TW202235390A - Glass - Google Patents

Glass Download PDF

Info

Publication number
TW202235390A
TW202235390A TW111118162A TW111118162A TW202235390A TW 202235390 A TW202235390 A TW 202235390A TW 111118162 A TW111118162 A TW 111118162A TW 111118162 A TW111118162 A TW 111118162A TW 202235390 A TW202235390 A TW 202235390A
Authority
TW
Taiwan
Prior art keywords
determined
less
glass
mgo
cao
Prior art date
Application number
TW111118162A
Other languages
Chinese (zh)
Inventor
斉藤敦己
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202235390A publication Critical patent/TW202235390A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass is characterized by containing, as the glass composition thereof, 55-80 mol% SiO2, 11-30 mol% Al2O3, 0-3 mol% B2O3, 0-3 mol% Li2O + Na2O + K2O, and 5-35 mol% MgO + CaO + SrO + BaO, and by the strain point being higher than 700 DEG C.

Description

玻璃Glass

本發明是有關於一種高耐熱性的玻璃,例如是有關於一種用以在高溫下製作發光二極體(Light Emitting Diode,LED)用半導體結晶(semiconductor crystal)的玻璃基板。The present invention relates to a glass with high heat resistance, for example, relates to a glass substrate for making semiconductor crystals for Light Emitting Diodes (LEDs) at high temperatures.

對於用於LED等的半導體結晶而言,已知在越高的溫度下成膜,則半導體特性越會提高。For semiconductor crystals used in LEDs and the like, it is known that the higher the temperature at which the film is formed, the more the semiconductor characteristics will be improved.

在所述用途中一般使用高耐熱性的藍寶石(sapphire)基板。在其他用途中,當在高溫(例如700℃以上)下使半導體結晶成膜時,亦使用藍寶石基板。 [現有技術文獻] [專利文獻] Generally, a highly heat-resistant sapphire (sapphire) substrate is used for such applications. In other applications, a sapphire substrate is also used when forming a semiconductor crystal film at a high temperature (for example, 700° C. or higher). [Prior art literature] [Patent Document]

[專利文獻1]日本專利特開平11-243229號公報[Patent Document 1] Japanese Patent Laid-Open No. 11-243229

[發明所欲解決之課題] 而且近年來,正積極地研究使面積大的半導體結晶成膜的技術。認為該技術亦有望用於大型顯示器(display)的面發光光源。 [Problem to be Solved by the Invention] In addition, in recent years, a technique of forming a large-area semiconductor crystal into a film has been actively studied. It is believed that this technology is also expected to be used as a surface-emitting light source for large displays.

然而,對於藍寶石基板而言,難以實現大面積化,不適合於所述用途。However, a sapphire substrate is difficult to achieve a large area, and is not suitable for such applications.

若使用玻璃基板來代替藍寶石基板,則認為可使基板實現大面積化,但以往的玻璃基板由於耐熱性不充分,故而容易在高溫的熱處理中產生熱變形。If a glass substrate is used instead of a sapphire substrate, it is considered that the substrate can be enlarged in area, but conventional glass substrates are not sufficiently heat resistant, and thus tend to be thermally deformed during high-temperature heat treatment.

而且,若欲使以往的玻璃基板的耐熱性提高,則玻璃基板的熱膨脹係數會不當地降低,從而難以與半導體結晶的熱膨脹係數匹配,在製作出半導體結晶後,玻璃基板容易翹曲,或半導體膜容易產生裂紋(crack)。進而,若欲使玻璃基板的耐熱性提高,則耐失透性會降低,從而難以成形為平板形狀的玻璃基板。Moreover, if the heat resistance of the conventional glass substrate is to be improved, the thermal expansion coefficient of the glass substrate will be unduly lowered, making it difficult to match the thermal expansion coefficient of the semiconductor crystal. After the semiconductor crystal is produced, the glass substrate is easy to warp, or the semiconductor The film is prone to cracks. Furthermore, when trying to improve the heat resistance of a glass substrate, devitrification resistance will fall, and it will become difficult to shape it into a flat glass substrate.

本發明是鑒於所述情況而成的發明,其技術課題在於創作耐熱性與熱膨脹係數高且能成形為平板形狀之玻璃。The present invention was made in view of the above circumstances, and its technical problem is to create glass that has high heat resistance and thermal expansion coefficient and can be formed into a flat plate shape.

[解決課題之手段] 本發明人反覆地進行各種實驗後,結果發現藉由將玻璃組成限制於規定範圍,能夠解決所述技術課題,從而提出了本發明。即,本發明的玻璃的特徵在於:以莫耳%計,含有55%~80%的SiO 2、11%~30%的Al 2O 3、0~3%的B 2O 3、0~3%的Li 2O+Na 2O+K 2O、5%~35%的MgO+CaO+SrO+BaO作為玻璃組成,且應變點(strain point)高於700℃。此處,「Li 2O+Na 2O+K 2O」是指Li 2O、Na 2O及K 2O的總量。「MgO+CaO+SrO+BaO」是指MgO、CaO、SrO及BaO的總量。此處,「應變點」是指基於美國材料試驗學會(American Society for Testing and Materials,ASTM)C336的方法進行測定所得的值。 MEANS TO SOLVE THE PROBLEM As a result of repeated various experiments, the present inventors found that the said technical subject can be solved by limiting a glass composition to a predetermined range, and came up with this invention. That is, the glass of the present invention is characterized by containing 55% to 80% of SiO 2 , 11% to 30% of Al 2 O 3 , 0 to 3% of B 2 O 3 , and 0 to 3% in mole %. % Li 2 O+Na 2 O+K 2 O, 5%-35% MgO+CaO+SrO+BaO as the glass composition, and the strain point (strain point) is higher than 700°C. Here, "Li 2 O+Na 2 O+K 2 O" means the total amount of Li 2 O, Na 2 O and K 2 O. "MgO+CaO+SrO+BaO" means the total amount of MgO, CaO, SrO, and BaO. Here, the "strain point" refers to a value measured based on the method of American Society for Testing and Materials (ASTM) C336.

本發明的玻璃於玻璃組成中將Al 2O 3的含量限制為11莫耳%以上,將B 2O 3的含量限制為3莫耳%以下,且將Li 2O+Na 2O+K 2O的含量限制為3莫耳%以下。藉此,應變點顯著地上升,從而能夠大幅度地提高玻璃基板的耐熱性。 In the glass composition of the present invention, the content of Al 2 O 3 is limited to 11 mol % or more, the content of B 2 O 3 is limited to 3 mol % or less, and Li 2 O+Na 2 O+K 2 The content of O is limited to 3 mol % or less. Thereby, the strain point rises remarkably, and the heat resistance of a glass substrate can be improved significantly.

而且,本發明的玻璃在玻璃組成中含有5莫耳%~25莫耳%的MgO+CaO+SrO+BaO。藉此,能夠使熱膨脹係數上升,且能夠提高耐失透性。Furthermore, the glass of the present invention contains 5 mol% to 25 mol% of MgO+CaO+SrO+BaO in the glass composition. Thereby, thermal expansion coefficient can be raised, and devitrification resistance can be improved.

第二,本發明的玻璃的B 2O 3的含量較佳為不足1莫耳%。 Second, the B 2 O 3 content of the glass of the present invention is preferably less than 1 mol%.

第三,本發明的玻璃的Li 2O+Na 2O+K 2O的含量較佳為0.2莫耳%以下。 Thirdly, the content of Li 2 O+Na 2 O+K 2 O in the glass of the present invention is preferably 0.2 mol % or less.

第四,本發明的玻璃的莫耳比(MgO+CaO+SrO+BaO)/Al 2O 3較佳為0.5~5。此處,「(MgO+CaO+SrO+BaO)/Al 2O 3」是將MgO、CaO、SrO及BaO的總量除以Al 2O 3的含量所得的值。 Fourth, the molar ratio (MgO+CaO+SrO+BaO)/Al 2 O 3 of the glass of the present invention is preferably 0.5-5. Here, "(MgO+CaO+SrO+BaO)/Al 2 O 3 " is a value obtained by dividing the total amount of MgO, CaO, SrO, and BaO by the content of Al 2 O 3 .

第五,本發明的玻璃的莫耳比MgO/(MgO+CaO+SrO+BaO)較佳為不足0.5。此處,「MgO/(MgO+CaO+SrO+BaO)」是將MgO的含量除以MgO、CaO、SrO及BaO的總量所得的值。Fifth, the glass of the present invention preferably has a molar ratio MgO/(MgO+CaO+SrO+BaO) of less than 0.5. Here, "MgO/(MgO+CaO+SrO+BaO)" is a value obtained by dividing the content of MgO by the total amount of MgO, CaO, SrO, and BaO.

第六,本發明的玻璃的30℃~380℃的溫度範圍內的熱膨脹係數較佳為40×10 -7/℃以上。此處,「30℃~380℃的溫度範圍內的熱膨脹係數」是指利用膨脹計(dilatometer)進行測定所得的平均值。 Sixth, the thermal expansion coefficient of the glass of the present invention in the temperature range of 30°C to 380°C is preferably 40×10 -7 /°C or higher. Here, "the thermal expansion coefficient in the temperature range of 30 degreeC - 380 degreeC" means the average value measured by the dilatometer.

第七,本發明的玻璃的應變點較佳為800℃以上。Seventh, the strain point of the glass of the present invention is preferably 800° C. or higher.

第八,本發明的玻璃的(在高溫黏度10 2.5dPa·s時的溫度-應變點)較佳為900℃以下。此處,「在高溫黏度10 2.5dPa·s時的溫度」是指利用鉑球提拉法進行測定所得的值。 Eighth, the glass of the present invention (temperature-strain point at a high temperature viscosity of 10 2.5 dPa·s) is preferably 900°C or lower. Here, "the temperature at which the high-temperature viscosity is 10 2.5 dPa·s" refers to a value measured by the platinum ball pulling method.

第九,本發明的玻璃在高溫黏度10 2.5dPa·s的黏度時的溫度較佳為1750℃以下。 Ninth, the temperature of the glass of the present invention is preferably below 1750°C when the high temperature viscosity is 10 2.5 dPa·s.

第十,本發明的玻璃較佳為平板形狀。Tenth, the glass of the present invention is preferably in the shape of a flat plate.

第十一,本發明的玻璃較佳為用作用以使半導體結晶成長的基板。Eleventh, the glass of the present invention is preferably used as a substrate for growing semiconductor crystals.

本發明的玻璃以莫耳%計,含有55%~80%的SiO 2、11%~30%的Al 2O 3、0~3%的B 2O 3、0~3%的Li 2O+Na 2O+K 2O、5%~35%的MgO+CaO+SrO+BaO作為玻璃組成。如上所述,以下說明對各成分的含量進行限制的理由。再者,在各成分的說明中,下述的%的表達是指莫耳%。 The glass of the present invention contains 55% to 80% of SiO 2 , 11% to 30% of Al 2 O 3 , 0 to 3% of B 2 O 3 , and 0 to 3% of Li 2 O+ in mole %. Na 2 O+K 2 O, 5% to 35% MgO+CaO+SrO+BaO are used as the glass composition. As mentioned above, the reason for limiting content of each component is demonstrated below. In addition, in description of each component, the following expression of % means mole %.

SiO 2的適當的下限範圍為55%以上、58%以上、60%以上、65%以上,尤其為68%以上,適當的上限範圍較佳為80%以下、75%以下、73%以下、72%以下、71%以下,尤其為70%以下。若SiO 2的含量過少,則容易產生由包含Al 2O 3的失透結晶引起的缺陷,並且應變點容易降低。而且,高溫黏度會降低,從而液相黏度容易降低。另一方面,若SiO 2的含量過多,則熱膨脹係數會不當地降低,而且高溫黏度會升高,熔融性降低,進而容易產生包含SiO 2的失透結晶等。 The appropriate lower limit range of SiO2 is more than 55%, more than 58%, more than 60%, more than 65%, especially more than 68%, and the appropriate upper limit range is preferably less than 80%, less than 75%, less than 73%, and less than 72%. % or less, 71% or less, especially 70% or less. When the content of SiO 2 is too small, defects due to devitrified crystals containing Al 2 O 3 are likely to occur, and the strain point is likely to decrease. Furthermore, the high-temperature viscosity decreases, and the liquid phase viscosity tends to decrease. On the other hand, if the content of SiO2 is too high, the coefficient of thermal expansion will decrease unduly, and the high-temperature viscosity will increase, the meltability will decrease, and devitrification crystals containing SiO2 will easily occur.

Al 2O 3的適當的下限範圍為11%以上、12%以上、13%以上、14%以上,尤其為15%以上,適當的上限範圍為30%以下、25%以下、20%以下、18%以下、17%以下,尤其為16%以下。若Al 2O 3的含量過少,則應變點容易降低,或高溫黏性升高,熔融性容易降低。另一方面,若Al 2O 3的含量過多,則容易產生包含Al 2O 3的失透結晶。 The appropriate lower limit of Al 2 O 3 is 11%, 12%, 13%, 14%, especially 15%, and the appropriate upper limit is 30%, 25%, 20%, 18% % or less, 17% or less, especially 16% or less. When the content of Al 2 O 3 is too small, the strain point tends to decrease, or the high-temperature viscosity increases, and the meltability tends to decrease. On the other hand, when the content of Al 2 O 3 is too large, devitrified crystals containing Al 2 O 3 are likely to be generated.

就兼顧高應變點與高耐失透性的觀點而言,莫耳比SiO 2/Al 2O 3較佳為2~6、3~5.5、3.5~5.5、4~5.5、4.5~5.5,尤其為4.5~5。再者,「SiO 2/Al 2O 3」是將SiO 2的含量除以Al 2O 3的含量所得的值。 From the viewpoint of both high strain point and high devitrification resistance, the molar ratio SiO 2 /Al 2 O 3 is preferably 2-6, 3-5.5, 3.5-5.5, 4-5.5, 4.5-5.5, especially 4.5-5. In addition, " SiO2 / Al2O3 " is the value obtained by dividing the content of SiO2 by the content of Al2O3 .

B 2O 3的適當的上限範圍為3%以下、1%以下、不足1%,尤其為0.1%以下。若B 2O 3的含量過多,則應變點有可能會大幅度地降低。 The appropriate upper limit range of B 2 O 3 is 3% or less, 1% or less, less than 1%, especially 0.1% or less. When the content of B 2 O 3 is too high, the strain point may be significantly lowered.

Li 2O+Na 2O+K 2O的適當的上限範圍為3%以下、1%以下、不足1%、0.5%以下,尤其為0.2%以下。若Li 2O+Na 2O+K 2O的含量過多,則玻璃上所形成的半導體結晶的特性有可能會變差。再者,Li 2O、Na 2O及K 2O的適當的上限範圍分別為3%以下、1%以下、不足1%、0.5%以下、0.3%以下,尤其為0.2%以下。 The appropriate upper limit range of Li 2 O+Na 2 O+K 2 O is 3% or less, 1% or less, less than 1%, 0.5% or less, especially 0.2% or less. When the content of Li 2 O+Na 2 O+K 2 O is too large, the properties of the semiconductor crystal formed on the glass may deteriorate. In addition, the appropriate upper limit ranges of Li 2 O, Na 2 O, and K 2 O are respectively 3% or less, 1% or less, less than 1%, 0.5% or less, 0.3% or less, especially 0.2% or less.

MgO+CaO+SrO+BaO的適當的下限範圍為5%以上、7%以上、9%以上、11%以上、13%以上,尤其為14%以上,適當的上限範圍為35%以下、30%以下、25%以下、20%以下、18%以下、17%以下,尤其為16%以下。若MgO+CaO+SrO+BaO的含量過少,則液相溫度會大幅度地上升,玻璃中容易產生失透結晶,或高溫黏性升高,熔融性容易降低。另一方面,若MgO+CaO+SrO+BaO的含量過多,則應變點容易降低,而且容易產生包含鹼土類元素的失透結晶。The appropriate lower limit range of MgO+CaO+SrO+BaO is 5% or more, 7% or more, 9% or more, 11% or more, 13% or more, especially 14% or more, and the appropriate upper limit range is 35% or less, 30% Less than 25%, less than 20%, less than 18%, less than 17%, especially less than 16%. If the content of MgO+CaO+SrO+BaO is too small, the liquidus temperature will rise significantly, devitrification crystals will easily occur in the glass, or the high-temperature viscosity will increase, and the meltability will easily decrease. On the other hand, if the content of MgO+CaO+SrO+BaO is too large, the strain point will tend to fall, and devitrified crystals containing alkaline earth elements will tend to occur.

MgO的適當的下限範圍為0%以上、1%以上、2%以上、3%以上、4%以上,尤其為5%以上,適當的上限範圍為15%以下、10%以下、8%以下,尤其為7%以下。若MgO的含量過少,則熔融性容易降低,或包含鹼土類元素的結晶的失透性容易升高。另一方面,若MgO的含量過多,則會助長包含Al 2O 3的失透結晶析出而導致液相黏度降低,或導致應變點大幅度地降低。再者,MgO雖具有使熱膨脹係數上升的效果,但在鹼土類氧化物中,MgO的效果最小。 The appropriate lower limit range of MgO is 0% or more, 1% or more, 2% or more, 3% or more, 4% or more, especially 5% or more, and the appropriate upper limit range is 15% or less, 10% or less, 8% or less, Especially less than 7%. When there is too little content of MgO, meltability will fall easily, or the devitrification property of the crystal|crystallization containing an alkaline-earth element will become high easily. On the other hand, if the content of MgO is too high, the precipitation of devitrified crystals including Al 2 O 3 will be promoted, resulting in a decrease in liquid phase viscosity, or a significant decrease in strain point. In addition, although MgO has the effect of increasing the thermal expansion coefficient, the effect of MgO is the smallest among alkaline earth oxides.

CaO的適當的下限範圍為2%以上、3%以上、4%以上、5%以上、6%以上,尤其為7%以上,適當的上限範圍為20%以下、15%以下、12%以下、11%以下、10%以下,尤其為9%以下。若CaO的含量過少,則熔融性容易降低。另一方面,若CaO的含量過多,則液相溫度會上升,玻璃中容易產生失透結晶。再者,CaO與其他鹼土類氧化物相比較,不使應變點降低而改善液相黏度的效果或提高熔融性的效果大,而且使熱膨脹係數上升的效果比MgO更大。The appropriate lower limit range of CaO is 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, especially 7% or more, and the appropriate upper limit range is 20% or less, 15% or less, 12% or less, Below 11%, below 10%, especially below 9%. When there is too little content of CaO, meltability will fall easily. On the other hand, when there is too much content of CaO, a liquidus temperature will rise, and devitrification crystal|crystallization will generate|occur|produce easily in glass. Furthermore, compared with other alkaline earth oxides, CaO has a greater effect of improving the liquid phase viscosity or improving the meltability without lowering the strain point, and has a greater effect of increasing the thermal expansion coefficient than MgO.

SrO的適當的下限範圍為0%以上、1%以上,尤其為2%以上,適當的上限範圍為10%以下、8%以下、7%以下、6%以下、5%以下,尤其為4%以下。若SrO的含量過少,則應變點容易降低。另一方面,若SrO的含量過多,則液相溫度會上升,玻璃中容易產生失透結晶,而且熔融性容易降低。進而,在與CaO共存的情況下,若SrO的含量增多,則存在耐失透性降低的傾向。再者,SrO與MgO或CaO相比較,使熱膨脹係數上升的效果更大。The appropriate lower limit range of SrO is 0% or more, 1% or more, especially 2% or more, and the appropriate upper limit range is 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, especially 4% the following. When there is too little content of SrO, a strain point will fall easily. On the other hand, if the content of SrO is too large, the liquidus temperature will rise, devitrification crystals will easily occur in the glass, and the meltability will tend to decrease. Furthermore, when it coexists with CaO, when content of SrO increases, there exists a tendency for devitrification resistance to fall. Furthermore, SrO has a greater effect of raising the thermal expansion coefficient than MgO or CaO.

BaO的適當的下限範圍為0%以上、3%以上、4%以上、5%以上、6%以上、7%以上,尤其為8%以上,適當的上限範圍為15%以下、12%以下、11%以下,尤其為10%以下。若BaO的含量過少,則應變點或熱膨脹係數容易降低。另一方面,若BaO的含量過多,則液相溫度會上升,玻璃中容易產生失透結晶。而且,熔融性容易降低。再者,BaO在鹼土類金屬氧化物中,使熱膨脹係數或應變點上升的效果最大。The appropriate lower limit range of BaO is 0% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, especially 8% or more, and the appropriate upper limit range is 15% or less, 12% or less, Below 11%, especially below 10%. When the content of BaO is too small, the strain point and the coefficient of thermal expansion tend to decrease. On the other hand, when there is too much content of BaO, a liquidus temperature will rise, and devitrification crystal|crystallization will generate|occur|produce easily in glass. Furthermore, meltability tends to decrease. Furthermore, BaO has the greatest effect of increasing the thermal expansion coefficient or strain point among alkaline earth metal oxides.

就提高耐失透性的觀點而言,莫耳比MgO/CaO的下限範圍較佳為0.1以上、0.2以上、0.3以上,尤其為0.4以上,上限範圍較佳為2以下、1以下、0.8以下、0.7以下,尤其為0.6以下。再者,「MgO/CaO」是指將MgO的含量除以CaO的含量所得的值。From the viewpoint of improving devitrification resistance, the lower limit range of the molar ratio MgO/CaO is preferably 0.1 or more, 0.2 or more, 0.3 or more, especially 0.4 or more, and the upper limit range is preferably 2 or less, 1 or less, and 0.8 or less. , 0.7 or less, especially 0.6 or less. In addition, "MgO/CaO" means the value which divided the content of MgO by the content of CaO.

就提高耐失透性的觀點而言,莫耳比BaO/CaO的下限範圍較佳為0.2以上、0.5以上、0.6以上、0.7以上,尤其為0.8以上,上限範圍較佳為5以下、4.5以下、3以下、2.5以下,尤其為2以下。再者,「BaO/CaO」是指將BaO的含量除以CaO的含量所得的值。From the viewpoint of improving devitrification resistance, the lower limit range of the molar ratio BaO/CaO is preferably 0.2 or more, 0.5 or more, 0.6 or more, 0.7 or more, especially 0.8 or more, and the upper limit range is preferably 5 or less and 4.5 or less , 3 or less, 2.5 or less, especially 2 or less. In addition, "BaO/CaO" means the value which divided the content of BaO by the content of CaO.

鑒於應變點與熔融性的平衡,莫耳比(MgO+CaO+SrO+BaO)/Al 2O 3的下限範圍較佳為0.5以上、0.6以上、0.7以上,尤其為0.8以上,上限範圍較佳為5.0以下、4.0以下、3.0以下、2.0以下、1.5以下、1.2以下,尤其為1.1以下。 In view of the balance between strain point and melting property, the lower limit range of the molar ratio (MgO+CaO+SrO+BaO)/Al 2 O 3 is preferably 0.5 or more, 0.6 or more, 0.7 or more, especially 0.8 or more, and the upper limit range is better 5.0 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.5 or less, 1.2 or less, especially 1.1 or less.

莫耳比MgO/(MgO+CaO+SrO+BaO)較佳為0.6以下、不足0.5、0.4以下、0.3以下、0.2以下,尤其為0.1以下。MgO是使應變點大幅度地降低的成分,其在MgO的含量少的區域中,使應變點降低的效果顯著。藉此,較佳為鹼土類金屬氧化物中的MgO的含有比例少。The molar ratio MgO/(MgO+CaO+SrO+BaO) is preferably 0.6 or less, less than 0.5, 0.4 or less, 0.3 or less, 0.2 or less, especially 0.1 or less. MgO is a component that greatly lowers the strain point, and the effect of lowering the strain point is remarkable in an area where the content of MgO is small. Accordingly, it is preferable that the content ratio of MgO in the alkaline earth metal oxide is small.

7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO]較佳為100%以下、90%以下、80%以下、70%以下、65%以下,尤其為60%以下。鹼土類金屬元素均具有使應變點降低的效果,但元素的離子半徑越小,則其影響越大。藉此,若以不使離子半徑小的鹼土類元素的比例增大的方式,對7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO]的上限範圍進行限制,則能夠優先提高應變點。再者,[MgO]是指MgO的含量,[CaO]是指CaO的含量,[SrO]是指SrO的含量,[BaO]是指BaO的含量。而且,「7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO]」是指7倍的[MgO]、5倍的[CaO]、4倍的[SrO]及4倍的[BaO]的總量。7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO] is preferably 100% or less, 90% or less, 80% or less, 70% or less, 65% or less, especially 60% the following. All alkaline earth metal elements have the effect of lowering the strain point, but the smaller the ionic radius of the element, the greater the effect. In this way, the upper limit of 7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO] is limited so as not to increase the proportion of alkaline earth elements with small ionic radii , the strain point can be increased preferentially. In addition, [MgO] means the content of MgO, [CaO] means the content of CaO, [SrO] means the content of SrO, and [BaO] means the content of BaO. Moreover, "7×[MgO]+5×[CaO]+4×[SrO]+4×[BaO]" means 7 times [MgO], 5 times [CaO], 4 times [SrO] and 4 times the total amount of [BaO].

21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO]較佳為200%以上、210%以上、220%以上、230%以上、240%以上、250%以上,尤其為300%~1000%。鹼土類金屬元素均具有提高熔融性的效果,但元素的離子半徑越小,則其影響越大。藉此,若以不使離子半徑小的鹼土類元素的比例增大的方式,對21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO]的下限範圍進行限制,則能夠優先提高熔融性。然而,若21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO]過大,則應變點有可能會降低。再者,「21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO]」是指21倍的[MgO]、20倍的[CaO]、15倍的[SrO]及12倍的[BaO]的總量。21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO] is preferably 200% or more, 210% or more, 220% or more, 230% or more, 240% or more, 250% or more, In particular, it is 300% to 1000%. Alkaline earth metal elements all have the effect of improving the meltability, but the smaller the ionic radius of the element, the greater the effect. In this way, the lower limit of 21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO] is limited so as not to increase the proportion of alkaline earth elements with small ionic radii , the meltability can be preferentially improved. However, if 21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO] is too large, the strain point may decrease. Furthermore, "21×[MgO]+20×[CaO]+15×[SrO]+12×[BaO]" means 21 times [MgO], 20 times [CaO], and 15 times [SrO] And 12 times the total amount of [BaO].

除了所述成分以外,亦可將以下的成分導入至玻璃組成中。In addition to the above components, the following components may also be introduced into the glass composition.

ZnO是提高熔融性的成分,但若玻璃組成中大量地含有該ZnO,則玻璃容易失透,而且應變點容易降低。藉此,ZnO的含量較佳為0~5%、0~3%、0~0.5%、0~0.3%,尤其為0~0.1%。ZnO is a component that improves the meltability, but if the glass composition contains a large amount of ZnO, the glass is likely to be devitrified and the strain point is likely to be lowered. Accordingly, the content of ZnO is preferably 0-5%, 0-3%, 0-0.5%, 0-0.3%, especially 0-0.1%.

ZrO 2是提高楊氏模量(Young's modulus)的成分。ZrO 2的含量較佳為0~5%、0~3%、0~0.5%、0~0.2%,尤其為0~0.02%。若ZrO 2的含量過多,則液相溫度會上升,鋯石(zircon)的失透結晶容易析出。 ZrO 2 is a component that increases Young's modulus. The content of ZrO 2 is preferably 0-5%, 0-3%, 0-0.5%, 0-0.2%, especially 0-0.02%. If the content of ZrO 2 is too high, the liquidus temperature will rise, and devitrified crystals of zircon (zircon) will easily precipitate.

TiO 2是降低高溫黏性而提高熔融性的成分,並且是抑制曝曬作用(solarization)的成分,但若玻璃組成中大量地含有該TiO 2,則玻璃容易著色。藉此,TiO 2的含量較佳為0~5%、0~3%、0~1%、0~0.1%,尤其為0~0.02%。 TiO 2 is a component that lowers high-temperature viscosity to improve meltability, and is a component that suppresses solarization. However, when the glass composition contains a large amount of TiO 2 , the glass tends to be colored. Accordingly, the content of TiO 2 is preferably 0-5%, 0-3%, 0-1%, 0-0.1%, especially 0-0.02%.

P 2O 5是提高耐失透性的成分,但若玻璃組成中大量地含有該P 2O 5,則玻璃容易分相而變得乳白,而且耐水性有可能會大幅度地降低。藉此,P 2O 5的含量較佳為0~5%、0~4%、0~3%、0~不足2%、0~1%、0~0.5%,尤其為0~0.1%。 P 2 O 5 is a component that improves the devitrification resistance, but if the glass composition contains a large amount of this P 2 O 5 , the glass is likely to phase-separate and become opalescent, and there is a possibility that the water resistance may be significantly lowered. Accordingly, the content of P 2 O 5 is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to less than 2%, 0 to 1%, 0 to 0.5%, especially 0 to 0.1%.

SnO 2是在高溫區域中具有良好的澄清作用的成分,並且是使高溫黏性降低的成分。SnO 2的含量較佳為0~1%、0.01%~0.5%、0.01%~0.3%,尤其為0.04%~0.1%。若SnO 2的含量過多,則SnO 2的失透結晶容易析出。 SnO 2 is a component that has a good clarification effect in a high-temperature region, and is a component that lowers high-temperature viscosity. The content of SnO 2 is preferably 0-1%, 0.01%-0.5%, 0.01%-0.3%, especially 0.04%-0.1%. When the content of SnO 2 is too large, devitrified crystals of SnO 2 are easily precipitated.

如上所述,對於本發明的玻璃而言,較佳為添加SnO 2作為澄清劑,但只要不損害玻璃特性,則亦可添加直至1%為止的CeO 2、SO 3、C、金屬粉末(例如Al、Si等)作為澄清劑。 As mentioned above, it is preferable to add SnO 2 as a clarifying agent to the glass of the present invention, but CeO 2 , SO 3 , C, metal powder (such as Al, Si, etc.) as clarifiers.

As 2O 3、Sb 2O 3、F、Cl亦作為澄清劑而有效地發揮作用,本發明的玻璃並不排除含有該些成分,但就環境的觀點而言,該些成分的含量分別較佳為不足0.1%,尤其為不足0.05%。 As 2 O 3 , Sb 2 O 3 , F, and Cl also function effectively as clarifiers, and the glass of the present invention does not exclude the inclusion of these components, but from an environmental point of view, the contents of these components are relatively low. It is preferably less than 0.1%, especially less than 0.05%.

在包含0.01%~0.5%的SnO 2的情況下,若Rh 2O 3的含量過多,則玻璃容易著色。再者,Rh 2O 3有可能會從鉑製造容器混入。Rh 2O 3的含量較佳為0~0.0005%,更佳為0.00001%~0.0001%。 In the case of containing 0.01% to 0.5% of SnO 2 , if the content of Rh 2 O 3 is too large, the glass will be easily colored. Furthermore, Rh 2 O 3 may be mixed in from the platinum manufacturing container. The content of Rh 2 O 3 is preferably from 0 to 0.0005%, more preferably from 0.00001% to 0.0001%.

SO 3是作為雜質而從原料混入的成分,但若SO 3的含量過多,則會在熔融或成形過程中產生被稱為再沸(reboil)的氣泡,從而有可能使玻璃中產生缺陷。SO 3的適當的下限範圍為0.0001%以上,適當的上限範圍為0.005%以下、0.003%以下、0.002%以下,尤其為0.001%以下。 SO 3 is a component mixed from the raw material as an impurity, but if the content of SO 3 is too high, bubbles called reboil will be generated during melting or forming, which may cause defects in the glass. The appropriate lower limit range of SO 3 is 0.0001% or more, and the appropriate upper limit range is 0.005% or less, 0.003% or less, 0.002% or less, especially 0.001% or less.

稀土類氧化物(Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等的氧化物)的含量較佳為不足2%、1%以下、不足0.5%,尤其為不足0.1%。特別是La 2O 3+Y 2O 3的含量較佳為不足2%、不足1%、不足0.5%,尤其為不足0.1%。La 2O 3的含量較佳為不足2%、不足1%、不足0.5%,尤其為不足0.1%。若稀土類氧化物的含量過多,則批次成本(batch cost)容易增加。再者,「Y 2O 3+La 2O 3」為Y 2O 3與La 2O 3的總量。 The content of rare earth oxides (oxides of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.) is preferably less than 2%, Less than 1%, less than 0.5%, especially less than 0.1%. In particular, the content of La 2 O 3 +Y 2 O 3 is preferably less than 2%, less than 1%, less than 0.5%, especially less than 0.1%. The content of La 2 O 3 is preferably less than 2%, less than 1%, less than 0.5%, especially less than 0.1%. If the content of the rare earth oxide is too high, the batch cost will easily increase. In addition, "Y 2 O 3 +La 2 O 3 " is the total amount of Y 2 O 3 and La 2 O 3 .

本發明的玻璃較佳為具有以下的特性。The glass of the present invention preferably has the following properties.

密度較佳為3.20 g/cm 3以下、3.00 g/cm 3以下、2.90 g/cm 3以下,尤其為2.80 g/cm 3以下。若密度過高,則難以實現電子元件的輕量化。 The density is preferably 3.20 g/cm 3 or less, 3.00 g/cm 3 or less, 2.90 g/cm 3 or less, especially 2.80 g/cm 3 or less. If the density is too high, it will be difficult to reduce the weight of electronic components.

30℃~380℃的溫度範圍中的熱膨脹係數較佳為40×10 -7/℃以上、42×10 -7/℃以上、44×10 -7/℃以上、46×10 -7/℃以上,尤佳為48×10 -7/℃~80×10 -7/℃。若30℃~380℃的溫度範圍中的熱膨脹係數過低,則半導體結晶(例如氮化物半導體結晶)與玻璃基板的熱膨脹係數不匹配,玻璃基板容易翹曲,或半導體結晶容易產生裂紋。 The thermal expansion coefficient in the temperature range of 30°C to 380°C is preferably 40×10 -7 /°C or higher, 42×10 -7 /°C or higher, 44×10 -7 /°C or higher, 46×10 -7 /°C or higher , preferably 48×10 -7 /°C to 80×10 -7 /°C. If the thermal expansion coefficient in the temperature range of 30° C. to 380° C. is too low, the thermal expansion coefficients of semiconductor crystals (for example, nitride semiconductor crystals) and the glass substrate will not match, and the glass substrate will easily warp, or the semiconductor crystal will easily crack.

應變點較佳為超過700℃、750℃以上、780℃以上、800℃以上、810℃以上、820℃以上,尤佳為830℃~1000℃。若應變點過低,則無法使熱處理溫度實現高溫化,難以提高半導體結晶的半導體特性。The strain point is preferably higher than 700°C, higher than 750°C, higher than 780°C, higher than 800°C, higher than 810°C, higher than 820°C, particularly preferably 830°C to 1000°C. If the strain point is too low, the heat treatment temperature cannot be increased, making it difficult to improve the semiconductor characteristics of the semiconductor crystal.

本發明的SiO 2-Al 2O 3-RO(RO是指鹼土類金屬氧化物)系玻璃一般難以熔融。因此,熔融性的提高成為課題。若提高熔融性,則由氣泡、異物等引起的不良率會降低,因此,能夠大量且廉價地供給高品質的玻璃基板。另一方面,若高溫黏度過高,則難以利用熔融步驟來促進除氣。藉此,在高溫黏度10 2.5dPa·s時的溫度較佳為1750℃以下、1700℃以下、1680℃以下、1670℃以下、1650℃以下,尤其為1630℃以下。再者,在高溫黏度10 2.5dPa·s時的溫度相當於熔融溫度,該溫度越低,則熔融性越優異。 The SiO 2 -Al 2 O 3 -RO (RO means alkaline earth metal oxide)-based glass of the present invention is generally difficult to melt. Therefore, improvement of meltability becomes a subject. If the meltability is improved, the defective rate due to air bubbles, foreign matter, etc. will be reduced, and thus a large amount of high-quality glass substrates can be supplied at low cost. On the other hand, if the high-temperature viscosity is too high, it is difficult to promote degassing by the melting step. Accordingly, the temperature at high temperature viscosity of 10 2.5 dPa·s is preferably below 1750°C, below 1700°C, below 1680°C, below 1670°C, below 1650°C, especially below 1630°C. Furthermore, the temperature at a high-temperature viscosity of 10 2.5 dPa·s corresponds to the melting temperature, and the lower the temperature, the better the meltability.

就兼顧高應變點與低熔融溫度的觀點而言,(在10 2.5dPa·s時的溫度-應變點)較佳為900℃以下、850℃以下,尤其為800℃以下。 From the viewpoint of achieving both a high strain point and a low melting temperature, (temperature-strain point at 10 2.5 dPa·s) is preferably 900°C or lower, 850°C or lower, especially 800°C or lower.

在成形為平板形狀的情況下,耐失透性變得重要。若考慮到本發明的SiO 2-Al 2O 3-RO系玻璃的成形溫度,則液相溫度較佳為1450℃以下、1400℃以下,尤其為1300℃以下。而且,液相黏度較佳為10 3.0dPa·s以上、10 3.5dPa·s以上,尤其為10 4.0dPa·s以上。再者,「液相溫度」是指將通過30目(mesh)(500 μm)的標準篩且殘留於50目(300 μm)的標準篩的玻璃粉末放入至鉑舟皿(platinum boat)中,在溫度梯度爐中保持24小時,對結晶析出時的溫度進行測定所得的值。「液相黏度」是指利用鉑球提拉法對液相溫度下的玻璃的黏度進行測定所得的值。 When forming into a flat plate shape, devitrification resistance becomes important. Considering the forming temperature of the SiO 2 -Al 2 O 3 -RO glass of the present invention, the liquidus temperature is preferably 1450°C or lower, 1400°C or lower, especially 1300°C or lower. Furthermore, the liquid phase viscosity is preferably at least 10 3.0 dPa·s, at least 10 3.5 dPa·s, especially at least 10 4.0 dPa·s. Furthermore, "liquidus temperature" refers to putting glass powder that passed through a 30 mesh (500 μm) standard sieve and remained on a 50 mesh (300 μm) standard sieve into a platinum boat , the value obtained by measuring the temperature at the time of crystallization in a temperature gradient furnace for 24 hours. The "liquidus viscosity" refers to a value obtained by measuring the viscosity of glass at the liquidus temperature by the platinum ball pulling method.

本發明的玻璃能利用各種成形方法成形。例如,能利用溢流下拉(overflow down draw)法、流孔下拉(slot down draw)法、再拉(redraw)法、浮式法、碾平(roll out)法等使玻璃基板成形。再者,若利用溢流下拉法使玻璃基板成形,則容易製作表面平滑性高的玻璃基板。The glass of the present invention can be formed by various forming methods. For example, the glass substrate can be shaped by an overflow down draw method, a slot down draw method, a redraw method, a float method, a roll out method, or the like. Furthermore, if the glass substrate is shaped by the overflow down-draw method, it is easy to produce a glass substrate with high surface smoothness.

在本發明的玻璃為平板形狀的情況下,其板厚較佳為1.0 mm以下、0.7 mm以下、0.5 mm以下,尤其為0.4 mm以下。板厚越小,則越容易使電子元件輕量化。另一方面,板厚越小,則玻璃基板越容易撓曲,但本發明的玻璃由於楊氏模量或比楊氏模量(specific Young's modulus)高,故而不易產生由撓曲引起的不良情況。再者,能利用成形時的流量或板提拉速度等來調整板厚。When the glass of the present invention is in the form of a plate, the plate thickness is preferably not more than 1.0 mm, not more than 0.7 mm, not more than 0.5 mm, especially not more than 0.4 mm. The smaller the plate thickness, the easier it is to reduce the weight of electronic components. On the other hand, the smaller the plate thickness, the easier the glass substrate is to bend, but the glass of the present invention has a higher Young's modulus or higher specific Young's modulus, so it is less likely to cause defects caused by bending . Furthermore, the plate thickness can be adjusted by utilizing the flow rate during forming, the plate pulling speed, and the like.

對於本發明的玻璃而言,若使β-OH值降低,則能夠提高應變點。β-OH值較佳為0.45/mm以下、0.40/mm以下、0.35/mm以下、0.30/mm以下、0.25/mm以下、0.20/mm以下,尤其為0.15/mm以下。若β-OH值過大,則應變點容易降低。再者,若β-OH值過小,則熔融性容易降低。藉此,β-OH值較佳為0.01/mm以上,尤其為0.05/mm以上。In the glass of the present invention, if the β-OH value is lowered, the strain point can be increased. The β-OH value is preferably 0.45/mm or less, 0.40/mm or less, 0.35/mm or less, 0.30/mm or less, 0.25/mm or less, 0.20/mm or less, especially 0.15/mm or less. When the β-OH value is too large, the strain point tends to decrease. Furthermore, when the β-OH value is too small, the meltability tends to decrease. Accordingly, the β-OH value is preferably at least 0.01/mm, especially at least 0.05/mm.

可列舉以下的方法作為使β-OH值降低的方法。(1)選擇含水量低的原料。(2)添加使玻璃中的水分量減少的成分(Cl、SO 3等)。(3)使爐內環境中的水分量降低。(4)在熔融玻璃中進行N 2起泡。(5)採用小型熔融爐。(6)加快熔融玻璃的流量。(7)採用電熔融法。 The following method can be mentioned as a method of reducing a (beta)-OH value. (1) Choose raw materials with low water content. (2) Add components (Cl, SO 3 , etc.) that reduce the moisture content in the glass. (3) Reduce the moisture content in the furnace environment. (4) N2 bubbling in molten glass. (5) Use a small melting furnace. (6) Speed up the flow of molten glass. (7) The electric melting method is adopted.

此處,「β-OH值」是指使用傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer,FT-IR)測定玻璃的透射率,且使用下述的式子而求出的值。 β-OH值=(1/X)log(T 1/T 2) X:玻璃壁厚(mm) T 1:3846 cm -1的參照波長下的透射率(%) T 2:3600 cm -1附近的羥基吸收波長下的最小透射率(%) [實施例] Here, the "β-OH value" refers to a value obtained by measuring the transmittance of glass using a Fourier Transform Infrared Spectrometer (Fourier Transform Infrared Spectrometer, FT-IR) and using the following formula. β-OH value=(1/X)log(T 1 /T 2 ) X: Glass wall thickness (mm) T 1 : Transmittance (%) at reference wavelength of 3846 cm -1 T 2 : 3600 cm -1 Minimum transmittance (%) at nearby hydroxyl absorption wavelength [Example]

以下,基於實施例來詳細地說明本發明。再者,以下的實施例僅為例示。本發明完全不限定於以下的實施例。Hereinafter, the present invention will be described in detail based on examples. In addition, the following embodiment is only an illustration. The present invention is not limited to the following examples at all.

表1~表4表示本發明的實施例(試樣No.1~No.63)。Tables 1 to 4 show Examples (sample No. 1 to No. 63) of the present invention.

[表1]    No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 No.15 No.16 組成(mol%) SiO 2 59.9 59.9 64.9 64.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 63.9 63.9 63.9 Al 2O 3 25.0 25.0 20.0 20.0 15.0 15.0 15.0 15.0 15.0 13.0 13.0 13.0 13.0 18.0 18.0 18.0 B 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 9.0 0.0 0.0 CaO 0.0 0.0 0.0 0.0 0.0 0.0 7.5 7.5 0.0 0.0 8.5 8.5 0.0 0.0 9.0 9.0 SrO 15.0 0.0 15.0 0.0 15.0 0.0 7.5 0.0 7.5 0.0 8.5 0.0 8.5 0.0 9.0 0.0 BaO 0.0 15.0 0.0 15.0 0.0 15.0 0.0 7.5 7.5 8.5 0.0 8.5 8.5 9.0 0.0 9.0 SnO 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Li 2O+Na 2O+K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0 (MgO+CaO+SrO+BaO)/Al 2O 3 0.60 0.60 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.31 1.31 1.31 1.31 1.00 1.00 1.00 ρ[g/cm 3] 2.82 3.01 2.78 2.98 2.73 2.93 2.62 2.74 2.84 2.76 2.65 2.78 2.90 2.82 2.71 2.84 α[×10 -7/℃] 40.9 43.5 41.7 45.3 44.6 49.0 41.0 43.0 46.4 40.3 44.5 46.9 49.6 40.1 45.1 46.8 Ps[℃] 822 未測定 824 832 823 832 806 798 816 781 783 769 779 777 802 797 Ta[℃] 875 未測定 880 894 882 896 863 816 879 825 826 819 824 814 856 855 Ts[℃] 未測定 未測定 1091 1120 1107 1137 1075 1091 1117 1060 1052 1051 1063 1042 1060 1065 10 4.0dPa·s[℃] 未測定 未測定 1365 1413 1416 1471 1393 1411 1444 1383 1367 1382 1404 1326 1328 1346 10 3.0dPa·s[℃] 未測定 未測定 1506 1554 1573 1630 1547 1570 1605 1545 1528 1549 1576 1467 1468 1489 10 2.5dPa·s[℃] 未測定 未測定 1595 1645 1674 1736 1648 1673 1708 1651 1633 1656 1686 1559 1559 1582 TL[℃] 未測定 未測定 1517 未測定 1497 未測定 1404 1388 1484 1293 1385 1328 1438 1376 1498 1352 logηTL[dPa·s] 未測定 未測定 2.9 未測定 3.4 未測定 3.9 4.2 3.7 4.7 3.9 4.4 3.8 3.6 2.8 4.0 10 2.5dPa·s-Ps[℃] 未測定 未測定 771 813 851 904 842 874 892 870 850 887 907 782 757 785 β-OH[/mm] 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 [Table 1] No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 No.15 No.16 Composition (mol%) SiO 2 59.9 59.9 64.9 64.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 63.9 63.9 63.9 Al 2 O 3 25.0 25.0 20.0 20.0 15.0 15.0 15.0 15.0 15.0 13.0 13.0 13.0 13.0 18.0 18.0 18.0 B 2 O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 9.0 0.0 0.0 CaO 0.0 0.0 0.0 0.0 0.0 0.0 7.5 7.5 0.0 0.0 8.5 8.5 0.0 0.0 9.0 9.0 SrO 15.0 0.0 15.0 0.0 15.0 0.0 7.5 0.0 7.5 0.0 8.5 0.0 8.5 0.0 9.0 0.0 BaO 0.0 15.0 0.0 15.0 0.0 15.0 0.0 7.5 7.5 8.5 0.0 8.5 8.5 9.0 0.0 9.0 SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Li2O + Na2O + K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0 (MgO+CaO+SrO+BaO)/Al 2 O 3 0.60 0.60 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.31 1.31 1.31 1.31 1.00 1.00 1.00 ρ[g/cm 3 ] 2.82 3.01 2.78 2.98 2.73 2.93 2.62 2.74 2.84 2.76 2.65 2.78 2.90 2.82 2.71 2.84 α[×10 -7 /℃] 40.9 43.5 41.7 45.3 44.6 49.0 41.0 43.0 46.4 40.3 44.5 46.9 49.6 40.1 45.1 46.8 Ps[°C] 822 Not determined 824 832 823 832 806 798 816 781 783 769 779 777 802 797 Ta[°C] 875 Not determined 880 894 882 896 863 816 879 825 826 819 824 814 856 855 Ts[°C] Not determined Not determined 1091 1120 1107 1137 1075 1091 1117 1060 1052 1051 1063 1042 1060 1065 10 4.0 dPa s[°C] Not determined Not determined 1365 1413 1416 1471 1393 1411 1444 1383 1367 1382 1404 1326 1328 1346 10 3.0 dPa s[°C] Not determined Not determined 1506 1554 1573 1630 1547 1570 1605 1545 1528 1549 1576 1467 1468 1489 10 2.5 dPa s[°C] Not determined Not determined 1595 1645 1674 1736 1648 1673 1708 1651 1633 1656 1686 1559 1559 1582 TL[°C] Not determined Not determined 1517 Not determined 1497 Not determined 1404 1388 1484 1293 1385 1328 1438 1376 1498 1352 logηTL[dPa s] Not determined Not determined 2.9 Not determined 3.4 Not determined 3.9 4.2 3.7 4.7 3.9 4.4 3.8 3.6 2.8 4.0 10 2.5 dPa s-Ps[°C] Not determined Not determined 771 813 851 904 842 874 892 870 850 887 907 782 757 785 β-OH[/mm] Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined

[表2]    No.17 No.18 No.19 No.20 No.21 No.22 No.23 No.24 No.25 No.26 No.27 No.28 No.29 No.30 No.31 No.32 組成(mol%) SiO 2 63.9 63.9 58.9 64.2 71.8 63.9 63.9 63.9 63.9 69.4 68.4 69.9 69.9 69.9 69.9 66.6 Al 2O 3 18.0 16.0 11.6 12.7 14.2 16.0 16.0 16.0 16.0 14.8 14.3 15.0 15.0 15.0 15.0 14.3 B 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 10.0 29.4 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CaO 0.0 0.0 0.0 23.0 0.0 0.0 10.0 10.0 0.0 7.4 7.2 10.0 10.0 5.0 5.0 4.8 SrO 9.0 10.0 0.0 0.0 13.9 0.0 10.0 0.0 10.0 0.0 0.0 5.0 0.0 10.0 5.0 0.0 BaO 9.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0 10.0 7.4 7.2 0.0 5.0 0.0 5.0 14.3 SnO 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 2.9 0.1 0.1 0.1 0.1 0.1 Li 2O+Na 2O+K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 18.0 20.0 29.4 23.0 13.9 20.0 20.0 20.0 20.0 14.8 14.4 15.0 15.0 15.0 15.0 19.0 (MgO+CaO+SrO+BaO)/Al 2O 3 1.00 1.25 2.53 1.82 0.98 1.25 1.25 1.25 1.25 1.00 1.01 1.00 1.00 1.00 1.00 1.33 ρ[g/cm 3] 2.96 2.72 2.61 2.61 2.70 2.86 2.74 2.88 3.02 未測定 未測定 2.59 2.66 2.66 2.73 2.99 α[×10 -7/℃] 49.9 41.5 42.0 50.7 42.9 43.8 47.3 50.3 53.8 未測定 未測定 40.9 42.1 42.4 43.8 53.2 Ps[℃] 817 761 742 754 822 766 779 768 777 未測定 未測定 804 798 808 800 758 Ta[℃] 876 813 787 802 885.5 820 832 823 833 未測定 未測定 861 856 867 862 816 Ts[℃] 1053 1020 960 988 1165 1033 1034 1036 1052 未測定 未測定 1080 1082 1089 1094 1041 10 4.0dPa·s[℃] 1382 1294 1180 1243 1438 1314 1309 1325 1364 未測定 未測定 1374 1392 1398 1410 1359 10 3.0dPa·s[℃] 1528 1433 1296 1382 1602 1456 1451 1472 1504 未測定 未測定 1534 1547 1556 1568 1517 10 2.5dPa·s[℃] 1620 1524 1374 1475 1708 1547 1543 1565 1598 未測定 未測定 1630 1649 1658 1669 1617 TL[℃] 未測定 1374 1308 1324 1463 1390 1474 未測定 未測定 未測定 未測定 1399 1361 >1469 1391 >1510 logηTL[dPa·s] 未測定 3.4 2.9 3.4 3.8 3.4 2.9 未測定 未測定 未測定 未測定 3.8 4.3 <3.5 4.2 <3.0 10 2.5dPa·s-Ps[℃] 803 763 632 721 886 781 764 797 821 未測定 未測定 826 851 850 869 859 β-OH[/mm] 未測定 未測定 未測定 未測定 0.1 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 [Table 2] No.17 No.18 No.19 No.20 No.21 No.22 No.23 No.24 No.25 No.26 No.27 No.28 No.29 No.30 No.31 No.32 Composition (mol%) SiO 2 63.9 63.9 58.9 64.2 71.8 63.9 63.9 63.9 63.9 69.4 68.4 69.9 69.9 69.9 69.9 66.6 Al 2 O 3 18.0 16.0 11.6 12.7 14.2 16.0 16.0 16.0 16.0 14.8 14.3 15.0 15.0 15.0 15.0 14.3 B 2 O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 10.0 29.4 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CaO 0.0 0.0 0.0 23.0 0.0 0.0 10.0 10.0 0.0 7.4 7.2 10.0 10.0 5.0 5.0 4.8 SrO 9.0 10.0 0.0 0.0 13.9 0.0 10.0 0.0 10.0 0.0 0.0 5.0 0.0 10.0 5.0 0.0 BaO 9.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0 10.0 7.4 7.2 0.0 5.0 0.0 5.0 14.3 SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 2.9 0.1 0.1 0.1 0.1 0.1 Li2O + Na2O + K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 18.0 20.0 29.4 23.0 13.9 20.0 20.0 20.0 20.0 14.8 14.4 15.0 15.0 15.0 15.0 19.0 (MgO+CaO+SrO+BaO)/Al 2 O 3 1.00 1.25 2.53 1.82 0.98 1.25 1.25 1.25 1.25 1.00 1.01 1.00 1.00 1.00 1.00 1.33 ρ[g/cm 3 ] 2.96 2.72 2.61 2.61 2.70 2.86 2.74 2.88 3.02 Not determined Not determined 2.59 2.66 2.66 2.73 2.99 α[×10 -7 /℃] 49.9 41.5 42.0 50.7 42.9 43.8 47.3 50.3 53.8 Not determined Not determined 40.9 42.1 42.4 43.8 53.2 Ps[°C] 817 761 742 754 822 766 779 768 777 Not determined Not determined 804 798 808 800 758 Ta[°C] 876 813 787 802 885.5 820 832 823 833 Not determined Not determined 861 856 867 862 816 Ts[°C] 1053 1020 960 988 1165 1033 1034 1036 1052 Not determined Not determined 1080 1082 1089 1094 1041 10 4.0 dPa s[°C] 1382 1294 1180 1243 1438 1314 1309 1325 1364 Not determined Not determined 1374 1392 1398 1410 1359 10 3.0 dPa s[°C] 1528 1433 1296 1382 1602 1456 1451 1472 1504 Not determined Not determined 1534 1547 1556 1568 1517 10 2.5 dPa s[°C] 1620 1524 1374 1475 1708 1547 1543 1565 1598 Not determined Not determined 1630 1649 1658 1669 1617 TL[°C] Not determined 1374 1308 1324 1463 1390 1474 Not determined Not determined Not determined Not determined 1399 1361 >1469 1391 >1510 logηTL[dPa s] Not determined 3.4 2.9 3.4 3.8 3.4 2.9 Not determined Not determined Not determined Not determined 3.8 4.3 <3.5 4.2 <3.0 10 2.5 dPa s-Ps[°C] 803 763 632 721 886 781 764 797 821 Not determined Not determined 826 851 850 869 859 β-OH[/mm] Not determined Not determined Not determined Not determined 0.1 Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined

[表3]    No.33 No.34 No.35 No.36 No.37 No.38 No.39 No.40 No.41 No.42 No.43 No.44 No.45 No.46 No.47 No.48 組成(mol%) SiO 2 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 Al 2O 3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 B 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 0.0 5.0 0.0 2.5 2.5 0.0 1.0 1.0 1.0 2.5 2.5 2.5 2.5 5.0 2.5 CaO 0.0 0.0 0.0 5.0 5.0 5.0 10.0 6.0 6.0 6.0 0.0 0.0 0.0 0.0 0.0 2.5 SrO 10.0 5.0 0.0 0.0 2.5 0.0 2.5 8.0 4.0 0.0 12.5 7.5 5.0 0.0 2.5 5.0 BaO 5.0 10.0 10.0 10.0 5.0 7.5 2.5 0.0 4.0 8.0 0.0 5.0 7.5 12.5 7.5 5.0 SnO 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Li 2O+Na 2O+K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 18.0 20.0 29.4 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 (MgO+CaO+SrO+BaO)/Al 2O 3 1.20 1.33 1.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ρ[g/cm 3] 2.80 2.87 2.80 2.79 2.69 2.72 2.62 2.63 2.68 2.74 2.69 2.75 2.79 2.84 2.76 2.73 α[×10 -7/℃] 45.9 47.4 40.7 44.6 40.5 41.0 41.2 41.0 41.6 42.5 41.3 42.3 43.0 44.3 40.1 41.3 Ps[℃] 818 818 788 798 779 780 797 795 790 788 793 790 788 795 783 786 Ta[℃] 880 882 850 860 839 840 856 854 850 849 853 852 851 860 844 846 Ts[℃] 1112 1121 1087 1100 1076 1080 1080 1080 1082 1088 1085 1092 1098 1118 1081 1084 10 4.0dPa·s[℃] 1430 1453 1411 1432 1392 1403 1387 1390 1400 1410 1400 1417 1426 1441 1401 1404 10 3.0dPa·s[℃] 1591 1617 1571 1594 1552 1565 1545 1548 1560 1572 1559 1580 1590 1602 1562 1563 10 2.5dPa·s[℃] 1698 1730 1674 1694 1654 1667 1646 1649 1661 1675 1660 1683 1692 1704 1664 1664 TL[℃] >1510 >1512 1371 1398 1300 1290 1378 1400 1359 1344 1433 1405 1398 1434 1345 1386 logηTL[dPa·s] <3.5 <3.6 4.3 4.3 4.8 5.0 4.1 3.9 4.3 4.5 3.8 4.1 4.2 4.0 4.5 4.1 10 2.5dPa·s-Ps[℃] 880 912 886 896 875 887 849 854 871 887 867 893 904 909 881 878 β-OH[/mm] 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 [table 3] No.33 No.34 No.35 No.36 No.37 No.38 No.39 No.40 No.41 No.42 No.43 No.44 No.45 No.46 No.47 No.48 Composition (mol%) SiO 2 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 69.9 Al 2 O 3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 B 2 O 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 0.0 0.0 5.0 0.0 2.5 2.5 0.0 1.0 1.0 1.0 2.5 2.5 2.5 2.5 5.0 2.5 CaO 0.0 0.0 0.0 5.0 5.0 5.0 10.0 6.0 6.0 6.0 0.0 0.0 0.0 0.0 0.0 2.5 SrO 10.0 5.0 0.0 0.0 2.5 0.0 2.5 8.0 4.0 0.0 12.5 7.5 5.0 0.0 2.5 5.0 BaO 5.0 10.0 10.0 10.0 5.0 7.5 2.5 0.0 4.0 8.0 0.0 5.0 7.5 12.5 7.5 5.0 SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Li2O + Na2O + K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 18.0 20.0 29.4 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 (MgO+CaO+SrO+BaO)/Al 2 O 3 1.20 1.33 1.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ρ[g/cm 3 ] 2.80 2.87 2.80 2.79 2.69 2.72 2.62 2.63 2.68 2.74 2.69 2.75 2.79 2.84 2.76 2.73 α[×10 -7 /℃] 45.9 47.4 40.7 44.6 40.5 41.0 41.2 41.0 41.6 42.5 41.3 42.3 43.0 44.3 40.1 41.3 Ps[°C] 818 818 788 798 779 780 797 795 790 788 793 790 788 795 783 786 Ta[°C] 880 882 850 860 839 840 856 854 850 849 853 852 851 860 844 846 Ts[°C] 1112 1121 1087 1100 1076 1080 1080 1080 1082 1088 1085 1092 1098 1118 1081 1084 10 4.0 dPa s[°C] 1430 1453 1411 1432 1392 1403 1387 1390 1400 1410 1400 1417 1426 1441 1401 1404 10 3.0 dPa s[°C] 1591 1617 1571 1594 1552 1565 1545 1548 1560 1572 1559 1580 1590 1602 1562 1563 10 2.5 dPa s[°C] 1698 1730 1674 1694 1654 1667 1646 1649 1661 1675 1660 1683 1692 1704 1664 1664 TL[°C] >1510 >1512 1371 1398 1300 1290 1378 1400 1359 1344 1433 1405 1398 1434 1345 1386 logηTL[dPa s] <3.5 <3.6 4.3 4.3 4.8 5.0 4.1 3.9 4.3 4.5 3.8 4.1 4.2 4.0 4.5 4.1 10 2.5 dPa s-Ps[°C] 880 912 886 896 875 887 849 854 871 887 867 893 904 909 881 878 β-OH[/mm] Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined

[表4]    No.49 No.50 No.51 No.52 No.53 No.54 No.55 No.56 No.57 No.58 No.59 No.60 No.61 No.62 No.63 組成(mol%) SiO 2 69.9 69.9 69.9 69.9 69.9 69.9 68.9 69.9 68.9 69.9 68.9 70.9 69.9 71.9 70.9 Al 2O 3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.0 15.0 14.0 15.0 13.0 13.0 13.0 13.0 B 2O 3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 2.5 2.5 2.5 3.5 3.5 3.5 2.5 5.3 5.3 3.7 3.7 5.3 5.7 3.5 3.7 CaO 2.5 2.5 0.0 4.0 3.0 3.5 5.0 2.7 2.7 5.3 5.3 2.7 2.8 5.0 5.3 SrO 2.5 0.0 2.5 0.0 0.0 1.5 0.0 2.7 2.7 0.0 0.0 2.7 2.8 0.0 0.0 BaO 7.5 10.0 10.0 7.5 8.5 6.5 7.5 5.3 5.3 6.9 6.9 5.3 5.7 6.5 6.9 SnO 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 Li 2O+Na 2O+K 2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 17.0 15.0 16.0 (MgO+CaO+SrO+BaO)/Al 2O 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.07 1.14 1.07 1.23 1.31 1.15 1.23 ρ[g/cm 3] 2.77 2.80 2.83 2.73 2.76 2.72 2.73 2.71 2.72 2.72 2.73 2.69 2.71 2.68 2.70 α[×10 -7/℃] 42.0 42.7 43.8 40.3 41.0 40.3 41.2 40.2 40.2 41.5 41.4 40.6 42.0 40.2 41.7 Ps[℃] 788 789 797 780 782 780 767 769 773 770 776 765 761 772 767 Ta[℃] 849 852 860 841 844 840 827 828 832 831 835 826 820 833 827 Ts[℃] 1088 1094 1104 1078 1084 1077 1065 1062 1062 1065 1064 1066 1055 1077 1067 10 4.0dPa·s[℃] 1414 1420 1438 1395 1404 1396 1381 1381 1369 1386 1375 1390 1376 1406 1392 10 3.0dPa·s[℃] 1576 1580 1602 1555 1566 1556 1539 1539 1525 1545 1532 1552 1536 1571 1555 10 2.5dPa·s[℃] 1678 1680 1706 1654 1671 1655 1640 1639 1623 1648 1632 1657 1640 1677 1660 TL[℃] 1384 1404 >1455 1319 1345 1306 1298 1292 1311 1306 1318 未測定 未測定 未測定 未測定 logηTL[dPa·s] 4.2 4.1 <3.88 4.6 4.5 4.8 4.7 4.8 4.5 4.7 4.5 未測定 未測定 未測定 未測定 10 2.5dPa·s-Ps[℃] 890 891 909 874 889 875 873 870 850 878 856 891 879 905 893 β-OH[/mm] 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 未測定 [Table 4] No.49 No.50 No.51 No.52 No.53 No.54 No.55 No.56 No.57 No.58 No.59 No.60 No.61 No.62 No.63 Composition (mol%) SiO 2 69.9 69.9 69.9 69.9 69.9 69.9 68.9 69.9 68.9 69.9 68.9 70.9 69.9 71.9 70.9 Al 2 O 3 15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.0 15.0 14.0 15.0 13.0 13.0 13.0 13.0 B 2 O 3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Li 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K 2 O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO 2.5 2.5 2.5 3.5 3.5 3.5 2.5 5.3 5.3 3.7 3.7 5.3 5.7 3.5 3.7 CaO 2.5 2.5 0.0 4.0 3.0 3.5 5.0 2.7 2.7 5.3 5.3 2.7 2.8 5.0 5.3 SrO 2.5 0.0 2.5 0.0 0.0 1.5 0.0 2.7 2.7 0.0 0.0 2.7 2.8 0.0 0.0 BaO 7.5 10.0 10.0 7.5 8.5 6.5 7.5 5.3 5.3 6.9 6.9 5.3 5.7 6.5 6.9 SnO2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 Li2O + Na2O + K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MgO+CaO+SrO+BaO 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 17.0 15.0 16.0 (MgO+CaO+SrO+BaO)/Al 2 O 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.14 1.07 1.14 1.07 1.23 1.31 1.15 1.23 ρ[g/cm 3 ] 2.77 2.80 2.83 2.73 2.76 2.72 2.73 2.71 2.72 2.72 2.73 2.69 2.71 2.68 2.70 α[×10 -7 /℃] 42.0 42.7 43.8 40.3 41.0 40.3 41.2 40.2 40.2 41.5 41.4 40.6 42.0 40.2 41.7 Ps[°C] 788 789 797 780 782 780 767 769 773 770 776 765 761 772 767 Ta[°C] 849 852 860 841 844 840 827 828 832 831 835 826 820 833 827 Ts[°C] 1088 1094 1104 1078 1084 1077 1065 1062 1062 1065 1064 1066 1055 1077 1067 10 4.0 dPa s[°C] 1414 1420 1438 1395 1404 1396 1381 1381 1369 1386 1375 1390 1376 1406 1392 10 3.0 dPa s[°C] 1576 1580 1602 1555 1566 1556 1539 1539 1525 1545 1532 1552 1536 1571 1555 10 2.5 dPa s[°C] 1678 1680 1706 1654 1671 1655 1640 1639 1623 1648 1632 1657 1640 1677 1660 TL[°C] 1384 1404 >1455 1319 1345 1306 1298 1292 1311 1306 1318 Not determined Not determined Not determined Not determined logηTL[dPa s] 4.2 4.1 <3.88 4.6 4.5 4.8 4.7 4.8 4.5 4.7 4.5 Not determined Not determined Not determined Not determined 10 2.5 dPa s-Ps[°C] 890 891 909 874 889 875 873 870 850 878 856 891 879 905 893 β-OH[/mm] Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined Not determined

以如下方式製作各試樣。首先,將以成為表中的玻璃組成的方式對玻璃原料進行調配而成的玻璃配合料(glass batch)放入至鉑坩堝中,以1600℃~1750℃熔融24小時。在熔解玻璃配合料時,使用鉑攪拌器(stirrer)進行攪拌,使該玻璃配合料均質化。其次,使熔融玻璃流出至碳板上而成形為平板形狀。對於所獲得的各試樣,評價密度ρ、熱膨脹係數α、應變點Ps、退火點Ta、軟化點Ts、在高溫黏度10 4.0dPa·s時的溫度、在高溫黏度10 3.0dPa·s時的溫度、在高溫黏度10 2.5dPa·s時的溫度、液相溫度TL、液相黏度logηTL。 Each sample was prepared as follows. First, glass batches prepared by preparing glass raw materials so as to have the glass compositions in the table were put into platinum crucibles and melted at 1600° C. to 1750° C. for 24 hours. When melting the glass batch, stirring was performed using a platinum stirrer to homogenize the glass batch. Next, the molten glass is flowed onto a carbon plate to form a flat plate shape. For each sample obtained, density ρ, coefficient of thermal expansion α, strain point Ps, annealing point Ta, softening point Ts, temperature at high temperature viscosity of 10 4.0 dPa·s, temperature at high temperature viscosity of 10 3.0 dPa·s Temperature, temperature at high temperature viscosity of 10 2.5 dPa·s, liquidus temperature TL, liquidus viscosity logηTL.

密度ρ是藉由眾所周知的阿基米德(Archimedes)法進行測定所得的值。Density ρ is a value measured by the well-known Archimedes method.

熱膨脹係數α是在30℃~380℃的溫度範圍內,利用膨脹計進行測定所得的平均值。The thermal expansion coefficient α is an average value measured with a dilatometer in a temperature range of 30°C to 380°C.

應變點Ps、退火點Ta、軟化點Ts是依據ASTM C336或ASTM C338進行測定所得的值。The strain point Ps, the annealing point Ta, and the softening point Ts are values measured in accordance with ASTM C336 or ASTM C338.

在高溫黏度10 4.0dPa·s時的溫度、在高溫黏度10 3.0dPa·s時的溫度、在高溫黏度10 2.5dPa·s時的溫度是利用鉑球提拉法進行測定所得的值。 The temperature at high temperature viscosity of 10 4.0 dPa·s, the temperature at high temperature viscosity of 10 3.0 dPa·s, and the temperature at high temperature viscosity of 10 2.5 dPa·s are values measured by the platinum ball pulling method.

液相溫度TL是粉碎各試樣,將通過30目(500 μm)的標準篩且殘留於50目(300 μm)的標準篩的玻璃粉末放入至鉑舟皿中,在溫度梯度爐中保持24小時後取出鉑舟皿,在玻璃中看到失透(失透結晶)時的溫度。液相黏度logηTL是利用鉑球提拉法對液相溫度TL下的玻璃的黏度進行測定所得的值。The liquidus temperature TL is to pulverize each sample, put the glass powder that passes through a 30 mesh (500 μm) standard sieve and remains on a 50 mesh (300 μm) standard sieve into a platinum boat, and keep it in a temperature gradient furnace The temperature at which the platinum boat is taken out after 24 hours and devitrification (devitrification crystals) is seen in the glass. The liquidus viscosity logηTL is a value obtained by measuring the viscosity of glass at the liquidus temperature TL by the platinum ball pulling method.

β-OH值是根據所述式子而計算出的值。The β-OH value is a value calculated from the above formula.

表1~表4表明:試樣No.1~No.63的應變點與熱膨脹係數高,具備能成形為平板形狀的耐失透性。藉此,認為試樣No.1~No.63適合作為用以使半導體結晶(例如氮化物半導體結晶,尤其為氮化鎵系半導體結晶)在高溫下結晶成長的基板。 [產業上之可利用性] Tables 1 to 4 show that samples No. 1 to No. 63 have high strain points and thermal expansion coefficients, and have devitrification resistance capable of being formed into a flat plate shape. Accordingly, it is considered that samples No. 1 to No. 63 are suitable as substrates for crystal growth of semiconductor crystals (for example, nitride semiconductor crystals, especially gallium nitride-based semiconductor crystals) at high temperatures. [Industrial availability]

本發明的玻璃的應變點與熱膨脹係數高,具備良好的耐失透性。藉此,本發明的玻璃除了適合於用以在高溫下製作半導體結晶的基板以外,亦適合於有機發光二極體(Organic Light Emitting Diode,OLED)顯示器、液晶顯示器等顯示器用基板,尤其適合作為由低溫多晶矽(Low Temperature Poly Silicon,LTPS)、以氧化物薄膜電晶體(Thin Film Transistor,TFT)進行驅動的顯示器用基板。The glass of the present invention has a high strain point and a high coefficient of thermal expansion, and has good resistance to devitrification. Thereby, the glass of the present invention is not only suitable for substrates used to make semiconductor crystals at high temperatures, but also suitable for display substrates such as organic light emitting diode (Organic Light Emitting Diode, OLED) displays, liquid crystal displays, etc., especially suitable as A substrate for displays driven by low temperature polysilicon (Low Temperature Poly Silicon, LTPS) and oxide thin film transistors (Thin Film Transistor, TFT).

none

none

Claims (11)

一種玻璃,其特徵在於: 以莫耳%計,含有55%~80%的SiO 2、11%~30%的Al 2O 3、0~3%的B 2O 3、0~3%的Li 2O+Na 2O+K 2O、5%~35%的MgO+CaO+SrO+BaO作為玻璃組成,且應變點高於700℃。 A glass, characterized in that: in mole %, it contains 55%-80% of SiO 2 , 11%-30% of Al 2 O 3 , 0-3% of B 2 O 3 , and 0-3% of Li 2 O+Na 2 O+K 2 O, 5%-35% MgO+CaO+SrO+BaO are used as the glass composition, and the strain point is higher than 700°C. 如申請專利範圍請求項1所述的玻璃,其中 B 2O 3的含量不足1莫耳%。 The glass as described in Claim 1 of the scope of the patent application, wherein the content of B 2 O 3 is less than 1 mol%. 如請求項1或請求項2所述的玻璃,其中 Li 2O+Na 2O+K 2O的含量為0.2莫耳%以下。 The glass according to claim 1 or claim 2, wherein the content of Li 2 O+Na 2 O+K 2 O is 0.2 mol% or less. 如請求項1或請求項2所述的玻璃,其中 莫耳比(MgO+CaO+SrO+BaO)/Al 2O 3為0.5~5。 The glass according to claim 1 or claim 2, wherein the molar ratio (MgO+CaO+SrO+BaO)/Al 2 O 3 is 0.5-5. 如請求項1或請求項2所述的玻璃,其中 莫耳比MgO/(MgO+CaO+SrO+BaO)不足0.5。 The glass as described in claim 1 or claim 2, wherein The molar ratio MgO/(MgO+CaO+SrO+BaO) is less than 0.5. 如請求項1或請求項2所述的玻璃,其中 30℃~380℃的溫度範圍內的熱膨脹係數為40×10 -7/℃以上。 The glass according to Claim 1 or Claim 2, wherein the thermal expansion coefficient in the temperature range of 30°C to 380°C is 40×10 -7 /°C or higher. 如請求項1或請求項2所述的玻璃,其中 應變點為800℃以上。 The glass as described in claim 1 or claim 2, wherein The strain point is above 800°C. 如請求項1或請求項2所述的玻璃,其中 (在高溫黏度10 2.5dPa·s時的溫度-應變點)為900℃以下。 The glass according to Claim 1 or Claim 2, wherein (temperature-strain point at high temperature viscosity of 10 2.5 dPa·s) is 900°C or lower. 如請求項1或請求項2所述的玻璃,其中 在高溫黏度10 2.5dPa·s的黏度時的溫度為1750℃以下。 The glass according to Claim 1 or Claim 2, wherein the temperature at a high-temperature viscosity of 10 2.5 dPa·s is below 1750°C. 如請求項1或請求項2所述的玻璃,其中 所述玻璃為平板形狀。 The glass as described in claim 1 or claim 2, wherein The glass is in the shape of a flat plate. 如請求項1或請求項2所述的玻璃,其中 所述玻璃用作用以製作半導體結晶的基板。 The glass as described in claim 1 or claim 2, wherein The glass is used as a substrate for making semiconductor crystals.
TW111118162A 2015-04-03 2016-04-01 Glass TW202235390A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015076615 2015-04-03
JP2015-076615 2015-04-03
JP2015-164475 2015-08-24
JP2015164475 2015-08-24

Publications (1)

Publication Number Publication Date
TW202235390A true TW202235390A (en) 2022-09-16

Family

ID=57006115

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105110469A TWI706923B (en) 2015-04-03 2016-04-01 glass
TW111118162A TW202235390A (en) 2015-04-03 2016-04-01 Glass
TW109131014A TWI768463B (en) 2015-04-03 2016-04-01 Glass

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105110469A TWI706923B (en) 2015-04-03 2016-04-01 glass

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109131014A TWI768463B (en) 2015-04-03 2016-04-01 Glass

Country Status (5)

Country Link
JP (3) JP7219538B2 (en)
KR (1) KR20170136495A (en)
CN (3) CN116040940A (en)
TW (3) TWI706923B (en)
WO (1) WO2016159345A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259661A (en) * 2016-12-28 2022-11-01 日本电气硝子株式会社 Glass
KR102157928B1 (en) 2017-10-20 2020-09-18 주식회사 엘지화학 Three-layered feed spacer and reverse osmosis filter module for water treatment comprising the same
CA3085496A1 (en) 2017-12-19 2019-07-27 Ocv Intellectual Capital, Llc High performance fiberglass composition
JP7418947B2 (en) * 2018-01-31 2024-01-22 日本電気硝子株式会社 glass
CN112805255A (en) * 2018-10-05 2021-05-14 日本电气硝子株式会社 Alkali-free glass plate

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032909B (en) * 1978-08-09 1982-12-22 Gen Electric Sealing glass compositions
JPS57191251A (en) * 1981-05-19 1982-11-25 Nippon Electric Glass Co Ltd Glass composition
US4634684A (en) * 1985-10-23 1987-01-06 Corning Glass Works Strontium aluminosilicate glass substrates for flat panel display devices
JPH0825772B2 (en) * 1987-01-16 1996-03-13 日本板硝子株式会社 Glass for electronic device substrates
JPH0818845B2 (en) * 1987-11-11 1996-02-28 日本板硝子株式会社 Glass substrate for electronic equipment
JPH04175242A (en) * 1990-11-06 1992-06-23 Asahi Glass Co Ltd Non-alkali glass
JP3804112B2 (en) * 1996-07-29 2006-08-02 旭硝子株式会社 Alkali-free glass, alkali-free glass manufacturing method and flat display panel
DE19916296C1 (en) * 1999-04-12 2001-01-18 Schott Glas Alkali-free aluminoborosilicate glass and its use
JP2001122637A (en) * 1999-10-26 2001-05-08 Nippon Electric Glass Co Ltd Glass substrate for display
JP2002003240A (en) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display
JP5638755B2 (en) * 2005-08-17 2014-12-10 コーニング インコーポレイテッド High strain point glass
KR101399745B1 (en) * 2006-02-10 2014-05-26 코닝 인코포레이티드 Glass composition having high thermal and chemical stability and methods of making thereof
KR101351366B1 (en) * 2006-10-10 2014-01-14 니폰 덴키 가라스 가부시키가이샤 Reinforced glass substrate
TWI414502B (en) * 2008-05-13 2013-11-11 Corning Inc Rare-earth-containing glass material and substrate and device comprising such substrate
WO2011001920A1 (en) * 2009-07-02 2011-01-06 旭硝子株式会社 Alkali-free glass and method for producing same
JP5751439B2 (en) * 2010-08-17 2015-07-22 日本電気硝子株式会社 Alkali-free glass
CN102417298A (en) * 2010-09-27 2012-04-18 旭硝子株式会社 Alkali-free glass
JP5874304B2 (en) * 2010-11-02 2016-03-02 日本電気硝子株式会社 Alkali-free glass
WO2012063643A1 (en) * 2010-11-08 2012-05-18 日本電気硝子株式会社 Alkali-free glass
CN107244806A (en) * 2011-01-25 2017-10-13 康宁股份有限公司 Glass composition with high thermal stability and chemical stability
JP5831838B2 (en) * 2011-03-08 2015-12-09 日本電気硝子株式会社 Alkali-free glass
JP5935471B2 (en) * 2011-04-25 2016-06-15 日本電気硝子株式会社 LCD lens
WO2013084832A1 (en) * 2011-12-06 2013-06-13 旭硝子株式会社 Method for manufacturing alkali-free glass
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
WO2013161902A1 (en) * 2012-04-27 2013-10-31 旭硝子株式会社 Non-alkali glass and method for producing same
JP6365826B2 (en) * 2013-07-11 2018-08-01 日本電気硝子株式会社 Glass
JP6256744B2 (en) * 2013-10-17 2018-01-10 日本電気硝子株式会社 Alkali-free glass plate
JP6355032B2 (en) * 2014-03-24 2018-07-11 イミューンオンコ バイオファーマシューティカルズ (シャンハイ) カンパニー リミテッド Novel recombinant bifunctional fusion proteins, their preparation and use
JP2015224150A (en) * 2014-05-27 2015-12-14 旭硝子株式会社 Method for producing alkali-free glass
JP6578774B2 (en) * 2014-07-18 2019-09-25 Agc株式会社 Alkali-free glass

Also Published As

Publication number Publication date
JP2023022319A (en) 2023-02-14
CN116040940A (en) 2023-05-02
JPWO2016159345A1 (en) 2018-02-01
WO2016159345A1 (en) 2016-10-06
JP7219538B2 (en) 2023-02-08
TW202104111A (en) 2021-02-01
TWI768463B (en) 2022-06-21
JP7486446B2 (en) 2024-05-17
KR20170136495A (en) 2017-12-11
CN107406300A (en) 2017-11-28
CN115974404A (en) 2023-04-18
JP2021063010A (en) 2021-04-22
TW201704164A (en) 2017-02-01
TWI706923B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
JP6365826B2 (en) Glass
JP7421171B2 (en) glass
JP7486446B2 (en) Glass
TW201335096A (en) Alkali free glass
TWI808954B (en) Glass
KR20130056203A (en) Glass substrate for flat panel display and manufacturing method thereof
TWI798332B (en) Glass
JPWO2017122576A1 (en) Glass
JP2013212943A (en) Method for manufacturing glass substrate for flat panel display
TW201825421A (en) Glass
TW202342390A (en) Glass
TW202330419A (en) Alkali-free glass plate
JP2020172423A (en) Alkali-free glass plate
KR102229428B1 (en) Alkali-free glass
TWI853844B (en) Alkali-free glass plate
TW201841842A (en) glass substrate
TW202037569A (en) glass substrate