溶液中。
  173. 如請求項 141 至 172 中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  174. 如請求項 141 至 172 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  175. 如請求項 141 至 172 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  176. 一種最佳化脂質奈米顆粒 (LNP),其藉由包含以下步驟之製程製造: a.  獲得包含水相的第一溶液; b.  獲得包含有機相及多個能夠自組裝的分子的第二溶液,且其中該第一溶液和該第二溶液是可混合的; c.  將至少一個有效負載分子溶解於該第一溶液或該第二溶液中; d.  使用機器人液體處理器製備具有不同組成的該等相並分配至多個孔中; e.  在適合 LNP 形成的條件下,使用該機器人液體處理器混合該第一溶液和該第二溶液以獲得囊封該有效負載的脂質奈米顆粒;其中不同孔之間,至少一種以下條件不同:自組裝分子的類型,該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度、相的選擇、緩衝劑類型和 pH、注入順序、注入速度、混合速度、體積、相的比率 、注入持續時間和混合持續時間; f.  測量以下至少一項:該等 LNP 的囊封效率、粒徑分佈、純化和顆粒回收率以及調配物穩定性; g.  確定用於製造該 LNP 製劑的最佳參數;和 h.  基於該等最佳參數製造該 LNP 製劑。
  177. 如請求項 176 之方法,其中該有效負載為寡核苷酸。
  178. 如請求項 177 之方法,其中該寡核苷酸為反義分子。
  179. 如請求項 178 之方法,其中該寡核苷酸為 siRNA。
  180. 如請求項 178 之方法,其中該寡核苷酸為 shRNA。
  181. 如請求項 177 至 180 之方法,其中該寡核苷酸的長度在約 10 至約 30 個核苷酸之間。
  182. 如請求項 176 之方法,其中該有效負載為 mRNA。
  183. 如請求項 182 之方法,其中 mRNA 的大小為約 1 kb 至約 2 kb。
  184. 如請求項 176 之方法,其中該有效負載為多肽。
  185. 如請求項 184 之方法,其中該多肽在約 1000 Da 與約 10000 Da 之間。
  186. 如請求項 176 之方法,其中該有效負載為小分子。
  187. 如請求項 186 之方法,其中該小分子在約 100 Da 與 1000 Da 之間。
  188. 如請求項 176 之方法,其中該有效負載溶解於該第一溶液中。
  189. 如請求項 176 之方法,其中該有效負載溶解於該第二溶液中。
  190. 如請求項 176 之方法,其中該第一溶液為水性緩衝劑。
  191. 如請求項 176 之方法,其中該第一溶液包含 pH 受控緩衝劑和滲透壓受控緩衝劑。
  192. 如請求項 176 之方法,其中該第二溶液之該有機相包含甲醇。
  193. 如請求項 176 之方法,其中該第二溶液之該有機相包含乙醇。
  194. 如請求項 176 之方法,其中該等自組裝分子至少包括脂質組分,該脂質組分包含至少一種脂質分子。
  195. 如請求項 194 之方法,其中該至少一種脂質分子選自陽離子脂質種類、非陽離子脂質種類及磷脂質種類。
  196. 如請求項 194 或 195 之方法,其中該第二溶液包含多於一種類型的脂質。
  197. 如請求項 194 或 195 之方法,其中脂質的總濃度是變化的。
  198. 如請求項 197 之方法,其中該脂質的總濃度在約 0.4 mM 與約 4 mM 之間變化。
  199. 如請求項 194 或 195 之方法,其中經聚乙二醇化之脂質的百分比是變化的。
  200. 如請求項 199 之方法,其中該經聚乙二醇化之脂質的百分比在總脂質組成物之約 0.5% 至約 5% 之間變化。
  201. 如請求項 177 至 183 中任一項之方法,其中該有效負載的 N:P 比率是變化的。
  202. 如請求項 201 之方法,其中該 N:P 比率在約 0.5 至約 5 之間變化。
  203. 如請求項 176 至 202 中任一項之方法,其中該 LNP 為聚合物脂質奈米顆粒。
  204. 如請求項 176 至 202 之方法,其中該 LNP 為微脂體。
  205. 如請求項 176 至 202 之方法,其中該 LNP 為脂蛋白奈米顆粒。
  206. 如請求項 176 之方法,其中該第一溶液被注入該第二溶液中。
  207. 如請求項 176 之方法,其中該第二溶液被注入該第一溶液中。
  208. 如請求項 176 至 207 中任一項之方法,其中該等最佳參數為產生大於 80% 的有效負載囊封效率的參數。
  209. 如請求項 176 至 207 中任一項之方法,其中該等最佳參數為產生平均直徑為 80-200 nm、具有單峰粒徑分佈和小於約 30% 之多分散性的 LNP 的參數。
  210. 如請求項 176 至 207 中任一項之方法,其中該等 LNP 儲存於攝氏 4 度之溶液中時,維持相似的粒徑分佈和有效負載囊封至少一個月。
  211. 一種用於 LNP 形成的多個參數的 HTS 篩選之工作流程,其包含: (i) 機器人液體處理器; (ii) 至少一台儀器,其能夠測量所需 LNP 特性;及 (iii) 至少一個微量盤,其包含多個微孔; 其中該機器人液體處理器能夠將多種溶液注入該等微孔中的每個微孔中; 其中該等參數在微孔之間系統性地變化;並且 其中能夠針對各微孔測量該等所需 LNP 特性。
  212. 如請求項 211 之方法,其中該等多個參數選自總脂質含量、自組裝分子的類型;該自組裝分子的組成比;該自組裝分子與該有效負載的比率及/或濃度;相的選擇、緩衝劑類型和 pH 值、注入順序、體積和速度以及混合持續時間。
  213. 如請求項 211 之方法,其中該等所需 LNP 特性選自由以下所組成之群組:平均粒徑、粒徑分佈、囊封效率及粒子穩定性。
  214. 如請求項 211 之工作流程,其中該儀器能夠進行動態光散射 (DLS)、紫外光-可見光 (UV-Vis) 或螢光光譜法。
TW110145739A 2020-12-09 2021-12-07 製備脂質奈米顆粒的高通量方法及其用途 TW202237068A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063123343P 2020-12-09 2020-12-09
US63/123,343 2020-12-09

Publications (1)

Publication Number Publication Date
TW202237068A true TW202237068A (zh) 2022-10-01

Family

ID=80218499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110145739A TW202237068A (zh) 2020-12-09 2021-12-07 製備脂質奈米顆粒的高通量方法及其用途

Country Status (11)

Country Link
US (1) US20230330023A1 (zh)
EP (1) EP4259104A1 (zh)
JP (1) JP2023552815A (zh)
KR (1) KR20230118129A (zh)
CN (1) CN116669711A (zh)
AR (1) AR124267A1 (zh)
AU (1) AU2021396518A1 (zh)
CA (1) CA3203463A1 (zh)
IL (1) IL303456A (zh)
TW (1) TW202237068A (zh)
WO (1) WO2022125622A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3233239A1 (en) * 2021-10-26 2023-05-04 Genentech, Inc. High-throughput methods for preparing lipid nanoparticles and uses thereof
WO2024013149A1 (en) * 2022-07-12 2024-01-18 Sartorius Stedim Biotech Gmbh Lipid nanoparticle production system and method of monitoring and controlling the same
WO2024028492A1 (en) * 2022-08-04 2024-02-08 Sanofi Quantitative assessment of rna encapsulation

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270537A (en) 1979-11-19 1981-06-02 Romaine Richard A Automatic hypodermic syringe
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
CA1283827C (en) 1986-12-18 1991-05-07 Giorgio Cirelli Appliance for injection of liquid formulations
GB8704027D0 (en) 1987-02-20 1987-03-25 Owen Mumford Ltd Syringe needle combination
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4940460A (en) 1987-06-19 1990-07-10 Bioject, Inc. Patient-fillable and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US5339163A (en) 1988-03-16 1994-08-16 Canon Kabushiki Kaisha Automatic exposure control device using plural image plane detection areas
FR2638359A1 (fr) 1988-11-03 1990-05-04 Tino Dalto Guide de seringue avec reglage de la profondeur de penetration de l'aiguille dans la peau
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5190521A (en) 1990-08-22 1993-03-02 Tecnol Medical Products, Inc. Apparatus and method for raising a skin wheal and anesthetizing skin
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
GB9118204D0 (en) 1991-08-23 1991-10-09 Weston Terence E Needle-less injector
SE9102652D0 (sv) 1991-09-13 1991-09-13 Kabi Pharmacia Ab Injection needle arrangement
US5328483A (en) 1992-02-27 1994-07-12 Jacoby Richard M Intradermal injection device with medication and needle guard
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5569189A (en) 1992-09-28 1996-10-29 Equidyne Systems, Inc. hypodermic jet injector
US5334144A (en) 1992-10-30 1994-08-02 Becton, Dickinson And Company Single use disposable needleless injector
WO1995024176A1 (en) 1994-03-07 1995-09-14 Bioject, Inc. Ampule filling device
US5466220A (en) 1994-03-08 1995-11-14 Bioject, Inc. Drug vial mixing and transfer device
US5599302A (en) 1995-01-09 1997-02-04 Medi-Ject Corporation Medical injection system and method, gas spring thereof and launching device using gas spring
US5730723A (en) 1995-10-10 1998-03-24 Visionary Medical Products Corporation, Inc. Gas pressured needle-less injection device and method
US5893397A (en) 1996-01-12 1999-04-13 Bioject Inc. Medication vial/syringe liquid-transfer apparatus
GB9607549D0 (en) 1996-04-11 1996-06-12 Weston Medical Ltd Spring-powered dispensing device
US5993412A (en) 1997-05-19 1999-11-30 Bioject, Inc. Injection apparatus
IT1298087B1 (it) 1998-01-08 1999-12-20 Fiderm S R L Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni
US20050222064A1 (en) 2002-02-20 2005-10-06 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
US9592198B2 (en) * 2013-10-28 2017-03-14 University Of Maryland, College Park Microfluidic liposome synthesis, purification and active drug loading
US20180000953A1 (en) 2015-01-21 2018-01-04 Moderna Therapeutics, Inc. Lipid nanoparticle compositions
EP3247398A4 (en) 2015-01-23 2018-09-26 Moderna Therapeutics, Inc. Lipid nanoparticle compositions
EP4036079A3 (en) 2015-12-22 2022-09-28 ModernaTX, Inc. Compounds and compositions for intracellular delivery of agents
WO2017147215A1 (en) * 2016-02-22 2017-08-31 The Methodist Hospital Biomimetic proteolipid vesicle compositions and uses thereof
EP3442590A2 (en) 2016-04-13 2019-02-20 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
WO2017223135A1 (en) * 2016-06-24 2017-12-28 Modernatx, Inc. Lipid nanoparticles

Also Published As

Publication number Publication date
AR124267A1 (es) 2023-03-01
EP4259104A1 (en) 2023-10-18
AU2021396518A1 (en) 2023-07-06
WO2022125622A1 (en) 2022-06-16
CA3203463A1 (en) 2022-06-16
JP2023552815A (ja) 2023-12-19
KR20230118129A (ko) 2023-08-10
CN116669711A (zh) 2023-08-29
IL303456A (en) 2023-08-01
US20230330023A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
TW202237068A (zh) 製備脂質奈米顆粒的高通量方法及其用途
Siepmann et al. Lipids and polymers in pharmaceutical technology: Lifelong companions
US8663599B1 (en) Pharmaceutical composition of nanoparticles
Feng et al. A critical review of lipid-based nanoparticles for taxane delivery
CN103906504B (zh) 制备用于药物递送的脂质纳米颗粒的方法
Wissing et al. Solid lipid nanoparticles for parenteral drug delivery
US6592894B1 (en) Hydrogel-isolated cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules
Shaheen et al. Liposome as a carrier for advanced drug delivery
Zhou et al. SPANosomes as delivery vehicles for small interfering RNA (siRNA)
US20180021455A1 (en) Receptor-targeted nanoparticles for enhanced transcytosis mediated drug delivery
Mozafari Bioactive entrapment and targeting using nanocarrier technologies: an introduction
US20180250409A1 (en) Pharmaceutical composition containing anionic drug, and preparation method therefor
US8252324B2 (en) Drug delivery nanocarriers targeted by landscape phage
Wang et al. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS)
Khatak et al. Recent techniques and patents on solid lipid nanoparticles as novel carrier for drug delivery
Zhao et al. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy
US8187571B1 (en) Pharmaceutical composition of nanoparticles
Fu et al. Liposomal formulation: Opportunities, challenges, and industrial applicability
WO2017048018A1 (ko) 음이온성 약물 함유 약제학적 조성물 및 그 제조방법
Tomsen-Melero et al. Liposomal formulations for treating lysosomal storage disorders
US8318200B1 (en) Pharmaceutical composition of nanoparticles
TW202333653A (zh) 製備脂質奈米顆粒的高通量方法及其用途
Cai et al. Lipid nanoparticle steric stabilization roadmap
Patravale et al. Nanoparticulate systems as drug carriers: the need
US8198246B1 (en) Pharmaceutical composition of nanoparticles