TW202233021A - Semiconductor deposition system and operation method thereof - Google Patents

Semiconductor deposition system and operation method thereof Download PDF

Info

Publication number
TW202233021A
TW202233021A TW110104829A TW110104829A TW202233021A TW 202233021 A TW202233021 A TW 202233021A TW 110104829 A TW110104829 A TW 110104829A TW 110104829 A TW110104829 A TW 110104829A TW 202233021 A TW202233021 A TW 202233021A
Authority
TW
Taiwan
Prior art keywords
chuck
electrostatic chuck
deposition system
electrostatic
chuck portion
Prior art date
Application number
TW110104829A
Other languages
Chinese (zh)
Other versions
TWI774234B (en
Inventor
童凱瑜
黃凌威
林明賢
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW110104829A priority Critical patent/TWI774234B/en
Application granted granted Critical
Publication of TWI774234B publication Critical patent/TWI774234B/en
Publication of TW202233021A publication Critical patent/TW202233021A/en

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor deposition system includes a chamber, a target, an electrostatic chuck, a first radiofrequency alternating current device, and a second radiofrequency alternating current device. The target is disposed above the chamber. The electrostatic chuck is disposed in the chamber and below the target and includes a first chuck portion and a second chuck portion laterally surrounding the first chuck portion. The first radiofrequency alternating current device is located outside of the chamber and connected to the first chuck portion of the electrostatic chuck. The second radiofrequency alternating current device is located outside of the chamber and connected to the second chuck portion of the electrostatic chuck.

Description

半導體沉積系統及其操作方法Semiconductor deposition system and method of operation

一種半導體沉積系統,特別係關於一種包含靜電夾盤的半導體沉積系統及其操作方法。A semiconductor deposition system, and more particularly, relates to a semiconductor deposition system including an electrostatic chuck and a method of operation thereof.

在過去的數十年中,半導體積體電路產業經歷了快速發展。半導體材料和設計方面的技術進步產生了越來越小且越來越複雜的電路。隨著與加工和製造相關的技術同樣也經歷了技術進步,這些材料和設計進步成為可能。在半導體發展過程中,由於可以可靠地製造的最小部件尺寸減小,每單位面積上互連器件的數目因而增加。In the past decades, the semiconductor integrated circuit industry has experienced rapid development. Technological advances in semiconductor materials and design have produced smaller and more complex circuits. These material and design advancements have been made possible as the technologies associated with processing and manufacturing have also undergone technological advancements. During semiconductor development, the number of interconnected devices per unit area has increased as the smallest feature size that can be reliably fabricated has decreased.

在基板上電子元件的製造中,比如半導體及顯示器,會使用許多真空製程,比如化學氣相沉積、物理氣相沉積、蝕刻、佈植、氧化、氮化,或其他製程,以形成電子元件。基板一般係在一基板處理腔室中的一靜電夾盤上,逐一進行處理。In the manufacture of electronic components on substrates, such as semiconductors and displays, many vacuum processes, such as chemical vapor deposition, physical vapor deposition, etching, implantation, oxidation, nitridation, or other processes, are used to form electronic components. The substrates are typically tethered to an electrostatic chuck in a substrate processing chamber and processed one by one.

於一些實施方式中,半導體沉積系統包括製程腔體、靶材、靜電夾盤、第一射頻源產生器以及第二射頻源產生器。靶材位於製程腔體上方。靜電夾盤位於製程腔體中,位於該靶材下方,且包含第一夾盤部位以及水平地環繞第一夾盤部位的第二夾盤部位。第一射頻源產生器位於製程腔體外,且連接至靜電夾盤的第一夾盤部位。第二射頻源產生器位於製程腔體外,且連接至靜電夾盤的第二夾盤部位。In some embodiments, a semiconductor deposition system includes a process chamber, a target, an electrostatic chuck, a first RF source generator, and a second RF source generator. The target is located above the process chamber. The electrostatic chuck is located in the process chamber, below the target, and includes a first chuck portion and a second chuck portion horizontally surrounding the first chuck portion. The first RF source generator is located outside the process chamber and is connected to the first chuck portion of the electrostatic chuck. The second RF source generator is located outside the process chamber and connected to the second chuck portion of the electrostatic chuck.

於一些實施方式中,半導體沉積系統包括製程腔體、靶材、靜電夾盤以及第一射頻源產生器。靶材位於製程腔體上方。靜電夾盤位於製程腔體中,且包含圓狀夾盤部位、第一環狀夾盤部位以及第二環狀夾盤部位。靜電夾盤的第一環狀夾盤部位水平地環繞靜電夾盤的圓狀夾盤部位,且靜電夾盤的第二環狀夾盤部位水平地環繞靜電夾盤的第一環狀夾盤部位。第一射頻源產生器位於製程腔體外,且連接至靜電夾盤的第二環狀夾盤部位。In some embodiments, a semiconductor deposition system includes a process chamber, a target, an electrostatic chuck, and a first RF source generator. The target is located above the process chamber. The electrostatic chuck is located in the process cavity and includes a circular chuck part, a first annular chuck part and a second annular chuck part. The first annular chuck portion of the electrostatic chuck horizontally surrounds the circular chuck portion of the electrostatic chuck, and the second annular chuck portion of the electrostatic chuck horizontally surrounds the first annular chuck portion of the electrostatic chuck . The first RF source generator is located outside the process chamber and is connected to the second annular chuck portion of the electrostatic chuck.

於一些實施方式中,半導體沉積系統的操作方法包括:將晶圓放置於製程腔體中的靜電夾盤上;提供直流電壓至位於製程腔體上方的靶材承載結構;產生電漿於製程腔體中;提供第一射頻偏壓至靜電夾盤的第一夾盤部位;以及提供第二射頻偏壓至靜電夾盤的第二夾盤部位,其中第二夾盤部位水平地環繞第一夾盤部位,且第二射頻偏壓不同於第一射頻偏壓。In some embodiments, a method of operating a semiconductor deposition system includes: placing a wafer on an electrostatic chuck in a process chamber; supplying a DC voltage to a target carrying structure above the process chamber; generating a plasma in the process chamber providing a first RF bias to a first chuck portion of the electrostatic chuck; and providing a second RF bias to a second chuck portion of the electrostatic chuck, wherein the second chuck portion horizontally surrounds the first clamp the disk portion, and the second radio frequency bias is different from the first radio frequency bias.

以下公開提供了用於實現本公開之不同特徵的許多不同的實施例或示例。以下描述元件和配置的特定示例以簡化本公開。當然,這些僅是示例,並不旨在進行限制。例如,在下面的描述中,在第二特徵之上或上方形成第一特徵可以包括第一特徵和第二特徵以直接接觸形成的實施例,並且還可以包括在第一特徵和第二特徵之間形成附加的特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。另外,本公開可以在各個示例中重複參考數字和/或文字。此重複是出於簡單和清楚的目的,並且其本身並不指示所討論的各種實施例和/或配置之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the present disclosure. Specific examples of elements and configurations are described below to simplify the present disclosure. Of course, these are only examples and are not intended to be limiting. For example, in the following description, forming a first feature on or over a second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include an embodiment between the first feature and the second feature An embodiment in which additional features are formed between the first and second features so that the first and second features may not be in direct contact. Additionally, the present disclosure may repeat reference numerals and/or text in various instances. This repetition is for the purpose of simplicity and clarity, and in itself does not indicate a relationship between the various embodiments and/or configurations discussed.

更甚者,空間相對的詞彙(例如,「低於」、「下方」、「之下」、「上方」、「之上」等相關詞彙)於此用以簡單描述如圖所示之元件或特徵與另一元件或特徵的關係。在使用或操作時,除了圖中所繪示的轉向之外,這些空間相對的詞彙涵蓋裝置的不同轉向。再者,這些裝置可旋轉(旋轉90度或其他角度),且在此使用之空間相對的描述語可作對應的解讀。Furthermore, spatially relative terms (eg, "below", "below", "below", "above", "above", etc. related terms) are used here to simply describe the elements shown in the figures or The relationship of a feature to another element or feature. In use or operation, these spatially relative terms encompass different turns of the device in addition to the turns shown in the figures. Furthermore, these devices can be rotated (90 degrees or other angles) and the spatially relative descriptors used herein can be interpreted accordingly.

請參照第1A圖、第1B圖、第1C圖。第1A圖繪示根據一些實施方式之具有靜電夾盤110之沉積系統100的剖視圖。第1B圖繪示根據一些實施方式之靜電夾盤110的上視圖。第1C圖繪示根據一些實施方式之晶圓108的上視圖。於一些實施方式中,沉積系統100為執行物理氣相沉積(physical vapor deposition, PVD)。物理氣相沉積是用於在半導體晶圓之上形成材料層,包括濺鍍的技術。在濺鍍沉積中,電漿101用於激發離子,通常為惰性氣體(例如,氬離子(Ar +)),以促進有力的撞擊予靶材。靶材的原子被激發離子撞擊釋放,且接著凝結在半導體晶圓的暴露表面,以形成目標材料的薄層或膜。一些其他的物理氣相沉積腔室亦可利用激發離子、惰性氣體或金屬離子而使用於蝕刻製程,在半導體晶圓要蝕刻的層上產生撞擊。 Please refer to Figure 1A, Figure 1B, and Figure 1C. 1A illustrates a cross-sectional view of a deposition system 100 having an electrostatic chuck 110 in accordance with some embodiments. FIG. 1B shows a top view of the electrostatic chuck 110 according to some embodiments. FIG. 1C shows a top view of wafer 108 in accordance with some embodiments. In some embodiments, the deposition system 100 performs physical vapor deposition (PVD). Physical vapor deposition is a technique used to form layers of materials, including sputtering, on semiconductor wafers. In sputter deposition, the plasma 101 is used to excite ions, typically an inert gas (eg, argon ions (Ar + )), to promote vigorous impingement on the target. Atoms of the target material are released by the excited ion impact and then condense on the exposed surface of the semiconductor wafer to form a thin layer or film of the target material. Some other PVD chambers can also be used in the etching process using excited ions, noble gases or metal ions to generate impacts on the layers of the semiconductor wafer to be etched.

於第1A圖中,沉積系統100具有側壁103以及位於側壁103中的封鎖擋板102(限制擋板結構)以形成腔室104。晶圓108被靜電夾盤(electrostatic chuck or e-chuck)110支撐及帶入腔室104內之位置。夾具(未圖示)可位於晶圓108之邊緣以幫助固定晶圓108。靜電夾盤110可由一介電性材料製成,比如一陶瓷材料。靜電夾盤110還包括夾盤電極160。夾盤電極160可包含導電的金屬或金屬合金網格,且埋入於靜電夾盤110中由介電性材料製成的結構體中。夾盤電極160可以由多種導體組成,比如非磁性材料,例如鋁、銅、鐵、鉬、鈦、鎢或上述金屬之合金。靜電夾盤110可具有整合於其中的溫度控制和維持系統,以控制晶圓108之溫度。舉例而言,當腔室104被加熱以在其中產生電漿101時,靜電夾盤110可用以冷卻晶圓108。調節晶圓108之溫度而可改善沉積材料層的特性以及藉由促進凝結增加沉積速率。In FIG. 1A , deposition system 100 has sidewalls 103 and blocking baffles 102 (restricting baffle structures) in sidewalls 103 to form chamber 104 . The wafer 108 is supported by an electrostatic chuck or e-chuck 110 and brought into position within the chamber 104 . Clamps (not shown) may be located at the edges of the wafer 108 to help hold the wafer 108 in place. The electrostatic chuck 110 may be made of a dielectric material, such as a ceramic material. The electrostatic chuck 110 also includes a chuck electrode 160 . The chuck electrode 160 may comprise a conductive metal or metal alloy mesh, and is embedded in a structure made of a dielectric material in the electrostatic chuck 110 . The chuck electrode 160 may be composed of various conductors, such as non-magnetic materials such as aluminum, copper, iron, molybdenum, titanium, tungsten, or alloys of the foregoing metals. The electrostatic chuck 110 may have a temperature control and maintenance system integrated therein to control the temperature of the wafer 108 . For example, electrostatic chuck 110 may be used to cool wafer 108 while chamber 104 is heated to generate plasma 101 therein. Adjusting the temperature of the wafer 108 can improve the characteristics of the deposited material layer and increase the deposition rate by promoting condensation.

於一些實施方式中,相對於晶圓108和靜電夾盤110,在腔室104上方有靶材承載結構112支持靶材114。在沉積系統100操作的期間,靶材承載結構112固定靶材114。靶材114是為了要在晶圓108上形成之材料層。靶材114可為一導電材料(例如,銅)、一絕緣材料、或可為與一氣體反應之一先質材料以形成製成沉積材料層之一分子。舉例而言,一金屬氧化物或金屬氮化物可利用不包含氧或氮的金屬靶材114沉積。In some embodiments, a target carrier structure 112 supports the target 114 above the chamber 104 relative to the wafer 108 and electrostatic chuck 110 . During operation of deposition system 100 , target carrier structure 112 holds target 114 . Target 114 is for the layer of material to be formed on wafer 108 . The target 114 may be a conductive material (eg, copper), an insulating material, or may be a precursor material that reacts with a gas to form a molecule that makes the layer of deposited material. For example, a metal oxide or metal nitride can be deposited using metal target 114 that does not contain oxygen or nitrogen.

為了根據需求產生及控制在腔室104中的電漿101以及控制濺鍍及蝕刻或再濺鍍,一些電源供應器(電力源)被提供於沉積系統100中。直流電(DC)電源供應器(直流電電力源)120被連接至靶材承載結構112以提供其直流電。射頻交流電(radiofrequency alternating current, RF)電源供應器(射頻電力源)122被連接至靜電夾盤110。直流電電力源120以及射頻電力源122用以使得沉積系統100可同時執行沈積製程及濺射蝕刻製程。於一些實施方式中,沉積系統100的直流電電力源120用以執行沈積製程,而沉積系統100的射頻電力源122用以執行濺射蝕刻製程。沉積系統100中的電漿密度涉及每單位體積電漿101的電漿粒子數目,其主要由直流電電力源120所控制。沉積系統100的射頻電力源122可用來增強靶材114的材料於晶圓108上的電漿轟擊強度。Several power supplies (power sources) are provided in the deposition system 100 in order to generate and control the plasma 101 in the chamber 104 and to control sputtering and etching or re-sputtering as required. A direct current (DC) power supply (DC power source) 120 is connected to the target carrier structure 112 to provide its direct current. A radio frequency alternating current (RF) power supply (radio frequency power source) 122 is connected to the electrostatic chuck 110 . The DC power source 120 and the RF power source 122 are used to enable the deposition system 100 to perform the deposition process and the sputter etching process at the same time. In some embodiments, the DC power source 120 of the deposition system 100 is used to perform the deposition process, and the RF power source 122 of the deposition system 100 is used to perform the sputter etching process. Plasma density in deposition system 100 relates to the number of plasma particles per unit volume of plasma 101 , which is primarily controlled by DC power source 120 . The RF power source 122 of the deposition system 100 may be used to enhance the intensity of the plasma bombardment of the material of the target 114 on the wafer 108 .

具體而言,靜電夾盤110可作為電容性耦合結構,而靜電夾盤110上方的導電電漿提供互補電極。較高的電漿密度提供用於濺射蝕刻的較多電漿粒子數目。沉積系統100的射頻電力源122的射頻偏壓功率可形成實質上正交於晶圓108之表面的電場,前述電場可使電漿離子加速至晶圓108之表面及/或遠離晶圓108之表面,藉此離子藉由實體地轟擊晶圓108之表面來濺射蝕刻晶圓108。Specifically, the electrostatic chuck 110 can function as a capacitive coupling structure, while the conductive plasma above the electrostatic chuck 110 provides a complementary electrode. A higher plasma density provides a higher number of plasma particles for sputter etching. The RF bias power of the RF power source 122 of the deposition system 100 can create an electric field substantially normal to the surface of the wafer 108 that can accelerate plasma ions to the surface of the wafer 108 and/or away from the surface of the wafer 108. surface, whereby ions sputter etch wafer 108 by physically bombarding the surface of wafer 108 .

在同時沈積/濺射製程中,增加射頻電力源122的射頻偏壓功率可提高水平表面上的濺射蝕刻速率,因而可降低淨沉積速率。於一些實施方式中,沉積系統100中的濺射蝕刻可抑制當沉積溝槽時所可能於溝槽中形成的懸伸結構(overhang),繼而提高後續於填充溝槽時沈積製程的製程容許範圍(process window)。In a simultaneous deposition/sputtering process, increasing the RF bias power of the RF power source 122 can increase the sputter etch rate on horizontal surfaces, thereby reducing the net deposition rate. In some embodiments, the sputter etch in the deposition system 100 can inhibit overhangs that may form in the trenches when depositing the trenches, thereby increasing the process tolerance of the subsequent deposition process when filling the trenches (process window).

因此,沉積系統100的射頻電力源122與直流電電力源120的配合可於晶圓108上達到預設的沈積與濺射(D/S)比。於一些實施方式中,沈積與濺射比可如下所示: D/S=Ds/[Ds−D(S+B)]; 其中D/S為沈積與濺射比,Ds為在施加直流電電力源102的情況120下的沉積速率,且D(S+B)為在施加直流電電力源120以及射頻電力源122兩者的情況下的沉積速率。 Therefore, the cooperation of the RF power source 122 and the DC power source 120 of the deposition system 100 can achieve a predetermined deposition to sputter (D/S) ratio on the wafer 108 . In some embodiments, the deposition to sputtering ratio can be as follows: D/S=Ds/[Ds−D(S+B)]; where D/S is the deposition to sputtering ratio, Ds is the deposition rate under the application of the DC power source 102 120 , and D(S+B) is the case where both the DC power source 120 and the RF power source 122 are applied lower deposition rate.

在沉積系統100中進行沈積製程期間,射頻電力源122與直流電電力源120可以有許多方式變化,以達到預設的沈積與濺射比。例如,可藉由實質上恆定的濺射蝕刻速率增加沉積速率,或實質上恆定的沉積速率並降低濺射蝕刻速率來增加晶圓108上的沈積與濺射比。相對地,於一些實施方式中,可藉由實質上恆定的濺射蝕刻速率並降低沉積速率,或藉由實質上恆定的沉積速率並增加濺射蝕刻速率來降低晶圓108上的沈積與濺射比。於一些實施方式中,可藉由降低射頻電力源122的射頻偏壓能量以降低濺射蝕刻速率,進而沉積速率可被增加,藉此增加降低晶圓108上的沈積與濺射比。相對地,於一些實施方式中,藉由增加射頻電力源122的射頻偏壓能量,以增加濺射蝕刻速率,藉此降低降低晶圓108上的沈積與濺射比。During the deposition process in the deposition system 100, the RF power source 122 and the DC power source 120 can be varied in many ways to achieve a predetermined deposition to sputter ratio. For example, the deposition to sputter ratio on wafer 108 may be increased by increasing the deposition rate with a substantially constant sputter etch rate, or by substantially constant deposition rate and decreasing the sputter etch rate. In contrast, in some embodiments, deposition and sputtering on wafer 108 may be reduced by substantially constant sputter etch rate and reduced deposition rate, or by substantially constant deposition rate and increased sputter etch rate shot ratio. In some embodiments, the sputter etch rate can be reduced by reducing the RF bias energy of the RF power source 122 , and thus the deposition rate can be increased, thereby increasing the deposition to sputter ratio on the lower wafer 108 . In contrast, in some embodiments, by increasing the RF bias energy of the RF power source 122 , the sputter etch rate is increased, thereby reducing the deposition to sputter ratio on the wafer 108 .

於一些實施方式中,在沉積系統100中進行沈積製程期間,射頻電力源122的頻率範圍可介於約10 MHz與約16 MHz之間,且其射頻偏壓功率可為約5000 W,但本揭露不以此為限。In some embodiments, during the deposition process in deposition system 100, the frequency range of RF power source 122 may be between about 10 MHz and about 16 MHz, and its RF bias power may be about 5000 W, but the present The disclosure is not limited to this.

於一些實施方式中,沉積系統100中的電漿密度分布不均勻。舉例而言,在腔室104中央區域具有較高的電漿密度,而在腔室104中的外圍區域具有較低的電漿密度。因此,在沉積系統100中進行沈積製程期間,在腔室104中不同的電漿密度可能會導致於晶圓108上的不同區域具有不同的沈積與濺射比。In some embodiments, the plasma density distribution in the deposition system 100 is not uniform. For example, the central region of the chamber 104 has a higher plasma density, while the peripheral regions in the chamber 104 have a lower plasma density. Thus, during the deposition process in deposition system 100, different plasma densities in chamber 104 may result in different deposition-to-sputter ratios in different regions on wafer 108.

舉例而言,如第1C圖所示,晶圓108可區分為第一區域108a、第二區域108b以及第三區域108c。第一區域108a為一圓型區域。第二區域108b為環繞第一區域108a的環狀區域。第三區域108c為環繞第二區域108b的環狀區域。然而,於晶圓108上不同區域的區分不以前述為限而僅為示例。於一些實施方式中,在沉積系統100中的電漿密度分布不均勻的情況下,晶圓108的第一區域108a、第二區域108b以及第三區域108c可能會具有不同的沈積與濺射比。舉例而言,第三區域108c的沈積與濺射比可能會小於第一區域108a以及第二區域108b及/或第二區域108b的沈積與濺射比可能會小於第一區域108a。For example, as shown in FIG. 1C, the wafer 108 can be divided into a first region 108a, a second region 108b and a third region 108c. The first area 108a is a circular area. The second region 108b is an annular region surrounding the first region 108a. The third area 108c is an annular area surrounding the second area 108b. However, the distinction of different regions on the wafer 108 is not limited to the foregoing but is merely an example. In some embodiments, the first region 108a , the second region 108b , and the third region 108c of the wafer 108 may have different deposition to sputter ratios when the plasma density distribution in the deposition system 100 is not uniform. . For example, the deposition to sputter ratio of the third region 108c may be smaller than that of the first region 108a and the deposition to sputter ratio of the second region 108b and/or the second region 108b may be smaller than that of the first region 108a.

於本實施方式中,射頻電力源122包含多個射頻源產生器。射頻電力源122的多個射頻源產生器(例如,第1A圖所示之第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c可使得,在沉積系統100中的電漿密度分布不均勻的情況下,晶圓108上的不同區域(例如,第1C圖所示之第一區域108a、第二區域108b、第三區域108c)可達到實質上相同的沈積與濺射比。於一些實施方式中,射頻電力源122的多個射頻源產生器可使得,在沉積系統100中的電漿密度分布不均勻的情況下,晶圓108上的不同區域可達到設計上不同的沈積與濺射比。In this embodiment, the RF power source 122 includes a plurality of RF source generators. The multiple RF power generators of the RF power source 122 (eg, the first RF power generator 122a, the second RF power generator 122b, the third RF power generator 122c shown in FIG. Different regions on the wafer 108 (eg, the first region 108a, the second region 108b, the third region 108c shown in FIG. 1C) can achieve substantially the same deposition in the case of non-uniform plasma density distribution in In some embodiments, the multiple RF source generators of the RF power source 122 may enable different areas on the wafer 108 to reach different areas on the wafer 108 in the event of a non-uniform plasma density distribution in the deposition system 100 Design different deposition to sputter ratios.

如第1A圖所示,射頻電力源122包含第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c、第一阻抗匹配電路124a、第二阻抗匹配電路124b以及第三阻抗匹配電路124c。如第1A、1B圖所示,靜電夾盤(electrostatic chuck or e-chuck)110包含第一夾盤部位110a、第二夾盤部位110b以及第三夾盤部位110c。第一夾盤部位110a為一圓型部位。第二夾盤部位110b為環繞第一夾盤部位110a的環狀部位。第三夾盤部位110c為環繞第二夾盤部位110b的環狀部位。然而,於一些實施方式中,靜電夾盤110上不同部位的區分不以前述為限而僅為示例。如第1A圖所示,靜電夾盤110的夾盤電極160包含第一夾盤電極部160a、第二夾盤電極部160b、第三夾盤電極部160c。第一夾盤電極部160a位於第一夾盤部位110a中。第二夾盤電極部160b位於第二夾盤部位110b中。第三夾盤電極部160c位於第三夾盤部位110c中。第一夾盤電極部160a、第二夾盤電極部160b、第三夾盤電極部160c彼此相互電性絕緣。As shown in FIG. 1A, the RF power source 122 includes a first RF power generator 122a, a second RF power generator 122b, a third RF power generator 122c, a first impedance matching circuit 124a, a second impedance matching circuit 124b, and The third impedance matching circuit 124c. As shown in FIGS. 1A and 1B , an electrostatic chuck or e-chuck 110 includes a first chuck portion 110a, a second chuck portion 110b, and a third chuck portion 110c. The first chuck portion 110a is a circular portion. The second chuck portion 110b is an annular portion surrounding the first chuck portion 110a. The third chuck portion 110c is an annular portion surrounding the second chuck portion 110b. However, in some embodiments, the distinction between different parts on the electrostatic chuck 110 is not limited to the foregoing but is only an example. As shown in FIG. 1A, the chuck electrode 160 of the electrostatic chuck 110 includes a first chuck electrode portion 160a, a second chuck electrode portion 160b, and a third chuck electrode portion 160c. The first chuck electrode portion 160a is located in the first chuck portion 110a. The second chuck electrode portion 160b is located in the second chuck portion 110b. The third chuck electrode portion 160c is located in the third chuck portion 110c. The first chuck electrode portion 160a, the second chuck electrode portion 160b, and the third chuck electrode portion 160c are electrically insulated from each other.

於第1A圖中,第一射頻源產生器122a可以經由第一阻抗匹配電路124a,耦接至靜電夾盤110的第一夾盤部位110a中的第一夾盤電極部160a。第二射頻源產生器122b可以經由第二阻抗匹配電路124b,耦接至靜電夾盤110的第二夾盤部位110b中的第二夾盤電極部160b。第三射頻源產生器122c可以經由第三阻抗匹配電路124c,耦接至靜電夾盤110的第三夾盤部位110c中的第三夾盤電極部160c。In FIG. 1A , the first RF source generator 122a may be coupled to the first chuck electrode portion 160a in the first chuck portion 110a of the electrostatic chuck 110 via the first impedance matching circuit 124a. The second RF source generator 122b may be coupled to the second chuck electrode portion 160b in the second chuck portion 110b of the electrostatic chuck 110 via the second impedance matching circuit 124b. The third RF source generator 122c may be coupled to the third chuck electrode portion 160c in the third chuck portion 110c of the electrostatic chuck 110 via the third impedance matching circuit 124c.

於一些實施方式中,射頻電力源122的第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c中的至少兩者可產生不同的射頻偏壓功率。因此,產生不同之射頻偏壓功率的第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c會於晶圓108的第一區域108a、第二區域108b、第三區域108c之表面上產生不同的電場。前述電場可使得電漿離子加速至晶圓108之表面速度不同及/或遠離晶圓108之表面的速度不同,藉此電漿離子轟擊晶圓108上之不同區域而濺射蝕刻晶圓108上之不同區域的強度也會隨之不同。在沉積系統100中的電漿密度分布不均勻的情況下,於晶圓108之表面上的第一區域108a、第二區域108b、第三區域108c產生不同的電場,可於晶圓108上的第一區域108a、第二區域108b、第三區域108c達到實質上相同的沈積與濺射比。In some embodiments, at least two of the first RF source generator 122a, the second RF source generator 122b, and the third RF source generator 122c of the RF power source 122 can generate different RF bias powers. Therefore, the first RF source generator 122 a , the second RF source generator 122 b , and the third RF source generator 122 c that generate different RF bias powers are located in the first region 108 a , the second region 108 b , the third RF source generator 122 c of the wafer 108 . Different electric fields are generated on the surfaces of the three regions 108c. The aforementioned electric field can cause the plasma ions to accelerate to different speeds on the surface of the wafer 108 and/or at different speeds away from the surface of the wafer 108 , whereby the plasma ions bombard different areas on the wafer 108 to sputter etch the wafer 108 . The intensity of the different regions will also be different. When the plasma density distribution in the deposition system 100 is not uniform, different electric fields are generated in the first region 108 a , the second region 108 b and the third region 108 c on the surface of the wafer 108 . The first region 108a, the second region 108b, and the third region 108c achieve substantially the same deposition to sputtering ratio.

舉例而言,第三射頻源產生器122a的偏壓功率可大於第一射頻源產生器122a的偏壓功率及/或第二射頻源產生器122b的偏壓功率。第二射頻源產生器122b的偏壓功率可大於第一射頻源產生器122a的偏壓功率。因此,於晶圓108之表面上的第三區域108c的電場可大於第一區域108a的電場及/或第二區域108b的電場。於晶圓108之表面上的第二區域108b的電場可大於第一區域108a的電場。前述電場可使得位於腔室104中外圍區域的電漿離子加速至晶圓108之表面及/或遠離晶圓108表面的速度大於位於腔室104中央區域的電漿離子加速至晶圓108之表面及/或遠離晶圓108之表面的速度。藉此,位於腔室104中外圍區域的電漿離子轟擊晶圓108而濺射蝕刻晶圓108的強度會大於位於腔室104中央區域的電漿離子轟擊晶圓108而濺射蝕刻晶圓108的強度。在腔室104中央區域比外圍區域具有較高的電漿密度的情況下,晶圓108上如第1C圖所示之第一區域108a、第二區域108b、第三區域108c可達到實質上相同的沈積與濺射比。For example, the bias power of the third RF source generator 122a may be greater than the bias power of the first RF source generator 122a and/or the bias power of the second RF source generator 122b. The bias power of the second RF source generator 122b may be greater than the bias power of the first RF source generator 122a. Therefore, the electric field of the third region 108c on the surface of the wafer 108 may be greater than the electric field of the first region 108a and/or the electric field of the second region 108b. The electric field of the second region 108b on the surface of the wafer 108 may be greater than the electric field of the first region 108a. The aforementioned electric field may cause plasma ions located in the peripheral regions of the chamber 104 to accelerate to and/or away from the surface of the wafer 108 faster than plasma ions located in the central region of the chamber 104 to the surface of the wafer 108 and/or velocity away from the surface of wafer 108 . Thus, the plasma ions located in the outer region of the chamber 104 bombard the wafer 108 with the intensity of the sputter etched wafer 108 than the plasma ions located in the central region of the chamber 104 to bombard the wafer 108 and sputter etch the wafer 108 Strength of. In the case where the central area of the chamber 104 has a higher plasma density than the peripheral area, the first area 108a, the second area 108b, and the third area 108c on the wafer 108 as shown in FIG. 1C can be substantially the same deposition to sputtering ratio.

於一些實施方式中,當第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c的射頻偏壓功率被增加或降低時,第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c的射頻偏壓功率位準之約10%的變化可使得於晶圓108上之第一區域108a、第二區域108b、第三區域108c的濺射蝕刻速率改變約10%。於一些實施方式中,第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c的射頻偏壓功率位準之約10%變化可使得於晶圓108上之第一區域108a、第二區域108b、第三區域108c的濺射蝕刻速率改變小於約5%。In some embodiments, when the RF bias power of the first RF source generator 122a, the second RF source generator 122b, and the third RF source generator 122c is increased or decreased, the first RF source generator 122a, the third A change of about 10% in the RF bias power levels of the second RF source generator 122b and the third RF source generator 122c can cause the first area 108a , the second area 108b , and the third area 108c on the wafer 108 The sputter etch rate was changed by about 10%. In some embodiments, about a 10% variation in the RF bias power levels of the first RF source generator 122a, the second RF source generator 122b, and the third RF source generator 122c can cause the first RF source generator 122a on the wafer 108 to The sputter etch rate of the first region 108a, the second region 108b, and the third region 108c varies by less than about 5%.

於一些實施方式中,產生不同之射頻偏壓功率的第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c,於晶圓108之表面上的第一區域108a、第二區域108b、第三區域108c上,可產生不同的電場,進而於晶圓108之表面上的第一區域108a、第二區域108b、第三區域108c中達到設計上不同的沈積與濺射比。於一些實施方式中,第三射頻源產生器122a的偏壓功率可小於第一射頻源產生器122a的偏壓功率及/或第二射頻源產生器122b的偏壓功率。於一些實施方式中,第二射頻源產生器122b的偏壓功率可小於第一射頻源產生器122a的偏壓功率。In some embodiments, the first RF source generator 122a, the second RF source generator 122b, and the third RF source generator 122c, which generate different RF bias powers, are located in the first region 108a on the surface of the wafer 108 , on the second region 108b and the third region 108c, different electric fields can be generated, thereby achieving different deposition and sputtering designs in the first region 108a, the second region 108b, and the third region 108c on the surface of the wafer 108 shot ratio. In some embodiments, the bias power of the third RF source generator 122a may be smaller than the bias power of the first RF source generator 122a and/or the bias power of the second RF source generator 122b. In some embodiments, the bias power of the second RF source generator 122b may be smaller than the bias power of the first RF source generator 122a.

於一些實施方式中,靜電夾盤110的不同部位可具有不同的寬度。如第1A圖所示,靜電夾盤110的第一夾盤部位110a的寬度大於第二夾盤部位110b的寬度以及第三夾盤部位110c的寬度。靜電夾盤110的第二夾盤部位110b的寬度大於第三夾盤部位110c的寬度,但本揭露中夾盤部位的寬度不以此為限。於一些實施方式中,不同部位可具有實質上相同的寬度。In some embodiments, different parts of the electrostatic chuck 110 may have different widths. As shown in FIG. 1A , the width of the first chuck portion 110a of the electrostatic chuck 110 is larger than the width of the second chuck portion 110b and the width of the third chuck portion 110c. The width of the second chuck portion 110b of the electrostatic chuck 110 is greater than the width of the third chuck portion 110c, but the width of the chuck portion in the present disclosure is not limited to this. In some embodiments, the different portions may have substantially the same width.

於一些實施方式中,除了直流電電源供應器120之外,射頻交流電電源供應器122同樣被提供至靶材承載結構112。In some embodiments, in addition to the DC power supply 120 , a radio frequency AC power supply 122 is also provided to the target carrier structure 112 .

於一些實施方式中在沉積系統100中進行沈積製程期間,腔室104中保持低程度的壓力。舉例來說,壓力可為約10mTorr至約150mTorr。氣體和壓力系統142為沉積系統100的一部分。氣體和壓力系統142包括閥門、導管、以及控制腔室104內之壓力的壓力和流體感應器,以引進反應氣體和移除廢氣。前述氣體和壓力系統142連接控制系統140。During the deposition process in deposition system 100 in some embodiments, a low level of pressure is maintained in chamber 104 . For example, the pressure may be from about 10 mTorr to about 150 mTorr. Gas and pressure system 142 is part of deposition system 100 . Gas and pressure system 142 includes valves, conduits, and pressure and fluid sensors that control the pressure within chamber 104 to introduce reactive gases and remove waste gases. The aforementioned gas and pressure system 142 is connected to the control system 140 .

於一些實施方式中,直流電電源供應器120及/或射頻交流電電源供應器122所提供的電力被控制系統140所控制,前述控制系統140包括一或多個處理器與記憶體連接。記憶體可包括被預先編程以在裝置製造中使用的程序方法。記憶體可包含描述和實施此方法的指令。處理器連接電源供應器以及沉積系統100內的複數個感應器,感應器可包括溫度感應器、壓力感應器、位置感應器、場感應器、以及其他等等。In some embodiments, the power provided by the DC power supply 120 and/or the RF AC power supply 122 is controlled by a control system 140 that includes one or more processors connected to memory. The memory may include programming methods that are pre-programmed for use in device manufacturing. The memory may contain instructions that describe and implement this method. The processor is connected to a power supply and a plurality of sensors within the deposition system 100, which may include temperature sensors, pressure sensors, position sensors, field sensors, and the like.

於第1A圖中,沉積系統100更包括一些磁鐵。磁鐵可包括橫向磁鐵130和132,橫向磁鐵130和132位於沉積系統100中封鎖擋板102之外,並可為線圈磁鐵(coil magnets)。射頻交流電(radiofrequency alternating current, RF)電源供應器(射頻電力源)126被連接至橫向磁鐵130和132。此外,磁控管134被提供在靶材承載結構112之上,此磁控管134提供腔室104磁場,以促進電漿101的控制和使用。In Figure 1A, the deposition system 100 further includes some magnets. The magnets may include transverse magnets 130 and 132 located outside the blocking baffle 102 in the deposition system 100 and may be coil magnets. A radio frequency alternating current (RF) power supply (radio frequency power source) 126 is connected to the transverse magnets 130 and 132 . In addition, a magnetron 134 is provided over the target carrying structure 112 , this magnetron 134 provides the chamber 104 magnetic field to facilitate control and use of the plasma 101 .

請參照第2圖。第2圖繪示根據一些實施方式之沉積系統200的剖視圖。如第2圖所示,沉積系統200與第1A圖至第1C圖所示之沉積系統100實質上相同。第2圖所示之沉積系統200與第1A圖至第1C圖所示之沉積系統100的差異在於,沉積系統200的靜電夾盤210中第一夾盤部位210a、第二夾盤部位210b以及第三夾盤部位210c之間寬度的相對關係,不同於沉積系統100的靜電夾盤110中第一夾盤部位110a、第二夾盤部位110b以及第三夾盤部位110c之間寬度的相對關係。於第2圖中,沉積系統200的靜電夾盤210中的第一夾盤部位210a的寬度、第二夾盤部位210b的寬度以及第三夾盤部位210c的寬度實質上相同。Please refer to Figure 2. FIG. 2 illustrates a cross-sectional view of a deposition system 200 according to some embodiments. As shown in FIG. 2, the deposition system 200 is substantially the same as the deposition system 100 shown in FIGS. 1A-1C. The difference between the deposition system 200 shown in FIG. 2 and the deposition system 100 shown in FIGS. 1A to 1C is that the electrostatic chuck 210 of the deposition system 200 has a first chuck portion 210 a , a second chuck portion 210 b and The relative relationship between the widths of the third chuck portion 210c is different from the relative relationship between the widths of the first chuck portion 110a, the second chuck portion 110b and the third chuck portion 110c in the electrostatic chuck 110 of the deposition system 100 . In FIG. 2, the width of the first chuck portion 210a, the width of the second chuck portion 210b, and the width of the third chuck portion 210c in the electrostatic chuck 210 of the deposition system 200 are substantially the same.

請參照第3圖。第3圖繪示根據一些實施方式之沉積系統300的剖視圖。如第3圖所示,沉積系統300與第1A圖至第1C圖所示之沉積系統100實質上相同。第3圖所示之沉積系統300與第1A圖至第1C圖所示之沉積系統100的差異在於,沉積系統300的靜電夾盤310中第一夾盤部位310a、第二夾盤部位310b以及第三夾盤部位310c之間寬度的相對關係,不同於沉積系統100的靜電夾盤110中第一夾盤部位110a、第二夾盤部位110b以及第三夾盤部位110c之間寬度的相對關係。於第2圖中,沉積系統300的靜電夾盤310中的第三夾盤部位310c的寬度大於第一夾盤部位310a的寬度及/或第二夾盤部位310b的寬度。第二夾盤部位310b的寬度大於第一夾盤部位210a的寬度。Please refer to Figure 3. 3 illustrates a cross-sectional view of a deposition system 300 according to some embodiments. As shown in FIG. 3, the deposition system 300 is substantially the same as the deposition system 100 shown in FIGS. 1A-1C. The difference between the deposition system 300 shown in FIG. 3 and the deposition system 100 shown in FIGS. 1A to 1C is that the electrostatic chuck 310 of the deposition system 300 has a first chuck portion 310 a , a second chuck portion 310 b and The relative relationship between the widths of the third chuck portion 310c is different from the relative relationship between the widths of the first chuck portion 110a, the second chuck portion 110b and the third chuck portion 110c in the electrostatic chuck 110 of the deposition system 100 . In FIG. 2, the width of the third chuck portion 310c in the electrostatic chuck 310 of the deposition system 300 is larger than the width of the first chuck portion 310a and/or the width of the second chuck portion 310b. The width of the second chuck portion 310b is greater than the width of the first chuck portion 210a.

請參照第4圖並配合參照第1A圖至第1C圖。第4圖繪示根據一些實施方式之沉積系統100的操作方法M的流程圖。儘管本文將所揭示沉積系統100的操作方法M繪示及描述為一系列步驟或事件,但應瞭解到,並不以限制性意義解讀此類步驟或事件之所繪示次序。舉例而言,除本文繪示及/或描述之次序外,一些步驟可以不同次序發生及/或與其他步驟或事件同時發生。另外,實施本文描述之一或多個態樣或實施方式可並不需要全部繪示操作。進一步地,可在一或多個獨立步驟及/或階段中實施本文所描繪之步驟中的一或更多者。具體來說,沉積系統100的操作方法M包含步驟S1001~S1005。Please refer to Figure 4 in conjunction with Figures 1A to 1C. FIG. 4 illustrates a flowchart of a method M of operation of the deposition system 100 according to some embodiments. Although the method M of operation of the disclosed deposition system 100 is illustrated and described herein as a series of steps or events, it should be understood that the depicted order of such steps or events is not to be construed in a limiting sense. For example, some steps may occur in different orders and/or concurrently with other steps or events than in the order shown and/or described herein. Additionally, not all illustrated operations may be required to implement one or more aspects or implementations described herein. Further, one or more of the steps described herein may be implemented in one or more separate steps and/or stages. Specifically, the operation method M of the deposition system 100 includes steps S1001 to S1005.

於步驟1001中,將晶圓108放置於製程腔體104中的靜電夾盤110上。其中,靜電夾盤110包含第一夾盤部位110a、第二夾盤部位110b以及第三夾盤部位110c。第一夾盤部位110a為一圓型部位。第二夾盤部位110b為環繞第一夾盤部位110a的環狀部位。第三夾盤部位110c為環繞第二夾盤部位110b的環狀部位。In step 1001 , the wafer 108 is placed on the electrostatic chuck 110 in the process chamber 104 . The electrostatic chuck 110 includes a first chuck portion 110a, a second chuck portion 110b and a third chuck portion 110c. The first chuck portion 110a is a circular portion. The second chuck portion 110b is an annular portion surrounding the first chuck portion 110a. The third chuck portion 110c is an annular portion surrounding the second chuck portion 110b.

於步驟1002中,電漿101產生於製程腔體104中。於一些實施方式中,電漿101係不均勻地分布於製程腔體104中。舉例而言,在腔室104中央區域具有較高的電漿密度,而在腔室104中的外圍區域具有較低的電漿密度。於一些實施方式中,電漿101係均勻地分布於製程腔體104中。舉例而言,在腔室104中央區域的電漿密度實質上相同於而在腔室104中的外圍區域的電漿密度。In step 1002 , plasma 101 is generated in process chamber 104 . In some embodiments, the plasma 101 is unevenly distributed in the process chamber 104 . For example, the central region of the chamber 104 has a higher plasma density, while the peripheral regions in the chamber 104 have a lower plasma density. In some embodiments, the plasma 101 is uniformly distributed in the process chamber 104 . For example, the plasma density in the central region of the chamber 104 is substantially the same as the plasma density in the peripheral regions of the chamber 104 .

於步驟1003中,透過直流電電力源120提供直流電壓至位於製程腔體104上方的靶材承載結構112以於製程腔體104中進行沈積製程。In step 1003 , a DC voltage is provided through the DC power source 120 to the target carrier structure 112 located above the process chamber 104 to perform a deposition process in the process chamber 104 .

於步驟1004中,透過第一射頻源產生器122a提供第一射頻偏壓至靜電夾盤110的第一夾盤部位110a,透過第二射頻源產生器122b提供第二射頻偏壓至靜電夾盤110的第一夾盤部位110b,且透過第三射頻源產生器122c提供第三射頻偏壓至靜電夾盤110的第一夾盤部位110c。其中,第一射頻偏壓、第二射頻偏壓以及第三射頻偏壓中至少兩者的偏壓值不同。於一些實施方式中,第一射頻偏壓、第二射頻偏壓以及第三射頻偏壓彼此具有相互不同的偏壓值。In step 1004, a first RF bias is provided to the first chuck portion 110a of the electrostatic chuck 110 through the first RF source generator 122a, and a second RF bias is provided to the electrostatic chuck through the second RF source generator 122b The first chuck portion 110b of the electrostatic chuck 110 is provided with a third RF bias voltage to the first chuck portion 110c of the electrostatic chuck 110 through the third RF source generator 122c. The bias values of at least two of the first radio frequency bias voltage, the second radio frequency bias voltage and the third radio frequency bias voltage are different. In some embodiments, the first RF bias, the second RF bias, and the third RF bias have different bias values from each other.

具體而言,直流電電力源120、第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c用以使得沉積系統100可同時執行沈積製程及濺射蝕刻製程。於一些實施方式中,沉積系統100的直流電電力源120用以執行沈積製程,而沉積系統100的射頻電力源122用以執行濺射蝕刻製程。產生不同之射頻偏壓功率的第一射頻源產生器122a、第二射頻源產生器122b、第三射頻源產生器122c會於晶圓108上對應之第一區域108a、第二區域108b以及第三區域108c的表面上產生不同的電場。不同的電場可使得半導體沉積系統100中的電漿離子加速至晶圓108之第一區域108a、第二區域108b以及第三區域108c的速度不同及/或遠離晶圓108之第一區域108a、第二區域108b以及第三區域108c的速度不同,藉此電漿離子濺射蝕刻晶圓108上之第一區域108a、第二區域108b以及第三區域108c的強度也會隨之不同。因此,在沉積系統100中的電漿密度分布不均勻的情況下,於晶圓108之表面上之第一區域108a、第二區域108b以及第三區域108c產生不同的電場,而可於晶圓108上之第一區域108a、第二區域108b達到實質上相同的沈積與濺射比。Specifically, the DC power source 120, the first RF source generator 122a, the second RF source generator 122b, and the third RF source generator 122c are used to enable the deposition system 100 to simultaneously perform the deposition process and the sputter etching process. In some embodiments, the DC power source 120 of the deposition system 100 is used to perform the deposition process, and the RF power source 122 of the deposition system 100 is used to perform the sputter etching process. The first RF source generator 122 a , the second RF source generator 122 b , and the third RF source generator 122 c that generate different RF bias powers correspond to the first area 108 a , the second area 108 b and the first area 108 b on the wafer 108 . Different electric fields are generated on the surfaces of the three regions 108c. The different electric fields can cause the plasma ions in the semiconductor deposition system 100 to be accelerated to the first region 108a, the second region 108b and the third region 108c of the wafer 108 at different speeds and/or away from the first region 108a, The speed of the second region 108b and the third region 108c is different, whereby the intensity of the first region 108a, the second region 108b and the third region 108c on the wafer 108 by plasma ion sputter etching will also be different accordingly. Therefore, when the plasma density distribution in the deposition system 100 is not uniform, the first region 108a , the second region 108b and the third region 108c on the surface of the wafer 108 generate different electric fields, which may The first region 108a and the second region 108b on 108 achieve substantially the same deposition to sputtering ratio.

根據前面提到的實施方式,可看出本揭示案在製造積體電路結構中提供優點。然而,應理解,其他實施方式可提供額外的優點,且並非所有優點必須在本文中予以揭示。一個優點在於,半導體沉積系統的射頻電力源包含多個射頻源產生器。多個射頻源產生器分別連接至靜電夾盤上的不同區域。不同的射頻電力源的射頻源產生器可產生不同的射頻偏壓功率。因此,產生不同之射頻偏壓功率的多個射頻源產生器會於晶圓上的不同區域之表面上產生不同的電場。前述電場可使得半導體沉積系統中的電漿離子加速至晶圓之表面的速度不同及/或遠離晶圓之表面的速度不同,藉此電漿離子濺射蝕刻晶圓上之不同區域的強度也會隨之不同。在沉積系統中的電漿密度分布不均勻的情況下,於晶圓之表面上不同的區域產生不同的電場,而可於晶圓上的不同區域達到實質上相同的沈積與濺射比。From the aforementioned embodiments, it can be seen that the present disclosure provides advantages in the fabrication of integrated circuit structures. It should be understood, however, that other embodiments may provide additional advantages, and not all advantages are necessarily disclosed herein. One advantage is that the radio frequency power source of the semiconductor deposition system includes multiple radio frequency source generators. Multiple RF source generators are connected to different areas on the electrostatic chuck. The RF power generators of different RF power sources can generate different RF bias powers. Therefore, multiple RF source generators producing different RF bias powers will generate different electric fields on the surface of different regions on the wafer. The aforementioned electric fields can cause the plasma ions in the semiconductor deposition system to accelerate to the surface of the wafer and/or away from the surface of the wafer at different speeds, whereby the intensity of the plasma ions sputter etch different regions on the wafer. will be different. In the case of non-uniform plasma density distribution in the deposition system, different electric fields are generated in different regions on the surface of the wafer, and substantially the same deposition to sputtering ratio can be achieved in different regions on the wafer.

於一些實施方式中,半導體沉積系統包括製程腔體、靶材、靜電夾盤、第一射頻源產生器以及第二射頻源產生器。靶材位於製程腔體上方。靜電夾盤位於製程腔體中,位於該靶材下方,且包含第一夾盤部位以及環繞第一夾盤部位的第二夾盤部位。第一射頻源產生器位於製程腔體外,且連接至靜電夾盤的第一夾盤部位。第二射頻源產生器位於製程腔體外,且連接至靜電夾盤的第二夾盤部位。In some embodiments, a semiconductor deposition system includes a process chamber, a target, an electrostatic chuck, a first RF source generator, and a second RF source generator. The target is located above the process chamber. The electrostatic chuck is located in the process chamber below the target, and includes a first chuck portion and a second chuck portion surrounding the first chuck portion. The first RF source generator is located outside the process chamber and is connected to the first chuck portion of the electrostatic chuck. The second RF source generator is located outside the process chamber and connected to the second chuck portion of the electrostatic chuck.

於一些實施方式中,半導體沉積系統包括製程腔體、靶材、靜電夾盤以及第一射頻源產生器。靜電夾盤位於製程腔體中,且包含圓狀夾盤部位、第一環狀夾盤部位以及第二環狀夾盤部位。靜電夾盤的第一環狀夾盤部位環繞靜電夾盤的圓狀夾盤部位,且靜電夾盤的第二環狀夾盤部位環繞靜電夾盤的第一環狀夾盤部位。第一射頻源產生器位於製程腔體外,且連接至靜電夾盤的第二環狀夾盤部位。In some embodiments, a semiconductor deposition system includes a process chamber, a target, an electrostatic chuck, and a first RF source generator. The electrostatic chuck is located in the process cavity and includes a circular chuck part, a first annular chuck part and a second annular chuck part. The first annular chuck portion of the electrostatic chuck surrounds the circular chuck portion of the electrostatic chuck, and the second annular chuck portion of the electrostatic chuck surrounds the first annular chuck portion of the electrostatic chuck. The first RF source generator is located outside the process chamber and is connected to the second annular chuck portion of the electrostatic chuck.

於一些實施方式中,半導體系統的操作方法包括:將晶圓放置於製程腔體中的靜電夾盤上;產生電漿於製程腔體中;提供直流電壓至位於製程腔體上方的靶材承載結構;提供第一射頻偏壓至靜電夾盤的第一夾盤部位;以及提供第二射頻偏壓至靜電夾盤的第二夾盤部位,其中第二夾盤部位水平地環繞第一夾盤部位,且第二射頻偏壓不同於第一射頻偏壓。In some embodiments, a method of operating a semiconductor system includes: placing a wafer on an electrostatic chuck in a process chamber; generating a plasma in the process chamber; providing a DC voltage to a target carrier above the process chamber structure; providing a first RF bias to a first chuck portion of the electrostatic chuck; and providing a second RF bias to a second chuck portion of the electrostatic chuck, wherein the second chuck portion horizontally surrounds the first chuck position, and the second radio frequency bias is different from the first radio frequency bias.

前述內容概述了幾個實施例的特徵,使得本領域具普通知識者可以更好地理解本公開的各方面。本領域具普通知識者應該理解,他們可以容易地將本公開作為設計或修改其他過程和結構的基礎,以實現與本文介紹的實施例相同的目的和/或實現相同的益處。本領域具普通知識者還應該認識到,這樣的等效構造不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,它們可以進行各種改變、替換和變更。The foregoing has outlined features of several embodiments in order that those of ordinary skill in the art may better understand various aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same benefits of the embodiments described herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they can make various changes, substitutions and alterations without departing from the spirit and scope of the present disclosure.

100:沉積系統                  101:電漿                      102:封鎖擋板                  103:側壁                      104:腔室                      108:晶圓                      108a:第一區域                  108b:第二區域                  108c:第三區域                  110:靜電夾盤                  110a:第一夾盤部位              110b:第二夾盤部位              110c:第三夾盤部位              112:靶材承載結構              114:靶材                      120:直流電電力源              122:射頻電力源                122a:第一射頻源產生器         122b:第二射頻源產生器         122c:第三射頻源產生器         124a:第一阻抗匹配電路         124b:第二阻抗匹配電路         124c:第三阻抗匹配電路         126:射頻交流電電源供應器     130:橫向磁鐵                  132:橫向磁鐵                  134:磁控管                    140:控制系統                  142:氣體和壓力系統           160:夾盤電極                  160a:第一夾盤電極部           160a:第二夾盤電極部           160b:第三夾盤電極部           160c:氣體和壓力系統           200:沉積系統                  210a:第一夾盤部位              210b:第二夾盤部位              210c:第三夾盤部位              300:沉積系統                  310a:第一夾盤部位              310b:第二夾盤部位              310c:第三夾盤部位              M:方法                      S1001:步驟                       S1002:步驟                       S1003:步驟                       S1004:步驟                       100: Sedimentation system 101: Plasma 102: Blocking the baffle 103: Sidewalls 104: Chamber 108: Wafer 108a: The first area 108b: The second area 108c: The third area 110: Electrostatic chuck 110a: The first chuck part 110b: The second chuck part 110c: The third chuck part 112: Target bearing structure 114: target material 120: DC power source 122: RF power source 122a: The first radio frequency source generator 122b: Second RF source generator 122c: The third RF source generator 124a: The first impedance matching circuit 124b: The second impedance matching circuit 124c: The third impedance matching circuit 126: RF AC power supply 130: Transverse magnet 132: Transverse magnet 134: Magnetron 140: Control system 142: Gas and Pressure Systems 160: Chuck Electrode 160a: The first chuck electrode part 160a: The second chuck electrode part 160b: The third chuck electrode part 160c: Gas and Pressure Systems 200: Sedimentation system 210a: The first chuck part 210b: The second chuck part 210c: The third chuck part 300: Sedimentation system 310a: The first chuck part 310b: The second chuck part 310c: The third chuck part M: method S1001: Steps S1002: Steps S1003: Steps S1004: Steps

當結合附圖閱讀時,根據以下的詳細描述可以最好地理解本公開的各方面。應理解,根據行業中的標準實踐,各種特徵未按比例繪製。實際上,為了討論的清楚,各種特徵的尺寸可以任意地增加或減小。 第1A圖繪示根據一些實施方式之具有靜電夾盤之沉積系統的剖視圖。 第1B圖繪示根據一些實施方式之靜電夾盤的上視圖。 第1C圖繪示根據一些實施方式之晶圓的上視圖。 第2圖繪示根據一些實施方式之沉積系統的剖視圖。 第3圖繪示根據一些實施方式之沉積系統的剖視圖。 第4圖繪示根據一些實施方式之沉積系統的操作方法的流程圖。 Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. It is understood that in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1A shows a cross-sectional view of a deposition system with an electrostatic chuck in accordance with some embodiments. FIG. 1B shows a top view of an electrostatic chuck according to some embodiments. FIG. 1C shows a top view of a wafer according to some embodiments. Figure 2 illustrates a cross-sectional view of a deposition system according to some embodiments. Figure 3 illustrates a cross-sectional view of a deposition system according to some embodiments. FIG. 4 illustrates a flow diagram of a method of operation of a deposition system according to some embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

100:沉積系統 100: Deposition System

101:電漿 101: Plasma

102:封鎖擋板 102: Blocking the bezel

103:側壁 103: Sidewall

104:腔室 104: Chamber

108:晶圓 108: Wafer

110:靜電夾盤 110: Electrostatic chuck

110a:第一夾盤部位 110a: The first chuck part

110b:第二夾盤部位 110b: Second chuck part

110c:第三夾盤部位 110c: The third chuck part

112:靶材承載結構 112: Target carrying structure

114:靶材 114: Target

120:直流電電力源 120: DC power source

122:射頻電力源 122: RF Power Source

122a:第一射頻源產生器 122a: first radio frequency source generator

122b:第二射頻源產生器 122b: Second RF source generator

122c:第三射頻源產生器 122c: Third RF Source Generator

124a:第一阻抗匹配電路 124a: first impedance matching circuit

124b:第二阻抗匹配電路 124b: second impedance matching circuit

124c:第三阻抗匹配電路 124c: Third Impedance Matching Circuit

126:射頻交流電電源供應器 126: RF AC Power Supply

130、132:橫向磁鐵 130, 132: Transverse magnet

134:磁控管 134: Magnetron

140:控制系統 140: Control System

142:氣體和壓力系統 142: Gas and Pressure Systems

160:夾盤電極 160: Chuck electrode

160a:第一夾盤電極部 160a: the first chuck electrode part

160a:第二夾盤電極部 160a: Second chuck electrode part

160b:第三夾盤電極部 160b: The third chuck electrode part

160c:氣體和壓力系統 160c: Gas and Pressure Systems

Claims (10)

一種半導體沉積系統,包括: 一製程腔體; 一靶材,位於該製程腔體上方; 一靜電夾盤,位於該製程腔體中,位於該靶材下方,且包含一第一夾盤部位以及水平地環繞該第一夾盤部位的一第二夾盤部位; 一第一射頻源產生器,位於該製程腔體外,且連接至該靜電夾盤的該第一夾盤部位;以及 一第二射頻源產生器,位於該製程腔體外,且連接至該靜電夾盤的該第二夾盤部位。 A semiconductor deposition system, comprising: a process cavity; a target, located above the process cavity; an electrostatic chuck, located in the process chamber and below the target, and comprising a first chuck part and a second chuck part horizontally surrounding the first chuck part; a first radio frequency generator located outside the process chamber and connected to the first chuck portion of the electrostatic chuck; and A second RF source generator is located outside the process chamber and connected to the second chuck portion of the electrostatic chuck. 如請求項1所述之半導體沉積系統,更包含: 一第三射頻源產生器,位於該製程腔體外,其中該靜電夾盤更包含一第三夾盤部位,該第三夾盤部位水平地環繞該第二夾盤部位,且該第三射頻源產生器連接至該靜電夾盤的該第三夾盤部位。 The semiconductor deposition system as claimed in claim 1, further comprising: A third RF source generator is located outside the process chamber, wherein the electrostatic chuck further includes a third chuck portion, the third chuck portion horizontally surrounds the second chuck portion, and the third RF source A generator is connected to the third chuck portion of the electrostatic chuck. 如請求項1所述之半導體沉積系統,其中該靜電夾盤更包含: 一第一夾盤電極部,位於該第一夾盤部位中;以及 一第二夾盤電極部,位於該第二夾盤部位中,其中該第一射頻源產生器連接至該靜電夾盤的該第一夾盤部位的該第一夾盤電極部,該第二射頻源產生器連接至該靜電夾盤的該第二夾盤部位的該第二夾盤電極部,且該第一夾盤電極部電性絕緣於該第二夾盤電極部。 The semiconductor deposition system of claim 1, wherein the electrostatic chuck further comprises: a first chuck electrode portion located in the first chuck portion; and a second chuck electrode portion located in the second chuck portion, wherein the first RF source generator is connected to the first chuck electrode portion of the first chuck portion of the electrostatic chuck, the second The RF source generator is connected to the second chuck electrode portion of the second chuck portion of the electrostatic chuck, and the first chuck electrode portion is electrically insulated from the second chuck electrode portion. 如請求項1所述之半導體沉積系統,更包含: 一第一阻抗匹配電路,位於該製程腔體外;以及 一第二阻抗匹配電路,位於該製程腔體外,其中該第一射頻源產生器透過該第一阻抗匹配電路連接至該靜電夾盤的該第一夾盤部位,且該第二射頻源產生器透過該第二阻抗匹配電路連接至該靜電夾盤的該第二夾盤部位。 The semiconductor deposition system as claimed in claim 1, further comprising: a first impedance matching circuit located outside the process chamber; and a second impedance matching circuit located outside the process chamber, wherein the first RF source generator is connected to the first chuck portion of the electrostatic chuck through the first impedance matching circuit, and the second RF source generator is connected to the second chuck portion of the electrostatic chuck through the second impedance matching circuit. 如請求項1所述之半導體沉積系統,其中該靜電夾盤的該第一夾盤部位的寬度係,大於該靜電夾盤的該第二夾盤部位的寬度。The semiconductor deposition system of claim 1, wherein the width of the first chuck portion of the electrostatic chuck is greater than the width of the second chuck portion of the electrostatic chuck. 一種半導體沉積系統,包括: 一製程腔體; 一靶材,位於該製程腔體上方; 一靜電夾盤,位於該製程腔體中,且包含一圓狀夾盤部位、一第一環狀夾盤部位以及一第二環狀夾盤部位,其中該靜電夾盤的該第一環狀夾盤部位水平地環繞該靜電夾盤的該圓狀夾盤部位,且該靜電夾盤的該第二環狀夾盤部位水平地環繞該靜電夾盤的該第一環狀夾盤部位;以及 一第一射頻源產生器,位於該製程腔體外,且連接至該靜電夾盤的該第二環狀夾盤部位。 A semiconductor deposition system, comprising: a process cavity; a target, located above the process cavity; An electrostatic chuck is located in the process chamber and includes a circular chuck part, a first annular chuck part and a second annular chuck part, wherein the first annular clamp of the electrostatic chuck The disc portion horizontally surrounds the circular chuck portion of the electrostatic chuck, and the second annular chuck portion of the electrostatic chuck horizontally surrounds the first annular chuck portion of the electrostatic chuck; and A first RF source generator is located outside the process chamber and connected to the second annular chuck portion of the electrostatic chuck. 如請求項6所述之半導體沉積系統,其中該靜電夾盤的該第一環狀夾盤部位的寬度不同於該靜電夾盤的該第二環狀夾盤部位的寬度。The semiconductor deposition system of claim 6, wherein the width of the first annular chuck portion of the electrostatic chuck is different from the width of the second annular chuck portion of the electrostatic chuck. 如請求項6所述之半導體沉積系統,更包含: 一第二射頻源產生器,位於該製程腔體外,且連接至該靜電夾盤的該第二環狀夾盤部位;以及 一第三射頻源產生器,位於該製程腔體外,且連接至該靜電夾盤的該圓狀夾盤部位。 The semiconductor deposition system as described in claim 6, further comprising: a second RF source generator located outside the process chamber and connected to the second annular chuck portion of the electrostatic chuck; and A third radio frequency source generator is located outside the process chamber and connected to the circular chuck portion of the electrostatic chuck. 一種半導體沉積系統的操作方法,包括: 將一晶圓放置於一製程腔體中的一靜電夾盤上; 產生一電漿於該製程腔體中; 提供一直流電壓至位於該製程腔體上方的一靶材承載結構; 提供一第一射頻偏壓至該靜電夾盤的一第一夾盤部位;以及 提供一第二射頻偏壓至該靜電夾盤的一第二夾盤部位,其中該第二夾盤部位水平地環繞該第一夾盤部位,且該第二射頻偏壓不同於該第一射頻偏壓。 A method of operating a semiconductor deposition system, comprising: placing a wafer on an electrostatic chuck in a process chamber; generating a plasma in the process chamber; providing a DC voltage to a target carrying structure above the process chamber; providing a first RF bias to a first chuck portion of the electrostatic chuck; and A second RF bias is provided to a second chuck portion of the electrostatic chuck, wherein the second chuck portion horizontally surrounds the first chuck portion, and the second RF bias is different from the first RF bias bias. 如請求項9所述之半導體沉積系統的操作方法,其中該第二射頻偏壓大於該第一射頻偏壓。The operating method of a semiconductor deposition system as claimed in claim 9, wherein the second RF bias voltage is greater than the first RF bias voltage.
TW110104829A 2021-02-08 2021-02-08 Semiconductor deposition system and operation method thereof TWI774234B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110104829A TWI774234B (en) 2021-02-08 2021-02-08 Semiconductor deposition system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110104829A TWI774234B (en) 2021-02-08 2021-02-08 Semiconductor deposition system and operation method thereof

Publications (2)

Publication Number Publication Date
TWI774234B TWI774234B (en) 2022-08-11
TW202233021A true TW202233021A (en) 2022-08-16

Family

ID=83782539

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104829A TWI774234B (en) 2021-02-08 2021-02-08 Semiconductor deposition system and operation method thereof

Country Status (1)

Country Link
TW (1) TWI774234B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014070764A1 (en) * 2012-11-02 2014-05-08 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
US10186444B2 (en) * 2015-03-20 2019-01-22 Applied Materials, Inc. Gas flow for condensation reduction with a substrate processing chuck
TWI643261B (en) * 2017-06-02 2018-12-01 台灣積體電路製造股份有限公司 Methods for plasma processing a wafer and plasma controlling, and a plasma reaction system
CN111354672B (en) * 2018-12-21 2023-05-09 夏泰鑫半导体(青岛)有限公司 Electrostatic chuck and plasma processing apparatus

Also Published As

Publication number Publication date
TWI774234B (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP4429605B2 (en) Ionized PVD method and apparatus with sequential deposition and etching
US6709553B2 (en) Multiple-step sputter deposition
JP5249328B2 (en) Thin film deposition method
KR20010051943A (en) Alternate steps of imp and sputtering process to improve sidewall coverage
JP2017534750A (en) High power impulse magnetron sputtering process to realize high density and high Sp3 content layer
JP4344019B2 (en) Ionized sputtering method
JP2012197463A (en) Film deposition method
EP1114436B1 (en) Physical vapor processing of a surface with non-uniformity compensation
US10515788B2 (en) Systems and methods for integrated resputtering in a physical vapor deposition chamber
JP2001279436A (en) Method and apparatus for physical growing of deposited film in vapor phase using modulated power source
US6200433B1 (en) IMP technology with heavy gas sputtering
US20200048760A1 (en) High power impulse magnetron sputtering physical vapor deposition of tungsten films having improved bottom coverage
JP5461690B2 (en) Sputtering apparatus and sputtering method
US20020020497A1 (en) Plasma processing apparatus and plasma processing method
US7935393B2 (en) Method and system for improving sidewall coverage in a deposition system
KR20100035608A (en) Sputtering chamber having icp coil and targets on top wall
US20050098427A1 (en) RF coil design for improved film uniformity of an ion metal plasma source
TWI774234B (en) Semiconductor deposition system and operation method thereof
TW202321484A (en) Tilted pvd source with rotating pedestal
US20140216922A1 (en) Rf delivery system with dual matching networks with capacitive tuning and power switching
CN114914168A (en) Semiconductor deposition system and method of operating the same
TW202223126A (en) Methods and apparatus for reducing tungsten resitivity
JP2000156374A (en) Plasma processing apparatus applying sputtering process
JP3220528B2 (en) Vacuum processing equipment
US20240167147A1 (en) Apparatus and methods for depositing material within a through via