TW202348573A - Strengthened lithium-free aluminoborosilicate glass - Google Patents

Strengthened lithium-free aluminoborosilicate glass Download PDF

Info

Publication number
TW202348573A
TW202348573A TW112113566A TW112113566A TW202348573A TW 202348573 A TW202348573 A TW 202348573A TW 112113566 A TW112113566 A TW 112113566A TW 112113566 A TW112113566 A TW 112113566A TW 202348573 A TW202348573 A TW 202348573A
Authority
TW
Taiwan
Prior art keywords
glass
range
ions
ion exchange
lithium
Prior art date
Application number
TW112113566A
Other languages
Chinese (zh)
Inventor
吉藤德拉 西蓋爾
比斯瓦納斯 森
Original Assignee
日商安瀚視特控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安瀚視特控股股份有限公司 filed Critical 日商安瀚視特控股股份有限公司
Publication of TW202348573A publication Critical patent/TW202348573A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Abstract

The present invention describes a strengthened lithium-free aluminoborosilicate glass. The lithium-free aluminoborosilicate glass undergoes a double ion-exchange process to achieve a depth of compressive layer greater than 50 [mu]m. The chemically strengthened aluminoborosilicate glass survives during a greater number of device drops before failure.

Description

經強化之無鋰之鋁硼矽酸鹽玻璃Strengthened lithium-free aluminum borosilicate glass

本發明描述一種鋁硼矽酸鹽玻璃。更特定言之,本發明聚焦於不含鋰之玻璃組合物。本發明描述一種藉由雙重離子交換強化製程展現較高強度之無鋰之玻璃組合物。This invention describes an aluminoborosilicate glass. More specifically, the present invention focuses on lithium-free glass compositions. The present invention describes a lithium-free glass composition that exhibits higher strength through a dual ion exchange strengthening process.

近年來,已在廣泛使用配備有液晶顯示器、有機發光二極體顯示器或其類似者之電子裝置。由於玻璃材料具有高表面硬度,所以其廣泛用作用於此等電子裝置之顯示器之覆蓋玻璃材料。因為玻璃係典型之脆性材料,此類覆蓋玻璃通常經歷強化處理。存在對減小電子裝置之厚度及重量之持續關注,產生對更薄之覆蓋玻璃之需求。In recent years, electronic devices equipped with liquid crystal displays, organic light emitting diode displays, or the like have been widely used. Since glass materials have high surface hardness, they are widely used as cover glass materials for displays of such electronic devices. Because glass is a typically brittle material, such cover glass typically undergoes a strengthening process. There is a continued focus on reducing the thickness and weight of electronic devices, creating a need for thinner cover glass.

化學強化係用於玻璃片之重要強化製程。對於諸如顯示器之覆蓋玻璃之薄玻璃片,通常使用化學強化來強化覆蓋玻璃。在化學強化製程中,在高溫下將在表面處含有單價鹼金屬離子之玻璃浸沒於熔融鹽浴中。在製程中,鹽浴中具有更大半徑之單價鹼金屬離子能夠替換玻璃表面上具有更小半徑之單價鹼金屬離子,從而在玻璃表面處形成壓縮應力層。玻璃表面處的更大之密集積壓之單價鹼金屬離子隨後產生高壓縮應力,這繼而提供更高之強度。壓縮層進一步用以抑制可導致玻璃故障(failure)之缺陷,包括低抗張強度。Chemical strengthening is an important strengthening process used for glass sheets. For thin sheets of glass such as the cover glass of a display, chemical strengthening is often used to strengthen the cover glass. In the chemical strengthening process, glass containing monovalent alkali metal ions on the surface is immersed in a molten salt bath at high temperatures. During the manufacturing process, monovalent alkali metal ions with a larger radius in the salt bath can replace monovalent alkali metal ions with a smaller radius on the glass surface, thereby forming a compressive stress layer on the glass surface. The greater dense accumulation of monovalent alkali metal ions at the glass surface subsequently creates high compressive stresses, which in turn provide greater strength. The compression layer further serves to suppress defects that can cause glass failure, including low tensile strength.

近年來,鋰鋁矽酸鹽玻璃由於其優於無鋰之玻璃之優良機械特性而被廣泛用作用於電子裝置之顯示器之覆蓋玻璃。特定言之,優良之機械特性藉由以下來實現:鹼金屬離子之中最小之鋰離子能夠首先藉由為鋰離子之後下一更大離子之鈉離子經歷離子交換,且隨後,鈉離子在雙重離子交換(DIOX)製程中藉由下一更大離子,亦即鉀離子經歷另一離子交換。歸因於鋰離子之存在而可能之此整個DIOX製程產生增加之壓縮深度,同時可達成較大表面壓縮應力。然而,歸因於在為智慧手機、筆記本電腦、電動車及其類似者供電之電池組中廣泛使用,對鋰之需求巨大。對鋰之巨大需求已經超過其供應,導致鋰之採購成本增加。此外,已預測鋰即將不足以滿足其現有需求。因此,本發明聚焦於增強無鋰之鋁硼矽酸鹽玻璃之效能之方法或製程。因此,需要在經歷離子交換時展現所要表面壓縮應力及層深度之無鋰之鋁硼矽酸鹽玻璃。 發明目標 In recent years, lithium aluminosilicate glass has been widely used as cover glass for displays used in electronic devices due to its superior mechanical properties over lithium-free glass. Specifically, excellent mechanical properties are achieved by the fact that the smallest lithium ion among the alkali metal ions can first undergo ion exchange by becoming the next larger ion after the lithium ion, the sodium ion, and then the sodium ion double In the ion exchange (DIOX) process, the next larger ion, potassium ion, undergoes another ion exchange. The entire DIOX process, which is possible due to the presence of lithium ions, produces increased compression depth and can achieve larger surface compressive stresses. However, there is a huge demand for lithium due to its widespread use in battery packs that power smartphones, laptops, electric vehicles and the like. The huge demand for lithium has exceeded its supply, causing the procurement cost of lithium to increase. Furthermore, it has been predicted that lithium will soon be insufficient to meet its existing demand. Accordingly, the present invention focuses on methods or processes for enhancing the performance of lithium-free aluminoborosilicate glasses. Therefore, there is a need for lithium-free aluminoborosilicate glasses that exhibit the desired surface compressive stress and layer depth when undergoing ion exchange. Invention goal

本文中描述本發明之一些目標。本發明之一個目標係提供一種鋁硼矽酸鹽玻璃組合物。本發明之另一個目標係提供一種實質上不含鋰之鋁硼矽酸鹽玻璃。Some of the objects of the invention are described herein. It is an object of the present invention to provide an aluminoborosilicate glass composition. Another object of the present invention is to provide an aluminoborosilicate glass that is substantially free of lithium.

本發明之另一目標係使無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程,以實現大於50 μm之壓縮層深度。Another object of the present invention is to subject lithium-free aluminoborosilicate glass to a dual ion exchange process to achieve a compression layer depth greater than 50 μm.

本發明之另一個目標係提供具有較高強度及較佳使用壽命之無鋰之鋁硼矽酸鹽組合物。Another object of the present invention is to provide lithium-free aluminum borosilicate compositions with higher strength and better service life.

本發明之其他目標及優勢將自以下描述更顯而易見,該描述並不意圖限制本發明之範疇。Other objects and advantages of the invention will become more apparent from the following description, which is not intended to limit the scope of the invention.

在本發明之一實施例中,已揭示鋁硼矽酸鹽玻璃組合物。本發明揭示實質上不含鋰之鋁硼矽酸鹽玻璃組合物。In one embodiment of the present invention, an aluminoborosilicate glass composition is disclosed. Aluminoborosilicate glass compositions that are substantially free of lithium are disclosed.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃之玻璃組合物包含約40重量%至約70重量%範圍內之SiO 2、約5重量%至約35重量%範圍內之Al 2O 3以及約0.5重量%至約10重量%範圍內之B 2O 3。此外,其包含鹼金屬氧化物,諸如在約5重量%至約25重量%範圍內之Na 2O及在約0重量%至約5重量%範圍內之K 2O,以及鹼土金屬氧化物,諸如在約0重量%至約7重量%範圍內之MgO。另外,其包含約0重量%至約10重量%範圍內之P 2O 5、約0重量%至約6重量%範圍內之ZrO 2、約0重量%至約2重量%範圍內之SnO 2、約0重量%至約3重量%範圍內之Fe 2O 3、約0重量%至約3重量%範圍內之CeO 2以及約0重量%至約5重量%範圍內之TiO 2In one embodiment, the glass composition of the lithium-free aluminoborosilicate glass includes SiO 2 in the range of about 40 to about 70 wt %, and Al 2 O in the range of about 5 to about 35 wt %. 3 and B 2 O 3 in the range of about 0.5% to about 10% by weight. Furthermore, it includes alkali metal oxides, such as Na 2 O in the range of about 5 to about 25 wt % and K 2 O in the range of about 0 to about 5 wt %, and alkaline earth metal oxides, Such as MgO in the range of about 0 wt% to about 7 wt%. In addition, it includes P 2 O 5 in the range of about 0 to about 10 wt %, ZrO 2 in the range of about 0 to about 6 wt %, and SnO 2 in the range of about 0 to about 2 wt %. , Fe 2 O 3 in the range of about 0 to about 3 wt %, CeO 2 in the range of about 0 to about 3 wt %, and TiO 2 in the range of about 0 to about 5 wt %.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃可在其經歷雙重離子交換製程時展現較高強度。In one embodiment, lithium-free aluminoborosilicate glass can exhibit higher strength when it undergoes a dual ion exchange process.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程以實現大於50 μm之壓縮層深度。In one embodiment, lithium-free aluminoborosilicate glass undergoes a dual ion exchange process to achieve a compression layer depth greater than 50 μm.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃具有較佳之使用耐久性、較高抗裂性及較高之尖銳衝擊強度。此外,玻璃可在發生故障之前在較大數目之裝置掉落過程中倖存下來。In one embodiment, lithium-free aluminoborosilicate glass has better durability, higher crack resistance, and higher sharp impact strength. Additionally, the glass can survive a larger number of device drops before failing.

在一實施例中,無鋰之鋁硼矽酸鹽玻璃可用作用於觸摸面板顯示器之基板及用於此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似者。無鋰之鋁硼矽酸鹽玻璃用作具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、筆記本電腦、數位相機、可穿戴式裝置或其類似者之保護。In one embodiment, lithium-free aluminoborosilicate glass may be used as a substrate for touch panel displays and for back covers of such displays, such as liquid crystal displays (LCDs), field emission displays (FED), electronic Plasma display (PD), electroluminescent display (ELD), organic light emitting diode (OLED) display, micro LED or the like. Lithium-free aluminoborosilicate glass is used for the protection of electronic devices with display screens, such as mobile phones, entertainment devices, tablets, laptops, digital cameras, wearable devices, or the like.

本發明之此等及其他態樣、優勢及突出特徵將自以下詳細描述變得顯而易見。These and other aspects, advantages and salient features of the invention will become apparent from the following detailed description.

優先權聲明priority statement

本申請案主張2022年4月15日申請之印度臨時申請案序列號第202221022507號之優先權,該臨時申請案之全部內容以引用之方式併入本文中。This application claims priority over Indian Provisional Application Serial No. 202221022507 filed on April 15, 2022. The entire content of this provisional application is incorporated herein by reference.

在以下描述中,在圖式中示出之若干視圖中,相同之參考標號表示相同或對應之部分。亦應理解,除非另外規定,否則諸如「頂」、「底」、「外」、「內」及其類似術語的術語係為了方便之用詞,並且不應被解釋為限制性術語。此外,每當一個組被描述為包含一組要素中之至少一者及其組合時,應理解,該組可個別或彼此組合地包含任何數目之所述之彼等要素、基本上由其組成或由其組成。類似地,每當一個組被描述為由一組要素中之至少一者或其組合組成時,應理解,該組可個別或彼此組合地由任何數目之所述之彼等要素組成。除非另外說明,否則在列舉值之範圍時,其包括範圍之上限及下限以及其間之任何範圍。如本文所用,除非另外說明,否則不定冠詞「一(a/an)」及對應之定冠詞「該(the)」意指「至少一個」或「一或多個」。亦應理解,說明書及附圖中揭示之各種特徵可以任何及所有組合使用。In the following description, the same reference numerals represent the same or corresponding parts throughout the several views shown in the drawings. It is also understood that, unless otherwise specified, terms such as "top," "bottom," "outer," "inner," and the like are terms of convenience and should not be construed as limiting terms. Furthermore, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is to be understood that the group may include, consist essentially of, any number of those elements, individually or in combination with each other. or consisting of. Similarly, whenever a group is described as consisting of at least one or combination of elements of a group, it is to be understood that the group may consist of any number of those elements, individually or in combination with each other. Unless stated otherwise, when a range of values is recited, it includes the upper and lower limits of the range and any range therebetween. As used herein, the indefinite article "a/an" and the corresponding definite article "the" mean "at least one" or "one or more" unless otherwise stated. It should also be understood that the various features disclosed in the description and drawings may be used in any and all combinations.

如本文所用,術語「玻璃物件(glass article/glass articles)」以其最廣泛含義使用以包括完全或部分由玻璃製成之任何物品。除非另外規定,否則所有組合物都以重量百分比(重量%)表示。除非另外說明,否則所有溫度均以攝氏度(℃)表示。除非另外說明,否則熱膨脹係數(CTE)以10 −7/℃表示,並且表示在約50℃至約300℃之溫度範圍內量測得之值。 As used herein, the term "glass article/glass articles" is used in its broadest sense to include any article made entirely or partially of glass. Unless otherwise specified, all compositions are expressed as weight percent (wt%). All temperatures are expressed in degrees Celsius (°C) unless otherwise stated. Unless otherwise stated, the coefficient of thermal expansion (CTE) is expressed as 10 −7 /°C and represents a value measured over a temperature range of about 50°C to about 300°C.

應注意,術語「實質上」及「約」可在本文中用來表示可歸因於任何定量比較、值、量測或其他表示之固有之不確定性程度。此等術語亦在本文中用於表示定量表示可不同於所陳述參考而不導致所論述主題之基本功能變化之程度。舉例而言,「實質上不含Li 2O」之玻璃為Li 2O未主動地添加或分批地添加至玻璃中,但可作為來自原材料之污染物以極小量存在之玻璃。 It should be noted that the terms "substantially" and "approximately" may be used herein to indicate the inherent degree of uncertainty attributable to any quantitative comparison, value, measurement or other representation. These terms are also used herein to indicate the extent to which a quantitative representation may differ from the stated reference without resulting in a change in the essential functionality of the subject matter discussed. For example, a glass that is "substantially free of Li 2 O" is a glass in which Li 2 O is not actively added or added in batches to the glass, but may be present in a very small amount as a contaminant from the raw material.

近來,隨著技術之進步,廣泛地使用諸如行動電話、平板電腦、可穿戴裝置、數位相機或其類似者之電子裝置。此等電子裝置具有由不同組成之覆蓋玻璃保護之顯示螢幕。本發明描述一種無鋰之鋁硼矽酸鹽玻璃組合物,其提供具有較佳之使用壽命之顯示螢幕。Recently, with the advancement of technology, electronic devices such as mobile phones, tablet computers, wearable devices, digital cameras or the like are widely used. These electronic devices have display screens protected by cover glasses of different compositions. The present invention describes a lithium-free aluminum borosilicate glass composition that provides a display screen with better service life.

本發明詳細地描述各種無鋰之鋁硼矽酸鹽玻璃組合物。本發明主要描述無鋰之鋁硼矽酸鹽玻璃及其組合物。玻璃組合物包括一或多種化學組分,諸如SiO 2、Al 2O 3及B 2O 3。玻璃組合物進一步包括選自由Na 2O及K 2O組成之群之鹼金屬氧化物。此外,玻璃組合物包括一或多種鹼性氧化物,諸如MgO、CaO、SrO及BaO。其亦可包含其他化學組分,諸如ZrO 2、Fe 2O 3、CeO 2、P 2O 5、TiO 2或其類似物。此外,其亦可包含精煉劑,諸如SnO 2、氯化物、硫酸鹽或其類似物。無鋰之鋁硼矽酸鹽玻璃之特性高度受玻璃組合物之組分之含量數量影響。 The present invention describes in detail various lithium-free aluminum borosilicate glass compositions. The present invention generally describes lithium-free aluminum borosilicate glasses and compositions thereof. Glass compositions include one or more chemical components such as SiO2 , Al2O3 , and B2O3 . The glass composition further includes an alkali metal oxide selected from the group consisting of Na 2 O and K 2 O. Additionally, the glass composition includes one or more basic oxides, such as MgO, CaO, SrO, and BaO. It may also contain other chemical components such as ZrO 2 , Fe 2 O 3 , CeO 2 , P 2 O 5 , TiO 2 or the like. Furthermore, it may also contain refining agents such as SnO2 , chlorides, sulfates or the like. The properties of lithium-free aluminum borosilicate glasses are highly affected by the amounts of components in the glass composition.

在一實施例中,SiO 2為形成玻璃網狀結構之組分。在SiO 2含量過高之情況下,此玻璃難以熔融並且成型,或此玻璃具有過低之熱膨脹係數,並且難以具有與周邊材料相同之熱膨脹係數。另一方面,在SiO 2含量過低之情況下,難以玻璃化。另外,此類玻璃具有增加之熱膨脹係數,這往往會降低耐熱衝擊性。因此,玻璃組合物需要最優重量%之SiO 2。舉例而言,玻璃組合物可包括約40重量%至約70重量%之SiO 2In one embodiment, SiO 2 is a component that forms the glass network structure. When the SiO 2 content is too high, the glass is difficult to melt and shape, or the glass has a thermal expansion coefficient that is too low, and it is difficult to have the same thermal expansion coefficient as the surrounding materials. On the other hand, when the SiO 2 content is too low, vitrification is difficult. In addition, such glasses have an increased coefficient of thermal expansion, which tends to reduce thermal shock resistance. Therefore, the glass composition requires an optimal weight % of SiO2 . For example, the glass composition may include about 40% to about 70% by weight SiO2 .

在一實施例中,Al 2O 3為增強單一及/或多重離子交換之適合性之組分。Al 2O 3進一步具有增強玻璃之耐熱性及楊氏模數(Young's Modulus)之作用。在Al 2O 3之含量過高之情況下,去玻晶體易於在玻璃中分離,使得難以藉由溢流下拉製程(overflow down-draw process)或其類似者形成玻璃。此外,此類玻璃在高溫下具有增加之黏度且難以熔融。當Al 2O 3之含量過低時,有可能玻璃無法具有用於單一及/或多重離子交換之足夠適合性。自彼等方面而言,玻璃組合物需要最優重量%之Al 2O 3。舉例而言,玻璃組合物可包括約5重量%至約35重量%之Al 2O 3In one embodiment, Al 2 O 3 is a component that enhances the suitability of single and/or multiple ion exchanges. Al 2 O 3 further enhances the heat resistance and Young's Modulus of glass. In the case where the content of Al 2 O 3 is too high, devitrified crystals tend to separate in the glass, making it difficult to form the glass by an overflow down-draw process or the like. In addition, such glasses have increased viscosity at high temperatures and are difficult to melt. When the content of Al 2 O 3 is too low, it is possible that the glass may not be sufficiently suitable for single and/or multiple ion exchange. In these respects, the glass composition requires an optimal weight % of Al 2 O 3 . For example, the glass composition may include from about 5% to about 35% by weight Al 2 O 3 .

在一實施例中,B 2O 3為具有降低玻璃之液相線溫度、高溫黏度及密度之作用之組分,且進一步具有增強玻璃之單一及/或多重離子交換之適合性之作用。此外,B 2O 3之存在引起由化學強化形成之壓縮應力層之深度減小。自彼等方面而言,玻璃組合物需要最優重量%之B 2O 3。舉例而言,玻璃組合物可包括約0.5重量%至約10重量%之B 2O 3In one embodiment, B 2 O 3 is a component that has the function of reducing the liquidus temperature, high temperature viscosity and density of the glass, and further has the function of enhancing the suitability of the glass for single and/or multiple ion exchange. Furthermore, the presence of B 2 O 3 causes the depth of the compressive stress layer formed by chemical strengthening to decrease. In these respects, the glass composition requires an optimal weight % of B 2 O 3 . For example, the glass composition may include from about 0.5% to about 10% by weight B 2 O 3 .

在一實施例中,Na 2O係用於化學強化處理中藉由用鉀離子替換鈉離子來增加表面壓縮應力及表面壓縮應力層之深度之組分。然而,將Na 2O含量增加至超出適當限值會導致表面壓縮應力可能降低之情形。自彼等方面而言,玻璃組合物需要最優重量%之Na 2O。舉例而言,玻璃組合物可包括約5重量%至約25重量%之Na 2O。 In one embodiment, Na 2 O is a component used in chemical strengthening treatment to increase the surface compressive stress and the depth of the surface compressive stress layer by replacing sodium ions with potassium ions. However, increasing the Na2O content beyond appropriate limits results in a situation where surface compressive stress may be reduced. In these respects, the glass composition requires an optimal weight % of Na2O . For example, the glass composition may include from about 5% to about 25% by weight Na2O .

類似於Na 2O,K 2O為增加玻璃之可熔融性之組分。降低含量之K 2O增加化學強化中之離子交換速率且進而增加表面壓縮應力層之深度,但同時降低玻璃組合物之液相線溫度TL。因此,K 2O較佳地少量含有。自彼等方面而言,玻璃組合物需要最優重量%之K 2O。舉例而言,玻璃組合物可包括約0重量%至約5重量%之K 2O。 Similar to Na 2 O, K 2 O is a component that increases the meltability of the glass. Reducing the K 2 O content increases the ion exchange rate in chemical strengthening and thereby increases the depth of the surface compressive stress layer, but at the same time decreases the liquidus temperature TL of the glass composition. Therefore, K 2 O is preferably contained in a small amount. In these respects, the glass composition requires an optimal weight % of K2O . For example, the glass composition may include from about 0% to about 5% by weight K2O .

此外,鋁硼矽酸鹽玻璃實質上不含鋰,亦即尤其Li 2O。由於Li 2O之存在改良玻璃之楊氏模數及斷裂韌度,調整Al 2O 3之含量以改良無鋰之鋁硼矽酸鹽玻璃之楊氏模數。 Furthermore, aluminoborosilicate glasses are essentially free of lithium, that is to say in particular Li 2 O. Since the presence of Li 2 O improves the Young's modulus and fracture toughness of the glass, the content of Al 2 O 3 is adjusted to improve the Young's modulus of the lithium-free aluminum borosilicate glass.

在一實施例中,MgO為鹼土金屬,其中MgO之含量可為約0重量%至約7重量%。在一實施例中,P 2O 5為增強玻璃之離子交換之適合性之成分,且為高度有效的,尤其在增加壓縮應力層之深度時。由於較高P 2O 5含量可引起玻璃中之相分離或可減損耐水性,所以玻璃組合物可包括約0重量%至約10重量%之P 2O 5In one embodiment, MgO is an alkaline earth metal, and the content of MgO may be about 0% to about 7% by weight. In one embodiment, P2O5 is a component that enhances the suitability of the glass for ion exchange and is highly effective, particularly in increasing the depth of the compressive stress layer. Since higher P 2 O 5 content can cause phase separation in the glass or can impair water resistance, the glass composition may include about 0 to about 10 wt % P 2 O 5 .

在一實施例中,玻璃組合物進一步包括一或多種精煉劑,諸如約0重量%至約2重量%之SnO 2及約0重量%至約3重量%之Fe 2O 3。此外,其亦可包括其他精煉劑,諸如CeO 2、氯化物、硫酸鹽或其類似物。在一實施例中,玻璃組合物可包括約0重量%至約6重量%之ZrO 2及約0重量%至約5重量%之TiO 2。在一實施例中,由上列玻璃組合物獲得之無鋰之鋁硼矽酸鹽玻璃之厚度在20微米至2 mm之範圍內。 In one embodiment, the glass composition further includes one or more refining agents, such as about 0% to about 2% by weight SnO 2 and about 0% to about 3% by weight Fe 2 O 3 . Furthermore, it may also include other refining agents such as CeO 2 , chlorides, sulfates or the like. In one embodiment, the glass composition may include about 0% to about 6% by weight ZrO 2 and about 0% to about 5% by weight TiO 2 . In one embodiment, the thickness of the lithium-free aluminoborosilicate glass obtained from the above-listed glass composition is in the range of 20 microns to 2 mm.

表1說明如下之非限制性、例示性無鋰之鋁硼矽酸鹽玻璃組合物及其特性: 重量% 1 2 3 4 5 6 7 8 SiO 2 62.10 61.95 61.79 62.07 62.09 61.99 62.00 62.60 Al 2O 3 19.70 19.65 19.60 18.71 18.72 18.69 18.69 18.25 B 2O 3 3.60 3.59 3.58 3.72 3.72 3.72 3.72 2.96 Na 2O 13.10 13.06 13.03 14.01 14.01 13.99 13.99 15.00 Li 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 1.40 1.40 1.39 1.14 1.14 1.14 1.14 1.00 P 2O 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.00 TiO 2 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.00 Fe 2O 3 0.00 0.05 0.05 0.05 0.02 0.05 0.02 0.00 CeO 2 0.00 0.00 0.26 0.00 0.00 0.13 0.13 0.00 SnO 2 0.14 0.18 0.18 0.18 0.18 0.18 0.18 0.19 總計 100.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 特性 Tg ( ℃) 618 - 626 611 611 - 620 - CTE (×10 -7) / ℃ (50- 300 ℃) 75.8 - 75.6 79.5 79.0 - 76.9 - 密度(g/cc) 2.39 - 2.41 2.41 2.41 - 2.41 2.42 楊氏模數(GPa) 69.3 - 70.8 70.1 70.0 - 70.1 69.7 退火T. ( ℃) 628 - 636 621 621 - 630 - 帕松比(Poisson's ratio) 0.22 - 0.22 0.23 0.23 - 0.22 0.23 剪切模數(GPa) 28.4 - 28.5 28.5 28.5 - 28.8 28.3 表1:例示性玻璃組合物及其特性 Table 1 illustrates the following non-limiting, exemplary lithium-free aluminum borosilicate glass compositions and their properties: weight% 1 2 3 4 5 6 7 8 SiO 2 62.10 61.95 61.79 62.07 62.09 61.99 62.00 62.60 Al 2 O 3 19.70 19.65 19.60 18.71 18.72 18.69 18.69 18.25 B 2 O 3 3.60 3.59 3.58 3.72 3.72 3.72 3.72 2.96 Na 2 O 13.10 13.06 13.03 14.01 14.01 13.99 13.99 15.00 Li 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 1.40 1.40 1.39 1.14 1.14 1.14 1.14 1.00 P 2 O 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZrO 2 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.00 TiO 2 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.00 Fe 2 O 3 0.00 0.05 0.05 0.05 0.02 0.05 0.02 0.00 CeO 2 0.00 0.00 0.26 0.00 0.00 0.13 0.13 0.00 SnO 2 0.14 0.18 0.18 0.18 0.18 0.18 0.18 0.19 total 100.04 100.00 100.00 100.00 100.00 100.00 100.00 100.00 characteristic Tg ( ℃) 618 - 626 611 611 - 620 - CTE (×10 -7 ) / ℃ (50- 300 ℃) 75.8 - 75.6 79.5 79.0 - 76.9 - Density(g/cc) 2.39 - 2.41 2.41 2.41 - 2.41 2.42 Young's modulus (GPa) 69.3 - 70.8 70.1 70.0 - 70.1 69.7 Annealing T. ( ℃) 628 - 636 621 621 - 630 - Poisson's ratio 0.22 - 0.22 0.23 0.23 - 0.22 0.23 Shear modulus (GPa) 28.4 - 28.5 28.5 28.5 - 28.8 28.3 Table 1: Exemplary glass compositions and their properties

表2說明如下之非限制性、例示性鋁硼矽酸鹽玻璃組合物及其特性: 重量% 9 10 11 12 13 14 15 SiO 2 62.12 61.87 62.00 48.11 52.95 52.56 42.64 Al 2O 3 18.22 19.63 19.00 26.04 19.97 26.07 31.27 B 2O 3 4.26 3.99 3.70 4.28 4.54 4.29 4.19 Na 2O 14.22 13.41 13.80 18.54 15.39 13.96 18.15 Li 2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 2O 0.00 0.00 0.00 0.10 3.86 0.20 0.10 MgO 1.00 0.92 1.15 0.67 0.75 0.67 1.31 P 2O 5 0.00 0.00 0.00 2.21 2.48 2.21 2.16 ZrO 2 0.00 0.00 0.06 0.00 0.00 0.00 0.00 TiO 2 0.00 0.00 0.06 0.00 0.00 0.00 0.00 Fe 2O 3 0.00 0.00 0.05 0.00 0.00 0.00 0.00 CeO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.19 0.19 0.18 0.05 0.05 0.05 0.17 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 特性 Tg ( ℃) 604 - - 617 - - 657 CTE (×10 -7) / (50-300 ℃) 77.5 - - 95.0 - - 94.0 密度(g/cc) 2.42 2.41 - 2.44 - - 2.44 楊氏模數(GPa) 71.9 69.1 - 67.5 - - 70.5 退火T. ( ℃) 614 - - 627 - - 667 帕松比 0.21 0.23 - 0.23 - - 0.24 剪切模數(GPa) 29.6 28.1 - 27.4 - - 28.4 表2:例示性玻璃組合物及其特性 Table 2 illustrates the following non-limiting, exemplary aluminoborosilicate glass compositions and their properties: weight% 9 10 11 12 13 14 15 SiO 2 62.12 61.87 62.00 48.11 52.95 52.56 42.64 Al 2 O 3 18.22 19.63 19.00 26.04 19.97 26.07 31.27 B 2 O 3 4.26 3.99 3.70 4.28 4.54 4.29 4.19 Na 2 O 14.22 13.41 13.80 18.54 15.39 13.96 18.15 Li 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 2 O 0.00 0.00 0.00 0.10 3.86 0.20 0.10 MgO 1.00 0.92 1.15 0.67 0.75 0.67 1.31 P 2 O 5 0.00 0.00 0.00 2.21 2.48 2.21 2.16 ZrO 2 0.00 0.00 0.06 0.00 0.00 0.00 0.00 TiO 2 0.00 0.00 0.06 0.00 0.00 0.00 0.00 Fe 2 O 3 0.00 0.00 0.05 0.00 0.00 0.00 0.00 CeO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SnO 2 0.19 0.19 0.18 0.05 0.05 0.05 0.17 total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 characteristic Tg ( ℃) 604 - - 617 - - 657 CTE (×10 -7 ) / (50-300 ℃) 77.5 - - 95.0 - - 94.0 Density(g/cc) 2.42 2.41 - 2.44 - - 2.44 Young's modulus (GPa) 71.9 69.1 - 67.5 - - 70.5 Annealing T. ( ℃) 614 - - 627 - - 667 pasombi 0.21 0.23 - 0.23 - - 0.24 Shear modulus (GPa) 29.6 28.1 - 27.4 - - 28.4 Table 2: Exemplary glass compositions and their properties

在一個例示性實施例中,當玻璃組合物包括約42.64重量%之SiO 2、約31.27重量%之Al 2O 3、約4.19重量%之B 2O 3、約18.15重量%之Na 2O、約0.10重量%之K 2O、約1.31重量%之MgO、約0.17重量%之SnO 2以及約2.16重量%之P 2O 5時,由玻璃組合物獲得之無鋰之鋁硼矽酸鹽玻璃之玻璃轉移溫度(Tg)為約657℃,CTE為約94×10 -7/℃,密度為約2.44 g/cc,楊氏模數為約70.5 GPa,退火溫度為約667℃,帕松比為約0.24,並且剪切模數為約28.4 GPa。 In an exemplary embodiment, when the glass composition includes about 42.64% by weight SiO 2 , about 31.27% by weight Al 2 O 3 , about 4.19% by weight B 2 O 3 , about 18.15% by weight Na 2 O, Lithium-free aluminoborosilicate glass obtained from a glass composition containing about 0.10% by weight of K 2 O, about 1.31% by weight of MgO, about 0.17% by weight of SnO 2 and about 2.16% by weight of P 2 O 5 The glass transition temperature (Tg) is about 657°C, the CTE is about 94×10 -7 /°C, the density is about 2.44 g/cc, the Young’s modulus is about 70.5 GPa, the annealing temperature is about 667°C, and the Passon ratio is about 0.24, and the shear modulus is about 28.4 GPa.

無鋰之鋁硼矽酸鹽玻璃可經歷兩個離子交換製程步驟。在一實施例中,離子交換製程係基於單價鹼金屬離子之大小。含有單價鹼金屬離子之無鋰之鋁硼矽酸鹽玻璃在高溫下在含有鹼金屬無機鹽之熔融鹽浴中處理。此處,玻璃之玻璃表面處之單價鹼金屬離子與鹼金屬無機鹽之單價鹼金屬離子進行離子交換。常見製程為將玻璃浸沒在鹼金屬無機鹽或鹼金屬無機鹽及其他無機鹽之混合物之熔融鹽浴中。浸沒時間足以僅在玻璃物件之表面層引起此交換。藉由離子交換製程獲得之高壓縮應力有助於玻璃在發生故障之前在較大數目之裝置掉落過程中倖存下來。Lithium-free aluminum borosilicate glass can undergo two ion exchange process steps. In one embodiment, the ion exchange process is based on the size of monovalent alkali metal ions. Lithium-free aluminum borosilicate glass containing monovalent alkali metal ions is treated at high temperature in a molten salt bath containing an alkali metal inorganic salt. Here, the monovalent alkali metal ions on the glass surface of the glass perform ion exchange with the monovalent alkali metal ions of the alkali metal inorganic salt. A common process is to immerse the glass in a molten salt bath of alkali metal inorganic salts or a mixture of alkali metal inorganic salts and other inorganic salts. The immersion time is sufficient to cause this exchange only in the surface layer of the glass object. The high compressive stress achieved through the ion exchange process helps the glass survive a larger number of device drops before failure.

當較大鹼金屬離子在低於玻璃之應變點之高溫下替換玻璃之表面層中之較小鹼金屬離子時,表面層隨後獲得壓縮應力。較大鹼金屬離子試圖佔據先前由較小鹼金屬離子佔據之空間,由此在玻璃之表面層處產生壓縮應力。因為熔融鹽浴之溫度低於玻璃之應變點,所以玻璃無法重新調整自身以緩解應力。無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程。以下係雙重離子交換製程之兩個步驟: 離子交換之步驟 I When larger alkali metal ions replace smaller alkali metal ions in the surface layer of the glass at elevated temperatures below the strain point of the glass, the surface layer subsequently acquires compressive stress. The larger alkali metal ions attempt to occupy the space previously occupied by the smaller alkali metal ions, thereby creating compressive stress at the surface layer of the glass. Because the temperature of the molten salt bath is below the glass's strain point, the glass cannot readjust itself to relieve stress. Lithium-free aluminum borosilicate glass undergoes a dual ion exchange process. The following are two steps of the dual ion exchange process: ion exchange step I :

本發明之玻璃組合物富含Na+離子並且缺乏K+離子。在雙重離子交換製程之第一步驟I中,用於熔融鹽浴之鹼金屬鹽之K+/Na+比高於玻璃中之K+/Na+比。因此,進行第一步驟I以用熔融鹽浴中之較大鹼金屬離子(K+離子)替換玻璃表面之較小鹼金屬離子(Na+離子)。在雙重離子交換製程之第一步驟I中,鹼金屬鹽(諸如硝酸鈉(NaNO 3)及硝酸鉀(KNO 3))用於離子交換浴中。此處,鹼金屬無機鹽之K+離子替換玻璃之表面層中之Na+離子。由於離子交換時間非常長,亦即,最少約1小時或約多於4小時,所以玻璃中之Na+離子最初由離子交換浴中之K+離子替換,以使玻璃表面富集K+離子。進一步之離子交換使得玻璃中K+離子由離子交換浴之Na+離子交換。玻璃中之K+離子由離子交換浴中之Na+離子交換,隨後玻璃中之Na+離子由離子交換浴中之K+離子交換之此連續製程持續進行,直至壓縮深度變得大於50 μm,並且玻璃中K+/Na+比之組成變得與離子交換浴中之K+/Na+比相同。儘管壓縮應力隨時間變得愈來愈低,且離子交換浴包含Na+離子及K+離子之混合物,但玻璃之壓縮深度包含與離子交換浴中相同之Na+與K+離子之比率。這賦予較大深度之壓縮層以及大量之壓縮應力。形成於玻璃之表面上之壓縮應力層為玻璃提供增加之耐刮擦及掉落性。 離子交換之步驟 II The glass composition of the present invention is rich in Na+ ions and deficient in K+ ions. In the first step I of the double ion exchange process, the K+/Na+ ratio of the alkali metal salt used in the molten salt bath is higher than the K+/Na+ ratio in the glass. Therefore, a first step I is performed to replace the smaller alkali metal ions (Na+ ions) on the glass surface with larger alkali metal ions (K+ ions) in the molten salt bath. In the first step I of the dual ion exchange process, alkali metal salts such as sodium nitrate (NaNO 3 ) and potassium nitrate (KNO 3 ) are used in the ion exchange bath. Here, the K+ ions of the alkali metal inorganic salt replace the Na+ ions in the surface layer of the glass. Since the ion exchange time is very long, that is, at least about 1 hour or about more than 4 hours, the Na+ ions in the glass are initially replaced by K+ ions in the ion exchange bath, so that the glass surface is enriched with K+ ions. Further ion exchange causes K+ ions in the glass to be exchanged with Na+ ions in the ion exchange bath. This continuous process of exchanging K+ ions in the glass with Na+ ions in the ion exchange bath, and then exchanging Na+ ions in the glass with K+ ions in the ion exchange bath continues until the compression depth becomes greater than 50 μm and K+ in the glass The composition of the /Na+ ratio becomes the same as the K+/Na+ ratio in the ion exchange bath. Although the compressive stress becomes lower and lower with time and the ion exchange bath contains a mixture of Na+ and K+ ions, the compression depth of the glass contains the same ratio of Na+ and K+ ions as in the ion exchange bath. This imparts a greater depth of compression layer and a large amount of compressive stress. The compressive stress layer formed on the surface of the glass provides the glass with increased resistance to scratches and drops. Step II of ion exchange :

在離子交換之第二步驟II中,K+/Na+比大於90%,其遠高於離子交換製程之第一步驟I中之K+/Na+比。在本發明之製程中,迄今為止使用之一些鹼金屬鹽,諸如與一些硝酸鈉(NaNO 3)摻合之硝酸鉀(KNO 3)-(極高濃度)提供離子交換之第二步驟之液體離子交換浴。此處,鹼金屬無機鹽之K+離子替換玻璃之表面層中之Na+離子。由於K+離子濃度極高,且離子交換時間極短(<60分鐘),這使得產生表面中之極大壓縮應力。 In the second step II of the ion exchange process, the K+/Na+ ratio is greater than 90%, which is much higher than the K+/Na+ ratio in the first step I of the ion exchange process. In the process of the present invention, some of the alkali metal salts used so far, such as potassium nitrate (KNO 3 ) mixed with some sodium nitrate (NaNO 3 ) - (in very high concentrations) provide liquid ions for the second step of ion exchange. Exchange bath. Here, the K+ ions of the alkali metal inorganic salt replace the Na+ ions in the surface layer of the glass. Due to the extremely high concentration of K+ ions and the extremely short ion exchange time (<60 minutes), this results in extremely high compressive stresses in the surface.

本文中所描述之鋁硼矽酸鹽玻璃最初形成時實質上不含Li 2O。當玻璃經歷雙重離子交換製程時,較大數目之K+離子替換存在於玻璃之表面上之Na+離子。無鋰之鋁硼矽酸鹽玻璃之雙重離子交換製程允許實現相比於無鋰之鋁硼矽酸鹽玻璃之單一離子交換製程增加之玻璃表面上之壓縮應力層。雙重離子交換之玻璃具有類似於鋰鋁矽酸鹽玻璃之優良機械特性。調節雙重離子交換製程之離子交換條件以實現玻璃之表面上之所要壓縮應力層。 The aluminoborosilicate glasses described herein are substantially free of Li 2 O when initially formed. When glass undergoes a double ion exchange process, a larger number of K+ ions replace the Na+ ions present on the surface of the glass. The dual ion exchange process of lithium-free aluminum borosilicate glass allows for an increased compressive stress layer on the glass surface compared to the single ion exchange process of lithium-free aluminum borosilicate glass. Double ion-exchanged glass has excellent mechanical properties similar to lithium aluminosilicate glass. Adjust the ion exchange conditions of the dual ion exchange process to achieve the desired compressive stress layer on the surface of the glass.

表3說明例示性樣品,定義描述厚度為0.7 mm之玻璃樣品5之離子交換製程之兩個步驟以及各步驟之對應之壓縮深度(DOL_零)及壓縮應力(CS)。 樣品編號 1 步驟 2 步驟 SLP-2000 FSM-6000 SLP-2000 FSM-6000 之擬合資料 (PMC) CT (MPa) ( 重量 %) 溫度 ( ) 時間 ( 分鐘 ) ( 重量 %) 溫度 ( ) 時間 ( 分鐘 ) CS (MPa) DOL_ (μm) CS (MPa) DOL (μm) CS (MPa) DOL_ (μm) CS_TP (MPa) DOL_TP (μm) 1 75% KNO 3 415 130 97% KNO 3 380 20 158.43 134.53 940.01 11.58 940.00 135.36 143.56 6.55 66.62 2 75% KNO 3 415 130 97% KNO 3 380 20 177.65 133.38 - - 943.38 133.28 154.89 6.25 66.85 3 75% KNO 3 415 130 97% KNO 3 380 20 134.01 137.00 1014.38 8.85 1014.38 138.42 114.50 6.50 53.79 4 75% KNO 3 415 130 97% KNO 3 380 20 - - - - - - - - - 5 60% KNO 3 398 240 100% KNO 3 388 36 133.09 145.23 1398.14 13.24 1400.08 143.88 114.63 11.05 61.68 6 60% KNO 3 398 240 100% KNO 3 388 36 148.74 127.90 1403.09 13.38 1403.10 128.41 112.69 11.88 62.83 7 60% KNO 3 398 240 100% KNO 3 388 36 128.42 143.01 1402.32 13.17 1404.25 143.01 108.96 11.23 58.26 8 60% KNO 3 398 240 100% KNO 3 388 36 99.81 124.87 1408.51 13.19 1408.52 123.66 90.59 13.03 59.45 9 60% KNO 3 398 240 100% KNO 3 388 36 153.28 139.15 1379.28 11.73 1380.86 141.13 123.37 9.70 64.66 表3:例示性樣品以及離子交換製程之各步驟之DOL及CS Table 3 illustrates exemplary samples, defining two steps of the ion exchange process for glass sample 5 with a thickness of 0.7 mm and the corresponding depth of compression (DOL_zero) and compressive stress (CS) for each step. Sample number Step 1 _ Step 2 _ SLP-2000 FSM-6000 Fitting data of SLP-2000 and FSM-6000 (PMC) CT (MPa) Salt ( wt %) Temperature ( ) time ( minutes ) Salt ( wt %) Temperature ( ) time ( minutes ) CS (MPa) DOL_zero (μm ) CS (MPa) DOL (μm) CS (MPa) DOL_zero (μm ) CS_TP (MPa) DOL_TP (μm) 1 75% KNO 3 415 130 97% KNO 3 380 20 158.43 134.53 940.01 11.58 940.00 135.36 143.56 6.55 66.62 2 75% KNO 3 415 130 97% KNO 3 380 20 177.65 133.38 - - 943.38 133.28 154.89 6.25 66.85 3 75% KNO 3 415 130 97% KNO 3 380 20 134.01 137.00 1014.38 8.85 1014.38 138.42 114.50 6.50 53.79 4 75% KNO 3 415 130 97% KNO 3 380 20 - - - - - - - - - 5 60% KNO 3 398 240 100% KNO 3 388 36 133.09 145.23 1398.14 13.24 1400.08 143.88 114.63 11.05 61.68 6 60% KNO 3 398 240 100% KNO 3 388 36 148.74 127.90 1403.09 13.38 1403.10 128.41 112.69 11.88 62.83 7 60% KNO 3 398 240 100% KNO 3 388 36 128.42 143.01 1402.32 13.17 1404.25 143.01 108.96 11.23 58.26 8 60% KNO 3 398 240 100% KNO 3 388 36 99.81 124.87 1408.51 13.19 1408.52 123.66 90.59 13.03 59.45 9 60% KNO 3 398 240 100% KNO 3 388 36 153.28 139.15 1379.28 11.73 1380.86 141.13 123.37 9.70 64.66 Table 3: Exemplary samples and DOL and CS for each step of the ion exchange process

在一個例示性實施例中,玻璃組合物經歷兩個離子交換製程步驟。在離子交換之第一步驟中,玻璃在包含約75重量%之KNO 3及約25重量%之NaNO 3之鹽浴中經歷離子交換製程之第一步驟。用於處理玻璃材料之較佳溫度為約415℃,且用於處理玻璃材料之時間為約130分鐘。離子交換之第一步驟之應力概況包含約158.43 MPa之壓縮應力及約134.53 μm之壓縮深度。此外,在離子交換之第二步驟中,鹽浴包含約97重量%之KNO 3及約3重量%之NaNO 3。用於處理玻璃材料之較佳溫度為約380℃,並且用於處理玻璃材料之時間為約20分鐘。離子交換之第二步驟之應力概況包含大於940.01 MPa之壓縮應力及大於11.58 μm之壓縮深度。無鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程以實現大於50 μm之壓縮層深度。 In an exemplary embodiment, the glass composition undergoes two ion exchange process steps. In the first step of ion exchange, the glass undergoes the first step of the ion exchange process in a salt bath containing about 75% by weight KNO 3 and about 25% by weight NaNO 3 . The preferred temperature for treating the glass material is about 415°C, and the time for treating the glass material is about 130 minutes. The stress profile of the first step of ion exchange includes a compressive stress of approximately 158.43 MPa and a compression depth of approximately 134.53 μm. Furthermore, in the second step of ion exchange, the salt bath contains about 97% by weight KNO 3 and about 3% by weight NaNO 3 . The preferred temperature for treating the glass material is about 380°C, and the time for treating the glass material is about 20 minutes. The stress profile of the second step of ion exchange includes a compressive stress greater than 940.01 MPa and a compression depth greater than 11.58 μm. Lithium-free aluminum borosilicate glass undergoes a dual ion exchange process to achieve a compression layer depth greater than 50 μm.

本發明允許不含鋰之鋁硼矽酸鹽玻璃經歷雙重離子交換製程,以獲得等效於鋰鋁矽酸鹽玻璃之表面層強度。藉由雙重離子交換步驟獲得之高壓縮應力有助於玻璃在發生故障之前在較大數目之裝置掉落過程中倖存下來。The present invention allows lithium-free aluminum borosilicate glass to undergo a dual ion exchange process to obtain a surface layer strength equivalent to that of lithium aluminum borosilicate glass. The high compressive stress achieved through the dual ion exchange step helps the glass survive a larger number of device drops before failure.

鋁硼矽酸鹽玻璃之應用可用作用於觸摸面板顯示器之基板及用於此等顯示器之後蓋,該等顯示器諸如液晶顯示器(LCD)、場發射顯示器(FED)、電漿顯示器(PD)、電致發光顯示器(ELD)、有機發光二極體(OLED)顯示器、微型LED或其類似者。鋁硼矽酸鹽玻璃用作具有顯示螢幕之電子裝置,諸如行動電話、娛樂裝置、平板電腦、筆記本電腦、數位相機、可穿戴式裝置或其類似者之保護。 Applications of aluminoborosilicate glass can be used as substrates for touch panel displays and for back covers of such displays such as liquid crystal displays (LCD), field emission displays (FED), plasma displays (PD), electronic Electroluminescent displays (ELD), organic light emitting diode (OLED) displays, micro-LEDs or the like. Aluminoborosilicate glass is used for the protection of electronic devices with display screens, such as mobile phones, entertainment devices, tablets, laptops, digital cameras, wearable devices, or the like.

雖然已出於說明之目的闡述了典型實施例,但不應將前述描述視為對本發明或所附申請專利範圍之範疇之限制。因此,在不脫離本發明之精神及範疇之情況下,熟習此項技術者可進行各種修改、調適及替代。While exemplary embodiments have been described for purposes of illustration, the foregoing description should not be construed as limiting the scope of the invention or the appended claims. Therefore, various modifications, adaptations and substitutions may be made by those skilled in the art without departing from the spirit and scope of the invention.

Claims (6)

一種化學強化玻璃物件,其包含: 約40重量%至約70重量%範圍內之SiO 2; 約5重量%至約35重量%範圍內之Al 2O 3; 約0.5重量%至約10重量%範圍內之B 2O 3; 約5重量%至約25重量%範圍內之Na 2O; 約0重量%至約5重量%範圍內之K 2O; 約0重量%至約7重量%範圍內之MgO; 約0重量%至約10重量%範圍內之P 2O 5; 約0重量%至約6重量%範圍內之ZrO 2; 約0重量%至約2重量%範圍內之SnO 2; 約0重量%至約3重量%範圍內之Fe 2O 3; 約0重量%至約3重量%範圍內之CeO 2;及 約0重量%至約5重量%範圍內之TiO 2, 其中該玻璃物件經歷雙重離子交換製程以實現大於90%之K+/Na+離子比率,及 其中該玻璃物件具有大於50 μm之壓縮層深度。 A chemically strengthened glass article comprising: SiO 2 in the range of about 40 wt % to about 70 wt %; Al 2 O 3 in the range of about 5 wt % to about 35 wt %; about 0.5 wt % to about 10 wt % B 2 O 3 in the range; Na 2 O in the range of about 5 to about 25 wt %; K 2 O in the range of about 0 to about 5 wt %; and in the range of about 0 to about 7 wt % MgO within the range; P 2 O 5 within the range of about 0 wt % to about 10 wt %; ZrO 2 within the range of about 0 wt % to about 6 wt %; SnO 2 within the range of about 0 wt % to about 2 wt % ; Fe 2 O 3 in the range of about 0 wt % to about 3 wt %; CeO 2 in the range of about 0 wt % to about 3 wt %; and TiO 2 in the range of about 0 wt % to about 5 wt %, wherein The glass object undergoes a dual ion exchange process to achieve a K+/Na+ ion ratio greater than 90%, and the glass object has a compression layer depth greater than 50 μm. 如請求項1之化學強化玻璃物件,其中最佳化SiO 2之含量以實現與周邊材料相容之熱膨脹係數。 Such as the chemically strengthened glass object of claim 1, wherein the content of SiO 2 is optimized to achieve a thermal expansion coefficient compatible with surrounding materials. 一種處理玻璃物件之方法,其包含以下步驟: a)   向包含K+離子及Na+離子之該玻璃物件提供熔融鹽浴; b)   維持該熔融鹽浴中之K+/Na+離子比率高於該玻璃中之K+/Na+離子比率; c)   用該熔融鹽浴中之鹼金屬離子K+替換玻璃表面上之鹼金屬離子Na+; d)   使該玻璃物件之該表面富集K+離子; e)   添加至少一種選自由NaNO 3或KNO 3組成之群之鹼金屬鹽; f)    用K+離子替換該玻璃之表面層中之Na+離子; g)   維持該玻璃中之K+/Na+離子比率與該熔融鹽浴中之K+/Na+比率相等; h)   將鹼金屬鹽KNO 3與NaNO 3摻合以提供液體離子交換浴; i)    在該玻璃之該表面層中用K+離子替換Na+離子;及 j)    維持大於90%之K+/Na+離子比率, 其中所得玻璃物件具有大於50 μm之壓縮深度。 A method of treating a glass object, comprising the following steps: a) providing a molten salt bath to the glass object containing K+ ions and Na+ ions; b) maintaining a K+/Na+ ion ratio in the molten salt bath higher than that in the glass K+/Na+ ion ratio; c) replace the alkali metal ions Na+ on the glass surface with alkali metal ions K+ in the molten salt bath; d) enrich the surface of the glass object with K+ ions; e) add at least one selected from Alkali metal salts of the group consisting of NaNO 3 or KNO 3 ; f) Replace Na+ ions in the surface layer of the glass with K+ ions; g) Maintain the K+/Na+ ion ratio in the glass and the K+/Na+ in the molten salt bath The Na+ ratios are equal; h) blending the alkali metal salts KNO with NaNO to provide a liquid ion exchange bath; i) replacing Na+ ions with K+ ions in the surface layer of the glass; and j) maintaining greater than 90% K+ /Na+ ion ratio, wherein the resulting glass object has a compression depth greater than 50 μm. 如請求項3之方法,其中該步驟(a)中之離子交換時間為至少1小時。The method of claim 3, wherein the ion exchange time in step (a) is at least 1 hour. 如請求項3之方法,其中該步驟(h)中之離子交換時間少於60分鐘。The method of claim 3, wherein the ion exchange time in step (h) is less than 60 minutes. 如請求項3之方法,其中該雙重離子交換製程為該玻璃物件提供增加之耐刮擦性。The method of claim 3, wherein the dual ion exchange process provides increased scratch resistance to the glass object.
TW112113566A 2022-04-15 2023-04-12 Strengthened lithium-free aluminoborosilicate glass TW202348573A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN202221022507 2022-04-15
IN202221022507 2022-04-15

Publications (1)

Publication Number Publication Date
TW202348573A true TW202348573A (en) 2023-12-16

Family

ID=88360925

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113566A TW202348573A (en) 2022-04-15 2023-04-12 Strengthened lithium-free aluminoborosilicate glass

Country Status (2)

Country Link
CN (1) CN116903247A (en)
TW (1) TW202348573A (en)

Also Published As

Publication number Publication date
CN116903247A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
US9764980B2 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
TWI744530B (en) Hybrid soda-lime silicate and aluminosilicate glass articles
KR101493764B1 (en) Tempered glass plate
JP5834793B2 (en) Method for producing chemically strengthened glass
US9783451B2 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
JP5977841B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display
US20120141801A1 (en) Tempered glass substrate and method of producing the same
CN113603358B (en) Chemically strengthened glass, and method for producing chemically strengthened glass
US20150044473A1 (en) Strengthened glass substrate manufacturing method and strengthened glass substrate
JP5764084B2 (en) Glass composition, glass composition for chemical strengthening, tempered glass article, cover glass for display and method for producing tempered glass article
US20170174556A1 (en) Glass composition, glass sheet for chemical strengthening, strengthened glass sheet, and strengthened glass substrate for display
US10196304B2 (en) Glass and chemically toughened glass using same
TW201004886A (en) Glass plate for display devices
JP2007099557A (en) Tempered glass article and method for producing the same
TW201245079A (en) Method for producing chemically tempered glass, and glass for chemical tempering
WO2013031855A1 (en) Toughened glass substrate and process for producing same
JPWO2016104446A1 (en) Glass and chemically tempered glass
JPWO2012077796A1 (en) Method for producing chemically strengthened glass
JP2014028743A (en) Glass substrate for organic el applications and method for manufacturing the same
JP2016074595A (en) Glass for chemical strengthening
TW202348573A (en) Strengthened lithium-free aluminoborosilicate glass
TW202348572A (en) Chemically strengthened aluminoborosilicate glass
WO2019167550A1 (en) Tempered glass and glass for tempering
KR20130127956A (en) Alkali glass and method for manufacturing the same