TW202231011A - 下一代無線通訊系統探測參考訊號(srs)方法及裝置 - Google Patents
下一代無線通訊系統探測參考訊號(srs)方法及裝置 Download PDFInfo
- Publication number
- TW202231011A TW202231011A TW111102690A TW111102690A TW202231011A TW 202231011 A TW202231011 A TW 202231011A TW 111102690 A TW111102690 A TW 111102690A TW 111102690 A TW111102690 A TW 111102690A TW 202231011 A TW202231011 A TW 202231011A
- Authority
- TW
- Taiwan
- Prior art keywords
- dft
- tones
- wtru
- sub
- ofdm symbol
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2634—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
- H04L27/2636—Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
Abstract
用於傳輸器/接收器中的參考訊號(RS)配置、產生及/或傳輸的方法、裝置、系統、架構及介面。該方法包含接收資訊,該資訊指示用於傳輸包含參考訊號(RS)的離散傅立葉變換(DFT)-擴散-正交分頻多工(DFT-s-OFDM)符號的操作的至少第一及第二模式中的任一者;以及傳輸該DFT-s-OFDM符號,該DFT-s-OFDM符號包含:(1)在該資訊指示該第一模式的情況下,該RS及資料音調;或(2)在該資訊指示該第二模式的情況下,該RS及空音調,其中該DFT-s-OFDM符號被分為多數個分段,每一分段包含RS音調的一組塊,以及其中該組塊的一尺寸或一位置的任一者根據該第一或第二模式中的任一者而被確定。
Description
本發明涉及通訊領域,且更為具體地涉及用於高級或下一代無線通訊系統中的通訊的方法、裝置、系統、架構及介面,包括使用新無線電及/或新無線電存取技術而執行的通訊,且涉及使用於確定通道狀態資訊的參考訊號的傳輸。
在目前學術界、工業界、監管層以及標準化組織中正在進行下一代無線系統的設計。IMT-2020願景設置了發展下一代無線系統的框架及整體目標。為了解決無線資料流量的預期增長,對較高資料速率、低潛時以及大量的連接性的需求,IMT-2020願景定義了驅動第五代(5G)設計需求的主要使用案例:增強行動寬頻(eMBB)、超可靠低延遲通訊(URLLC)以及大規模機器類通訊(mMTC)。這些使用案例在峰值資料速率、潛時、頻譜效率及移動性方面具有廣泛地不同的目標。
雖然IMT-2020願景指示對於給定的使用案例並非所有的關鍵能力都是同等重要的,在5G設計中構建靈活度以賦能滿足期望的使用案例特定需求並支援多種服務是重要的。空中介面(尤其是實體層(PHY)波形)是用於新5G技術的數個關鍵元件之一。在此方面,考慮到主要使用案例以及各種其他/不
同的應用以及他們的各種需要及開發場景及隨之而來的(例如,強制的特定的)性能需求,3GPP正在針對用於高級或下一代(例如,5G)無線通訊系統的新的無線電及/或新的無線電存取技術(統稱為“NR”)進行研究及開發。
提供了在傳輸器/接收器中實施的用於參考訊號配置、產生及/或傳輸的方法、裝置及系統。代表性方法包括:接收資訊,該資訊指示用於傳輸包含參考訊號(RS)的離散傅立葉變換(DFT)擴散-正交分頻多工(DFT-s-OFDM)符號的操作的至少第一及第二模式的任一者;以及傳輸DFT-s-OFDM符號,該DFT-s-OFDM符號包括:(1)在資訊指示第一模式的情況下,RS及資料音調(tone);或(2)在資訊指示第二模式的情況下,RS及空音調,其中DFT-s-OFDM符號被分為多數個分段,每一分段包括RS音調的組塊,且其中該組塊的尺寸或位置的任一者根據第一模式或第二模式的任一者而被確定。
一代表性裝置具有包含處理器、記憶體、接收器及傳輸器中的任一者的電路,被配置為接收指示資訊,該資訊指示用於傳輸包含參考訊號(RS)的離散傅立葉變換(DFT)擴散-正交分頻多工(DFT-s-OFDM)符號的操作的至少第一及第二模式的任一者;以及傳輸DFT-s-OFDM符號,該DFT-s-OFDM符號包括:(1)在資訊指示第一模式的情況下,RS及資料音調;或(2)在資訊指示第二模式的情況下,RS及空音調,其中DFT-s-OFDM符號被分為多數個分段,每一分段包括RS音調的組塊,且其中該組塊的尺寸或位置中的任一者根據第一或第二模式中的任一者而被確定。
一代表性方法包含:在離散傅立葉變換(DFT)單元處,預編碼以零填充的參考訊號序列,以產生頻域樣本;在子載波映射單元處,(i)將頻域樣本映射至可用子載波組的均等間隔子載波子集,以及(ii)將空訊號映射至
可用子載波組的剩餘子載波,其中參考訊號序列包含參考訊號音調以及以下任一者:資料音調或空音調,其中參考訊號序列被分為多數個分段,且其中每一分段包含參考訊號音調組塊;根據該映射,將頻域樣本及空訊號饋送至逆離散傅立葉變換(IDFT)單元;以及使用IDFT,將被IDFT單元接收的頻域樣本及空訊號轉換為基於塊的訊號,其中該基於塊的訊號包含用於傳輸在單個子訊框期間的參考訊號序列的多個重複,以及其中每一重複包含作為循環前綴的所填充的零。
100、600:通訊系統
102、102a、102b、102c、102d、602a、602b:無線傳輸/接收單元(WTRU)
104:無線電存取網路(RAN)
106/107/109:核心網路
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b、170a、170b、170c、614:基地台
115/116/117:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
140a、140b、140c:節點B
142a、142b:無線電網路控制器(RNC)
144:媒體閘道(MGW)
146:行動交換中心(MSC)
148:服務GPRS支援節點(SGSN)
150:閘道GPRS支持節點(GGSN)
160a、160b、160c:e節點B
162:行動性管理實體(MME)
164:服務閘道(SGW)
166:封包資料網路(PDN)閘道(或PGW)
172:存取服務網路(ASN)閘道
174:行動IP本地代理(MIP-HA)
176:認證、授權、記帳(AAA)伺服器
178:閘道
3201:第一類型DFT輸入音調
3202:第二類型DFT輸入音調
CP:循環前綴
CSI-RS:通道狀態資訊(CSI)參考訊號
DFT:離散傅立葉變換
DL:下鏈
IDFT:逆離散傅立葉變換
OFDM:正交分頻多工
PSS:主同步訊號
RS:參考訊號
通過結合附圖及以下以範例性方式給出的詳細描述,可得到更為詳細的理解。類似於詳細描述,以下附圖中的圖是範例性的。因此,附圖及詳細描述並不能被視為是限制性的,且其他等同效用的範例也是可行及可能的。此外,圖事中相同的參考標記指示相同的元件,且其中:
第1圖是示出了在其中可以實施的一個或多個揭露的實施例的範例通訊系統的系統圖;
第2圖是示出了在第1圖所示的通訊系統中可以使用的範例無線傳輸/接收單元(WTRU)的系統圖;
第3圖是示出了在第1圖所示的通訊系統中可以使用的範例無線電存取網路和另一個範例核心網路的系統圖;
第4圖是示出了在第1圖所示的通訊系統中可以使用的另一個範例無線電存取網路和另一個範例核心網路的系統圖;
第5圖是示出了在第1圖所示的通訊系統中可以使用的再一個範例無線電存取網路和再一個範例核心網路的系統圖;
第6圖示出了根據實施例的範例性通訊系統;
第7圖為示出了根據實施例的正交分頻多工(OFDM)符號的子符號的示意圖;
第8圖為示出了根據實施例的傳輸器的DFT預編碼IDFT CSI-RS產生器的示意圖;
第9圖為示出了根據實施例的訊號的示意圖;
第10圖為示出了根據實施例的傳輸器的DFT預編碼IDFT CSI-RS產生器的示意圖;
第11圖為示出了根據實施例的帶有傳輸器的保護帶產生器的DFT預編碼IDFT CSI-RS的示意圖;
第12圖為示出了根據實施例的包括保護帶的訊號的示意圖;
第13圖為示出了根據實施例的帶有IDFT及多個DFT塊的子單元CSI-RS產生的示意圖;
第14圖為示出了根據實施例的帶有IDFT及多個DFT塊進行子單元CSI-RS產生的示意圖;
第15圖為示出了根據實施例的IDFT輸出的示意圖;
第16圖為示出了根據實施例的帶有DFT-s-OFDM的子單元CSI-RS產生的示意圖;
第17圖為示出了根據實施例的帶有DFT-s-OFDM的子單元CSI-RS產生的示意圖;
第18圖為示出了根據實施例的帶有DFT-s-OFDM的子單元CSI-RS產生的示意圖;
第19圖為示出了根據實施例的訊號的示意圖;
第20圖為示出了根據實施例的用於CSI-RS產生的子帶的示意圖;
第21圖為示出了根據實施例的零功率(ZP)CSI-RS的示意圖;
第22圖為示出了根據實施例的ZP CSI-RS的佈置的示意圖;
第23圖為示出了根據實施例的帶有DFT-s-OFDM及多個DFT塊的子單元CSI-RS產生的示意圖;
第24圖為示出了根據實施例的使用多個天線埠產生帶有子時間單元OFDM傳輸的示意圖;
第25圖為示出了根據實施例的CSI-RS及主同步訊號(PSS)的分頻多工(FDM)的示意圖;
第26圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;
第27圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;
第28圖為示出了根據實施例的SRS傳輸的示意圖;
第29圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;
第30圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;
第31圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;以及
第32圖為示出了根據實施例的具有兩種類型的DFT輸入音調的分段DFT輸入的示意圖。
現參考附圖對說明性實施例進行詳細描述。然而,雖然結合代表性實施例對本發明進行了描述,但本發明並不限於此,且應該理解的是,還可使用其他實施例,或者可對所描述的實施例進行修改及添加以在不與本發明相悖離的情況下執行與本發明相同的功能。
雖然在下文中使用無線網路架構對代表性實施例進行了大體展示,但可使用任一數量的不同網路架構,例如包括具有有線元件及/或無線元件的網路。
第1圖是示出了範例通訊系統100的示意圖,其中通訊系統100中可在實施一個或多個揭露的實施例。該通訊系統100可以是將諸如語音、資料、視訊、消息發送、廣播等之類的內容提供給多個無線使用者的多存取系統。該通訊系統100可以經由系統資源(包括無線頻寬)的共用賦能多個無線使用者存取這些內容。舉例而言,該通訊系統100可以採用一或多個通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1圖所示,通訊系統100可以包含無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路106/107/109、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但應理解的是所揭露的實施例涵蓋任一數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d的每一個可以是被配置成在無線環境中操作及/或通訊的任何類型的裝置。作為範例,WTRU 102a、102b、102c、102d可以被配置成傳輸及/或接收無線訊號,並且可以包含使用者設備(UE)、行動站、固定或行動用戶單元、呼叫器、蜂巢式電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、消費者電子產品等等。WTRU 102a、102b、102c、102d可互換地稱為UE。
通訊系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b中的每一個可以是被配置成與WTRU 102a、102b、102c、102d的至少一者無線連接以促進存取一個或多個通訊網路(例如,核心網路106/107/109、網際網路110及/或其他網路112)的任何類型的裝置。作為範例,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、站控制器、存取點(AP)、無線路由器等。儘管基地台114a、114b每個均被描述為單個元件,但要理解的是基地台114a、114b可以包含任何數量的互聯基地台及/或網路元件。
基地台114a可以是RAN 103/104/105的一部分,該RAN 103/104/105還可以包括其他基地台及/或網路元件(未示出),諸如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可以被配置成傳輸及/或接收在特定地理區域中的無線訊號,該特定地理區域可以被稱作胞元(未示出)。胞元還可以被分成胞元扇區。舉例而言,與基地台114a相關聯的胞元可以被分成三個扇區。因此,在一個實施例中,基地台114a可以包含三個收發器,也就是針對胞元的每個扇區都有一個收發器。在另一個實施例中,基地台114a可以採用多輸入多輸出(MIMO)技術,並且可以利用對於胞元的每個扇區的多個收發器。
基地台114a、114b可以在空中介面115/116/117上與WTRU 102a、102b、102c、102d中的一或多者通訊,該空中介面115/116/117可以是任何合適的無線通訊鏈接(例如,射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等)。空中介面115/116/117可以使用任何合適的無線電存取技術(RAT)來建立。
更具體地,如上所述,通訊系統100可以是多存取系統,並且可以採用一或多個諸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA之類的通道存
取方案。舉例而言,在RAN103/104/105中的基地台114a和WTRU 102a、102b、102c可以實施諸如全球行動電信系統(UMTS)地面無線電存取(UTRA)的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包含諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)的通訊協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在另一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS地面無線電存取(E-UTRA)的無線電技術,其可以使用長期演進(LTE)及/或高級LTE(LTE-A)來建立空中介面115/116/117。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.11(即,無線上網(WiFi))、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、GSM演化增強資料率(EDGE)、GSM EDGE(GERAN)之類的無線電技術。
舉例而言,第1圖中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或者存取點,並且可以利用任何合適的RAT,以促進在諸如商業區、住宅、交通工具、校園之類的局部區域的無線連接性。在一個實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11的無線電技術以建立無線區域網路(WLAN)。在另一實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術以建立無線個人區域網路(WPAN)。在又一實施例中,基地台114b和WTRU 102c、102d可以利用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立微微胞元或毫微微
胞元。如第1圖所示,基地台114b可以具有對網際網路110的直接連接。因此,基地台114b可以不必經由核心網路106/107/109來存取網際網路110。
RAN 103/104/105可以與核心網路106/107/109通訊,該核心網路106/107/109可以是被配置成將語音、資料、應用及/或在網際協定的語音(VoIP)服務上提供至WTRU 102a、102b、102c、102d的一或多者的任何類型的網路。舉例而言,核心網路106/107/109可以提供呼叫控制、帳單服務、基於行動位置的服務、預付費呼叫、網際網路連接性、視訊分配等,及/或執行諸如使用者驗證的高級安全功能。儘管第1圖中未示出,但應理解的是RAN 103/104/105及/或核心網路106/107/109可以直接或間接地與使用與RAN 103/104/105相同的RAT或者不同的RAT的其他RAN通訊。舉例而言,除了被連接到可以利用E-UTRA無線電技術的RAN103/104/105,核心網路106/107/109也可以與採用GSM、UMTS、CDMA 2000、WiMAX或WiFi無線電技術的另一RAN(未示出)通訊。
核心網路106/107/109也可以服務作為用於WTRU 102a、102b、102c、102d以存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包含提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包含使用公共通訊協定的互聯電腦網路及裝置的全球系統,公共通訊協定諸如是在TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料包協定(UDP)及/或網際網路協定(IP)。網路112可以包含由其他服務提供者所擁有及/或操作的有線及/或無線通訊網路。舉例而言,網路112可以包含連接到一或多個RAN的另一核心網路,該多個RAN可以採用與RAN 103/104/105相同的RAT或者不同的RAT。
在通訊系統100中的WTRU 102a、102b、102c、102d的一些或者全部可以包含多模式能力(例如WTRU 102a、102b、102c、102d可以包含用於在不同的無線鏈接上與不同的無線網路通訊的多個收發器)。舉例而言,第1圖中
所示的WTRU 102c可以被配置成與可採用基於蜂巢式的無線電技術的基地台114a通訊,並且與可採用IEEE 802無線電技術的基地台114b通訊。
第2圖是示出了範例WTRU 102的系統圖。如第2圖所示,WTRU 102可以包含處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138等。應該理解的是,在保持與實施例一致的同時,WTRU 102可以包含上述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一或多個微處理器、控制器、微控制器、應用特定積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、任何其它類型的積體電路(IC)、狀態機器等。處理器118可以執行訊號編碼、資料處理、功率控制、輸入/輸出處理及/或賦能WTRU 102在無線環境中操作的任何其他功能性。處理器118可以被耦合到收發器120,該收發器120可以被耦合到傳輸/接收元件122。儘管第2圖中將處理器118和收發器120描述為分開的組件,但是應當理解的是處理器118和收發器120可以被一起集成到電子封裝或者晶片中。
傳輸/接收元件122可以被配置成在空中介面115/116/117上將訊號傳輸到基地台(例如,基地台114a),或者從基地台(例如,基地台114a)接收訊號。舉例而言,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收RF訊號的天線。在另一個實施例中,舉例而言,傳輸/接收元件122可以是被配置成傳輸及/或接收IR、UV或者可見光訊號的發射器/檢測器。在又一個實施例中,傳輸/接收元件122可以被配置成傳輸及/或接收RF訊號和光訊號兩者。應當理解,傳輸/接收元件122可以被配置成傳輸及/或接收無線訊號的任一組合。
儘管傳輸/接收元件122在第2圖中被描述為單個元件,WTRU 102可以包含任何數量的傳輸/接收元件122。更具體地,WTRU 102可以採用MIMO技術。因此,在一個實施例中,WTRU 102可以包含兩個或更多個傳輸/接收元件122(例如,多個天線)以在空中介面115/116/117上用於傳輸及/或接收無線訊號。
收發器120可以被配置成調製將由傳輸/接收元件122傳輸的訊號,並且被配置成解調由傳輸/接收元件122接收的訊號。如上所述,WTRU 102可以具有多模式能力。因此,舉例而言,收發器120可以包含多個收發器以用於賦能WTRU 102經由諸如UTRA和IEEE 802.11的多個RAT通訊。
WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或者有機發光二極體(OLED)顯示單元),並且可以從上述裝置接收使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自任何類型的合適的記憶體的資訊,以及將資料儲存於任何類型的合適的記憶體中,合適的記憶體例如非可移除記憶體130及/或可移除記憶體132。非可移除記憶體130可以包含隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或者任何其他類型的記憶存放裝置。可移除記憶體132可以包含用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等。在其他實施例中,處理器118可以存取來自實體上未位於WTRU 102上(例如位於伺服器或者本地電腦(未示出)上)的記憶體的資料,以及儲存資料於記憶體中。
處理器118可以從電源134接收電力,並且可以被配置成將該電力分配給及/或控制WTRU 102中的其他組件。電源134可以是任何適用於給WTRU 102供電的設備。舉例而言,電源134可以包含一或多個乾電池組(例如鎳鎘
(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的目前位置的位置資訊(例如,經度和緯度)。此外或替代來自GPS晶片組136的資訊,WTRU 102可以經由空中介面115/116/117從基地台(例如,基地台114a、114b)接收位置資訊,及/或基於從兩個或更多個相鄰基地台所接收的訊號的定時來確定其位置。應當理解,在與實施例保持一致的同時,WTRU 102可以經由任何合適的位置確定方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包含提供附加特徵、功能性及/或有線或無線連接性的一或多個軟體及/或硬體模組。舉例而言,週邊設備138可以包含加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器等等。
第3圖是示出了根據另一個實施例的RAN 103及核心網路106的系統圖。如上所述,RAN 103可採用UTRA無線電技術經由空中介面115與WTRU 102a、102b和102c通訊。RAN 103還可以與核心網路106進行通訊。如第3圖所示,RAN 103可包含節點B 140a、140b、140c,節點B 140a、140b、140c每一者均可包含用於經由空中介面115與WTRU 102a、102b、102c通訊的一或多個收發器。節點B 140a、140b、140c的每一者均可與RAN 103中的特定胞元(未示出)相關聯。RAN 103還可包含RNC 142a、142b。應理解,在與實施例保持一致的同時,RAN 103可包含任一數量的節點B和RNC。
如第3圖所示,節點B 140a、140b可以與RNC 142a通訊。此外,節點B 140c可以與RNC 142b通訊。節點B 140a、140b、140c可以經由Iub介面與各
自的RNC 142a、142b通訊。RNC 142a、142b可以經由Iur介面彼此通訊。RNC 142a、142b的每一個可以被配置成控制其連接的各自的節點B 140a、140b、140c。此外,RNC 142a、142b的每一個可以被配置成執行或支援其他功能性,例如外環功率控制、負載控制、允許控制、封包排程、切換控制、巨分集、安全功能、資料加密等。
第3圖中示出的核心網路106可以包含媒體閘道(MGW)144、行動交換中心(MSC)146、服務GPRS支援節點(SGSN)148及/或閘道GPRS支持節點(GGSN)150。儘管前述每一個元件被描述為核心網路106的一部分,但應理解這些元件的任何一個可以由除了核心網路操作者之外的實體所擁有及/或操作。
RAN 103中的RNC 142a可以經由IuCS介面連接到核心網路106中的MSC 146。MSC 146可以連接到MGW 144。MSC 146和MGW 144可以對WTRU 102a、102b、102c提供對例如PSTN 108的電路切換網路的存取,以促進WTRU 102a、102b、102c與傳統陸線通訊裝置之間的通訊。
RAN 103中的RNC 142a還可以經由IuPS介面連接到核心網路106中的SGSN 148。SGSN 148可以連接到GGSN 150。SGSN 148和GGSN 150可以對WTRU 102a、102b、102c提供對例如網際網路110的封包交換網路的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通訊。
如上所述,核心網路106還可以連接到其他網路112,該其他網路112可以包含由其他服務提供者所擁有及/或操作的其他有線及/或無線網路。
第4圖為示出了根據實施例的RAN 104及核心網路107的系統圖。如上所述,RAN 104可採用E-UTRA無線電技術以經由空中介面116與WTRU 102a、102b、102c通訊。RAN 104可以與核心網路107通訊。
RAN 104可包含e節點B 160a、160b、160c,但應理解,在保持與實施例一致的同時,RAN 104可包含任一數量的e節點B。e節點B 160a、160b、160c每一者均可包含用於經由空中介面116與WTRU 102a、102b、102c通訊的一或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。從而,舉例而言,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線訊號及/或從WTRU 102a接收無線訊號。
e節點B 160a、160b、160c的每一個可以與特定胞元(未示出)相關聯,並可被配置為處理無線電資源管理決定、切換決定、在UL及/或DL中用戶的排程等。如第4圖所示,e節點B 160a、160b、160c可以經由X2介面彼此通訊。
第4圖中所示的核心網路107可以包含行動性管理實體(MME)162、服務閘道(SGW)164和封包資料網路(PDN)閘道(或PGW)166。雖然上述元件中的每一個都被描述為核心網路107的一部分,但應理解這些元件中的任何一個都可被除核心網路操作者以外的實體所擁有及/或操作。
MME 162可經由S1介面連接到RAN 104中的e節點B 162a、162b、162c的每一個,並可用作控制節點。舉例而言,MME 162可負責認證WTRU 102a、102b、102c的使用者、承載啟動/停用、在WTRU 102a、102b、102c的初始附加期間選擇特定服務閘道,等等。MME 162還可提供控制平面功能,以用於在RAN 104和採用其它無線電技術(比如GSM或/或WCDMA)的其他RAN(未示出)之間進行的切換。
服務閘道164可經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一個。服務閘道164通常可以向/從WTRU 102a、102b、102c路由並轉發使用者資料封包。服務閘道164還可執行其他功能,比如在e節點B間切換
期間錨定使用者平面、當DL資料對WTRU 102a、102b、102c為可用時觸發呼叫、管理並儲存WTRU 102a、102b、102c的上下文等等。
服務閘道164可連接到PDN閘道166,其可向WTRU 102a、102b、102c提供到封包交換網路(比如網際網路110)的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通訊。
核心網路107可以促進與其他網路的通訊。舉例而言,核心網路107可以向WTRU 102a、102b、102c提供到電路切換網路(比如PSTN 108)的存取,以促進WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。舉例而言,核心網路107可以包含或者可以與該IP閘道通訊,該IP閘道服務作為核心網路107與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)。此外,核心網路107可以向WTRU 102a、102b、102c提供到其他網路112的存取,其他網路112可包含由其他服務提供者所擁有及/或操作的其他有線及/或無線網路。
第5圖是示出根據實施例的RAN 105和核心網路109的系統圖。RAN 105可以是採用IEEE 802.16無線電技術以經由空中介面117與WTRU 102a、102b、102c通訊的存取服務網路(ASN)。如下面將進一步討論的,WTRU 102a、102b、102c、RAN 105和核心網路109中的不同功能實體之間的通訊鏈路可被定義為參考點。
如第5圖中所示,RAN 105可包含基地台180a、180b、180c和ASN閘道182,但應理解,在保持與實施例一致的同時,RAN 105可以包含任一數量的基地台和ASN閘道。基地台180a、180b、180c每一個可與RAN 105中的特定胞元(未示出)相關聯並且可包含用於經由空中介面117與WTRU 102a、102b、102c通訊的一或多個收發器。在一個實施例中,基地台180a、180b、180c可以實施MIMO技術。舉例而言,基地台180a可以使用多個天線來向WTRU 102a傳輸無線訊號及/或從WTRU 102a接收無線訊號。基地台180a、180b、180c還可提供諸
如切換觸發、隧道建立、無線電資源管理、流量分類、服務品質(QoS)策略執行之類的行動性管理功能。ASN閘道182可以服務作為流量聚合點並可負責呼叫、用戶簡檔的快取、路由到核心網路109等。
WTRU 102a、102b、102c與RAN 105之間的空中介面117可被定義為實施IEEE 802.16規範的R1參考點。此外,WTRU 102a、102b、102c的每一個可與核心網路109建立邏輯介面(未示出)。WTRU 102a、102b、102c和核心網路109之間的邏輯介面可被定義為R2參考點,其可被使用於認證、授權、IP主機配置管理及/或行動性管理。
基地台180a、180b、180c的每一個之間的通訊鏈路可被定義為R8參考點,該R8參考點包含用於促進WTRU切換和基地台之間的資料移轉的協定。基地台180a、180b、180c和ASN閘道182之間的通訊鏈路可被定義為R6參考點。R6參考點可包含用於基於與WTRU 102a、102b、102c的每一個相關聯的行動性事件促進行動性管理的協定。
如第5圖所示,RAN 105可連接到核心網路109。RAN 105和核心網路109之間的通訊鏈路可被定義為R3參考點,該R3參考點包含用於促進例如資料移轉和行動性管理能力的協定。核心網路109可包含行動IP本地代理(MIP-HA)184、認證、授權、記帳(AAA)伺服器186、和閘道188。雖然上述元件中的每一個都被描述為核心網路109的一部分,但應理解,這些元件中的任何一個都可被除了核心網路操作者以外的實體所擁有及/或操作。
MIP-HA 184可負責IP地址管理,並可賦能WTRU 102a、102b、102c在不同ASN及/或不同核心網路之間漫遊。MIP-HA 184可以向WTRU 102a、102b、102c提供到封包交換網路(比如網際網路110)的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通訊。AAA伺服器186可負責使用者認證和支援使用者服務。閘道188可促進與其他網路的相互工作。舉例而言,閘道188
可向WTRU 102a、102b、102c提供到諸如PSTN 108的電路切換網路的存取,以促進WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。閘道188可向WTRU 102a、102b、102c提供到其他網路112的存取,該其他網路112可包含由其他服務提供者所擁有及/或操作的其他有線及/或無線網路。
雖然第5圖中未示出,但應當理解的是,RAN 105可以連接到其他ASN,其他RAN(例如,RAN 103及/或104)及/或核心網路109可連接到其他核心網路(例如,核心網路106及/或107)。RAN 105和其他ASN之間的通訊鏈路可被定義為R4參考點,R4參考點可包含用於協調在RAN 105和其他ASN之間的WTRU 102a、102b、102c的行動性的協定。核心網路109和其他核心網路之間的通訊鏈路可被定義為R5參考點,其可包含用於促進本地核心網路和被訪問核心網路之間的相互工作的協定。
第6圖示出了在其中實施例可以被實踐或實施的範例通訊系統600。通訊系統600僅出於說明的目的而被提供,且不限制所揭露的實施例。如第6圖所示,通訊系統600包含基地台614和WTRU 602a、602b。正如本領域技術人員應當理解的,通訊系統600可以包含第6圖中未示出的額外的元件。
舉例而言,基地台614可以是基地台114(第1圖)、節點B 140(第3圖)、e節點B 160(第4圖)和基地台170(第5圖)的任一者。同樣,基地台614可以包含類似於及/或不同於基地台114、節點B 140、e節點B 160和基地台170的功能性。舉例而言,基地台614可以包含支援5G特徵以及實施包含於其中的過程、技術等的功能。
基地台614可以被配置用於小胞元操作及/或開發。基地台614可以被配置為支援釐米波(cmW)和毫米波(mmW)操作的任一。為了簡單闡述起見,術語“xmW”在這裡可以用來指為cmW和mmW的任一。基地台614可以被額外地及/或可替換地被配置為支援用於如3GPP版本12中所指定的小胞元操作及/
或開發的各種(例如,所有或一些)功能性及/或特徵。就此而言,基地台614可以能夠並行地、同時地及/或否則與LTE、LTE-A或類似類型(統稱為“LTE”)空中介面連接而操作xmW空中介面。基地台614可以被配備具有各種高級天線配置和波束成形技術的至少一者,諸如那些可以允許基地台614同時以寬波束模式傳送LTE或其他下鏈通道以及以一或多個窄波束模式傳送xmW通道。基地台614還可以被配置成利用與特徵和過程(例如,於此所詳細說明的那些)相適應的LTE或其他上鏈配置來支援缺乏或不使用它們的xmW上鏈傳輸能力的WTRU。
舉例而言,WTRU 602a、602b的每一個可以是WTRU 102(第1圖至第5圖)的任一者。同樣,WTRU 602a、602b的每一個可以包含類似於及/或不同於WTRU 102的功能性。WTRU 602a、602b可以包含支援5G特徵和實施包含於其中的過程、技術等的功能。為了簡單闡述起見,當“WTRU 604”在這裡被使用,其可以指為WTRU 602a、602b的任一者。
WTRU 602a、602b的每一個可以被配置成支援xmW操作。WTRU 602a、602b還可以被配置成支援用於如3GPP版本12中所指定的使用者設備操作及/或開發的各種(例如,所有或一些)功能性及/或特徵。WTRU 602a、602b的每一個可以能夠並行地、同時地及/或否則與彼此連接而操作LTE/其他和xmW空中介面。WTRU 602a、602b的每一個可以具有兩個天線組和伴隨的RF鏈:一個配置用於在LTE帶中操作,且另一個配置用於在xmW頻帶中操作。然而,本揭露對此不作限定,且WTRU可以具有任一數目的天線組和伴隨的RF鏈。WTRU 602a、602b的每一個可以包含一或多個基帶處理器,且該基帶處理器可以包含單獨的、或至少部分結合的、用於LTE頻帶和xmW頻帶的基帶處理的功能性。舉例而言,該基帶處理功能可以為了xmW和LTE空中介面共用硬體塊。
雖然第1圖至第5圖中將WTRU描述作為無線終端,但可以預見到,在某些代表性實施例中,該終端可使用(例如,臨時或永久地)具有通訊網路的有線通訊介面。
包含在來自一節點的傳輸器的傳輸中的參考訊號可被另一節點的接收器使用以測量及/或確定傳輸器與接收器之間的通道的通道狀態。該通道狀態可被用於確定傳輸的調製和編碼方案(例如,順序(order))、將被用於多天線傳輸的預編碼矩陣、以及其他通道資訊。該參考訊號的範例包含LTE通訊系統中使用的分別用於確定下鏈(DL)通道狀態及上鏈(UL)通道狀態的通道狀態資訊(CSI)參考訊號(CSI-RS)以及探測參考訊號(SRS)。
對於定向通訊,參考訊號還可被使用於促進由傳輸器傳輸波束的選擇及/或由接收器接收波束的選擇。傳輸器及接收器可在不同(空間掃描的)類比波束上傳輸及接收(例如,OFDM)符號,以找到最佳的傳輸/接收波束對。
在目前LTE通訊系統中,使用於評估用於波束訓練波束對的品質的參考訊號(即,CSI-RS及/或SRS)被置於每一波束的一個(即,單個)OFDM符號中。這樣的不期望的後果為:隨著將被掃描的波束數目的增加,與用於波束訓練的參考訊號(即,CSI-RS及/或SRS)傳輸相關聯的開銷可能會顯著增大,因為需要被評估的OFDM符號的數目與被掃描的波束的數目之間的一對一關係。由於需要被評估的OFDM符號的數目與被掃描的波束的數目之間的一對一關係的另一不期望的後果則是每一OFDM符號持續時間僅有單個波束能夠被測試。
第7圖為示出了根據實施例的正交分頻多工(OFDM)符號的子符號的示意圖。依照在此提供的代表性過程及技術,相比於目前LTE通訊系統,與用於以每一波束為基礎的波束訓練的參考訊號傳輸相關聯的開銷可被減小。再次依照在此提供的代表性過程及技術,可在每一OFDM符號持續時間(或其他類似類型的時間量(例如,基線資料傳輸))對多於單個波束評估。在一或多個
代表性實施例中,可首先將參考訊號符號映射至相應的子載波,並可利用逆離散傅立葉變換(IDFT)操作而產生時域訊號,創建OFDM或OFDM變數訊號。該OFDM或OFDM變數訊號可在類比域中經由波束成形向量(例如,每一個天線埠)進行預編碼。進一步的,如果將要傳輸多個資料流,可將數位預編碼矩陣應用至基帶訊號。接收器還可在類比域中將接收波束成形向量應用到所接收的訊號(例如,每一天線埠)。
術語CSI-RS、SRS、波束參考訊號、波束測量參考訊號、波束管理參考訊號及/或任何其他類似的及/或適當的訊號在此可被互換地提到。此外,在此用於下鏈描述的方法、裝置、系統、架構及介面可等同地應用至上鏈。根據實施例,子載波映射單元可將DFT塊的輸出映射至IDFT塊的輸入。
第7圖是示出了根據實施例的OFDM符號中的子符號的示意圖。根據實施例,可經由使用包含如第7圖所示的重複子符號的OFDM符號來減小波束訓練開銷。根據實施例,在產生了包含重複子符號的OFDM符號的情況下,可針對每一個子符號執行波束訓練。例如,可根據不同的波束(例如,每一)將子符號進行預編碼(例如,可在傳輸器天線埠及/或在接收器天線埠不同地進行預編碼),以減小用於CSI-RS或SRS傳輸的任一者的開銷。根據實施例,可針對一或多個天線元件配置天線埠,且該天線埠可被視為一個邏輯實體。
根據實施例,WTRU可針對每一子符號執行測量(例如,波束測量)。例如,WTRU可針對每一子符號執行與傳輸波束索引或接收波束索引的任一者相關聯的波束測量。根據實施例,WTRU可被配置為(例如,被預配置、被確定、被指示、被通知等)使用傳輸波束組(例如,由傳輸波束索引所指示的)及/或接收波束組(例如,由接收波束索引所指示的)。根據實施例,WTRU可對於在傳輸波束組中包含的TX波束以及接收波束組中包含的接收波束的任一者執行測量(例如,波束測量)。
根據實施例,在使用一或多個子符號的情況下,WTRU可將(例如,每一個)子符號與傳輸波束(例如,傳輸波束索引)相關聯。例如,WTRU可假設每一個子符號可根據其傳輸波束索引而與傳輸波束相關聯。根據實施例,OFDM符號的一或多個(例如,所有)子符號可與單個傳輸波束相關聯。根據實施例,OFDM符號的一或多個(例如,每個)子符號可與各自的傳輸波束相關聯。
根據實施例,WTRU可使用傳輸波束在OFDM符號及/或離散傅立葉變換(DFT)擴散OFDM(DFT-s-OFDM)符號的每一個子符號中傳輸UL訊號(例如,SRS、波束參考訊號等)。例如,WTRU可根據將OFDM符號的每一個子符號關聯到各自的傳輸波束索引而傳輸CRS-RS。根據實施例,可在OFDM符號及/或DFT-s-OFDM符號中使用一或多個子符號。根據實施例,包含傳輸波束(例如,傳輸波束索引)及接收波束(例如,接收波束索引)的一對可被稱之為波束對鏈路(BPL)。根據實施例,BPL可被互換地稱之為波束對、傳輸-接收波束關聯、以及鏈結的傳輸及接收波束。
根據實施例,OFDM符號的一或多個(例如,所有、每一個)子符號可與相同的傳輸波束相關聯。根據實施例,WTRU可以執行與具有不同的BPL的分別與每一個子符號相關聯的波束測量及/或波束參考訊號傳輸。根據實施例,不同的BPL可具有相同的傳輸波束,並且在此情況下,可在跨子符號上使用不同的接收波束。根據實施例,子符號、子時間單元、部分符號、部分OFDM符號以及子OFDM符號在此可被可互換地被提及,並且進一步的,OFDM以及DFT-s-OFDM在此可被可互換地被提及。根據實施例,WTRU可被配置(例如,被訊號傳輸、被指示、被通知等)具有指示以下任一的資訊:(1)每個OFDM符號(例如,在一OFDM符號中)的子符號的數目(例如,特定數目);以及(2)用於波束測量及/或波束參考訊號傳輸(例如,SRS傳輸)的OFDM符號的數目。
根據實施例,用於波束測量的OFDM符號的數目可被確定為以下任一者的函數:(1)傳輸波束的數目;(2)接收波束的數目;或(3)子符號的數目。根據實施例,用於波束測量的OFDM符號在時間上可以是連續的。根據實施例,槽、子訊框及/或無線電訊框的子集可以與子符號相關聯的方式被使用、被指示及/或被配置用於波束測量。
根據實施例,OFDM符號(例如,包含在其中的)的子符號的數目可基於在相同的OFDM符號的子符號中所使用的傳輸波束而被確定。例如,根據實施例,如果相同的傳輸波束被使用於OFDM符號中的所有子符號,可使用、確定或選擇OFDM符號的子符號的第一數目。根據實施例,如果跨OFDM符號中的子符號上使用不同的或者多於一個傳輸波束,可使用、確定或選擇用於OFDM符號的子符號的第二數目。根據實施例,子符號的第二數目可根據子符號的第一數目的函數而被確定。例如,可使用子符號的第一數目(例如,具有預定義的偏移)而確定子符號的第二數目。
根據實施例,用於每一個子符號的傳輸波束索引可被指示(例如,由網路至WTRU)。根據實施例,WTRU可被配置為具有指示用於跨子符號上的波束參考訊號傳輸的傳輸波束組(例如,波束群組)的資訊。根據實施例,相關聯的下鏈控制資訊(DCI)可針對子符號指示與波束參考訊號相關聯的傳輸波束組,例如,當非週期性波束參考訊號被觸發時。根據實施例,WTRU可使用以下任一者指示為了每一個子符號的傳輸波束索引:(1)為了每一個子符號,在預定義序列組中選擇序列,自主地確定傳輸波束索引,並發送其相關聯的序列以指示所確定的傳輸波束索引;或(2)在每一個子符號中傳輸已調製的資料符號,其中該已調製的資料符號可包含傳輸波束索引。
根據實施例,WTRU可指示及/或報告指示子符號的數目的能力(capability)資訊。根據實施例,該能力資訊可指示OFDM符號中的子符號的最
大數目。根據實施例,該子符號的最大數目可根據用於子符號的傳輸波束的數目而變化。例如,在跨子符號上使用相同的傳輸波束的情況下,子符號的最大數目可以不同於當跨子符號上使用不同傳輸波束時的子符號的最大數目。根據實施例,OFDM符號中的子符號的最大數目可基於OFDM符號長度(例如,子載波間隔)而被確定。
根據實施例,在OFDM符號中的子符號的數目可基於以下任一者而被確定:(1)較高層配置(例如,RRC訊號、消息、廣播等);(2)動態指示(例如,在DCI中);(3)OFDM符號的數字學(numerology)(例如,子載波間隔);(4)UL及/或DL;以及(5)頻帶。根據實施例,在此所使用的術語“OFDM符號”可指為還可以在其他之中包含DFT-s-OFDM、零尾(ZT)DFT-s-OFDM等的任一者的多載波波形。
使用IDFT的子單元CSI-RS產生
以下展示在此所展示的實施例中所使用的DFT操作的性質(在此被稱之為性質1)。根據實施例,使N為DFT尺寸,並使X(k)被定義為頻域訊號,其中k為子載波索引。假設Z(k)為X(k)的上取樣版本,其中L為上取樣比值。在此情況下,根據實施例,我們可以將等式1定義為:
第8圖為示出了根據實施例的傳輸器的DFT預編碼IDFT CSI-RS產生器的示意圖。傳輸器可根據通訊系統的空中介面採用塊或基於塊(統稱為“基於塊的”)的波形。作為範例,對於DL傳輸,可使用具有循環前綴的正交分頻多工(OFDM)(CP-OFDM)波形。對於UL傳輸,可使用適用於多存取(SC-FDMA)且具有循環前綴(CP-SC-FDMA或簡稱為“SC-FDMA”)的單載波(SC)分頻多工(FDM)(SC-FDM)波形。由於SC-FDMA波形的實際產生方式,其通常可被稱為DFT-s-OFDM波形。因此,術語“DFT-s-OFDM”與術語“SC-FDMA”在此可互換使用。
類似於DFT-s-OFDM波形產生器,DFT預編碼IDFT CSI-RS產生器可以逐塊為基礎產生DFT預編碼參考訊號,其中對於經由DFT預編碼IDFT CSI-RS產生器所處理的每一個參考訊號塊(組)(“參考訊號塊”),會產生相應的DFT預編碼參考訊號。DFT預編碼IDFT CSI-RS產生器可包含DFT單元、子載波映射單元以及逆DFT(IDFT)單元。
在操作中,參考訊號塊被饋送至DFT單元。該DFT單元使用DFT將參考訊號轉換至頻域樣本,並將頻域樣本饋送至子載波映射單元。該子載波映射單元將所接收的與零交織(例如,以零進行填充)的頻域樣本映射至可用的子載波組(也就是,與IDFT單元的各自輸入組所相對應的可用子載波組)。
子載波映射單元將所映射的頻域樣本及所交織的零饋送至IDFT單元的合適輸入。該IDFT單元使用IDFT將所映射的頻域樣本及所交織的零(其可以被稱為被填充的零)轉換為DFT預編碼參考訊號,其中該參考訊號分散在可用的子載波組的子載波上。在產生了DFT預編碼參考訊號以及OFDM或OFDM變數符號的其餘部分之後,可執行循環前綴(例如,將CP前綴至OFDM或OFDM變數符號),以完成OFDM或OFDM變數塊的產生,該OFDM或OFDM變數塊包含被饋送至DFT單元的參考訊號。雖然CP會被ODFM或OFDM變數塊的接收器所丟棄,但是該CP有助於緩解符號間干擾(ISI)且允許在接收器處的一個分接(one-tap)頻域等化(FDE)。
根據上述內容,第8圖所示的CSI-RS可使用性質1(例如,如等式4中所表達的)而產生。根據實施例,順序(例如,首先)可以DFT矩陣對進行預編碼。例如,DFT矩陣可由DFT塊701應用至序列以對該序列進行預編碼。根據實施例,DFT塊701的輸出可被映射至IDFT塊702的輸入組,例如,使得該輸入組對應於均勻交織的子載波組。根據實施例,在IDFT尺寸為24且DFT尺寸為6的情況下,則DFT輸出可被映射至以下任一者:(1)子載波0、4、8、12、16以及20,如果用於子載波的索引被假設為從0至N-1,其中N為IDFT尺寸;以及(2)子載波-12、-8、-4、0、4、8,如果用於子載波的索引被假設為從-N/2至N/2-1,其中N為IDFT尺寸。根據實施例,其餘子載波可被載入為零。
根據實施例,IDFT對DFT尺寸的比值L可確定在DFT預編碼參考訊號(例如,來自IDFT塊702的訊號輸出)中的序列的重複數目。例如,在上述情況下,其中L=N/M=4,輸出訊號具有4次序列的重複。根據實施例,這些重複的每一者可被稱之為子時間單元(例如,子符號)。根據實施例,例如,由於可在時域中執行類比波束成形,傳輸器可利用不同的(例如,各自的)類比波束
來傳輸子時間單元(例如,這些的每一者)。根據實施例,接收器可經由不同的(例如,各自的)波束來接收子時間單元(例如,這些的每一者)。
第9圖為示出了根據實施例的訊號的示意圖。
根據實施例,在如第9圖所示的情況下,對於在IDFT的輸出處的訊號,DFT及IDFT尺寸可被分別選為16及64,且至DFT的輸入訊號可以為隨機產生的QPSK調製訊號。
根據實施例,可在OFDM符號的子載波的子集中傳輸CSI-RS及/或SRS。根據實施例,子載波子集可以均勻分佈在(例如,特定的)頻率頻寬上,諸如與OFDM符號相關聯的頻率頻寬。根據實施例,(例如,特定的)頻率頻寬可以為用於系統(例如,系統頻寬),或者頻率頻寬可以為用於一或多個UE。根據實施例,子載波的子集可被佈置為在(例如,特定的)頻率頻寬上具有均勻的間隔(例如,以其定位)。根據實施例,子集的第一子載波的位置可被確定且子集的後續子載波可每N個子載波而被佈置(例如,被定位)。在特定頻率頻寬上可被均勻分佈的子載波子集可被稱之為交織分頻多工存取(IFDMA)(參見第8圖)。根據實施例,在IFDMA的情況下,序列[s1 s2...sM]可以是以IFDMA方式在子載波的子集中傳輸的CSI-RS序列。根據實施例,根據頻率偏移可確定子集的第一子載波的位置。頻率偏移在此可被稱之為CSI-RS重用模式、重用模式、梳狀(comb)索引、梳數等的任一者。
根據實施例,子載波的子集可位於相同的頻率位置(例如,子帶)中的子載波組中,且在此情況下,子載波的子集在頻域中可以是連續的。根據實施例,經由執行輸入序列的DFT,可產生CSI-RS序列[s1 s2...sM],其可被稱之為DFT輸入序列、DFT輸入音調及/或音調。根據實施例,執行輸入序列的DFT的輸出序列可被視為參考訊號序列(例如,CSI-RS序列)。根據實施例,DFT可與輸入序列長度具有相同的尺寸。根據實施例,可不使用除了可用於參考訊
號(例如,CSI-RS)的子載波子集之外的子載波。例如,除了可用於傳輸零(例如,代替參考訊號)的子載波的子集之外的子載波。根據實施例,傳輸波束組(例如,可包含一或多個傳輸波束的波束群組)可與來自使用於參考訊號(例如,CSI-RS)的一或多個重用模式之中的重用模式相關聯。例如,WTRU可被配置具有一或多個重用模式(例如,用於重用參考訊號序列、CSI-RS等),且每一個重用模式可與波束群組(例如,傳輸波束組)相關聯。根據實施例,不同的波束群組(例如,傳輸波束組)可被使用於每個一重用模式。
根據實施例,以下任一者可應用於重用模式:(1)重用模式可被確定為波束群組ID、傳輸波束的數目、接收波束的數目、在波束群組中的傳輸波束的數目、以及胞元特定參數(例如,胞元ID、子訊框號、槽號、無線電訊框號等)至少一者的函數;(2)包含在OFDM符號中的重用模式的數物可被確定為波束群組的數目(例如,被配置、確定、使用等的波束群組的數目)的函數;(3)用於WTRU的重用模式的最大數目可根據WTRU能力的任一數目而被確定,例如WTRU可指示、報告及/或回饋指示CSI-RS重用模式的最大數目的能力資訊;以及,例如重用模式的數目可被視為WTRU可同時測量及/或傳輸的波束的數目。
根據實施例,可使用超過一個類型的參考訊號(例如,超過一個類型的CSI-RS、SRS等)。根據實施例,在可位於子帶中的子載波組(例如,該子載波的子集可被定位)中可傳輸第一類型的參考訊號(例如,第一類型的CSI-RS),並在操作頻率頻寬上可被分佈的子載波的子集中傳輸第二類型的參考訊號。根據實施例,操作頻率頻寬可為在其中WTRU可接收或傳輸訊號的頻率頻寬。根據實施例,對於不同類型的參考訊號,以下任一者可被應用:
(1)第一類型參考訊號(例如,CSI-RS、SRS等)可被稱之為在操作頻率頻寬中為連續的實體資源塊(PRB)子集中傳輸的本地化(localized)參考訊
號(例如,本地化CSI-RS、SRS等);以及,例如,該本地化參考訊號可在PRB的子集中的所有子載波中被傳輸;
(2)第二類型參考訊號(例如,CSI-RS、SRS等)可被稱之為在操作頻率頻寬中的所有PRB上被傳輸的被分佈的參考訊號(例如,被分佈的CSI-RS、SRS等);以及例如,該被分佈的參考訊號可在操作頻率頻寬中的每一個PRB中的一或多個子載波中被傳輸;
(3)任一數目的PRB可被定位在操作頻率頻寬中,且,例如,操作頻率頻寬可依照UE特定方式或胞元特定方式而被配置,操作頻率頻寬可經由廣播通道來指示,及/或操作頻率頻寬可等於或小於系統頻寬;以及作為另一範例,在操作頻率頻寬小於系統頻寬的情況下,WTRU可被通知操作頻率頻寬。
(4)當在OFDM符號中用於子符號的所有傳輸波束為不同的情況下,可使用第一類型參考訊號(例如,CSI-RS、SRS等),以及當在OFDM符號中用於子符號的所有傳輸波束為相同的情況下,可使用第二類型參考訊號(例如,CSI-RS、SRS等);以及,例如,基於可在相關聯的DCI及/或較高層傳訊中被傳輸的指示,確定參考訊號類型。
(5)當傳輸波束的數目小於預定義臨界值的情況下,可使用第一類型參考訊號(例如,CSI-RS、SRS等),以及否則可使用第二類型參考訊號,反之亦然;以及
(6)當其他類型訊號(例如,資料、控制、同步等)相同OFDM符號中可被多工的情況下,可使用第一類型參考訊號(例如,CSI-RS、SRS等),而如果其他類型訊號相同OFDM符號中不可被多工,可使用第二類型參考訊號;例如,當OFDM符號可被用於傳輸CSI-RS及資料兩者的情況下,可使用第一類型CSI-RS,以及當OFDM符號不可被用於傳輸CSI-RS及資料兩者的情況下,可使用第二類型CSI-RS。
參考第6圖至第9圖並如上述的實施例中,可假設所有子載波均可用於傳輸,除了被提供(例如,被饋送、被載入)為零以實現交織分配的那些子載波。然而,本揭露並不限於此,且並非所有子載波(例如,並非所有子載波)均可用於傳輸。根據實施例,位於頻帶邊緣的子載波(例如,特定子載波)可被留作不使用。例如,在LTE中,在10MHz通道的情況下,可使用1024個子載波中的600個,而位於邊緣的其餘的子載波則可被留空。在此情況下,上取樣序列可被映射至相對應於可用子載波的IDFT的輸入。
根據實施例,在保護帶的情況下(例如,當保護帶存在及/或被使用於傳輸的情況下),IDFT的輸出可非(例如,確實地)與輸入序列s(例如,其饋送至IDFT者)相同。根據實施例,IDFT的輸出可為s的過取樣版本,而預留OFDM符號的重複結構。例如,在N=16個子載波但那些子載波的僅12個子載波為可用於使用的情況下,其餘的(例如,4個)子載波可由保護帶使用(例如,被預留用於保護帶)。在子載波索引為-8至7的另一情況下,子載波-6至5可為可用,而子載波-8、-7、6以及7被預留作為保護帶。根據實施例,在M=6(從而L=2)的情況下,則DFT的輸出可被映射至子載波-6、-4、-2、0、2、4。
第10圖為示出了根據實施例的傳輸器的DFT預編碼IDFT CSI-RS產生器的示意圖;以及第11圖為示出了根據實施例的傳輸器的帶有保護帶產生器的DFT預編碼IDFT CSI-RS的示意圖。
根據實施例,第10圖所示的傳輸器可為第8圖所示的傳輸器的替代(例如,但等同)表示。根據實施例,在序列[s1 s2...sM]被尺寸L×M L×M 的DFT處理之前被重複L次的情況下,輸出可為由L L上采样上取樣的另一序列。在此情況下,被映射至零子載波的零可由DFT操作產生。根據實施例,利用保護帶,傳輸器示意圖及所傳輸的訊號可如第11圖所示,其中假設DFT尺寸為M,IDFT尺
寸為N,以及重複次數為L。根據實施例,在IDFT的輸出處的每一個子符號的長度可為N/L,且過取樣比值可為N/M。
第12圖為示出了根據實施例的包含保護間隔的訊號的示意圖。根據實施例,當子符號為相同時,該子符號(例如,固有地)包含循環前綴(CP),因為子符號k的尾部可以與子符號k-1 k-1的尾部為相同。然而,在子符號以不同波束成形向量被預編碼的情況下,那麼連續的子符號(例如,包含它們各自的尾部)可以不為相同的,其可導致循環性質破裂。根據實施例,為了保留循環性質,可執行以下方法中的任一者。根據實施例,為了保留循環性質,序列的最後D個樣本可被設為0,例如,輸入序列可為[s1 s2...sM-D 0 0...0]。
這樣的序列可在具有尾部樣本為零或非常小的值中的任一者的IDFT之後創建輸出序列。根據實施例,這些樣本可充當用於子符號的循環前綴及/或可充當保護帶(例如,保護間隔)。根據實施例,保護帶可用於波束切換。根據實施例,具有零作為保護間隔的樣本訊號(例如,在序列s的端部具有2個零樣本)可如第12圖所示。值D可由通道延時回應及/或波束切換時間的函數來選擇。根據實施例,D的值可由中央控制器及/或被傳訊(例如,半靜態地)及/或經由控制通道所配置。
根據實施例,在子符號並非固有地包含CP的情況下,序列(例如,參考訊號序列)可被設計為具有內部循環前綴。根據實施例,該內部循環前綴可經由將序列的第一及最後D樣本設定為相同值來達成。例如,在D=2的情況下,序列可為[sM-1 sM s1...sM-2 sM-1 sM]。
根據實施例,可使用DFT操作來產生、確定及/或選擇參考訊號(例如,CSI-RS、SRS等)序列。根據實施例,參考訊號序列可為DFT操作的輸出。根據實施例,DFT操作的輸入訊號可被稱之為輸入參考訊號。然而,本揭露並不限於執行DFT操作的DFT,且,根據實施例,DFT還可被其他函數(例如,FFT)
所替換。根據實施例,任一數目的子序列可被使用於CSI-RS輸入序列,且子序列長度可短於CSI-RS輸入序列。根據實施例,子序列的數目可與在OFDM符號中的子序列的數目相同。根據實施例,針對CSI-RS輸入序列,任一子序列可具有相同的長度,且進一步的,每一子序列可與子符號相關聯。根據實施例,每一個子序列可包含空符號(例如,具有零值的符號)。在此情況下,當UE被配置、確定或指示以發送SRS時,WTRU可被指示空符號的數目被使用於子序列。
根據實施例,可根據以下任一者確定針對第一類型參考訊號(例如,本地化CSI-RS、本地化SRS等)的任一或多個子序列:(1)用於一或多個子序列的相同序列,在用於所有子符號的傳輸波束為相同的情況下;以及(2)用於每一個子序列的不同的序列,在跨子符號上的傳輸波束為不同的情況下。根據實施例,可根據使用於一或多個子序列的相同波束確定用於第二類型參考訊號(例如,分佈的CSI-RS、分佈的SRS等)的任一或多個子序列。根據實施例,在用於參考訊號(例如,CSI-RS)的子載波的子集是基於第二類型CSI-RS的情況下,用於所有子序列的相同序列可被使用。根據實施例,在用於參考訊號的子載波的子集為基於第一類型參考訊號的情況下,用於不同序列的任一者的子序列不同序列可被使用,或者反之亦然。
根據實施例,DFT輸入序列(其可被稱之為DFT音調及/或DFT輸入音調)可被細分為任一數目的分段(其可被稱之為間隔)。根據實施例,任一DFT輸入音調可為參考訊號音調。該參考訊號音調可為輸入參考訊號的一部分。DFT輸入音調的分段/間隔可包含組塊。該組塊可包含一或多個DFT輸入音調。組塊可例如為參考訊號組塊。該參考訊號組塊可包含一或多個參考訊號音調。根據實施例,該參考訊號音調可位於本地,大致彼此相鄰或者連續。例如,連續位於分段中的參考訊號音調可被稱之為參考訊號組塊。組塊的尺寸(例如,組塊尺寸)可被描述為及/或可指示該組塊中參考訊號音調的數目。根據實施例,
包含在參考訊號組塊中的參考訊號音調可用於相位追蹤或波束管理的任一者。在此,術語“分段”、“間隔”、“部分”以及“DFT輸入的子集”可被互換使用。另外,術語“音調”、“資源元素(RE)”以及“樣本”可被互換使用。
第32圖是示出範例性DFT輸入序列的示意圖。根據實施例,可在分段中使用至少兩個類型的DFT輸入音調。如第32圖所示,例如,每一個分段包含第一及第二類型DFT輸入音調3201、3202。第一類型DFT輸入音調3201可為參考訊號音調。第二類型DFT輸入音調3202可為用於資料訊號及/或空訊號的音調(例如,資料音調、空音調等)。根據實施例,第二類型DFT輸入音調3202可為資料音調,諸如PUSCH傳輸,且第一類型DFT輸入音調3201可為被使用於解調的參考訊號音調。根據實施例,第二類型DFT輸入音調3202可為空音調,且第一類型DFT輸入音調3201(例如,參考訊號音調)可被使用於測量。在此,術語空及/或空音調可指為作為零功率訊號、靜音(muted)RE、靜音資源、打孔(punctured)資源、速率匹配資源、及/或保護音調。
根據實施例,可基於與參考訊號音調所多工的資料的調製參數而確定組塊尺寸。例如,當第二類型DFT輸入音調3202為資料音調時,可基於資料的調製參數而確定組塊尺寸。調製參數可包含及/或指示被排程的頻寬、MCS水準、調製順序、傳輸功率、數字學以及波形的任一者。根據實施例,在第二類型DFT輸入音調3202為資料音調的情況下,以下任一者可應用:
(1)可基於與參考訊號音調所多工的資料的調製參數而確定組塊尺寸,其中調製參數可包含被調製的頻寬、MCS水準、調製順序、傳輸功率、數字學以及波形的任一者;
(2)可基於與參考訊號音調所多工的資料的調製參數而確定分段的數目;
(3)在分段中的組塊位置(例如,參考訊號組塊的中央、頭部或尾部的位置)可為以下任一者:被預定的、被配置的、或基於資料的被排程的參數而被確定的,例如,如果組塊的位置是被預定的,則組塊的位置可在分段的中間;
(4)在分段中的組塊(或者參考訊號音調)的存在可基於被排程的參數及較高層傳訊的任一者可而被確定(例如,如果被排程的頻寬小於臨界值,組塊可不存在用於資料傳輸,或者,例如,如果被排程的MCS小於臨界值,組塊可不存在用於資料傳輸);
(5)在時間窗(例如,DFT-s-OFDM符號、OFDM符號、槽、微槽或TTI)中的組塊可使用相同的波束或可與相同的波束相關聯。例如,參考訊號組塊可以:(i)相對於至少空間接收參數是準共位的(quasi-co-located,QCL-ed);或(ii)相對於所有準共位(quasi-co-location,QCL)參數是準共位的。
(6)上鏈傳輸的頻寬可經由與PUSCH傳輸相關聯的DCI所排程;以及
(7)可基於WTRU特定參數(例如,WTRU-ID、經由較高層傳訊配置的加密ID及/或被排程的參數)而確定用於參考訊號音調的序列,其中WTRU-ID可為用於排程的RNTI。
根據實施例,在第二類型DFT輸入音調3202為空音調的情況下,可應用以下任一者:
(1)組塊尺寸可經由較高層傳訊而被配置或者被預定;
(2)分段的數目可基於較高層傳訊、WTRU能力或所使用的波束的數目至少一者而被確定;
(3)在分段中組塊的位置可以是固定的(例如,該組塊的頭部的位置是固定的)或基於用於可被使用於資料傳輸的另一DFT-s-OFDM符號(或OFDM符號)的組塊的位置而被確定;
(4)組塊可以總是存在;
(5)在時間窗(例如,DFT-s-OFDM符號、OFDM符號、槽、微槽或TTI)中的組塊可以與不同波束相關聯(例如,參考訊號組塊相對於至少空間接收(Rx)參數是非準共位的);
(6)可經由較高層傳訊配置上鏈傳輸的頻寬;
(7)用於參考訊號音調的序列可根據相關聯的波束資訊(例如,波束ID)而被確定;
(8)組塊尺寸或分段的數目中的任一者可基於頻率範圍(例如,6GHz以下或6GHz以上)而被確定;
(9)組塊尺寸或分段的數目中的任一者可基於同步訊號(SS)塊的數目而被確定,其中該SS塊的數目可為以下任一者:在頻率範圍(例如,某一頻率範圍)中的SS塊的最大數目、被傳輸的SS塊(例如,實際被傳輸的SS塊)的數目、或所配置的SS塊的數目;以及
(10)組塊尺寸或分段數目中的任一者可基於數字學(例如,子載波間隔、CP長度)而被確定。根據實施例,當DFT輸入訊號被分割為分段及/或組塊時,可存在用於傳輸器及/或傳輸DFT-s-OFDM符號的任一數目的操作的模式。例如,可使用兩種操作模式,其中操作的第一模式與DFT輸入音調3202的第二類型被使用於資料的一情形相關聯,且其中操作的第二模式與DFT輸入音調3202的第二類型笨使用於空的一情形相關聯。根據實施例,操作的第一及/或第二模式可被使用於以下任一者上:每符號級(例如,DFT-s-OFDM符號、OFDM符號)、槽級(例如,槽或微槽)以及TTI級。例如,在排程的TTI中,第一組DFT-s-OFDM符號可與操作的第一模式相關聯,且第二組DFT-s-OFDM符號可與操作的第二模式相關聯。根據實施例,操作的第二模式可將空使用於未被參考訊號音調佔用的DFT輸入音調。在此情況下,WTRU可被配置為使用操作的第二模式用於DFT-s-OFDM符號子集,其中被配置用於操作的第二模式的DFT-s-OFDM符號可
被使用於波束訓練。例如,在波束訓練的情況下,每一分段可與波束(例如,傳輸(Tx)波束)相關聯。
根據實施例,被使用於分段的波束(例如,被使用於每一分段的波束)可基於相關聯的參考訊號而被確定。根據實施例,相關聯的參考訊號可為下鏈參考訊號(例如,CSI-RS、DM-RS、TRS、PTRS或SS塊)或SRS中的任一者。相關聯的參考訊號可與分段中的參考訊號音調是準共位的,例如,相對於至少空間接收參數(例如,QCL類型4)。根據實施例,(例如,每一分段中的)參考訊號音調的傳輸功率可基於相關聯的下鏈參考訊號而被確定。例如,路徑損失可基於(例如,從)相關聯的參考訊號而被確定(例如,被測量、被計算等),且所確定的路徑損失可在傳輸中被補償。作為另一範例,單個參考訊號可與一或多個分段相關聯,且在跨共用相同相關聯的參考訊號的分段上的傳輸功率可以是相同的。根據實施例,在針對波束管理(例如,傳輸波束訓練)的第一操作模式中,每一分段可與參考訊號相關聯,且(例如,每一個)相關聯的參考訊號可以在跨分段上是不同的。根據實施例,在用於波束管理(例如,接收波束訓練)的操作的第二模式中,任一數目的分段可與相同參考訊號相關聯,且任一數目的分段可位於相同的符號(例如,DFT-s-OFDM符號或OFDM符號)中。
根據實施例,參考訊號音調可具有相同的傳輸功率。參考訊號音調可與用於操作的任一數目的模式(例如,用於操作的第一及第二模式兩者)的相同的傳輸功率分配等式相關聯。根據實施例,參考訊號音調的傳輸功率可根據操作的模式而被確定,其中較高的傳輸功率可被使用於操作的模式之一(例如,用於操作的第二模式)。根據實施例,當操作的第一模式被使用於在TTI(例如,槽或微槽)中的所有DFT-s-OFDM符號時,參考訊號音調可位於DFT-s-OFDM符號子集中或在該DFT-s-OFDM符號子集中被傳輸。根據實施例,用於操作的第
一模式的參考訊號音調可被稱為相位追蹤參考訊號(PTRS),且用於操作的第二模式的參考訊號音調可被稱為SRS。根據實施例,可使用操作的第一模式而不管數字學(例如,子載波間隔)如何,且可將操作的第二模式用於(例如,僅)數字學的子集(例如,用於子載波間隔大於臨界值(例如,15kHz)的數字學的子集)。
根據實施例,在使用操作的第二模式的情況下(例如,將空音調用於未被參考訊號音調佔用的DFT輸入音調),可根據WTRU特定方式或胞元特定方式的任一者確定在分段中組塊的位置。例如,組塊位置可以是諸如WTRU-ID、C-RNTI或經由WTRU特定較高層傳訊所配置的加密ID的任一者的WTRU特定參數的函數。根據實施例,組塊位置可以是實體胞元-ID的函數。
根據實施例,在DFT-s-OFDM波形的情況下(例如,當DFT-s-OFDM波形被使用),在操作的第一模式(例如,包含將資料音調用於未被參考訊號音調佔用的DFT輸入音調的模式)中可被使用於上鏈傳輸。根據實施例,例如,操作的第二模式(例如,包含將空音調用於未被參考訊號音調佔用的DFT輸入音調的模式)可被使用於上鏈傳輸或下鏈傳輸的任一者,而不用考慮所使用的波形。
根據實施例,操作的第一模式或操作的第二模式的任一者的使用可在分段級被確定。例如,任一數目的分段可位於符號(例如,DFT-s-OFDM符號)中,且根據實施例,操作的第一模式或操作的第二模式的使用可基於哪個參考訊號與分段相關聯而被確定。例如,在第一分段與第一參考訊號相關聯的情況下,可將操作的第一模式使用於第一分段,並且在第二分段與第二參考訊號相關聯的情況下,可將操作的第二模式使用於第二分段。作為另一範例,第一參考訊號可為與在另一符號(例如,與用於資料傳輸的DM-RS準共位元的符號)中的資料相關聯的相同的參考訊號,而第二參考訊號可為與第一參考訊號
不同的參考訊號。根據實施例,第一參考訊號及第二參考訊號可基於參考訊號類型(例如,CSI-RS、TRS、SS塊、SRS)而被確定。
根據實施例,在操作的第一模式的情況下,參考訊號音調可為(例如,可被稱為作為)相位追蹤參考訊號(PTRS),以及在操作的第二模式的情況下,參考訊號音調可為(例如,可被稱為作為)波束追蹤參考訊號(BTRS)。如再次所引用的,BTRS可與子時間單元RS(STURS)、子時間RS(STRS)、波束參考訊號(BRS)、探測參考訊號(SRS)或波束訓練參考訊號(BTRS)的任一者互換使用。
具有IDFT及多個DFT塊的子單元CSI-RS產生
根據實施例,可產生多於一個重複訊號,以使得每一(例如,每一重複)訊號可從不同的天線埠被傳輸。根據實施例,不同的天線埠可與(例如,屬於)相同的傳輸器相關聯或可與不同的傳輸器相關聯的不同的天線埠中的任一者。根據實施例,在給定域(例如,頻率及/或時間域)中的兩個訊號之間的干擾應該是零或者很小,以使得可實現單或多數波束及/或通道狀態資訊的可靠測量。
根據實施例,可使用任一數目的本地化參考訊號(例如,第一類型的CSI-RS),且可在非重疊頻率位置中的相同OFDM符號中傳輸本地化參考訊號。根據實施例,在非重疊頻率位置中的相同OFDM符號中傳輸本地化參考訊號的情況下,可應用以下任一者:
(1)可以DFT操作產生每一本地化CSI-RS,且可在頻率位置傳輸輸出序列(例如,CSI-RS序列)
(2)每一本地化CSI-RS可與可包含一或多個波束(例如,或波束索引)的波束群組相關聯;
(3)可基於以下任一者確定本地化CSI-RS的頻率位置:(i)可被預先確定或經由較高層傳訊所配置的波束群組標識;(ii)傳輸波束的數目;(iii)在相同的OFDM符號中傳輸的本地化CSI-RS的數目;(iv)胞元特定參數,諸如胞元ID、子訊框號、槽號、訊框號等(其中,胞元可互換地稱為TRP、巨集胞元、服務胞元、主胞元等);以及(v)較高層配置;
(4)當使用多個本地化參考訊號時,UE可被配置(例如,被指示、被傳訊、被通知等)具有指示用於測量的本地化參考訊號(例如,CSI-RS)的資訊。例如,本地化CSI-RS配置組可用於UE群組,且UE可被指示為用於測量的本地化CSI-RS配置組中的哪一個;以及
(5)用於本地化CSI-RS的子載波的數目可被獨立地或分開地配置。
第13圖為示出了根據實施例的具有IDFT及多個DFT塊的子單元CSI-RS產生的示意圖。
根據實施例,在於天線埠使用相同子載波的情況下,可對序列進行配置(例如,被選擇、被設計等),以使得序列可在時域中被分開,如第13圖所示(其示出了概念性的傳輸器)。根據實施例,可跳過DFT步驟,以使得兩個(或者更多個)序列可被直接映射至相同的交織子載波組。根據實施例,在接收天線埠,所接收的序列可在時域中被分開。例如,與接收天線埠相關聯的接收器可(例如,首先)應用DFT,可(例如,之後)選擇感興趣的子帶,並可(例如,之後)使用IDFT將所接收的序列轉換至時域,以使得由IDFT所輸出的序列在時域中被分開。
第14圖為示出了根據實施例的具有IDFT及多個DFT塊子單元CSI-RS產生的示意圖。
根據實施例,兩個或更多個序列可使用DFT而被分開地預編碼,並可(例如,之後)被映射至交織後的子載波。進一步的,可使用於不同序列
的子載波組不相交(例如,序列在頻域中被分開)。參見第9圖,根據實施例,兩個序列可被示出為被映射至不同的子載波組。
根據實施例,如上參考性質1所述,在IDFT操作之後,時域訊號可包含重複的序列。例如,由IDFT單元所輸出的時域訊號可具有重複結構。根據實施例,在具有(例如,攜帶、被裝載)資料的子載波的索引為0、L、2L、...等的情況下,時域訊號可由相同的子時間單元組成。根據實施例,在不同子載波組被用於與原始訊號相同的子帶中的情況下,IDFT操作可輸出(例如,產生)時域中的重複訊號。
根據實施例,具有(例如,攜帶、被裝載)資料的子載波的索引可被改變為u、L+u、...等。也就是說,根據實施例,子載波的索引可被偏移u個子載波。在被偏移的子載波的情況下,IDFT的輸出可為z(n)exp()。因此,根據實施例,相位偏移可引入至每一樣本(例如,經由使得子載波偏移u個子載波)。
在被偏移的子載波的情況下,由於相位偏移是時間索引n的函數,所產生的序列(例如,由IDFT輸出的序列)相比於不具有被偏移的(例如,被使用的)子載波的情況可能不再具有相同的重複結構。進一步的,在被偏移的子載波的情況下,子單元可不具有固有的CP。根據實施例,在被偏移的子載波的情況下,被輸入至DFT的訊號在其尾部可具有零樣本,其依舊可充當用於每一子單元的CP,其可保留所輸入訊號的循環迴旋。
根據實施例,在沒有被偏移的子載波的情況下(例如,當u≠0時),可維持重複結構。例如,在n=N/u n =N/u的情況下,那麼,其中
,,,...,等,…,等。也
就是,根據實施例,對於給定u,在IDFT之後的時域訊號可具有個子時間單元,u≠0。根據實施例,對於L=8的情形,表1示出了範例性條件組。
第15圖為示出了根據實施例的IDFT輸出的示意圖。參見第15圖,根據實施例,範例(a)具有u=0的8個重複、範例(b)具有u=4的4個重複、以及範例(c)具有u=2的兩個重複。根據實施例,在L=2 l 的情況下,我們可具有精確的重複子時間單元的l個訊號,且l個訊號的每一個可具有21,22,...,2 l 次重複,其中訊號由不同的子載波分配而被產生。
根據實施例,用於產生參考訊號(例如,CSI-RS、SRS等)的方法允許用於(將用於)參考訊號產生的更大的子載波組。例如,第一傳輸器可使用具有u=0的子載波組以用於波束管理,且第二傳輸器(其可與第一傳輸器相干擾)可使用u=2的子載波組以用於波束管理。根據實施例,子符號的持續時間可用於確定訊號功率,且在接收器需要(例如,期望的)較高的SINR時,可較
佳具有較長子符號的重複訊號。進一步的,根據實施例,如果短子符號的功率足夠,則可使用具有較短子符號的重複訊號。
根據實施例,訊號的類型可指示訊號在OFDM符號中包含(例如,提供)了多少重複。根據實施例,訊號的類型可由中央控制器控制並可被傳訊至傳輸器及/或接收器。根據實施例,訊號的類型可以是傳輸功率、接收器的雜訊及/或干擾等級、波束寬度、及/或其他類似及/或合適的訊號特徵的任一者的函數。
具有IDFT及多個DFT塊的子單元CSI-RS產生
第16圖、第17圖及18圖為示出了根據實施例的具有DFT-s-OFDM的子單元CSI-RS產生的示意圖。第19圖為示出了根據實施例的訊號的示意圖。
根據實施例,可將DFT塊的輸出映射至在IDFT中的連續子載波組。例如,在IDFT的輸出處的訊號可為被饋入DFT的序列的過取樣版本,其中,參見第16圖,字母x代表因上取樣而被產生的時域樣本。根據實施例,在DTT尺寸為M以及IDFT尺寸為N的情況下,輸入序列可以比值N/M而被上取樣。根據某些實施例,在上取樣的情況下,在IDFT的輸出處的序列可不包含輸入至DFT的相同的樣本,即s1,s2,...,sM。
根據實施例,存在對DFT的序列輸入具有(例如,潛在地)不同的子序列的情況。在此情況下,根據實施例,IDFT的輸出可由如第17圖所示的子序列的過取樣版本組成。根據實施例,子序列可被配置為(例如,可具有結構)對波束切換時間及/或通道延遲展開進行補償。此子序列可具有以下結構中的任一者:(1)序列的最後D個樣本可被設定為0(例如,輸入序列可為[a1 a2…aK-D 0 0…0]);或(2)序列可被設計為具有內部循環前綴(例如,序列的第一及最後D個樣本可被設置為相同的值,從而在D=2的情況下,序列可為[aK-1
aK a1…aK-2 aK-1 aK])。根據實施例,子序列可用於攜帶附加資訊,例如,波束ID等。
根據實施例,正交矩陣的欄可被應用以擴散子序列,且傳輸器可以DFT-s OFDM符號從天線傳輸擴散後的序列。在a為子序列且c i 為正交矩陣P的第i欄的情況下,擴散後的序列可被表達為,其中為克洛涅克積(Kronecker product)。根據實施例,為了維持循環性質,可將CP及/或循環尾碼添加至e或a的任一者。根據實施例,擴散後的序列可利用DFT-s-OFDM核心而被形成且可(例如,之後)利用天線埠的任一數目而被傳輸。例如,P矩陣可被選為哈德瑪得(Hadamard)矩陣。根據實施例,DFT-s-OFDM符號可包含唯一字或CP。根據實施例,P矩陣及子序列矩陣應該被(例如,需要)被傳訊。根據實施例,子序列可為格雷碼(Golay)序列或扎德奧夫-朱(Zadoff-Chu)序列。
根據實施例,在子序列被選為是相同的情況下,則輸出訊號可具有如第18圖所示的重複的子時間單元。參見第19圖,示出了用於M=12及N=16的範例訊號,其中輸入序列具有兩個相同的子序列。根據實施例,第19圖中所示的訊號的結構可與第13圖所示的是相同的。
第20圖為示出了根據實施例的用於CSI-RS產生的子帶的示意圖。
根據實施例,在上述範例中,可以假設包含零子載波的中央子載波被使用於傳輸序列。進一步,根據實施例,在除了中央子帶之外的另一子帶被使用的情況下,可產生重複訊號。根據實施例,(例如,特定)子帶可取決於(例如,被選擇、確定等,根據)子帶尺寸、IDFT尺寸或保護帶子載波數目的任一者。例如,第20圖所示的頻帶示出了子載波總數目N=32且保護帶(例如,均勻分佈在帶兩端)尺寸可為16個子載波的情況。根據實施例,為了產生兩個
重複,可使用子帶1(例如,子載波索引-4至3)或子帶2(例如,子載波索引-8至-5以及4-7)的任一者。
用於干擾測量的零功率(ZP)CSI-RS
根據實施例,可將子時間單元DFT-s-OFDM CSI RS過程用於干擾測量。根據實施例,干擾測量時機可在隨意選擇的子時間單元之間變得可用。
第21圖為示出了根據實施例的零功率(ZP)CSI-RS的示意圖。根據實施例,如第21圖所示,經由零的向量將至DFT塊的輸入向量可劃分為多個分段。根據實施例,零分段可導致(例如,產生、創建)非ZP CSI-RS之間的靜默時間,其可被使用於干擾測量及/或相反方向波束測量。
根據實施例,在此類事件上所測量的干擾可被使用於多種不同目的。例如,根據實施例,在此類例子上所測量的干擾可被利用於在下一CSI-RS傳輸之前的波束的快速調整。作為另一範例,根據實施例,子TU零功率傳輸的可用性允許用於快速交替(ping-pong)波束配對過程。例如,對於該快速交替波束配對過程,每一側可在等待另一側的傳輸時進入(例如,到)靜默週期(例如,分別在他們自身傳輸之後),且(例如,在接收到另一側的傳輸)每一側可(例如,之後)在與另一側的傳輸所接收的波束上執行測量。
第22圖為示出了根據實施例的ZP CSI-RS的佈置的示意圖。參見第22圖,所示佈置示出兩個WTRU。根據實施例,在此佈置中,每一側(例如,每一傳輸/接收單元)可具有用於在其自身的CSI-RS測量之後的另一單元上的參考訊號(例如,CSI-RS)測量的(例如,立即的)時機。
具有DFT-s-OFDM及多個DFT塊的子單元CSI-RS產生
第23圖為示出了根據實施例具有DFT-s-OFDM及多個DFT塊的子單元CSI-RS產生的示意圖。根據實施例,在傳輸器具有多個天線埠的情況下,多個參考訊號(例如,CSI-RS、SRS等)經由將多個序列映射至不同子帶可從多
個序列被產生。例如,如第23圖所示,可將兩個序列用於被映射至(例如,被饋送至、被提供至等)與相應天線埠相關聯的各自的子帶的分別產生兩個參考訊號。根據實施例,在如第23圖所示產生多個參考訊號的情況下,可選擇兩個子帶使得它們各自的輸出訊號具有重複結構。根據實施例,這些各自的輸出訊號可在時域上重疊,而在頻域上分開。
根據實施例,多個參考訊號的產生(例如,使用)允許用於(例如,同時)波束管理,且可允許用於在不同時間在不同子帶上傳輸多個參考訊號。根據實施例,用於傳輸參考訊號(例如,CSI-RS、SRS等)的子帶可根據時間細微性(例如,OFDM訊號、多個OFDM訊號、槽、子訊框、傳輸時間間隔(TTI)或其他類似的及/或合適的時間細微性(例如,時間週期))而及時改變。根據實施例,與子帶相關聯的資訊(例如,指示子帶中的子載波的索引的資訊等)可被(例如,必須被)通訊至接收器。例如,與子帶相關聯的資訊可被半靜態地用傳訊,及/或可使用控制通道傳訊/指示。根據實施例,可從子帶池中選擇子帶,且該子帶的索引可被(例如,隱含地)傳訊。例如,子帶索引可經由使用諸如OFDM符號編號、子訊框編號、胞元ID等(例如,現有)的參數的任一者而被計算。
使用多個子帶具有IDFT的子單元CSI-RS產生
根據實施例,可使用交織子載波組來產生任一數目的訊號。例如,交織子載波組可被使用產生從任一數目天線埠傳輸的任一數目的訊號。根據實施例,任一數目的訊號可具有任一數目的子時間單元。例如,具有子時間單元的多個訊號可經由載入非重疊子帶的交織子載波組而被產生,其中多個訊號(例如,多個訊號中的每一者)根據非重疊子帶而被產生。
根據實施例,任一數目的頻寬部分(例如,子帶、子載波、窄帶、寬帶、本地頻帶或頻帶的任何其他部分等)可被使用於多工任一數目的傳輸波
束。根據實施例,頻寬部分(例如,每一頻寬部分)可與傳輸波束相關聯。根據實施例,子帶可與窄帶、頻寬部分或本地頻帶任一者互換使用。
根據實施例,傳輸波束(例如,標識傳輸波束的波束索引)可與子帶相關聯。例如,WTRU可根據子帶或子帶波束索引的任一者確定傳輸波束(例如,確定波束標識)。根據實施例,子帶的數目(例如,量)可被指示、被傳訊、被配置等。根據實施例,可使用子帶的數目來隱含地確定使用於ODFM符號的傳輸波束的數目。根據實施例,訊號可與在子帶中的波束相關聯。例如,在子帶中,CSI-RS可與波束相關聯,且可在交織子載波組中被傳輸。根據實施例,與波束相關聯的CSI-RS可被稱為CSI-RS資源。根據實施例,CSI-RS的配置參數可包含以下任一者:子帶索引、頻寬部分索引、在相關聯的子帶中的交織子載波組、天線埠的數目、週期性、相關傳輸功率或槽偏移。
第24圖為示出了使用多個天線埠產生具有子時間單元的OFDM傳輸的示意圖。
參見第24圖,示出了傳輸具有兩個子帶的訊號的情形。根據實施例,可將第一序列2401映射至屬於第一子帶的交織子載波組。根據實施例,可使用多工器2402來將第一序列2401映射至屬於頻寬的第一子帶的交織子載波組。例如,可存在以下情形:第一子帶可包含子載波[-8至7]。在此情形下,可經由載入具有第一序列的元素的子載波[-8,-6,-4,-2,0,2,4,6]而產生具有兩個子時間單元的訊號。在同樣情形下,可經由載入具有第一序列的元素的子載波[-16,-12,8,12]而產生具有四個子時間單元的訊號。
根據實施例,可將第二序列2403映射至在頻寬的第二子帶中的交織子載波組。例如,可存在第二子帶可包含子載波[-16至-9]以及[8至15]的情形。在此情形下,可經由載入具有第一序列的元素的子載波[-16,-14,-12,-10,8,10,12,14]而產生具有兩個子時間單元的訊號。進一步的,可經由載入具有第
一序列的元素的子載波[-16,-12,8,12]而產生具有四個子時間單元的訊號。根據實施例,訊號中的每一者可從分開的天線埠傳輸。
根據實施例,指示子載波索引(例如,在子帶中的)的資訊可被傳訊(例如,被傳遞、被配置等)至WTRU。根據實施例,子帶的數目或者在子帶中的子載波索引的任一者可由網路配置。根據實施例,參考子帶或者在該參考子帶中的子載波索引的任一者可由網路配置。根據實施例,第二子帶可根據第二子帶的第一、中心或最後一個子載波中的任一者與參考子帶的的第一、中心或最後一個子載波中的任一者之間的距離而被配置。根據實施例,重複因數(例如,在OFDM符號中的子時間單元的數目)可由網路配置。根據實施例,重複因數可被使用來確定在子帶中的子載波的數目(例如,被載入至子帶上的子載波的數目)。根據實施例,作為範例,在使用重複因數的情況下,可載入(例如,每個)L個子載波的一者,其中L為重複因數以及載入的第一子載波可以是子帶的第一子載波。根據實施例,任一數目的子帶可具有相同的(或不同的)重複因數。
使用FDM並具有DFT-s-OFDM子單元CSI-RS產生
第25圖為示出了根據實施例的CSI-RS及主同步訊號(PSS)的分頻多工(FDM)的示意圖。根據實施例,可存在參考訊號(例如,CSI-RS、SRS)可以(例如需要)在相同的OFDM符號中的另一類型的資料(例如,PSS通道資料)被傳輸的情形。根據實施例,參考訊號及其他類型的資料可被映射至不同的子載波(例如,可經由分頻多工(FDM)而被分開,且可(例如,依舊)產生重複參考訊號)。根據實施例,如第25圖所示,參考訊號及其他類型的資料可被映射至非重疊子載波。在具有(例如,被載入)參考訊號的子載波被(例如,合適地、適當地等)選擇的情況下,則與參考訊號相對應的OFDM訊號可具有重複子時間單元。
根據實施例,複合OFDM訊號可包含兩個部分(例如,參考訊號部分及另一類型資料部分)。例如,複合OFDM訊號可為兩部分的疊加。根據實施例,由於參考訊號及PSS被映射至不同子載波,波束選擇可以(例如,依舊)是可能的。根據實施例,在參考訊號及PSS被映射至不同子載波的情況下,在OFDM符號中的傳輸波束的切換可能會導致部分PSS訊號的部分在不同的波束上被傳輸。在此情況下,如果接收器未接收到PSS,接收器可(例如,依舊)在OFDM符號中切換接收波束。根據實施例,在使用寬波束的情況下,可在OFDM符號中切換波束,其可(例如,還有助於)增加PSS通道的的多樣性(diversity)。根據實施例,在使用寬波束的情況下,可假設CSI-RS及PSS在相同的天線埠上被傳輸。在參考訊號及PSS在不同天線埠上被傳輸的情況下,使用CSI-RS的波束訓練可能(例如,將、應該)不會影響到PSS傳輸。
探測參考訊號(SRS)傳輸
根據實施例,可以以上述產生CSI-RS相同及/或相類似的方式產生SRS(例如,以用於傳輸)。根據實施例,可使用性質1(例如,如等式4所表達)產生SRS。例如,傳輸器的DFT預編碼IDFT SRS產生器可以以如第8圖所示的傳輸器的DFT預編碼IDFT CSI-RS產生器以相同及/或相類似的方式產生SRS。類似於DFT預編碼IDFT CSI-RS產生器,DFT預編碼SRS產生器可以以逐塊為基礎產生DFT預編碼參考訊號,其中對於經由DFT預編碼IDFT CSI-RS產生器處理的參考訊號的每一塊(塊組)(“參考訊號塊”),可產生相應的DFT預編碼參考訊號。DFT預編碼IDFT CSI-RS產生器可包含DFT單元、子載波映射單元以及逆DFT(IDFT)單元。
第26圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖。
根據實施例,第26圖所示的傳輸器可為第8圖所示的傳輸器的替代(例如,但等同)表示。對於SRS傳輸,可能存在一個參考訊號應該(例如,需要)從多個天線埠中的每一個被傳輸的情況。在此情況下,隨著傳輸該一個參考訊號的天線埠的數目增加,用於從每一個天線埠傳輸SRS的開銷會增大。根據實施例,可經由使用如第26圖所示的DFT預編碼來減小SRS開銷傳輸。參見第26圖,示出了兩個天線埠Tx1及Tx2。然而,本揭露並不限於此,且根據討論於此的實施例,在使用根據在此的實施例的DFT預編碼執行SRS傳輸時,可使用任一數目的天線埠。
根據實施例,可選擇(例如,選定)至DFT塊的輸入,使得對於至一個或多個DFT塊的第i個輸入,僅一個DFT塊具有非零輸入值。例如,對於第一輸入,被饋送至兩個天線埠Tx1及Tx2中的DFT塊的符號可為[d1 0],其中d1被饋送至第一天線埠Tx1,而0(零)被饋送至第二天線埠Tx2。根據實施例,對於任一數目M個天線埠,至DFT塊的第i個輸入可具有一個非零值以及M-1個零。
根據實施例,DFT塊的輸出可被預編碼。例如,在由DFT塊在輸入上執行DFT操作之後,可對DFT操作的結果進行預編碼。根據實施例,DFT塊的輸出可被饋送至子載波映射單元(其可被稱之為預編碼器)。例如,預編碼(例如,在DFT塊的輸出上所執行的預編碼操作)可包含將DFT結果(例如,輸出)乘以一複數,例如偏移相位(例如,DFT結果的相位)。根據實施例,可將DFT塊中的任一者或多者映射至(關聯於)任一個或多個相同子載波。根據實施例,該子載波可為連續的、交織的或其組合的的任一者。根據實施例,第26圖示出了交織的子載波。
根據實施例,可將相同的子載波及相同的OFDM符號使用於來自多個天線埠的SRS的傳輸。例如,可將OFDM符號的一或多個子載波映射至一或多個天線埠以用於SRS傳輸。進一步的,由於輸入至DFT塊的兩個序列的非零符
號不相重疊(例如,被映射至各自的天線埠),接收器可對一或多個天線埠的SRS分開並可測量來自一或多個天線埠的通道。
第27圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖。
根據實施例,第27圖中所示的傳輸器可為第8圖所示的傳輸器的替代(例如,但等同)表示。
參考第27圖,DFT預編碼IDFT SRS產生器被示為被配置以產生與四個天線埠相對應的SRS傳輸。然而,本揭露並不限於此,並且DFT預編碼IDFT SRS產生器可產生與任一數目的天線埠相對應的SRS傳輸。根據實施例,訊號的非零值可依照非零值不相重疊的方式來根據天線埠而被輸入至DFT塊。例如,該非零值可依照相關/傳統技術的SRS波形產生器的方式而不相重疊。
資源特定的低PAPR SRS傳輸
根據實施例,可根據資源特定序列產生SRS。例如,可將資源特定序列使用作為用於產生SRS的輸入訊號。根據實施例,被使用於探測頻帶(例如,與SRS序列相對應的一或多個子載波)的SRS序列可以是例如與頻帶相對應的一或多個子載波或一或多個資源塊的任一者的索引的函數。根據實施例,SRS序列可以是包含索引的一或多個參數的函數。
第28圖為示出了根據實施例的SRS傳輸的示意圖。根據實施例,第28圖所示的SRS傳輸可由第8圖所示傳輸器或第8圖所示傳輸器的等同表示而被傳輸。
根據實施例,SRS傳輸可由與一或多個WTRU相對應的一或多個DFT預編碼IDFT SRS產生器所產生及/或包含。例如,如第28圖所示,SRS傳輸可包含WTRU 2801、2802及2803,每一者具有包含DFT預編碼IDFT SRS產生器的傳輸器。根據實施例,第一WTRU 2801可使用(例如,4個)序列s 1、s 2、s 3
以及s 4(例如,作為用於SRS傳輸的輸入訊號),其中每一序列被映射至K個資源塊。根據實施例,第二WTRU 2802可使用(例如,兩個)序列z 1以及z 2,而第三WTRU 2803可使用(例如,一個)序列w 1。
根據實施例,可對序列(例如,WTRU 2801至2803所使用的任一序列)進行設計(例如,配置)以使得由不同WTRU所映射至相同頻率資源的序列可提供完整的或部分的正交性(例如,相對於彼此及/或相應的訊號傳輸)。例如,在由不同UE使用序列s 1,z 1,w 1探測相同子載波的情況下,根據實施例,序列可從相同的Zadoff Chu基礎序列但以不同的循環偏移所導出。根據實施例,所應用的循環偏移對於每一WTRU可以是不同的,或者對於一或多個WTRU可以是相同的。
存在由IDFT波形產生器所產生的訊號的峰均功率比(RAPR)高的情況。根據實施例,可經由在將序列映射至子載波(例如,映射至各自的子載波)之前將該序列(例如,每一序列、WTRU 2801至2803使用的每一/任一序列)與一複數相乘,可減小由DFT預編碼IDFT SRS產生器所產生的訊號的PAPR。例如,包含在例如WTRU 2801至2803的任一者中的DFT預編碼IDFT SRS產生器可使用序列a1 s 1,a2 s 2,a3 s 3以及a4 s 4,其中a1,a2,a3以及a4可為選定的複數使得SRS訊號在IDFT之後具有低的PAPR。根據實施例,該複數可具有統一的量級,即,它們可僅用於對相位進行偏移。
根據實施例,複數(例如,與序列相乘者)可為資源特定的。根據實施例,複數可被定義(例如,被配置、被相關聯等)用於子載波或RB的任一者的組。例如,對於RB 0至K-1,可使用基礎序列s 1及相位偏移係數a1。也就是說,由基礎序列s 1及相位偏移係數a1組成的複數可被定義用於(例如,關聯於)RB 0至K-1。根據實施例,相位偏移值可以是所使用的序列的數目的函數。例如,對於WTRU,在對4000個RB進行探測的情況下,則a1 s 1,a2 s 2,a3 s 3以及a4 s 4可產
生最低的PAPR;且在對3000個RB進行探測的情況下,b1 s 1,b2 s 2,b3 s 3可產生最低的PAPR;其中,ai可不等於bi。
根據實施例,對於不同的WTRU,相位偏移值可以是不同的。換句話說,針對不同UE的相位偏移值相互之間可互不相同。根據實施例,可根據對於傳輸器及接收器兩者所已知的(例如,所建立的、所配置的、所傳訊的等)演算法來確定(例如,配置、選定等)相位偏移值。根據實施例,可根據任一數目的參數來選定相位偏移值。例如,可根據子載波索引、基礎序列、循環偏移等任一者來選定相位偏移值。根據實施例,在根據參數(諸如,子載波索引)選定相位偏移值的情況下,傳輸器及接收器可(例如,隱含地)知曉(例如,確定)這些值。根據實施例,可由網路(例如,基地台)傳訊及/或配置相位偏移值。根據實施例,可由WTRU確定(例如,配置、計算等)相位偏移值,並將該相位偏移值傳訊給網路(例如,基地台)。
第29圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖;以及第30圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖。根據實施例,第29圖及第30圖中所示的傳輸器可為第8圖所示的傳輸器的替代(例如,但等同)表示。
根據實施例,經由將預編碼應用至使用於SRS傳輸的序列可減小DFT預編碼IDFT SRS產生器所產生的訊號的PAPR。換句話說,使用DFT預編碼可設計(例如,選定、配置等)SRS序列。根據實施例,在DFT輸入的非零值不相重疊的情況下(例如,第29圖及第30圖),由IDFT(例如,IDFT塊)輸出的訊號可具有低PAPR。例如,在不考慮(例如,忽略)由於IDFT(例如,DFT預編碼IDFT SRS產生器2900及3000的IDFT)的大尺寸所導致的過取樣的情況下,在DFT預編碼IDFT SRS產生器2900的IDFT之後的時域訊號可為[d1 c1 f1 g1],且在DFT預編碼IDFT SRS產生器3000的IDFT之後的時域訊號可為[d1 d2 d3 d4 c1 c2 c3
c4]。根據實施例,由於序列至非重疊頻帶的映射,可將時域係數乘以相位偏移係數,而不增加PAPR。根據實施例,可將DFT輸出映射至連續或交織子載波的任一。
第31圖為示出了根據實施例的傳輸器的DFT預編碼IDFT SRS產生器的示意圖。根據實施例,第31圖中所示的傳輸器可為第8圖所示的傳輸器的替代(例如,但等同)表示。
可存在這樣的情況,即部分頻帶的數目很大,DFT輸入的非零值的索引可能會相重疊(例如,可被允許、被配置為相重疊等),如第30圖所示。在此情況下,根據實施例,DFT輸出(例如,一或多個DFT塊的輸出)可被乘以複數以控制PAPR。
結論
雖然上文中描述的特徵和元素採用了特定的組合,但是本領域普通技術人員將會瞭解,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。此外,這裡描述的方法可以在併入到電腦可讀媒體中以供電腦或處理器執行的電腦程式、軟體或韌體中實施。關於非過渡性電腦可讀儲存媒體的範例包含但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、諸如內部硬碟和可移磁碟之類的磁性媒體、磁光媒體、以及CD-ROM磁碟和數位多用途磁碟(DVD)之類的光學媒體。與軟體相關聯的處理器可以被使用以實施在UE、WTRU、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
此外,在上述實施例中,處理平臺、計算系統、控制器、和包含約束伺服器和含有處理器的會合點/伺服器的其他裝置被記錄。這些裝置可以包含至少一個中央處理單元(“CPU”)和記憶體。依照電腦程式設計領域具有通常知識者的實務,對於操作或指令的行為及符號性表示的引用可以由不同的CPU
和記憶體來執行。此類行為和操作或指令可被稱為“被執行”、“被電腦執行”或“被CPU執行”。
本領域具有通常知識者將會瞭解,行為以及符號性表示的操作或指令包含由CPU的電子訊號的操縱。電氣系統代表的是可能導致電氣訊號的結果的轉換及減低的資料位元,以及在記憶體系統中的記憶體位置的資料位元的保持,藉此重新配置或以否則變更CPU操作以及其他訊號處理。資料位元被保持的記憶體位置是具有與資料位元對應或代表的特定電、磁、光或有機性質的實體位置。應該理解的是,這裡的範例性實施例並不侷限於上述平臺或CPU,並且其他平臺和CPU同樣可以支援所提供的方法。
資料位元還可以被保持在包含磁碟片、光碟以及其他任何可供CPU讀取的揮發性(例如隨機存取記憶體(“RAM”))或非揮發性(例如唯讀記憶體(“ROM”))大型儲存系統的電腦可讀媒體上。電腦可讀媒體可以包含協作或互連的電腦可讀媒體,這些媒體可以單獨存在於處理系統之上,或可以分佈在可能位於處理系統本地或遠端的多個互連處理系統之中。可以理解的是,這些代表性實施例並不侷限於上述記憶體,並且其他的平臺和記憶體同樣可以支援所描述的方法。
在一個說明性實施例中,這裡描述的任何操作、處理等等都可以作為儲存在電腦可讀媒體上的電腦可讀指令來實施。電腦可讀指令可以由行動單元、網路元件及/或其他任何計算裝置的處理器來執行。
在關於系統的各個方面的硬體和軟體的實施之間幾乎是沒有區別的。硬體或軟體的使用通常(但並非總是,因為在某些情境中,在硬體和軟體之間的選擇有可能會變得很重要)是代表了成本與效率取捨的設計選擇。這裡描述的處理及/或系統及/或其他技術可以由各種載體(vehicle)來實現(例如硬體、軟體及/或韌體),並且較佳的載體可以隨著其中所利用的程序及/或系統及
/或其他技術的情境而改變。舉例來說,如果實施者確定速度和精度是首要的,那麼實施者可以選擇主要採用硬體及/或韌體載體。如果靈活度是首要的,則實施者可以選擇主要採用軟體的實施。作為替換,實施者可以選擇硬體、軟體及/或韌體的某種組合。
以上的詳細描述已經經由使用方塊圖、流程圖及/或範例而對裝置及/或流程的不同實施例進行了描述。就像此類方塊圖、流程圖及/或範例包含了一或多個功能及/或操作那樣,本領域具有通常知識者將會理解,此類方塊圖、流程圖或範例內部的每一個功能和/操作可以單獨及/或共同地由範圍廣泛的硬體、軟體、韌體或者虛擬地其任何組合來實施。例如,合適的處理器包含通用處理器、專用處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一或多個微處理器、控制器、微控制器、特定應用積體電路(ASIC)、特定應用標準產品(ASSP)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)及/或狀態機器。
雖然以特定的組合提供上述的特徵和元素,但是本領域具有通常知識者將會瞭解,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。本揭露並不是依照本申請中描述的特定實施例來限制的,這些實施例旨在作為不同方面的說明。正如本領域技術人員顯而易見的那樣,在不脫離本揭露的實質和範疇的情況下,可以做出眾多的修改和變化。本申請的說明書中使用的元件、行為或指令不應被理解成對本發明是至關重要或是不可或缺的,除非明確地提出。除了這裡枚舉的方法和裝置之外,本領域具有通常知識者將可以從以上的描述中顯而易見本揭露的範疇以內的功能等同的方法和裝置。此類修改和變化旨在落入所附的申請專利範圍的範疇以內。本揭露僅僅依照所附的申請專利範圍的條款及其此類申請專利範圍有權保護的等價物的全部範疇而被限制。應該理解的是,本揭露並不侷限於特定的方法或系統。
還應該理解的是,這裡使用的術語僅僅是為了描述特定的實施例的目的,且並不旨在進行限制。如本文所使用的,當本文引用的術語“使用者裝置”及其縮寫“UE”可以是指(i)如下所述的無線傳輸及/或接收單元(WTRU);(ii)關於如下所述的WTRU的多個實施例中的任何一個;(iii)具有無線能力及/或有線能力(例如可連接)的裝置,特別地,裝置配置了如下所述的WTRU的一些或所有結構和功能;(iv)配置了與如上所述的WTRU的所有結構和功能相比相對較少的結構和功能的具有無線能力及/或有線能力的裝置;或(v)類似裝置。在這裡提供了可以代表這裡述及的任一WTRU的範例WTRU的細節。
在某些代表性實施例中,這裡描述的主題的若干個部分可以經由特定應用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位訊號處理器(DSP)及/或其他集成格式來實施。然而,本領域具有通常知識者將會認識到,這裡揭露的實施例的一些方面可以全部或者部分在積體電路中以等同的方式實施,作為在一或多個電腦上運行的一或多個電腦程式(例如作為在一或多個電腦系統上運行的一或多個程式)來實施,作為在一或多個處理器上運行的一或多個程式(例如作為在一或多個微處理器上運行的一或多個程式)來實施,作為韌體來實施,或者作為虛擬地其任何組合來實施,並且依照本揭露,用於軟體及/或韌體的設計電路及/或編寫代碼同樣落入本領域具有通常知識者的技術範圍以內。此外,本領域具有通常知識者將會瞭解,這裡描述的主題的機制可以作為程式產品而以各種形式分發,並且無論使用了何種特定類型的訊號承載媒體來實際執行分發,這裡描述的主題的說明性實施例都是適用的。關於訊號承載媒體的範例包含但不限於以下各項:可記錄型媒體,例如軟碟、硬式磁碟機、CD、DVD、數位磁帶、電腦記憶體等等,以及傳輸類型的媒體,例如數位及/或類比通訊媒體(例如光纖纜線、波導、有線通訊鏈路、無線通訊鏈路等等)。
這裡描述的主題有時示出包含在其他不同的元件內部或是與之相連的不同元件。應該理解的是,如此描繪的架構僅僅是範例,並且用於實現相同功能的眾多其他架構實際上都是可以實施的。在概念上,實現相同功能的部件的任何佈置都被有效地“相關聯”,以使得實現期望的功能性。因此,在這裡組合在一起以實現特定功能的任何兩個組件都可被認為是彼此“相關聯”的,以使得將會實現期望的功能,而不用考慮架構或中間組件。同樣地,以這種方式關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以便彼此實現期望的功能,並且能以這種方式關聯的任何兩個元件也可以被視為彼此“能夠可操作地耦合”,以便實現期望的功能。關於能夠可操作地耦合的特定範例包含但不侷限於可以在實體上配對及/或在實體上交互的元件及/或可以以無線方式交互及/或無線交互的元件及/或在邏輯上交互及/或可在邏輯上交互的元件。
對於在這裡實質上使用了的任何的複數及/或單數術語,本領域具有通常知識者可以根據上下文及/或應用適當地從複數轉換為單數及/或從單數轉換為複數。為了清楚起見,在這裡可以明確地闡述各種單數/複數置換。
本領域具有通常知識者將會理解,一般來說,在這裡尤其是所附的申請專利範圍(例如所附的申請專利範圍的主體)中使用的術語通常旨在作為“開放式”術語(舉例來說,術語“包含”應被解釋成“包含但不侷限於”,術語“具有”應被解釋成“至少具有”,術語“包含”應被解釋為“包含但不侷限於”等等)。本領域具有通常知識者將會進一步理解,如果所引入的申請專利範圍敘述旨在特定的數目,那麼在該申請專利範圍中應該明確地敘述這種意圖,並且如果沒有這種敘述,那麼此類意圖是不存在的。舉例來說,如果旨在是僅僅一個項目,那麼可以使用術語“單個”或類似語言。作為理解輔助,後續的所附的申請專利範圍及/或這裡的描述可以包含使用介紹性片語“至少一個”以及“一或多個”以引入申請專利範圍的敘述。然而,使用此類短語不應被解釋成是這樣一種申請專利
範圍敘述的引入方式,即經由不定冠詞“一”或“一個”來將包含以這種方式引入的申請專利範圍敘述的任何特定的申請專利範圍侷限於只包含一個此類敘述的實施例,即使相同的申請專利範圍包含了介紹性片語“一或多個”或者“至少一個”以及諸如“一”或“一個”之類的不定冠詞的時候也是如此(例如,“一”及/或“一個”應該被解釋成是指“至少一個”或者“一或多個”)。這對於使用定冠詞來引入申請專利範圍敘述的時候也是如此。此外,即使明確敘述了所引入的特定數目的申請專利範圍敘述,本領域具有通常知識者也會認識到,這種敘述應被解釋成至少是指所敘述的數目(例如在沒有其他修飾語的情況下的關於“兩個敘述”的無修飾敘述意味著至少兩個敘述或是兩個或更多敘述)。此外,在這些實例中,如果使用了與“A、B和C等等中的至少一個”相類似的規約,那麼此類結構通常應該具有本領域具有通常知識者所理解的該規約的意義(例如,“具有A、B和C中的至少一個的系統”將會包含但不侷限於只具有A、只具有B、只具有C、具有A和B、具有A和C、具有B和C及/或具有A、B和C等等的系統)。在使用了與“A、B或C等等中的至少一個”相似的規約的實例中,此類結構通常應該具有本領域具有通常知識者所理解的規約的意義(舉例來說,“具有A、B或C中的至少一個的系統”包含但不限於只具有A,只具有B、只具有C、具有A和B,具有A和C,具有B和C及/或具有A、B和C等等的系統)。本領域具有通常知識者會將進一步理解,無論在說明書、申請專利範圍還是附圖中,提出兩個或更多替換項的幾乎任何分離性的詞語及/或片語都應被理解成預期了包含這些項中的一個、任一項或是所有兩項的可能性。舉例來說,片語“A或B”將被理解成包含“A”或“B”或“A和B”的可能性。此外,這裡使用的跟隨有一系列的多個項目及/或多個項目類別的術語“任一者”旨在包含單獨或與其他項目及/或其他項目類別相結合的項目及/或項目類別中的“任一者”,“任一組合”,“任一多個”及/或“任一的多個的組
合”。此外,這裡使用的術語“組”或“群組”旨在包含任何數目的項目,其中包含零。另外,這裡使用的術語“數目”旨在包含任何數目,其中包含零。
此外,如果本揭露的特徵或方面是依照馬庫西群組的方式描述的,那麼本領域具有通常知識者將會認識到,本揭露因此也是依照馬庫西群組中的任一的單個成員或成員子群組描述的。
正如本領域具有通常知識者所理解的那樣,出於任何和所有目的,例如在提供書面描述方面,這裡揭露的所有範圍還包含了任何和所有可能的子範圍以及其子範圍組合。任何所列出的範圍都能很容易地被認為是充分描述和啟用了被分解成至少兩等分、三等分、四等分、五等分、十等分等等的相同範圍。作為非限制性範例,本文討論的每一個範圍都可以很容易即可分解成下部的三分之一、中間的三分之一以及上部的三分之一範圍。本領域具有通常知識者將會理解,諸如“至多”、“至少”、“大於”、“小於”等等的所有語言包含了所敘述的數位,並且是指隨後可被分解成如上所討論的子範圍的範圍。最後,正如本領域具有通常知識者所理解的那樣,一個範圍會包含每一個單獨的成員。因此,舉例來說,具有1-3個胞元的群組指的是具有1、2或3個胞元的群組。同樣,具有1-5個單元的組是指具有1、2、3、4或5個胞元的群組,依此類推。
此外,除非進行說明,申請專利範圍不應該被錯誤地當作僅限於所提供的順序或元素。作為補充,任何申請專利範圍中使用的術語“用於……的裝置”旨在援引35 U.S.C.§112,¶6或方法-加-功能(mean-plus-function)的申請專利範圍格式,並且沒有單詞“方法用於(mean for)”的任何申請專利範圍均不具有這種意義。
可使用與軟體相關聯的處理器可被使用於實施在無線傳輸接收單元(WTRU)中的射頻收發器、使用者設備(UE)、終端、基地台、行動管理實體(MME)或演進型封包核心(EPC)或任何主機電腦。WTRU可與模組結
合、可在硬體及/或軟體(包含軟體定義的無線電(SDR))實施、以及諸如為攝影機、視訊攝影機模組、視訊電話、揚聲器電話、振動裝置、揚聲器、麥克風、電視收發器、免持耳機、鍵盤、藍牙®模組、調頻(FM)無線電單元、近場通訊(NFC)模組、液晶顯示(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視訊遊戲播放器模組、網際網路瀏覽器及/或任何無線區域網路(WLAN)或超寬頻帶(UWB)模組的其他元件。
雖然就通訊系統而言對本發明進行了描述,但是可以預見,系統可被實施為微處理器/通用電腦上的軟體(未示出)。在某些實施例中,各種元件功能中的一者或多者可被實施為控制通用電腦的軟體。
另外,雖然在此參考特定實施例對本發明進行了說明及描述,但本發明並不旨在侷限於所示的細節。相反,可在不悖離本發明的情況下,在申請專利範圍的等同的範圍及範疇中做出各種修改。
代表性實施例
在第一代表性實施例中,代表性方法包含:接收資訊,該資訊指示用於傳輸包含參考訊號(RS)的離散傅立葉變換(DFT)-擴散-正交分頻多工(DFT-s-OFDM)符號的至少操作的第一及第二模式的任一者;以及傳輸DFT-s-OFDM符號,該DFT-s-OFDM符號包含:(1)在資訊指示第一模式的情況下,RS及資料音調;或(2)資訊指示第二模式的情況下,RS及空音調,其中DFT-s-OFDM符號被劃分為多個分段,每一分段包含RS音調的組塊,以及其中組塊的尺寸或位置的任一者根據第一或第二模式的任一者而被確定。
在第二代表性實施例中,代表性裝置包含電路,該電路包含處理器、記憶體、接收器及傳輸器的任一者,被配置為:接收資訊,該資訊指示用於傳輸包含參考訊號(RS)的離散傅立葉變換(DFT)-擴散-正交分頻多工(DFT-s-OFDM)符號的至少操作的第一及第二模式的任一者;以及傳輸
DFT-s-OFDM符號,該DFT-s-OFDM符號包含:(1)在資訊指示第一模式的情況下,RS及資料音調;或(2)資訊指示第二模式的情況下,RS及空音調,其中DFT-s-OFDM符號被劃分為多個分段,每一分段包含RS音調的組塊,以及其中組塊的尺寸或位置的任一者根據第一或第二模式的任一者而被確定。
在第三代表性實施例中,代表性方法包含:在離散傅立葉變換(DFT)單元處,對填充為零的參考訊號序列進行預編碼,以產生頻域樣本;在子載波映射單元處,(i)將頻域樣本映射至可用子載波組中的均等間隔子載波子集,以及(ii)將空訊號映射至可用子載波組中的剩餘子載波,其中參考訊號序列包含參考訊號音調以及資料音調或空音調的任一者,其中參考訊號序列被劃分為多個分段,且其中每一分段包含參考訊號音調的組塊;根據映射,將頻域樣本及空訊號饋入至逆離散傅立葉變換(IDFT)單元;以及使用IDFT將由IDFT單元所接收的頻域樣本及空訊號轉換成基於塊的訊號,其中該基於塊的訊號包含用於在單個子訊框期間的傳輸的參考訊號序列的多個重複,且其中每一重複包含作為循環前綴而填充的零。
在第一代表性實施例中,在資訊指示第一模式的情況下,所有組塊包含在DFT-s-OFDM符號中的PTRS的使用相同的波束而被傳輸,以及在資訊指示第二模式的情況下,包含在DFT-s-OFDM符號中的PTRS的不同組塊使用不同波束而被傳輸。
在第一代表性實施例中,在第一波束測量方案被指示時,使用相同的波束,以及在第二波束測量方案被指示時,使用不同的波束。
在第一代表性實施例中,RS音調包含相位追蹤參考訊號(PTRS)以及波束管理參考訊號的任一者,參考訊號音調被用於解調或訊號測量的任一者,以及每一分段包含參考訊號音調以及任一資料音調或空音調的任一者。
在第一代表性實施例中,組塊尺寸指示包含在該組塊中的連續RS音調的數目。
在第一代表性實施例中,該方法進一步包含根據以下任一者確定針對參考訊號音調的序列:(1)UE特定參數,或(2)相關聯的波束資訊,以及UE特定參數包含UE-ID、經由較高層傳訊所配置的加密ID或被的參數的任一者。
在第一代表性實施例中,分段中的組塊的位置是以下任一者:被預定的、被配置的或根據資料的排程參數而被確定的。
在第一代表性實施例中,該方法進一步包含:根據較高層傳訊、UE能力或所使用的波束的數目的任一者,確定分段的數目;以及基於用於為了資料傳輸所使用的另一DFT-s-OFDM符號的組塊的位置,確定在分段中的組塊的位置。
在第一代表性實施例中,操作的第一模式或第二模式的任一者被應用至以下任一者:每符號級、槽級或TTI級,以及參考訊號音調具有相同的傳輸功率,以及傳輸功率根據操作的第一模式或第二模式的任一者而被確定。
在第一代表性實施例中,該方法進一步包含:使用模式的第二操作並根據UE特定參數或胞元特定參數中的任一者確定組塊位置,UE特定參數為UE-ID、C-RNTI或經由UE特定較高層傳訊配置的加密ID的任一者,以及其中胞元特定參數為實體胞元ID。
在第一代表性實施例中,在資訊指示第一模式的情況下,準配置(quasi-collocation,QCL)資訊被配置或指示用於DFT-s-OFDM符號中的所有分段,以及其中在資訊指示第二模式的情況下,QCL資訊被配置或指示用於每一分段。
3201:第一類型DFT輸入音調
3202:第二類型DFT輸入音調
DFT:離散傅立葉變換
RS:參考訊號
Claims (20)
- 一種在包括一處理器及一收發器的一無線傳輸/接收單元(WTRU)中實施的方法,該方法包括:接收指示與一離散傅立葉變換(DFT)-擴散-正交分頻多工(DFT-s-OFDM)符號相關聯的一或多個波束索引的一資訊,該DFT-s-OFDM符號包括一參考訊號(RS);以及根據指示該一或多個波束索引的該資訊而使用一或多個傳輸波束來傳輸該DFT-s-OFDM符號,該DFT-s-OFDM符號包括多個子符號,其中該RS的多個RS音調與空音調被包括在該多個子符號中。
- 如請求項1所述的方法,其中該空音調將該多個RS音調分段在該多個子符號中,其中所述傳輸該DFT-s-OFDM符號包括使用該一或多個波束中的一單一波束來傳輸該DFT-s-OFDM符號的該多個子符號中的所有該多個RS音調;以及其中該多個子符號中的每一個子符號包括一組該RS音調。
- 如請求項1所述的方法,其中該空音調將該多個RS音調分段在該多個子符號中,其中所述傳輸該DFT-s-OFDM符號包括使用該一或多個波束中的不同波束來傳輸該DFT-s-OFDM符號的該多個子符號中的不同子符號中的該多個RS音調,以及其中該多個子符號中的每一個子符號包括一組該RS音調。
- 如請求項1所述的方法,其中該RS包括一相位跟蹤參考訊號(PTRS)以及一波束管理參考訊號的任一者,其中該RS音調被用於解調或訊號測量的任一者,以及其中各子符號包括一組一或多個該RS音調及一或多個該空音調。
- 如請求項4所述的方法,其中該組一或多個該RS音調是被包括在該各自的子符號中的一數量的連續RS音調。
- 如請求項1所述的方法,進一步包括:根據(1)WTRU特定參數、或(2)一相關聯的波束資訊中的任一者,確定用於該RS音調的一序列,其中該WTRU特定參數包括一WTRU識別符(ID)、經由一較高層傳訊所配置的一加密ID、或一排程參數中的任一者。
- 如請求項1所述的方法,其中在該多個子符號中的一子符號內的該多個RS音調的一位置是被預定的、被配置的、或根據一排程參數而被確定的中的任一者。
- 如請求項1所述的方法,進一步包括:根據較高層傳訊、一WTRU能力及/或該一或多個傳輸波束的一數量中的任一者,確定該子符號數量;以及基於被用於資料傳輸的另一DFT-s-OFDM符號內的其他RS音調的另一位置,確定在該子符號中的至少一子符號內的該RS音調的一位置。
- 如請求項1所述的方法,進一步包括:在一相同槽或傳輸時間間隔(TTI)的任一者中,根據指示該一或多個波束索引的該資訊而使用該一或多個傳輸波束來傳輸另一DFT-s-OFDM符號做為該DFT-s-OFDM符號,其中一相同傳輸功率是用於在該DFT-s-OFDM符號的該多個子符號中傳輸各該RS音調。
- 如請求項9所述的方法,進一步包括:根據一WTRU特定參數或一胞元特定參數中的任一者,確定在該多個子符號中的該RS音調的一位置,其中該WTRU特定參數為一WTRU識別符(ID)、一C-RNTI或經由一WTRU特定較高層傳訊所配置的一加密ID中的任一者,以及其中該胞元特定參數為一實體胞元ID。
- 如請求項1所述的方法,其中一準配置(QCL)資訊是被配置或被指示為要與該DFT-s-OFDM符號的該多個子符號中的任一者相關聯中的任一者。
- 一種無線傳輸/接收單元(WTRU),包括:一處理器及一收發器,被配置為:接收指示與一離散傅立葉變換(DFT)-擴散-正交分頻多工(DFT-s-OFDM)符號相關聯的一或多個波束索引的一資訊,該DFT-s-OFDM符號包括一參考訊號(RS);以及根據指示該一或多個波束索引的該資訊而使用一或多個傳輸波束來傳輸該DFT-s-OFDM符號,該DFT-s-OFDM符號包括多個子符號,其中該RS的多個RS音調與空音調被包括在該多個子符號中。
- 如請求項12所述的WTRU,其中該空音調將該多個RS音調分段在該多個子符號中;以及其中該處理器及該收發器,被配置為:傳輸該DFT-s-OFDM符號,所述傳輸該DFT-s-OFDM符號包括使用該一或多個波束中的一單一波束來傳輸該DFT-s-OFDM符號中的該多個子符號中的所有該多個RS音調;以及其中,該多個子符號中的每一個子符號包括一組該RS音調。
- 如請求項12所述的WTRU,其中該空音調將該多個RS音調分段在該多個子符號中;其中所述傳輸該DFT-s-OFDM符號包括使用該一或多個波束中的不同波束來傳輸該DFT-s-OFDM符號的該多個子符號中的不同子符號中的該多個RS音調,以及其中該多個子符號中的每一個子符號包括一組該RS音調。
- 如請求項12所述的WTRU,其中該RS包括一相位跟蹤參考訊號(PTRS)以及一波束管理參考訊號的任一者,其中該RS音調被用於解調或訊號測量的任一者,以及其中各子符號包括一組一或多個該RS音調與一或多個該空音調。
- 如請求項12所述的WTRU,其中該處理器及該收發器被配置為:根據WTRU特定參數,確定用於該RS音調的一序列,其中該WTRU特定參數包括一WTRU識別符(ID)、經由一較高層傳訊所配置的一加密ID、或一排程參數中的任一者。
- 如請求項12所述的WTRU,其中該處理器及該收發器被配置為:在一相同槽或傳輸時間間隔(TTI)的任一者中,根據指示該一或多個波束索引的該資訊而使用該一或多個傳輸波束來傳輸另一DFT-s-OFDM符號做為該DFT-s-OFDM符號,以及其中一相同傳輸功率被用於在該DFT-s-OFDM符號的該多個子符號中傳輸各該RS音調。
- 如請求項12所述的WTRU,其中該處理器及該收發器被配置為:根據一WTRU特定參數或一胞元特定參數中的任一者,確定在該多個子符號中的該RS音調的一位置,其中該WTRU特定參數為一WTRU識別符(ID)、一C-RNTI、或經由一WTRU特定較高層傳訊所配置的一加密ID中的任一者,以及其中該胞元特定參數為一實體胞元ID。
- 如請求項12所述的WTRU,其中一準配置(QCL)資訊是被配置或被指示為要與該DFT-s-OFDM符號的該多個子符號中的任一者相關聯中的任一者。
- 如請求項15所述的WTRU,其中該組一或多個該RS音調是被包括在該各自的子符號中的一數量的連續RS音調。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762475221P | 2017-03-22 | 2017-03-22 | |
US62/475,221 | 2017-03-22 | ||
US201762500921P | 2017-05-03 | 2017-05-03 | |
US62/500,921 | 2017-05-03 | ||
US201762524252P | 2017-06-23 | 2017-06-23 | |
US62/524,252 | 2017-06-23 | ||
US201762565912P | 2017-09-29 | 2017-09-29 | |
US62/565,912 | 2017-09-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202231011A true TW202231011A (zh) | 2022-08-01 |
TWI808623B TWI808623B (zh) | 2023-07-11 |
Family
ID=62017604
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107109870A TW201902170A (zh) | 2017-03-22 | 2018-03-22 | 下一代無線通訊系統探測參考訊號(srs)方法、裝置、系統、架構及介面 |
TW111102690A TWI808623B (zh) | 2017-03-22 | 2018-03-22 | 下一代無線通訊系統參考訊號(rs)傳輸方法及裝置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107109870A TW201902170A (zh) | 2017-03-22 | 2018-03-22 | 下一代無線通訊系統探測參考訊號(srs)方法、裝置、系統、架構及介面 |
Country Status (9)
Country | Link |
---|---|
US (2) | US11671301B2 (zh) |
EP (2) | EP3602988A1 (zh) |
JP (2) | JP7287897B2 (zh) |
KR (1) | KR102604123B1 (zh) |
CN (2) | CN110447212B (zh) |
BR (1) | BR112019019739A2 (zh) |
RU (1) | RU2769813C2 (zh) |
TW (2) | TW201902170A (zh) |
WO (1) | WO2018175709A1 (zh) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3579480B1 (en) * | 2017-02-02 | 2022-08-17 | LG Electronics Inc. | Method for reporting channel state information in wireless communication system and apparatus for same |
CN108632005B (zh) * | 2017-03-24 | 2023-12-15 | 华为技术有限公司 | 一种参考信号传输方法、装置及系统 |
CN110574312B (zh) | 2017-04-14 | 2021-02-09 | Lg电子株式会社 | 在无线通信系统中执行初始连接的方法和设备 |
CN108811149B (zh) * | 2017-05-05 | 2023-02-03 | 华为技术有限公司 | 一种获取控制信息的方法及装置 |
JP6983257B2 (ja) * | 2017-06-16 | 2021-12-17 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Dm−rsとpt−rsの複合リソースマップ設計 |
CN109039965B (zh) * | 2017-06-16 | 2019-09-20 | 华为技术有限公司 | 参考信号的传输方法和传输装置 |
CN109150444B (zh) * | 2017-06-16 | 2022-01-11 | 华为技术有限公司 | 资源单元的设置、传输方法及装置 |
AU2018296096B2 (en) * | 2017-07-06 | 2021-07-01 | Sony Corporation | Communication device and communication method |
WO2019066625A1 (en) | 2017-09-29 | 2019-04-04 | Samsung Electronics Co., Ltd. | METHOD AND APPARATUS FOR TRANSMITTING A REFERENCE SIGNAL IN A WIRELESS COMMUNICATION SYSTEM |
US11006247B2 (en) * | 2017-10-27 | 2021-05-11 | Lg Electronics Inc. | Method for transmitting positioning information by terminal in wireless communication system supporting sidelink, and device therefor |
CN109803253B (zh) * | 2017-11-17 | 2020-06-23 | 维沃移动通信有限公司 | 一种信号传输方法、终端及网络设备 |
WO2019203526A1 (ko) * | 2018-04-17 | 2019-10-24 | 엘지전자 주식회사 | 참조 신호를 송수신하는 방법 및 이를 위한 장치 |
CN111130721B (zh) | 2018-10-31 | 2022-06-14 | 华为技术有限公司 | 数据传输方法和装置 |
CN111865517B (zh) * | 2019-04-25 | 2022-06-14 | 华为技术有限公司 | 发送参考信号的方法和装置 |
US11121900B2 (en) * | 2019-05-03 | 2021-09-14 | Qualcomm Incorporated | Discrete Fourier transform size decomposition |
CN112448796B (zh) * | 2019-08-29 | 2022-06-21 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
EP4090118A4 (en) * | 2020-02-06 | 2023-01-04 | Huawei Technologies Co., Ltd. | METHOD AND DEVICE FOR CONFIGURING REFERENCE SIGNAL RESOURCES |
CN113259287B (zh) * | 2020-02-13 | 2023-03-24 | 华为技术有限公司 | 一种通信方法及装置 |
US11799620B2 (en) * | 2020-04-27 | 2023-10-24 | Qualcomm Incorporated | Boosted noncoherent modulation |
CA3190146A1 (en) * | 2020-07-31 | 2022-02-03 | Huawei Technologies Co., Ltd. | Communication method, apparatus, and system |
US20220109537A1 (en) * | 2020-10-02 | 2022-04-07 | Qualcomm Incorporated | Frequency selective phase tracking reference signal (ptrs) allocation |
US20220303950A1 (en) * | 2020-10-15 | 2022-09-22 | Apple Inc. | Mechanisms for Indicating Beam Directions |
US11617171B2 (en) * | 2020-12-28 | 2023-03-28 | Qualcomm Incorporated | Time gap with tail samples for high frequency bands |
CN116803047A (zh) * | 2021-02-09 | 2023-09-22 | 联想(新加坡)私人有限公司 | 使用多个dft接收csi-rs和pdsch |
US20220329375A1 (en) * | 2021-04-09 | 2022-10-13 | Qualcomm Incorporated | Reference signal multiplexing with downlink data |
US12063093B2 (en) * | 2021-06-10 | 2024-08-13 | Qualcomm Incorporated | Configurations for utilization of a padding duration |
CN115550119A (zh) * | 2021-06-30 | 2022-12-30 | 华为技术有限公司 | 信号传输的方法和通信装置 |
EP4374530A1 (en) * | 2021-07-20 | 2024-05-29 | Lenovo (Singapore) Pte. Ltd. | Multiple waveforms based qcl/tci framework |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5361398A (en) * | 1993-01-29 | 1994-11-01 | Motorola, Inc. | Method and apparatus for transmission path delay measurements using adaptive demodulation |
EP2309695A1 (en) * | 2004-03-10 | 2011-04-13 | Qualcomm Incorporated | High data rate interface apparatus and method |
CN103036839B (zh) * | 2007-08-20 | 2015-09-30 | 瑞登有限责任公司 | Mu-mas、无线客户装置及在mu-mas中实施的方法 |
KR101613893B1 (ko) | 2007-10-04 | 2016-04-20 | 삼성전자주식회사 | 이동통신 시스템에서 데이터 인터리빙 방법 및 장치 |
JP5792615B2 (ja) | 2008-06-11 | 2015-10-14 | ノキア ソリューションズ アンド ネットワークス オサケユキチュア | ローカルエリア最適化アップリンクコントロールチャンネル |
WO2010048129A1 (en) | 2008-10-20 | 2010-04-29 | Interdigital Patent Holdings, Inc. | Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals |
WO2010058943A2 (ko) | 2008-11-24 | 2010-05-27 | 엘지전자주식회사 | 무선 통신 시스템에서 참조신호 전송 방법 및 장치 |
US8693429B2 (en) * | 2009-03-31 | 2014-04-08 | Qualcomm Incorporated | Methods and apparatus for generation and use of reference signals in a communications system |
US9351293B2 (en) * | 2009-09-11 | 2016-05-24 | Qualcomm Incorporated | Multiple carrier indication and downlink control information interaction |
CA2786700C (en) | 2010-01-07 | 2016-08-09 | Lg Electronics Inc. | Method and apparatus for generating a reference signal sequence in a wireless communication system |
CN102714569B (zh) | 2010-01-11 | 2016-04-13 | 韩国电子通信研究院 | 无线通信系统中的载波聚集 |
US9258160B2 (en) * | 2010-01-11 | 2016-02-09 | Qualcomm Incorporated | Multiplexing demodulation reference signals in wireless communications |
US8718168B2 (en) | 2010-01-20 | 2014-05-06 | Electronics And Telecommunications Research Institute | Method of transmitting uplink DM-RS multiplexed with data in uplink MIMO transmission |
US9106419B2 (en) | 2010-08-16 | 2015-08-11 | Qualcomm Incorporated | ACK/NACK transmission for multi-carrier operation with downlink assignment index |
US10873425B2 (en) | 2010-11-12 | 2020-12-22 | Qualcomm Incorporated | Acknowledgement / negative acknowledgement feedback for TDD |
US9826502B2 (en) * | 2011-07-25 | 2017-11-21 | Qualcomm Incorporated | Managing handoff triggering between unicast and multicast services |
EP2764640B1 (en) * | 2011-10-07 | 2019-12-18 | BlackBerry Limited | Interference management in a wireless network |
US9642148B2 (en) | 2012-05-01 | 2017-05-02 | Qualcomm Incorporated | Interference cancellation based on adaptive time division duplexing (TDD) configurations |
US20140023001A1 (en) | 2012-07-20 | 2014-01-23 | Qualcomm Incorporated | Apparatuses and methods of detection of interfering cell communication protocol usage |
JP6370808B2 (ja) * | 2013-01-18 | 2018-08-08 | エルジー エレクトロニクス インコーポレイティド | 無線接続システムにおいて擬似コロケーションを行う方法および装置 |
DE112015006784B4 (de) | 2015-08-07 | 2024-10-02 | Apple Inc. | UCI für die Carrier Aggregation |
EP3444957B1 (en) * | 2016-05-06 | 2020-08-05 | Huawei Technologies Co., Ltd. | Reference-signal transmission method and device |
US10367672B2 (en) * | 2016-09-28 | 2019-07-30 | Qualcomm Incorporated | Enhancements to phase-noise compensation reference signal design and scrambling |
CN118509018A (zh) * | 2017-01-06 | 2024-08-16 | 索尼公司 | 波束失效恢复 |
CN110401518B (zh) * | 2017-01-09 | 2020-10-27 | 华为技术有限公司 | 一种传输参考信号的方法以及设备 |
US10560851B2 (en) * | 2017-01-13 | 2020-02-11 | Samsung Electronics Co., Ltd. | Method and apparatus for uplink beam management in next generation wireless systems |
EP3577863A1 (en) * | 2017-02-06 | 2019-12-11 | Telefonaktiebolaget LM Ericsson (PUBL) | Systems and methods of reducing interference in a wireless communications system |
JP2020109882A (ja) * | 2017-04-27 | 2020-07-16 | シャープ株式会社 | 基地局装置、端末装置、通信方法、および、集積回路 |
CN108809598B (zh) * | 2017-05-05 | 2023-10-20 | 华为技术有限公司 | 一种通信方法及装置 |
CN114285714B (zh) * | 2017-06-16 | 2024-05-14 | 华为技术有限公司 | 相位跟踪参考信号处理方法与装置 |
CN109151970B (zh) * | 2017-06-16 | 2023-10-20 | 华为技术有限公司 | 一种发送功率的确定方法、处理芯片及通信设备 |
-
2018
- 2018-03-22 KR KR1020197027648A patent/KR102604123B1/ko active IP Right Grant
- 2018-03-22 TW TW107109870A patent/TW201902170A/zh unknown
- 2018-03-22 CN CN201880019737.4A patent/CN110447212B/zh active Active
- 2018-03-22 TW TW111102690A patent/TWI808623B/zh active
- 2018-03-22 RU RU2019132075A patent/RU2769813C2/ru active
- 2018-03-22 BR BR112019019739A patent/BR112019019739A2/pt unknown
- 2018-03-22 EP EP18718650.7A patent/EP3602988A1/en not_active Withdrawn
- 2018-03-22 US US16/495,253 patent/US11671301B2/en active Active
- 2018-03-22 CN CN202311178641.1A patent/CN117221061A/zh active Pending
- 2018-03-22 EP EP23162395.0A patent/EP4221113A1/en active Pending
- 2018-03-22 WO PCT/US2018/023742 patent/WO2018175709A1/en unknown
- 2018-03-22 JP JP2019552093A patent/JP7287897B2/ja active Active
-
2023
- 2023-04-17 US US18/135,334 patent/US20230254193A1/en active Pending
- 2023-05-25 JP JP2023086033A patent/JP2023113731A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4221113A1 (en) | 2023-08-02 |
JP2023113731A (ja) | 2023-08-16 |
JP7287897B2 (ja) | 2023-06-06 |
TWI808623B (zh) | 2023-07-11 |
US11671301B2 (en) | 2023-06-06 |
RU2019132075A3 (zh) | 2021-08-02 |
CN110447212B (zh) | 2023-10-03 |
TW201902170A (zh) | 2019-01-01 |
WO2018175709A1 (en) | 2018-09-27 |
US20230254193A1 (en) | 2023-08-10 |
KR20190141129A (ko) | 2019-12-23 |
RU2769813C2 (ru) | 2022-04-06 |
BR112019019739A2 (pt) | 2020-04-14 |
RU2019132075A (ru) | 2021-04-12 |
EP3602988A1 (en) | 2020-02-05 |
CN117221061A (zh) | 2023-12-12 |
JP2020515179A (ja) | 2020-05-21 |
US20200244503A1 (en) | 2020-07-30 |
CN110447212A (zh) | 2019-11-12 |
KR102604123B1 (ko) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI808623B (zh) | 下一代無線通訊系統參考訊號(rs)傳輸方法及裝置 | |
TWI794242B (zh) | 藉由上鏈共享資料通道傳輸上鏈控制資訊(uci)方法、裝置、系統、結構及介面 | |
US11765012B2 (en) | Methods for flexible reference signal transmission with single carrier frequency domain multiple access (SC-FDMA) and OFDMA | |
US20200396698A1 (en) | Uplink asynchronous non-orthogonal multiple access | |
US20190222371A1 (en) | Code-domain non-orthogonal multiple access schemes | |
WO2013069538A1 (ja) | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 | |
CN110612736B (zh) | 通信装置,基站,方法和记录介质 | |
US10644919B2 (en) | Multi-length ZT DFT-s-OFDM transmission | |
CN108809556B (zh) | 发送和接收参考信号的方法、网络设备和终端设备 | |
JP2016106499A (ja) | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 |