TW202235392A - Ion exchangeable silicate glass - Google Patents

Ion exchangeable silicate glass Download PDF

Info

Publication number
TW202235392A
TW202235392A TW111101963A TW111101963A TW202235392A TW 202235392 A TW202235392 A TW 202235392A TW 111101963 A TW111101963 A TW 111101963A TW 111101963 A TW111101963 A TW 111101963A TW 202235392 A TW202235392 A TW 202235392A
Authority
TW
Taiwan
Prior art keywords
glass
mol
tdfp
cover glass
glass composition
Prior art date
Application number
TW111101963A
Other languages
Chinese (zh)
Inventor
吉藤德拉 西蓋爾
比斯瓦納斯 森
賈沃 帕特
Original Assignee
日商安瀚視特控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安瀚視特控股股份有限公司 filed Critical 日商安瀚視特控股股份有限公司
Publication of TW202235392A publication Critical patent/TW202235392A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention describes a chemically strengthened cover glass composition that has high Three Dimensional Forming Parameter (TDFP). The TDFP is defined as 1 / (Glass Transition Temperature (Tg) * Coefficient of Thermal Expansion (CTE)). When the TDFP of the glass is greater than 220, the glass has high three-dimensional (3D) forming capabilities. The 3D forming capabilities of a cover glass can be enhanced by lower glass transition temperature and decreasing CTE. The glass composition is well suited for 3D forming and has high toughness, better service durability and high impact strength.

Description

離子可交換矽酸鹽玻璃ion exchangeable silicate glass

本發明係關於一種能夠化學強化之矽酸鹽玻璃。更具體而言,本發明係關於具有良好3D成型能力之護罩玻璃組合物。甚至更具體而言,本發明係關於確定玻璃的3D成型能力之三維成型參數(TDFP)。The present invention relates to a silicate glass capable of chemical strengthening. More specifically, the present invention relates to cover glass compositions with good 3D formability. Even more specifically, the present invention relates to the three-dimensional forming parameter (TDFP) which determines the 3D formability of glass.

近年來,玻璃基板已廣泛用於保護行動電話、娛樂裝置、平板電腦、膝上型電腦、數位相機、穿戴式裝置等各種電子裝置的顯示螢幕。隨著顯示螢幕尺寸的增加及電子裝置厚度的減小,護罩玻璃在受到衝擊(例如,與堅硬的有稜角的物體接觸)時變得更容易劃傷及破裂。出於此原因,對具有高強度及耐久性之化學強化玻璃的需求已被提出。此外,弧形或可撓性顯示器的使用越來越受到消費電子市場的關注。因此,電子裝置中使用之護罩玻璃現在正自平形(2D)演變為弧形(3D)形式或形狀。由於3D形式之護罩玻璃有助於加強弧形或可撓性顯示器的拐角/邊緣,因此需要具有良好3D成型能力之玻璃組合物。In recent years, glass substrates have been widely used to protect display screens of various electronic devices such as mobile phones, entertainment devices, tablet computers, laptop computers, digital cameras, and wearable devices. As the size of display screens increases and the thickness of electronic devices decreases, the cover glass becomes more susceptible to scratches and cracks when subjected to impact (eg, contact with hard, angular objects). For this reason, a need has been raised for chemically strengthened glass with high strength and durability. In addition, the use of curved or flexible displays is gaining more and more attention in the consumer electronics market. Accordingly, cover glasses used in electronic devices are now evolving from flat (2D) to curved (3D) forms or shapes. Since the cover glass in 3D form helps to strengthen the corners/edges of curved or flexible displays, there is a need for glass compositions with good 3D formability.

此外,護罩玻璃的性質高度依賴於反應溫度及玻璃組成。各種不同比例的化合物已被用作生產護罩玻璃的原料。此外,護罩玻璃藉由離子交換製程等各種製程進行化學強化。此種化學強化玻璃具有優異的效能性質。需要具有適當的3D成型能力、熱膨脹性質及退火玻璃溫度之護罩玻璃組合物。鑒於前述,需要一種確定玻璃組合物的3D成型能力之方法。Furthermore, the properties of the cover glass are highly dependent on the reaction temperature and glass composition. Compounds in various proportions have been used as raw materials for the production of cover glasses. In addition, the cover glass is chemically strengthened by various processes such as ion exchange process. This chemically strengthened glass has excellent performance properties. There is a need for cover glass compositions with appropriate 3D formability, thermal expansion properties, and annealing glass temperatures. In view of the foregoing, there is a need for a method of determining the 3D formability of glass compositions.

本發明之目的本文中描述本發明之一些目的。本發明之一個目的係提供一種護罩玻璃組合物。另一目的係提供具有高強化性質之護罩玻璃組合物。 Objects of the Invention Some of the objects of the invention are described herein. One object of the present invention is to provide a cover glass composition. Another object is to provide cover glass compositions with high strengthening properties.

本發明之另一目的係提供具有描述高3D成型能力的高三維成型參數(TDFP)之護罩玻璃組合物。TDFP定義為1/(玻璃轉移溫度(Tg)×熱膨脹係數(CTE))。Another object of the present invention is to provide cover glass compositions having a high three-dimensional forming parameter (TDFP) describing high 3D formability. TDFP is defined as 1/(glass transition temperature (Tg) x coefficient of thermal expansion (CTE)).

本發明之另一目的係提供TDFP值大於220之護罩玻璃組合物。TDFP值大於220之護罩玻璃具有良好的3D成型能力。Another object of the present invention is to provide a cover glass composition having a TDFP value greater than 220. The cover glass with TDFP value greater than 220 has good 3D molding ability.

本發明之另一目的係提供韌性更高、密度更低且使用壽命更長之護罩玻璃組合物。Another object of the present invention is to provide a cover glass composition with higher toughness, lower density and longer service life.

本發明之另一目的係使護罩玻璃組合物經歷多重離子交換製程。Another object of the present invention is to subject the cover glass composition to multiple ion exchange processes.

本發明之其他目的及優點將自以下描述更顯而易見,該描述並不意圖限制本發明之範疇。Other objects and advantages of the present invention will be more apparent from the following description, which is not intended to limit the scope of the present invention.

在本發明之一實施例中,已經揭示了護罩玻璃組合物。本發明揭示了具有高三維成型參數(TDFP)之護罩玻璃組合物。In one embodiment of the present invention, a cover glass composition has been disclosed. The present invention discloses cover glass compositions with high three-dimensional forming parameters (TDFP).

在一實施例中,TDFP被定義為1/(玻璃轉移溫度(Tg)×熱膨脹係數(CTE))。In one embodiment, TDFP is defined as 1/(glass transition temperature (Tg)×coefficient of thermal expansion (CTE)).

在一實施例中,玻璃的TDFP應該大於220。當TDFP大於220時,玻璃具有良好的3D成型性質。當TDFP小於220時,玻璃不適合3D成型。具有高強度及優異3D成型能力之玻璃具有更好的耐久性、高抗裂性、高損傷後保留強度及高銳衝擊強度,並且玻璃在失效前可以承受住更多次的裝置跌落。In one embodiment, the TDFP of the glass should be greater than 220. When the TDFP is greater than 220, the glass has good 3D forming properties. When the TDFP is less than 220, the glass is not suitable for 3D molding. Glass with high strength and excellent 3D molding ability has better durability, high crack resistance, high post-damage retention strength and high sharp impact strength, and the glass can withstand more device drops before failure.

在一實施例中,護罩玻璃組合物具有減少的非架橋氧(NBO),此增加了玻璃的韌性。In one embodiment, the cover glass composition has reduced non-bridging oxygen (NBO), which increases the toughness of the glass.

在一實施例中,護罩玻璃組合物的SiO 2量減少,藉由增加B 2O 3及Al 2O 3之量來補償。Al 2O 3量的增加使得玻璃之鹼度恆定。Al 2O 3量的增加引起玻璃組合物製備期間良好的離子交換製程。 In one embodiment, the cover glass composition has a reduced amount of SiO 2 which is compensated by increasing the amount of B 2 O 3 and Al 2 O 3 . An increase in the amount of Al 2 O 3 makes the alkalinity of the glass constant. An increase in the amount of Al 2 O 3 leads to a good ion exchange process during the preparation of the glass composition.

在一實施例中,玻璃組合物進一步包括鹼金屬氧化物。在一實施例中,鹼金屬氧化物選自由以下組成之群:Li 2O、Na 2O或K 2O。在一實施例中,玻璃組合物進一步包括鹼土金屬氧化物。在一實施例中,鹼土金屬氧化物可以係MgO、CaO、SrO或BaO中之至少一種。 In one embodiment, the glass composition further includes an alkali metal oxide. In one embodiment, the alkali metal oxide is selected from the group consisting of Li 2 O, Na 2 O or K 2 O. In one embodiment, the glass composition further includes an alkaline earth metal oxide. In one embodiment, the alkaline earth metal oxide may be at least one of MgO, CaO, SrO or BaO.

在一實施例中,護罩玻璃組合物包括約40莫耳%至約70莫耳%的SiO 2、約1莫耳%至約18莫耳%的B 2O 3及約10莫耳%至約32莫耳%的Al 2O 3。在一實施例中,玻璃組合物進一步包括鹼金屬氧化物,其中存在於玻璃組合物中的總鹼金屬氧化物之總和R 2O為約6莫耳%至38莫耳%,並且其中R為Li、Na或K中之至少一種。在一實施例中,鹼金屬氧化物選自由以下組成之群:Li 2O、Na 2O或K 2O。在一實施例中,玻璃組合物進一步包括鹼土金屬氧化物,其中MgO為約0莫耳%至約5莫耳%。在一實施例中,玻璃組合物進一步包括約0莫耳%至約7莫耳%的P 2O 5及約0莫耳%至約5莫耳%的ZnO。在一實施例中,玻璃組合物進一步包括約0莫耳%至約2.5莫耳%的一或多種精煉劑,諸如SnO 2、Fe 2O 3、CeO 2、氯化物及硫酸鹽。玻璃組合物進一步包括約0莫耳%至約5莫耳%的TiO 2In one embodiment, the cover glass composition includes about 40 mol % to about 70 mol % SiO 2 , about 1 mol % to about 18 mol % B 2 O 3 , and about 10 mol % to About 32 mole % Al 2 O 3 . In one embodiment, the glass composition further comprises an alkali metal oxide , wherein the sum R2O of the total alkali metal oxides present in the glass composition is from about 6 mole % to 38 mole %, and wherein R is At least one of Li, Na or K. In one embodiment, the alkali metal oxide is selected from the group consisting of Li 2 O, Na 2 O or K 2 O. In one embodiment, the glass composition further includes an alkaline earth metal oxide, wherein MgO is about 0 mol% to about 5 mol%. In one embodiment, the glass composition further includes about 0 mol % to about 7 mol % of P 2 O 5 and about 0 mol % to about 5 mol % of ZnO. In one embodiment, the glass composition further includes about 0 mol % to about 2.5 mol % of one or more refining agents, such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, and sulfates. The glass composition further includes from about 0 mole % to about 5 mole % Ti02 .

在一實施例中,可以經由多重離子交換的化學強化處理為護罩玻璃提供高強度。在一實施例中,玻璃組合物非常適合雙重離子交換製程。In one embodiment, the cover glass may be provided with high strength through chemical strengthening through multiple ion exchanges. In one embodiment, the glass composition is well suited for dual ion exchange processes.

在一實施例中,雙重離子交換製程包含離子交換的第一步,接著係在玻璃的外表面區域上進行離子交換的第二步。在一實施例中,離子交換製程係基於離子的尺寸。當來自外部離子交換浴的較大離子與玻璃中較小的離子進行交換時,較大的離子會包裹先前由較小離子佔據的表面區域,從而導致玻璃材料表面的壓縮應力,相應地增加了玻璃材料的強度。據報導,產生的壓縮應力與發生離子交換之玻璃體積成正比。In one embodiment, the double ion exchange process comprises a first step of ion exchange followed by a second step of ion exchange on the outer surface region of the glass. In one embodiment, the ion exchange process is based on the size of the ions. When larger ions from an external ion exchange bath are exchanged with smaller ions in the glass, the larger ions wrap around the surface area previously occupied by smaller ions, causing compressive stress on the surface of the glass material with a corresponding increase in The strength of the glass material. The resulting compressive stress is reported to be proportional to the volume of the ion-exchanged glass.

在一實施例中,護罩玻璃可以用作觸控面板顯示器的基板及此等顯示器的後蓋板,諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似顯示器。該玻璃亦可以用作太陽能電池護罩玻璃的基板、磁碟基板及窗玻璃板。此外,玻璃亦用作與各種運輸方式(諸如空中、海上或陸地)相關的保護窗,以及在非運輸應用中用於防風。此外,其亦用作防火玻璃。然而,護罩玻璃不限於上述應用,且亦可以用作例如塗層基板、爐灶面、半導體中介層、半導體載體、硬碟、內部顯示器、汽車擋風玻璃及許多其他應用。In one embodiment, the cover glass can be used as a substrate for touch panel displays and as a back cover for such displays, such as Liquid Crystal Displays (LCDs), Field Emission Displays (FEDs), Plasma Displays (PDs), Electromagnetic Displays (PDs), Light Emitting Displays (ELD), Organic Light Emitting Diode (OLED) displays, Micro LEDs or similar displays. The glass can also be used as a substrate of a solar cell cover glass, a magnetic disk substrate, and a window glass plate. Furthermore, glass is also used as protective windows in connection with various modes of transportation, such as air, sea or land, and for wind protection in non-transportation applications. In addition, it is also used as fireproof glass. However, cover glasses are not limited to the above-mentioned applications, and can also be used, for example, as coated substrates, cooktops, semiconductor interposers, semiconductor carriers, hard disks, internal displays, automotive windshields, and many other applications.

本發明之此等及其他態樣、優點及顯著特徵將自以下詳細描述中變得顯而易見。These and other aspects, advantages and salient features of the invention will become apparent from the following detailed description.

在以下描述中,在圖式中示出的若干視圖中,相同的參考標號表示相同或對應的部分。亦應理解,除非另外規定,否則諸如「頂部」、「底部」、「向外」、「向內」及其類似術語的術語係為了方便的詞語,並且不應被解釋為限制性術語。此外,每當一個組被描述為包含一組要素中之至少一個及其組合時,應理解,該組可單獨或彼此組合地包含任何數目的所述的彼等要素、基本上由其組成或由其組成。類似地,每當一個組被描述為由一組要素中之至少一個或其組合組成時,應理解,該組可單獨或彼此組合地由任何數目的所述的彼等要素組成。除非另外說明,否則在列舉值的範圍時,其包括範圍的上限及下限以及其間的任何範圍。如本文所用,除非另外說明,否則不定冠詞「一(a/an)」及對應的定冠詞「該(the)」意謂「至少一個」或「一或多個」。亦應理解,說明書及附圖中揭示之各種特徵可以任何及所有組合使用。 In the following description, the same reference numerals designate the same or corresponding parts in several views shown in the drawings. It should also be understood that terms such as "top", "bottom", "outwardly", "inwardly" and the like are words of convenience and should not be construed as terms of limitation unless otherwise specified. Furthermore, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is to be understood that the group may comprise, consist essentially of, or consists of it. Similarly, whenever a group is described as consisting of at least one of a group of elements or a combination thereof, it will be understood that the group may consist of any number of those said elements, alone or in combination with each other. When a range of values is recited, unless otherwise stated, the upper and lower limits of the range and any range therebetween are included. As used herein, the indefinite article "a/an" and the corresponding definite article "the" mean "at least one" or "one or more" unless stated otherwise. It should also be understood that the various features disclosed in the specification and drawings can be used in any and all combinations.

如本文所用,術語「玻璃製品(glass article/glass articles)」以其最廣泛含義使用以包括完全或部分由玻璃製成的任何物體。除非另外說明,否則所有組合物均以莫耳百分比(莫耳%)表示。除非另外說明,否則所有溫度均以攝氏度(℃)表示。除非另外說明,否則熱膨脹係數(CTE)以10-7/℃表示,並且表示在約50℃至約300℃的溫度範圍內測得的值。如本文所用,術語「退火點」係指玻璃之黏度約為1×10 13.2泊時的溫度。 As used herein, the term "glass article/glass articles" is used in its broadest sense to include any object made entirely or in part of glass. All compositions are expressed in mole percent (Mole %) unless otherwise indicated. All temperatures are expressed in degrees Celsius (° C.) unless otherwise indicated. Unless otherwise specified, the coefficient of thermal expansion (CTE) is expressed in 10-7/°C, and represents a value measured in a temperature range of about 50°C to about 300°C. As used herein, the term "annealing point" refers to the temperature at which the viscosity of the glass is about 1×10 13.2 poise.

應注意,術語「大體上」及「約」可在本文中用來表示可歸因於任何定量比較、值、量測或其他表示的固有的不確定性程度。此等術語亦在本文中用於表示定量表示可不同於所陳述參考而不導致所論述主題的基本功能變化的程度。It should be noted that the terms "substantially" and "about" may be used herein to denote the inherent degree of uncertainty attributable to any quantitative comparison, value, measurement or other representation. These terms are also used herein to denote the degree by which a quantitative representation may differ from a stated reference without resulting in a change in the basic function of the subject matter at issue.

近來,隨著技術的進步,玻璃已被模製以形成3D弧形護罩玻璃。3D弧形護罩玻璃具有輕、薄、透明、清潔、防指紋、防眩光、堅硬、耐刮擦以及耐候性好的優點。此外,3D弧形護罩玻璃的弧形表面為顯示器提供了額外的功能性分顯示器應用或更好的美觀性。如下所述,護罩玻璃用於保護諸如行動電話、智慧型手機、平板電腦、穿戴式裝置、數位相機等電子裝置的顯示螢幕(例如,基於觸控的顯示器)。背面上使用之護罩玻璃除了為裝置提供強度外,亦為更好的電磁傳輸所需的。但是,護罩玻璃不限於上述應用,且亦可以用於觸控面板顯示器、太陽能電池用玻璃、磁碟、汽車內部及外部零件、標牌、運輸工具中的窗戶及其他應用。Recently, with the advancement of technology, glass has been molded to form 3D curved cover glass. The 3D curved cover glass has the advantages of being light, thin, transparent, clean, anti-fingerprint, anti-glare, hard, scratch-resistant and weather-resistant. In addition, the curved surface of the 3D curved cover glass provides the display with additional functionality for sub-display applications or better aesthetics. As described below, cover glass is used to protect the display screens (eg, touch-based displays) of electronic devices such as mobile phones, smartphones, tablet computers, wearable devices, digital cameras, and the like. The cover glass used on the back is required for better electromagnetic transmission in addition to providing strength to the device. However, the cover glass is not limited to the above-mentioned applications, and can also be used for touch panel displays, glass for solar cells, magnetic disks, interior and exterior parts of automobiles, signs, windows in vehicles, and other applications.

本發明詳細描述了各種護罩玻璃組合物。本發明主要描述了鋰鋁硼矽酸鹽(LABS)玻璃及其組合物。玻璃組合物包含一或多種化學組分,諸如SiO 2、B 2O 3、Al 2O 3、Li 2O及Na 2O。其亦可以包含其他化學組分,諸如K 2O、ZnO、MgO、SrO、BaO、CaO、P 2O 5及TiO 2及其類似物。此外,其亦可以包含精煉劑,諸如SnO 2、Fe 2O 3、CeO 2、氯化物、硫酸鹽及其類似物。 Various cover glass compositions are described in detail herein. The present invention generally describes lithium aluminum borosilicate (LABS) glasses and compositions thereof. Glass compositions include one or more chemical components, such as SiO 2 , B 2 O 3 , Al 2 O 3 , Li 2 O, and Na 2 O. It may also contain other chemical components such as K 2 O, ZnO, MgO, SrO, BaO, CaO, P 2 O 5 and TiO 2 and the like. In addition, it may also contain refining agents such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, sulfates, and the like.

護罩玻璃的生產製程受玻璃組合物組分的莫耳百分比含量的影響很大。組分的莫耳百分比含量及反應溫度係影響護罩玻璃性質的重要因素。The production process of the cover glass is greatly influenced by the molar percentage content of the components of the glass composition. The molar percentage content of the components and the reaction temperature are important factors affecting the properties of the cover glass.

3D成型能力係LABS護罩玻璃組合物之一個重要態樣,以便在各種應用中使用玻璃組合物。為確保護罩玻璃組合物具有3D成型能力,有必要瞭解玻璃組合物之組分的莫耳%範圍及性質。熱膨脹係數(CTE)及玻璃轉移溫度係表徵玻璃材料的關鍵參數。3D formability is an important aspect of LABS cover glass compositions in order to use the glass compositions in various applications. In order to ensure that the cover glass composition has 3D formability, it is necessary to know the mole % range and properties of the components of the glass composition. Coefficient of thermal expansion (CTE) and glass transition temperature are key parameters to characterize glass materials.

因此,本發明描述了計算三維成型參數(TDFP)以預測護罩玻璃的3D成型能力的模型。具體而言,本發明揭示了一種具有較高TDFP之護罩玻璃組合物。TDFP定義為玻璃轉移溫度(Tg)及熱膨脹係數(CTE)乘積的反比。例如,TDFP可以由以下等式(1)表示:

Figure 02_image001
(1) Accordingly, the present invention describes a model for calculating a three-dimensional forming parameter (TDFP) to predict the 3D formability of a cover glass. Specifically, the present invention discloses a cover glass composition with higher TDFP. TDFP is defined as the inverse ratio of the product of glass transition temperature (Tg) and coefficient of thermal expansion (CTE). For example, TDFP can be represented by the following equation (1):
Figure 02_image001
(1)

計算出的TDFP值可能有助於瞭解玻璃組合物的3D成型能力。上述等式理解如下:Tg代表在該溫度下恆定之玻璃的黏度(10 13泊或10 12Pa.s)。因此,若Tg低,則預期相同3D成型溫度下的黏度低。因此,3D成型將更容易。另一方面,較低的CTE將導致玻璃製品在3D成型後的殘餘應力較低。因此,Tg及CTE的乘積的倒數,亦即TDFP代表玻璃的3D成型性,其中TDFP越高,3D成型性越好。 The calculated TDFP values may be helpful in understanding the 3D formability of glass compositions. The above equation is understood as follows: Tg represents the viscosity of the glass (10 13 Poise or 10 12 Pa.s) constant at this temperature. Therefore, if the Tg is low, the viscosity at the same 3D molding temperature is expected to be low. Therefore, 3D molding will be easier. On the other hand, lower CTE will lead to lower residual stress of glass products after 3D forming. Therefore, the reciprocal of the product of Tg and CTE, that is, TDFP represents the 3D formability of glass, and the higher the TDFP, the better the 3D formability.

在一實施例中,當TDFP大於220時,玻璃具有良好的3D成型性質。當TDFP小於220時,玻璃不適合3D成型。具有高強度及優異3D成型能力之玻璃具有更好的耐用性、高抗裂性、高損傷後保留強度及高銳衝擊強度,並且玻璃在失效前可以承受住更多次的裝置跌落。In one embodiment, when the TDFP is greater than 220, the glass has good 3D forming properties. When the TDFP is less than 220, the glass is not suitable for 3D molding. Glass with high strength and excellent 3D formability has better durability, high crack resistance, high post-damage retention strength and high sharp impact strength, and the glass can withstand more device drops before failure.

在一實施例中,玻璃的Tg及CTE越低,玻璃可以具有越高的3D成型能力。可以藉由增加B 2O 3的含量或藉由減少Al 2O 3或SiO 2中至少一種的含量來獲得較低的Tg及CTE值。 In one embodiment, the lower the Tg and CTE of the glass, the higher the 3D formability of the glass. Lower Tg and CTE values can be obtained by increasing the content of B 2 O 3 or by decreasing the content of at least one of Al 2 O 3 or SiO 2 .

在一實施例中,護罩玻璃具有減少的非架橋氧(NBO),此增加了玻璃的韌性。In one embodiment, the cover glass has reduced non-bridging oxygen (NBO), which increases the toughness of the glass.

在一實施例中,用於獲得護罩玻璃之玻璃組合物包括各種組分,諸如SiO 2、Al 2O 3及B 2O 3。在一實施例中,玻璃組合物進一步包括其他組分,諸如R 2O、RO、P 2O 5、ZnO、ZrO 2、SnO 2、TiO 2、CeO 2或Fe 2O 3中之至少一種。 In one embodiment, the glass composition used to obtain the cover glass includes various components such as SiO 2 , Al 2 O 3 and B 2 O 3 . In one embodiment, the glass composition further includes other components, such as at least one of R 2 O, RO, P 2 O 5 , ZnO, ZrO 2 , SnO 2 , TiO 2 , CeO 2 or Fe 2 O 3 .

在一實施例中,SiO 2係形成玻璃網絡的組分。在SiO 2的含量過高的情況下,此玻璃難以熔融並成型,或者此玻璃的熱膨脹係數過低,且難以具有與周邊材料相同的熱膨脹係數。另一方面,在SiO 2的含量過低的情況下,難以玻璃化。另外,此種玻璃的熱膨脹係數增大,耐熱衝擊性有降低的趨勢。因此,玻璃組合物需要最佳莫耳%的SiO 2。在一實施例中,護罩玻璃組合物的SiO 2量減少,藉由增加B 2O 3及Al 2O 3之量來補償。在一個實例中,玻璃組合物可以包括約40莫耳%至約70莫耳%的SiO 2。在SiO 2的含量低的情況下,玻璃組合物具有較高的酸損失。 In one embodiment, SiO 2 is a glass network forming component. In the case where the SiO 2 content is too high, the glass is difficult to melt and form, or the glass has too low a thermal expansion coefficient and it is difficult to have the same thermal expansion coefficient as the surrounding material. On the other hand, when the content of SiO 2 is too low, vitrification becomes difficult. In addition, the coefficient of thermal expansion of such glass increases, and the thermal shock resistance tends to decrease. Therefore, the glass composition requires an optimal molar % of SiO2 . In one embodiment, the cover glass composition has a reduced amount of SiO 2 which is compensated by increasing the amount of B 2 O 3 and Al 2 O 3 . In one example, the glass composition can include about 40 mol % to about 70 mol % SiO 2 . In the case of low SiO2 content, the glass composition has higher acid loss.

在一實施例中,B 2O 3係具有降低玻璃的液相線溫度、高溫黏度及密度的效果並且進一步具有提高玻璃的多重離子交換適應性的效果的組分。B 2O 3可能有助於清除非架橋氧原子(NBO)。B 2O 3經由形成BO 4四面體將NBO轉化為架橋氧原子,從而藉由最大限度地減少弱NBO的數量來增加玻璃的韌性。B 2O 3降低了玻璃的硬度,再加上清除NBO帶來的更高韌性,降低了脆性,從而產生了在機械上耐久之玻璃。其B 2O 3的含量可為約1莫耳%至約18莫耳%。在SiO 2被B 2O 3代替的情況下,玻璃組合物的酸損失增加。 In one embodiment, B 2 O 3 is a component that has the effect of lowering the liquidus temperature, high-temperature viscosity, and density of the glass, and further has the effect of improving the multiple ion exchange adaptability of the glass. B2O3 may help to scavenge non - bridging oxygen atoms (NBO). B 2 O 3 converts NBOs into bridging oxygen atoms via the formation of BO 4 tetrahedra, thereby increasing the toughness of the glass by minimizing the number of weak NBOs. B 2 O 3 reduces the hardness of the glass, which, combined with the higher toughness brought about by the removal of NBO, reduces brittleness, resulting in a mechanically durable glass. The B 2 O 3 content thereof may range from about 1 mol % to about 18 mol %. In the case where SiO2 is replaced by B2O3, the acid loss of the glass composition increases.

在一實施例中,玻璃組合物中Al 2O 3之量的增加使得玻璃之鹼度係恆定的。在一實施例中,Al 2O 3係增強對多重離子交換的適用性的組分。在一實例中,玻璃組合物可以包括約10莫耳%至約32莫耳%的Al 2O 3。在SiO 2被Al 2O 3替代的情況下,玻璃組合物的酸損失增加。 In one embodiment, the amount of Al2O3 in the glass composition is increased such that the alkalinity of the glass is kept constant. In one embodiment, Al2O3 is a component that enhances suitability for multiple ion exchanges. In an example, the glass composition may include about 10 mol % to about 32 mol % Al 2 O 3 . In the case where SiO2 is replaced by Al2O3 , the acid loss of the glass composition increases.

在一實施例中,玻璃組合物進一步包括鹼金屬氧化物,其中鹼金屬氧化物之總和R 2O在約6莫耳%至約38莫耳%的範圍內。在一實施例中,鹼金屬氧化物選自由以下組成之群:Li 2O、Na 2O或K 2O。 In one embodiment, the glass composition further includes alkali metal oxides, wherein the sum R 2 O of the alkali metal oxides ranges from about 6 mol% to about 38 mol%. In one embodiment, the alkali metal oxide is selected from the group consisting of Li 2 O, Na 2 O or K 2 O.

較大之鹼金屬氧化物含量可促進熔融,從而軟化玻璃、能夠進行離子交換、降低熔體電阻率並破壞玻璃網絡,從而增加熱膨脹並降低耐久性。玻璃組合物可包括約3莫耳%至約18莫耳%的Na 2O、約3莫耳%至約18莫耳%的Li 2O及約0莫耳%至約2莫耳%的K 2O。在一實施例中,對於要成為護罩玻璃之玻璃組合物,Al/R 2O之比率為約0.5至約1.7。 Higher alkali oxide content promotes melting, which softens the glass, enables ion exchange, reduces melt resistivity, and disrupts the glass network, which increases thermal expansion and reduces durability. The glass composition may include about 3 mol% to about 18 mol% Na2O, about 3 mol% to about 18 mol% Li2O , and about 0 mol% to about 2 mol% K 2 O. In one embodiment, for the glass composition to be the cover glass, the Al/R2O ratio is from about 0.5 to about 1.7.

在一實施例中,玻璃組合物進一步包括鹼土金屬氧化物,其中MgO在約0莫耳%至約5莫耳%的範圍內。在一實施例中,鹼土金屬氧化物可以係MgO、CaO、SrO或BaO中之至少一種。鹼土金屬氧化物可能有助於為玻璃產生更陡峭的黏度曲線。用鹼土金屬氧化物代替鹼金屬氧化物會導致玻璃的退火點及應變點升高,同時降低製造高品質玻璃所需的熔融溫度。In one embodiment, the glass composition further includes an alkaline earth metal oxide, wherein MgO is in a range of about 0 mol% to about 5 mol%. In one embodiment, the alkaline earth metal oxide may be at least one of MgO, CaO, SrO or BaO. Alkaline earth oxides may help produce a steeper viscosity curve for the glass. Replacing alkali metal oxides with alkaline earth metal oxides results in higher annealing and strain points of the glass, while lowering the melting temperature required to produce high-quality glass.

在一實施例中,玻璃組合物進一步包括約0莫耳%至約7莫耳%的P 2O 5。P 2O 5係提高玻璃的離子交換適應性的成分,特別係在增加壓縮應力層的深度方面非常有效。在SiO 2被P 2O 5替代的情況下,較高的P 2O 5含量可能導致玻璃組合物的較高失玻化溫度。 In one embodiment, the glass composition further includes about 0 mol % to about 7 mol % of P 2 O 5 . P 2 O 5 is a component that improves the ion exchange suitability of glass, and is particularly effective in increasing the depth of a compressive stress layer. In the case where SiO 2 is replaced by P 2 O 5 , higher P 2 O 5 content may lead to higher devitrification temperature of the glass composition.

在一實施例中,玻璃組合物可以包括或不包括ZnO。在一個例示性實施例中,玻璃可以不含ZnO。在另一例示性實施例中,玻璃可以包括約0莫耳%至約5莫耳%的ZnO。在一實施例中,玻璃組合物進一步包括約0莫耳%至約2.5莫耳%的一或多種精煉劑,諸如SnO 2、Fe 2O 3、CeO 2、氯化物及硫酸鹽。在一實施例中,玻璃組合物進一步包括約0莫耳%至5莫耳%的TiO 2,其有助於製備基於玻璃的製品,諸如玻璃陶瓷。 In an embodiment, the glass composition may or may not include ZnO. In an exemplary embodiment, the glass may be free of ZnO. In another exemplary embodiment, the glass may include ZnO at about 0 mol % to about 5 mol %. In one embodiment, the glass composition further includes about 0 mol % to about 2.5 mol % of one or more refining agents, such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, and sulfates. In one embodiment, the glass composition further includes about 0 to 5 mol % TiO 2 , which facilitates the preparation of glass-based articles, such as glass ceramics.

本發明描述了組合物的各種組分的最佳莫耳%。護罩玻璃組合物包括約40莫耳%至約70莫耳%的SiO 2、約10莫耳%至約32莫耳%的Al 2O 3及約1莫耳%至約18莫耳%的B 2O 3。在一實施例中,玻璃組合物進一步包括鹼金屬氧化物,其中存在於玻璃組合物中的總鹼金屬氧化物之總和R 2O為約6莫耳%至38莫耳%。在一實施例中,鹼金屬氧化物選自由以下組成之群:Li 2O、Na 2O或K 2O。在一實施例中,玻璃組合物進一步包括鹼土金屬氧化物,其中MgO為約0莫耳%至約5莫耳%。在一實施例中,玻璃組合物進一步包括約0莫耳%至約7莫耳%的P 2O 5及約0莫耳%至約5莫耳%的ZnO。在一實施例中,玻璃組合物進一步包括約0莫耳%至約2.5莫耳%的一或多種精煉劑,諸如SnO 2、Fe 2O 3、CeO 2、氯化物及硫酸鹽。玻璃組合物進一步包括約0莫耳%至約5莫耳%的TiO 2The present invention describes the optimal mole % of the various components of the composition. The cover glass composition includes about 40 mol % to about 70 mol % SiO 2 , about 10 mol % to about 32 mol % Al 2 O 3 , and about 1 mol % to about 18 mol % B 2 O 3 . In one embodiment, the glass composition further includes an alkali metal oxide, wherein the sum R 2 O of the total alkali metal oxides present in the glass composition is about 6 mol% to 38 mol%. In one embodiment, the alkali metal oxide is selected from the group consisting of Li 2 O, Na 2 O or K 2 O. In one embodiment, the glass composition further includes an alkaline earth metal oxide, wherein MgO is about 0 mol% to about 5 mol%. In one embodiment, the glass composition further includes about 0 mol % to about 7 mol % of P 2 O 5 and about 0 mol % to about 5 mol % of ZnO. In one embodiment, the glass composition further includes about 0 mol % to about 2.5 mol % of one or more refining agents, such as SnO 2 , Fe 2 O 3 , CeO 2 , chlorides, and sulfates. The glass composition further includes from about 0 mole % to about 5 mole % Ti02 .

表1說明了非限制性的例示性玻璃組合物及其相應的物理性質,包括玻璃轉移溫度(Tg)、密度、楊氏模數(YM)、熱膨脹係數(CTE)、退火溫度、泊松比、剪切模數、酸測試損失及TDFP。 莫耳 % 1 2 3 4 5 6 7 8 SiO 2 45.54 49.61 54.02 41.35 50.20 48.01 54.20 55.21 B 2O 3 10.29 8.18 6.81 11.20 7.27 8.22 9.21 7.81 Al 2O 3 25.74 23.70 21.17 27.89 23.25 23.44 20.00 17.48 Na 2O 10.71 9.75 8.68 10.89 8.70 9.81 10.00 9.00 Li 2O 7.42 8.04 8.05 7.74 8.30 6.84 6.50 7.60 K 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.00 0.00 0.00 0.00 0.03 0.17 0.00 0.00 P 2O 5 0.22 0.64 1.18 0.85 2.17 3.43 0.00 2.50 SnO 2 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2O 1.42 1.33 1.27 1.50 1.37 1.41 1.21 1.03 性質 Tg ( ) 552 554 560 550 558 556 588 554 CTE (×10 -7) / (50-300 ) 73.0 75.0 77.0 72.0 76.0 74.0 72.0 76.0 密度 (g/cc) 2.43 2.42 2.42 2.43 2.42 2.41 2.40 2.38 YM (GPa) 79.7 77.5 - - - - 75.9 73.0 退火溫度 ( ) 562 564 570 560 568 566 598 564 泊松比 0.25 0.23 - - - - 0.24 - 剪切模數 (GPa) 31.9 31.5 - - - - 30.6 - 酸測試損失 (5% HCL 24 小時, 95 ) (mg/cm 2) - - - - - - - 53.6 TDFP 248.2 240.7 231.9 252.5 235.8 243.0 236.2 237.5 表1:玻璃的例示性組成及物理性質 Table 1 illustrates non-limiting exemplary glass compositions and their corresponding physical properties, including glass transition temperature (Tg), density, Young's modulus (YM), coefficient of thermal expansion (CTE), annealing temperature, Poisson's ratio , shear modulus, acid test loss and TDFP. Mole % 1 2 3 4 5 6 7 8 SiO 2 45.54 49.61 54.02 41.35 50.20 48.01 54.20 55.21 B 2 O 3 10.29 8.18 6.81 11.20 7.27 8.22 9.21 7.81 Al 2 O 3 25.74 23.70 21.17 27.89 23.25 23.44 20.00 17.48 Na 2 O 10.71 9.75 8.68 10.89 8.70 9.81 10.00 9.00 Li 2 O 7.42 8.04 8.05 7.74 8.30 6.84 6.50 7.60 K 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.00 0.00 0.00 0.00 0.03 0.17 0.00 0.00 P 2 O 5 0.22 0.64 1.18 0.85 2.17 3.43 0.00 2.50 SnO2 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2 O 1.42 1.33 1.27 1.50 1.37 1.41 1.21 1.03 nature Tg ( °C ) 552 554 560 550 558 556 588 554 CTE (×10 -7 ) / (50-300 ) 73.0 75.0 77.0 72.0 76.0 74.0 72.0 76.0 Density (g/cc) 2.43 2.42 2.42 2.43 2.42 2.41 2.40 2.38 YM (GPa) 79.7 77.5 - - - - 75.9 73.0 Annealing temperature ( °C ) 562 564 570 560 568 566 598 564 Poisson's ratio 0.25 0.23 - - - - 0.24 - Shear modulus (GPa) 31.9 31.5 - - - - 30.6 - Acid test loss (5% HCL , 24 hours, 95 ) (mg/cm 2 ) - - - - - - - 53.6 TDFP 248.2 240.7 231.9 252.5 235.8 243.0 236.2 237.5 Table 1: Exemplary compositions and physical properties of glasses

表2說明了非限制性的例示性玻璃組合物及其相應的物理性質,包括玻璃轉移溫度(Tg)、密度、楊氏模數(YM)、熱膨脹係數(CTE)、退火溫度、泊松比、剪切模數、酸測試損失及TDFP。 莫耳 % 9 10 11 12 13 14 15 16 SiO 2 54.29 55.09 55.25 55.50 55.60 57.75 57.20 65.42 B 2O 3 7.81 7.10 6.17 8.00 7.20 6.17 7.00 1.78 Al 2O 3 18.00 18.20 18.20 18.10 18.50 17.40 17.40 12.00 Na 2O 9.00 9.00 9.90 8.50 8.50 9.40 8.50 8.39 Li 2O 8.00 8.00 7.30 7.42 7.42 7.30 7.42 6.82 K 2O 0.33 0.33 0.90 0.40 0.40 0.90 0.45 0.00 ZnO 0.00 0.00 0.00 0.50 0.80 0.00 0.45 3.51 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P 2O 5 2.50 2.20 2.20 1.50 1.50 1.00 1.50 2.00 SnO 2 0.080 0.080 0.082 0.082 0.082 0.082 0.082 0.073 Fe 2O 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.009 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2O 1.04 1.05 1.01 1.11 1.13 0.99 1.06 0.79 性質 Tg ( ) 550 570 577 574 583 577 579 630 CTE (×10 -7) / (50-300 ) 77.0 77.9 78.0 71.0 73.0 81.6 76.0 74.0 密度 (g/cc) 2.38 2.38 2.40 2.40 2.40 2.39 2.39 2.44 YM (GPa) 74.0 - 74.4 74.0 75.0 75.0 75.0 76.0 退火溫度 ( ) - - 587 584 593 587 589 637 泊松比 - - 0.22 0.22 0.24 0.22 0.22 0.23 剪切模數 (GPa) - - 30.5 30.3 30.2 30.7 30.7 30.7 酸測試損失 (5% HCL 24 小時, 95 ) (mg/cm 2) - - 45.6 - - - - - TDFP 236.1 225.2 222.2 245.4 235.0 212.4 227.3 214.5 表2:玻璃的例示性組成及物理性質 Table 2 illustrates non-limiting exemplary glass compositions and their corresponding physical properties, including glass transition temperature (Tg), density, Young's modulus (YM), coefficient of thermal expansion (CTE), annealing temperature, Poisson's ratio , shear modulus, acid test loss and TDFP. Mole % 9 10 11 12 13 14 15 16 SiO 2 54.29 55.09 55.25 55.50 55.60 57.75 57.20 65.42 B 2 O 3 7.81 7.10 6.17 8.00 7.20 6.17 7.00 1.78 Al 2 O 3 18.00 18.20 18.20 18.10 18.50 17.40 17.40 12.00 Na 2 O 9.00 9.00 9.90 8.50 8.50 9.40 8.50 8.39 Li 2 O 8.00 8.00 7.30 7.42 7.42 7.30 7.42 6.82 K 2 O 0.33 0.33 0.90 0.40 0.40 0.90 0.45 0.00 ZnO 0.00 0.00 0.00 0.50 0.80 0.00 0.45 3.51 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 P 2 O 5 2.50 2.20 2.20 1.50 1.50 1.00 1.50 2.00 SnO2 0.080 0.080 0.082 0.082 0.082 0.082 0.082 0.073 Fe2O3 _ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.009 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2 O 1.04 1.05 1.01 1.11 1.13 0.99 1.06 0.79 nature Tg ( °C ) 550 570 577 574 583 577 579 630 CTE (×10 -7 ) / (50-300 ) 77.0 77.9 78.0 71.0 73.0 81.6 76.0 74.0 Density (g/cc) 2.38 2.38 2.40 2.40 2.40 2.39 2.39 2.44 YM (GPa) 74.0 - 74.4 74.0 75.0 75.0 75.0 76.0 Annealing temperature ( °C ) - - 587 584 593 587 589 637 Poisson's ratio - - 0.22 0.22 0.24 0.22 0.22 0.23 Shear modulus (GPa) - - 30.5 30.3 30.2 30.7 30.7 30.7 Acid test loss (5% HCL , 24 hours, 95 ) (mg/cm 2 ) - - 45.6 - - - - - TDFP 236.1 225.2 222.2 245.4 235.0 212.4 227.3 214.5 Table 2: Exemplary compositions and physical properties of glasses

表3說明了非限制性的例示性玻璃組合物及其相應的物理性質,包括玻璃轉移溫度(Tg)、密度、楊氏模數(YM)、熱膨脹係數(CTE)、退火溫度、泊松比、剪切模數、酸測試損失及TDFP。 莫耳 % 17 18 19 20 21 22 23 24 SiO 2 60.42 60.42 58.42 58.42 59.00 57.25 57.99 56.91 B 2O 3 3.20 3.20 5.20 5.20 4.50 5.41 6.44 7.10 Al 2O 3 19.11 19.11 18.11 17.11 18.00 17.45 17.68 18.10 Na 2O 8.56 8.56 9.56 9.56 9.50 9.21 9.33 8.50 Li 2O 6.35 5.35 6.35 7.35 6.50 8.35 6.20 7.10 K 2O 0.14 0.14 0.14 0.14 0.22 0.13 0.14 0.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.82 1.32 0.82 0.82 0.60 0.79 0.80 0.76 P 2O 5 1.37 1.87 1.37 1.37 1.60 1.32 1.34 1.37 SnO 2 0.020 0.020 0.020 0.023 0.080 0.084 0.0849 0.023 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2O 1.27 1.36 1.13 1.00 1.11 0.99 1.13 1.15 性質 Tg ( ) 648 652 616 585 608 - - 589 CTE (×10 -7) / (50-300 ) 73.0 74.1 71.6 76.3 76.0 - - 71.2 密度 (g/cc) 2.41 2.40 2.40 2.40 2.40 - 2.39 2.39 YM (GPa) - - - 76.5 - - 75.0 72.5 退火溫度 ( ) 658 662 626 595 618 - - 599 泊松比 - - - 0.23 - - 0.23 0.26 剪切模數 (GPa) - - - 31.1 - - 30.5 28.9 酸測試損失 (5% HCL 24 小時, 95 ) (mg/cm 2) - - - - - - -    TDFP 211.4 206.9 226.7 224.0 216.4 - - 238.5 表3:玻璃的例示性組成及物理性質 Table 3 illustrates non-limiting exemplary glass compositions and their corresponding physical properties, including glass transition temperature (Tg), density, Young's modulus (YM), coefficient of thermal expansion (CTE), annealing temperature, Poisson's ratio , shear modulus, acid test loss and TDFP. Mole % 17 18 19 20 twenty one twenty two twenty three twenty four SiO 2 60.42 60.42 58.42 58.42 59.00 57.25 57.99 56.91 B 2 O 3 3.20 3.20 5.20 5.20 4.50 5.41 6.44 7.10 Al 2 O 3 19.11 19.11 18.11 17.11 18.00 17.45 17.68 18.10 Na 2 O 8.56 8.56 9.56 9.56 9.50 9.21 9.33 8.50 Li 2 O 6.35 5.35 6.35 7.35 6.50 8.35 6.20 7.10 K 2 O 0.14 0.14 0.14 0.14 0.22 0.13 0.14 0.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.82 1.32 0.82 0.82 0.60 0.79 0.80 0.76 P 2 O 5 1.37 1.87 1.37 1.37 1.60 1.32 1.34 1.37 SnO2 0.020 0.020 0.020 0.023 0.080 0.084 0.0849 0.023 TiO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Al/ R 2 O 1.27 1.36 1.13 1.00 1.11 0.99 1.13 1.15 nature Tg ( °C ) 648 652 616 585 608 - - 589 CTE (×10 -7 ) / (50-300 ) 73.0 74.1 71.6 76.3 76.0 - - 71.2 Density (g/cc) 2.41 2.40 2.40 2.40 2.40 - 2.39 2.39 YM (GPa) - - - 76.5 - - 75.0 72.5 Annealing temperature ( °C ) 658 662 626 595 618 - - 599 Poisson's ratio - - - 0.23 - - 0.23 0.26 Shear modulus (GPa) - - - 31.1 - - 30.5 28.9 Acid test loss (5% HCL , 24 hours, 95 ) (mg/cm 2 ) - - - - - - - TDFP 211.4 206.9 226.7 224.0 216.4 - - 238.5 Table 3: Exemplary compositions and physical properties of glasses

表4說明了非限制性的例示性玻璃組合物及其相應的物理性質,包括玻璃轉移溫度(Tg)、密度、楊氏模數(YM)、熱膨脹係數(CTE)、退火溫度、泊松比、剪切模數、酸測試損失及TDFP。 莫耳 % 25 26 27 28 29 30 31 32 SiO 2 57.63 57.00 57.85 57.43 57.43 58.70 55.16 59.42 B 2O 3 7.10 6.00 5.20 5.20 5.20 5.77 4.24 4.20 Al 2O 3 17.11 17.74 17.25 18.10 18.10 17.11 17.59 18.11 Na 2O 8.90 9.50 9.70 9.56 9.56 9.00 9.10 9.56 Li 2O 6.90 7.35 7.70 7.35 6.91 7.35 11.50 6.35 K 2O 0.14 0.51 0.65 0.14 0.58 0.14 0.08 0.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.82 0.45 0.45 0.82 0.82 0.48 1.14 0.82 P 2O 5 1.37 1.37 1.37 1.37 1.37 1.37 1.07 1.37 SnO 2 0.023 0.080 0.025 0.023 0.025 0.075 0.020 0.020 TiO 2 0.00 0.00 0.00 0.00 0.00 0.0006 0.11 0.00 總計 100.00 100.00 100.20 100.00 100.00 100.00 100.00 100.00 Al/ R 2O 1.07 1.02 0.96 1.06 1.06 1.04 0.85 1.13 性質 Tg ( ) 575 - 585 600 601 585 566 618 CTE (×10 -7) / (50-300 ) 70.0 - - 79.0 79.0 71.1 73.9 75.0 密度 (g/cc) 2.38 2.40 2.40 2.40 2.40 2.39 2.42 2.40 YM (GPa) 71.3 73.5 73.5 75.0 75.6 75.0 76.9 73.3 退火溫度 ( ) 585 - - 610 611 595 576 628 泊松比 0.25 0.25 0.24 0.25 0.23 0.22 0.22 0.24 剪切模數 (GPa) 28.5 29.5 29.5 30.0 30.8 30.7 31.5 29.5 酸測試損失 (5% HCL 24 小時, 95 ) (mg/cm 2)                37.4 49.9 - TDFP 248.4 - - 211.0 210.6 240.4 239.1 215.7 表4:玻璃的例示性組成及物理性質 Table 4 illustrates non-limiting exemplary glass compositions and their corresponding physical properties, including glass transition temperature (Tg), density, Young's modulus (YM), coefficient of thermal expansion (CTE), annealing temperature, Poisson's ratio , shear modulus, acid test loss and TDFP. Mole % 25 26 27 28 29 30 31 32 SiO 2 57.63 57.00 57.85 57.43 57.43 58.70 55.16 59.42 B 2 O 3 7.10 6.00 5.20 5.20 5.20 5.77 4.24 4.20 Al 2 O 3 17.11 17.74 17.25 18.10 18.10 17.11 17.59 18.11 Na 2 O 8.90 9.50 9.70 9.56 9.56 9.00 9.10 9.56 Li 2 O 6.90 7.35 7.70 7.35 6.91 7.35 11.50 6.35 K 2 O 0.14 0.51 0.65 0.14 0.58 0.14 0.08 0.14 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.82 0.45 0.45 0.82 0.82 0.48 1.14 0.82 P 2 O 5 1.37 1.37 1.37 1.37 1.37 1.37 1.07 1.37 SnO2 0.023 0.080 0.025 0.023 0.025 0.075 0.020 0.020 TiO 2 0.00 0.00 0.00 0.00 0.00 0.0006 0.11 0.00 total 100.00 100.00 100.20 100.00 100.00 100.00 100.00 100.00 Al/ R 2 O 1.07 1.02 0.96 1.06 1.06 1.04 0.85 1.13 nature Tg ( °C ) 575 - 585 600 601 585 566 618 CTE (×10 -7 ) / (50-300 ) 70.0 - - 79.0 79.0 71.1 73.9 75.0 Density (g/cc) 2.38 2.40 2.40 2.40 2.40 2.39 2.42 2.40 YM (GPa) 71.3 73.5 73.5 75.0 75.6 75.0 76.9 73.3 Annealing temperature ( °C ) 585 - - 610 611 595 576 628 Poisson's ratio 0.25 0.25 0.24 0.25 0.23 0.22 0.22 0.24 Shear modulus (GPa) 28.5 29.5 29.5 30.0 30.8 30.7 31.5 29.5 Acid test loss (5% HCL , 24 hours, 95 ) (mg/cm 2 ) 37.4 49.9 - TDFP 248.4 - - 211.0 210.6 240.4 239.1 215.7 Table 4: Exemplary compositions and physical properties of glasses

在一例示性實施例中,當護罩玻璃之玻璃組合物包括約58.70莫耳%的SiO 2、約5.77莫耳%的B 2O 3、約17.11莫耳%的Al 2O 3、約9.00莫耳%的Na 2O、約7.35莫耳%的Li 2O、約0.14莫耳%的K 2O、約0.48莫耳%的MgO、約1.37莫耳%的P 2O 5、約0.075莫耳%的SnO 2以及約0.0006莫耳%的TiO 2時,玻璃的性質則包括585℃之玻璃轉移溫度、71.1×10 -7/℃的CTE、2.39 g·cm -3的密度、75 GPa的楊氏模數、595℃的退火點、0.22的泊松比、30.7 GPa的剪切模數。此處,玻璃組合物的TDFP為240.4。由於TDFP值大於220,故玻璃組合物具有良好的3D成型能力。 In an exemplary embodiment, when the glass composition of the cover glass includes about 58.70 mol % of SiO 2 , about 5.77 mol % of B 2 O 3 , about 17.11 mol % of Al 2 O 3 , about 9.00 mol % Mole % of Na 2 O, about 7.35 mol % of Li 2 O, about 0.14 mol % of K 2 O, about 0.48 mol % of MgO, about 1.37 mol % of P 2 O 5 , about 0.075 mol When mol% SnO 2 and about 0.0006 mol% TiO 2 , the properties of the glass include a glass transition temperature of 585°C, a CTE of 71.1×10 -7 /°C, a density of 2.39 g·cm -3 , a density of 75 GPa Young's modulus, annealing point of 595°C, Poisson's ratio of 0.22, and shear modulus of 30.7 GPa. Here, TDFP of the glass composition was 240.4. Since the TDFP value is greater than 220, the glass composition has good 3D formability.

在另一例示性實施例中,當護罩玻璃之玻璃組合物包括約57.43莫耳%的SiO 2、約5.20莫耳%的B 2O 3、約18.10莫耳%的Al 2O 3、約9.56莫耳%的Na 2O、約7.35莫耳%的Li 2O、約0.14莫耳%的K 2O、約0.82莫耳%的MgO、約1.37莫耳%的P 2O 5以及約0.023莫耳%的SnO 2時,玻璃的性質則包括600℃之玻璃轉移溫度、79×10 -7/℃的CTE、2.40 g·cm -3的密度、75 GPa的楊氏模數、610℃的退火點、0.25的泊松比以及30.0 GPa的剪切模數。此處,玻璃組合物的TDFP為211.0。由於TDFP值小於220,故玻璃組合物不適合形成3D弧形形狀。 In another exemplary embodiment, when the glass composition of the cover glass includes about 57.43 mole % of SiO 2 , about 5.20 mole % of B 2 O 3 , about 18.10 mole % of Al 2 O 3 , about 9.56 mol% of Na 2 O, about 7.35 mol% of Li 2 O, about 0.14 mol% of K 2 O, about 0.82 mol% of MgO, about 1.37 mol% of P 2 O 5 and about 0.023 When the mole% of SnO 2 is present, the properties of the glass include a glass transition temperature of 600°C, a CTE of 79×10 -7 /°C, a density of 2.40 g·cm -3 , a Young's modulus of 75 GPa, and a CTE of 610°C. Annealing point, Poisson's ratio of 0.25, and shear modulus of 30.0 GPa. Here, the TDFP of the glass composition was 211.0. Since the TDFP value is less than 220, the glass composition is not suitable for forming a 3D arc shape.

3D 成型能力測試對由兩種不同玻璃組合物形成的第一及第二玻璃護罩進行一項實驗,以確定其在熔爐中的3D成型能力。 3D Formability Test An experiment was conducted on the first and second cover glass formed from two different glass compositions to determine their 3D formability in a furnace.

第一護罩玻璃102由玻璃組合物30形成,該玻璃組合物30包括約58.70莫耳%的SiO 2、約5.77莫耳%的B 2O 3、約17.11莫耳%的Al 2O 3、約9.00莫耳%的Na 2O、約7.35莫耳%的Li 2O、約0.14莫耳%的K 2O、約0.48莫耳%的MgO、約1.37莫耳%的P 2O 5、約0.075莫耳%的SnO 2以及約0.0006莫耳%的TiO 2The first cover glass 102 is formed from a glass composition 30 comprising about 58.70 mol % SiO 2 , about 5.77 mol % B 2 O 3 , about 17.11 mol % Al 2 O 3 , About 9.00 mol% of Na2O, about 7.35 mol% of Li2O , about 0.14 mol % of K2O, about 0.48 mol% of MgO, about 1.37 mol % of P2O5 , about 0.075 mol % SnO 2 and about 0.0006 mol % TiO 2 .

第二護罩玻璃104由玻璃組合物16形成,該玻璃組合物16包括約65.42莫耳%的SiO 2、約1.78莫耳%的B 2O 3、約12.00莫耳%的Al 2O 3、約8.39莫耳%的Na 2O、約6.82莫耳%的Li 2O、約3.51莫耳%的ZnO、約0.073莫耳%的SnO 2、約0.009莫耳%的Fe 2O 3及約2.00莫耳%的P 2O 5The second cover glass 104 is formed from a glass composition 16 comprising about 65.42 mol % SiO 2 , about 1.78 mol % B 2 O 3 , about 12.00 mol % Al 2 O 3 , About 8.39 mole % of Na 2 O, about 6.82 mole % of Li 2 O, about 3.51 mole % of ZnO, about 0.073 mole % of SnO 2 , about 0.009 mole % of Fe 2 O 3 and about 2.00 mole % of P 2 O 5 .

圖1A-圖1C示出了根據本發明之實施例的在不同熔爐條件下的第一護罩玻璃及第二護罩玻璃之影像。將第一護罩玻璃102及第二護罩玻璃104保持在熔爐中以進行3D成型能力測試。如圖1A所示,在打開熔爐之前,第一護罩玻璃102及第二護罩玻璃104在室溫下係平面狀的。一旦打開熔爐,將第一護罩玻璃102及第二護罩玻璃104在650℃下保持在熔爐中10分鐘。參考圖1B,與第二護罩玻璃104相比,第一護罩玻璃102彎曲了一定程度。將第一護罩玻璃102及第二護罩玻璃104進一步在670℃下保持在熔爐中10分鐘。參考圖1C,與第二護罩玻璃104相比,第一護罩玻璃102進一步彎曲。接著關閉熔爐,及將第一護罩玻璃102及第二護罩玻璃逐漸冷卻至室溫。1A-1C illustrate images of a first cover glass and a second cover glass under different furnace conditions according to an embodiment of the present invention. The first cover glass 102 and the second cover glass 104 were kept in a furnace for 3D formability testing. As shown in FIG. 1A , before the furnace is turned on, the first cover glass 102 and the second cover glass 104 are planar at room temperature. Once the furnace was turned on, the first cover glass 102 and the second cover glass 104 were kept in the furnace at 650° C. for 10 minutes. Referring to FIG. 1B , compared to the second cover glass 104 , the first cover glass 102 is curved to some extent. The first cover glass 102 and the second cover glass 104 were further kept in the furnace at 670° C. for 10 minutes. Referring to FIG. 1C , the first cover glass 102 is further curved than the second cover glass 104 . Then close the furnace, and gradually cool the first cover glass 102 and the second cover glass to room temperature.

圖1D示出了根據本發明之實施例的在3D成型能力測試之後的第一護罩玻璃及第二護罩玻璃的透視圖之影像。圖1E示出了根據本發明之實施例的在3D成型能力測試之後的第一護罩玻璃及第二護罩玻璃的側視圖之影像。如圖1D及圖1E所示,第一護罩玻璃102為弧形形狀,而第二護罩玻璃104為平面形狀。如表2及表4所提及,第一護罩玻璃102的TDFP值大於220,而第二護罩玻璃104的TDFP值小於220。測試證明,與TDFP值小於220之玻璃相比,TDFP值大於220之玻璃具有較高的3D成型能力。1D shows an image of a perspective view of a first cover glass and a second cover glass after a 3D formability test according to an embodiment of the present invention. 1E shows an image of a side view of a first cover glass and a second cover glass after a 3D formability test according to an embodiment of the invention. As shown in FIG. 1D and FIG. 1E , the first cover glass 102 is arc-shaped, and the second cover glass 104 is planar. As mentioned in Table 2 and Table 4, the TDFP value of the first cover glass 102 is greater than 220, while the TDFP value of the second cover glass 104 is less than 220. Tests have shown that glass with a TDFP value greater than 220 has higher 3D formability than glass with a TDFP value less than 220.

在一實施例中,對於鹼金屬矽酸鹽玻璃,如鋰鋁矽酸鹽玻璃材料的兩步離子交換製程,待置換之鹼金屬離子為鋰離子(Li+)。較佳使用的鹽浴為鈉離子(Na+)浴及鉀離子(K+)浴。更佳地,所使用的鹽浴包含NaNO 3及KNO 3的鹽。在離子交換的第一步驟中,在玻璃材料表面內,鋰離子被至少鈉離子置換。此外,在離子交換的第二步驟中,在玻璃材料表面內,鋰離子或鈉離子被至少鉀離子置換。 In one embodiment, for the two-step ion exchange process of alkali metal silicate glass, such as lithium aluminosilicate glass material, the alkali metal ions to be replaced are lithium ions (Li+). The salt bath preferably used is a sodium ion (Na+) bath and a potassium ion (K+) bath. More preferably, the salt bath used comprises salts of NaNO 3 and KNO 3 . In the first step of ion exchange, lithium ions are replaced by at least sodium ions within the surface of the glass material. Furthermore, in the second step of ion exchange, lithium ions or sodium ions are replaced by at least potassium ions within the surface of the glass material.

在一實施例中,在兩步離子交換製程期間,首先交換一個離子對,接著進行另一離子交換,其在最外表面層中再引入初始離子或引入另一離子。在一實施例中,離子交換製程係基於玻璃中存在的離子由不同大小的離子交換的原理。當來自外部離子交換浴的較大離子交換玻璃中的較小離子時,較大離子完全地填滿表面,使其利用內部平衡拉伸應力進行壓縮。據報導,所產生的壓縮應力與已發生離子交換之玻璃體積成正比。一旦離子交換,則玻璃展現高抗裂性。In one embodiment, during the two-step ion exchange process, one ion pair is exchanged first, followed by another ion exchange that reintroduces the original ion or introduces another ion in the outermost surface layer. In one embodiment, the ion exchange process is based on the principle that ions present in the glass are exchanged by ions of different sizes. When the larger ions from the external ion exchange bath exchange the smaller ions in the glass, the larger ions completely fill the surface, causing it to compress using the internal equilibrium tensile stress. The resulting compressive stress is reported to be proportional to the volume of the ion-exchanged glass. Once ion exchanged, the glass exhibits high resistance to cracking.

在一個例示性實施例中,玻璃樣品組合物進行兩步離子交換製程,其中首先將玻璃浸入含有超過45重量% KNO 3及小於55重量% NaNO 3的熔融鹽浴(其保持在介於300℃與500℃之間的溫度下)中持續固定的小時數,諸如大於1.5小時,接著浸入含有超過85重量% KNO 3及小於15重量% NaNO 3的熔融鹽浴(其保持在介於300℃與500℃之間的溫度下)中持續固定的小時數,諸如大於0.3小時。此種雙重離子交換方法的製程增加了壓縮應力(CS),其中表面的每個壓縮層都具有至少150 MPa的壓縮應力。此外,在雙重離子交換製程中,第一層深度自玻璃表面延伸至最小130 μm深度直至最大10 μm深度的第二層深度。 In an exemplary embodiment, glass sample compositions were subjected to a two-step ion exchange process in which the glass was first immersed in a molten salt bath containing more than 45% by weight KNO3 and less than 55 % by weight NaNO3 (which was maintained at a temperature between and 500°C) for a fixed number of hours, such as greater than 1.5 hours, followed by immersion in a molten salt bath containing more than 85% by weight KNO3 and less than 15% by weight NaNO3 (which is maintained at a temperature between 300 °C and at a temperature between 500° C.) for a fixed number of hours, such as greater than 0.3 hours. The process of this double ion exchange method increases the compressive stress (CS), wherein each compressive layer of the surface has a compressive stress of at least 150 MPa. Furthermore, in the double ion exchange process, the depth of the first layer extends from the glass surface to a minimum depth of 130 μm to a depth of the second layer at a maximum depth of 10 μm.

表5說明了定義特定玻璃組合物,例如玻璃之玻璃組合物30在不同反應條件下雙重離子交換製程的每一步驟的最大層深度(DOL)及壓縮應力(CS)的例示性樣品。 樣品編號 1 步驟 2 步驟 1 步驟 2 步驟 1 步驟與第 2 步驟的擬合數據 CT (MPa) KNO 3( 重量 %) 溫度 ( ) 時間 ( 分鐘 ) KNO 3( 重量 %) 溫度 ( ) 時間 ( 分鐘 ) CS (MPa) DOL (μm) CS (MPa) DOL (μm) CS (MPa) DOC (μm) CS k(MPa) DOL (μm) 1 60% 415 110 97% 380 40 179.728 154.271 1182.665 5.156 1182.853 153.252 166.386 6.750 85.977 2 60% 415 110 97% 380 40 195.937 151.785 1163.035 5.292 1163.779 150.669 180.689 6.950 86.769 3 60% 415 110 97% 380 60 192.822 154.568 1170.113 5.876 1170.236 154.897 179.005 7.547 87.197 4 60% 415 110 97% 380 60 188.093 147.879 1164.822 5.782 1164.825 146.279 176.147 7.750 86.079 5 60% 415 110 97% 390 60 235.679 130.667 1175.610 5.587 1176.488 130.848 219.605 7.150 89.072 6 60% 415 110 97% 390 60 186.628 148.281 1164.203 5.563 1165.695 146.102 171.411 7.500 85.079 7 60% 415 110 97% 380 90 169.358 161.101 1164.668 5.945 1165.029 154.322 159.426 6.100 80.020 8 60% 415 110 97% 380 90 176.456 143.478 1156.285 5.979 1156.306 140.211 182.356 6.500 89.442 9 60% 415 110 97% 380 90 191.756 140.102 1170.932 5.921 1171.023 137.757 184.914 6.950 89.168 10 60% 415 110 97% 390 90 186.463 146.722 1179.938 5.990 1179.980 145.862 176.524 5.900 82.996 11 60% 415 110 97% 390 90 180.436 152.597 1162.249 6.052 1163.474 149.316 161.079 6.275 84.091 12 60% 415 110 90% 390 60 202.292 149.740 965.955 4.901 966.225 150.494 192.793 3.875 89.672 13 60% 415 110 100% 390 20 191.958 138.020 1528.341 3.126 1528.365 136.837 191.144 4.425 81.755 14 60% 415 110 100% 390 40 185.925 145.557 1500.696 4.541 1528.737 145.698 183.104 3.425 83.132 15 60% 415 150 97% 380 60 167.823 158.851 1121.418 5.227 1121.842 152.590 153.097 7.875 83.050 16 60% 415 150 97% 380 60 186.958 156.959 1127.874 5.338 1128.273 154.243 166.458 7.250 87.400 17 60% 415 150 97% 380 60 194.227 148.199 1134.173 5.795 1135.226 146.337 180.430 5.200 91.386 18 60% 415 150 97% 380 60 171.324 163.485 1135.180 5.759 1136.856 158.881 165.333 5.325 82.221 19 60% 415 150 97% 380 60 217.056 139.274 1102.399 5.990 1103.405 138.878 199.769 5.275 87.457 20 60% 415 150 97% 380 60 175.242 162.763 1135.176 5.799 1144.815 156.950 160.583 5.275 83.165 21 50% 415 150 97% 380 60 187.144 149.175 1096.187 5.153 1097.519 148.069 175.771 7.375 89.176 22 50% 415 150 97% 380 60 178.084 155.878 1098.605 5.160 1100.845 153.821 168.646 7.250 91.213 23 55% 415 150 97% 380 60 183.496 148.025 1053.368 5.109 1053.386 146.585 172.590 7.925 88.763 24 55% 415 150 97% 380 60 176.726 155.367 1088.811 5.133 1091.140 154.234 166.570 7.200 90.100 25 65% 415 150 97% 380 60 244.113 132.252 1107.595 5.126 1108.068 133.247 231.458 7.750 94.203 26 65% 415 150 97% 380 60 208.194 142.937 1118.563 5.190 1118.565 143.187 194.397 7.500 91.554 27 70% 415 150 97% 380 60 170.377 149.838 1077.927 6.254 1078.299 147.425 159.172 7.600 92.460 28 70% 415 150 97% 380 60 166.458 149.984 1052.971 6.498 1053.761 148.586 160.679 7.900 92.102 29 70% 415 150 97% 380 60 230.975 132.835 1113.418 5.935 1113.428 132.869 215.512 5.575 87.561 30 70% 415 150 97% 380 60 218.530 135.843 1110.074 6.013 1110.882 136.321 204.205 5.325 86.712 31 75% 415 150 97% 380 60 224.002 130.396 1140.791 7.182 1140.842 131.276 206.163 8.325 86.232 32 75% 415 150 97% 380 60 186.301 146.308 1119.884 7.089 1121.143 146.815 168.578 8.950 86.500 33 80% 415 150 97% 380 60 161.257 155.608 1144.334 8.019 1150.638 153.901 156.257 6.075 86.699 34 60% 430 130 97% 380 60 173.766 157.539 639.414 4.761 641.577 156.412 172.394 4.550 90.716 35 75% 415 150 97% 380 60 176.693 147.860 1143.228 7.316 1143.350 148.459 163.865 9.300 90.312 36 75% 415 150 97% 380 60 169.434 148.493 1118.239 7.075 1119.504 148.070 157.182 8.930 87.892 37 75% 415 150 97% 380 60 169.771 139.629 1123.578 7.980 1123.652 139.819 153.230 9.080 84.374 38 75% 415 150 97% 380 60 154.663 146.360 1131.141 7.943 1131.683 143.664 150.948 8.980 89.309 39 75% 415 150 97% 380 60 200.652 139.662 1153.731 7.915 1154.606 140.394 184.862 8.350 89.284 40 75% 415 150 97% 380 60 159.448 146.718 1137.348 7.951 1124.025 144.096 154.053 8.780 89.890 41 75% 415 150 97% 380 60 188.845 141.773 1130.485 7.305 1130.488 142.603 170.681 8.850 86.245 42 75% 415 150 97% 380 60 236.213 131.103 1131.929 7.210 1132.422 132.579 209.946 8.230 88.576 43 75% 415 150 97% 380 20 202.955 128.832 1097.609 8.509 1097.609 130.109 189.811 10.050 89.444 44 75% 415 150 97% 380 20 183.800 135.493 1077.412 8.094 1078.135 140.144 182.902 8.725 81.878 表5:例示性樣品以及雙重離子交換製程的每一步驟的DOC及CS Table 5 illustrates exemplary samples defining the maximum depth of layer (DOL) and compressive stress (CS) for each step of the dual ion exchange process under different reaction conditions for a particular glass composition, eg, glass composition 30 of glass. Sample serial number Step 1 _ Step 2 _ Step 1 _ Step 2 _ Fitted data from step 1 and step 2 CT (MPa) KNO 3 ( wt %) temperature ( °C ) time ( minutes ) KNO 3 ( wt %) temperature ( °C ) time ( minutes ) CS (MPa) DOL (μm) CS (MPa) DOL (μm) CS (MPa) DOC (μm) CS k (MPa) DOL (μm) 1 60% 415 110 97% 380 40 179.728 154.271 1182.665 5.156 1182.853 153.252 166.386 6.750 85.977 2 60% 415 110 97% 380 40 195.937 151.785 1163.035 5.292 1163.779 150.669 180.689 6.950 86.769 3 60% 415 110 97% 380 60 192.822 154.568 1170.113 5.876 1170.236 154.897 179.005 7.547 87.197 4 60% 415 110 97% 380 60 188.093 147.879 1164.822 5.782 1164.825 146.279 176.147 7.750 86.079 5 60% 415 110 97% 390 60 235.679 130.667 1175.610 5.587 1176.488 130.848 219.605 7.150 89.072 6 60% 415 110 97% 390 60 186.628 148.281 1164.203 5.563 1165.695 146.102 171.411 7.500 85.079 7 60% 415 110 97% 380 90 169.358 161.101 1164.668 5.945 1165.029 154.322 159.426 6.100 80.020 8 60% 415 110 97% 380 90 176.456 143.478 1156.285 5.979 1156.306 140.211 182.356 6.500 89.442 9 60% 415 110 97% 380 90 191.756 140.102 1170.932 5.921 1171.023 137.757 184.914 6.950 89.168 10 60% 415 110 97% 390 90 186.463 146.722 1179.938 5.990 1179.980 145.862 176.524 5.900 82.996 11 60% 415 110 97% 390 90 180.436 152.597 1162.249 6.052 1163.474 149.316 161.079 6.275 84.091 12 60% 415 110 90% 390 60 202.292 149.740 965.955 4.901 966.225 150.494 192.793 3.875 89.672 13 60% 415 110 100% 390 20 191.958 138.020 1528.341 3.126 1528.365 136.837 191.144 4.425 81.755 14 60% 415 110 100% 390 40 185.925 145.557 1500.696 4.541 1528.737 145.698 183.104 3.425 83.132 15 60% 415 150 97% 380 60 167.823 158.851 1121.418 5.227 1121.842 152.590 153.097 7.875 83.050 16 60% 415 150 97% 380 60 186.958 156.959 1127.874 5.338 1128.273 154.243 166.458 7.250 87.400 17 60% 415 150 97% 380 60 194.227 148.199 1134.173 5.795 1135.226 146.337 180.430 5.200 91.386 18 60% 415 150 97% 380 60 171.324 163.485 1135.180 5.759 1136.856 158.881 165.333 5.325 82.221 19 60% 415 150 97% 380 60 217.056 139.274 1102.399 5.990 1103.405 138.878 199.769 5.275 87.457 20 60% 415 150 97% 380 60 175.242 162.763 1135.176 5.799 1144.815 156.950 160.583 5.275 83.165 twenty one 50% 415 150 97% 380 60 187.144 149.175 1096.187 5.153 1097.519 148.069 175.771 7.375 89.176 twenty two 50% 415 150 97% 380 60 178.084 155.878 1098.605 5.160 1100.845 153.821 168.646 7.250 91.213 twenty three 55% 415 150 97% 380 60 183.496 148.025 1053.368 5.109 1053.386 146.585 172.590 7.925 88.763 twenty four 55% 415 150 97% 380 60 176.726 155.367 1088.811 5.133 1091.140 154.234 166.570 7.200 90.100 25 65% 415 150 97% 380 60 244.113 132.252 1107.595 5.126 1108.068 133.247 231.458 7.750 94.203 26 65% 415 150 97% 380 60 208.194 142.937 1118.563 5.190 1118.565 143.187 194.397 7.500 91.554 27 70% 415 150 97% 380 60 170.377 149.838 1077.927 6.254 1078.299 147.425 159.172 7.600 92.460 28 70% 415 150 97% 380 60 166.458 149.984 1052.971 6.498 1053.761 148.586 160.679 7.900 92.102 29 70% 415 150 97% 380 60 230.975 132.835 1113.418 5.935 1113.428 132.869 215.512 5.575 87.561 30 70% 415 150 97% 380 60 218.530 135.843 1110.074 6.013 1110.882 136.321 204.205 5.325 86.712 31 75% 415 150 97% 380 60 224.002 130.396 1140.791 7.182 1140.842 131.276 206.163 8.325 86.232 32 75% 415 150 97% 380 60 186.301 146.308 1119.884 7.089 1121.143 146.815 168.578 8.950 86.500 33 80% 415 150 97% 380 60 161.257 155.608 1144.334 8.019 1150.638 153.901 156.257 6.075 86.699 34 60% 430 130 97% 380 60 173.766 157.539 639.414 4.761 641.577 156.412 172.394 4.550 90.716 35 75% 415 150 97% 380 60 176.693 147.860 1143.228 7.316 1143.350 148.459 163.865 9.300 90.312 36 75% 415 150 97% 380 60 169.434 148.493 1118.239 7.075 1119.504 148.070 157.182 8.930 87.892 37 75% 415 150 97% 380 60 169.771 139.629 1123.578 7.980 1123.652 139.819 153.230 9.080 84.374 38 75% 415 150 97% 380 60 154.663 146.360 1131.141 7.943 1131.683 143.664 150.948 8.980 89.309 39 75% 415 150 97% 380 60 200.652 139.662 1153.731 7.915 1154.606 140.394 184.862 8.350 89.284 40 75% 415 150 97% 380 60 159.448 146.718 1137.348 7.951 1124.025 144.096 154.053 8.780 89.890 41 75% 415 150 97% 380 60 188.845 141.773 1130.485 7.305 1130.488 142.603 170.681 8.850 86.245 42 75% 415 150 97% 380 60 236.213 131.103 1131.929 7.210 1132.422 132.579 209.946 8.230 88.576 43 75% 415 150 97% 380 20 202.955 128.832 1097.609 8.509 1097.609 130.109 189.811 10.050 89.444 44 75% 415 150 97% 380 20 183.800 135.493 1077.412 8.094 1078.135 140.144 182.902 8.725 81.878 Table 5: Exemplary samples and DOC and CS for each step of the double ion exchange process

在一例示性實施例中,護罩玻璃之玻璃組合物包括約58.70莫耳%的SiO 2、約5.77莫耳%的B 2O 3、約17.11莫耳%的Al 2O 3、約9.00莫耳%的Na 2O、約7.35莫耳%的Li 2O、約0.14莫耳%的K 2O、約0.48莫耳%的MgO、約1.37莫耳%的P 2O 5、約0.075莫耳%的SnO 2及約0.0006莫耳%的TiO 2。護罩玻璃經歷雙重離子交換製程。對於第一離子交換製程,鹼金屬浴包含按重量計25% NaNO 3及75% KNO 3。將此玻璃基板在415℃的溫度下浸漬於鹼金屬浴中持續2.5小時的時間段。玻璃承受的壓縮應力為186.301 MPa,對應的深度為146.308 μm。在第一浴中浸漬後,進行護罩玻璃的第二離子交換處理。第二離子交換浴包含按重量計3% NaNO 3及97% KNO 3。將玻璃基板在380℃的溫度下浸漬於第二離子交換浴中持續1小時。該材料承受的壓縮應力為1119.884 MPa,對應的深度為7.089 μm。第一離子交換處理的擬合壓縮應力及壓縮深度(DOC/DOL_零)為1121.143 MPa及146.815 μm。第二離子交換處理的擬合壓縮應力(CS k)及壓縮深度(DOC)為168.578 MPa及8.950 μm。由於中心張力的大小決定了玻璃的碎裂,故此種雙重離子交換玻璃的中心張力為86.500 MPa。 In an exemplary embodiment, the glass composition of the cover glass includes about 58.70 mole % SiO 2 , about 5.77 mole % B 2 O 3 , about 17.11 mole % Al 2 O 3 , about 9.00 mole % mol% of Na 2 O, about 7.35 mol% of Li 2 O, about 0.14 mol% of K 2 O, about 0.48 mol% of MgO, about 1.37 mol% of P 2 O 5 , about 0.075 mol% % of SnO 2 and about 0.0006 mole % of TiO 2 . The cover glass undergoes a double ion exchange process. For the first ion exchange process, the alkali metal bath contained 25% NaNO 3 and 75% KNO 3 by weight. This glass substrate was immersed in an alkali metal bath at a temperature of 415° C. for a period of 2.5 hours. The compressive stress of the glass is 186.301 MPa, and the corresponding depth is 146.308 μm. After immersion in the first bath, a second ion exchange treatment of the cover glass is performed. The second ion exchange bath contained 3% NaNO 3 and 97% KNO 3 by weight. The glass substrate was immersed in the second ion exchange bath at a temperature of 380° C. for 1 hour. The material bears a compressive stress of 1119.884 MPa, corresponding to a depth of 7.089 μm. The fitting compressive stress and compressive depth (DOC/DOL_zero) of the first ion exchange treatment are 1121.143 MPa and 146.815 μm. The fitted compressive stress (CS k ) and depth of compression (DOC) of the second ion exchange treatment are 168.578 MPa and 8.950 μm. Since the central tension determines the fragmentation of the glass, the central tension of this double ion exchange glass is 86.500 MPa.

護罩玻璃組合物用於觸控面板顯示器及顯示螢幕的後蓋板,如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似物。然而,護罩玻璃不限於前述應用,並且亦可用作例如觸控面板顯示器的基板、太陽能電池之護罩玻璃、磁碟基板及窗玻璃。The cover glass composition is used for the back cover of touch panel display and display screen, such as liquid crystal display (LCD), field emission display (FED), plasma display (PD), electroluminescence display (ELD), organic light emitting Diode (OLED) displays, micro LEDs or the like. However, the cover glass is not limited to the aforementioned applications, and can also be used, for example, as a substrate of a touch panel display, a cover glass of a solar cell, a magnetic disk substrate, and a window glass.

在一特定實施例中,護罩玻璃用作與各種運輸方式(諸如空中、海上或陸地)相關的保護窗,以及在非運輸應用中用於防風。此外,其亦用作防火玻璃。此外,護罩玻璃也用作硬碟的基板。此外,其亦可用於半導體中介層及半導體載體。藉由添加成核劑,其也可用作呈陶瓷化形式的爐灶面。最後,護罩玻璃在各種應用中用作塗層基板。In a particular embodiment, the cover glass is used as a protective window in connection with various modes of transportation, such as air, sea or land, as well as for wind protection in non-transportation applications. In addition, it is also used as fireproof glass. In addition, cover glass is also used as a substrate for hard disks. In addition, it can also be used in semiconductor interposers and semiconductor carriers. By adding nucleating agents, it can also be used as a cooktop in ceramized form. Finally, cover glass is used as a coated substrate in a variety of applications.

在一特定實施例中,本發明進一步聚焦於一種背面護罩玻璃,其用於保護諸如行動電話、智慧型手機、平板電腦、穿戴式裝置、數位相機等電子裝置的背面。背面上使用之護罩玻璃除了為裝置提供強度外,亦為更好的電磁傳輸所需的。出於設計原因,著色不透明的外觀可為可能的。實現此點的一種方法係在玻璃熔體中包括一或多種過渡元素。一或多種過渡元素可為Nb 2O 5、ZrO 2、Fe 2O 3、V 2O 5、Y 2O 3、MnO 2、NiO、CuO、Cr 2O 3、Co 3O 4、CoO、Co 2O 3等中之至少一種。 In a specific embodiment, the present invention further focuses on a back cover glass for protecting the back of electronic devices such as mobile phones, smart phones, tablet computers, wearable devices, digital cameras, and the like. The cover glass used on the back is required for better electromagnetic transmission in addition to providing strength to the device. A tinted opaque appearance may be possible for design reasons. One way to achieve this is to include one or more transition elements in the glass melt. The one or more transition elements may be Nb 2 O 5 , ZrO 2 , Fe 2 O 3 , V 2 O 5 , Y 2 O 3 , MnO 2 , NiO, CuO, Cr 2 O 3 , Co 3 O 4 , CoO, Co At least one of 2 O 3 and the like.

本發明提供了具有優異3D成型能力之護罩玻璃的組合物。藉由確定玻璃組合物的TDFP,本發明有助於以更有效的方式控制組合物。特定言之,本發明係關於一種能夠具有更好的耐用性、高抗裂性、高損傷後保持強度及高衝擊強度之矽酸鹽玻璃組合物。The present invention provides a cover glass composition having excellent 3D formability. By determining the TDFP of a glass composition, the present invention helps to control the composition in a more efficient manner. In particular, the present invention relates to a silicate glass composition capable of better durability, high crack resistance, high post-damage retention strength, and high impact strength.

雖然已出於說明的目的闡述了典型實施例,但不應將前述描述視為對本發明或所附申請專利範圍之範疇的限制。因此,在不脫離本發明之精神及範疇的情況下,熟習此項技術者可想到各種修改、調整及替代。While typical embodiments have been described for purposes of illustration, the foregoing description should not be considered as limiting the scope of the invention or of the appended claims. Therefore, those skilled in the art can think of various modifications, adjustments and substitutions without departing from the spirit and scope of the present invention.

102:第一護罩玻璃 104:第二護罩玻璃 102: First cover glass 104: Second cover glass

咸信係新穎的本發明之特徵在所附申請專利範圍中具體闡述。本發明之實施例將在下文中結合所提供的附圖進行描述,以說明而非限制申請專利範圍之範疇,其中相同的標號表示相同的元件,並且在該等附圖中: 圖1A-圖1C示出了根據本發明之實施例的在不同熔爐條件下的第一護罩玻璃及第二護罩玻璃之影像; 圖1D示出了根據本發明之實施例的在3D成型能力測試之後的第一護罩玻璃及第二護罩玻璃的透視圖之影像;以及 圖1E示出了根據本發明之實施例的在3D成型能力測試之後的第一護罩玻璃及第二護罩玻璃的側視圖之影像。 The features of the invention which are believed to be novel are set forth with particularity in the appended claims. Embodiments of the present invention will be described below in conjunction with the accompanying drawings to illustrate but not limit the scope of the claims, wherein the same reference numerals represent the same elements, and in these drawings: 1A-1C show images of a first cover glass and a second cover glass under different furnace conditions according to an embodiment of the present invention; 1D shows an image of a perspective view of a first cover glass and a second cover glass after a 3D formability test according to an embodiment of the present invention; and 1E shows an image of a side view of a first cover glass and a second cover glass after a 3D formability test according to an embodiment of the invention.

Claims (8)

一種離子可交換矽酸鹽玻璃,其包含: 40莫耳%至70莫耳%的SiO 2, 1莫耳%至18莫耳%的B 2O 3, 10莫耳%至32莫耳%的Al 2O 3, 其中當該玻璃之三維成型參數(TDFP)大於220時,該玻璃有利於具有三維(3D)形式,並且其中該TDFP由以下表達式定義: TDFP=1/(玻璃轉移溫度(Tg)×熱膨脹係數(CTE))。 An ion exchangeable silicate glass comprising: 40 to 70 molar % SiO 2 , 1 to 18 molar % B 2 O 3 , 10 to 32 molar % Al 2 O 3 , wherein the glass favorably has a three-dimensional (3D) form when the glass has a three-dimensional forming parameter (TDFP) greater than 220, and wherein the TDFP is defined by the following expression: TDFP=1/(glass transition temperature ( Tg) x coefficient of thermal expansion (CTE)). 如請求項1之玻璃,其進一步包含: 3莫耳%至18莫耳%的Na 2O, 3莫耳%至18莫耳%的Li 2O, 0莫耳%至2莫耳%的K 2O, 0莫耳%至5莫耳%的MgO, 0莫耳%至5莫耳%的ZnO, 0莫耳%至7莫耳%的P 2O 5, 0莫耳%至2.5莫耳%的SnO 2,及 0莫耳%至5莫耳%的TiO 2The glass of claim 1, further comprising: 3 mol% to 18 mol% of Na 2 O, 3 mol% to 18 mol% of Li 2 O, 0 mol% to 2 mol% of K 2 O, 0 mol% to 5 mol% MgO, 0 mol% to 5 mol% ZnO, 0 mol% to 7 mol% P2O5 , 0 mol% to 2.5 mol% % of SnO 2 , and 0 mol% to 5 mol% of TiO 2 . 如請求項2之玻璃,其中該玻璃組合物包含6莫耳%至38莫耳%的R 2O,其中R 2O代表存在於該玻璃組合物中之鹼金屬氧化物之總和。 The glass of claim 2, wherein the glass composition comprises 6 mol% to 38 mol% of R 2 O, wherein R 2 O represents the sum of alkali metal oxides present in the glass composition. 如請求項3之玻璃,其中Al 2O 3與R 2O之比率(Al 2O 3(莫耳%)/R 2O(莫耳%))在0.5至1.7的範圍內。 The glass according to claim 3, wherein the ratio of Al 2 O 3 to R 2 O (Al 2 O 3 (mol%)/R 2 O (mol%)) is in the range of 0.5 to 1.7. 如請求項1之玻璃,其中該玻璃轉移溫度Tg低於700℃。The glass according to claim 1, wherein the glass transition temperature Tg is lower than 700°C. 如請求項1之玻璃,其中該熱膨脹係數(CTE)小於100×10 -7/℃。 The glass according to claim 1, wherein the coefficient of thermal expansion (CTE) is less than 100×10 -7 /°C. 如請求項1之玻璃,其中該玻璃經歷雙重離子交換製程。The glass according to claim 1, wherein the glass undergoes a double ion exchange process. 如請求項1之玻璃,其中該玻璃為用於顯示器之鋰鋁硼矽酸鹽護罩玻璃。The glass according to claim 1, wherein the glass is a lithium aluminum borosilicate cover glass used for displays.
TW111101963A 2021-01-18 2022-01-18 Ion exchangeable silicate glass TW202235392A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202121002251 2021-01-18
IN202121002251 2021-01-18

Publications (1)

Publication Number Publication Date
TW202235392A true TW202235392A (en) 2022-09-16

Family

ID=82527878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101963A TW202235392A (en) 2021-01-18 2022-01-18 Ion exchangeable silicate glass

Country Status (2)

Country Link
CN (1) CN114804621A (en)
TW (1) TW202235392A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116903265B (en) * 2023-09-12 2023-11-28 山东蓝玻玻璃科技有限公司 Preparation method of high-boron silicon fireproof glass

Also Published As

Publication number Publication date
CN114804621A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
TWI613171B (en) Reinforced glass, reinforced glass plate and glass for reinforcing
CN106470951B (en) Glass for chemical strengthening and chemically strengthened glass
JP5850401B2 (en) Tempered glass plate
JP2021120344A (en) Chemically temperable glass sheet
JP6136008B2 (en) Tempered glass and tempered glass plate
JP2017537051A (en) Chemically temperable glass plate
TW201542489A (en) Glass composition, glass plate for chemical strengthening, tempered glass plate, and tempered glass substrate for display
TWI618683B (en) Tempered glass and glass for tempering
JP2010116276A (en) Tempered glass substrate and producing method of the same
CN113603358A (en) Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
TW202219009A (en) Lithium aluminosilicate glass
TW202235392A (en) Ion exchangeable silicate glass
CN115244018A (en) High-performance strengthened glass
JP2001226138A (en) Glass substrate for flat panel display device
JP2013028506A (en) Cover glass for display
TW202210439A (en) Chemical ion exchange glass
JP2018505117A (en) Chemically temperable glass plate
KR20130127957A (en) Alkali glass and method for manufacturing the same
KR20130127956A (en) Alkali glass and method for manufacturing the same
KR20130143525A (en) Alkali glass and method for manufacturing the same
CN113443831A (en) Cover plate glass
JP2017057134A (en) Method for producing glass for tempering and tempered glass
TW202348573A (en) Strengthened lithium-free aluminoborosilicate glass
TW202142515A (en) Cover glass strengthening using double ion exchange