TW202234139A - A method and apparatus for thermally deforming an optical element - Google Patents
A method and apparatus for thermally deforming an optical element Download PDFInfo
- Publication number
- TW202234139A TW202234139A TW110141761A TW110141761A TW202234139A TW 202234139 A TW202234139 A TW 202234139A TW 110141761 A TW110141761 A TW 110141761A TW 110141761 A TW110141761 A TW 110141761A TW 202234139 A TW202234139 A TW 202234139A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical element
- temperature
- heater
- optical
- zero
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
- G03F7/70266—Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0825—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
- G02B27/0031—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
- G03F7/70891—Temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
本發明係關於用於使光學元件熱變形之方法及裝置。更特定而言,方法及裝置係關於使光學元件熱變形以校正像差。The present invention relates to methods and apparatus for thermally deforming optical elements. More particularly, methods and apparatus relate to thermally deforming optical elements to correct for aberrations.
微影裝置為經建構以將所要之圖案施加至基板上之機器。微影裝置可用於(例如)積體電路(IC)之製造中。舉例而言,微影裝置可將圖案化器件(例如,光罩)處之圖案投影於經提供於基板上之輻射敏感材料(抗蝕劑)層上。A lithography apparatus is a machine constructed to apply a desired pattern onto a substrate. Lithographic devices can be used, for example, in the manufacture of integrated circuits (ICs). For example, a lithographic apparatus can project a pattern at a patterned device (eg, a reticle) onto a layer of radiation-sensitive material (resist) provided on a substrate.
為了將圖案投影於基板上,微影裝置可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵的最小大小。相比於使用例如具有193 nm之波長之輻射的微影裝置,使用具有在4 nm至20 nm之範圍內之波長(例如6.7 nm或13.5 nm)之極紫外線(EUV)輻射的微影裝置可用於在基板上形成較小特徵。In order to project the pattern on the substrate, a lithography device may use electromagnetic radiation. The wavelength of this radiation determines the minimum size of features that can be formed on the substrate. Lithographic devices that use extreme ultraviolet (EUV) radiation with wavelengths in the range of 4 nm to 20 nm (eg, 6.7 nm or 13.5 nm) can be used in comparison to lithographic devices that use radiation with, for example, a wavelength of 193 nm. for the formation of smaller features on the substrate.
用以將來自圖案化器件之圖案成像至基板上的投影系統可誘發經投影影像之波前中的一些像差。The projection system used to image the pattern from the patterned device onto the substrate can induce some aberrations in the wavefront of the projected image.
在圖案投影至基板上期間,投影系統將變熱,且此將使投影系統之成像屬性漂移。在EUV微影中,此現象被稱為鏡面加熱。During projection of the pattern onto the substrate, the projection system will heat up and this will drift the imaging properties of the projection system. In EUV lithography, this phenomenon is called mirror heating.
儘管針對EUV輻射反射最佳化投影系統中之鏡面,但EUV(以及帶外)能量之相當大部分被吸收到鏡面中且轉換成熱能。此加熱造成鏡面之材料中之熱應力,從而導致鏡面變形。此等變形最終造成投影系統中之像差,從而導致成像誤差。另外,直接或間接加熱可在諸如透鏡、基板夾具、圖案化器件(亦即倍縮光罩或光罩)或圖案化器件夾具之其他組件之材料中造成熱應力。Although mirrors in projection systems are optimized for EUV radiation reflection, a significant portion of EUV (and out-of-band) energy is absorbed into the mirrors and converted to thermal energy. This heating causes thermal stress in the material of the mirror, resulting in deformation of the mirror. These deformations ultimately result in aberrations in the projection system, resulting in imaging errors. Additionally, direct or indirect heating can cause thermal stress in materials such as lenses, substrate holders, patterned devices (ie, reticle or reticle), or other components of patterned device holders.
本發明之一目標為提供一種用於避免或減輕與先前技術相關聯之一或多個問題的校正像差之方法。It is an object of the present invention to provide a method of correcting aberrations for avoiding or mitigating one or more of the problems associated with the prior art.
根據本發明之第一態樣,提供一種使光學元件熱變形之方法,該光學元件包含熱膨脹係數為溫度依賴性之材料,該方法包含: 轉移熱至該光學元件或自該光學元件轉移熱以建立該光學元件之一溫度設定點,使得該熱膨脹係數具有一非零值,及 加熱該光學元件以產生該光學元件之一熱變形。 According to a first aspect of the present invention, there is provided a method of thermally deforming an optical element, the optical element comprising a material whose thermal expansion coefficient is temperature-dependent, the method comprising: transferring heat to or from the optical element to establish a temperature set point for the optical element such that the coefficient of thermal expansion has a non-zero value, and The optical element is heated to produce thermal deformation of one of the optical elements.
根據本發明之第一態樣的方法可具有將所要熱變形引入於光學元件中的優點,所要熱變形可用於至少部分校正像差,例如由在微影裝置LA中應用的其他光學元件所造成的像差。The method according to the first aspect of the present invention may have the advantage of introducing a desired thermal deformation into the optical element, which may be used to at least partially correct for aberrations, eg caused by other optical elements used in the lithography apparatus LA aberration.
在一實施例中,光學元件之溫度設定點經建立以使得熱膨脹係數具有預定非零值。In one embodiment, the temperature set point of the optical element is established such that the coefficient of thermal expansion has a predetermined non-zero value.
在一實施例中,熱變形可例如應用於光學元件之複數個區中之一或多者中。In one embodiment, thermal deformation may be applied, for example, in one or more of a plurality of regions of the optical element.
在一實施例中,熱交換器經應用以轉移熱至光學元件或自該光學元件轉移熱。此熱交換器可例如包括散熱片。藉由轉移熱至光學元件或自該光學元件轉移熱,可設定該光學元件之溫度。如設定之光學元件的溫度可與例如用於控制熱交換器的溫度設定點相關聯。溫度設定點可例如用於控制經施加於熱交換器中的調節流體之溫度。In one embodiment, a heat exchanger is applied to transfer heat to or from the optical element. This heat exchanger may, for example, comprise cooling fins. The temperature of the optical element can be set by transferring heat to or from the optical element. The temperature of the optical element as set may be associated with, for example, a temperature set point for controlling a heat exchanger. The temperature set point can be used, for example, to control the temperature of the conditioning fluid applied in the heat exchanger.
在一實施例中,加熱光學元件包含選擇性地加熱光學元件。In one embodiment, heating the optical element includes selectively heating the optical element.
在一實施例中,加熱器經應用以選擇性地加熱光學元件。In one embodiment, a heater is applied to selectively heat the optical element.
在一實施例中,選擇性地加熱光學元件包含選擇性地加熱該光學元件之複數個區中之一或多者,以在該光學元件之複數個區中之該一或多者處產生熱變形。In one embodiment, selectively heating the optical element includes selectively heating one or more of the plurality of regions of the optical element to generate heat at the one or more of the plurality of regions of the optical element deformed.
在一實施例中,熱膨脹係數之正負號在加熱器之加熱啟動範圍的大部分或全部內對於光學元件的複數個區中之一或多者的材料之大部分或全部係相同的。In one embodiment, the sign of the coefficient of thermal expansion is the same for most or all of the material of one or more of the plurality of regions of the optical element over most or all of the heating activation range of the heater.
在一實施例中,熱膨脹係數在零交叉溫度下實質上為零及/或具有隨溫度而變的局部最小值。In one embodiment, the coefficient of thermal expansion is substantially zero at the zero-crossing temperature and/or has a local minimum as a function of temperature.
在一實施例中,轉移熱至光學元件或自光學元件轉移熱係使用至少部分整合於光學元件中的熱交換器實現。此熱交換器因此可冷卻或升溫光學元件,以便光學元件具有所要熱膨脹係數。In one embodiment, transferring heat to or from the optical element is accomplished using a heat exchanger that is at least partially integrated into the optical element. This heat exchanger can thus cool or heat the optical element so that the optical element has the desired coefficient of thermal expansion.
在一實施例中,熱交換器包含整合於光學元件中之通道,該通道經組態以接納流體以用於與光學元件交換熱。在一實施例中,經施加於熱交換器中之流體可例如為諸如水之液體。In one embodiment, the heat exchanger includes a channel integrated in the optical element configured to receive a fluid for exchanging heat with the optical element. In one embodiment, the fluid applied in the heat exchanger may be, for example, a liquid such as water.
在一實施例中,本發明提供使光學元件熱變形之方法,該光學元件包含熱膨脹係數在零交叉溫度下為零的材料,該方法包含:使用散熱片自光學元件轉移熱以建立光學元件之複數個區中之一或多者的一或多個溫度設定點,使得熱膨脹係數之正負號在加熱器之加熱啟動範圍的大部分或全部內對於光學元件的複數個區中之一或多者的材料之大部分或全部係相同的,及使用加熱器在加熱啟動範圍內選擇性地加熱光學元件之複數個區中的一或多者以在光學元件之複數個區中的一或多者處產生熱變形。In one embodiment, the present invention provides a method of thermally deforming an optical element comprising a material having a coefficient of thermal expansion of zero at a zero crossing temperature, the method comprising: using a heat sink to transfer heat from the optical element to create a thermal One or more temperature set points for one or more of the plurality of zones such that the sign of the coefficient of thermal expansion is within most or all of the heater's heating activation range for one or more of the plurality of zones of the optical element Most or all of the materials are the same, and a heater is used to selectively heat one or more of the plurality of zones of the optical element to one or more of the plurality of zones of the optical element within the heating activation range thermal deformation occurs.
此可具有在使用微影裝置LA期間引入對應熱變形至光學元件以校正例如由微影裝置LA之其他光學元件所造成的像差之優點。This may have the advantage of introducing corresponding thermal deformations to the optical elements during use of the lithography apparatus LA to correct for aberrations caused, for example, by other optical elements of the lithography apparatus LA.
該方法可進一步包含建立一或多個溫度設定點,使得來自加熱器的熱之變化在加熱器之加熱啟動範圍的大部分或全部內導致光學元件之複數個區中之一或多者在-10 nm至+10 nm範圍內的熱變形之變化。The method may further include establishing one or more temperature set points such that a change in heat from the heater over most or all of the heater's heating activation range causes one or more of the plurality of zones of the optical element to be in- Variation in thermal deformation in the range of 10 nm to +10 nm.
一或多個溫度設定點可經建立使得來自加熱器的熱之變化在加熱器之加熱啟動範圍的大部分或全部內導致光學元件之複數個區中之一或多者的熱變形之相對較大變化。One or more temperature set points may be established such that changes in heat from the heater result in relative comparison of thermal deformation of one or more of the plurality of zones of the optical element over most or all of the heater's heating activation range Big change.
一或多個溫度設定點可經建立以使得熱負載與變形之間的關係具有足夠靈敏度以提供熱操縱之相對良好範圍。溫度設定點與零交叉溫度之間的較大偏差可導致較大靈敏度。One or more temperature set points may be established such that the relationship between thermal load and deformation is sufficiently sensitive to provide a relatively good range of thermal manipulation. Larger deviations between the temperature set point and the zero-crossing temperature can result in larger sensitivity.
一或多個溫度設定點可經建立使得在加熱器之加熱啟動範圍的大部分或全部內在溫度與光學元件之複數個區中的一或多者的熱變形之間存在大致線性依賴性。熱變形可視為垂直於光學元件之光學表面的變形。The one or more temperature set points may be established such that there is a substantially linear dependence between the temperature within most or all of the heater's heating activation range and the thermal deformation of one or more of the plurality of zones of the optical element. Thermal deformation can be viewed as deformation perpendicular to the optical surface of the optical element.
為了光學元件操縱,基板之間的任尼克致動步長可為大約0.01 nm。For optical element manipulation, the Rennick actuation step size between substrates can be approximately 0.01 nm.
該方法可進一步包含建立一或多個溫度設定點,使得熱膨脹係數具有一值,該值在加熱器之加熱啟動範圍的大部分或全部內對於光學元件之複數個區實質上類似。The method may further include establishing one or more temperature set points such that the coefficient of thermal expansion has a value that is substantially similar for the plurality of regions of the optical element over most or all of the heater's heating activation range.
該方法可進一步包含在距零交叉溫度的1至8℃之範圍內建立一或多個溫度設定點。The method may further include establishing one or more temperature set points within a range of 1 to 8°C from the zero crossing temperature.
材料之零交叉溫度可包含光學元件的複數個區中之一或多者的局部零交叉溫度或光學元件之平均零交叉溫度。The zero-crossing temperature of the material may include the local zero-crossing temperature of one or more of the plurality of regions of the optical element or the average zero-crossing temperature of the optical element.
一或多個溫度設定點可大於材料之零交叉溫度或一或多個溫度設定點可小於材料之零交叉溫度。One or more temperature set points may be greater than the zero-crossing temperature of the material or one or more temperature set points may be less than the zero-crossing temperature of the material.
光學元件可包含光學表面。光學元件之複數個區可界定於光學元件之光學表面與散熱片之間。光學表面可包含對應於複數個區之複數個局部區段。The optical element may comprise an optical surface. The plurality of regions of the optical element can be defined between the optical surface of the optical element and the heat sink. The optical surface may include a plurality of local sections corresponding to a plurality of regions.
與複數個區中相比,在與光學元件之光學表面相對的散熱片之一側的材料之零交叉溫度的變化可視為不太相關。Changes in the zero-crossing temperature of the material on the side of the heat sink opposite the optical surface of the optical element may be considered less relevant than in the plurality of regions.
在與光學元件之光學表面相對的散熱片之一側的光學元件之熱干擾可視為可忽略的且可不予考慮。Thermal interference of the optical element on the side of the heat sink opposite the optical surface of the optical element can be considered negligible and can be disregarded.
該方法可進一步包含判定自加熱器提供至光學元件的複數個區中之一或多者之熱與光學元件之光學表面之對應一或多個局部區段的所得熱變形之間的關係。The method may further include determining a relationship between the heat provided from the heater to one or more of the plurality of regions of the optical element and the resulting thermal deformation of the corresponding one or more localized regions of the optical surface of the optical element.
該方法可進一步包含使用藉由光學量測裝置獲得之對應光學量測校準加熱器。The method may further comprise calibrating the heater using the corresponding optical metrology obtained by the optical metrology device.
該方法可進一步包含使用藉由波前感測器獲得之對應波前像差量測校準加熱器。The method may further include calibrating the heater using corresponding wavefront aberration measurements obtained by the wavefront sensor.
該方法可進一步包含在光學元件之EUV輻射曝光期間使用經校準加熱器以在微影裝置之操作期間操縱波前。The method may further include using a calibrated heater during exposure of the optical element to EUV radiation to manipulate the wavefront during operation of the lithography device.
該方法可進一步包含使用來自加熱器之熱與光學元件之複數個區中的一或多者之所得熱變形之間的經校準關係以在使用微影裝置期間經由加熱器引入對應熱變形至光學元件之光學表面。此可用以校正例如由微影裝置之其他光學元件所造成的像差。The method may further include using a calibrated relationship between heat from the heater and the resulting thermal deformation of one or more of the plurality of regions of the optical element to introduce corresponding thermal deformation to the optical element via the heater during use of the lithographic device The optical surface of the component. This can be used to correct for aberrations caused, for example, by other optical elements of the lithography device.
該方法可進一步包含基於所提供或判定之零交叉溫度來判定一或多個溫度設定點。The method may further include determining one or more temperature set points based on the provided or determined zero-crossing temperature.
該方法可進一步包含藉由模型化來表徵光學元件之光學表面之零交叉溫度的分佈。The method may further comprise characterizing, by modeling, the distribution of zero-crossing temperatures of the optical surface of the optical element.
該方法可進一步包含設定散熱片之冷卻流體之溫度以建立光學元件之一或多個溫度設定點。The method may further include setting the temperature of the cooling fluid of the heat sink to establish one or more temperature set points for the optical element.
冷卻流體之溫度可較高且一或多個溫度設定點可小於材料之零交叉溫度或冷卻流體之溫度可較低且一或多個溫度設定點可大於材料之零交叉溫度。亦即,冷卻流體之溫度及一或多個溫度設定點相對於材料之零交叉溫度可在不同側。The temperature of the cooling fluid may be higher and the one or more temperature set points may be less than the zero crossing temperature of the material or the temperature of the cooling fluid may be lower and the one or more temperature set points may be greater than the zero crossing temperature of the material. That is, the temperature of the cooling fluid and the one or more temperature set points may be on different sides with respect to the zero-crossing temperature of the material.
冷卻流體之溫度可與材料之零交叉溫度實質上相同且一或多個溫度設定點可小於或大於材料之零交叉溫度。The temperature of the cooling fluid can be substantially the same as the zero-crossing temperature of the material and the one or more temperature set points can be less than or greater than the zero-crossing temperature of the material.
該方法可進一步包含加熱對應於光學元件的複數個區中之一或多者的光學元件之光學表面之一或多個局部區段。The method may further include heating one or more localized sections of the optical surface of the optical element corresponding to one or more of the plurality of regions of the optical element.
熱膨脹係數可隨光學元件之溫度而變且光學元件溫度可隨冷卻流體溫度而變。一或多個溫度設定點可藉由充分遠離光學元件之材料的零交叉溫度來設定冷卻流體之溫度而建立。The coefficient of thermal expansion can vary with the temperature of the optical element and the optical element temperature can vary with the temperature of the cooling fluid. One or more temperature set points may be established by setting the temperature of the cooling fluid sufficiently far from the zero-crossing temperature of the material of the optical element.
冷卻流體之溫度可由於零交叉溫度Tzc變化而設定在距零交叉溫度Tzc的+ / -0.5 C、+ / -1 C或+ / -2 C之實例範圍。The temperature of the cooling fluid may be set in an example range of +/- 0.5 C, +/- 1 C, or +/- 2 C from the zero-crossing temperature Tzc due to variations in the zero-crossing temperature Tzc.
冷卻流體之溫度可與平均零交叉溫度相等。此情形可並非較佳,此係因為當與其中冷卻流體之溫度經設定遠離零交叉溫度Tzc的情況相比時此情形可需要額外功率。The temperature of the cooling fluid may be equal to the mean zero crossing temperature. This situation may not be preferred since it may require additional power when compared to the situation where the temperature of the cooling fluid is set away from the zero crossing temperature Tzc.
光學元件的複數個區可界定於光學元件之光學表面與用於冷卻流體的光學元件中之至少一個通道之間。The plurality of regions of the optical element can be defined between the optical surface of the optical element and at least one channel in the optical element for cooling fluid.
加熱器可包含具有經配置以對應地加熱光學元件之複數個區中之一或多者之複數個分區的分區加熱器。The heater may include a zone heater having a plurality of zones configured to correspondingly heat one or more of the plurality of zones of the optical element.
每一分區可具有每分區一加熱致動範圍。複數個分區中之一者的加熱啟動範圍可係相同的或可不同於複數個分區中之另一者。給定分區之致動範圍可在基板位階處映射至波前像差之某些範圍。Each zone may have a heating actuation range per zone. The heating activation range of one of the plurality of zones may be the same or may be different from the other of the plurality of zones. The range of actuation for a given partition can be mapped to some range of wavefront aberrations at the substrate level.
該方法可進一步包含使用藉由光學量測裝置獲得之對應光學量測校準分區加熱器之複數個分區。光學量測可為藉由波前感測器獲得的波前像差量測。The method may further include calibrating the plurality of zones of the zone heater using corresponding optical measurements obtained by the optical measurement device. The optical measurement may be a wavefront aberration measurement obtained by a wavefront sensor.
該方法可進一步包含依次修改用於分區加熱器之複數個分區的功率及進行對應光學量測。亦即,功率針對分區加熱器之複數個分區一個接一個地改變。此可判定如何藉由光學元件之對應區的溫度改變而改變波前。The method may further include sequentially modifying the power for the plurality of zones of the zone heater and making corresponding optical measurements. That is, the power is changed one by one for the plurality of zones of the zone heater. This can determine how the wavefront is changed by the temperature change of the corresponding region of the optical element.
至分區加熱器之分區的功率與對應光學量測之間的關係可用於波前之熱操縱。The relationship between the power to the zones of the zone heaters and the corresponding optical measurements can be used for thermal manipulation of the wavefront.
根據本發明之第二態樣,提供一種裝置,該裝置包含: 至少一個光學元件,該至少一個光學元件包含熱膨脹係數為溫度依賴性之一材料, 一熱交換器,其經配置以轉移熱至該光學元件或自該光學元件轉移熱以建立該光學元件之一溫度設定點,使得該熱膨脹係數具有一非零值, 一加熱器,其經配置以加熱該光學元件以產生該光學元件之一熱變形。 According to a second aspect of the present invention, a device is provided, the device comprising: at least one optical element comprising a material whose coefficient of thermal expansion is temperature dependent, a heat exchanger configured to transfer heat to or from the optical element to establish a temperature set point for the optical element such that the coefficient of thermal expansion has a non-zero value, a heater configured to heat the optical element to produce a thermal deformation of the optical element.
根據本發明之裝置可有利地應用以應用本發明之方法。The device according to the invention can advantageously be used to apply the method of the invention.
根據本發明之第二態樣的裝置可具有使得能夠將所要熱變形引入於一光學元件中的優點,所要熱變形可用於至少部分校正像差,例如由在該微影裝置LA中施加的其他光學元件所造成的像差。The device according to the second aspect of the invention may have the advantage of enabling the introduction of desired thermal deformations into an optical element, which may be used to at least partially correct aberrations, such as by other applied in the lithography device LA Aberrations caused by optical components.
在一實施例中,光學元件之溫度設定點經建立以使得熱膨脹係數具有預定非零值。In one embodiment, the temperature set point of the optical element is established such that the coefficient of thermal expansion has a predetermined non-zero value.
在一實施例中,加熱器經配置以選擇性地加熱光學元件。In one embodiment, the heater is configured to selectively heat the optical element.
在一實施例中,加熱器經配置以藉由選擇性地加熱該光學元件之複數個區中之一或多者而選擇性地加熱光學元件,以在該光學元件之複數個區中之該一或多者處產生熱變形。In one embodiment, the heater is configured to selectively heat the optical element by selectively heating one or more of the plurality of zones of the optical element to the one or more of the plurality of zones of the optical element Thermal deformation occurs at one or more locations.
在一實施例中,裝置之加熱器可經組態以在加熱器之加熱啟動範圍內加熱光學元件之複數個區中的一或多者。In one embodiment, the heater of the device can be configured to heat one or more of the plurality of zones of the optical element within the heating activation range of the heater.
在一實施例中,熱膨脹係數之正負號在加熱器之加熱啟動範圍的大部分或全部內對於光學元件的複數個區中之一或多者的材料之大部分或全部係相同的。In one embodiment, the sign of the coefficient of thermal expansion is the same for most or all of the material of one or more of the plurality of regions of the optical element over most or all of the heating activation range of the heater.
在一實施例中,熱膨脹係數在零交叉溫度下實質上為零及/或具有隨溫度而變的局部最小值。In one embodiment, the coefficient of thermal expansion is substantially zero at the zero-crossing temperature and/or has a local minimum as a function of temperature.
在一實施例中,裝置之熱交換器至少部分整合於光學元件中。此熱交換器因此可冷卻或升溫光學元件,以便光學元件具有所要熱膨脹係數。In one embodiment, the heat exchanger of the device is at least partially integrated into the optical element. This heat exchanger can thus cool or heat the optical element so that the optical element has the desired coefficient of thermal expansion.
在一實施例中,熱交換器包含整合於光學元件中之通道,該通道經組態以接納流體以用於與光學元件交換熱。在一實施例中,經施加於熱交換器中之流體可例如為諸如水之液體。In one embodiment, the heat exchanger includes a channel integrated in the optical element configured to receive a fluid for exchanging heat with the optical element. In one embodiment, the fluid applied in the heat exchanger may be, for example, a liquid such as water.
在一實施例中,提供一種裝置,其包含:至少一個光學元件,該至少一個光學元件包含熱膨脹係數在一零交叉溫度下為零的一材料;一散熱片,其經配置以自該光學元件轉移熱以建立該光學元件之複數個區中之一或多者的一或多個溫度設定點,使得該熱膨脹係數之該正負號在一加熱器之一加熱啟動範圍的大部分或全部內對於該光學元件之該複數個區中之一或多者的材料之大部分或全部係相同的,該加熱器經配置以在該加熱啟動範圍內選擇性地加熱該光學元件之該複數個區中的一或多者以在該光學元件之該複數個區中的一或多者處產生一熱變形。In one embodiment, an apparatus is provided comprising: at least one optical element comprising a material having a coefficient of thermal expansion of zero at a zero crossing temperature; a heat sink configured to remove from the optical element Transfer heat to establish one or more temperature set points for one or more of the plurality of zones of the optical element such that the sign of the coefficient of thermal expansion is for most or all of a heating activation range of a heater for Most or all of the material of one or more of the plurality of zones of the optical element is the same, the heater is configured to selectively heat the plurality of zones of the optical element within the heating activation range one or more to produce a thermal deformation at one or more of the plurality of regions of the optical element.
該一或多個溫度設定點可經建立以使得來自該加熱器的熱之一變化在該加熱器之該加熱啟動範圍的大部分或全部內導致該光學元件之該複數個區中之一或多者在-10至+10 nm之範圍內的該熱變形之一變化。光學元件可包含光學表面。該複數個區可界定於該光學表面與該散熱片之間。光學表面可包含對應於複數個區之複數個局部區段。加熱器可經配置以加熱對應於該光學元件之複數個區中的一或多者的該光學表面之該複數個局部區段的一或多個局部區段。The one or more temperature set points can be established such that a change in heat from the heater causes one of the plurality of zones of the optical element or Multiple changes in one of the thermal deformations in the range of -10 to +10 nm. The optical element may comprise an optical surface. The plurality of regions may be defined between the optical surface and the heat sink. The optical surface may include a plurality of local sections corresponding to a plurality of regions. A heater may be configured to heat one or more localized sections of the plurality of localized sections of the optical surface corresponding to one or more of the plurality of regions of the optical element.
加熱器可包括產生光學元件之複數個區中的一或多者之熱變形的電磁波源。The heater may include a source of electromagnetic waves that produces thermal deformation of one or more of the plurality of zones of the optical element.
散熱片可包含用於通過光學元件中之至少一個通道的冷卻流體。The heat sink may contain a cooling fluid for passage through at least one of the channels in the optical element.
光學元件的複數個區可界定於光學元件之光學表面與用於冷卻流體的光學元件中之至少一個通道之間。The plurality of regions of the optical element can be defined between the optical surface of the optical element and at least one channel in the optical element for cooling fluid.
加熱器可包含具有經配置以對應地加熱光學元件之複數個區中之一或多者之複數個分區的分區加熱器。The heater may include a zone heater having a plurality of zones configured to correspondingly heat one or more of the plurality of zones of the optical element.
光學元件可為鏡面。The optical element may be a mirror.
根據本發明之第三態樣,提供一種微影裝置,該微影裝置包含經組態以投影一輻射光束以將圖案自圖案化器件投影至一基板上之一投影系統,其中該微影裝置包含如上文所描述之裝置。According to a third aspect of the present invention, there is provided a lithography apparatus including a projection system configured to project a beam of radiation to project a pattern from a patterned device onto a substrate, wherein the lithography apparatus A device as described above is included.
微影裝置可為EUV微影裝置且投影系統可包含鏡面。The lithography device can be an EUV lithography device and the projection system can include a mirror.
圖1展示包含輻射源SO及微影裝置LA之微影系統。輻射源SO經組態以產生EUV輻射光束B及將EUV輻射光束B供應至微影裝置LA。微影裝置LA包含照明系統IL、經組態以支撐圖案化器件MA (例如,光罩)之支撐結構MT、投影系統PS,及經組態以支撐基板W之基板台WT。FIG. 1 shows a lithography system including a radiation source SO and a lithography device LA. The radiation source SO is configured to generate the EUV radiation beam B and supply the EUV radiation beam B to the lithography device LA. The lithography apparatus LA includes an illumination system IL, a support structure MT configured to support a patterned device MA (eg, a reticle), a projection system PS, and a substrate table WT configured to support a substrate W.
照明系統IL經組態以在EUV輻射光束B入射於圖案化器件MA上之前調節EUV輻射光束B。另外,照明系統IL可包括琢面化場鏡面器件10及琢面化光瞳鏡面器件11。琢面化場鏡面器件10及琢面化光瞳鏡面器件11共同提供具有所需橫截面形狀及所需強度分佈之EUV輻射光束B。作為琢面化場鏡面器件10及琢面化光瞳鏡面器件11之補充或替代,照明系統IL可包括其他鏡面或器件。The illumination system IL is configured to condition the EUV radiation beam B before the EUV radiation beam B is incident on the patterning device MA. Additionally, the illumination system IL may include a faceted
在如此調節之後,EUV輻射光束B與圖案化器件MA相互作用。由於此相互作用,產生經圖案化EUV輻射光束B'。投影系統PS經組態以將經圖案化EUV輻射光束B'投射至基板W上。出於彼目的,投影系統PS可包含經組態以將經圖案化EUV輻射光束B'投影至由基板台WT固持之基板W上的複數個鏡面13、14。投影系統PS可將縮減因數應用於經圖案化EUV輻射光束B',因此形成具有小於圖案化器件MA上之對應特徵之特徵的影像。舉例而言,可應用縮減因數4或8。儘管投影系統PS經說明為在圖1中僅具有兩個鏡面13、14,但投影系統PS可包括不同數目個鏡面(例如,六個或八個鏡面)。After so conditioning, the EUV radiation beam B interacts with the patterned device MA. Due to this interaction, a patterned EUV radiation beam B' is produced. Projection system PS is configured to project patterned EUV radiation beam B' onto substrate W. For that purpose, the projection system PS may comprise a plurality of
基板W可包括先前形成之圖案。在此情況下,微影裝置LA使由經圖案化EUV輻射光束B'形成之影像與先前形成於基板W上之圖案對準。The substrate W may include previously formed patterns. In this case, the lithography device LA aligns the image formed by the patterned EUV radiation beam B' with the pattern previously formed on the substrate W.
可在輻射源SO中、在照明系統IL中及/或在投影系統PS中提供相對真空,亦即,處於充分地低於大氣壓力之壓力下之少量氣體(例如氫氣)。A relative vacuum, ie a small amount of gas (eg hydrogen) at a pressure well below atmospheric pressure, may be provided in the radiation source SO, in the illumination system IL and/or in the projection system PS.
輻射源SO可為雷射產生電漿(LPP)源、放電產生電漿(DPP)源、自由電子雷射(FEL)或能夠產生EUV輻射之任何其他輻射源。The radiation source SO may be a laser generated plasma (LPP) source, a discharge generated plasma (DPP) source, a free electron laser (FEL) or any other radiation source capable of generating EUV radiation.
熱變形可出現於EUV微影裝置LA之投影系統PS中之鏡面中。在本發明之含義中,光學元件之熱變形係指歸因於熱負載施加至元件的光學元件之變形。熱負載可例如為輻射光束至光學元件之施加,藉此輻射光束之能量至少部分由光學元件吸收。此熱負載可造成溫度上升,例如光學元件之局部溫度上升,該溫度上升造成光學元件變形,例如膨脹。更一般而言,熱變形可出現於EUV微影裝置LA中之組件中。應瞭解,儘管以下描述大體上係關於EUV微影裝置LA中之投影系統PS中之一或多個鏡面,但所描述方法亦適用於EUV微影裝置LA中之其他組件及諸如DUV微影裝置之其他微影裝置中之其他組件。舉例而言,組件可為光學元件、鏡面、投影系統鏡面、照明系統鏡面、透鏡、投影系統透鏡、照明系統透鏡。Thermal deformation can occur in the mirrors in the projection system PS of the EUV lithography apparatus LA. In the meaning of the present invention, thermal deformation of an optical element refers to the deformation of the optical element due to a thermal load applied to the element. The thermal load can be, for example, the application of a radiation beam to the optical element, whereby the energy of the radiation beam is at least partially absorbed by the optical element. This thermal load can cause a temperature rise, eg a local temperature rise of the optical element, which causes deformation of the optical element, eg expansion. More generally, thermal deformation can occur in components in EUV lithography apparatus LA. It should be understood that although the following description is generally directed to one or more mirrors in the projection system PS in EUV lithography apparatus LA, the described methods are also applicable to other components in EUV lithography apparatus LA and such as DUV lithography apparatuses other components in other lithography devices. For example, a component can be an optical element, a mirror, a projection system mirror, an illumination system mirror, a lens, a projection system lens, an illumination system lens.
為減小造成投影系統PS中之像差之熱變形,可例如使用超低膨脹(ULE)材料最佳化鏡面材料以獲取最小變形。一般而言,具有熱膨脹係數CTE (其為溫度依賴性)之材料可在特定設計溫度下具有零或接近零之CTE。替代地或另外,具有溫度依賴性CTE之材料可具有一CTE,該CTE具有在特定操作範圍中之最小值,例如不同於零。具有零或接近零CTE之材料可展現與溫度之二次膨脹關係,其在其設計溫度周圍具有近零膨脹屬性,該設計溫度被稱為零交叉溫度(Tzc或ZCT)。鏡面頂部部分(接近輻射光束B'入射於的鏡面之側的鏡面之部分)可儘可能保持接近此Tzc以最小化變形。詳言之,鏡面表面或鏡面頂部部分係以特定方式設計及塑形,以便確保適當圖案化或曝光程序。歸因於由鏡面(一般而言,光學元件)吸收的輻射光束之能量,鏡面表面或頂部部分之局部變形可能出現。歸因於施加更強勁或更具侵略性的熱負載(較高功率,更極端照明狀態),不可能將完整鏡面頂部部分保持在此最有效點周圍,亦即在Tzc或ZCT處或附近的溫度。鏡面材料可由具有相對低或極低熱膨脹係數(CTE)之其他材料製成,例如ZERODUR或堇青石。一般而言,可考慮用熱膨脹係數(CTE)來描述物件之大小如何隨物件之溫度而變化。作為實例,具有長度L之物件將歸因於溫度之改變∆T經歷根據下式之線性膨脹∆L: ∆L = L·α·∆T,其中α=熱膨脹之線性係數。 在本發明中,熱膨脹係數用於指定歸因於出現之溫度變動的光學元件之熱變形,尤其係光學元件之表面的變形。 To reduce thermal deformations that cause aberrations in the projection system PS, the mirror material can be optimized for minimal deformation, eg, using ultra-low expansion (ULE) materials. In general, a material with a coefficient of thermal expansion CTE, which is temperature dependent, can have a CTE of zero or near zero at a particular design temperature. Alternatively or additionally, a material with a temperature-dependent CTE may have a CTE that has a minimum value in a particular operating range, eg, other than zero. Materials with zero or near-zero CTE can exhibit a quadratic expansion relationship with temperature that has near-zero-expansion properties around their design temperature, which is referred to as the zero-crossing temperature (Tzc or ZCT). The mirror top portion (the portion of the mirror close to the side of the mirror on which the radiation beam B' is incident) can be kept as close to this Tzc as possible to minimize distortion. In particular, the mirror surface or mirror top portion is designed and shaped in a specific way to ensure proper patterning or exposure procedures. Due to the energy of the radiation beam absorbed by the mirror (optical element in general), local deformation of the mirror surface or top portion may occur. Due to the application of stronger or more aggressive thermal loads (higher power, more extreme lighting conditions) it is not possible to keep the full mirror top section around this sweet spot, i.e. at or near Tzc or ZCT temperature. The mirror material can be made of other materials with relatively low or very low coefficients of thermal expansion (CTE), such as ZERODUR or cordierite. In general, the coefficient of thermal expansion (CTE) can be considered to describe how the size of an object changes with the temperature of the object. As an example, an object of length L will experience a linear expansion ΔL due to a change in temperature ΔT according to: ΔL = L·α·ΔT, where α = linear coefficient of thermal expansion. In the present invention, the coefficient of thermal expansion is used to designate the thermal deformation of the optical element, in particular the deformation of the surface of the optical element, due to the temperature fluctuations that occur.
諸如鏡面之光學元件的熱變形通常對局部(通常非均一)輻照(熱負載)及(局部)零交叉溫度(Tzc)極敏感。特定輻照提供橫越光學元件之材料表面之均一溫度,其產生光學表面,亦即鏡面材料中之應變之可良好校正彎曲。另一方面,非均一輻照(不同特定輻照)可提供相對升高之溫度的隔離區域,其產生光學表面,亦即鏡面材料中之應變之主要不可校正熱變形。Thermal deformation of optical elements such as mirrors is generally very sensitive to localized (usually non-uniform) irradiation (thermal loading) and (localized) zero-crossing temperature (Tzc). The specific irradiation provides a uniform temperature across the material surface of the optical element, which results in a well-corrected curvature of the optical surface, ie, the strain in the mirror material. On the other hand, non-uniform irradiation (different specific irradiations) can provide isolated regions of relatively elevated temperature that result in the primary uncorrectable thermal deformation of the optical surface, ie the strain in the mirror material.
可針對零交叉溫度Tzc (ZCT)展示非線性熱膨脹曲線。對於每一曲線,在Tzc處可存在波谷,且因此,曲線在Tzc周圍可相對平緩。此意謂在Tzc處或附近,存在相對較少熱膨脹。A nonlinear thermal expansion curve can be shown for the zero crossing temperature Tzc (ZCT). For each curve, there may be a valley at Tzc, and thus, the curve may be relatively flat around Tzc. This means that at or near Tzc, there is relatively little thermal expansion.
與另一實例Tzc相比,對於實例Tzc,熱變形可較大,此係因為鏡面環境可維持在(參考)溫度(例如約22℃)處。因此,熱變形可對特定Tzc極敏感。The thermal deformation may be larger for the example Tzc compared to the other example Tzc because the specular environment may be maintained at a (reference) temperature (eg, about 22°C). Therefore, thermal deformation can be extremely sensitive to a specific Tzc.
製造公差對Tzc之空間變化具有較大影響。此可產生對於平均Tzc之製造公差。換言之,經設計具有特定Tzc (亦即其中熱膨脹為零或具有最小值的溫度)的材料將歸因於製造公差而具有橫越材料之該Tzc的變化,亦即局部Tzc可橫越材料或由該材料製成之光學元件改變。Manufacturing tolerances have a great influence on the spatial variation of Tzc. This can result in manufacturing tolerances for the average Tzc. In other words, a material designed to have a specific Tzc (ie, the temperature at which thermal expansion is zero or has a minimum value) will have a variation in that Tzc across the material due to manufacturing tolerances, ie the local Tzc may traverse the material or be determined by Optical elements made of this material change.
Tzc之空間變化可經量測,例如在鏡面上量測。可存在以℃為單位(或以克耳文為單位)的溫度變化。鏡面中可存在通常若干克耳文之Tzc的空間變化。在一些微影裝置LA之一些投影系統PS中,一些鏡面可具有特定變化,而其他鏡面可具有不同變化。可藉由例如藉由使用超音波量測材料之線性熱膨脹係數(CTE)來計算Tzc之空間變化。長度L之材料的CTE或CLTE為1/L×dL/dT。The spatial variation of Tzc can be measured, for example, on a mirror surface. There may be a temperature change in °C (or in Kelvin). Spatial variations in the Tzc of typically several Kelvins can exist in the mirror. In some projection systems PS of some lithography apparatuses LA, some mirror surfaces may have specific variations, while other mirror surfaces may have different variations. The spatial variation of Tzc can be calculated by, for example, measuring the coefficient of linear thermal expansion (CTE) of the material by using ultrasound. The CTE or CLTE of a material of length L is 1/L×dL/dT.
此非均一Tzc對投影系統PS之性能的影響較大。此影響可藉由比較用於均一Tzc及非均一Tzc之光學關鍵性能指示符來展示。This non-uniform Tzc has a great influence on the performance of the projection system PS. This effect can be shown by comparing the optical key performance indicators for uniform Tzc and non-uniform Tzc.
在EUV微影裝置LA中,傳入電磁(EM)波(亦即,EUV輻射)與鏡面相互作用,其中輻射中之一些被反射且一些被吸收。吸收輻射係在鏡面內耗散,此導致鏡面發熱。熱係在鏡面內傳導且因此鏡面溫度隨時間變化,例如增加。溫度變化造成鏡面熱變形,熱變形導致波前像差。此等波前像差可需要在微影裝置LA中校正。In EUV lithography apparatus LA, incoming electromagnetic (EM) waves (ie, EUV radiation) interact with the mirror surface, with some of the radiation being reflected and some being absorbed. Absorbed radiation is dissipated within the mirror, which causes the mirror to heat up. The thermal system is conducted within the mirror and thus the temperature of the mirror varies, eg increases, over time. Temperature changes cause thermal deformation of the mirror surface, and thermal deformation causes wavefront aberrations. Such wavefront aberrations may need to be corrected in the lithography device LA.
在增加EUV輻射源功率情況下,鏡面發熱變為EUV微影裝置LA中之逐漸增加的問題。詳言之,投影光學件(例如投影系統PS)之鏡面可過多加熱、變形並造成不能被充分校正的像差。With increasing EUV radiation source power, specular heating becomes an increasing problem in EUV lithography apparatus LA. In particular, the mirror surfaces of projection optics (eg projection system PS) can heat up excessively, deform and cause aberrations that cannot be adequately corrected.
在本發明之實施例中,使一光學元件(該光學元件包含熱膨脹係數為溫度依賴性之材料)熱變形之方法經提供以至少部分減輕此類變形或像差的影響。根據本發明,該方法可包括以下步驟: - 轉移熱至該光學元件或自該光學元件轉移熱以建立該光學元件之一溫度設定點,使得該熱膨脹係數具有一非零值,及 - 加熱該光學元件以產生該光學元件之一熱變形。 In embodiments of the present invention, methods of thermally deforming an optical element comprising a material whose coefficient of thermal expansion is temperature dependent are provided to at least partially mitigate the effects of such deformation or aberrations. According to the present invention, the method may comprise the following steps: - transferring heat to or from the optical element to establish a temperature set point for the optical element such that the coefficient of thermal expansion has a non-zero value, and - heating the optical element to produce thermal deformation of one of the optical elements.
在一實施例中,溫度設定點經建立以使得熱膨脹係數具有預定非零值。In one embodiment, the temperature set point is established such that the coefficient of thermal expansion has a predetermined non-zero value.
在一實施例中,加熱包含選擇性地加熱。In one embodiment, heating includes selectively heating.
在一實施例中,選擇性地加熱光學元件可包含加熱該光學元件之複數個區中之一或多者,以在該光學元件之複數個區中之該一或多者處產生熱變形。In one embodiment, selectively heating an optical element may include heating one or more of the plurality of regions of the optical element to induce thermal deformation at the one or more of the plurality of regions of the optical element.
為了加熱光學元件(例如光學元件之複數個區中的一或多者),可應用一加熱器。加熱器可例如包括產生例如光學元件之複數個區中的一或多者之熱變形的電磁波源。To heat the optical element (eg, one or more of the regions of the optical element), a heater may be applied. The heater may, for example, comprise a source of electromagnetic waves that produces thermal deformation of, for example, one or more of the plurality of zones of the optical element.
通常,如例如在EUV微影裝置或其類似者中應用的光學元件將由具有溫度依賴性熱膨脹係數之材料製成。詳言之,可選擇或設計具有一熱膨脹係數的材料,該熱膨脹係數具有零交叉,在特定溫度範圍中接近零或具有隨溫度而變的最小值。Typically, optical elements as used, for example, in EUV lithography devices or the like will be made of materials having a temperature-dependent coefficient of thermal expansion. In particular, a material can be selected or designed to have a thermal expansion coefficient that has zero crossings, is close to zero in a particular temperature range, or has a temperature-dependent minimum value.
通常,光學元件係以此如下方式設計:在正常使用或操作期間,光學元件之溫度接近該零交叉,或在其中熱膨脹係數接近零或具有最小值的一溫度範圍中。藉此,吾人旨在在一狀態中操作光學元件,在該狀態中鏡面之溫度變化(例如局部溫度變化)僅僅造成光學元件(例如光學元件之反射表面)之有限變形。Typically, optical elements are designed in such a way that, during normal use or operation, the temperature of the optical element is close to the zero crossing, or in a temperature range in which the coefficient of thermal expansion is close to zero or has a minimum value. Hereby, we aim to operate the optical element in a state in which temperature changes (eg local temperature changes) of the mirror surface cause only limited deformation of the optical element (eg the reflective surface of the optical element).
根據本發明,熱轉移至光學元件或自該光學元件轉移以便設定光學元件之一溫度,在該溫度處熱膨脹係數具有非零值,例如預定非零值。因而,本發明應用一不同途徑,而不是在變形經最小化所藉以的一溫度下操作光學元件,藉以有意地選擇其中光學元件對熱變形敏感的一溫度設定點。建立光學元件之此溫度可例如使用熱交換器(例如至少部分整合於光學元件中的熱交換器)來實現。詳言之,光學元件可例如經提供有經組態以接納調節流體以用於熱調節光學元件的一或多個通道。關於光學元件之熱調節的更多細節提供於下文中。According to the invention, heat is transferred to or from the optical element in order to set a temperature of the optical element at which the thermal expansion coefficient has a non-zero value, eg a predetermined non-zero value. Thus, the present invention employs a different approach, rather than operating the optical element at a temperature at which deformation is minimized, to intentionally select a temperature set point where the optical element is sensitive to thermal deformation. Establishing this temperature of the optical element can be achieved, for example, using a heat exchanger, such as a heat exchanger that is at least partially integrated in the optical element. In particular, the optical element may, for example, be provided with one or more channels configured to receive a conditioning fluid for thermally conditioning the optical element. More details on thermal conditioning of optical elements are provided below.
當此溫度設定點建立時,此可例如藉由將光學元件加熱或冷卻至偏離ZCT一或多攝氏度的一溫度而實現,可藉由選擇性地加熱光學元件建立光學元件之特定所要變形。在一實施例中,此類選擇性加熱可包含選擇性地加熱光學元件的複數個區中之一或多者。此選擇性加熱可使用加熱器實現,如將在下文詳述。借助於例如使用熱交換器選擇性加熱光學元件之一或多個區及建立光學元件之溫度(在該溫度下熱膨脹係數具有非零值),可建立光學元件之特定所要熱變形。When this temperature set point is established, this can be achieved, for example, by heating or cooling the optical element to a temperature one or more degrees Celsius away from the ZCT, which can be achieved by selectively heating the optical element to establish a specific desired deformation of the optical element. In an embodiment, such selective heating may include selectively heating one or more of a plurality of zones of the optical element. This selective heating can be achieved using heaters, as will be described in detail below. A specific desired thermal deformation of the optical element can be established by selectively heating one or more zones of the optical element, for example using a heat exchanger, and establishing a temperature of the optical element at which the coefficient of thermal expansion has a non-zero value.
本發明因此提供光學元件之加熱/冷卻之特定組合,使得關於熱變形之需要靈敏度經建立並用於產生光學元件之特定所要熱變形,該特定所要熱變形例如經選擇以至少部分抵消或補償其中應用光學元件的光學系統(例如微影裝置LA中之投影系統)中出現的像差。The present invention thus provides a specific combination of heating/cooling of the optical element such that the desired sensitivity with respect to thermal deformation is established and used to produce a specific desired thermal deformation of the optical element, eg selected to at least partially offset or compensate for the application therein Aberrations occurring in the optical system of the optical element (eg the projection system in the lithography apparatus LA).
本發明亦可體現於經組態以執行根據本發明之前述方法的裝置中。The present invention may also be embodied in a device configured to perform the aforementioned method according to the present invention.
在一實施例中,此裝置可包含: 至少一個光學元件,該至少一個光學元件包含熱膨脹係數為溫度依賴性之一材料, 一熱交換器,其經配置以轉移熱至該光學元件或自該光學元件轉移熱以建立該光學元件之一溫度設定點,使得該熱膨脹係數具有一非零值,及 一加熱器,其經配置以加熱該光學元件以產生該光學元件之一熱變形。 In one embodiment, the apparatus may include: at least one optical element comprising a material whose coefficient of thermal expansion is temperature dependent, a heat exchanger configured to transfer heat to or from the optical element to establish a temperature set point for the optical element such that the coefficient of thermal expansion has a non-zero value, and a heater configured to heat the optical element to produce a thermal deformation of the optical element.
在EUV微影裝置LA之操作期間鏡面(例如在投影系統PS中)可曝光至EUV輻射。(預先)加熱器可建立恆定熱負載至鏡面13、14而無關於EUV輻射之存在及空間分佈(照明模式)。The mirror surface (eg in the projection system PS) may be exposed to EUV radiation during operation of the EUV lithography device LA. The (pre)heater can establish a constant thermal load to the
通常,EUV輻射入射於鏡面13、14上之不同位置,使得存在空間上非均一熱負載。EUV輻射可例如使用雙極照明模式,以使得鏡面13、14之某些部分不由EUV輻射擊中。另外,EUV輻射可在一些時間接通並在其他時間斷開。預加熱器可用以加熱鏡面13、14,使得在鏡面處之空間熱負載分佈隨時間而穩定。一個特定空間熱負載分佈可為均一的,另一個空間熱負載分佈可為非均一的。一些預加熱器可嘗試將鏡面之光學涵蓋區(亦即鏡面之光學表面的在使用中接收並反射EUV輻射的部分)的平均溫度維持在某一預定義值處。在不存在任一EUV輻射情況下,溫度在涵蓋區內部將係均一的,該涵蓋區由於邊界條件而需要空間上非均一輻照。此鏡面預加熱嘗試控制鏡面13、14的光學涵蓋區之平均溫度以最小化像差。預加熱器可為IR加熱器以使得輻射將不影響基板W上之成像。圖1中展示用於鏡面14之加熱器16 (例如預熱器)。將瞭解可存在複數個加熱器且可存在用於每一鏡面或更一般而言每一光學元件的一個或複數個加熱器。Typically, EUV radiation is incident at different locations on the mirror surfaces 13, 14, so that there is a spatially non-uniform thermal load. The EUV radiation may, for example, use a bipolar illumination mode so that certain parts of the
加熱器或預熱器之此類使用因此旨在避免藉由施加一特定熱負載(例如一特定熱負載分佈,使得由加熱器及EUV輻射所引起的組合之熱負載最小化鏡面(例如鏡面13、14)之變形)而使鏡面13、14變形。Such use of heaters or preheaters is therefore intended to avoid minimising the combined heat load caused by the heater and EUV radiation by applying a specific heat load (such as a specific heat load distribution, such as mirror 13 ). , 14) deformation) to deform the mirror surfaces 13, 14.
圖2描繪具有加熱器16的微影裝置LA之投影系統PS的鏡面14之示意圖。加熱器16可具有相對高空間解析度,例如加熱器可為條形碼掃描器或具有相對較大數目個分區16A之分區加熱器。舉例而言,分區加熱器可具有例如10至200分區或20至100分區之範圍。分區之上限可自照明器IL之自由度(數量級)激勵。加熱器16之分區16A允許鏡面14之不同部分待以不同熱量及/或在不同時間加熱。為實現此,分區16A可隨時間經提供有不同功率層級。亦即,用於分區16A中之一或多者的功率可經修改以提供不同層級熱至鏡面14之不同部分,如由圖2中之不同長度的面向下箭頭描繪。分區16A可具有相同實體大小或可為不同大小。分區16A經展示為方框以說明陣列樣配置,此係由於輻照在空間中係2D。然而,應瞭解,在其他實施例中,分區可具有任何合適的形狀。FIG. 2 depicts a schematic view of the
加熱器16包括用以加熱鏡面14的電磁波(例如IR)源。將瞭解在其他實施例中,加熱器可以其他方式加熱鏡面,例如加熱器可嵌入於鏡面內,更特定而言在鏡面中可存在電阻絲之柵格。
鏡面14具有經組態以反射EUV輻射之光學表面14A。光學表面14A可包括反射式(多層)塗層。
鏡面14具有溫度設定點,例如(T
sp , sh),其中「sp」為設定點且「sh」為分區加熱。更特定而言,存在鏡面14之複數個區中之一或多者的一或多個溫度設定點。舉例而言,與對應於鏡面14之另一個區的位置B相比,對應於鏡面14之一個區的位置A可具有不同溫度設定點。加熱器16加熱鏡面14之光學表面14A的一或多個局部區段以加熱鏡面14之複數個區。作為實例,若存在光瞳樣鏡面之光學表面的100個局部區段,則對於具有光學涵蓋區之約80 mm直徑之鏡面,其可具有光學表面之大小為約50 mm
2的局部區段。對於較大鏡面,此大小可為約500 mm
2。
The
鏡面14包括水冷卻。至少一個通道(圖中未示)經提供於鏡面14中以用於穿過鏡面14傳遞冷卻水18或更一般冷卻流體。冷卻水18可在溫度T
w , in=T
mf下輸入至鏡面14,並在自鏡面14抽取熱之後可在溫度T
w , out大於T
mf時自鏡面14退出。T
mf為由ULE材料製成的鏡面14之環境溫度(例如約22
oC)。更一般而言,冷卻水18可視為經配置以自光學元件(鏡面14)轉移熱的散熱片。冷卻水18加熱(對流)並遠離鏡面14輸送熱。在其他實施例中,將瞭解散熱片可採取不同形式。
冷卻水18可由於減小之定態溫度差(ΔT
ss)而例如減小定態變形且亦由於Tzc再最佳化及減小之熱穿透而減小溫度晶圓內漂移。定態變形可視為正常使用期間鏡面的變形,藉以EUV誘發之熱負載經施加至鏡面。此定態變形可例如由鏡面之溫差(例如被稱作定態溫度差)所造成。定態溫度差(ΔT
ss)根據位置(x,y)而變化且在未冷卻情況下隨EUV誘發之熱負載及邊界條件而變。EUV誘發之熱負載隨以下各者而變:EUV輻射源功率、微影裝置LA工作循環、光罩屬性(圖案密度、反射率)、照明光瞳、鏡面之EUV吸收係數,及鏡面之沿著光學路徑的位置(及鏡面與環境之間的耦合):ΔT
ss,mx= max(ΔT
ss(x,y|Q
euv,光瞳))。
Cooling
如先前所提及,零交叉溫度(Tzc)歸因於材料不均質性而在空間上變化。與冷卻劑(亦即,冷卻水18)與鏡面14之光學表面14A之間的部分的Tzc之變化相比,在冷卻劑(亦即,冷卻水18)下方的部分之Tzc的變化可視為不太相關。冷卻劑設計經假定為使得在冷卻劑下方的主體之熱干擾可忽略。此意指鏡面14之彼部分內的零交叉溫度(Tzc)變化與頂部部分(亦即,在冷卻劑與光學表面14A之塗層之間)之零交叉溫度變化相比不太關鍵。頂部部分之零交叉溫度變化可在微影裝置LA上校準。冷卻劑與塗層之間的部分內之Tzc的變化原則上意指任何兩個位置(例如位置A與位置B)之間的相異致動器靈敏度。此需要校準。應注意致動器靈敏度就此而言係指用於鏡面或光學元件之特定部分或區之熱致動的靈敏度,且熱致動係指施加一熱負載(例如發熱負載)以產生或獲得變形。因而,在鏡面之一部分的實際溫度處或附近具有Tzc之該部分將具有低致動器靈敏度而具有遠離鏡面之一部分的實際溫度之Tzc的該部分將具有高致動器靈敏度。As mentioned previously, the zero-crossing temperature (Tzc) varies spatially due to material inhomogeneity. The change in Tzc of the portion below the coolant (ie, the cooling water 18 ) can be considered as not compared to the change in Tzc of the portion between the coolant (ie, the cooling water 18 ) and the
先前,加熱器可已用於加熱鏡面,使得鏡面在空間上及隨時間皆經均勻地加熱以保持熱負載恆定。然而,根據本發明,加熱器經配置以(選擇性地)加熱光學元件以產生光學元件之特定熱變形。諸如如所展示之加熱器16的加熱器可為此目的而應用。亦即,根據本發明,額外功能性已被添加至加熱器16以有意地誘發鏡面14之所要熱變形,可藉助於該所要熱變形校正由其他鏡面或模組造成的像差。此可視為藉由加熱器16進行的鏡面14之熱操縱、啟動或致動,亦即加熱器16可視為熱操縱器或致動器。在一實施例中,加熱器(例如加熱器16)經配置以在加熱啟動範圍內選擇性地加熱該光學元件之複數個區中之一或多者,以例如在該光學元件之複數個區中之該一或多者處產生光學元件之特定熱變形。加熱啟動範圍可視為加熱器16可提供至鏡面14 (一般而言至光學元件)的熱之指定範圍。加熱啟動範圍可與加熱器16之最小及最大功率限制相關,該最小及最大功率限制可被設定。加熱器可對於加熱器16之不同分區16A具有不同加熱啟動範圍。可選擇對於每一分區16A具有類似範圍的實施方案。然而,某些分區16A可設計成具有較小功率,例如因為局部EUV負載數量級與鏡面上之其他光點相比較小,或因為彼光點自像差操縱器視角來看並不相關。加熱啟動範圍可例如表達為例如以W/mm2計的可用功率密度,其可藉由加熱器施加至光學元件之不同區上。Previously, heaters have been used to heat the mirror so that the mirror is heated uniformly both spatially and over time to keep the thermal load constant. However, according to the present invention, the heater is configured to (selectively) heat the optical element to produce a specific thermal deformation of the optical element. A heater such as
鏡面14之光學表面14A之局部區段對應於鏡面14之複數個區。加熱器16加熱對應於鏡面14之複數個區的鏡面14之光學表面14A之一或多個局部區段。The partial sections of the
鏡面14之複數個區可界定於鏡面14之光學表面14A與冷卻劑之間(或更精確地,用於冷卻水18的通道)。此係因為與鏡面14之複數個區中相比,在冷卻水18之與鏡面14之光學表面14A相對的一側的材料之零交叉溫度的變化可視為不太相關。在冷卻水18之與鏡面14之光學表面14A相對的一側的鏡面14之熱干擾可視為可忽略的且可不予考慮。Regions of
如圖2中可見,定態溫度差ΔT
ss(x,y|..) (其根據位置(x,y)(亦即橫越鏡面14之光學表面14A的位置)變化)係自冷卻水18之位置取得。亦即,鏡面14之定態溫度係自對應於冷卻之位置的深度z (例如距鏡面14之光學表面的5 mm)取得。
As can be seen in FIG. 2 , the steady-state temperature difference ΔT ss (x,y|..), which varies according to the position (x,y) (ie, the position across the
冷卻水18經配置以轉移來自鏡面14之熱(至環境)以建立鏡面14之溫度設定點。更特定而言,可建立光學元件之複數個區中之一或多者的一或多個溫度設定點。該一或多個溫度設定點可經設定遠離鏡面14之材料的零交叉溫度(Tzc),使得熱膨脹係數(CTE)之正負號在加熱器16之加熱啟動範圍之大部分或全部內對於鏡面14之複數個區係相同的。冷卻水18充當散熱片。材料之零交叉溫度為鏡面14之複數個區中之每一者的局部零交叉溫度。亦即,將全部溫度設定點界定在自局部零交叉溫度之相等偏移處。此可為每一分區16A提供類似奈米功率靈敏度。在其他實施例中,材料之零交叉溫度可視為鏡面14之平均零交叉溫度(亦即,鏡面14之複數個區中的全部之均值)。Cooling
本發明的一實施例中,例如使用熱交換器將光學元件之溫度設定至一特定溫度設定點,從而導致光學元件或其至少一實質部分具有(預定)非零熱膨脹係數。在一實施例中,如圖2中示意性展示的冷卻水配置可用於設定溫度設定點。然而,一般而言,根據本發明,如所應用的熱交換器可以用於冷卻光學元件或升溫光學元件,以便將光學元件之溫度設定至光學元件之材料具有所要預定非零熱膨脹係數所在的一溫度。在一實施例中,此類熱交換器可包含經組態以接納調節流體(亦即用於熱調節光學元件之流體)的一或多個通道。在一實施例中,可應用多個相異通道,藉以每一通道可經提供有不同調節流體,例如在不同溫度下之調節流體。在一實施例中,熱交換器包含例如整合於光學元件中的電阻絲之柵格。藉由施加一或多個合適之電壓至柵格,特定所要熱負載可在光學元件中產生,從而產生光學元件之所需溫度或溫度分佈。藉此,一或多個溫度設定點可使用根據本發明之方法或裝置在光學元件中實現。本發明的一實施例中,如應用的熱交換器至少部分整合於光學元件中。此類配置之實例可包括在光學元件中使用通道或電阻絲之柵格。In one embodiment of the invention, the temperature of the optical element is set to a specific temperature set point, eg using a heat exchanger, resulting in the optical element or at least a substantial portion thereof having a (predetermined) non-zero coefficient of thermal expansion. In one embodiment, a cooling water configuration as schematically shown in Figure 2 may be used to set the temperature set point. In general, however, in accordance with the present invention, a heat exchanger as applied may be used to cool the optical element or to heat the optical element in order to set the temperature of the optical element to a point where the material of the optical element has the desired predetermined non-zero coefficient of thermal expansion. temperature. In one embodiment, such a heat exchanger may include one or more channels configured to receive a conditioning fluid (ie, a fluid for thermally conditioning the optical element). In one embodiment, multiple distinct channels may be used whereby each channel may be provided with a different conditioning fluid, eg at a different temperature. In one embodiment, the heat exchanger comprises, for example, a grid of resistive wires integrated in the optical element. By applying one or more suitable voltages to the grid, a specific desired thermal load can be created in the optical element, resulting in a desired temperature or temperature distribution of the optical element. Thereby, one or more temperature set points can be implemented in the optical element using the method or apparatus according to the invention. In one embodiment of the invention, the heat exchanger as used is at least partially integrated into the optical element. Examples of such configurations may include the use of a grid of channels or resistive filaments in the optical element.
在實施例中,如在諸如鏡面14之光學元件中使用本發明施加的一或多個溫度設定點可在距零交叉溫度Tzc的1至8℃之範圍內建立。均勻ULE材料可具有+ / -1C公差,因此可需要將溫度設定點設定在距零交叉溫度Tzc的大致1℃。作為另一實例,溫度設定點可經設定在距零交叉溫度Tzc的大致4℃處。藉此,吾人建立實質上整個光學元件或至少經熱調節之部分的熱膨脹係數之至少正負號係相同的。In an embodiment, one or more temperature set points as applied using the present invention in an optical element such as
圖3展示說明此之曲線。曲線展示相對於垂直於鏡面14之光學表面14A之變形(y軸)的局部鏡面光學表面14A溫度(x軸)。自所標繪之最低溫度可見,在達至最小值(亦即,在溫度Tzc處,其中熱膨脹係數為零)之前,變形隨逐漸增加溫度而初始地降低(亦即,具有負熱膨脹係數),且接著變形隨逐漸增加溫度而增加(亦即,具有正熱膨脹係數)。零交叉溫度(Tzc)(其中ULE材料具有幾乎零膨脹屬性)與最小點一致。主(粗體)線M可視為針對於平均零交叉溫度Tzc。對應於曲線之主線M的曲線中之虛線U、L展示歸因於材料之零交叉溫度的變化(δT
zc(T))的上部U及下部L限制。材料中之零交叉溫度Tzc的變化係內因性又確定性。可見鏡面14之溫度設定點T
sp , sh(q
sh)及冷卻或調節溫度T
w , in兩者相對於零交叉溫度Tzc皆在相同側(亦即,在拋物線之相同側)。在此情況下,鏡面14之溫度設定點T
sp , sh(q
sh)及冷卻溫度T
w , in兩者均大於零交叉溫度Tzc。將瞭解,在其他實施例中,鏡面14之溫度設定點T
sp , sh(q
sh)及冷卻溫度T
w , in可皆小於零交叉溫度Tzc,亦即皆在不同於圖3中所展示之一側的零交叉溫度Tzc之另一側。藉由轉移熱至鏡面14 (一般而言,光學元件)或自鏡面14轉移熱,吾人可根據本發明將鏡面14之溫度設定至一(所要)值,亦即藉以鏡面具有(預定)非零熱膨脹係數的值。
Figure 3 shows a curve illustrating this. The graph shows the localized specular
如將理解,如上文提及之鏡面的冷卻溫度T w , in可視為例如藉由前述熱交換器調節光學元件所在的溫度之實例。因而,冷卻溫度T w , in亦可稱為光學元件之調節溫度T w , in。 As will be appreciated, the cooling temperature Tw , in of the mirror as mentioned above can be considered as an example of adjusting the temperature at which the optical element is located, eg by means of the aforementioned heat exchanger. Therefore, the cooling temperature Tw , in can also be referred to as the adjustment temperature Tw , in of the optical element.
在圖3中,冷卻液或調節溫度T
w , in稍微高於如所展示之零交叉溫度Tzc。此設置可對在不同於溫度設定點T
sp , sh(q
sh)的零交叉溫度Tzc之另一側的冷卻劑溫度T
w , in更佳。此可係因為此可確保熱膨脹之最小點(亦即,在Tzc處,其中熱膨脹係數為零)將不會到達且因此鏡面14之區的熱膨脹係數之正負號將不同於鏡面14之其他區。
In Figure 3, the coolant or conditioning temperature Tw , in is slightly higher than the zero-crossing temperature Tzc as shown. This setting may be better for the coolant temperature T w , in on the other side of the zero crossing temperature Tzc than the temperature set point T sp , sh (q sh ). This may be because it ensures that the minimum point of thermal expansion (ie, at Tzc, where the thermal expansion coefficient is zero) will not reach and thus the sign of the thermal expansion coefficient of the region of
冷卻水18之較高流動速率意指對鏡面14之更多干擾且其引入像差。因此,實務上,最好儘可能地最小化溫度設定點T
sp , sh(q
sh)以使得存在足夠啟動範圍(以實施必要熱操縱)。一旦加熱器16之某一分區16A斷開,就意謂對於光學涵蓋區之彼特定區段已超過加熱啟動範圍。
The higher flow rate of the cooling
存在其中線M之斜率指示變形與溫度之間的線性或準線性關係(參看繪示此的直線S)的曲線之區段。亦即,在(分區)加熱器16之加熱啟動範圍(ΔT
sh)之大部分或全部內在溫度與鏡面14之區的熱變形之間存在大致線性依賴性。垂直虛線展示(分區)加熱器16之加熱啟動範圍(ΔT
sh)的範圍。冷卻劑(亦即,冷卻水18)與前側(亦即,光學表面14A)之間的最大溫度偏移ΔT
ss,mx藉由給定源功率下相關EUV負載當中之最高局部功率密度判定。操縱器控制範圍ΔT
sh之上限係藉由用於校正EUV加熱或不加熱誘發之像差的最差狀況所需要的最大致動範圍判定。
There is a section of the curve in which the slope of the line M indicates a linear or quasi-linear relationship between deformation and temperature (see straight line S depicting this). That is, there is an approximately linear dependence between the temperature within most or all of the heating activation range (ΔT sh ) of the (zone)
溫度設定點(T
sp,sh(q
sh))經建立在曲線之大致線性依賴性區段中,其中q為來自分區加熱器16之以瓦特每平方公尺計的熱通量。可見溫度設定點T
sp , sh(q
sh)充分遠離零交叉溫度(Tzc)而定位使得對於分區加熱器(加熱器16)之加熱啟動範圍的全部,熱膨脹係數為正。應瞭解,在其他實施例中,此對於加熱啟動範圍ΔT
sh之全部可能並非該情況且可僅僅對於加熱啟動範圍之大部分為該情況。
The temperature set point (T sp,sh (q sh )) is established in the substantially linear dependence section of the curve, where q is the heat flux from
可見溫度設定點T
sp , sh(q
sh)充分遠離零交叉溫度(Tzc)而定位使得對於材料之零交叉溫度的完整變化δT
zc(T),熱膨脹係數為正。因此,即使分區加熱器16之分區16A經設定在最低功率下且零交叉溫度Tzc歸因於鏡面14之特定區之空間變化在其最高可能值處,將不會到達熱膨脹係數之最小點(亦即,Tzc)且因此鏡面14之區的熱膨脹係數之正負號將不會不同於鏡面14之其他區。應理解,若對應於鏡面14之特定區的鏡面溫度係如此以使得到達Tzc,且被超過,則當與其中Tzc未到達且未超過的區相比時,熱膨脹係數之正負號將不相同且變形對於彼區將係相反的。
It can be seen that the temperature set point T sp , sh (q sh ) is located sufficiently far from the zero-crossing temperature (Tzc) such that the thermal expansion coefficient is positive for a complete change δT zc (T) of the zero-crossing temperature of the material. Therefore, even if the
圖4描繪展示相對於垂直於鏡面14之光學表面14A之變形(y軸)的局部鏡面光學表面14A溫度(x軸)的另一曲線。除在圖4之曲線中溫度設定點T
sp , sh(q
sh)與鏡面14之冷卻溫度T
w , in相對於零交叉溫度Tzc在不同側(亦即,在拋物線之不同側)之外,圖4之曲線類似於圖3之曲線。在此情況下,溫度設定點T
sp , sh(q
sh)大於零交叉溫度Tzc且鏡面14之冷卻溫度T
w , in小於零交叉溫度Tzc。更特定而言,x軸上之0對應於在鏡面14之入口處的冷卻水18之溫度T
w , in。T
w , in較佳地接近或等於鏡面14 (由ULE材料製成)之溫度(T
mf)。
FIG. 4 depicts another curve showing localized specular
在此實施例中,溫度設定點T
sp , sh(q
sh)仍然遠離鏡面14之材料的零交叉溫度Tzc,使得熱膨脹係數(CTE)之正負號在加熱器16之加熱啟動範圍之大部分或全部內對於鏡面14之該等區的材料之大部分或全部係相同的。在實施例中,鏡面14之區的材料之少數可不具有相同正負號熱膨脹係數(CTE)。此可為材料之最接近冷卻水18的部分。
In this embodiment, the temperature set points T sp , sh (q sh ) are still far away from the zero-crossing temperature Tzc of the material of the
在實施例中,冷卻水之溫度可與所提供的平均零交叉溫度Tzc相等,一或多個溫度設定點充分遠離平均零交叉溫度Tzc (例如約+4C),使得鏡面之光學表面與冷卻水之間的材料之大部分具有相同正負號熱膨脹係數(CTE)。在此情況下,材料之最接近冷卻水的部分可不具有相同正負號熱膨脹係數。此情形可並非較佳,此係因為當與其中冷卻流體之溫度經設定遠離零交叉溫度Tzc的情況相比時此情形可需要額外功率。In an embodiment, the temperature of the cooling water may be equal to the provided mean zero-crossing temperature Tzc, with one or more temperature set points sufficiently far from the mean zero-crossing temperature Tzc (eg, about +4C) such that the optical surface of the mirror and the cooling water Most of the materials in between have the same signed coefficient of thermal expansion (CTE). In this case, the portion of the material closest to the cooling water may not have the same sign thermal expansion coefficient. This situation may not be preferred since it may require additional power when compared to the situation where the temperature of the cooling fluid is set away from the zero crossing temperature Tzc.
一般而言,光學元件之複數個區中的一或多者的一或多個溫度設定點經建立遠離鏡面14之材料的零交叉溫度Tzc,使得熱膨脹係數(CTE)之正負號在加熱器16之加熱啟動範圍之大部分或全部內對於鏡面14之該等區係相同的。在一些實施例中,一或多個溫度設定點可經設定,使得熱膨脹係數具有一值,該值在加熱器16之加熱啟動範圍的大部分或全部內對於鏡面14之區實質上類似。亦即,鏡面14之區的熱膨脹係數可具有可比值--變形為鏡面14之區之間的可比大小。In general, one or more temperature set points for one or more of the plurality of zones of the optical element are established away from the zero-crossing temperature Tzc of the material of the
校準期間的穩態溫度設定點T
sp , sh(q
sh)經建立在加熱器16之加熱啟動範圍中間處或其附近。使用自鏡面14轉移熱的冷卻水18建立鏡面14之溫度設定點T
sp , sh(q
sh)。冷卻水18之溫度(T
w , in)可經設定於特定量處以建立鏡面14之所需溫度設定點T
sp , sh(q
sh)。熱膨脹係數(CTE)隨鏡面14之溫度而變且鏡面14溫度隨冷卻水18之溫度而變。溫度設定點T
sp , sh(q
sh)可藉由充分遠離鏡面14之材料的零交叉溫度(Tzc)來設定冷卻水18之溫度(T
w , in)而建立。冷卻水18之溫度可由於零交叉溫度Tzc變化而設定在遠離零交叉溫度Tzc之+ / -0.5 C、+ / -1 C或+ / -2 C之實例範圍。
The steady state temperature set point T sp , sh (q sh ) during calibration is established at or near the middle of the heating activation range of the
若冷卻水18不用於限制鏡面14之溫度,則隨時間(亦即,歸因於EUV輻射之曝光及/或藉由加熱器16加熱),鏡面14之溫度可增加過多,使得其超出藉由加熱器16熱操縱的範圍,亦即溫度將漂移。If cooling
溫度設定點T
sp , sh(q
sh)經建立,使得當與在Tzc周圍的熱變形相比時,來自加熱器16之熱的變化在加熱器16之加熱啟動範圍之全部內導致鏡面14之區的熱變形之相對較大變化。熱變形之相對較大變化可在-10至+10 nm之範圍內。為了光學元件操縱,基板之間的任尼克致動步長可為大致0.01 nm。溫度設定點可視為充分遠離零交叉溫度Tzc定位,使得當與在Tzc周圍的曲線之區段中的線M之斜率相比時,在曲線之此區段中的線M之斜率相對陡峭。
The temperature set points T sp , sh (q sh ) are established such that the change in heat from the
溫度設定點T
sp , sh(q
sh)經建立以使得熱負載與變形之間的關係具有足夠靈敏度以提供熱操縱之相對良好範圍。溫度設定點與零交叉溫度之間的較大偏差可導致較大靈敏度。亦即,溫度設定點更遠離零交叉溫度(遠離曲線之線M的下部部分)意謂對於相同的溫度增加,變形將較大。此係有利的,此係因為此意謂對於至分區加熱器16的分區16A之相對低功率增加可實現熱操縱之相對較大量。
The temperature set points T sp , sh (q sh ) are established such that the relationship between thermal load and deformation is sensitive enough to provide a relatively good range of thermal manipulation. Larger deviations between the temperature set point and the zero-crossing temperature can result in larger sensitivity. That is, a temperature set point further away from the zero-crossing temperature (away from the lower part of line M of the curve) means that for the same temperature increase, the deformation will be larger. This is advantageous because it means that a relatively large amount of thermal manipulation can be achieved for a relatively low power increase to
對於至分區16A之特定功率的鏡面14之熱變形量可取決於冷卻深度及分區16A之大小。舉例而言,在10 mm之冷卻深度及10 mm×10 mm之分區大小情況下,0.5 nm/W之靈敏度可經發現用於ULE材料。奈米級距離反映表面外形變形。The amount of thermal deformation of
溫度設定點T
sp , sh(q
sh)可基於鏡面14之材料之所提供或判定的零交叉溫度。亦即,零交叉溫度已經測量、估計或模型化。該方法可包含藉由模型化來表徵鏡面14之光學表面14A之零交叉溫度Tzc的分佈。亦即,鏡面14之材料的局部零交叉溫度Tzc可經個別地判定且接著用作起點以建立溫度設定點。
The temperature set point T sp , sh (q sh ) may be based on the zero-crossing temperature provided or determined by the material of the
一旦已到達所需溫度設定點T
sp , sh(q
sh),加熱器16之額外自由度就必須經校準。對於加熱器16之每一分區,對應波前誤差必須運用波前感測器(圖中未示)來量測。波前感測器可進行波前像差量測,其考慮多種自由度,諸如鏡面之數目、鏡面之位置及定向以及不僅機械態樣。因此,需要校準以判定藉由加熱器16進行的熱操縱如何影響波前誤差。
Once the desired temperature set point T sp , sh (q sh ) has been reached, the additional degrees of freedom of
更一般而言,加熱器16可使用藉由光學量測裝置(例如波前感測器)獲得之對應光學量測來校準。分區加熱器16之複數個分區16A可使用藉由光學量測裝置獲得之對應光學量測(例如藉由波前感測器獲得的波前像差量測)來校準。More generally,
需要判定自加熱器16提供至鏡面14之複數個區中之一或多者的熱與鏡面14之光學表面14A之對應一或多個局部區段的所得熱變形之間的關係。The relationship between the heat provided from
該方法可包括依次修改用於分區加熱器16之複數個分區16A中之每一者的功率及進行對應光學量測。亦即,功率針對分區加熱器16之複數個分區16A中之每一者一個接一個地改變。此建立敏感度曲線,亦即變形如何隨分區16A (或啟動區域)之變化功率而變化。進行光學量測允許對波前如何藉由鏡面14之對應區的溫度改變而改變進行判定。至分區加熱器16之分區16A的功率與對應光學量測之間的關係可用於鏡面14之波前之熱操縱。The method may include sequentially modifying the power for each of the plurality of
一般而言,可提及特定熱負載至光學元件之特定分區或部分的施加與光學元件之變形之間的關係將取決於多個參數。換言之,除了如施加的實際熱負載之外,光學元件或其一部分的變形亦將隨各種參數而變。為了實現光學元件之準確熱致動,例如為校正或補償像差,可需要考慮該等參數。值得提及的此參數之實例為光學元件之實際CTE或CTE分佈。如所提及,歸因於製造公差,光學元件之材料的CTE可並非為均質的,但可橫越光學元件而改變。藉由施加特定熱負載至光學元件,例如使用如上文所描述之加熱器,並觀察對應變形,可考慮該參數。可指出吾人可希望判定光學元件之不同熱條件之實際CTE或CTE分佈。詳言之,CTE或CTE分佈可例如取決於光學元件之溫度而判定。因而,對於光學元件之不同溫度,CTE或CTE分佈可經判定為例如校準或初始化程序之部分。作為實際實例,光學元件之CTE或CTE分佈可經判定用於不同溫度設定點,不同溫度設定點用於控制用於轉移熱至光學元件或自光學元件轉移熱的熱交換器。歸因於使用具有溫度依賴性CTE之材料,施加特定熱負載之效應因此將取決於光學元件之實際溫度。In general, it can be mentioned that the relationship between the application of a specific thermal load to a specific partition or part of an optical element and the deformation of the optical element will depend on a number of parameters. In other words, in addition to the actual thermal load as applied, the deformation of the optical element or a portion thereof will also be a function of various parameters. In order to achieve accurate thermal actuation of optical elements, eg to correct or compensate for aberrations, these parameters may need to be taken into account. An example of this parameter worth mentioning is the actual CTE or CTE distribution of the optical element. As mentioned, due to manufacturing tolerances, the CTE of the material of the optical element may not be homogeneous, but may vary across the optical element. This parameter can be taken into account by applying a specific thermal load to the optical element, eg using a heater as described above, and observing the corresponding deformation. It can be pointed out that one may wish to determine the actual CTE or CTE distribution for different thermal conditions of the optical element. In particular, the CTE or CTE distribution can be determined, for example, depending on the temperature of the optical element. Thus, for different temperatures of the optical element, the CTE or CTE distribution can be determined, for example, as part of a calibration or initialization procedure. As a practical example, the CTE or CTE distribution of an optical element can be determined for different temperature set points used to control a heat exchanger for transferring heat to or from the optical element. Due to the use of materials with a temperature-dependent CTE, the effect of applying a particular thermal load will therefore depend on the actual temperature of the optical element.
將瞭解,在其他實施例中,可以不同方式進行校準。It will be appreciated that in other embodiments, the calibration may be performed differently.
在實施例中,可進行檢查以驗證修改加熱器16之分區16A的功率中之一或多者以加熱鏡面14之一或多個區可並不實質上改變(亦即,加熱及變形)未經特定加熱的鏡面14之其他區。若情況屬實,則將難以或不可能得到必要熱致動以校正像差等。可需要具有獨立分區。若鄰近或相鄰分區之串擾較大,則其意謂當致動給定分區時亦需要考慮鄰近或相鄰分區之回應。此意謂此串擾等將需要被校準。In an embodiment, a check may be performed to verify that modifying one or more of the power of
在批次生產(曝光)期間(亦即,在微影裝置LA之操作期間),經校準關係接著可用於藉由經由加熱器16誘發對應熱變形而操縱鏡面14 (或多個鏡面)之波前。來自加熱器16之熱與鏡面14之複數個區中的一或多者之所得熱變形之間的經校準關係可用以在使用微影裝置LA期間經由加熱器16引入對應熱變形至鏡面14之光學表面14A。此可用以校正例如由微影裝置LA之其他光學元件所造成的像差。作為實例,介於範圍5 W至10 W內經提供至分區加熱器16之分區16A的功率可導致任尼克波前之係數的1 nm變化。During batch production (exposure) (ie, during operation of lithography apparatus LA), the calibrated relationship can then be used to manipulate the waves of mirror 14 (or mirrors) by inducing corresponding thermal deformations via
圖5描繪使鏡面14熱變形之方法之流程圖100。亦即,加熱鏡面14之一或多個區以熱操縱鏡面14,例如用於校正波前像差。FIG. 5 depicts a
在步驟102中,溫度設定點T
sp , sh(q
sh)係基於鏡面14之材料之所提供或判定的零交叉溫度而判定。替代策略可為將冷卻水18之溫度Twin界定為稍微高於零交叉溫度Tzc,接著計算所需要溫度設定點(取決於源功率、照明光瞳等),及添加用於操縱之熱範圍--此係針對於圖3之曲線中所示的實例。一般而言,步驟102可包含轉移熱至鏡面或光學元件或自該鏡面或該光學元件轉移熱,以便調節該鏡面至對應於溫度設定點的溫度,藉以鏡面具有(預定)非零熱膨脹係數。在一實施例中,該或該等溫度設定點經選擇遠離零交叉溫度(Tzcs),使得熱膨脹係數(CTE)之正負號在加熱器16之加熱啟動範圍(例如加熱啟動範圍之大部分或全部)內對於鏡面14之複數個區係相同的。CTE可具有一值,該值在加熱器16之加熱啟動範圍(例如加熱啟動範圍的大部分或全部)內對於鏡面14之複數個區實質上類似。
In
在步驟104中,冷卻水18之溫度經設定以建立鏡面14之溫度設定點。溫度設定點可遠離Tzcs,使得熱負載與變形之間的關係在加熱啟動範圍內具有足夠靈敏度。In
在步驟106中,使用具有加熱啟動範圍之加熱器16加熱鏡面14之複數個區中之一或多者,以使鏡面14熱變形。In
在步驟108中,使用藉由波前感測器獲得之對應波前像差量測校準加熱器16。In
在步驟110中,在鏡面14之EUV輻射曝光期間使用經校準加熱器16以在微影裝置LA操作期間操縱波前。In
在本發明中,提出建立光學元件之熱變形的方法。在本發明中,溫度依賴性熱膨脹係數經假定存在用於光學元件。圖6示意性說明各種材料之熱膨脹係數。圖6中之曲線A說明具有一熱膨脹係數(CTE)的材料,該熱膨脹係數(CTE)實質上獨立於溫度T,亦即此類材料之CTE不隨溫度T變化。圖6中之曲線B說明具有為溫度依賴性之熱膨脹係數(CTE)的材料。詳言之,材料具有在溫度T1下具有最小值的CTE。In the present invention, a method for establishing thermal deformation of an optical element is proposed. In the present invention, the temperature-dependent thermal expansion coefficient is assumed to exist for the optical element. Figure 6 schematically illustrates the thermal expansion coefficients of various materials. Curve A in Figure 6 illustrates a material having a coefficient of thermal expansion (CTE) that is substantially independent of temperature T, ie the CTE of such a material does not vary with temperature T. Curve B in Figure 6 illustrates a material with a coefficient of thermal expansion (CTE) that is temperature dependent. In detail, the material has a CTE with a minimum value at temperature T1.
圖6中之曲線C說明具有亦為溫度依賴性之熱膨脹係數(CTE)的材料。詳言之,由曲線C說明的材料具有在溫度T2下之最小CTE及在溫度T3下等於零的CTE。藉由曲線B及C說明的材料皆可有利地應用於本發明。參看圖3及圖4,吾人可例如考慮圖3或圖4之溫度T ZC將對應於圖6中之溫度T3;如圖3及圖4中所說明的變形可例如在使用具有根據圖6之曲線C的CTE之材料情況下獲得。 Curve C in Figure 6 illustrates a material with a coefficient of thermal expansion (CTE) that is also temperature dependent. In detail, the material illustrated by curve C has a minimum CTE at temperature T2 and a CTE equal to zero at temperature T3. Both the materials illustrated by curves B and C can be advantageously used in the present invention. 3 and 4, we can for example consider that the temperature T ZC in Fig. 3 or 4 will correspond to the temperature T3 in Fig. 6; the deformation illustrated in Figs. The CTE of curve C was obtained for the material case.
根據本發明,熱或熱負載經轉移至光學元件(例如由具有根據曲線B或C之CTE之材料製成的光學元件)或自該光學元件轉移,藉此使光學元件溫度至(所要)溫度,具有相關聯溫度依賴性CTE。根據本發明,如藉由施加熱或熱負載獲得的光學元件之材料的溫度係如此以使得材料根據(預定)非零CTE表現。如施加(例如使用上述熱交換器施加)的熱或熱負載因此能夠使得控制光學元件之材料的CTE。藉此,吾人控制光學元件對熱致動(例如藉由加熱器(例如條形碼掃描器或加熱器或分區加熱器)執行的熱致動)的靈敏度。本發明因此以通用及撓性方式來提供以解決在光學系統(諸如微影裝置之投影系統)中出現的像差。在僅僅較小像差需要被補償或校正情況下,可能有利的是將光學元件之操作溫度設定在一值,藉以光學元件對熱致動之靈敏度相當低,而當實質像差需要被補償或校正時,可能有利的是將光學元件之操作溫度設定在一值,藉以光學元件對熱致動之靈敏度相當高。在兩種情況下,所施加加熱器可在其熱啟動範圍之大部分內使用,因此實現所施加熱負載之良好解決。According to the invention, heat or thermal load is transferred to or from an optical element (eg an optical element made of a material having a CTE according to curve B or C), thereby bringing the optical element to a (desired) temperature , with an associated temperature-dependent CTE. According to the invention, the temperature of the material of the optical element as obtained by applying heat or thermal load is such that the material behaves according to a (predetermined) non-zero CTE. The heat or thermal load as applied (eg using the heat exchanger described above) can thus enable control of the CTE of the material of the optical element. Thereby, we control the sensitivity of the optical element to thermal actuation, such as that performed by a heater such as a barcode scanner or heater or zone heater. The present invention is thus provided in a versatile and flexible manner to address aberrations occurring in optical systems, such as projection systems of lithographic devices. In cases where only minor aberrations need to be compensated or corrected, it may be advantageous to set the operating temperature of the optical element to a value whereby the sensitivity of the optical element to thermal actuation is relatively low, and when substantial aberrations need to be compensated or corrected When calibrating, it may be advantageous to set the operating temperature of the optical element to a value whereby the sensitivity of the optical element to thermal actuation is relatively high. In both cases, the applied heater can be used over a large portion of its hot start range, thus achieving a good resolution of the applied thermal load.
儘管可在本文中特定地參考在IC製造中微影裝置之使用,但應理解,本文中所描述之微影裝置可具有其他應用。可能其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。Although specific reference may be made herein to the use of lithography devices in IC fabrication, it should be understood that the lithography devices described herein may have other applications. Possible other applications include the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memory, flat panel displays, liquid crystal displays (LCDs), thin film magnetic heads, and the like.
儘管可在本文中特定地參考在微影裝置之內容背景中之本發明之實施例,但本發明之實施例可用於其他裝置中。本發明之實施例可形成光罩檢測裝置、度量衡裝置或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化器件)之物件之任何裝置的部件。此等裝置可一般被稱作微影工具。此微影工具可使用真空條件或周圍(非真空)條件。Although specific reference is made herein to embodiments of the invention in the context of lithography devices, embodiments of the invention may be used in other devices. Embodiments of the invention may form part of a reticle inspection device, a metrology device, or any device that measures or processes an object such as a wafer (or other substrate) or a reticle (or other patterned device). Such devices may generally be referred to as lithography tools. This lithography tool can use vacuum conditions or ambient (non-vacuum) conditions.
儘管上文可能已經特定地參考在光學微影之內容背景中對本發明之實施例的使用,但應瞭解,在內容背景允許之情況下,本發明不限於光學微影,且可用於其他應用(例如壓印微影)中。Although the above may have made specific reference to the use of embodiments of the present invention in the context of optical lithography, it should be understood that the present invention is not limited to optical lithography, and may be used in other applications ( such as imprint lithography).
在內容背景允許之情況下,可以硬體、韌體、軟體或其任何組合來實施本發明之實施例。本發明之實施例亦可被實施為儲存於機器可讀媒體上之指令,其可由一或多個處理器讀取及執行。機器可讀媒體可包括用於儲存或傳輸以可由機器(例如,計算器件)讀取之形式之資訊的任何機構。舉例而言,機器可讀媒體可包括:唯讀記憶體(ROM);隨機存取記憶體(RAM);磁性儲存媒體;光學儲存媒體;快閃記憶器件;電學、光學、聲學或其他形式之傳播信號(例如,載波、紅外線信號、數位信號,等等);及其他者。另外,韌體、軟件、例程、指令可在本文中被描述為執行某些動作。然而,應瞭解,此等描述僅僅為方便起見,且此等動作事實上係由計算器件、處理器、控制器或執行韌體、軟體、常式、指令等等之其他器件引起。且如此進行可使致動器或其他器件與實體世界互動。Embodiments of the present invention may be implemented in hardware, firmware, software, or any combination thereof, as the context allows. Embodiments of the invention can also be implemented as instructions stored on a machine-readable medium, which can be read and executed by one or more processors. A machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (eg, a computing device). By way of example, machine-readable media may include: read only memory (ROM); random access memory (RAM); magnetic storage media; optical storage media; flash memory devices; electrical, optical, acoustic, or other forms of Propagated signals (eg, carrier waves, infrared signals, digital signals, etc.); and others. Additionally, firmware, software, routines, instructions may be described herein as performing certain actions. It should be understood, however, that these descriptions are for convenience only and that such actions are in fact caused by a computing device, processor, controller, or other device executing firmware, software, routines, instructions, and the like. And doing so enables actuators or other devices to interact with the physical world.
雖然上文已描述本發明之特定實施例,但將瞭解,可以與所描述之方式不同的其他方式來實踐本發明。上文描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡述之申請專利範圍之範疇的情況下對所描述之本發明進行修改。While specific embodiments of the present invention have been described above, it will be appreciated that the present invention may be practiced otherwise than as described. The above description is intended to be illustrative, not restrictive. Accordingly, it will be apparent to those skilled in the art that modifications of the described invention may be made without departing from the scope of the claims set forth below.
10:琢面化場鏡面器件
11:琢面化光瞳鏡面器件
13:鏡面
14:鏡面
14A:光學表面
16:加熱器
16A:分區
18:冷卻水
100:流程圖
102:步驟
104:步驟
106:步驟
108:步驟
110:步驟
A:位置/曲線
B:位置/EUV輻射光束/曲線
B':經圖案化EUV輻射光束
C:曲線
CTE:熱膨脹係數
IL:照明系統
L:虛線
LA:微影裝置
M:主線
MA:圖案化器件
MT:支撐結構
PS:投影系統
S:直線
SO:輻射源
T1:溫度
T2:溫度
T3:溫度
T
mf:鏡面溫度
T
sp,sh:溫度設定點
T
sp,sh(q
sh):溫度設定點
T
w,in:冷卻溫度/冷卻液或調節溫度
T
w,out:溫度
T
zc:零交叉溫度
ΔT
sh:加熱啟動範圍
ΔT
ss,mx:定態溫度差
ΔT
ss,mx(x,y|..):最大溫度偏移
δT
zc(T):材料之零交叉溫度的變化
U:虛線
W:基板
WT:基板台
10: Faceted Field Mirror Device 11: Faceted Pupil Mirror Device 13: Mirror 14:
現在將參看隨附示意圖作為實例來描述本發明之實施例,在該等示意圖中: - 圖1描繪包含微影裝置及輻射源之微影系統; - 圖2描繪根據本發明之實施例的微影裝置之鏡面及加熱器的示意圖。 - 圖3描繪根據本發明之實施例的局部鏡面光學表面溫度相對於垂直於鏡面之光學表面的變形的曲線。 - 圖4描繪根據本發明之實施例的局部鏡面光學表面溫度相對於垂直於鏡面之光學表面的變形的曲線。 - 圖5描繪使鏡面熱變形之方法之流程圖。 - 圖6描繪不同材料隨溫度而變的CTE曲線。 Embodiments of the invention will now be described by way of example with reference to the accompanying schematic drawings in which: - Figure 1 depicts a lithography system comprising a lithography device and a radiation source; - FIG. 2 depicts a schematic diagram of a mirror and a heater of a lithography apparatus according to an embodiment of the present invention. - Figure 3 depicts a plot of local specular optical surface temperature versus deformation of an optical surface perpendicular to the mirror, according to an embodiment of the invention. - Figure 4 depicts a graph of local specular optical surface temperature versus deformation of the optical surface perpendicular to the mirror, according to an embodiment of the invention. - Figure 5 depicts a flow chart of the method of thermally deforming the mirror surface. - Figure 6 depicts the CTE curves of different materials as a function of temperature.
14:鏡面 14: Mirror
14A:光學表面 14A: Optical Surface
16:加熱器 16: Heater
16A:分區 16A: Partition
18:冷卻水 18: Cooling water
A:位置 A: Location
B:位置 B: Location
Tmf:鏡面溫度 T mf : mirror temperature
Tsp,sh:溫度設定點 T sp,sh : temperature set point
Tw,in:冷卻溫度 T w,in : cooling temperature
Tw,out:溫度 T w,out : temperature
△Tss,mx(x,y|..):定態溫度差 △T ss,mx (x,y|..): steady-state temperature difference
Claims (35)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20206889.6 | 2020-11-11 | ||
EP20206889.6A EP4002009A1 (en) | 2020-11-11 | 2020-11-11 | A method and apparatus for thermally deforming an optical surface of an optical element |
EP21154172 | 2021-01-29 | ||
EP21154172.7 | 2021-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202234139A true TW202234139A (en) | 2022-09-01 |
Family
ID=78500635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110141761A TW202234139A (en) | 2020-11-11 | 2021-11-10 | A method and apparatus for thermally deforming an optical element |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4244676A1 (en) |
KR (1) | KR20230098590A (en) |
CN (1) | CN116368436A (en) |
TW (1) | TW202234139A (en) |
WO (1) | WO2022101039A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022114969A1 (en) | 2022-06-14 | 2023-12-14 | Carl Zeiss Smt Gmbh | Method for heating an optical element and optical system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7295284B2 (en) * | 2004-02-27 | 2007-11-13 | Canon Kk | Optical system, exposure apparatus using the same and device manufacturing method |
WO2009046955A2 (en) * | 2007-10-09 | 2009-04-16 | Carl Zeiss Smt Ag | Device for controlling temperature of an optical element |
DE102013204427A1 (en) * | 2013-03-14 | 2014-09-18 | Carl Zeiss Smt Gmbh | Arrangement for the thermal actuation of a mirror, in particular in a microlithographic projection exposure apparatus |
CN110546573B (en) * | 2017-04-11 | 2022-10-04 | Asml荷兰有限公司 | Lithographic apparatus |
-
2021
- 2021-10-29 EP EP21801928.9A patent/EP4244676A1/en active Pending
- 2021-10-29 KR KR1020237015989A patent/KR20230098590A/en unknown
- 2021-10-29 CN CN202180073012.5A patent/CN116368436A/en active Pending
- 2021-10-29 WO PCT/EP2021/080204 patent/WO2022101039A1/en unknown
- 2021-11-10 TW TW110141761A patent/TW202234139A/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP4244676A1 (en) | 2023-09-20 |
CN116368436A (en) | 2023-06-30 |
WO2022101039A1 (en) | 2022-05-19 |
KR20230098590A (en) | 2023-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7443454B2 (en) | Lithographic apparatus and device manufacturing method | |
JP6110902B2 (en) | Lithographic equipment | |
JP6483626B2 (en) | In particular a device for thermal actuation of mirrors in a microlithographic projection exposure apparatus | |
JP4686527B2 (en) | Lithographic apparatus and device manufacturing method | |
JP2022023178A (en) | Chucks and clamps for holding objects of lithographic apparatus, and methods for controlling temperature of object held by clamp of lithographic apparatus | |
KR20050075716A (en) | Lithographic apparatus and device manufacturing method, as well as a device manufactured thereby | |
TWI430049B (en) | Lithographic method and apparatus | |
TW202234139A (en) | A method and apparatus for thermally deforming an optical element | |
TWI596441B (en) | Conditioning system and method for a lithographic apparatus and a lithographic apparatus comprising a conditioning system | |
EP4002009A1 (en) | A method and apparatus for thermally deforming an optical surface of an optical element | |
TW202041974A (en) | Lithographic apparatus with thermal conditioning system for conditioning the wafer |