TW202229890A - Temperature management method based on automatic test equipment - Google Patents

Temperature management method based on automatic test equipment Download PDF

Info

Publication number
TW202229890A
TW202229890A TW110128050A TW110128050A TW202229890A TW 202229890 A TW202229890 A TW 202229890A TW 110128050 A TW110128050 A TW 110128050A TW 110128050 A TW110128050 A TW 110128050A TW 202229890 A TW202229890 A TW 202229890A
Authority
TW
Taiwan
Prior art keywords
unit
power consumption
temperature
model
transient
Prior art date
Application number
TW110128050A
Other languages
Chinese (zh)
Other versions
TWI788933B (en
Inventor
津 魏
經祥 張
胡雪原
Original Assignee
大陸商勝達克半導體科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商勝達克半導體科技(上海)有限公司 filed Critical 大陸商勝達克半導體科技(上海)有限公司
Publication of TW202229890A publication Critical patent/TW202229890A/en
Application granted granted Critical
Publication of TWI788933B publication Critical patent/TWI788933B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Temperature (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

A temperature management method based on automatic test equipment includes: establishing a mathematic model; performing simulation; analyzing a predicted result, and determining whether temperature is uniform and stable, if the temperature is uniform and stable, performing the last step, or if the temperature is not uniform and stable, performing the next step; deriving a new plan for adjusting a rotation speed of a fan; checking whether a difference exists between the new plan and the previous plan, if the difference exists, performing the last step, or if the difference does not exist, performing the next step; setting the new plan as a new element condition and performing the previous steps again; and storing the current plan for adjusting the rotation speed of the fan as a final plan.

Description

基於自動測試機的溫度管理方法Temperature management method based on automatic testing machine

本發明涉及半導體測試技術領域,具體地說是一種基於自動測試機的溫度管理方法。The invention relates to the technical field of semiconductor testing, in particular to a temperature management method based on an automatic testing machine.

半導體自動測試機台提供大量的測試針腳。每個針腳背後都連接一套確定種類的測試電路。測試針腳與被測晶片的接腳一對一相連,測試機台運行測試程式,產生預定義的激勵訊號給到被測晶片的輸入接腳,並測量晶片的所有相連接腳的電壓電流的反應,判斷是否符合預期。Semiconductor automatic test machines provide a large number of test pins. A set of test circuits of a certain kind is connected behind each pin. The test pins are connected to the pins of the tested chip one-to-one. The test machine runs the test program, generates a predefined excitation signal to the input pins of the tested chip, and measures the voltage and current responses of all the connected pins of the chip. , to determine whether it meets expectations.

在此過程中,機台內部的測試電路大量發熱需要及時排出。為了保證設備安全,系統散熱設計往往按照最大理論發熱量來設計。由於模組化設計,每個子模組都要按照最惡劣的場景設計。其代價是結構設計難度增加,系統體積,重量,風扇噪音等問題。但實際上,真實的發熱情況和測試程式高度相關。如果根據測試程式能預判測試機台內部的不同空間的發熱情況,則可以優化測試程式使機台內部發熱均衡,進而有機會硬體設計不按照最大理論發熱量設計散熱,而是發現測試程式不合理會導致局部過熱時,提出警示,通過優化測試程式來符合系統的散熱約束。During this process, a large amount of heat generated by the test circuit inside the machine needs to be discharged in time. In order to ensure the safety of the equipment, the system heat dissipation design is often designed according to the maximum theoretical heat generation. Due to the modular design, each sub-module must be designed according to the worst scenario. The price is increased structural design difficulty, system volume, weight, fan noise and other issues. But in fact, the actual heating situation is highly correlated with the test program. If the heating conditions of different spaces inside the test machine can be predicted according to the test program, the test program can be optimized to balance the heat inside the machine, and there is a chance that the hardware design does not design heat dissipation according to the maximum theoretical heat generation, but finds the test program. When unreasonable causes local overheating, a warning is issued, and the test program is optimized to meet the cooling constraints of the system.

在整個測試程式運行過程中,測試機台的每個測試針腳的電壓電流規律都是有明確的預期。如果被測晶片行為完全符合預期,則對測試機台每個針腳背後的測試電路的功耗也是完全可以預期的。During the running process of the whole test program, the voltage and current laws of each test pin of the test machine are clearly expected. If the wafer under test behaves exactly as expected, the power consumption of the test circuit behind each pin of the test bench is also completely predictable.

本發明為克服現有技術的不足,提供一種基於自動測試機的溫度管理方法,根據一系列的數學建模及模擬計算,合理的推導出最優的溫度管理方案,延長自動測試的使用壽命。In order to overcome the deficiencies of the prior art, the present invention provides a temperature management method based on an automatic testing machine. According to a series of mathematical modeling and simulation calculations, the optimal temperature management scheme is reasonably derived to prolong the service life of the automatic testing.

為實現上述目的,設計一種基於自動測試機的溫度管理方法,包括:In order to achieve the above purpose, a temperature management method based on automatic testing machine is designed, including:

步驟1:根據建立數學模型的方法,結合各種要素條件,建立一個系統分散式溫度預測的數學模型;Step 1: According to the method of establishing a mathematical model and combining various element conditions, establish a mathematical model for systematically distributed temperature prediction;

步驟2:根據該數學模型進行模擬計算,得到系統分散式溫度變化的預測結果;Step 2: carry out simulation calculation according to the mathematical model, and obtain the prediction result of the distributed temperature change of the system;

步驟3:分析預測結果,判斷自動測試機的溫度是否均勻且穩定,如果溫度均勻溫度,則跳轉到步驟7,否則執行下一步;Step 3: Analyze the prediction result, and judge whether the temperature of the automatic testing machine is uniform and stable. If the temperature is uniform, go to Step 7, otherwise, go to the next step;

步驟4:根據預測結果,推導出風扇轉速調節的優化方案;Step 4: According to the prediction results, deduce the optimization scheme of fan speed adjustment;

步驟5:比對新的優化方案和上一次的優化方案是否有差異,如果沒有差異,則執行步驟7,否則執行下一步驟6;Step 5: Compare whether there is a difference between the new optimization scheme and the last optimization scheme, if there is no difference, go to step 7, otherwise go to the next step 6;

步驟6:將優化方案的風扇轉速作為新的要素條件,其他要素條件不變,重新執行步驟1~5;以及Step 6: Re-execute steps 1 to 5 with the fan speed of the optimization scheme as the new factor condition, and the other factor conditions remain unchanged; and

步驟7:儲存當前的風扇轉速控制方案作為最終優化方案。Step 7: Save the current fan speed control scheme as the final optimization scheme.

所述的建立數學模型的方法,具體流程如下:The described method for establishing a mathematical model, the specific process is as follows:

步驟1-1:結合單元電路特徵,分析測試程式,得出單元電路的瞬態輸出電壓和瞬態輸出電流的值;Step 1-1: Combine the characteristics of the unit circuit, analyze the test program, and obtain the values of the transient output voltage and transient output current of the unit circuit;

步驟1-2:建立單元電路的一瞬態功耗模型;Step 1-2: establish a transient power consumption model of the unit circuit;

步驟1-3:建立單元電路的一功耗模型;Step 1-3: establish a power consumption model of the unit circuit;

步驟1-4:建立單模組二維(2D)功耗模型;Steps 1-4: Establish a single-module two-dimensional (2D) power consumption model;

步驟1-5:結合熱傳導模型和風冷模型,建立單模組三維(3D)有限元素溫度模型;以及Steps 1-5: A single-module three-dimensional (3D) finite element temperature model is established by combining the heat conduction model and the air cooling model; and

步驟1-6:建立系統3D有限元素溫度模型。Steps 1-6: Build a 3D finite element temperature model of the system.

所述的步驟1-1的具體方法如下:The specific method of the step 1-1 is as follows:

(1)    能夠結合單元電路特徵,分析測試程式,得出單元電路瞬態輸出電壓和瞬態輸出電流的值;(1) Can combine the characteristics of the unit circuit, analyze the test program, and obtain the value of the transient output voltage and transient output current of the unit circuit;

(2)    根據自動測試機設計,針對9種類單元電路,名稱為接腳電動通道(PE)、 元件電源通道(DPS)、參數測量單元(PMU)、高電壓通道( HV)、高速任意波形產生器(HSAWG)、高解析度任意波形產生器( HRAWG)、頻率測量單元(FMU)、高速數位轉化器(HSDTZ)、高解析度數位轉化器(HRDTZ);(2) According to the design of the automatic testing machine, for 9 types of unit circuits, the names are Pin Electric Channel (PE), Component Power Channel (DPS), Parameter Measurement Unit (PMU), High Voltage Channel (HV), High-speed Arbitrary Waveform Generation (HSAWG), high-resolution arbitrary waveform generator (HRAWG), frequency measurement unit (FMU), high-speed digital converter (HSDTZ), high-resolution digital converter (HRDTZ);

(3)    被測晶片的規格參數有數個已知量或者標準量,從中匯出元件電源電壓(VDD)、元件電源電流(IDD)、負載電阻(Rload);(3) There are several known or standard parameters for the specifications of the chip under test, from which the component power supply voltage (VDD), component power supply current (IDD), and load resistance (Rload) are exported;

(4)    對於名稱為接腳電動通道(PE)的單元電路,是自動測試機的最主要的發熱源,應用接腳電動通道(PE)瞬態工作模型得出瞬態輸出電壓和瞬態輸出電流的值;(4) For the unit circuit named Pin Electric Channel (PE), which is the main heat source of the automatic testing machine, the transient output voltage and transient output can be obtained by applying the Pin Electric Channel (PE) transient working model the value of the current;

(5)    對於名稱為該元件電源通道(DPS)的單元電路,瞬態輸出電壓為元件電源電壓Vout=VDD、 瞬態輸出電流為元件電源電流;(5) For the unit circuit named the component power supply channel (DPS), the transient output voltage is the component power supply voltage Vout=VDD, and the transient output current is the component power supply current;

(6)    對於名稱為參數測量單元(PMU)、高電壓通道( HV)、高速任意波形產生器(HSAWG)以及高解析度任意波形產生器( HRAWG)的單元電路,瞬態輸出電壓直接由測試程式導入,即測試程式在使用這些單元電路的時候均會明確設定瞬態輸出電壓,瞬態輸出電流為瞬態輸出電壓除以負載電阻;以及(6) For the unit circuits named Parameter Measurement Unit (PMU), High Voltage Channel (HV), High Speed Arbitrary Waveform Generator (HSAWG) and High Resolution Arbitrary Waveform Generator (HRAWG), the transient output voltage is directly determined by the test Program import, that is, the test program will clearly set the transient output voltage when using these unit circuits, and the transient output current is the transient output voltage divided by the load resistance; and

(7)    對於名稱為頻率測量單元(FMU)、高速數位轉化器(HSDTZ)、高解析度數位轉化器(HRDTZ)的單元電路,瞬態輸出電壓為0,瞬態輸出電流為0。(7) For the unit circuits named frequency measurement unit (FMU), high-speed digital converter (HSDTZ), and high-resolution digital converter (HRDTZ), the transient output voltage is 0, and the transient output current is 0.

所述的步驟1-2的具體方法如下:The specific methods of the steps 1-2 are as follows:

(1)    設置單元電路內部的等效輸出電阻;(1) Set the equivalent output resistance inside the unit circuit;

(2)    計算等效輸出電阻的發熱量:已知單元電路的供電電壓為Vps,瞬態輸出電壓為Vout,瞬態輸出電流為Iout,則Rs的瞬態功耗為P_Rs=(Vps-Vout)×Iout;以及(2) Calculate the calorific value of the equivalent output resistance: it is known that the power supply voltage of the unit circuit is Vps, the transient output voltage is Vout, and the transient output current is Iout, then the transient power consumption of Rs is P_Rs=(Vps-Vout ) × Iout; and

(3)    單元電路的瞬態功耗模型的公式:發熱功耗=靜態功耗+動態發熱功耗=靜態功耗+(供電電壓-輸出電壓)×輸出電流,即Psump=Ws+(Vps-Vout) × Iout,其中,Psump為發熱功耗,Ws為電路靜態功耗,Vps為測試電路供電電壓,Vout為測試電路輸出電壓,Iout為輸出電流。(3) The formula of the transient power consumption model of the unit circuit: heating power consumption = static power consumption + dynamic heating power consumption = static power consumption + (power supply voltage - output voltage) × output current, that is, Psump = Ws + (Vps - Vout ) × Iout, where Psump is the heating power consumption, Ws is the static power consumption of the circuit, Vps is the power supply voltage of the test circuit, Vout is the output voltage of the test circuit, and Iout is the output current.

所述的步驟1-3的具體方法如下:The specific methods of the steps 1-3 are as follows:

(1)    根據單元電路的瞬態功耗模型,以測試程式的主時脈的週期為時間單位,根據輸出電壓函數和輸出電流函數轉換為單元電路的發熱功耗的時間變化曲線;(1) According to the transient power consumption model of the unit circuit, take the period of the main clock pulse of the test program as the time unit, and convert the time change curve of the heating power consumption of the unit circuit according to the output voltage function and the output current function;

(2)    以時間窗為單位進行功率積分,降低發熱功耗的時間變化曲線的時間解析度,減少資料量,得出能夠檢索任意時刻單元的發熱功耗的查找資料表;以及(2) Perform power integration in units of time windows, reduce the time resolution of the time-varying curve of heating power consumption, reduce the amount of data, and obtain a lookup data table that can retrieve the heating power consumption of the unit at any time; and

(3)    合併輸出整個自動測試機所有單元電路的發熱功耗查找資料表,得到能夠索引系統所有單元電路在所有時刻的發熱功耗的查找資料表。(3) Combine and output the lookup data table of heating power consumption of all unit circuits of the entire automatic testing machine, and obtain a lookup data table that can index the heating power consumption of all unit circuits of the system at all times.

所述的步驟1-4的具體方法如下:The specific methods of the steps 1-4 are as follows:

(1)    將每個模組簡化視為片狀矩形,為此建立2D模型;(1) Simplify each module as a sheet rectangle, and build a 2D model for this;

(2)    劃分每個片狀矩形的矩形面積為m*n的小塊矩形,根據模組上單元電路的面積和佈局特徵確定劃分密度;(2) The rectangular area of each sheet rectangle is divided into a small rectangle of m*n, and the division density is determined according to the area and layout characteristics of the unit circuit on the module;

(3)    根據座標為每個小塊矩形分配編號,建立索引表,表中存儲資料為該矩形所屬的單元電路;(3) Assign a number to each small rectangle according to the coordinates, establish an index table, and the data stored in the table is the unit circuit to which the rectangle belongs;

(4)    標定每種類單元電路的平均的佔用面積,除以有限元素的面積,換算為有限元數量;以及(4) The average occupied area of each type of unit circuit is calibrated, divided by the area of the finite element, and converted to the number of finite elements; and

(5)    根據所述單元電路功耗模型獲得的所述發熱功耗的查閱資料表,查找每種類單元電路的功耗,再除以其有限元素數量,計算得出每個有限元素的功耗。(5) According to the reference data table of the heating power consumption obtained by the power consumption model of the unit circuit, find the power consumption of each type of unit circuit, divide it by the number of its finite elements, and calculate the power consumption of each finite element .

所述的步驟1-5的具體方法如下:The specific methods of the steps 1-5 are as follows:

(1)    根據模組厚度,將所述單元模組功耗模型的2D模型簡單擴展為3D模型,即所有2D有限元素加入統一的高度參數,轉換為3D有限元素;(1) According to the thickness of the module, the 2D model of the power consumption model of the unit module is simply expanded into a 3D model, that is, all 2D finite elements are added with a unified height parameter and converted into 3D finite elements;

(2)    根據下式計算:單位有限元素的溫度變化=單位時間內的熱量變化/單位有限元素的熱容量;(2) Calculated according to the following formula: temperature change per unit finite element = heat change per unit time / heat capacity per unit finite element;

(3)    根據下式計算:單位時間內的熱量變化=單位有限元素自身發熱+單位有限元素與相鄰有限元素的熱傳導+風冷氣流帶來的熱量變化;(3) Calculated according to the following formula: heat change per unit time = self-heating of unit finite element + heat conduction between unit finite element and adjacent finite elements + heat change caused by air-cooled airflow;

(4)    根據下式計算:單位有限元自身發熱=單位有限元素發熱功耗*單位時間;(4) Calculated according to the following formula: self-heating of unit finite element = heating power consumption per unit of finite element * unit time;

(5)    根據下式計算:單位有限元與相鄰有限元素的熱傳導=∑相鄰有限元溫差*熱傳導係數*單位時間;(5) Calculated according to the following formula: heat conduction between unit finite element and adjacent finite elements = ∑ temperature difference between adjacent finite elements * heat conduction coefficient * unit time;

(6)    根據下式計算:風扇氣流帶來的熱量變化=氣流溫差*氣流熱交換係數*氣流通量*單位有限元的截面積;以及(6) Calculated according to the following formula: heat change caused by fan airflow = airflow temperature difference * airflow heat exchange coefficient * airflow flux * unit finite element cross-sectional area; and

(7)    根據下式計算:氣流通量=風扇轉速百分比*風扇最大風量/風扇佔用風道截面積。(7) Calculated according to the following formula: airflow flux = percentage of fan speed * maximum air volume of fan / cross-sectional area of air duct occupied by fan.

所述的步驟1-6的具體方法如下:The specific methods of the steps 1-6 are as follows:

(1)    將系統視為刀片式架構,將每個模組視為相同的外形,按照每個模組在系統的空間排布,將所述單元模組3D有限元素溫度模型組合為系統3D有限元素溫度模型;(1) Treat the system as a blade architecture, treat each module as the same shape, and combine the unit module 3D finite element temperature model into a system 3D finite element according to the spatial arrangement of each module in the system. element temperature model;

(2)    除去系統的外殼、供電模組及其他輔助結構,簡化模型。(2) Remove the shell, power supply module and other auxiliary structures of the system to simplify the model.

所述的步驟4的具體方法如下:The specific method of the step 4 is as follows:

(1)    設置風扇轉速對應溫度變化的調整係數,初始值設置為1%/℃,即每攝氏度風扇轉速調整量為1%;(1) Set the adjustment coefficient of the fan speed corresponding to the temperature change, the initial value is set to 1%/℃, that is, the adjustment amount of the fan speed per degree Celsius is 1%;

(2)    設置風扇預調節時間提前量為5秒;(2) Set the fan pre-adjustment time advance to 5 seconds;

(3)    使用有限元模擬計算的分散式溫度預測的計算結果;(3) Calculation results of distributed temperature prediction using finite element simulation calculation;

(4)    從結果中統計每個風扇對應氣流通道涉及的所有有限元的溫度平均值的時間曲線;(4) Calculate the time curve of the average temperature of all finite elements involved in the airflow channel corresponding to each fan from the results;

(5)    將溫度平均值的時間曲線和目標穩定溫度的差值,乘以風扇轉速調整係數,轉換成風扇轉速調整量的時間曲線;(5) Multiply the difference between the time curve of the average temperature and the target stable temperature by the fan speed adjustment coefficient, and convert it into a time curve of the fan speed adjustment;

(6)    將風扇轉速調整量曲線在時間軸上提前5秒,然後和上一次的風扇轉速控制曲線相加,生成新的風扇轉速控制曲線;數值大於100%,則限制為100%,小於0則限制為0;以及(6) Advance the fan speed adjustment curve by 5 seconds on the time axis, and then add it to the last fan speed control curve to generate a new fan speed control curve; if the value is greater than 100%, the limit is 100% and less than 0 then the limit is 0; and

(7)    對所有風扇應用方法步驟(1)~(6),生成所有風扇的新的轉速控制曲線。(7) Apply method steps (1) to (6) to all fans to generate new speed control curves for all fans.

本發明同現有技術相比,提供一種基於自動測試機的溫度管理方法,根據一系列的數學建模及模擬計算,合理的推導出最優的溫度管理方案,延長自動測試的使用壽命。Compared with the prior art, the present invention provides a temperature management method based on an automatic testing machine. According to a series of mathematical modeling and simulation calculations, the optimal temperature management scheme can be reasonably derived to prolong the service life of the automatic testing.

下面根據附圖對本發明做進一步的說明。The present invention will be further described below according to the accompanying drawings.

一種基於自動測試機的溫度管理方法,具體流程如下:A temperature management method based on an automatic testing machine, the specific process is as follows:

步驟1:根據建立數學模型的方法,結合各種要素條件,建立一個系統分散式溫度預測的數學模型;Step 1: According to the method of establishing a mathematical model and combining various element conditions, establish a mathematical model for systematically distributed temperature prediction;

步驟2:根據該數學模型進行模擬計算,得到系統分散式溫度變化的預測結果;Step 2: carry out simulation calculation according to the mathematical model, and obtain the prediction result of the distributed temperature change of the system;

步驟3:分析預測結果,判斷溫度是否均勻且穩定,如果溫度均勻溫度,則跳轉到步驟7,否則執行下一步;Step 3: Analyze the prediction result and judge whether the temperature is uniform and stable. If the temperature is uniform, go to Step 7, otherwise, go to the next step;

步驟4:根據預測結果,推導出風扇轉速調節的優化方案;Step 4: According to the prediction results, deduce the optimization scheme of fan speed adjustment;

(1)    設置風扇轉速對應溫度變化的調整係數,初始值設置為1%/℃,即每攝氏度風扇轉速調整量為1%;(1) Set the adjustment coefficient of the fan speed corresponding to the temperature change, the initial value is set to 1%/℃, that is, the adjustment amount of the fan speed per degree Celsius is 1%;

(2)    設置風扇預調節時間提前量為5秒;(2) Set the fan pre-adjustment time advance to 5 seconds;

(3)    使用有限元素模擬計算的分散式溫度預測的計算結果;(3) Calculation results of distributed temperature prediction using finite element simulation calculation;

(4)    從結果中統計每個風扇對應氣流通道涉及的所有有限元素的溫度平均值的時間曲線;(4) Calculate the time curve of the average temperature of all finite elements involved in the airflow channel corresponding to each fan from the results;

(5)    將溫度平均值的時間曲線和目標穩定溫度的差值,乘以風扇轉速調整係數,轉換成風扇轉速調整量的時間曲線;(5) Multiply the difference between the time curve of the average temperature and the target stable temperature by the fan speed adjustment coefficient, and convert it into a time curve of the fan speed adjustment;

(6)    將風扇轉速調整量曲線在時間軸上提前5秒,然後和上一次的風扇轉速控制曲線相加,生成新的風扇轉速控制曲線;數值大於100%,則限制為100%,小於0則限制為0;(6) Advance the fan speed adjustment curve by 5 seconds on the time axis, and then add it to the last fan speed control curve to generate a new fan speed control curve; if the value is greater than 100%, the limit is 100% and less than 0 then the limit is 0;

(7)    對所有風扇應用方法步驟(1)~(6),生成所有風扇的新的轉速控制曲線。(7) Apply method steps (1) to (6) to all fans to generate new speed control curves for all fans.

步驟5:比對新的優化方案和上一次的優化方案是否有差異,如果沒有差異,則跳轉到步驟7,否則執行下一步;Step 5: Compare whether there is a difference between the new optimization scheme and the last optimization scheme, if there is no difference, then jump to step 7, otherwise go to the next step;

步驟6:將優化方案的風扇轉速作為新的要素條件,其他要素條件不變,重新執行步驟1~5;Step 6: Take the fan speed of the optimization scheme as the new factor condition, and the other factor conditions remain unchanged, and perform steps 1 to 5 again;

步驟7:儲存當前的風扇轉速控制方案作為最終優化方案。當系統實際運行時,依據該方案來控制機台內部每個風扇的轉速,從而達到測試機台內部溫度均勻穩定的效果。Step 7: Save the current fan speed control scheme as the final optimization scheme. When the system is actually running, the speed of each fan inside the machine is controlled according to this scheme, so as to achieve the effect of uniform and stable temperature inside the test machine.

如圖1所示,建立數學模型的方法100,具體流程如下:As shown in FIG. 1, the method 100 for establishing a mathematical model, the specific process is as follows:

步驟1:結合單元電路特徵,分析測試程式,得出單元電路的瞬態Vout和Iout的值;Step 1: Combine the characteristics of the unit circuit, analyze the test program, and obtain the transient Vout and Iout values of the unit circuit;

(1)    能夠結合單元電路特徵,分析測試程式,得出單元電路的瞬態輸出電壓Vout和瞬態輸出電流Iout的值;(1) It can analyze the test program in combination with the characteristics of the unit circuit, and obtain the values of the transient output voltage Vout and the transient output current Iout of the unit circuit;

(2)    根據自動測試機設計,針對9種類單元電路,名稱為接腳電動通道(PE)、 元件電源通道(DPS)、參數測量單元(PMU)、高電壓通道( HV)、高速任意波形產生器(HSAWG)、高解析度任意波形產生器( HRAWG)、頻率測量單元(FMU)、高速數位轉化器(HSDTZ)、高解析度數位轉化器(HRDTZ);(2) According to the design of the automatic testing machine, for 9 types of unit circuits, the names are Pin Electric Channel (PE), Component Power Channel (DPS), Parameter Measurement Unit (PMU), High Voltage Channel (HV), High-speed Arbitrary Waveform Generation (HSAWG), high-resolution arbitrary waveform generator (HRAWG), frequency measurement unit (FMU), high-speed digital converter (HSDTZ), high-resolution digital converter (HRDTZ);

(3)    被測晶片的規格參數有數個已知量或者標準量,從中匯出元件電源電壓(VDD)、元件電源電流(IDD)、負載電阻(Rload);(3) There are several known or standard parameters for the specifications of the chip under test, from which the component power supply voltage (VDD), component power supply current (IDD), and load resistance (Rload) are exported;

(4)    對於名稱為接腳電動通道(PE)的單元電路,是自動測試機的最主要的發熱源,應用PE瞬態工作模型得出瞬態輸出電壓Vout和瞬態輸出電流Iout的值;被測晶片的規格參數有數個已知量或標準量,從中可以匯出被測晶片每個接腳的這些參數:0態輸入電壓(VIL)、0態輸入電流(IIL)、1態輸入電壓(VIH)、1態輸入電流(IIH)、1態輸出電壓(VOH)、1態輸出電流(IOH)、0態輸出電壓(VOL)、0態輸出電流(IOL),如圖2所示。接腳電動通道(PE)有定義6個工作狀態:0,1,C,K,H,L,上述這些工作狀態的涵義依序是輸出0,輸出1,輸出正脈衝,輸出負脈衝,檢測1,檢測0。測試程式的每一步都有設定PE的狀態並執行一個時脈週期,因此在每個時脈週期中,PE會處於其中一個狀態。在各種狀態下的瞬態輸出電壓Vout和瞬態輸出電流Iout由圖2顯示的表給出。(4) For the unit circuit named Pin Electric Channel (PE), which is the main heating source of the automatic testing machine, the transient output voltage Vout and transient output current Iout are obtained by applying the PE transient working model; There are several known or standard parameters for the specifications of the chip under test, from which the parameters of each pin of the chip under test can be exported: 0-state input voltage (VIL), 0-state input current (IIL), 1-state input voltage (VIH), 1-state input current (IIH), 1-state output voltage (VOH), 1-state output current (IOH), 0-state output voltage (VOL), 0-state output current (IOL), as shown in Figure 2. The pin electric channel (PE) has defined 6 working states: 0, 1, C, K, H, L. The meanings of the above working states are output 0, output 1, output positive pulse, output negative pulse, detect 1, detect 0. Each step of the test program sets the state of the PE and executes one clock cycle, so in each clock cycle, the PE will be in one of the states. The transient output voltage Vout and the transient output current Iout in various states are given by the table shown in FIG. 2 .

(5)    對於名稱為元件電源通道(DPS)的單元電路,瞬態輸出電壓Vout=VDD、瞬態輸出電流Iout=IDD;(5) For the unit circuit named component power supply channel (DPS), the transient output voltage Vout=VDD, and the transient output current Iout=IDD;

(6)    對於名稱為參數測量單元(PMU)、高電壓通道(HV)、高速任意波形產生器(HSAWG)以及高解析度任意波形產生器(HRAWG)的單元電路,Vout直接由測試程式導入,即測試程式在使用這些單元電路的時候均會明確設定瞬態輸出電壓Vout,瞬態輸出電流為瞬態輸出電壓除以負載電阻(即Iout=Vout/Rload);(6) For the unit circuits named parameter measurement unit (PMU), high voltage channel (HV), high-speed arbitrary waveform generator (HSAWG) and high-resolution arbitrary waveform generator (HRAWG), Vout is directly imported by the test program, That is, the test program will clearly set the transient output voltage Vout when using these unit circuits, and the transient output current is the transient output voltage divided by the load resistance (ie Iout=Vout/Rload);

(7)    對於名稱為頻率測量單元(FMU)、高速數位轉化器(HSDTZ)、高解析度數位轉化器(HRDTZ)的單元電路,瞬態輸出電壓Vout=0,瞬態輸出電流Iout=0;(7) For the unit circuits named frequency measurement unit (FMU), high-speed digital converter (HSDTZ), and high-resolution digital converter (HRDTZ), the transient output voltage Vout=0, and the transient output current Iout=0;

步驟2:建立單元電路瞬態功耗模型;Step 2: Establish the transient power consumption model of the unit circuit;

(1)    如圖3所示,每類單元電路的功耗模型的等效電路,設置單元電路內部的等效輸出電阻為Rs;(1) As shown in Figure 3, for the equivalent circuit of the power consumption model of each type of unit circuit, set the equivalent output resistance inside the unit circuit as Rs;

(2)    計算等效輸出電阻Rs的發熱量:已知單元電路的供電電壓Vps,瞬態輸出電壓Vout,瞬態輸出電流Iout,則等效輸出電阻Rs的瞬態功耗為P_Rs=(Vps-Vout)×Iout;(2) Calculate the calorific value of the equivalent output resistance Rs: given the supply voltage Vps of the unit circuit, the transient output voltage Vout, and the transient output current Iout, the transient power consumption of the equivalent output resistance Rs is P_Rs=(Vps -Vout) × Iout;

(3)    利用下述公式建立單元電路的瞬態功耗模型:發熱功耗=靜態功耗+動態發熱功耗=靜態功耗+(供電電壓-輸出電壓)×輸出電流,即Psump=Ws+(Vps-Vout) × Iout,其中,Psump為發熱功耗,Ws為電路靜態功耗,Vps為測試電路供電電壓,Vout為測試電路輸出電壓,Iout為輸出電流。其中Ws、Vps是固定值,只和測試電路種類有關,與測試程式無關。測試機台已經事先標定了每種類單元電路的功耗模型參數,保存為常量,具體實例如圖4表格所示。Vps的具體標定過程是用電壓表直接測量獲得。Ws的具體標定過程,是將單元電路在斷電狀態和靜態工作狀態之間切換,看系統總功耗變化量得出。(3) Use the following formula to establish the transient power consumption model of the unit circuit: heating power consumption = static power consumption + dynamic heating power consumption = static power consumption + (supply voltage - output voltage) × output current, that is, Psump=Ws+( Vps-Vout) × Iout, where Psump is the heating power consumption, Ws is the static power consumption of the circuit, Vps is the power supply voltage of the test circuit, Vout is the output voltage of the test circuit, and Iout is the output current. Among them, Ws and Vps are fixed values, which are only related to the type of test circuit and have nothing to do with the test program. The test machine has calibrated the power consumption model parameters of each type of unit circuit in advance and saved them as constants. The specific example is shown in the table in Figure 4. The specific calibration process of Vps is obtained by direct measurement with a voltmeter. The specific calibration process of Ws is to switch the unit circuit between the power-off state and the static working state, and see the change in the total power consumption of the system.

步驟3:建立單元電路功耗模型;Step 3: Establish a unit circuit power consumption model;

(1)    根據單元電路的瞬態功耗模型,以測試程式的主時脈的週期為時間單位,根據輸出電壓函數Vout(t)和輸出電流函數Iout(t)轉換為單元電路的發熱功耗Psump(t)的時間變化曲線;(1) According to the transient power consumption model of the unit circuit, take the period of the main clock pulse of the test program as the time unit, and convert it into the heating power consumption of the unit circuit according to the output voltage function Vout(t) and the output current function Iout(t) Time curve of Psump(t);

(2)    以時間窗(預設1秒)為單位進行功率積分,降低發熱功耗Psump(t)的時間解析度,減少資料量,得出能夠檢索任意時刻單元的發熱功耗的查找資料表;(2) Perform power integration in the unit of time window (preset 1 second), reduce the time resolution of thermal power consumption Psump(t), reduce the amount of data, and obtain a lookup data table that can retrieve the thermal power consumption of the unit at any time ;

(3)    合併輸出整個自動測試機所有單元電路的發熱功耗查找資料表,得到能夠索引系統所有單元電路在所有時刻的發熱功耗的查找資料表。(3) Combine and output the lookup data table of heating power consumption of all unit circuits of the entire automatic testing machine, and obtain a lookup data table that can index the heating power consumption of all unit circuits of the system at all times.

步驟4:建立單模組2D(二維空間)功耗模型;Step 4: Establish a single-module 2D (two-dimensional space) power consumption model;

(1)    將每個模組簡化視為片狀矩形,為此建立2D模型;(1) Simplify each module as a sheet rectangle, and build a 2D model for this;

(2)    矩形面積被劃分為m*n的小塊矩形,根據模組上單元電路的面積和佈局特徵確定劃分密度;(2) The rectangular area is divided into m*n small rectangles, and the division density is determined according to the area and layout characteristics of the unit circuit on the module;

(3)    根據座標為每個小塊矩形分配編號,建立索引表,表中存儲資料為該矩形所屬的單元電路(包括電路種類和具體編號);(3) Assign numbers to each small rectangle according to the coordinates, and establish an index table. The data stored in the table are the unit circuits to which the rectangle belongs (including circuit types and specific numbers);

(4)    標定每種類單元電路的平均的佔用面積,除以有限元素的面積,換算為有限元素數量;(4) The average occupied area of each type of unit circuit is calibrated, divided by the area of the finite element, and converted into the number of finite elements;

(5)    根據所述單元電路的功耗模型獲得的所述發熱功耗的查閱資料表,查找每種類單元電路的功耗,再除以其有限元素數量,計算得出每個有限元素的功耗。(5) Find the power consumption of each type of unit circuit based on the reference data table of the heating power consumption obtained from the power consumption model of the unit circuit, and then divide it by the number of its finite elements to calculate the power of each finite element. consumption.

例如,從單元電路功耗模型到單個模組功耗模型的轉變說明如下:根據單個模組上所有的單元電路的平面分佈,結合所有單元電路的功耗模型,得出該單個模組的功耗平面分佈。其中該單個模組上各種單元電路的平面分佈簡化為有限數量的方格(上述的矩形)。這些方格按照行-列(例如為m行n列)分佈,並對每個方格進行編號,每個方格有關聯到具體的單元電路編號。For example, the transition from a unit circuit power consumption model to a single module power consumption model is described as follows: According to the planar distribution of all unit circuits on a single module, combined with the power consumption models of all unit circuits, the power consumption of the single module is obtained. Consumption flat distribution. The planar distribution of various unit circuits on the single module is simplified to a limited number of squares (the above-mentioned rectangles). These squares are distributed according to row-column (eg, m rows and n columns), and each square is numbered, and each square is associated with a specific unit circuit number.

例如:某單元電路功耗為W,其電路面積相當於100個有限元素面積,則該單元電路的每個有限元素功耗為W÷100。根據有限元編號,索引到其所屬單元電路的功耗W,即可算出該編號的有限元素的功耗W_o 。For example, if the power consumption of a unit circuit is W, and its circuit area is equivalent to the area of 100 finite elements, the power consumption of each finite element of the unit circuit is W÷100. According to the finite element number, the power consumption W of the unit circuit to which it belongs can be indexed, and the power consumption W_o of the finite element of this number can be calculated.

步驟5:結合熱傳導模型和風冷模型,建立單模組3D(三維空間)有限元溫度模型;Step 5: Combine the heat conduction model and the air cooling model to establish a single-module 3D (three-dimensional space) finite element temperature model;

(1)    根據模組厚度,將所述單元模組功耗模型的2D模型簡單擴展為3D模型,即所有2D有限元素加入統一的高度參數,轉換為3D有限元素;(1) According to the thickness of the module, the 2D model of the power consumption model of the unit module is simply expanded into a 3D model, that is, all 2D finite elements are added with a unified height parameter and converted into 3D finite elements;

(2)    根據下式計算:單位有限元素的溫度變化=單位時間內的熱量變化/單位有限元素的熱容量;(2) Calculated according to the following formula: temperature change per unit finite element = heat change per unit time / heat capacity per unit finite element;

(3)    根據下式計算:單位時間內的熱量變化=單位有限元素自身發熱+單位有限元素與相鄰有限元素的熱傳導+風冷氣流帶來的熱量變化;(3) Calculated according to the following formula: heat change per unit time = self-heating of unit finite element + heat conduction between unit finite element and adjacent finite elements + heat change caused by air-cooled airflow;

(4)    根據下式計算:單位有限元素自身發熱=單位有限元素發熱功耗*單位時間;(4) Calculated according to the following formula: self-heating of unit finite element = heating power consumption per unit of finite element * unit time;

(5)    根據下式計算:單位有限元素與相鄰有限元素的熱傳導=∑相鄰有限元素溫差*熱傳導係數*單位時間;(5) Calculated according to the following formula: heat conduction between unit finite element and adjacent finite elements = ∑ temperature difference between adjacent finite elements * heat conduction coefficient * unit time;

(6)    根據下式計算:風扇氣流帶來的熱量變化=氣流溫差*氣流熱交換係數*氣流通量*單位有限元素的截面積;(6) Calculate according to the following formula: heat change caused by fan airflow = airflow temperature difference * airflow heat exchange coefficient * airflow flux * cross-sectional area of unit finite element;

(7)    根據下式計算:氣流通量=風扇轉速百分比*風扇最大風量/風扇佔用風道截面積。(7) Calculated according to the following formula: airflow flux = percentage of fan speed * maximum air volume of fan / cross-sectional area of air duct occupied by fan.

步驟6:建立系統3D有限元素溫度模型。Step 6: Establish a 3D finite element temperature model of the system.

(1)    將系統視為刀片式架構,將每個模組視為相同的外形,按照每個模組在系統的空間排布,將所述單元模組3D有限元溫度模型組合為系統3D有限元素溫度模型;(1) The system is regarded as a blade-type architecture, and each module is regarded as the same shape. According to the spatial arrangement of each module in the system, the unit module 3D finite element temperature model is combined into a system 3D finite element temperature model. element temperature model;

(2)    除去系統的外殼、供電模組及其他輔助結構,簡化模型。(2) Remove the shell, power supply module and other auxiliary structures of the system to simplify the model.

100:建立數學模型的方法 Vps:供電電壓 Rs:等效輸出電阻 Vout:瞬態輸出電壓 Iout:瞬態輸出電流 Rload:負載電阻 100: Methods of Building Mathematical Models Vps: Supply voltage Rs: Equivalent output resistance Vout: Transient output voltage Iout: Transient output current Rload: load resistance

[圖1]為本發明建立模型的推導過程流程圖; [圖2]為被測晶片每個接腳的參數表; [圖3]為單元電路的功耗模型的等效電路圖;以及 [圖4]為單元電路的瞬態功耗模型參數表。 [Fig. 1] is a flow chart of the derivation process of establishing a model for the present invention; [Figure 2] is the parameter table of each pin of the tested chip; [Fig. 3] is an equivalent circuit diagram of a power consumption model of a unit circuit; and [Fig. 4] is the parameter table of the transient power consumption model of the unit circuit.

100:建立數學模型的方法 100: Methods of Building Mathematical Models

Claims (9)

一種基於自動測試機的溫度管理方法,包括: 步驟1:根據建立數學模型的方法,結合各種要素條件,建立一個系統分散式溫度預測的一數學模型; 步驟2:根據該數學模型進行模擬計算,得到系統分散式溫度變化的一預測結果; 步驟3:分析該預測結果,判斷一自動測試機的溫度是否均勻且穩定,如果溫度均勻且穩定,則跳轉到步驟7,否則執行下一步驟4; 步驟4:根據該預測結果,推導出一風扇轉速調節的一優化方案; 步驟5:比對新的該優化方案和上一次的優化方案是否有差異,如果沒有差異,則執行步驟7,否則執行下一步驟6; 步驟6:將該優化方案的風扇轉速作為新的要素條件,其他要素條件不變,重新執行該步驟1~5;以及 步驟7:儲存當前的風扇轉速控制方案為一最終優化方案。 An automatic testing machine-based temperature management method, comprising: Step 1: According to the method of establishing a mathematical model and combining various element conditions, establish a mathematical model for systematically distributed temperature prediction; Step 2: carry out simulation calculation according to the mathematical model, and obtain a prediction result of the distributed temperature change of the system; Step 3: analyze the prediction result to determine whether the temperature of an automatic testing machine is uniform and stable, if the temperature is uniform and stable, then jump to step 7, otherwise, go to the next step 4; Step 4: according to the prediction result, deduce an optimization scheme for adjusting the speed of the fan; Step 5: Compare whether there is a difference between the new optimization scheme and the last optimization scheme, if there is no difference, go to step 7, otherwise go to the next step 6; Step 6: Take the fan speed of the optimization scheme as the new factor condition, and the other factor conditions remain unchanged, and perform steps 1 to 5 again; and Step 7: Save the current fan speed control scheme as a final optimization scheme. 如請求項1之基於自動測試機的溫度管理方法,其中該建立數學模型的方法包含: 步驟1-1:結合一單元電路特徵,分析依測試程式,得出該單元電路的一瞬態輸出電壓和一瞬態輸出電流的值; 步驟1-2:建立該單元電路的一瞬態功耗模型; 步驟1-3:建立該單元電路的一功耗模型; 步驟1-4:建立一單模組二維(2D)功耗模型; 步驟1-5:結合熱一傳導模型和一風冷模型,建立一單模組三維(3D)有限元素溫度模型;以及 步驟1-6:建立一系統3D有限元素溫度模型。 The temperature management method based on an automatic testing machine of claim 1, wherein the method for establishing a mathematical model comprises: Step 1-1: Combine the characteristics of a unit circuit, analyze the test program, and obtain the values of a transient output voltage and a transient output current of the unit circuit; Step 1-2: establish a transient power consumption model of the unit circuit; Step 1-3: establish a power consumption model of the unit circuit; Steps 1-4: Establish a single-module two-dimensional (2D) power consumption model; Steps 1-5: Combine a heat-conduction model and an air-cooling model to create a single-module three-dimensional (3D) finite element temperature model; and Steps 1-6: Build a systematic 3D finite element temperature model. 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-1包含: (1)    能夠結合該單元電路特徵,分析該測試程式,得出該單元電路的該瞬態輸出電壓和該瞬態輸出電流的值; (2)    根據自動測試機設計,針對9種類單元電路,名稱為接腳電動通道(PE)、 元件電源通道(DPS)、參數測量單元(PMU)、高電壓通道(HV)、高速任意波形產生器(HSAWG)、高解析度任意波形產生器(HRAWG)、頻率測量單元(FMU)、高速數位轉化器(HSDTZ)、高解析度數位轉化器(HRDTZ); (3)    被測晶片的規格參數有數個已知量或者標準量,從中匯出元件電源電壓(VDD)、元件電源電流(IDD)、負載電阻(Rload); (4)    對於名稱為該接腳電動通道(PE)的單元電路,是自動測試機的最主要的發熱源,應用該接腳電動通道(PE)瞬態工作模型得出該瞬態輸出電壓和該瞬態輸出電流的值; (5)    對於名稱為該元件電源通道(DPS)的單元電路,該瞬態輸出電壓為該元件電源電壓、該瞬態輸出電流為該元件電源電流; (6)    對於名稱為該參數測量單元(PMU)、該高電壓通道(HV)、該高速任意波形產生器(HSAWG)以及該高解析度任意波形產生器(HRAWG)的單元電路,該瞬態輸出電壓直接由該測試程式導入,即該測試程式在使用這些單元電路的時候均會明確設定該瞬態輸出電壓,且該瞬態輸出電流為該瞬態輸出電壓除以該負載電阻;以及 (7)    對於名稱為該頻率測量單元(FMU)、該高速數位轉化器(HSDTZ)、該高解析度數位轉化器(HRDTZ)的單元電路,該瞬態輸出電壓為0,且該瞬態輸出電流為0。 The temperature management method based on an automatic testing machine of claim 2, wherein the step 1-1 includes: (1) The test program can be analyzed in combination with the characteristics of the unit circuit, and the values of the transient output voltage and the transient output current of the unit circuit can be obtained; (2) According to the design of the automatic testing machine, for 9 types of unit circuits, the names are Pin Electric Channel (PE), Component Power Channel (DPS), Parameter Measurement Unit (PMU), High Voltage Channel (HV), High-speed Arbitrary Waveform Generation (HSAWG), high-resolution arbitrary waveform generator (HRAWG), frequency measurement unit (FMU), high-speed digital converter (HSDTZ), high-resolution digital converter (HRDTZ); (3) There are several known or standard parameters for the specifications of the chip under test, from which the component power supply voltage (VDD), component power supply current (IDD), and load resistance (Rload) are exported; (4) For the unit circuit named the electric channel (PE) of this pin, which is the main heat source of the automatic test machine, the transient output voltage and the value of the transient output current; (5) For the unit circuit named the power supply channel (DPS) of the component, the transient output voltage is the power supply voltage of the component, and the transient output current is the power supply current of the component; (6) For the unit circuits named the parameter measurement unit (PMU), the high voltage channel (HV), the high-speed arbitrary waveform generator (HSAWG) and the high-resolution arbitrary waveform generator (HRAWG), the transient The output voltage is directly imported by the test program, that is, the test program will explicitly set the transient output voltage when using these unit circuits, and the transient output current is the transient output voltage divided by the load resistance; and (7) For the unit circuit named the frequency measurement unit (FMU), the high-speed digital converter (HSDTZ), and the high-resolution digital converter (HRDTZ), the transient output voltage is 0, and the transient output Current is 0. 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-2包含: (1)    設置該單元電路之內部的一等效輸出電阻; (2)    計算該等效輸出電阻的一發熱量:已知該單元電路的供電電壓為Vps、該瞬態輸出電壓為Vout、瞬態輸出電流為Iout,則該等效輸出電阻的瞬態功耗為P_Rs=(Vps-Vout)×Iout;以及 (3)    根據下述公式建立該單元電路的該瞬態功耗模型:發熱功耗=靜態功耗+動態發熱功耗=靜態功耗+(供電電壓-輸出電壓)×輸出電流,即Psump=Ws+(Vps-Vout) × Iout,其中,Psump為發熱功耗,Ws為電路靜態功耗,Vps為測試電路供電電壓,Vout為測試電路輸出電壓,Iout為輸出電流。 The temperature management method based on an automatic testing machine of claim 2, wherein the step 1-2 includes: (1) Set an equivalent output resistance inside the unit circuit; (2) Calculate the calorific value of the equivalent output resistance: it is known that the power supply voltage of the unit circuit is Vps, the transient output voltage is Vout, and the transient output current is Iout, then the transient power of the equivalent output resistance is The consumption is P_Rs=(Vps-Vout)×Iout; and (3) The transient power consumption model of the unit circuit is established according to the following formula: heating power consumption = static power consumption + dynamic heating power consumption = static power consumption + (supply voltage - output voltage) × output current, that is, Psump= Ws+(Vps-Vout) × Iout, where Psump is the heating power consumption, Ws is the static power consumption of the circuit, Vps is the power supply voltage of the test circuit, Vout is the output voltage of the test circuit, and Iout is the output current. 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-3包含: (1)    根據該單元電路的該瞬態功耗模型,以該測試程式的主時脈的週期為時間單位,根據一輸出電壓函數和一輸出電流函數轉換為該單元電路的一發熱功耗的時間變化曲線; (2)    以一時間窗為單位進行功率積分,降低該發熱功耗的時間變化曲線的時間解析度,減少資料量,得出能夠檢索任意時刻單元的發熱功耗的查找資料表;以及 (3)    合併輸出整個自動測試機所有單元電路的發熱功耗查找資料表,得到能夠索引系統所有單元電路在所有時刻的發熱功耗的查找資料表。 The temperature management method based on an automatic testing machine of claim 2, wherein the steps 1-3 include: (1) According to the transient power consumption model of the unit circuit, take the cycle of the main clock pulse of the test program as the time unit, and convert it into a heating power consumption of the unit circuit according to an output voltage function and an output current function. time curve; (2) Perform power integration in units of a time window, reduce the time resolution of the time change curve of the heating power consumption, reduce the amount of data, and obtain a lookup data table that can retrieve the heating power consumption of the unit at any time; and (3) Combine and output the lookup data table of heating power consumption of all unit circuits of the entire automatic testing machine, and obtain a lookup data table that can index the heating power consumption of all unit circuits of the system at all times. 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-4包含: (1)    將每個模組簡化視為片狀矩形,為此建立2D模型; (2)    劃分每個片狀矩形的矩形面積被為m*n的小塊矩形,根據模組上該單元電路的面積和佈局特徵確定劃分密度; (3)    根據座標為每個小塊矩形分配編號,建立索引表,表中存儲資料為該矩形所屬的單元電路; (4)    標定每種類單元電路的平均的佔用面積,除以有限元素的面積,換算為一有限元素數量;以及 (5)    根據該單元電路的該功耗模型獲得的該發熱功耗的查找資料表,查找每種類單元電路的功耗,再除以該有限元素數量,計算得出每個有限元素的功耗。 The temperature management method based on an automatic testing machine of claim 2, wherein the steps 1-4 include: (1) Simplify each module as a sheet rectangle, and build a 2D model for this; (2) The area of the rectangle that divides each sheet rectangle is a small rectangle of m*n, and the division density is determined according to the area and layout characteristics of the unit circuit on the module; (3) Assign a number to each small rectangle according to the coordinates, establish an index table, and the data stored in the table is the unit circuit to which the rectangle belongs; (4) The average occupied area of each type of unit circuit is calibrated, divided by the area of the finite element, and converted to a number of finite elements; and (5) According to the lookup data table of the heating power consumption obtained by the power consumption model of the unit circuit, find the power consumption of each type of unit circuit, and then divide it by the number of finite elements to calculate the power consumption of each finite element . 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-5包含: (1)    根據模組厚度,將所述單元模組功耗模型的2D模型簡單擴展為3D模型,即所有2D有限元素加入統一的高度參數,轉換為3D有限元素; (2)    根據下式計算:單位有限元素的溫度變化=單位時間內的熱量變化/單位有限元的熱容量; (3)    根據下式計算:單位時間內的熱量變化=單位有限元素自身發熱+單位有限元素與相鄰有限元的熱傳導+風冷氣流帶來的熱量變化; (4)    根據下式計算:單位有限元素自身發熱=單位有限元素發熱功耗*單位時間; (5)    根據下式計算:單位有限元素與相鄰有限元素的熱傳導=∑相鄰有限元素溫差*熱傳導係數*單位時間; (6)    根據下式計算:風扇氣流帶來的熱量變化=氣流溫差*氣流熱交換係數*氣流通量*單位有限元素的截面積;以及 (7)    根據下式計算:氣流通量=風扇轉速百分比*風扇最大風量/風扇佔用風道截面積。 The temperature management method based on an automatic testing machine of claim 2, wherein the steps 1-5 include: (1) According to the thickness of the module, the 2D model of the power consumption model of the unit module is simply expanded into a 3D model, that is, all 2D finite elements are added with a unified height parameter and converted into 3D finite elements; (2) Calculated according to the following formula: temperature change per unit finite element = heat change per unit time / heat capacity per unit finite element; (3) Calculated according to the following formula: heat change per unit time = self-heating of unit finite element + heat conduction between unit finite element and adjacent finite elements + heat change caused by air-cooled airflow; (4) Calculated according to the following formula: self-heating of unit finite element = heating power consumption per unit of finite element * unit time; (5) Calculated according to the following formula: heat conduction between unit finite element and adjacent finite elements = ∑ temperature difference between adjacent finite elements * heat conduction coefficient * unit time; (6) Calculate according to the following formula: heat change caused by fan airflow = airflow temperature difference * airflow heat exchange coefficient * airflow flux * cross-sectional area of unit finite element; and (7) Calculated according to the following formula: airflow flux = percentage of fan speed * maximum air volume of fan / cross-sectional area of air duct occupied by fan. 如請求項2之基於自動測試機的溫度管理方法,其中該步驟1-6包含: (1)    將系統視為刀片式架構,將每個模組視為相同的外形,按照每個模組在系統的空間排布,將所述單元模組3D有限元溫度模型組合為系統3D有限元溫度模型;以及 (2)    除去系統的外殼、供電模組及其他輔助結構,簡化模型。 The temperature management method based on an automatic testing machine of claim 2, wherein the steps 1-6 include: (1) The system is regarded as a blade-type architecture, and each module is regarded as the same shape. According to the spatial arrangement of each module in the system, the unit module 3D finite element temperature model is combined into a system 3D finite element temperature model. the meta-temperature model; and (2) Remove the shell, power supply module and other auxiliary structures of the system to simplify the model. 如請求項1之基於自動測試機的溫度管理方法,其中該步驟4包含: (1)    設置風扇轉速對應溫度變化的調整係數,初始值設置為1%/℃,即每攝氏度風扇轉速調整量為1%; (2)    設置風扇預調節時間提前量為5秒; (3)    使用有限元素模擬計算的分散式溫度預測的計算結果; (4)    從結果中統計每個風扇對應氣流通道涉及的所有有限元素的溫度平均值的時間曲線; (5)    將溫度平均值的時間曲線和目標穩定溫度的差值,乘以風扇轉速調整係數,轉換成風扇轉速調整量的時間曲線; (6)    將風扇轉速調整量曲線在時間軸上提前5秒,然後和上一次的風扇轉速控制曲線相加,生成新的風扇轉速控制曲線;數值大於100%,則限制為100%,小於0則限制為0;以及 (7)    對所有風扇應用前述的步驟(1)~(6),生成所有風扇的新的轉速控制曲線。 The temperature management method based on an automatic testing machine of claim 1, wherein step 4 includes: (1) Set the adjustment coefficient of the fan speed corresponding to the temperature change, the initial value is set to 1%/℃, that is, the adjustment amount of the fan speed per degree Celsius is 1%; (2) Set the fan pre-adjustment time advance to 5 seconds; (3) Calculation results of distributed temperature prediction using finite element simulation calculation; (4) Calculate the time curve of the average temperature of all finite elements involved in the airflow channel corresponding to each fan from the results; (5) Multiply the difference between the time curve of the average temperature and the target stable temperature by the fan speed adjustment coefficient, and convert it into a time curve of the fan speed adjustment; (6) Advance the fan speed adjustment curve by 5 seconds on the time axis, and then add it to the last fan speed control curve to generate a new fan speed control curve; if the value is greater than 100%, the limit is 100% and less than 0 then the limit is 0; and (7) Apply the aforementioned steps (1) to (6) to all fans to generate new speed control curves for all fans.
TW110128050A 2021-01-27 2021-07-30 Temperature management method based on automatic test equipment TWI788933B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110109706.1 2021-01-27
CN202110109706.1A CN112765859B (en) 2021-01-27 2021-01-27 Temperature management method based on automatic testing machine

Publications (2)

Publication Number Publication Date
TW202229890A true TW202229890A (en) 2022-08-01
TWI788933B TWI788933B (en) 2023-01-01

Family

ID=75706062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128050A TWI788933B (en) 2021-01-27 2021-07-30 Temperature management method based on automatic test equipment

Country Status (2)

Country Link
CN (1) CN112765859B (en)
TW (1) TWI788933B (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI260492B (en) * 2004-08-27 2006-08-21 Inventec Corp Computer fan parameters testing method
US7425812B2 (en) * 2005-11-23 2008-09-16 Standard Microsystems Corporation Ramp rate closed-loop control (RRCC) for PC cooling fans
US8229713B2 (en) * 2009-08-12 2012-07-24 International Business Machines Corporation Methods and techniques for creating and visualizing thermal zones
TW201128388A (en) * 2010-02-01 2011-08-16 Mitac Int Corp Automatic testing method for clustered hard disks and system thereof
US9658629B2 (en) * 2012-03-22 2017-05-23 Seagate Technology Llc Method and apparatus for controlling the temperature of components
CN102622007B (en) * 2012-03-27 2013-12-25 中国人民解放军国防科学技术大学 Energy-saving control method and device for cabinet
US9291667B2 (en) * 2013-03-07 2016-03-22 Advantest Corporation Adaptive thermal control
US9618945B2 (en) * 2013-09-22 2017-04-11 Microsoft Technology Licensing, Llc Monitoring surface temperature of devices
CN104182568B (en) * 2014-07-30 2018-08-21 广东顺德中山大学卡内基梅隆大学国际联合研究院 A kind of chip temperature prediction technique based on ANSYS finite element thermal analysis
JP2018080920A (en) * 2016-11-14 2018-05-24 セイコーエプソン株式会社 Temperature measurement device, inspection device, and method for control
TW201918824A (en) * 2017-11-07 2019-05-16 英業達股份有限公司 Temperature control device and control method thereof
US11137807B2 (en) * 2018-03-28 2021-10-05 Intel Corporation System, apparatus and method for controllable processor configuration based on a temperature specification
CN109144123A (en) * 2018-08-15 2019-01-04 王晓勇 A kind of semiconductor test temperature control equipment and control method
US11293986B2 (en) * 2019-04-25 2022-04-05 Mitsubishi Electric Research Laboratories, Inc. System and method for estimating temperature and heat loss in electric motors
CN111190452A (en) * 2020-01-06 2020-05-22 西安交通大学 Method for testing temperature coefficient of reference circuit chip

Also Published As

Publication number Publication date
CN112765859A (en) 2021-05-07
CN112765859B (en) 2024-02-06
TWI788933B (en) 2023-01-01

Similar Documents

Publication Publication Date Title
CN110673015B (en) Test method for simulating heating power and surface temperature of chip
Due et al. Lifetime investigation of high power IGBT modules
Raveendran et al. Thermal stress based power routing of smart transformer with CHB and DAB converters
Xu et al. Modeling and correlation of two thermal paths in frequency-domain thermal impedance model of power module
Biernacki et al. Statistical analysis and yield optimization in practical RF and microwave designs
Bernstein et al. Reliability matrix solution to multiple mechanism prediction
CN105069258A (en) Evaluation method and device for chip design reliability
TWI788933B (en) Temperature management method based on automatic test equipment
JP6432192B2 (en) Temperature prediction device for battery packs
Bakerenkov et al. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator
US20230359792A1 (en) Method and system for high-speed transient thermal simulation of electronic device
US8250511B2 (en) Designing apparatus, designing method, and designing program for semiconductor integrated circuit
Harrant et al. Configurable load emulation using FPGA and power amplifiers for automotive power ICs
CN105844026A (en) Method for determining working current and time of permanent-magnet linear motor based on taguchi method
Pfeifer et al. On measurement of parameters of programmable microelectronic nanostructures under accelerating extreme conditions (Xilinx 28nm XC7Z020 Zynq FPGA)
Dai et al. Synthetical thermal modeling and optimization design for high power density inverter heat dissipation
CN113935217A (en) Military IGBT module transient parameter and parasitic parameter simulation method
Poppe From Measurements to Standardized Multi-Domain Compact Models of LEDs: Towards predictive and efficient modeling and simulation of LEDs at all integration levels along the SSL supply chain
Frost et al. High-speed peltier calorimeter for the calibration of high-bandwidth power measurement equipment
US8880386B2 (en) Method for circuit simulation
Ho et al. Thermal-HIL Real-Time Testing Platform for Evaluating Cooling Systems of Power Rectifiers
CN112345959A (en) Characteristic test system for multi-machine parallel operation of virtual synchronous generators
CN113887025A (en) Analog simulation method, device and system for analyzing chip aging
US5504694A (en) Method of cell characterization for energy dissipation
CN116794469A (en) Saturation pressure drop measurement system and method, and life evaluation method and system