TW202234812A - Inverter control device, inverter circuit, motor module, and inverter control method - Google Patents

Inverter control device, inverter circuit, motor module, and inverter control method Download PDF

Info

Publication number
TW202234812A
TW202234812A TW111107168A TW111107168A TW202234812A TW 202234812 A TW202234812 A TW 202234812A TW 111107168 A TW111107168 A TW 111107168A TW 111107168 A TW111107168 A TW 111107168A TW 202234812 A TW202234812 A TW 202234812A
Authority
TW
Taiwan
Prior art keywords
phase
pwm
section
divided
signal
Prior art date
Application number
TW111107168A
Other languages
Chinese (zh)
Inventor
片岡耕太郎
Original Assignee
日商日本電產股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電產股份有限公司 filed Critical 日商日本電產股份有限公司
Publication of TW202234812A publication Critical patent/TW202234812A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Abstract

Provided is an inverter control device which controls a three-phase inverter having a two-phase modulation scheme, wherein: the three-phase inverter comprises a first input terminal, a second input terminal, a capacitor, and three serial bodies; the inverter control device comprises a signal generation unit that generates three PWM signals to be input to the three serial bodies, respectively; the PWM signals include at least a negative-phase PWM segment to which a negative-phase PWM signal is applied; the phase of the negative-phase PWM signal is inverse of a positive-phase PWM signal; in the negative-phase PWM segment, the positive-phase PWM signal is applied to two phases among the three phases and the negative-phase PWM signal is applied to one phase among the three phases; and, in the negative-phase PWM segment, the signal generation unit selects, as a negative-phase PWM phase, the phase in which current zero-crossing will next occur when looking in the temporal axis direction.

Description

逆變器控制裝置、逆變器電路、馬達模組及逆變器控制方法Inverter control device, inverter circuit, motor module, and inverter control method

本發明關於逆變器控制裝置、逆變器電路、馬達模組及逆變器控制方法。The present invention relates to an inverter control device, an inverter circuit, a motor module and an inverter control method.

已知對三相的逆變器進行控制的逆變器控制裝置(例如專利文獻1)。在專利文獻1記載的逆變器控制裝置中,根據逆變器的輸出電壓相位及輸出電流相位,對將兩個三角波的哪個用於與各相進行比較以及將哪個相固定為最大值或最小值進行切換。An inverter control device that controls a three-phase inverter is known (for example, Patent Document 1). In the inverter control device described in Patent Document 1, which of the two triangular waves is to be compared with each phase and which phase is fixed to the maximum value or the minimum value are determined based on the phase of the output voltage and the phase of the output current of the inverter. value to switch.

現有技術文獻 專利文獻1:國際公開第2017/34028號公報 prior art literature Patent Document 1: International Publication No. 2017/34028

發明所要解決的技術問題 然而,在專利文獻1記載的逆變器控制裝置中,當電流相位相對於電壓相位延遲時,在電角度一周記憶體在十二個動作狀態。而且,當電流相位的延遲大且功率因數低時,進一步應用不同的動作狀態。因此,動作狀態的切換的控制變繁雜,控制程式變複雜。 本發明鑒於上述技術問題而形成,其目的在於提供能簡化控制程式的逆變器控制裝置、逆變器電路、馬達模組及逆變器控制方法。 The technical problem to be solved by the invention However, in the inverter control device described in Patent Document 1, when the current phase is delayed with respect to the voltage phase, the memory is in twelve operating states for one rotation in electrical angle. Furthermore, when the delay of the current phase is large and the power factor is low, a different operating state is further applied. Therefore, the control of switching the operation state becomes complicated, and the control program becomes complicated. The present invention has been made in view of the above-mentioned technical problems, and an object of the present invention is to provide an inverter control device, an inverter circuit, a motor module, and an inverter control method that can simplify a control program.

解決技術問題所採用的技術方案 本發明的例示性的逆變器控制裝置對兩相調制方式的三相逆變器進行控制。所述三相逆變器包括第一輸入端子、第二輸入端子、電容器及三個串聯體。第一電壓施加於所述第一輸入端子。第二電壓施加於所述第二輸入端子。所述第二電壓比所述第一電壓低。所述電容器連接於所述第一輸入端子與所述第二輸入端子之間。在三個所述串聯體中,兩個半導體開關元件串聯連接。所述逆變器控制裝置包括信號生成部。所述信號生成部生成分別向三個所述串聯體輸入的三個PWM信號。所述PWM信號至少包括應用反相PWM信號的反相PWM區間。所述反相PWM信號相對於正相PWM信號是相反相位。所述反相PWM區間是對三相中的兩相應用所述正相PWM信號且對三相中的一相應用所述反相PWM信號的區間。所述信號生成部在所述反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。 本發明的例示性的逆變器電路包括上述的逆變器控制裝置、第一輸入端子、第二輸入端子、電容器及三個串聯體。第一電壓施加於所述第一輸入端子。第二電壓施加於所述第二輸入端子。所述第二電壓比所述第一電壓低。所述電容器連接於所述第一輸入端子與所述第二輸入端子之間。在三個所述串聯體中,兩個半導體開關元件串聯連接。 本發明的例示性的馬達模組包括上述逆變器控制裝置、三相的逆變器及三相馬達。所述三相的逆變器由所述逆變器控制裝置控制。所述三相的逆變器為兩相調制方式。所述逆變器的輸出被輸入至所述三相馬達。 本發明的例示性的逆變器控制方法是對兩相調制方式的三相逆變器進行控制的方法。所述三相逆變器包括第一輸入端子、第二輸入端子、電容器及三個串聯體。第一電壓施加於所述第一輸入端子。第二電壓施加於所述第二輸入端子。所述第二電壓比所述第一電壓低。所述電容器連接於所述第一輸入端子與所述第二輸入端子之間。在三個所述串聯體中,兩個半導體開關元件串聯連接。三個PWM信號分別被輸入至三個所述串聯體。所述PWM信號至少包括應用反相PWM信號的反相PWM區間。所述反相PWM信號相對於正相PWM信號是相反相位。所述反相PWM區間是對三相中的兩相應用所述正相PWM信號且對三相中的一相應用所述反相PWM信號的區間。所逆變器控制方法包括選擇工序,所述選擇工序中,在所述反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。 Technical solutions adopted to solve technical problems An exemplary inverter control device of the present invention controls a three-phase inverter of a two-phase modulation method. The three-phase inverter includes a first input terminal, a second input terminal, a capacitor and three series bodies. A first voltage is applied to the first input terminal. A second voltage is applied to the second input terminal. The second voltage is lower than the first voltage. The capacitor is connected between the first input terminal and the second input terminal. In three of the series bodies, two semiconductor switching elements are connected in series. The inverter control device includes a signal generating unit. The signal generation unit generates three PWM signals to be input to the three series bodies, respectively. The PWM signal includes at least an inverted PWM interval to which the inverted PWM signal is applied. The inverted PWM signal is of the opposite phase with respect to the non-inverted PWM signal. The inverse-phase PWM interval is a period in which the normal-phase PWM signal is applied to two of the three phases and the inverse-phase PWM signal is applied to one of the three phases. The signal generation unit selects the phase in which the current zero-crossing point occurs next as viewed in the time axis direction in the inverse-phase PWM section as the inverse-phase PWM phase. An exemplary inverter circuit of the present invention includes the above-described inverter control device, a first input terminal, a second input terminal, a capacitor, and three series bodies. A first voltage is applied to the first input terminal. A second voltage is applied to the second input terminal. The second voltage is lower than the first voltage. The capacitor is connected between the first input terminal and the second input terminal. In three of the series bodies, two semiconductor switching elements are connected in series. An exemplary motor module of the present invention includes the above-described inverter control device, a three-phase inverter, and a three-phase motor. The three-phase inverter is controlled by the inverter control device. The three-phase inverter is in a two-phase modulation mode. The output of the inverter is input to the three-phase motor. An exemplary inverter control method of the present invention is a method of controlling a three-phase inverter of a two-phase modulation method. The three-phase inverter includes a first input terminal, a second input terminal, a capacitor and three series bodies. A first voltage is applied to the first input terminal. A second voltage is applied to the second input terminal. The second voltage is lower than the first voltage. The capacitor is connected between the first input terminal and the second input terminal. In three of the series bodies, two semiconductor switching elements are connected in series. Three PWM signals are input to the three series bodies, respectively. The PWM signal includes at least an inverted PWM interval to which the inverted PWM signal is applied. The inverted PWM signal is of the opposite phase with respect to the non-inverted PWM signal. The inverse-phase PWM interval is a period in which the normal-phase PWM signal is applied to two of the three phases and the inverse-phase PWM signal is applied to one of the three phases. The inverter control method includes a selection process in which, in the inverse PWM section, a phase that generates a current zero-crossing point next as viewed in the time axis direction is selected as an inverse PWM phase.

發明效果 根據例示性的本發明,能簡化控制程式。 Invention effect According to the exemplary invention, the control program can be simplified.

以下,參照附圖對本發明的實施方式進行說明。另外,對圖中相同或相當的部分標注相同的符號,不再重複說明。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same symbols are attached to the same or equivalent parts in the drawings, and the description thereof will not be repeated.

參照圖1和圖2對本發明實施方式的馬達模組200進行說明。圖1是本發明實施方式的馬達模組200的方塊圖。圖2是示出逆變器部110的電路圖。The motor module 200 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2 . FIG. 1 is a block diagram of a motor module 200 according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing the inverter unit 110 .

如圖1所示,馬達模組200包括馬達驅動電路100及三相馬達M。三相馬達M由馬達驅動電路100驅動。三相馬達M例如是無刷直流馬達。三相馬達M具有U相、V相及W相。另外,馬達驅動電路100相當於“逆變器電路”的一例。As shown in FIG. 1 , the motor module 200 includes a motor driving circuit 100 and a three-phase motor M. The three-phase motor M is driven by the motor drive circuit 100 . The three-phase motor M is, for example, a brushless DC motor. The three-phase motor M has a U-phase, a V-phase, and a W-phase. In addition, the motor drive circuit 100 corresponds to an example of an "inverter circuit".

馬達驅動電路100以兩相調制方式對三相馬達M的驅動進行控制。馬達驅動電路100包括逆變器部110及逆變器控制裝置12。另外,逆變器部110相當於“三相逆變器”的一例。The motor drive circuit 100 controls the driving of the three-phase motor M in a two-phase modulation method. The motor drive circuit 100 includes an inverter unit 110 and an inverter control device 12 . In addition, the inverter unit 110 corresponds to an example of a "three-phase inverter".

逆變器部110由逆變器控制裝置12控制。逆變器部110為兩相調制方式,且為三相。逆變器部110包括三個輸出端子102。三個輸出端子102包括輸出端子102u、輸出端子102v及輸出端子102w。三個輸出端子102向三相馬達M輸出三相的輸出電壓和三相的輸出電流。詳細地,輸出端子102u向三相馬達M輸出U相的輸出電壓Vu和U相的輸出電流Iu。輸出端子102v向三相馬達M輸出V相的輸出電壓Vv和V相的輸出電流Iv。輸出端子102w向三相馬達M輸出W相的輸出電壓Vw和W相的輸出電流Iw。逆變器部110的輸出被輸入至三相馬達M。The inverter unit 110 is controlled by the inverter control device 12 . The inverter unit 110 uses a two-phase modulation method and is three-phase. The inverter section 110 includes three output terminals 102 . The three output terminals 102 include an output terminal 102u, an output terminal 102v, and an output terminal 102w. The three output terminals 102 output three-phase output voltages and three-phase output currents to the three-phase motor M. Specifically, the output terminal 102u outputs the U-phase output voltage Vu and the U-phase output current Iu to the three-phase motor M. The output terminal 102v outputs the V-phase output voltage Vv and the V-phase output current Iv to the three-phase motor M. The output terminal 102w outputs the W-phase output voltage Vw and the W-phase output current Iw to the three-phase motor M. The output of the inverter unit 110 is input to the three-phase motor M.

如圖2所示,逆變器部110包括第一輸入端子P、第二輸入端子N、電容器C及三個串聯體112。逆變器部110還包括直流電壓源B。另外,直流電壓源B也可以處於逆變器部110的外部。As shown in FIG. 2 , the inverter unit 110 includes a first input terminal P, a second input terminal N, a capacitor C, and three series bodies 112 . The inverter section 110 also includes a DC voltage source B. In addition, the DC voltage source B may be located outside the inverter unit 110 .

對第一輸入端子P施加第一電壓V1。第一輸入端子P與直流電壓源B連接。The first voltage V1 is applied to the first input terminal P. As shown in FIG. The first input terminal P is connected to the DC voltage source B.

對第二輸入端子N施加第二電壓V2。第二輸入端子N與直流電壓源B連接。第二電壓V2比第一電壓V1低。The second voltage V2 is applied to the second input terminal N. The second input terminal N is connected to the DC voltage source B. The second voltage V2 is lower than the first voltage V1.

電容器C連接於第一輸入端子P與第二輸入端子N之間。The capacitor C is connected between the first input terminal P and the second input terminal N.

在三個串聯體112中,兩個半導體開關元件串聯連接。半導體開關元件例如是IGBT(絕緣柵雙極電晶體)。另外,半導體開關元件也可以是場效應電晶體等其它電晶體。三個串聯體112包括串聯體112u、串聯體112v及串聯體112w。三個串聯體112相互並聯連接。三個串聯體112各自將一端連接於第一輸入端子P。三個串聯體112各自將另一端連接於第二輸入端子N。以第一輸入端子P側(紙面上側)為陰極,以第二輸入端子N側(紙面下側)為陽極,使整流元件D分別與上述半導體開關元件並聯連接。在將場效應晶體管用作半導體開關元件的情況下,也可以將寄生二極體用作上述整流元件。In the three series bodies 112, two semiconductor switching elements are connected in series. The semiconductor switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor). In addition, the semiconductor switching element may be other transistors such as field effect transistors. The three serial bodies 112 include a serial body 112u, a serial body 112v, and a serial body 112w. The three series bodies 112 are connected in parallel with each other. One end of each of the three series bodies 112 is connected to the first input terminal P. As shown in FIG. The other end of each of the three series bodies 112 is connected to the second input terminal N. As shown in FIG. The first input terminal P side (upper side in the drawing) is the cathode, and the second input terminal N side (the lower side in the drawing) is the anode, and the rectifier elements D are connected in parallel with the semiconductor switching elements, respectively. When a field effect transistor is used as a semiconductor switching element, a parasitic diode can also be used as the above-mentioned rectifying element.

三個串聯體112各自具有第一半導體開關元件及第二半導體開關元件。詳細地,串聯體112u具有第一半導體開關元件Up及第二半導體開關元件Un。串聯體112v具有第一半導體開關元件Vp及第二半導體開關元件Vn。串聯體112w具有第一半導體開關元件Wp及第二半導體開關元件Wn。The three series bodies 112 each have a first semiconductor switching element and a second semiconductor switching element. Specifically, the series body 112u includes a first semiconductor switching element Up and a second semiconductor switching element Un. The series body 112v has a first semiconductor switching element Vp and a second semiconductor switching element Vn. The series body 112w has a first semiconductor switching element Wp and a second semiconductor switching element Wn.

第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp與第一輸入端子P連接。換言之,第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp是高電壓側的半導體開關元件。The first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are connected to the first input terminal P. In other words, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are semiconductor switching elements on the high voltage side.

第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn與第二輸入端子N連接。換言之,第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn是低電壓側的半導體開關元件。The second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are connected to the second input terminal N. In other words, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are semiconductor switching elements on the low voltage side.

第一半導體開關元件和第二半導體開關元件在連接點114處連接。詳細地,第一半導體開關元件Up和第二半導體開關元件Un在連接點114u處連接。第一半導體開關元件Vp和第二半導體開關元件Vn在連接點114v處連接。第一半導體開關元件Wp和第二半導體開關元件Wn在連接點114w處連接。The first semiconductor switching element and the second semiconductor switching element are connected at the connection point 114 . In detail, the first semiconductor switching element Up and the second semiconductor switching element Un are connected at the connection point 114u. The first semiconductor switching element Vp and the second semiconductor switching element Vn are connected at the connection point 114v. The first semiconductor switching element Wp and the second semiconductor switching element Wn are connected at the connection point 114w.

三個串聯體112各自的連接點114與三個輸出端子102連接。詳細地,串聯體112u的連接點114u與輸出端子102u連接。串聯體112v的連接點114v與輸出端子102v連接。串聯體112w的連接點114w與輸出端子102w連接。The respective connection points 114 of the three series bodies 112 are connected to the three output terminals 102 . Specifically, the connection point 114u of the series body 112u is connected to the output terminal 102u. The connection point 114v of the series body 112v is connected to the output terminal 102v. The connection point 114w of the series body 112w is connected to the output terminal 102w.

對第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp輸入PWM信號。PWM信號由信號生成部120輸出。以下,在本說明書中,有時將輸入至第一半導體開關元件Up的PWM信號記載為“UpPWM信號”。而且,有時將輸入至第一半導體開關元件Vp的PWM信號記載為“VpPWM信號”。有時將輸入至第一半導體開關元件Wp的PWM信號記載為“WpPWM信號”。第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp以規定的PWM週期被切換為接通和斷開。例如,第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp分別在UpPWM信號、VpPWM信號、WpPWM信號為高(HIGH)電平的情況下變成接通。另一方面,第一半導體開關元件Up、第一半導體開關元件Vp及第一半導體開關元件Wp分別在UpPWM信號、VpPWM信號、WpPWM信號為低(LOW)電平的情況下變成斷開。A PWM signal is input to the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp. The PWM signal is output by the signal generating unit 120 . Hereinafter, in this specification, the PWM signal input to the first semiconductor switching element Up may be referred to as "UpPWM signal". Moreover, the PWM signal input to the 1st semiconductor switching element Vp may be described as "VpPWM signal". The PWM signal input to the first semiconductor switching element Wp may be referred to as "WpPWM signal". The first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are switched on and off at a predetermined PWM cycle. For example, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned on when the UpPWM signal, the VpPWM signal, and the WpPWM signal are at HIGH levels, respectively. On the other hand, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned off when the UpPWM signal, the VpPWM signal, and the WpPWM signal are at a low (LOW) level, respectively.

對第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn輸入PWM信號。PWM信號由信號生成部120輸出。以下,在本說明書中,有時將輸入至第二半導體開關元件Un的PWM信號記載為“UnPWM信號”。而且,有時將輸入至第二半導體開關元件Vn的PWM信號記載為“VnPWM信號”。有時將輸入至第二半導體開關元件Wn的PWM信號記載為“WnPWM信號”。第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn以規定的PWM週期被切換為接通和斷開。例如,第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn分別在UpPWM信號、VpPWM信號、WpPWM信號為高電平的情況下變成接通。另一方面,第二半導體開關元件Un、第二半導體開關元件Vn及第二半導體開關元件Wn分別在UpPWM信號、VpPWM信號、WpPWM信號為低電平的情況下變成斷開。A PWM signal is input to the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn. The PWM signal is output by the signal generating unit 120 . Hereinafter, in this specification, the PWM signal input to the second semiconductor switching element Un may be referred to as "UnPWM signal". In addition, the PWM signal input to the second semiconductor switching element Vn may be referred to as "VnPWM signal". The PWM signal input to the second semiconductor switching element Wn may be referred to as "WnPWM signal". The second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are switched on and off at a predetermined PWM cycle. For example, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned on when the UpPWM signal, the VpPWM signal, and the WpPWM signal are at a high level, respectively. On the other hand, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned off when the UpPWM signal, the VpPWM signal, and the WpPWM signal are at the low level, respectively.

如圖1所示,逆變器控制裝置12包括信號生成部120。信號生成部120具有載波生成部122、電壓指令值生成部124及比較部126。信號生成部120是由像CPU(Central Processing Unit:中央處理器)那樣的處理器及ASIC(Application Specific Integrated Circuit:專用積體電路)等構成的硬體電路。而且,信號生成部120的處理器通過執行儲存於儲存裝置的電腦程式,作為載波生成部122、電壓指令值生成部124及比較部126發揮作用。As shown in FIG. 1 , the inverter control device 12 includes a signal generation unit 120 . The signal generation unit 120 includes a carrier generation unit 122 , a voltage command value generation unit 124 , and a comparison unit 126 . The signal generation unit 120 is a hardware circuit composed of a processor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), and the like. Furthermore, the processor of the signal generation unit 120 functions as the carrier generation unit 122 , the voltage command value generation unit 124 , and the comparison unit 126 by executing the computer program stored in the storage device.

信號生成部120對逆變器部110進行控制。具體地,信號生成部120通過生成PWM信號並將PWM信號輸出,對逆變器部110進行控制。更具體地,信號生成部120生成分別輸入至三個串聯體112的三個PWM信號。The signal generation unit 120 controls the inverter unit 110 . Specifically, the signal generation unit 120 controls the inverter unit 110 by generating a PWM signal and outputting the PWM signal. More specifically, the signal generation unit 120 generates three PWM signals respectively input to the three series bodies 112 .

載波生成部122生成載波信號。載波信號例如是三角波。另外,載波信號也可以是鋸齒波。The carrier generation unit 122 generates a carrier signal. The carrier signal is, for example, a triangular wave. In addition, the carrier signal may be a sawtooth wave.

電壓指令值生成部124生成電壓指令值。電壓指令值相當於從馬達驅動電路100輸出的電壓值。即電壓指令值生成部124生成與輸出電壓Vu、輸出電壓Vv及輸出電壓Vw相應的電壓值,作為電壓指令值。The voltage command value generating unit 124 generates a voltage command value. The voltage command value corresponds to the voltage value output from the motor drive circuit 100 . That is, the voltage command value generating unit 124 generates voltage values corresponding to the output voltage Vu, the output voltage Vv, and the output voltage Vw as the voltage command value.

比較部126通過對載波信號和電壓指令值進行比較,生成PWM信號。The comparison unit 126 generates a PWM signal by comparing the carrier signal and the voltage command value.

參照圖3對信號生成部120的動作進行說明。圖3是示出輸出電壓和輸出電流的圖。The operation of the signal generation unit 120 will be described with reference to FIG. 3 . FIG. 3 is a graph showing output voltage and output current.

圖3的上圖示出輸出電壓Vu、輸出電壓Vv及輸出電壓Vw。在圖3的上圖中,以實線示出輸出電壓Vu,以虛線示出輸出電壓Vv,以點劃線示出輸出電壓Vw。圖3的縱軸表示用輸入電壓V1-V2標準化了的電壓值,各相的輸出電壓取0~1範圍內的值。而且,該值也表示各相的第一半導體開關元件的接通時間相對於PWM週期的比率即占空值。圖3的橫軸表示馬達的電氣旋轉角度,單位是度。The upper graph of FIG. 3 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw. In the upper graph of FIG. 3 , the output voltage Vu is shown by a solid line, the output voltage Vv is shown by a broken line, and the output voltage Vw is shown by a dashed-dotted line. The vertical axis of FIG. 3 represents the voltage value normalized by the input voltages V1-V2, and the output voltage of each phase takes a value in the range of 0 to 1. In addition, this value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM period. The horizontal axis of FIG. 3 represents the electrical rotation angle of the motor, and the unit is degrees.

圖3的下圖示出輸出電流Iu、輸出電流Iv及輸出電流Iw。在圖3的下圖中,以實線示出輸出電流Iu,以虛線示出輸出電流Iv,以點劃線示出輸出電流Iw。圖3的橫軸表示馬達的電氣旋轉角度,單位是度。The lower graph of FIG. 3 shows the output current Iu, the output current Iv, and the output current Iw. In the lower graph of FIG. 3 , the output current Iu is shown by a solid line, the output current Iv is shown by a broken line, and the output current Iw is shown by a dashed-dotted line. The horizontal axis of FIG. 3 represents the electrical rotation angle of the motor, and the unit is degrees.

如圖3所示,輸出電壓波形具有三相中的一相變成斷開固定的期間。斷開固定表示在多個PWM週期的期間,第一半導體開關元件連續斷開,且第二半導體開關元件連續接通。詳細地,輸出電壓Vu在電角度210度~電角度330度處變成斷開固定。輸出電壓Vv在電角度0度~電角度90度處以及電角度210度~電角度330度處變成斷開固定。輸出電壓Vw在電角度210度~電角度330度處變成斷開固定。在本說明書中,有時將像圖3所示那樣輸出電壓波形具有三相中的一相變成斷開固定的期間的調制方式記載為斷開固定模式(Min型:最小型)的調制方式。As shown in FIG. 3 , the output voltage waveform has a period during which one of the three phases is turned off and fixed. Off-fix means that the first semiconductor switching element is continuously turned off and the second semiconductor switching element is continuously turned on during a plurality of PWM periods. In detail, the output voltage Vu becomes off-fixed at an electrical angle of 210 degrees to an electrical angle of 330 degrees. The output voltage Vv becomes off-fixed at 0 degrees to 90 degrees in electrical angle and 210 degrees to 330 degrees in electrical angle. The output voltage Vw is turned off and fixed at an electrical angle of 210 degrees to an electrical angle of 330 degrees. In this specification, as shown in FIG. 3 , a modulation method in which the output voltage waveform has a period during which one of the three phases is turned off is sometimes described as a modulation method of a fixed off mode (Min type: minimum size).

如圖3所示,信號生成部120將電角度一周分割成多個分割區間。信號生成部120按照每個電流過零點將電角度一周分割成多個分割區間。詳細地,信號生成部120將電角度一周分割成第一分割區間T1、第二分割區間T2、第三分割區間T3、第四分割區間T4、第五分割區間T5及第六分割區間T6。在本說明書中,有時將第一分割區間T1、第二分割區間T2、第三分割區間T3、第四分割區間T4、第五分割區間T5及第六分割區間T6統稱為分割區間T。另外,本發明不限於信號生成部120完全在電流過零點處分割出分割區間T的情況。例如,也可以是,信號生成部120在電流過零點附近分割出分割區間T。電流過零點的檢測可以通過電流感測器等技術直接觀測,也可以通過根據運算的預測而求得。As shown in FIG. 3 , the signal generation unit 120 divides the electrical angle cycle into a plurality of divided sections. The signal generation unit 120 divides one electric angle cycle into a plurality of divided sections for each current zero-crossing point. Specifically, the signal generation unit 120 divides the electrical angle cycle into a first divided section T1, a second divided section T2, a third divided section T3, a fourth divided section T4, a fifth divided section T5, and a sixth divided section T6. In this specification, the first divided section T1 , the second divided section T2 , the third divided section T3 , the fourth divided section T4 , the fifth divided section T5 , and the sixth divided section T6 are collectively referred to as divided sections T in some cases. In addition, the present invention is not limited to the case where the signal generation unit 120 divides the divided interval T completely at the current zero-crossing point. For example, the signal generation unit 120 may divide the divided section T in the vicinity of the current zero-crossing point. The detection of the current zero-crossing point can be directly observed by a technology such as a current sensor, or it can be obtained by a prediction based on an operation.

第二分割區間T2接在第一分割區間T1之後。第三分割區間T3接在第二分割區間T2之後。第四分割區間T4接在第三分割區間T3之後。第五分割區間T5接在第四分割區間T4之後。第六分割區間T6接在第五分割區間T5之後。這裡,第一分割區間T1是電角度20度~電角度80度。第二分割區間T2是電角度80度~電角度140度。第三分割區間T3是電角度140度~電角度200度。第四分割區間T4是電角度200度~電角度260度。第五分割區間T5是電角度260度~電角度320度。第六分割區間T6是電角度320度~電角度360度。The second divided interval T2 follows the first divided interval T1. The third divided interval T3 follows the second divided interval T2. The fourth divided interval T4 follows the third divided interval T3. The fifth divided interval T5 follows the fourth divided interval T4. The sixth divided interval T6 follows the fifth divided interval T5. Here, the first divided interval T1 is an electrical angle of 20 degrees to an electrical angle of 80 degrees. The second divided interval T2 is an electrical angle of 80 degrees to an electrical angle of 140 degrees. The third divided interval T3 is an electrical angle of 140 degrees to an electrical angle of 200 degrees. The fourth divided interval T4 is an electrical angle of 200 degrees to an electrical angle of 260 degrees. The fifth divided interval T5 is an electrical angle of 260 degrees to an electrical angle of 320 degrees. The sixth divided interval T6 is an electrical angle of 320 degrees to an electrical angle of 360 degrees.

第一分割區間T1是僅V相的輸出電流Iv為負的區間。第二分割區間T2是僅U相的輸出電流Iu為正的區間。第三分割區間T3是僅W相的輸出電流Iw為負的區間。第四分割區間T4是僅V相的輸出電流Iv為正的區間。第五分割區間T5是僅U相的輸出電流Iu為負的區間。第六分割區間T6是僅W相的輸出電流Iw為正的區間。The first divided section T1 is a section in which only the output current Iv of the V-phase is negative. The second divided section T2 is a section in which only the output current Iu of the U-phase is positive. The third divided section T3 is a section in which only the output current Iw of the W-phase is negative. The fourth divided section T4 is a section in which only the output current Iv of the V-phase is positive. The fifth divided section T5 is a section in which only the output current Iu of the U-phase is negative. The sixth divided section T6 is a section in which only the output current Iw of the W-phase is positive.

PWM信號至少包括應用反相PWM信號的反相PWM區間。反相PWM信號相對於正相PWM信號是相反相位。相反相位表示例如在U相和V相進行開關動作的情況下,以在PWM一週期中存在只有第一半導體開關元件Up接通的狀態以及只有第一半導體開關元件Vp接通的狀態的方式使相位偏移。更優選地,相反相位表示以在PWM一週期內不存在第一半導體開關元件Up和第一半導體開關元件Vp均接通的狀態以及第一半導體開關元件Up和第一半導體開關元件Vp均斷開的狀態的方式使相位偏移。例如,相反相位表示180度相位偏移。另外,也可以略微偏離180度。反相PWM區間是對三相中的兩相應用正相PWM信號且對三相中的一相應用反相PWM信號的區間。The PWM signal includes at least an inverted PWM interval to which the inverted PWM signal is applied. The inverted PWM signal is of the opposite phase relative to the non-inverted PWM signal. The opposite phase means that, for example, when the U-phase and the V-phase are switched, the state where only the first semiconductor switching element Up is turned on and the state where only the first semiconductor switching element Vp is turned on exist in one PWM cycle. phase offset. More preferably, the opposite phase is expressed in that there is no state in which the first semiconductor switching element Up and the first semiconductor switching element Vp are both turned on and both the first semiconductor switching element Up and the first semiconductor switching element Vp are turned off during one PWM period state in such a way that the phase is shifted. For example, the opposite phase represents a 180 degree phase shift. In addition, it may be slightly deviated from 180 degrees. The reverse-phase PWM section is a section in which the normal-phase PWM signal is applied to two of the three phases and the reverse-phase PWM signal is applied to one of the three phases.

信號生成部120將多個分割區間T的每一個確定為對全部三相應用正相PWM信號的正相PWM區間和反相PWM區間中的任一個。這裡,在第一分割區間T1、第三分割區間T3和第五分割區間T5中,信號生成部120應用反相PWM區間。在第二分割區間T2、第四分割區間T4和第六分割區間T6中,信號生成部120對全部的相應用正相PWM區間。The signal generation unit 120 determines each of the plurality of divided sections T as any one of a normal-phase PWM section and a reverse-phase PWM section in which the normal-phase PWM signal is applied to all three phases. Here, in the first divided period T1, the third divided period T3, and the fifth divided period T5, the signal generation unit 120 applies the inverted PWM period. In the second divided period T2, the fourth divided period T4, and the sixth divided period T6, the signal generation unit 120 applies the positive-phase PWM period to all the phases.

信號生成部120在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。詳細地,在作為反相PWM區間的第一分割區間T1中,將以時間軸方向觀察接下來產生電流過零點的W相選擇為反相PWM相。在作為反相PWM區間的第三分割區間T3中,將以時間軸方向觀察接下來產生電流過零點的U相選擇為反相PWM相。在作為反相PWM區間的第五分割區間T5中,將以時間軸方向觀察接下來產生電流過零點的V相選擇為反相PWM相。The signal generation unit 120 selects the phase in which the current zero-cross point occurs next as viewed in the time axis direction as the inverse-phase PWM phase in the inverse-phase PWM section. In detail, in the first divided section T1 which is the inversion PWM section, the W phase that generates the current zero-crossing point next when viewed in the time axis direction is selected as the inversion PWM phase. In the third divided interval T3, which is an inversion PWM section, the U-phase that generates the current zero-crossing point next when viewed in the time axis direction is selected as the inversion PWM phase. In the fifth divided interval T5, which is an inversion PWM section, the V phase that generates the current zero-cross point next when viewed in the time axis direction is selected as the inversion PWM phase.

而且,信號生成部120在電流過零點處將在反相PWM區間中應用了反相PWM信號的相切換至正相PWM信號。產生電流過零點的相表示以時間軸方向觀察電流的絕對值最小的相。另外,本發明不限於信號生成部120完全在電流過零點處將在反相PWM區間中應用了反相PWM信號的相切換至正相PWM信號。例如,也可以是,信號生成部120在電流過零點附近將在反相PWM區間中應用了反相PWM信號的相切換至正相PWM信號。電流過零點的檢測可以通過電流感測器等技術直接觀測,也可以通過根據運算的預測而求得。Then, the signal generation unit 120 switches the phase to which the reversed-phase PWM signal is applied in the reversed-phase PWM section to the normal-phase PWM signal at the current zero-cross point. The phase in which the current zero-cross point occurs is the phase with the smallest absolute value of the current observed in the time axis direction. In addition, the present invention is not limited to the fact that the signal generation unit 120 switches the phase to which the inverted PWM signal is applied in the inverted PWM section to the non-inverted PWM signal completely at the current zero-cross point. For example, the signal generation unit 120 may switch the phase to which the reversed-phase PWM signal is applied in the reversed-phase PWM section to the normal-phase PWM signal in the vicinity of the current zero-cross point. The detection of the current zero-crossing point can be directly observed by a technology such as a current sensor, or it can be obtained by a prediction based on an operation.

參照圖4~圖7C,對信號生成部120選擇正相PWM區間和反相PWM區間進行說明。圖4是示出輸出電壓和輸出電流的圖。圖5A~圖7C是用於對電容器C的充放電電流進行說明的圖。4 to 7C , the selection of the normal-phase PWM period and the reverse-phase PWM period by the signal generation unit 120 will be described. FIG. 4 is a graph showing output voltage and output current. 5A to 7C are diagrams for explaining the charge and discharge currents of the capacitor C. FIG.

如圖4所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲20度。As shown in FIG. 4 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 20 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

首先,對在(A)的區間中正相PWM彼此輸入至第一半導體開關元件的情況進行說明。圖5A~圖5C是示出(A)的區間中的電角度140度~200度的區間的圖。First, the case where the normal-phase PWMs are input to the first semiconductor switching element in the section (A) will be described. FIGS. 5A to 5C are diagrams showing a section of an electrical angle of 140 to 200 degrees in the section of (A).

如圖5C所示,正相的PWM信號輸入至第一半導體開關元件Up。正相的PWM信號輸入至第一半導體開關元件Vp。低電平的信號輸入至第一半導體開關元件Wp。As shown in FIG. 5C , a positive-phase PWM signal is input to the first semiconductor switching element Up. A positive-phase PWM signal is input to the first semiconductor switching element Vp. A low-level signal is input to the first semiconductor switching element Wp.

在圖5C中的(1)的區間中,如圖5A所示,Up柵極信號、Vp柵極信號為高電平。而且,Wp柵極信號為低電平。因此,第一半導體開關元件Up和第一半導體開關元件Vp接通,第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Un和第二半導體開關元件Vn斷開,第二半導體開關元件Wn接通。因此,來自電容器C的放電電流增加。In the section (1) in FIG. 5C , as shown in FIG. 5A , the Up gate signal and the Vp gate signal are at the high level. Also, the Wp gate signal is at a low level. Therefore, the first semiconductor switching element Up and the first semiconductor switching element Vp are turned on, and the first semiconductor switching element Wp is turned off. On the other hand, the second semiconductor switching element Un and the second semiconductor switching element Vn are turned off, and the second semiconductor switching element Wn is turned on. Therefore, the discharge current from the capacitor C increases.

在圖5C中的(2)的區間中,如圖5B所示,Up柵極信號、Vp柵極信號、Wp柵極信號為低電平。因此,第一半導體開關元件Up、第一半導體開關元件Vp和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Un、第二半導體開關元件Vn、第二半導體開關元件Wn接通。因此,向電容器C的充電電流增加。In the section (2) in FIG. 5C , as shown in FIG. 5B , the Up gate signal, the Vp gate signal, and the Wp gate signal are at the low level. Therefore, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned on. Therefore, the charging current to the capacitor C increases.

如此,當在(A)的區間中正相PWM彼此輸入至第一半導體開關元件時,來自電容器C的放電電流增加。In this way, when the positive-phase PWMs are input to the first semiconductor switching element in the section (A), the discharge current from the capacitor C increases.

接著,對在(A)的區間中應用反相PWM的情況進行說明。圖6A~圖6C是示出(A)的區間中的電角度140度~200度的區間的圖。Next, the case where the inversion PWM is applied in the section (A) will be described. 6A to 6C are diagrams showing a section of an electrical angle of 140 to 200 degrees in the section of (A).

如圖6C所示,反相的PWM信號輸入至第一半導體開關元件Up。正相的PWM信號輸入至第一半導體開關元件Vp。低電平的信號輸入至第一半導體開關元件Wp。As shown in FIG. 6C , the inverted PWM signal is input to the first semiconductor switching element Up. A positive-phase PWM signal is input to the first semiconductor switching element Vp. A low-level signal is input to the first semiconductor switching element Wp.

在圖6C中的(1)的區間中,如圖6A所示,Vp柵極信號為高電平。而且,Up柵極信號及Wp柵極信號為低電平。因此,第一半導體開關元件Vp接通,第一半導體開關元件Up和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Vn斷開,第二半導體開關元件Un和第二半導體開關元件Wn接通。因此,與圖5A的情況相比,逆變器電流分散,能對電容器C的充放電電流進行抑制。In the section of (1) in FIG. 6C , as shown in FIG. 6A , the Vp gate signal is at a high level. Also, the Up gate signal and the Wp gate signal are at a low level. Therefore, the first semiconductor switching element Vp is turned on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Vn is turned off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are turned on. Therefore, compared with the case of FIG. 5A , the inverter current is dispersed, and the charging and discharging current of the capacitor C can be suppressed.

在圖6C中的(2)的區間中,如圖6B所示,Up柵極信號為高電平。而且,Vp柵極信號及Wp柵極信號為低電平。因此,第一半導體開關元件Up接通,第一半導體開關元件Vp和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Un斷開,第二半導體開關元件Vn和第二半導體開關元件Wn接通。因此,與圖5B的情況相比,逆變器電流分散,能對電容器C的充放電電流進行抑制。In the section of (2) in FIG. 6C , as shown in FIG. 6B , the Up gate signal is at a high level. In addition, the Vp gate signal and the Wp gate signal are at a low level. Therefore, the first semiconductor switching element Up is turned on, and the first semiconductor switching element Vp and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Un is turned off, and the second semiconductor switching element Vn and the second semiconductor switching element Wn are turned on. Therefore, compared with the case of FIG. 5B , the inverter current is dispersed, and the charging and discharging current of the capacitor C can be suppressed.

如此,當在(A)的區間中應用反相PWM時,逆變器電流分散,能對電容器C的充放電電流進行抑制。In this way, when the inversion PWM is applied in the section (A), the inverter current is dispersed, and the charging and discharging current of the capacitor C can be suppressed.

接著,對在(B)的區間中應用反相PWM的情況進行說明。圖7A~圖7C是示出(B)的區間中的電角度80度~140度的區間的圖。Next, the case where the inversion PWM is applied in the section (B) will be described. FIGS. 7A to 7C are diagrams showing a section of an electrical angle of 80 to 140 degrees in the section of (B).

如圖7C所示,正相的PWM信號輸入至第一半導體開關元件Up。反相的PWM信號輸入至第一半導體開關元件Vp。低電平的信號輸入至第一半導體開關元件Wp。As shown in FIG. 7C , the PWM signal of the positive phase is input to the first semiconductor switching element Up. The inverted PWM signal is input to the first semiconductor switching element Vp. A low-level signal is input to the first semiconductor switching element Wp.

在圖7C中的(1)的區間中,如圖7A所示,Up柵極信號為高電平。而且,Vp柵極信號及Wp柵極信號為低電平。因此,第一半導體開關元件Up接通,第一半導體開關元件Vp和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Un斷開,第二半導體開關元件Vn和第二半導體開關元件Wn接通。In the section of (1) in FIG. 7C , as shown in FIG. 7A , the Up gate signal is at a high level. In addition, the Vp gate signal and the Wp gate signal are at a low level. Therefore, the first semiconductor switching element Up is turned on, and the first semiconductor switching element Vp and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Un is turned off, and the second semiconductor switching element Vn and the second semiconductor switching element Wn are turned on.

在圖7C中的(2)的區間中,如圖7B所示,Vp柵極信號為高電平。而且,Up柵極信號及Wp柵極信號為低電平。因此,第一半導體開關元件Vp接通,第一半導體開關元件Up和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Vn斷開,第二半導體開關元件Un和第二半導體開關元件Wn接通。在該情況下,產生電流向電容器C的逆流,電容器C的充放電電流增加。因此,在(B)的區間中,優選應用像圖5C示出那樣的正相之間的PWM波形。In the section of (2) in FIG. 7C , as shown in FIG. 7B , the Vp gate signal is at a high level. Also, the Up gate signal and the Wp gate signal are at a low level. Therefore, the first semiconductor switching element Vp is turned on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Vn is turned off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are turned on. In this case, the reverse flow of the current to the capacitor C occurs, and the charge and discharge current of the capacitor C increases. Therefore, in the section (B), it is preferable to apply a PWM waveform between normal phases as shown in FIG. 5C .

參照圖7A~圖7C和圖8,對信號生成部120選擇正相PWM區間和反相PWM區間進行說明。圖8是示出輸出電壓和輸出電流的圖。7A to 7C and FIG. 8 , the selection of the normal-phase PWM period and the reverse-phase PWM period by the signal generation unit 120 will be described. FIG. 8 is a graph showing output voltage and output current.

如圖8所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲40度。As shown in FIG. 8 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 40 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

當三相的輸出電流的相位的延遲超過30度時,區間(A)與超過的程度相應地減少,產生區間(C)。區間(C)相當於斷開固定相切換之後到產生電流過零點為止的期間。When the phase delay of the three-phase output current exceeds 30 degrees, the interval (A) decreases according to the degree of the exceeding, and the interval (C) occurs. Section (C) corresponds to the period after the stationary phase switching is turned off until the current zero-crossing point occurs.

在(C)的區間中的電角度90度~100度的區間中,像參照圖7A~圖7C說明的那樣,產生電流向電容器C的逆流,電容器C的充放電電流增加。因此,在(C)的區間中,優選應用像圖5C示出那樣的正相之間的PWM波形。In the section of (C) with an electrical angle of 90 degrees to 100 degrees, as described with reference to FIGS. 7A to 7C , the current reverses to the capacitor C, and the charge and discharge current of the capacitor C increases. Therefore, in the section (C), it is preferable to apply a PWM waveform between normal phases as shown in FIG. 5C .

參照圖9,進一步對反相應用區間進行說明。圖9是示出輸出電壓和輸出電流的圖。圖9是示出馬達M的旋轉方向為CW旋轉(順時針旋轉)的情況的圖。也就是說,旋轉方向是電角度從0度朝向360度的方向。Referring to FIG. 9 , the inversion application section will be further described. FIG. 9 is a graph showing output voltage and output current. FIG. 9 is a diagram showing a case where the rotation direction of the motor M is CW rotation (clockwise rotation). That is, the rotation direction is the direction in which the electrical angle goes from 0 degrees to 360 degrees.

如圖9所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲40度。As shown in FIG. 9 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 40 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

在第一分割區間T1、第三分割區間T3和第五分割區間T5中,應用反相PWM區間。像參照圖3在上文中說明的那樣,在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。例如,在第一分割區間T1中,對三相中的V相、U相應用正相PWM信號,對三相中的W相應用反相PWM信號。因此,如圖9所示,即使在三相的輸出電流的相位比三相的輸出電壓延遲超30度,產生優選不應用反相PWM信號的(C)的區間的情況下,在(C)的區間之前應用反相PWM信號的W相在(C)的區間中變成連續斷開,在(C)的區間中對進行開關動作的U相、V相自動應用正相PWM信號。因此,無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。In the first divided interval T1, the third divided interval T3, and the fifth divided interval T5, the inverted PWM interval is applied. As described above with reference to FIG. 3 , in the inversion PWM section, the phase that generates the current zero-cross point next as viewed in the time axis direction is selected as the inversion PWM phase. For example, in the first divided interval T1, the positive-phase PWM signal is applied to the V-phase and the U-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. Therefore, as shown in FIG. 9 , even when the phases of the three-phase output currents are delayed by more than 30 degrees from the three-phase output voltages, and a section (C) in which it is preferable not to apply the inverted PWM signal occurs, in (C) In the interval of (C), the W-phase to which the inverted PWM signal was applied is continuously disconnected, and in the interval of (C), the normal-phase PWM signal is automatically applied to the U-phase and V-phase that perform switching operations. Therefore, there is no need to classify cases where the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

在第三分割區間T3中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。因此,與第一分割區間T1相同,在(C)的區間中對進行開關動作的V相、W相自動應用正相PWM信號。In the third divided interval T3, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. Therefore, as in the first divided section T1 , in the section (C), the positive-phase PWM signal is automatically applied to the V-phase and the W-phase that perform switching operations.

在第五分割區間T5中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。因此,與第一分割區間T1相同,在(C)的區間中對進行開關動作的U相、W相自動應用正相PWM信號。In the fifth divided interval T5, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases. Therefore, as in the first divided section T1 , in the section (C), the positive-phase PWM signal is automatically applied to the U-phase and the W-phase that perform switching operations.

參照圖10,進一步對反相應用區間進行說明。圖10是示出輸出電壓和輸出電流的圖。圖10是示出馬達M的旋轉方向為CCW旋轉(逆時針旋轉)的情況的圖。也就是說,旋轉方向是電角度從360度朝向0度的方向。Referring to FIG. 10 , the inversion application section will be further described. FIG. 10 is a graph showing output voltage and output current. FIG. 10 is a diagram showing a case where the rotation direction of the motor M is CCW rotation (counterclockwise rotation). That is, the rotation direction is the direction in which the electrical angle goes from 360 degrees to 0 degrees.

如圖10所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲40度。As shown in FIG. 10 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 40 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

在第一分割區間T1、第三分割區間T3和第五分割區間T5中,應用反相PWM區間。像參照圖3在上文中說明的那樣,在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。例如,在第一分割區間T1中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。因此,如圖10所示,即使在三相的輸出電流的相位比三相的輸出電壓延遲超30度,產生優選不應用反相PWM信號的(C)的區間的情況下,在(C)的區間之前應用反相PWM信號的U相在(C)的區間中變成連續斷開,在(C)的區間中對進行開關動作的V相、W相自動應用正相PWM信號。因此,無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。In the first divided interval T1, the third divided interval T3, and the fifth divided interval T5, the inverted PWM interval is applied. As described above with reference to FIG. 3 , in the inversion PWM section, the phase that generates the current zero-cross point next as viewed in the time axis direction is selected as the inversion PWM phase. For example, in the first divided interval T1, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. Therefore, as shown in FIG. 10 , even when the phases of the three-phase output currents are delayed by more than 30 degrees from the three-phase output voltages, and a section (C) in which it is preferable not to apply the inverted PWM signal occurs, in (C) In the interval of (C), the U-phase to which the inverted PWM signal was applied is continuously disconnected, and in the interval of (C), the normal-phase PWM signal is automatically applied to the V-phase and W-phase that are switching. Therefore, there is no need to classify cases where the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

在第三分割區間T3中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。因此,與第一分割區間T1相同,在(C)的區間中對進行開關動作的U相、W相自動應用正相PWM信號。In the third divided interval T3, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases. Therefore, as in the first divided section T1 , in the section (C), the positive-phase PWM signal is automatically applied to the U-phase and the W-phase that perform switching operations.

在第五分割區間T5中,對三相中的U相、V相應用正相PWM信號,對三相中的W相應用反相PWM信號。因此,與第一分割區間T1相同,在(C)的區間中對進行開關動作的U相、V相自動應用正相PWM信號。In the fifth divided interval T5, the positive-phase PWM signal is applied to the U-phase and the V-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. Therefore, as in the first divided section T1 , in the section (C), the positive-phase PWM signal is automatically applied to the U-phase and the V-phase that perform switching operations.

像參照圖9和圖10說明的那樣,逆變器控制裝置12能對三相的輸出波形的相位的順序進行變更。因此,能提高控制的自由度。在驅動馬達的情況下,能對馬達的旋轉方向進行切換。As described with reference to FIGS. 9 and 10 , the inverter control device 12 can change the order of the phases of the three-phase output waveforms. Therefore, the degree of freedom of control can be improved. When the motor is driven, the rotation direction of the motor can be switched.

而且,信號生成部120在電流過零點處將在反相PWM區間中應用了反相PWM信號的相切換至正相PWM信號。因此,能簡化控制程式。Then, the signal generation unit 120 switches the phase to which the reversed-phase PWM signal is applied in the reversed-phase PWM section to the normal-phase PWM signal at the current zero-cross point. Therefore, the control program can be simplified.

而且,信號生成部120將多個分割區間T的每一個確定為對全部三相應用正相PWM信號的正相PWM區間和反相PWM區間中的任一個。因此,能簡化控制程式。Then, the signal generation unit 120 determines each of the plurality of divided sections T as any one of a normal-phase PWM section and a reverse-phase PWM section in which the normal-phase PWM signal is applied to all three phases. Therefore, the control program can be simplified.

而且,信號生成部120按照每個電流過零點將電角度一周分割成分割區間T。因此,能簡化控制程式。Then, the signal generation unit 120 divides one electric angle cycle into divided sections T for each current zero-crossing point. Therefore, the control program can be simplified.

而且,信號生成部120將電角度一周分割成第一分割區間T1、第二分割區間T2、第三分割區間T3、第四分割區間T4、第五分割區間T5及第六分割區間T6。因此,能簡化控制程式。Then, the signal generation unit 120 divides the electrical angle cycle into a first divided section T1, a second divided section T2, a third divided section T3, a fourth divided section T4, a fifth divided section T5, and a sixth divided section T6. Therefore, the control program can be simplified.

而且,在第一分割區間T1、第三分割區間T3和第五分割區間T5中,信號生成部120應用反相PWM區間。在第二分割區間T2、第四分割區間T4和第六分割區間T6中,信號生成部120對全部的相應用正相PWM區間。因此,能對斷開固定模式(Min型)進行控制。Furthermore, in the first divided period T1 , the third divided period T3 , and the fifth divided period T5 , the signal generation unit 120 applies the inverted PWM period. In the second divided period T2, the fourth divided period T4, and the sixth divided period T6, the signal generation unit 120 applies the positive-phase PWM period to all the phases. Therefore, the off-fixed mode (Min type) can be controlled.

接著,參照圖11,對信號生成部120的動作的其它示例進行說明。圖11是示出輸出電壓和輸出電流的圖。Next, another example of the operation of the signal generation unit 120 will be described with reference to FIG. 11 . FIG. 11 is a graph showing output voltage and output current.

圖11的上圖示出輸出電壓Vu、輸出電壓Vv及輸出電壓Vw。在圖11的上圖中,以實線示出輸出電壓Vu,以虛線示出輸出電壓Vv,以點劃線示出輸出電壓Vw。圖11的縱軸表示用輸入電壓V1-V2標準化了的電壓值,各相的輸出電壓取0~1範圍內的值。而且,該值也表示各相的第一半導體開關元件的接通時間相對於PWM週期的比率即占空值。圖11的橫軸表示馬達的電氣旋轉角度,單位是度。The upper graph of FIG. 11 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw. In the upper diagram of FIG. 11 , the output voltage Vu is shown by a solid line, the output voltage Vv is shown by a broken line, and the output voltage Vw is shown by a dashed-dotted line. The vertical axis of FIG. 11 represents the voltage value normalized by the input voltages V1-V2, and the output voltage of each phase takes a value in the range of 0 to 1. In addition, this value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM period. The horizontal axis of FIG. 11 represents the electrical rotation angle of the motor, and the unit is degrees.

圖11的下圖示出輸出電流Iu、輸出電流Iv及輸出電流Iw。在圖11的下圖中,以實線示出輸出電流Iu,以虛線示出輸出電流Iv,以點劃線示出輸出電流Iw。圖11的橫軸表示馬達的電氣旋轉角度,單位是度。The lower graph of FIG. 11 shows the output current Iu, the output current Iv, and the output current Iw. In the lower graph of FIG. 11 , the output current Iu is shown by a solid line, the output current Iv is shown by a broken line, and the output current Iw is shown by a dashed-dotted line. The horizontal axis of FIG. 11 represents the electrical rotation angle of the motor, and the unit is degrees.

如圖11所示,輸出電壓波形具有三相中的一相變成接通固定的期間。接通固定表示在多個PWM週期的期間,第一半導體開關元件連續接通,且第二半導體開關元件連續斷開。詳細地,輸出電壓Vu在電角度30度~電角度150度處變成接通固定。輸出電壓Vv在電角度150度~電角度270度處變成接通固定。輸出電壓Vw在電角度0度~電角度30度處以及電角度270度~電角度360度處變成接通固定。在本說明書中,有時將像圖11所示那樣輸出電壓波形具有三相中的一相變成接通固定的期間的調制方式記載為接通固定模式(Max型:最大型)的調制方式。As shown in FIG. 11 , the output voltage waveform has a period during which one of the three phases is turned on and fixed. On-fix means that the first semiconductor switching element is continuously turned on and the second semiconductor switching element is continuously turned off during a plurality of PWM periods. Specifically, the output voltage Vu becomes on-fixed at an electrical angle of 30 degrees to an electrical angle of 150 degrees. The output voltage Vv becomes on-fixed at an electrical angle of 150 degrees to an electrical angle of 270 degrees. The output voltage Vw becomes on-fixed at 0 degrees to 30 degrees in electrical angle and 270 degrees to 360 degrees in electrical angle. In this specification, as shown in FIG. 11 , the modulation method in which the output voltage waveform has a period during which one of the three phases is turned on is sometimes described as the modulation method of the on-fixed mode (Max type: maximum type).

在本實施方式中,在第二分割區間T2、第四分割區間T4和第六分割區間T6中,信號生成部120應用反相PWM區間。在第一分割區間T1、第三分割區間T3和第五分割區間T5中,應用正相PWM區間。因此,能對接通固定模式(Max型)進行控制。In the present embodiment, in the second divided period T2, the fourth divided period T4, and the sixth divided period T6, the signal generation unit 120 applies the inverted PWM period. In the first divided interval T1, the third divided interval T3, and the fifth divided interval T5, the normal-phase PWM interval is applied. Therefore, the ON fixed mode (Max type) can be controlled.

在本實施方式中,信號生成部120在反相PWM區間中,也將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。詳細地,在作為反相PWM區間的第二分割區間T2中,將以時間軸方向觀察接下來產生電流過零點的V相選擇為反相PWM相。在作為反相PWM區間的第四分割區間T4中,將以時間軸方向觀察接下來產生電流過零點的W相選擇為反相PWM相。在作為反相PWM區間的第六分割區間T6中,將以時間軸方向觀察接下來產生電流過零點的U相選擇為反相PWM相。In the present embodiment, the signal generation unit 120 also selects the phase in which the current zero-cross point occurs next as viewed in the time axis direction as the inverse PWM phase in the inverse PWM section. In detail, in the second divided section T2 which is the inversion PWM section, the V phase which generates the current zero-crossing point next as viewed in the time axis direction is selected as the inversion PWM phase. In the fourth divided interval T4, which is an inverted PWM interval, the W phase that generates the current zero-crossing point next when viewed in the time axis direction is selected as the inverted PWM phase. In the sixth divided interval T6, which is an inversion PWM section, the U-phase that generates the current zero-cross point next when viewed in the time axis direction is selected as the inversion PWM phase.

在接通固定模式(Max型)中,也無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。In the on-fixed mode (Max type), there is also no need to classify the cases when the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

接著,參照圖12,對信號生成部120的動作的其它示例進行說明。圖12是示出輸出電壓和輸出電流的圖。Next, another example of the operation of the signal generation unit 120 will be described with reference to FIG. 12 . FIG. 12 is a graph showing output voltage and output current.

圖12的上圖示出輸出電壓Vu、輸出電壓Vv及輸出電壓Vw。在圖12的上圖中,以實線示出輸出電壓Vu,以虛線示出輸出電壓Vv,以點劃線示出輸出電壓Vw。圖12的縱軸表示用輸入電壓V1-V2標準化了的電壓值,各相的輸出電壓取0~1範圍內的值。而且,該值也表示各相的第一半導體開關元件的接通時間相對於PWM週期的比率即占空值。圖12的橫軸表示馬達的電氣旋轉角度,單位是度。The upper graph of FIG. 12 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw. In the upper graph of FIG. 12 , the output voltage Vu is shown by a solid line, the output voltage Vv is shown by a broken line, and the output voltage Vw is shown by a dashed-dotted line. The vertical axis of FIG. 12 represents the voltage value normalized by the input voltages V1-V2, and the output voltage of each phase takes a value in the range of 0 to 1. In addition, this value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM period. The horizontal axis of FIG. 12 represents the electrical rotation angle of the motor, and the unit is degrees.

圖12的下圖示出輸出電流Iu、輸出電流Iv及輸出電流Iw。在圖12的下圖中,以實線示出輸出電流Iu,以虛線示出輸出電流Iv,以點劃線示出輸出電流Iw。圖12的橫軸表示馬達的電氣旋轉角度,單位是度。The lower graph of FIG. 12 shows the output current Iu, the output current Iv, and the output current Iw. In the lower graph of FIG. 12 , the output current Iu is shown by a solid line, the output current Iv is shown by a broken line, and the output current Iw is shown by a dashed-dotted line. The horizontal axis of FIG. 12 represents the electrical rotation angle of the motor, and the unit is degrees.

如圖12所示,輸出電壓波形具有三相中的一相變成接通固定的期間以及三相中的一相變成斷開固定的期間。詳細地,輸出電壓Vu在電角度80度~電角度140度處變成接通固定。輸出電壓Vu在電角度260度~電角度320度處變成斷開固定。輸出電壓Vv在電角度200度~電角度260度處變成接通固定。輸出電壓Vv在電角度20度~電角度80度處變成斷開固定。輸出電壓Vw在電角度0度~電角度20度處以及電角度320度~電角度360度處變成接通固定。輸出電壓Vw在電角度140度~電角度200度處變成斷開固定。有時將像圖12所示那樣輸出電壓波形具有三相中的一相變成接通固定的期間以及三相中的一相變成斷開固定的期間的調制方式記載為接通-斷開固定模式(Max-Min型:最小-最大型)的調制方式。接通-斷開固定模式(Max-Min型)的調制方式是每60度區間對接通固定模式(Max型)和斷開固定模式(Min型)進行切換的調制模式。As shown in FIG. 12 , the output voltage waveform has a period during which one of the three phases is fixed on and a period during which one of the three phases is fixed off. In detail, the output voltage Vu becomes on-fixed at an electrical angle of 80 degrees to an electrical angle of 140 degrees. The output voltage Vu is turned off and fixed at an electrical angle of 260 degrees to an electrical angle of 320 degrees. The output voltage Vv becomes on-fixed at an electrical angle of 200 degrees to an electrical angle of 260 degrees. The output voltage Vv becomes an off-fix at an electrical angle of 20 degrees to an electrical angle of 80 degrees. The output voltage Vw becomes on-fixed at 0 degrees to 20 degrees in electrical angle and 320 degrees to 360 degrees in electrical angle. The output voltage Vw is turned off and fixed at an electrical angle of 140 degrees to an electrical angle of 200 degrees. As shown in FIG. 12 , the modulation method in which the output voltage waveform has a period during which one of the three phases is fixed on and a period during which one phase of the three phases is fixed off is sometimes described as an on-off fixed mode. (Max-Min type: minimum-maximum type) modulation method. The modulation method of the on-off fixed mode (Max-Min type) is a modulation mode in which the on fixed mode (Max type) and the off fixed mode (Min type) are switched every 60 degree interval.

參照圖12~圖14C對電容器C的充放電電流進行說明。圖13A~圖14C是用於對電容器C的充放電電流進行說明的圖。The charging and discharging current of the capacitor C will be described with reference to FIGS. 12 to 14C . 13A to 14C are diagrams for explaining charge and discharge currents of the capacitor C. FIG.

如圖12所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲20度。As shown in FIG. 12 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 20 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

首先,對在(A)的區間中應用反相PWM的情況進行說明。圖13A~圖13C是示出(A)的區間中的電角度140度~200度的區間的圖。First, the case where inversion PWM is applied in the section (A) will be described. 13A to 13C are diagrams showing a section of an electrical angle of 140 to 200 degrees in the section of (A).

如圖13C所示,正相的PWM信號輸入至第一半導體開關元件Vp。反相的PWM信號輸入至第一半導體開關元件Up。低電平的信號輸入至第一半導體開關元件Wp。As shown in FIG. 13C, the PWM signal of the normal phase is input to the first semiconductor switching element Vp. The inverted PWM signal is input to the first semiconductor switching element Up. A low-level signal is input to the first semiconductor switching element Wp.

在圖13C中的(1)的區間中,如圖13A所示,Vp柵極信號為高電平。而且,Up柵極信號及Wp柵極信號為低電平。因此,第一半導體開關元件Vp接通,第一半導體開關元件Up和第一半導體開關元件Wp斷開。另一方面,第二半導體開關元件Vn斷開,第二半導體開關元件Un和第二半導體開關元件Wn接通。因此,與圖5A的情況相比,逆變器電流分散,能對電容器C的充放電電流進行抑制。In the section of (1) in FIG. 13C , as shown in FIG. 13A , the Vp gate signal is at a high level. Also, the Up gate signal and the Wp gate signal are at a low level. Therefore, the first semiconductor switching element Vp is turned on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are turned off. On the other hand, the second semiconductor switching element Vn is turned off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are turned on. Therefore, compared with the case of FIG. 5A , the inverter current is dispersed, and the charging and discharging current of the capacitor C can be suppressed.

在接通-斷開固定模式(Max-Min型)的調制方式的情況下,不僅在(A)的區間中應用反相PWM,還在(B)的區間中應用反相PWM。In the case of the modulation method of the ON-OFF fixed mode (Max-Min type), not only inversion PWM is applied in the section (A), but also inversion PWM is applied in the section (B).

接著,對在(B)的區間中應用反相PWM的情況進行說明。圖14A~圖14C是示出(B)的區間中的電角度0度~20度及320度~360度的區間的圖。Next, the case where the inversion PWM is applied in the section (B) will be described. FIGS. 14A to 14C are diagrams showing the sections of the electrical angle of 0 to 20 degrees and the sections of 320 to 360 degrees in the section (B).

如圖14C所示,正相的PWM信號輸入至第一半導體開關元件Vp。反相的PWM信號輸入至第一半導體開關元件Up。低電平的信號輸入至第一半導體開關元件Wp。As shown in FIG. 14C, the PWM signal of the positive phase is input to the first semiconductor switching element Vp. The inverted PWM signal is input to the first semiconductor switching element Up. A low-level signal is input to the first semiconductor switching element Wp.

在圖14C中的(1)的區間中,如圖14A所示,Vp柵極信號、Wp柵極信號為高電平。而且,Up柵極信號為低電平。因此,第一半導體開關元件Vp和第一半導體開關元件Wp接通,第一半導體開關元件Up斷開。另一方面,第二半導體開關元件Vn和第二半導體開關元件Wn斷開,第二半導體開關元件Un接通。在該情況下,不產生向電容器C的逆流電流。因此,能對電容器C的充放電電流進行抑制。In the section (1) in FIG. 14C , as shown in FIG. 14A , the Vp gate signal and the Wp gate signal are at the high level. Also, the Up gate signal is at a low level. Therefore, the first semiconductor switching element Vp and the first semiconductor switching element Wp are turned on, and the first semiconductor switching element Up is turned off. On the other hand, the second semiconductor switching element Vn and the second semiconductor switching element Wn are turned off, and the second semiconductor switching element Un is turned on. In this case, a backflow current to the capacitor C does not occur. Therefore, the charge and discharge current of the capacitor C can be suppressed.

在圖14C中的(2)的區間中,如圖14B所示,Up柵極信號、Wp柵極信號為高電平。而且,Vp柵極信號為低電平。因此,第一半導體開關元件Up和第一半導體開關元件Wp接通,第一半導體開關元件Vp斷開。另一方面,第二半導體開關元件Un和第二半導體開關元件Wn斷開,第二半導體開關元件Vn接通。在該情況下,產生電流向電容器C的逆流,電容器C的充放電電流增加。在該情況下,不產生向電容器C的逆流電流。因此,能對電容器C的充放電電流進行抑制。In the section (2) in FIG. 14C , as shown in FIG. 14B , the Up gate signal and the Wp gate signal are at the high level. Also, the Vp gate signal is low. Therefore, the first semiconductor switching element Up and the first semiconductor switching element Wp are turned on, and the first semiconductor switching element Vp is turned off. On the other hand, the second semiconductor switching element Un and the second semiconductor switching element Wn are turned off, and the second semiconductor switching element Vn is turned on. In this case, the reverse flow of the current to the capacitor C occurs, and the charge and discharge current of the capacitor C increases. In this case, a backflow current to the capacitor C does not occur. Therefore, the charge and discharge current of the capacitor C can be suppressed.

參照圖15,對反相應用區間進行說明。圖15是示出輸出電壓和輸出電流的圖。圖15是示出馬達M的旋轉方向為CW旋轉(順時針旋轉)的情況的圖。也就是說,旋轉方向是電角度從0度朝向360度的方向。Referring to FIG. 15 , the inversion application section will be described. FIG. 15 is a graph showing output voltage and output current. FIG. 15 is a diagram showing a case where the rotation direction of the motor M is CW rotation (clockwise rotation). That is, the rotation direction is the direction in which the electrical angle goes from 0 degrees to 360 degrees.

如圖15所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲40度。As shown in FIG. 15 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 40 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

在第一分割區間T1、第二分割區間T2、第三分割區間T3、第四分割區間T4、第五分割區間T5及第六分割區間T6中,信號生成部120應用反相PWM區間。因此,能對接通-斷開固定模式(Min-Max型)進行控制。In the first divided period T1, the second divided period T2, the third divided period T3, the fourth divided period T4, the fifth divided period T5, and the sixth divided period T6, the signal generation unit 120 applies the inverted PWM period. Therefore, the ON-OFF fixed mode (Min-Max type) can be controlled.

在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。例如,在第一分割區間T1中,對三相中的V相、U相應用正相PWM信號,對三相中的W相應用反相PWM信號。在第二分割區間T2中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。在第三分割區間T3中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。在第四分割區間T4中,對三相中的V相、U相應用正相PWM信號,對三相中的W相應用反相PWM信號。在第五分割區間T5中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。在第六分割區間T6中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。In the inverting PWM section, the phase that produces the current zero-crossing point in the time axis direction is selected as the inverting PWM phase. For example, in the first divided interval T1, the positive-phase PWM signal is applied to the V-phase and the U-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. In the second divided interval T2, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases. In the third divided interval T3, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. In the fourth divided interval T4, the positive-phase PWM signal is applied to the V-phase and the U-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. In the fifth divided interval T5, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases. In the sixth divided interval T6, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases.

逆變器控制裝置12包括接通固定模式(Max型)和斷開固定模式(Min型)。信號生成部120每當電流過零點時對接通固定模式(Max型)和斷開固定模式(Min型)進行切換。因此,能簡化控制程式。在本實施方式中,對僅一相為正電流的分割區間T應用接通固定模式(Max型)的波形。詳細地,在本實施方式中,對第二分割區間T2、第四分割區間T4及第六分割區間T6應用接通固定模式(Max型)的波形。另一方面,對僅一相為負電流的分割區間T應用斷開固定模式(Min型)的波形。詳細地,在本實施方式中,對第一分割區間T1、第三分割區間T3及第五分割區間T5應用斷開固定模式(Min型)的波形。The inverter control device 12 includes an ON fixed mode (Max type) and an OFF fixed mode (Min type). The signal generation unit 120 switches between the ON fixed mode (Max type) and the OFF fixed mode (Min type) every time the current zero crosses. Therefore, the control program can be simplified. In the present embodiment, the waveform of the ON fixed pattern (Max type) is applied to the divided section T in which only one phase is a positive current. Specifically, in the present embodiment, the waveform of the ON fixed pattern (Max type) is applied to the second divided section T2 , the fourth divided section T4 , and the sixth divided section T6 . On the other hand, the waveform of the off-fixed pattern (Min type) is applied to the divided section T in which only one phase is negative current. Specifically, in the present embodiment, the waveform of the off-fixed pattern (Min type) is applied to the first divided section T1 , the third divided section T3 , and the fifth divided section T5 .

在本實施方式中,即使在三相的輸出電流的相位比三相的輸出電壓延遲超30度,產生(C)的區間的情況下,也能對向電容器C的逆流電流進行抑制。因此,無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。In the present embodiment, even when the phases of the three-phase output currents are delayed by more than 30 degrees from the three-phase output voltages and the interval (C) occurs, the backflow current to the capacitor C can be suppressed. Therefore, there is no need to classify cases where the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

參照圖16,進一步對反相應用區間進行說明。圖16是示出輸出電壓和輸出電流的圖。圖16是示出馬達M的旋轉方向為CCW旋轉(逆時針旋轉)的情況的圖。也就是說,旋轉方向是電角度從360度朝向0度的方向。Referring to FIG. 16 , the inversion application section will be further described. FIG. 16 is a graph showing output voltage and output current. FIG. 16 is a diagram showing a case where the rotation direction of the motor M is CCW rotation (counterclockwise rotation). That is, the rotation direction is the direction in which the electrical angle goes from 360 degrees to 0 degrees.

如圖16所示,三相的輸出電流(輸出電流Iu、輸出電流Iv及輸出電流Iw)的相位比起三相的輸出電壓(輸出電壓Vu、輸出電壓Vv及輸出電壓Vw)的相位延遲40度。As shown in FIG. 16 , the phases of the three-phase output currents (output current Iu, output current Iv, and output current Iw) are delayed by 40 from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). Spend.

在第一分割區間T1、第二分割區間T2、第三分割區間T3、第四分割區間T4、第五分割區間T5及第六分割區間T6中,信號生成部120應用反相PWM區間。In the first divided period T1, the second divided period T2, the third divided period T3, the fourth divided period T4, the fifth divided period T5, and the sixth divided period T6, the signal generation unit 120 applies the inverted PWM period.

在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。例如,在第一分割區間T1中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。在第二分割區間T2中,對三相中的U相、V相應用正相PWM信號,對三相中的W相應用反相PWM信號。在第三分割區間T3中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。在第四分割區間T4中,對三相中的V相、W相應用正相PWM信號,對三相中的U相應用反相PWM信號。在第五分割區間T5中,對三相中的U相、V相應用正相PWM信號,對三相中的W相應用反相PWM信號。在第六分割區間T6中,對三相中的U相、W相應用正相PWM信號,對三相中的V相應用反相PWM信號。In the inverting PWM section, the phase that produces the current zero-crossing point in the time axis direction is selected as the inverting PWM phase. For example, in the first divided interval T1, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. In the second divided interval T2, the positive-phase PWM signal is applied to the U-phase and the V-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. In the third divided interval T3, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases. In the fourth divided interval T4, the positive-phase PWM signal is applied to the V-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. In the fifth divided interval T5, the positive-phase PWM signal is applied to the U-phase and the V-phase of the three phases, and the reverse-phase PWM signal is applied to the W-phase of the three phases. In the sixth divided interval T6, the positive-phase PWM signal is applied to the U-phase and the W-phase of the three phases, and the reverse-phase PWM signal is applied to the V-phase of the three phases.

逆變器控制裝置12包括接通固定模式(Max型)和斷開固定模式(Min型)。信號生成部120每當電流過零點時對接通固定模式(Max型)和斷開固定模式(Min型)進行切換。在本實施方式中,對僅一相為正電流的分割區間T應用接通固定模式(Max型)的波形。詳細地,在本實施方式中,對第二分割區間T2、第四分割區間T4及第六分割區間T6應用接通固定模式(Max型)的波形。另一方面,對僅一相為負電流的分割區間T應用斷開固定模式(Min型)的波形。詳細地,在本實施方式中,對第一分割區間T1、第三分割區間T3及第五分割區間T5應用斷開固定模式(Min型)的波形。The inverter control device 12 includes an ON fixed mode (Max type) and an OFF fixed mode (Min type). The signal generation unit 120 switches between the ON fixed mode (Max type) and the OFF fixed mode (Min type) every time the current zero crosses. In the present embodiment, the waveform of the ON fixed pattern (Max type) is applied to the divided section T in which only one phase is a positive current. Specifically, in the present embodiment, the waveform of the ON fixed pattern (Max type) is applied to the second divided section T2 , the fourth divided section T4 , and the sixth divided section T6 . On the other hand, the waveform of the off-fixed pattern (Min type) is applied to the divided section T in which only one phase is negative current. Specifically, in the present embodiment, the waveform of the off-fixed pattern (Min type) is applied to the first divided section T1 , the third divided section T3 , and the fifth divided section T5 .

在本實施方式中,即使在三相的輸出電流的相位比三相的輸出電壓延遲超30度,產生(C)的區間的情況下,也能對向電容器C的逆流電流進行抑制。因此,無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。In the present embodiment, even when the phases of the three-phase output currents are delayed by more than 30 degrees from the three-phase output voltages and the interval (C) occurs, the backflow current to the capacitor C can be suppressed. Therefore, there is no need to classify cases where the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

參照圖17,進一步對反相應用區間進行說明。圖17是示出各分割區間中的應用反相PWM的區間和應用反相PWM信號的相的圖。Referring to FIG. 17 , the inversion application section will be further described. FIG. 17 is a diagram showing a section to which the inverted PWM is applied and the phase to which the inverted PWM signal is applied in each divided section.

如圖17所示,在斷開固定模式(Min型)的CW旋轉中,在第一分割區間T1中對W相應用反相PWM信號。在第三分割區間T3中對U相應用反相PWM信號。在第五分割區間T5中對V相應用反相PWM信號。As shown in FIG. 17 , in the CW rotation in the off-fixed mode (Min type), an inverted PWM signal is applied to the W phase in the first divided interval T1 . In the third division period T3, an inverted PWM signal is applied to the U-phase. In the fifth division period T5, an inverted PWM signal is applied to the V phase.

在斷開固定模式(Min型)的CCW旋轉中,在第一分割區間T1中對U相應用反相PWM信號。在第三分割區間T3中對V相應用反相PWM信號。在第五分割區間T5中對W相應用反相PWM信號。In the CCW rotation in the off-fixed mode (Min type), an inverted PWM signal is applied to the U-phase in the first divided interval T1. In the third division period T3, an inverted PWM signal is applied to the V phase. In the fifth division period T5, an inverted PWM signal is applied to the W phase.

在接通固定模式(Max型)的CW旋轉中,在第二分割區間T2中對V相應用反相PWM信號。在第四分割區間T4中對W相應用反相PWM信號。在第六分割區間T6中對U相應用反相PWM信號。In the CW rotation in the ON fixed mode (Max type), an inverted PWM signal is applied to the V phase in the second divided section T2. In the fourth division period T4, an inverted PWM signal is applied to the W phase. In the sixth division period T6, an inverted PWM signal is applied to the U-phase.

在接通固定模式(Max型)的CCW旋轉中,在第二分割區間T2中對W相應用反相PWM信號。在第四分割區間T4中對U相應用反相PWM信號。在第六分割區間T6中對V相應用反相PWM信號。In the CCW rotation in the ON fixed mode (Max type), an inverted PWM signal is applied to the W phase in the second divided interval T2. In the fourth division period T4, an inverted PWM signal is applied to the U-phase. In the sixth division period T6, an inverted PWM signal is applied to the V phase.

在接通-斷開固定模式(Min-Max型)的CW旋轉中,在第一分割區間T1中對W相應用反相PWM信號。在第二分割區間T2中對V相應用反相PWM信號。在第三分割區間T3中對U相應用反相PWM信號。在第四分割區間T4中對W相應用反相PWM信號。在第五分割區間T5中對V相應用反相PWM信號。在第六分割區間T6中對U相應用反相PWM信號。In the CW rotation of the ON-OFF fixed mode (Min-Max type), an inverted PWM signal is applied to the W phase in the first divided interval T1. In the second division period T2, an inverted PWM signal is applied to the V phase. In the third division period T3, an inverted PWM signal is applied to the U-phase. In the fourth division period T4, an inverted PWM signal is applied to the W phase. In the fifth division period T5, an inverted PWM signal is applied to the V phase. In the sixth division period T6, an inverted PWM signal is applied to the U-phase.

在接通-斷開固定模式(Min-Max型)的CCW旋轉中,在第一分割區間T1中對U相應用反相PWM信號。在第二分割區間T2中對W相應用反相PWM信號。在第三分割區間T3中對V相應用反相PWM信號。在第四分割區間T4中對U相應用反相PWM信號。在第五分割區間T5中對W相應用反相PWM信號。在第六分割區間T6中對V相應用反相PWM信號。In the CCW rotation of the ON-OFF fixed mode (Min-Max type), an inverted PWM signal is applied to the U-phase in the first divided interval T1. In the second division period T2, an inverted PWM signal is applied to the W phase. In the third division period T3, an inverted PWM signal is applied to the V phase. In the fourth division period T4, an inverted PWM signal is applied to the U-phase. In the fifth division period T5, an inverted PWM signal is applied to the W phase. In the sixth division period T6, an inverted PWM signal is applied to the V phase.

如圖17所示,對於應用反相PWM信號的相同的分割區間T,信號生成部120根據旋轉方向對不同的相應用反相PWM信號。因此,能根據旋轉方向進行控制。As shown in FIG. 17 , the signal generation unit 120 applies the inverted PWM signal to different phases according to the rotation direction for the same divided period T to which the inverted PWM signal is applied. Therefore, control can be performed according to the rotation direction.

參照圖18對逆變器控制方法進行說明。圖18是示出逆變器控制方法的流程圖。通過執行圖18示出的步驟S102~步驟S118的處理,進行逆變器控制。逆變器控制方法是對兩相調制方式的三相逆變器進行控制的方法。An inverter control method will be described with reference to FIG. 18 . FIG. 18 is a flowchart illustrating an inverter control method. Inverter control is performed by executing the processing of steps S102 to S118 shown in FIG. 18 . The inverter control method is a method of controlling a three-phase inverter of a two-phase modulation method.

步驟S102:信號生成部120進行暫態角度的匯出。詳細地,匯出當前的轉子的位置(電角度)。處理前進至步驟S104。Step S102 : The signal generation unit 120 exports the transient angle. In detail, the current rotor position (electrical angle) is exported. The process proceeds to step S104.

步驟S104:信號生成部120匯出各相輸出的瞬時值。詳細地,基於暫態角度計算各相的正弦波輸出電壓。處理前進至步驟S106。Step S104: The signal generation unit 120 outputs the instantaneous values of the outputs of each phase. In detail, the sine wave output voltage of each phase is calculated based on the transient angle. The process proceeds to step S106.

步驟S106:信號生成部120對暫態角度包含於哪個分割區間T進行判斷。處理前進至步驟S108。Step S106 : The signal generation unit 120 determines in which divided section T the transient angle is included. The process proceeds to step S108.

步驟S106:信號生成部120以與分割區間T相應的變數形式(Max型或Min型)計算調制偏置量。即,匯出占空(Duty)。Step S106 : The signal generation unit 120 calculates the modulation offset amount in a variable format (Max type or Min type) corresponding to the divided interval T. That is, the duty (Duty) is exported.

步驟S108:信號生成部120根據分割區間T及旋轉方向選擇反相PWM應用模式。詳細地,信號生成部120對是否應用反相PWM、應用的相進行選擇。更詳細地,信號生成部120在反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。另外,步驟S108相當於“選擇工序”的一例。處理前進至步驟S112。Step S108 : the signal generation unit 120 selects the inversion PWM application mode according to the divided interval T and the rotation direction. Specifically, the signal generation unit 120 selects whether or not to apply the inverted PWM and which phase to apply. More specifically, the signal generation unit 120 selects the phase in which the current zero-crossing point occurs next as viewed in the time axis direction as the inverse-phase PWM phase in the inverse-phase PWM section. In addition, step S108 corresponds to an example of a "selection process". The process proceeds to step S112.

步驟S112:信號生成部120對應用反相的相是否存在進行判斷。當信號生成部120判斷為應用反相的相不存在時(步驟S102:否),處理前進至步驟S116。當信號生成部120判斷為應用反相的相存在時(步驟S102:是),處理前進至步驟S114。Step S112: The signal generation unit 120 judges whether or not the phase to which the inversion is applied exists. When the signal generation unit 120 determines that the phase to which the inversion is applied does not exist (step S102 : NO), the process proceeds to step S116 . When the signal generation unit 120 determines that the phase to which the inversion is applied exists (step S102 : YES), the process proceeds to step S114 .

步驟S114:信號生成部120將反相PWM相的Duty變更為1-Duty。處理前進至步驟S116。Step S114: The signal generation unit 120 changes the Duty of the inverted PWM phase to 1-Duty. The process proceeds to step S116.

步驟S116:信號生成部120將Duty值設定到寄存器。處理前進至步驟S118。Step S116: The signal generation unit 120 sets the Duty value in the register. The process proceeds to step S118.

步驟S118:信號生成部120進行正相PWM和反相PWM的設定。處理結束。Step S118: The signal generation unit 120 sets the normal-phase PWM and the reverse-phase PWM. Processing ends.

以上,像對圖18進行的說明那樣,逆變器控制方法包含在上述反相PWM區間中將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相的選擇工序。當被選擇為反相PWM相的相像圖9、圖10、圖15、圖16的(C)的區間那樣處於接通固定乃至斷開固定時,在設定成反相PWM相的狀態下將設定到寄存器的Duty值設為1至0即可。因此,無需在電流相位延遲超過30度的情況下和未超過的情況下進行情況分類。因此,能簡化控制程式。As described above with reference to FIG. 18 , the inverter control method includes the selection step of selecting, as the inverse PWM phase, the phase in which the current zero-cross point occurs next when viewed in the time axis direction in the above-mentioned inverse PWM section. When the phase selected as the inverting PWM phase is fixed on or off, as in the section in (C) of FIG. 9 , FIG. 10 , FIG. 15 , and FIG. 16 , in the state where the inverting PWM phase is set, the setting is set to The Duty value to the register can be set to 1 to 0. Therefore, there is no need to classify cases where the current phase delay exceeds 30 degrees and when it does not. Therefore, the control program can be simplified.

以上,參照附圖(圖1~圖18)對本發明的實施方式進行了說明。但是,本發明不限於上述實施方式,能在不脫離其主旨的範圍內以各種方式實施。為了便於理解,附圖示意性地示出了各結構要素的主體,為了便於製圖,圖示的各結構要素的厚度、長度、個數等與實際不同。此外,上述實施方式所示的各結構要素的材質、形狀、尺寸等為一例而沒有特別限定,能在不實質脫離本發明的效果的範圍內進行各種變更。The embodiments of the present invention have been described above with reference to the accompanying drawings ( FIGS. 1 to 18 ). However, the present invention is not limited to the above-described embodiments, and can be implemented in various forms without departing from the gist of the present invention. For ease of understanding, the drawings schematically show the main bodies of each structural element, and for the convenience of drawing, the thickness, length, number, etc. of each structural element shown in the drawings are different from actual ones. In addition, the material, shape, dimension, etc. of each constituent element shown in the above-mentioned embodiment are examples and are not particularly limited, and various changes can be made within a range that does not substantially deviate from the effects of the present invention.

工業上的可利用性 本發明能理想地用於逆變器控制裝置、逆變器電路、馬達模組及逆變器控制方法。 industrial availability The present invention can be ideally used in an inverter control device, an inverter circuit, a motor module and an inverter control method.

12:逆變器控制裝置 100:馬達驅動電路(逆變器電路) 102,102u,102v,102w:輸出端子 110:逆變器部(三相逆變器) 112,112u,112v,112w:串聯體 114,114u,114v,114w:連接點 120:信號生成部 122:載波生成部 124:電壓指令值生成部 126:比較部 200:馬達模組 B:直流電壓源 C:電容器 D:整流元件 Iu,Iv,Iw:輸出電流 Vu,Vv,Vw:輸出電壓 M:馬達 N:第二輸入端子 P:第一輸入端子 T:分割區間 T1:第一分割區間 T2:第二分割區間 T3:第三分割區間 T4:第四分割區間 T5:第五分割區間 T6:第六分割區間 Un:第二半導體開關元件 Up:第一半導體開關元件 V1:第一電壓 V2:第二電壓 Vn:第二半導體開關元件 Vp:第一半導體開關元件 Wn:第二半導體開關元件 Wp:第一半導體開關元件 U,V,W:三相 CW:順時針 CCW:逆時針 12: Inverter control device 100: Motor drive circuit (inverter circuit) 102, 102u, 102v, 102w: output terminal 110: Inverter section (three-phase inverter) 112, 112u, 112v, 112w: tandem 114, 114u, 114v, 114w: Connection point 120: Signal generation section 122: Carrier generation part 124: Voltage command value generator 126: Comparison Department 200: Motor Module B: DC voltage source C: capacitor D: Rectifier element Iu, Iv, Iw: output current Vu, Vv, Vw: output voltage M: motor N: The second input terminal P: The first input terminal T: split interval T1: The first division interval T2: The second division interval T3: The third division interval T4: the fourth division interval T5: Fifth division interval T6: The sixth segment Un: Second semiconductor switching element Up: first semiconductor switching element V1: first voltage V2: The second voltage Vn: second semiconductor switching element Vp: first semiconductor switching element Wn: second semiconductor switching element Wp: first semiconductor switching element U, V, W: three-phase CW: Clockwise CCW: counterclockwise

圖1是本發明實施方式的馬達模組的方塊圖。 圖2是示出逆變器部的電路圖 圖3是示出輸出電壓和輸出電流的圖。 圖4是示出輸出電壓和輸出電流的圖。 圖5A是用於對電容器的充放電電流進行說明的圖。 圖5B是用於對電容器的充放電電流進行說明的圖。 圖5C是用於對電容器的充放電電流進行說明的圖。 圖6A是用於對電容器的充放電電流進行說明的圖。 圖6B是用於對電容器的充放電電流進行說明的圖。 圖6C是用於對電容器的充放電電流進行說明的圖。 圖7A是用於對電容器的充放電電流進行說明的圖。 圖7B是用於對電容器的充放電電流進行說明的圖。 圖7C是用於對電容器的充放電電流進行說明的圖。 圖8是示出輸出電壓和輸出電流的圖。 圖9是示出輸出電壓和輸出電流的圖。 圖10是示出輸出電壓和輸出電流的圖。 圖11是示出輸出電壓和輸出電流的圖。 圖12是示出輸出電壓和輸出電流的圖。 圖13A是用於對電容器的充放電電流進行說明的圖。 圖13B是用於對電容器的充放電電流進行說明的圖。 圖13C是用於對電容器的充放電電流進行說明的圖。 圖14A是用於對電容器的充放電電流進行說明的圖。 圖14B是用於對電容器的充放電電流進行說明的圖。 圖14C是用於對電容器的充放電電流進行說明的圖。 圖15是示出輸出電壓和輸出電流的圖。 圖16是示出輸出電壓和輸出電流的圖。 圖17是示出各分割區間中的應用反相PWM的區間和應用反相PWM信號的相的圖。 圖18是示出逆變器控制方法的流程圖。 FIG. 1 is a block diagram of a motor module according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing an inverter section FIG. 3 is a graph showing output voltage and output current. FIG. 4 is a graph showing output voltage and output current. FIG. 5A is a diagram for explaining charge and discharge currents of capacitors. FIG. 5B is a diagram for explaining charge and discharge currents of the capacitor. FIG. 5C is a diagram for explaining charge and discharge currents of the capacitor. FIG. 6A is a diagram for explaining charge and discharge currents of capacitors. FIG. 6B is a diagram for explaining charge and discharge currents of the capacitor. FIG. 6C is a diagram for explaining charge and discharge currents of the capacitor. FIG. 7A is a diagram for explaining charge and discharge currents of capacitors. FIG. 7B is a diagram for explaining charge and discharge currents of the capacitor. FIG. 7C is a diagram for explaining charge and discharge currents of the capacitor. FIG. 8 is a graph showing output voltage and output current. FIG. 9 is a graph showing output voltage and output current. FIG. 10 is a graph showing output voltage and output current. FIG. 11 is a graph showing output voltage and output current. FIG. 12 is a graph showing output voltage and output current. FIG. 13A is a diagram for explaining charge and discharge currents of capacitors. FIG. 13B is a diagram for explaining charge and discharge currents of capacitors. FIG. 13C is a diagram for explaining charge and discharge currents of the capacitor. FIG. 14A is a diagram for explaining charge and discharge currents of capacitors. FIG. 14B is a diagram for explaining charge and discharge currents of the capacitor. FIG. 14C is a diagram for explaining charge and discharge currents of the capacitor. FIG. 15 is a graph showing output voltage and output current. FIG. 16 is a graph showing output voltage and output current. FIG. 17 is a diagram showing a section to which the inverted PWM is applied and the phase to which the inverted PWM signal is applied in each divided section. FIG. 18 is a flowchart illustrating an inverter control method.

U,V,W:三相 U, V, W: three-phase

CW:順時針 CW: Clockwise

CCW:逆時針 CCW: counterclockwise

Claims (14)

一種逆變器控制裝置,對兩相調制方式的三相逆變器進行控制, 所述三相逆變器包括: 第一輸入端子,第一電壓施加於所述第一輸入端子; 第二輸入端子,比所述第一電壓低的第二電壓施加於所述第二輸入端子; 電容器,所述電容器連接於所述第一輸入端子與所述第二輸入端子之間;以及 三個串聯體,三個所述串聯體中,兩個半導體開關元件串聯連接, 所述逆變器控制裝置包括信號生成部,所述信號生成部生成分別向三個所述串聯體輸入的三個PWM信號, 所述PWM信號至少包括應用反相PWM信號的反相PWM區間, 所述反相PWM信號相對於正相PWM信號是相反相位, 所述反相PWM區間是對三相中的兩相應用所述正相PWM信號且對三相中的一相應用所述反相PWM信號的區間, 所述信號生成部在所述反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。 An inverter control device controls a three-phase inverter in a two-phase modulation mode, The three-phase inverter includes: a first input terminal to which a first voltage is applied; a second input terminal, a second voltage lower than the first voltage is applied to the second input terminal; a capacitor connected between the first input terminal and the second input terminal; and three series bodies in which two semiconductor switching elements are connected in series, The inverter control device includes a signal generation unit that generates three PWM signals respectively input to the three series bodies, The PWM signal includes at least an inverted PWM interval to which the inverted PWM signal is applied, The inverting PWM signal is in the opposite phase with respect to the non-inverting PWM signal, The inversion PWM interval is an interval in which the normal phase PWM signal is applied to two of the three phases and the inversion PWM signal is applied to one of the three phases, The signal generation unit selects the phase in which the current zero-crossing point occurs next as viewed in the time axis direction in the inverse-phase PWM section as the inverse-phase PWM phase. 根據請求項1所述的逆變器控制裝置,其中, 能對所述三相的輸出波形的相位的順序進行變更。 The inverter control device according to claim 1, wherein, The order of the phases of the output waveforms of the three phases can be changed. 根據請求項1或2所述的逆變器控制裝置,其中, 所述信號生成部在電流過零點處將在所述反相PWM區間中應用了所述反相PWM信號的相切換至所述正相PWM信號。 The inverter control device according to claim 1 or 2, wherein, The signal generation unit switches the phase to which the reversed-phase PWM signal is applied in the reversed-phase PWM section to the normal-phase PWM signal at a current zero-cross point. 根據請求項1所述的逆變器控制裝置,其中, 所述信號生成部將電角度一周分割成多個分割區間, 所述信號生成部將多個所述分割區間的每一個確定為對全部三相應用正相PWM信號的正相PWM區間和所述反相PWM區間中的任一個。 The inverter control device according to claim 1, wherein, The signal generation unit divides the electrical angle cycle into a plurality of divided sections, The signal generation unit determines each of the plurality of divided sections as any one of the normal-phase PWM section in which the normal-phase PWM signal is applied to all three phases and the reverse-phase PWM section. 根據請求項4所述的逆變器控制裝置,其中, 所述信號生成部按照每個所述電流過零點將所述電角度一周分割成所述分割區間。 The inverter control device according to claim 4, wherein, The signal generation unit divides the electrical angle cycle into the divided sections for each of the current zero-cross points. 根據請求項4或5所述的逆變器控制裝置,其中, 所述信號生成部將所述電角度一周分割成: 第一分割區間; 接在所述第一分割區間之後的第二分割區間; 接在所述第二分割區間之後的第三分割區間; 接在所述第三分割區間之後的第四分割區間; 接在所述第四分割區間之後的第五分割區間;以及 接在所述第五分割區間之後的第六分割區間。 The inverter control device according to claim 4 or 5, wherein, The signal generating unit divides the electrical angle cycle into: the first segment; a second split interval following the first split interval; a third division interval following the second division interval; a fourth division interval following the third division interval; a fifth partitioned interval following the fourth partitioned interval; and A sixth divided interval following the fifth divided interval. 根據請求項6所述的逆變器控制裝置,其中, 在第一分割區間、第三分割區間及第五分割區間中,所述信號生成部應用所述反相PWM區間, 在第二分割區間、第四分割區間及第六分割區間中,所述信號生成部對全部的相應用所述正相PWM區間。 The inverter control device according to claim 6, wherein, In the first divided section, the third divided section and the fifth divided section, the signal generation unit applies the inversion PWM section, In the second divided period, the fourth divided period, and the sixth divided period, the signal generation unit applies the normal-phase PWM period to all the phases. 根據請求項6所述的逆變器控制裝置,其中, 在第二分割區間、第四分割區間及第六分割區間中,所述信號生成部應用所述反相PWM區間, 在第一分割區間、第三分割區間及第五分割區間中,應用所述正相PWM區間。 The inverter control device according to claim 6, wherein, In the second divided section, the fourth divided section and the sixth divided section, the signal generation unit applies the inversion PWM section, In the first divided section, the third divided section and the fifth divided section, the normal-phase PWM section is applied. 根據請求項6所述的逆變器控制裝置,其中, 在第一分割區間、第二分割區間、第三分割區間、第四分割區間、第五分割區間及第六分割區間中,所述信號生成部應用所述反相PWM區間。 The inverter control device according to claim 6, wherein, The signal generation unit applies the inverted PWM period in the first divided section, the second divided section, the third divided section, the fourth divided section, the fifth divided section, and the sixth divided section. 根據請求項9所述的逆變器控制裝置,其中, 包括接通固定模式以及斷開固定模式, 所述信號生成部按照每個所述電流過零點對所述接通固定模式和所述斷開固定模式進行切換。 The inverter control device according to claim 9, wherein, Including on-fixed mode and off-fixed mode, The signal generation unit switches the on-fixed mode and the off-fixed mode for each of the current zero-cross points. 根據請求項1所述的逆變器控制裝置,其中, 對於應用所述反相PWM信號的相同的所述分割區間,所述信號生成部根據旋轉方向對不同的相應用所述反相PWM信號。 The inverter control device according to claim 1, wherein, The signal generation unit applies the inverted PWM signal to different phases according to the rotation direction for the same divided section to which the inverted PWM signal is applied. 一種逆變器電路,包括: 請求項1所述的逆變器控制裝置; 第一輸入端子,第一電壓施加於所述第一輸入端子; 第二輸入端子,比所述第一電壓低的第二電壓施加於所述第二輸入端子; 電容器,所述電容器連接於所述第一輸入端子與所述第二輸入端子之間;以及 三個串聯體,三個所述串聯體中,兩個半導體開關元件串聯連接。 An inverter circuit includes: The inverter control device of claim 1; a first input terminal to which a first voltage is applied; a second input terminal, a second voltage lower than the first voltage is applied to the second input terminal; a capacitor connected between the first input terminal and the second input terminal; and Three series bodies, in the three series bodies, two semiconductor switching elements are connected in series. 一種馬達模組,包括: 請求項1所述的逆變器控制裝置; 三相的逆變器,所述三相的逆變器由所述逆變器控制裝置控制,且為兩相調制方式;以及 三相馬達,所述逆變器的輸出被輸入至所述三相馬達。 A motor module, comprising: The inverter control device of claim 1; a three-phase inverter, the three-phase inverter is controlled by the inverter control device, and is a two-phase modulation method; and A three-phase motor to which the output of the inverter is input. 一種逆變器控制方法,對兩相調制方式的三相逆變器進行控制, 所述三相逆變器包括: 第一輸入端子,第一電壓施加於所述第一輸入端子; 第二輸入端子,比所述第一電壓低的第二電壓施加於所述第二輸入端子; 電容器,所述電容器連接於所述第一輸入端子與所述第二輸入端子之間;以及 三個串聯體,三個所述串聯體中,兩個半導體開關元件串聯連接, 三個PWM信號分別被輸入至三個所述串聯體, 所述PWM信號至少包括應用反相PWM信號的反相PWM區間, 所述反相PWM信號相對於正相PWM信號是相反相位, 所述反相PWM區間是對三相中的兩相應用所述正相PWM信號且對三相中的一相應用所述反相PWM信號的區間, 所述逆變器控制方法包括: 選擇工序,所述選擇工序中,在所述反相PWM區間中,將以時間軸方向觀察接下來產生電流過零點的相選擇為反相PWM相。 An inverter control method, which controls a three-phase inverter in a two-phase modulation mode, The three-phase inverter includes: a first input terminal to which a first voltage is applied; a second input terminal, a second voltage lower than the first voltage is applied to the second input terminal; a capacitor connected between the first input terminal and the second input terminal; and three series bodies in which two semiconductor switching elements are connected in series, Three PWM signals are respectively input to the three said series bodies, The PWM signal includes at least an inverted PWM interval to which the inverted PWM signal is applied, The inverting PWM signal is in the opposite phase with respect to the non-inverting PWM signal, The inversion PWM interval is an interval in which the normal phase PWM signal is applied to two of the three phases and the inversion PWM signal is applied to one of the three phases, The inverter control method includes: In the selection step, in the inversion PWM section, a phase that generates a current zero-crossing point next as viewed in the time axis direction is selected as an inversion PWM phase.
TW111107168A 2021-02-25 2022-02-25 Inverter control device, inverter circuit, motor module, and inverter control method TW202234812A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028510 2021-02-25
JP2021028510 2021-02-25

Publications (1)

Publication Number Publication Date
TW202234812A true TW202234812A (en) 2022-09-01

Family

ID=83048067

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107168A TW202234812A (en) 2021-02-25 2022-02-25 Inverter control device, inverter circuit, motor module, and inverter control method

Country Status (4)

Country Link
JP (1) JPWO2022181037A1 (en)
CN (1) CN116998104A (en)
TW (1) TW202234812A (en)
WO (1) WO2022181037A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108021A (en) * 2012-11-29 2014-06-09 Renesas Electronics Corp Pwm output device
JP2013215093A (en) * 2013-07-22 2013-10-17 Daihen Corp Inverter control circuit, and system interconnection inverter system having inverter control circuit
CN111557075B (en) * 2018-01-10 2024-03-08 日本电产株式会社 Power conversion device, motor module, and electric power steering device

Also Published As

Publication number Publication date
CN116998104A (en) 2023-11-03
WO2022181037A1 (en) 2022-09-01
JPWO2022181037A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2019142877A1 (en) Rotary electric machine control device
KR101198566B1 (en) Polyphase inverter, control method therefor, blower, and polyphase current output system
US10312850B2 (en) Semiconductor device and power conversion device
JP2002272125A (en) Controller of power converter
JP2005117839A (en) Method and apparatus for generating pulse width modulated wave
WO2020045636A1 (en) Rotating electrical machine control device
JP6628091B2 (en) Power converter
US11303224B2 (en) Inverter device with high follow-up capability
JP2005051959A (en) Noise reduction method and circuit for power converter
EP3853985A1 (en) Multi-level inverter
TW202234812A (en) Inverter control device, inverter circuit, motor module, and inverter control method
TWI782878B (en) Inverter circuit and motor module
WO2022059218A1 (en) Motor drive circuit and motor module
JP6921273B1 (en) Rotating machine control device
JP4284585B2 (en) Control method of voltage source inverter
WO2023175759A1 (en) Power conversion apparatus
WO2023032194A1 (en) Power conversion device
JP7354962B2 (en) Inverter control device and program
WO2022185835A1 (en) Inverter control device
JPWO2019038814A1 (en) Power conversion device and electric power steering device
WO2022208911A1 (en) Power conversion device and motor module
JP7367628B2 (en) Inverter control device
JP3781069B2 (en) Inverter control method and apparatus
JP6575865B2 (en) 3-level inverter control method and control apparatus
JP6750957B2 (en) Power converter