TW202226339A - Treatments to enhance material structures - Google Patents

Treatments to enhance material structures Download PDF

Info

Publication number
TW202226339A
TW202226339A TW110142701A TW110142701A TW202226339A TW 202226339 A TW202226339 A TW 202226339A TW 110142701 A TW110142701 A TW 110142701A TW 110142701 A TW110142701 A TW 110142701A TW 202226339 A TW202226339 A TW 202226339A
Authority
TW
Taiwan
Prior art keywords
layer
processing chamber
capping layer
gate dielectric
substrate
Prior art date
Application number
TW110142701A
Other languages
Chinese (zh)
Other versions
TWI830087B (en
Inventor
史林尼維斯 干德可塔
楊逸雄
賈桂琳薩曼莎 倫區
楊勇
史蒂芬Ch 洪
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/951,858 external-priority patent/US11417517B2/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202226339A publication Critical patent/TW202226339A/en
Application granted granted Critical
Publication of TWI830087B publication Critical patent/TWI830087B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method of forming a high-κ dielectric cap layer on a semiconductor structure formed on a substrate includes depositing the high-κ dielectric cap layer on the semiconductor structure, depositing a sacrificial silicon cap layer on the high-κ dielectric cap layer, performing a post cap anneal process to harden and densify the as-deposited high-κ dielectric cap layer, and removing the sacrificial silicon cap layer.

Description

增強材料結構的處理Treatment of Reinforced Material Structures

本文描述的多個實施方式一般涉及半導體元件製造,尤其是,涉及在半導體結構中形成高品質高κ介電材料層和金屬閘極結構的系統和方法。Various embodiments described herein relate generally to semiconductor device fabrication, and more particularly, to systems and methods for forming layers of high quality high-κ dielectric materials and metal gate structures in semiconductor structures.

隨著金屬氧化物半導體場效應電晶體(MOSFET)已經為了實現高元件效能和低功耗而減小尺寸,傳統的二氧化矽(SiO 2)閘極介電質的厚度已經減小到它的物理極限(physical limit)。因此,為了實現進一步的縮小(scaling),用高κ介電材料替代二氧化矽閘極介電質已經是在所難免的。在各種高κ介電材料中,自45nm MOSFET技術節點開始,已經應用了氧化鉿(HfO 2),這是因為氧化鉿(HfO 2)有高介電常數和在矽襯底上優越的熱穩定性。但是,對於32nm MOSFET技術節點及以後的技術節點的等效氧化物厚度(equivalent oxide thickness,EOT)的進一步縮小而言,簡單地減小高κ介電材料層的厚度是成問題的,因為流過高κ介電材料層的漏電流增加了。 As metal-oxide-semiconductor field-effect transistors (MOSFETs) have been reduced in size for high device performance and low power dissipation, the thickness of the traditional silicon dioxide ( SiO2 ) gate dielectric has been reduced to its physical limit. Therefore, in order to achieve further scaling, it has become inevitable to replace the silicon dioxide gate dielectric with a high-κ dielectric material. Among various high-κ dielectric materials, hafnium oxide (HfO 2 ) has been applied since the 45nm MOSFET technology node, due to its high dielectric constant and superior thermal stability on silicon substrates sex. However, simply reducing the thickness of the high-κ dielectric material layer is problematic for further reductions in the equivalent oxide thickness (EOT) of the 32nm MOSFET technology node and beyond because the current The leakage current of the high-κ dielectric material layer is increased.

另外,傳統的多晶矽(polycrystalline silicon, polysilicon)閘極已經被由金屬層(例如,鈦(Ti)、鉭(Ta)、鎢(W))和含金屬導電化合物層(例如,氮化鈦(TiN)、氮化鉭(TaN))形成的金屬閘極所替代,以減小與多晶矽耗盡效應(depletion effect)相關的不期望的壓降,以及提高MOSFET的驅動電流效能和運行速度。然而,這樣的金屬閘極通常由一種爐基製程(furnace-based process)形成,這種製程使用含金屬前驅物(例如,氯化鈦,TiCl 4)和含氮前驅物(例如,氨,NH 3)。這種製程可以包括高濃度氧含量,因此對於未來可縮放性(future scalability)可能並不理想。 In addition, conventional polycrystalline silicon (polysilicon) gates have been constructed of metal layers (eg, titanium (Ti), tantalum (Ta), tungsten (W)) and metal-containing conductive compound layers (eg, titanium nitride (TiN) ), tantalum nitride (TaN)) to reduce the undesired voltage drop associated with the polysilicon depletion effect, and to improve the drive current performance and operating speed of the MOSFET. However, such metal gates are typically formed by a furnace-based process using metal-containing precursors (eg, titanium chloride, TiCl 4 ) and nitrogen-containing precursors (eg, ammonia, NH 3 ). Such a process may include high concentrations of oxygen and thus may not be ideal for future scalability.

因此,需要能夠用來形成薄的(例如EOT小於1nm)高κ介電材料層和用來在沒有高濃度氧含量的情況下形成金屬閘極的系統和方法,這種材料層具有能夠受控以確保期望的結構特性和電氣特性的化學結構。Accordingly, there is a need for systems and methods that can be used to form thin (eg, EOT less than 1 nm) layers of high-κ dielectric materials and metal gates without high concentrations of oxygen with controlled to ensure the desired structural and electrical properties of the chemical structure.

本公開內容的多個實施方式提供一種在形成在襯底上的半導體結構上形成高κ介電帽(cap)層的方法。該方法包括以下步驟:在所述半導體結構上沉積所述高κ介電帽層;在所述高κ介電帽層上沉積犧牲(sacrificial)矽帽層;執行後帽退火(post cap anneal)製程,以硬化和緻密化(densify)所沉積的高κ介電帽層;和去除所述犧牲矽帽層。Various embodiments of the present disclosure provide a method of forming a high-κ dielectric cap layer on a semiconductor structure formed on a substrate. The method includes the steps of: depositing the high-κ dielectric cap layer on the semiconductor structure; depositing a sacrificial silicon cap layer on the high-κ dielectric cap layer; performing a post cap anneal processes to harden and densify the deposited high-κ dielectric capping layer; and remove the sacrificial silicon capping layer.

本公開內容的多個實施方式還提供一種在形成在襯底上的半導體結構上形成高κ介電帽層的方法。該方法包括以下步驟:在所述半導體結構上沉積所述高κ介電帽層;在所述高κ介電帽層上沉積犧牲矽帽層;執行後帽退火製程,以硬化和緻密化所沉積的高κ介電帽層;和去除所述犧牲矽帽層。Various embodiments of the present disclosure also provide a method of forming a high-κ dielectric capping layer on a semiconductor structure formed on a substrate. The method includes the steps of: depositing the high-κ dielectric capping layer on the semiconductor structure; depositing a sacrificial silicon capping layer on the high-κ dielectric capping layer; performing a back-cap annealing process to harden and densify the depositing a high-κ dielectric capping layer; and removing the sacrificial silicon capping layer.

本公開內容的多個實施方式進一步提供一種處理系統。所述處理系統包括第一處理腔室、第二處理腔室、第三處理腔室、第四處理腔室和系統控制器。該系統控制器被構造成:在所述第一處理腔室中,在所述高κ閘極介電層上沉積高κ介電帽層;在所述第二處理腔室中,在所述高κ介電帽層上沉積犧牲矽帽層;在所述第三處理腔室中,執行後帽退火製程,以硬化和緻密化所沉積的高κ介電帽層;和在所述第四處理腔室中,去除所述犧牲矽帽層。在所述第一處理腔室、所述第二處理腔室、所述第三處理腔室和所述第四處理腔室之間傳送所述襯底而不破壞所述處理系統中的真空環境。Various embodiments of the present disclosure further provide a processing system. The processing system includes a first processing chamber, a second processing chamber, a third processing chamber, a fourth processing chamber, and a system controller. The system controller is configured to deposit, in the first processing chamber, a high-κ dielectric capping layer on the high-κ gate dielectric layer; depositing a sacrificial silicon capping layer on the high-κ dielectric capping layer; in the third processing chamber, performing a back cap anneal process to harden and densify the deposited high-κ dielectric capping layer; and in the fourth processing chamber In the processing chamber, the sacrificial silicon capping layer is removed. Transfer the substrate between the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber without disrupting the vacuum environment in the processing system .

隨著閘極結構縮到更小的尺寸,一直在尋求新的材料結構來提供改進。相較於利用諸如氧化矽之類材料的傳統閘極結構,高κ介電材料的使用增大了閘極結構的介電常數。然而,類似於氧化矽,隨著閘極結構的厚度減小,漏電流增加。例如,閘極洩漏(gate leakage)隨著有效氧化物厚度減小而增加。因此,閘極洩漏與有效氧化物厚度之間的反比關係可能形成對所生產的元件和電晶體效能的限制。As gate structures shrink to smaller dimensions, new material structures are constantly being sought to provide improvements. The use of high-κ dielectric materials increases the dielectric constant of the gate structure compared to conventional gate structures utilizing materials such as silicon oxide. However, similar to silicon oxide, the leakage current increases as the thickness of the gate structure decreases. For example, gate leakage increases as the effective oxide thickness decreases. Therefore, the inverse relationship between gate leakage and effective oxide thickness may create limitations on the performance of the devices and transistors produced.

相較於類似物理厚度的氧化矽,高κ介電材料可以提供對溝道(channel)的更大的靜電控制(electrostatic control)。隨著本行業繼續尋求在不增加閘極洩漏的情況下更低的有效氧化物厚度,由於形態學特徵(morphological characteristics)的緣故,對已知的高κ材料的介電常數(也稱為「κ值」)最大化的努力將要達到極限。傳統的技術已經在努力克服高κ材料的固有特性(這可能設定κ值的上限),以及隨後的元件改造以嘗試結合新的膜。High-κ dielectric materials can provide greater electrostatic control of the channel than silicon oxide of similar physical thickness. As the industry continues to seek lower effective oxide thicknesses without increasing gate leakage, due to morphological The effort to maximize the κ value”) is about to reach its limit. Conventional techniques have struggled to overcome the inherent properties of high-κ materials (which may set an upper limit on the value of κ), and subsequent modification of components to try to incorporate new membranes.

另外,由金屬層和含金屬導電化合物形成替代多晶矽(polysilicon)的金屬閘極的典型爐基製程可以在該製程過程中包含高濃度氧含量,因此對於未來可縮放性可能並不理想。Additionally, typical furnace-based processes for forming metal gates in place of polysilicon from metal layers and metal-containing conductive compounds may include high concentrations of oxygen during the process, and thus may not be ideal for future scalability.

本文描述的多個實施方式提供用於形成薄的(例如EOT小於1nm)高κ介電材料層和形成金屬閘極的系統和方法。藉由生產呈現特定形態或者晶粒(grain)結構的高κ介電材料,可以實現更高的介電常數和隨之改進的元件效能。為了控制示例性元件中的膜內形態(in-film morphology),可以進行處置(treatment)以提供能夠引起特定膜形態的活化襯底表面(activated substrate surface),以及在形成後對膜進行穩定化,這可以造成更高的介電常數。在沒有高濃度氧含量的情況下形成金屬閘極使得能夠進一步縮小等效氧化物厚度(EOT)。Various embodiments described herein provide systems and methods for forming thin (eg, EOT less than 1 nm) layers of high-κ dielectric materials and forming metal gates. By producing high-κ dielectric materials exhibiting specific morphologies or grain structures, higher dielectric constants and consequent improved device performance can be achieved. In order to control the in-film morphology in the exemplary element, treatments can be performed to provide an activated substrate surface capable of causing a specific film morphology, as well as to stabilize the film after formation , which can result in a higher dielectric constant. Forming the metal gate without a high concentration of oxygen content enables further reduction of the equivalent oxide thickness (EOT).

圖1是根據本公開內容的一些示例的多腔室處理系統100的示例的示意性俯視圖。該處理系統100一般包括:工廠介面102;裝載閘腔室104、106;具有相應的傳送機械手112、114的傳送腔室108、110;保持腔室116、118;和處理腔室120、122、124、126、128、130。如本文所詳述的那樣,可以在各種腔室中處理在處理系統100中的晶圓和在各種腔室之間傳送這些晶圓而不將這些晶圓暴露給處理系統100外部的周圍環境(例如,諸如可能存在於晶圓廠(fab)中的大氣環境)。例如,可以在低壓(例如,小於或等於約300托)或真空環境中在各種腔室中處理這些晶圓和在各種腔室之間傳送這些晶圓,而不破壞處理系統100中對晶圓執行的各種製程之間的低壓或真空環境。因此,處理系統100可以為晶圓的一些處理提供集成的解決方案。1 is a schematic top view of an example of a multi-chamber processing system 100 in accordance with some examples of the present disclosure. The processing system 100 generally includes: a factory interface 102; load lock chambers 104, 106; transfer chambers 108, 110 with corresponding transfer robots 112, 114; holding chambers 116, 118; and processing chambers 120, 122 , 124, 126, 128, 130. As detailed herein, wafers in the processing system 100 may be processed in various chambers and transferred between the various chambers without exposing the wafers to the surrounding environment outside the processing system 100 ( For example, atmospheric environments such as may exist in a fab). For example, the wafers may be processed in and transferred between the various chambers in a low pressure (eg, less than or equal to about 300 Torr) or vacuum environment without damaging the wafers in the processing system 100 A low pressure or vacuum environment between the various processes being performed. Thus, processing system 100 may provide an integrated solution for some processing of wafers.

可以根據本文提供的教導適當修改的處理系統的示例包括可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司商業獲得的Endura ®、 Producer ®或者Centura ®集成處理系統或者其他適當的處理系統。預期其他處理系統(包括來自其他製造商的那些處理系統)可適於受益於本文所述的多個態樣。 Examples of processing systems that may be suitably modified in accordance with the teachings provided herein include the Endura® , Producer®, or Centura® integrated processing systems, or other suitable processing systems, commercially available from Applied Materials, Inc., located in Santa Clara, California, USA. It is contemplated that other processing systems, including those from other manufacturers, may be adapted to benefit from the various aspects described herein.

在圖1的圖示示例中,工廠介面102包括塢站(docking station)140和工廠介面機械手142以説明傳送晶圓。塢站140被構造成接納一個或者多個前開式標準艙(FOUP)144。在一些示例中,每個工廠介面機械手142一般包括葉片148,葉片148設置在相應工廠介面機械手142的一端上,被構造成將晶圓從工廠介面102傳送至裝載閘腔室104、106。In the illustrated example of FIG. 1, the factory interface 102 includes a docking station 140 and a factory interface robot 142 to illustrate transferring wafers. The docking station 140 is configured to receive one or more front opening standard pods (FOUPs) 144 . In some examples, each fab robot 142 generally includes a blade 148 disposed on one end of the corresponding fab robot 142 configured to transfer wafers from the fab 102 to the load lock chambers 104 , 106 .

裝載閘腔室104、106具有耦接到工廠介面102的相應埠150、152和耦接到傳送腔室108的相應埠154、156。傳送腔室108還有耦接到保持腔室116、118的相應埠158、160和耦接到處理腔室120、122的相應埠162、164。類似地,傳送腔室110具有耦接到保持腔室116、118的相應埠166、168和耦接到處理腔室124、126、128、130的相應埠170、172、174、176。埠154、156、158、160、162、164、166、168、170、172、174、176可以是例如帶有狹縫閥的狹縫閥開口,用於借助傳送機械手112、114使晶圓從中通過並用於在相應的腔室之間提供密封以防止氣體在各腔室之間通過。通常,任何埠開放以用於傳送晶圓從中通過。否則,埠被關閉。The load lock chambers 104 , 106 have respective ports 150 , 152 coupled to the factory interface 102 and respective ports 154 , 156 coupled to the transfer chamber 108 . The transfer chamber 108 also has respective ports 158 , 160 coupled to the holding chambers 116 , 118 and respective ports 162 , 164 coupled to the processing chambers 120 , 122 . Similarly, transfer chamber 110 has respective ports 166 , 168 coupled to holding chambers 116 , 118 and respective ports 170 , 172 , 174 , 176 coupled to processing chambers 124 , 126 , 128 , 130 . Ports 154 , 156 , 158 , 160 , 162 , 164 , 166 , 168 , 170 , 172 , 174 , 176 may be, for example, slit valve openings with slit valves for transferring wafers by means of transfer robots 112 , 114 Pass therethrough and serve to provide seals between the respective chambers to prevent the passage of gas between the chambers. Typically, any ports are open for transferring wafers therethrough. Otherwise, the port is closed.

裝載閘腔室104、106、傳送腔室108、110、保持腔室116、118和處理腔室120、122、124、126、128、130可以流體耦接到氣體和壓力控制系統(未具體圖示出)。氣體和壓力控制系統可以包括一個或多個氣泵(例如,渦輪泵、低溫泵(cryo-pump)、低真空泵(roughing pump))、氣源、各種閥和流體耦接到各種腔室的導管。在操作中,工廠介面機械手142藉由埠150或152將晶圓從FOUP 144傳送到裝載閘腔室104或106。然後氣體和壓力控制系統泵空(pump down)裝載閘腔室104或106。氣體和壓力控制系統進一步將傳送腔室108、110和保持腔室116、118保持在內部低壓或真空環境(該環境可包括惰性氣體)。因此,裝載閘腔室104或106的泵空便於在例如工廠介面102的大氣環境與傳送腔室108的低壓或真空環境之間傳遞晶圓。Load lock chambers 104, 106, transfer chambers 108, 110, hold chambers 116, 118, and process chambers 120, 122, 124, 126, 128, 130 may be fluidly coupled to a gas and pressure control system (not shown in detail). Shows). The gas and pressure control system may include one or more gas pumps (eg, turbo pumps, cryo-pumps, roughing pumps), gas sources, various valves, and conduits fluidly coupled to the various chambers. In operation, factory interface robot 142 transfers wafers from FOUP 144 to load lock chamber 104 or 106 via port 150 or 152 . The gas and pressure control system then pumps down the load lock chamber 104 or 106 . The gas and pressure control system further maintains the transfer chambers 108, 110 and holding chambers 116, 118 in an internal low pressure or vacuum environment (which may include an inert gas). Thus, pumping down the load lock chamber 104 or 106 facilitates transferring wafers between the atmospheric environment, eg, the factory interface 102 , and the low pressure or vacuum environment of the transfer chamber 108 .

帶著已經被泵空的裝載閘腔室104或106中的晶圓,傳送機械手112藉由埠154或156將晶圓從裝載閘腔室104或106傳送到傳送腔室108中。傳送機械手112然後能夠將晶圓傳送到處理腔室120、122和保持腔室116、118中的任何腔室和/或在這些腔室中的任何腔室之間傳送晶圓,藉由相應埠162、164將晶圓傳送到用於處理的處理腔室120、122,藉由相應埠158、160將晶圓傳送到用於保持以等待進一步傳送的保持腔室116、118。類似地,傳送機械手114能夠藉由埠166或168接取保持腔室116或118中的晶圓,並且能夠將晶圓傳送到處理腔室124、126、128、130和保持腔室116、118中的任何腔室和/或在這些腔室中的任何腔室之間傳送晶圓,藉由相應埠170、172、174、176將晶圓傳送到用於處理的處理腔室124、126、128、130,藉由相應埠166、168將晶圓傳送到用於保持以等待進一步傳送的保持腔室116、118。晶圓在各個腔室內和之間的傳送和保持能夠在由氣體和壓力控制系統提供的低壓或真空環境中進行。With the wafers in the load lock chambers 104 or 106 that have been pumped out, the transfer robot 112 transfers the wafers from the load lock chambers 104 or 106 into the transfer chamber 108 via ports 154 or 156 . The transfer robot 112 can then transfer the wafer to and/or between any of the processing chambers 120, 122 and the holding chambers 116, 118 by corresponding Ports 162, 164 transfer wafers to processing chambers 120, 122 for processing, and via respective ports 158, 160 to holding chambers 116, 118 for holding for further transfer. Similarly, transfer robot 114 can access wafers in holding chambers 116 or 118 via ports 166 or 168 and can transfer wafers to processing chambers 124, 126, 128, 130 and holding chambers 116, 116, Transfer wafers to and/or between any of the chambers 118 to the processing chambers 124, 126 for processing via respective ports 170, 172, 174, 176 , 128, 130, the wafers are transferred by respective ports 166, 168 to the holding chambers 116, 118 for holding for further transfer. The transfer and holding of wafers within and between the various chambers can be performed in a low pressure or vacuum environment provided by gas and pressure control systems.

處理腔室120、122、124、126、128、130可以是用於處理晶圓的任何合適的腔室。在一些示例中,處理腔室122可以能夠執行清潔製程,處理腔室120可以能夠執行蝕刻製程,而處理腔室124、126、128、130可以能夠執行相應的磊晶生長製程。處理腔室122可以是能夠從美國加利福尼亞州的聖塔克拉拉的應用材料公司獲得的SiCoNi™預清潔腔室。處理腔室120可以是能夠從美國加利福尼亞州的聖塔克拉拉的應用材料公司獲得的Selectra™蝕刻腔室。The processing chambers 120, 122, 124, 126, 128, 130 may be any suitable chambers for processing wafers. In some examples, process chamber 122 may be capable of performing cleaning processes, process chamber 120 may be capable of performing etch processes, and process chambers 124, 126, 128, 130 may be capable of performing corresponding epitaxial growth processes. Processing chamber 122 may be a SiCoNi™ pre-clean chamber available from Applied Materials, Inc. of Santa Clara, California, USA. Processing chamber 120 may be a Selectra™ etch chamber available from Applied Materials, Inc. of Santa Clara, California, USA.

系統控制器190耦接到處理系統100,用於控制處理系統100或者處理系統100的部件。例如,系統控制器190可以使用對處理系統100的腔室104、106、108、116、118、110、120、122、124、126、128、130的直接控制來控制處理系統100的操作,或者藉由控制與腔室104、106、108、116、118、110、120、122、124、126、128、130相關聯的控制器來控制處理系統100的操作。在操作中,系統控制器190能夠實現資料收集和來自相應腔室的回饋以協調處理系統100的運行。System controller 190 is coupled to processing system 100 for controlling processing system 100 or components of processing system 100 . For example, the system controller 190 may use direct control of the chambers 104, 106, 108, 116, 118, 110, 120, 122, 124, 126, 128, 130 of the processing system 100 to control the operation of the processing system 100, or The operation of the processing system 100 is controlled by controlling the controllers associated with the chambers 104 , 106 , 108 , 116 , 118 , 110 , 120 , 122 , 124 , 126 , 128 , 130 . In operation, the system controller 190 can enable data collection and feedback from the corresponding chambers to coordinate the operation of the processing system 100 .

系統控制器190一般包括中央處理單元(CPU)192、記憶體194和支援電路196。CPU 192可以是能夠在工業設置中使用的任何形式的通用處理器之一。記憶體194或非暫時性電腦可讀媒體能夠由CPU 192存取並且可以是諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟、硬碟或任何其他形式的本端或遠端數位存儲裝置之類的一個或多個記憶體。支援電路196耦接到CPU 192並且可以包括快取記憶體、時鐘電路、輸入/輸出子系統、電源和類似裝置等。本文公開的各種方法通常可以在CPU 192的控制下藉由CPU 192執行存儲在記憶體194(或特定製程腔室的記憶體)中作為例如軟體常式的電腦指令代碼來實施。當電腦指令代碼由CPU 192執行時,CPU 192控制這些腔室以根據各種方法執行製程。System controller 190 generally includes a central processing unit (CPU) 192 , memory 194 and support circuits 196 . CPU 192 may be one of any form of general purpose processor capable of being used in an industrial setting. The memory 194 or non-transitory computer readable medium can be accessed by the CPU 192 and may be such as random access memory (RAM), read only memory (ROM), floppy disk, hard disk or any other form of local or one or more memories such as remote digital storage devices. Support circuits 196 are coupled to CPU 192 and may include cache memory, clock circuits, input/output subsystems, power supplies, and the like. The various methods disclosed herein may generally be implemented under the control of CPU 192 by CPU 192 executing code of computer instructions stored in memory 194 (or memory in a particular process chamber) as, for example, software routines. When the computer instruction code is executed by the CPU 192, the CPU 192 controls the chambers to perform processes according to various methods.

其他處理系統可以採用其他配置。例如,更多或更少的處理腔室可以耦接到傳送設備。在圖示的示例中,傳送設備包括傳送腔室108、110和保持腔室116、118。在其他示例中,更多或更少的傳送腔室(例如,一個傳送腔室)和/或更多或更少的保持腔室(例如,沒有保持腔室)可以作為處理系統中的傳送設備來實現。Other processing systems may take other configurations. For example, more or fewer processing chambers may be coupled to the transfer device. In the illustrated example, the transfer apparatus includes transfer chambers 108 , 110 and holding chambers 116 , 118 . In other examples, more or fewer transfer chambers (eg, one transfer chamber) and/or more or fewer holding chambers (eg, no holding chambers) may serve as transfer devices in a processing system to fulfill.

圖2是根據本公開內容的一個或多個實施方式的形成半導體結構300的方法200的製程流程圖。圖3A和圖3B是對應於方法200的各種狀態的半導體結構300的一部分的截面圖。應當理解,圖3A和圖3B僅示出了半導體結構300的局部示意圖,而半導體結構300可以包含任意數量的電晶體部分和具有如圖所示多個態樣的附加材料。還應該注意的是,雖然圖2中所示的方法步驟是按順序描述的,但包括一個或多個已被省略和/或添加的、和/或已按另一所需順序重新排列的一個或多個方法步驟的其他製程順序也落入本文提供的本公開內容的多個實施方式的範圍內。2 is a process flow diagram of a method 200 of forming a semiconductor structure 300 in accordance with one or more embodiments of the present disclosure. 3A and 3B are cross-sectional views of a portion of a semiconductor structure 300 corresponding to various states of the method 200 . It should be understood that FIGS. 3A and 3B only show partial schematic views of semiconductor structure 300, and semiconductor structure 300 may include any number of transistor portions and additional materials having various aspects as shown. It should also be noted that although the method steps shown in FIG. 2 are described sequentially, including one or more that have been omitted and/or added, and/or have been rearranged in another desired order Other processing sequences of method steps or steps are also within the scope of the various embodiments of the present disclosure provided herein.

方法200始於方框210中的預清潔製程,以預清潔襯底302的表面。該預清潔製程可以包括:藉由乾蝕刻製程或者使用蝕刻溶液的濕蝕刻製程來蝕刻襯底302的表面,蝕刻溶液諸如是包含NH 4OH(氫氧化銨(ammonium hydroxide))、H 2O 2(過氧化氫(hydrogen peroxide))和H 2O(水)的標準清潔1(Standard Clean 1, SC1)蝕刻溶液,乾蝕刻製程例如是SiConi™遠端電漿輔助乾蝕刻製程,其中襯底302的表面被暴露於N 2、NF 3和NH 3電漿副產物。可以在諸如圖1中所示的處理腔室122或者120之類的預清潔腔室中執行該預清潔製程。 The method 200 begins with a pre-clean process in block 210 to pre-clean the surface of the substrate 302 . The pre-cleaning process may include etching the surface of the substrate 302 by a dry etching process or a wet etching process using an etching solution such as NH 4 OH (ammonium hydroxide), H 2 O 2 Standard Clean 1 (SC1) etching solution of (hydrogen peroxide) and H 2 O (water), the dry etching process is, for example, a SiConi™ remote plasma-assisted dry etching process, wherein the substrate 302 The surface is exposed to N 2 , NF 3 and NH 3 plasmonic byproducts. The pre-clean process may be performed in a pre-clean chamber, such as the process chamber 122 or 120 shown in FIG. 1 .

在方框220中,執行介面形成製程,以在襯底302的預清潔後的表面上形成介面層(interfacial layer)304,如圖3A中所示。介面形成製程可以包括適當的熱氧化製程,諸如是利用一氧化二氮(N 2O)氣體的增強型原位蒸汽生成(enhanced in-situ steam generation, eISSG)製程。在方框220中形成的介面層304是一種薄的非晶氧化矽(SiO 2)層,具有介於約3Å與約10Å之間的厚度,例如約5Å,對應於氧化矽的一個或多個單層(monolayer)。在一些實施方式中,可以藉由利用H 2和O 2氣體的原位蒸汽生成(ISSG)製程或者藉由利用NH 3和O 2氣體的快速熱氧化(rapid thermal oxidation, RTO)製程來形成介面層304。介面層304可以作為待沉積在介面層304上的高κ介電材料層的成核層(nucleation layer),並提高襯底302與高κ介電材料層之間介面的品質(例如,諸如介面態密度(interface state density)、累積電容(accumulation capacitance)、頻散(frequency dispersion)和漏電流之類)。可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行該介面形成製程。 In block 220, an interface formation process is performed to form an interface layer 304 on the pre-cleaned surface of the substrate 302, as shown in FIG. 3A. The interface formation process may include a suitable thermal oxidation process, such as an enhanced in-situ steam generation (eISSG) process using nitrous oxide (N 2 O) gas. The interface layer 304 formed in block 220 is a thin amorphous silicon oxide (SiO 2 ) layer having a thickness between about 3 Å and about 10 Å, such as about 5 Å, corresponding to one or more of the silicon oxide Monolayer. In some embodiments, the interface may be formed by an in-situ steam generation (ISSG) process using H 2 and O 2 gases or by a rapid thermal oxidation (RTO) process using NH 3 and O 2 gases layer 304 . The interface layer 304 may serve as a nucleation layer for the high-κ dielectric material layer to be deposited on the interface layer 304 and improve the quality of the interface between the substrate 302 and the high-κ dielectric material layer (eg, an interface such as an interface density of states (interface state density, accumulation capacitance, frequency dispersion, leakage current, etc.). The interface formation process may be performed in a processing chamber such as processing chambers 120, 122, 124, 126, 128, or 130 shown in FIG.

在一些實施方式中,省去了方框220中的介面形成製程,在高κ介電材料層沉積在襯底302上之前不形成介面層304。這種情況下,藉由下面描述的方框250或者方框290中的熱氧化製程來形成介面層304,該製程經由沉積在襯底302上的高κ介電材料層熱氧化襯底302。具有介於約0.3nm與約 1nm之間的厚度,例如,約0.5nm的厚度,藉由方框250或者方框290中的熱氧化製程形成的介面層304可以厚得足以確保可靠的元件特性(例如,諸如介面態密度、累積電容、頻散和漏電流之類)並且減少從高κ介電材料層向襯底302的原子擴散(atomic diffusion)。In some embodiments, the interface formation process in block 220 is omitted, and the interface layer 304 is not formed before the deposition of the high-κ dielectric material layer on the substrate 302 . In this case, the interface layer 304 is formed by the thermal oxidation process in block 250 or block 290 described below, which thermally oxidizes the substrate 302 via a layer of high-κ dielectric material deposited on the substrate 302 . Having a thickness between about 0.3 nm and about 1 nm, eg, about 0.5 nm, the interface layer 304 formed by the thermal oxidation process in block 250 or block 290 may be thick enough to ensure reliable device characteristics (eg, such as interfacial density of states, accumulated capacitance, dispersion, and leakage current) and reduce atomic diffusion from the high-κ dielectric material layer to the substrate 302 .

在方框230中,執行沉積製程,以在半導體結構300的暴露表面上(即,在方框220中形成介面層304的情況下在介面層304上,如圖3B所示,和在方框220中不形成介面層304的情況下在襯底302上)沉積高κ閘極介電層306。高κ閘極介電層306可以由高κ介電材料(諸如二氧化鉿(HfO 2)、二氧化鋯(ZrO 2)、氧化鐿(ytterbium oxide,Y 2O 3)、氧化鋁(Al 2O 3)之類的材料)、具有摻入現有金屬氧化物高κ介電晶核材料(host material)中的第三元素的三元高κ介電膜(諸如HfZrO、HfLaOx、 HfTiO之類)形成。該沉積製程可以包括原子層沉積(ALD)製程,其中將含金屬前驅物和含氧前驅物交替遞送至半導體結構300的暴露表面。在一些實施方式中,在遞送含氧前驅物之前,清除(purge)含金屬前驅物。金屬可以是諸如鉿(Hf)、鋯(Zr)或者鈦(Ti)之類的過渡金屬、諸如鑭(La)、鐿(Yb)或者釔(Y)之類的稀土金屬、諸如鍶(Sr)之類的鹼土金屬或者諸如鋁(Al)之類的其他金屬。對於氧化劑來說,可以使用可以與金屬反應的任何含氧前驅物。例如,含氧前驅物可以是或者包含水、雙原子氧(diatomic oxygen)、臭氧、含羥基的前驅物(hydroxyl-containing precursor)或者醇(alcohol)、含氮和氧的前驅物、包含本端或者遠端增強的氧的電漿增強氧、或者可以與金屬結合以在襯底302之上產生金屬的氧化物的層的含氧的任何其他材料。在一個示例中,含金屬前驅物是四氯化鉿(hafnium tetrachloride, HfCl 4)並且氧化劑是水(H 2O),以形成二氧化鉿(HfO 2)層。可以在介於200°C與約400°C之間的溫度(例如,約270°C)執行ALD製程。如由ALD製程所沉積的那樣,高κ閘極介電層306可以是非晶的並且具有介於約10Å與約30Å之間的厚度。可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行該沉積製程。 In block 230, a deposition process is performed to form the interface layer 304 on the exposed surface of the semiconductor structure 300 (ie, on the interface layer 304 in the case of forming the interface layer 304 in block 220, as shown in FIG. 3B, and in block 220). A high-κ gate dielectric layer 306 is deposited on the substrate 302 without forming the interface layer 304 in 220). The high-κ gate dielectric layer 306 may be composed of a high-κ dielectric material such as hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ), ytterbium oxide (Y 2 O 3 ), aluminum oxide (Al 2 ) O3 ), ternary high-κ dielectric films (such as HfZrO, HfLaOx, HfTiO, etc.) with a third element incorporated into existing metal oxide high-κ dielectric host materials form. The deposition process may include an atomic layer deposition (ALD) process in which metal-containing precursors and oxygen-containing precursors are alternately delivered to the exposed surface of semiconductor structure 300 . In some embodiments, the metal-containing precursor is purged prior to delivery of the oxygen-containing precursor. The metal may be a transition metal such as hafnium (Hf), zirconium (Zr) or titanium (Ti), a rare earth metal such as lanthanum (La), ytterbium (Yb) or yttrium (Y), such as strontium (Sr) alkaline earth metals such as aluminum (Al) or other metals such as aluminum (Al). For the oxidant, any oxygen-containing precursor that can react with the metal can be used. For example, the oxygen-containing precursor may be or contain water, diatomic oxygen, ozone, hydroxyl-containing precursors or alcohols, nitrogen and oxygen-containing precursors, Either plasma enhanced oxygen of remote enhanced oxygen, or any other material containing oxygen that can be combined with metal to produce a layer of metal oxide over substrate 302 . In one example, the metal-containing precursor is hafnium tetrachloride (HfCl 4 ) and the oxidant is water (H 2 O) to form a hafnium dioxide (HfO 2 ) layer. The ALD process can be performed at a temperature between 200°C and about 400°C (eg, about 270°C). The high-κ gate dielectric layer 306 may be amorphous and have a thickness between about 10 Å and about 30 Å as deposited by an ALD process. The deposition process may be performed in a processing chamber such as processing chambers 120, 122, 124, 126, 128, or 130 shown in FIG.

在方框240中,執行可選的沉積後退火製程,以硬化和緻密化所沉積的高κ閘極介電層306。可能發生所沉積的非晶高κ閘極介電層306的結晶化(crystallization)。該沉積後退火製程可以包括在一種快速熱處理(RTP)腔室中執行的惰性環境中(諸如在氮(N 2)和氬(Ar)環境中)的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。這種沉積後退火製程可以用熱的方法硬化和緻密化介面層304和高κ介電層306。 In block 240, an optional post-deposition annealing process is performed to harden and densify the deposited high-κ gate dielectric layer 306 . Crystallization of the deposited amorphous high-κ gate dielectric layer 306 may occur. The post-deposition annealing process may include a thermal annealing process in an inert environment, such as in a nitrogen ( N2 ) and argon (Ar) environment, performed in a rapid thermal processing (RTP) chamber, the rapid thermal processing (RTP) A chamber such as the RADOX™ chamber available from Applied Materials, Santa Clara, CA, USA. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 . This post-deposition annealing process can thermally harden and densify the interface layer 304 and the high-κ dielectric layer 306 .

可以在介於約500°C與約800°C之間的溫度和介於約0.01Torr與100Torr之間的壓力執行沉積後退火製程達約1秒與約60秒之間的時間。The post-deposition annealing process may be performed at a temperature between about 500°C and about 800°C and a pressure between about 0.01 Torr and 100 Torr for a time between about 1 second and about 60 seconds.

在方框250中,替代方框240中的沉積後退火製程,執行可選的再氧化製程,以熱氧化襯底302。該再氧化製程可以包括在一種快速熱處理(RTP)腔室中執行的在氧(O 2)、一氧化二氮(N 2O)和H 2環境中的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。方框250中的再氧化製程可以經由高κ閘極介電層306熱氧化下面的層,因而在方框220中形成介面層304的情況下將介面層304增厚到介於約3Å與約10Å之間的厚度,而在方框220中不形成介面層304的情況下在與高κ介電層306的交界附近在襯底302中形成介面層304。 In block 250, instead of the post-deposition annealing process in block 240, an optional re-oxidation process is performed to thermally oxidize the substrate 302. The re-oxidation process may include a thermal annealing process in an oxygen (O 2 ), nitrous oxide (N 2 O) and H 2 environment performed in a rapid thermal processing (RTP) chamber, the rapid thermal processing (RTP) ) chamber such as the RADOX™ chamber available from Applied Materials, Inc. located in Santa Clara, CA. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 . The re-oxidation process in block 250 may thermally oxidize the underlying layers through the high-κ gate dielectric layer 306, thereby thickening the interface layer 304 to between about 3 Å and about 30 Å with the interface layer 304 formed in block 220. A thickness of between 10 Å and an interface layer 304 is formed in the substrate 302 near the interface with the high-κ dielectric layer 306 without forming the interface layer 304 in block 220 .

可以在介於約400°C與約900°C之間的溫度和介於約0.01Torr與100Torr之間的壓力執行再氧化製程達約1秒與約30秒之間的時間。The reoxidation process may be performed at a temperature between about 400°C and about 900°C and a pressure between about 0.01 Torr and 100 Torr for a time between about 1 second and about 30 seconds.

在方框260中,執行電漿氮化(plasma nitridation)製程,以將氮原子插入到高κ閘極介電層306中的孔隙和缺陷中。該電漿氮化製程可以是在一種去耦電漿氮化(decoupled plasma nitridation, DPN)腔室中執行的DPN製程,這種DPN腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的CENTURA® DPN腔室。這種DPN腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。該電漿氮化製程將高κ閘極介電層306暴露於氮電漿,這可以在高κ閘極介電層306的整個厚度上使氮自由基(radicals)或者氮原子能夠被結合到高κ閘極介電層306內。在該電漿氮化製程期間,氮原子可以形成與氧(O)的亞穩態鍵(metastable bond)。可以在該電漿製程中使用的氣體包括含氮氣體,諸如氮氣(N 2)、氨氣(NH 3)或者這些氣體的混合物。在一個示例中,這種含氮氣體是混合有約3%至約8%的氮氣(N 2)的氨氣(NH 3)。作為氮結合到所沉積的高κ閘極介電層306的孔隙和缺陷中的結果,該電漿氮化製程可以不改變高κ閘極介電層306的厚度。 In block 260 , a plasma nitridation process is performed to insert nitrogen atoms into pores and defects in the high-κ gate dielectric layer 306 . The plasma nitridation process may be a DPN process performed in a decoupled plasma nitridation (DPN) chamber such as is available from Applications in Santa Clara, California, USA CENTURA® DPN chambers acquired by Materials. Such a DPN chamber may be any of the process chambers 120 , 122 , 124 , 126 , 128 and 130 shown in FIG. 1 . The plasma nitridation process exposes the high-κ gate dielectric layer 306 to a nitrogen plasma, which can enable nitrogen radicals or nitrogen atoms to be incorporated into the high-κ gate dielectric layer 306 throughout its thickness within the high-κ gate dielectric layer 306 . During the plasma nitridation process, nitrogen atoms can form metastable bonds with oxygen (O). Gases that may be used in the plasma process include nitrogen-containing gases such as nitrogen ( N2 ), ammonia ( NH3 ), or mixtures of these gases. In one example, the nitrogen-containing gas is ammonia gas (NH 3 ) mixed with about 3% to about 8% nitrogen gas (N 2 ). The plasma nitridation process may not alter the thickness of the high-κ gate dielectric layer 306 as a result of the incorporation of nitrogen into the pores and defects of the deposited high-κ gate dielectric layer 306 .

可以在介於約0°C與約500°C之間的溫度執行氮化製程達約10秒與約300秒之間的時間。The nitridation process may be performed at a temperature between about 0°C and about 500°C for a time between about 10 seconds and about 300 seconds.

在方框270中,執行可選的熱氮化製程,以進一步將氮原子插入到電漿氮化後的高κ閘極介電層306中的孔隙和缺陷中。該熱氮化製程可以包括在一種快速熱處理(RTP)腔室中執行的氨(NH 3)環境中的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。 In block 270, an optional thermal nitridation process is performed to further insert nitrogen atoms into pores and defects in the plasma-nitrided high-κ gate dielectric layer 306 . The thermal nitriding process may include a thermal annealing process in an ammonia (NH 3 ) environment performed in a rapid thermal processing (RTP) chamber such as one available from Santa, California, USA The RADOX™ chamber obtained by Clara's Applied Materials. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 .

可以在介於約700°C與約900°C之間的溫度和介於約10Torr與740Torr之間的壓力執行熱氮化製程達約10秒與約300秒之間的時間。The thermal nitridation process may be performed at a temperature between about 700°C and about 900°C and a pressure between about 10 Torr and 740 Torr for a time between about 10 seconds and about 300 seconds.

在方框280中,執行氮化後退火(post-nitridation anneal)製程,以鈍化電漿氮化後的高κ閘極介電層306中剩餘的化學鍵。該氮化後退火製程可以包括在一種快速熱處理(RTP)腔室中執行的氮(N 2)和氬(Ar)環境中的尖峰熱退火(spike thermal anneal)製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。該氮化後退火製程可以鈍化在方框240中的電漿氮化製程中形成的亞穩態氮鍵,並且可能發生非晶高κ閘極介電層306的結晶化。 In block 280, a post-nitridation anneal process is performed to passivate the remaining chemical bonds in the high-κ gate dielectric layer 306 after plasma nitridation. The post-nitridation annealing process may include a spike thermal anneal process in a nitrogen ( N2 ) and argon (Ar) environment performed in a rapid thermal processing (RTP) chamber, the rapid thermal processing (RTP) A chamber such as the RADOX™ chamber available from Applied Materials, Santa Clara, CA, USA. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 . The post-nitridation annealing process may passivate the metastable nitrogen bonds formed during the plasma nitridation process in block 240 and crystallization of the amorphous high-κ gate dielectric layer 306 may occur.

可以在介於約700°C與約850°C之間的溫度和介於約10Torr與740Torr之間的壓力執行尖峰熱退火製程達約1秒與約30秒之間的時間。The spike thermal annealing process may be performed at a temperature between about 700°C and about 850°C and a pressure between about 10 Torr and 740 Torr for a time between about 1 second and about 30 seconds.

在方框290中,替代方框280中的氮化後退火製程,執行氮化後退火和再氧化製程,以同時如方框280中那樣鈍化高κ閘極介電層306中剩餘的化學鍵和如方框250中那樣熱氧化襯底302。方框290中的氮化後退火和再氧化製程與方框250中的再氧化製程相同。因此,這裡省略方框290中的氮化後退火和再氧化製程的細節。In block 290 , instead of the post-nitridation anneal process in block 280 , a post-nitridation anneal and re-oxidation process is performed to simultaneously passivate the remaining chemical bonds in the high-κ gate dielectric layer 306 as in block 280 and The substrate 302 is thermally oxidized as in block 250 . The post-nitridation annealing and re-oxidation process in block 290 is the same as the re-oxidation process in block 250 . Therefore, the details of the post-nitridation annealing and re-oxidation process in block 290 are omitted here.

圖4是根據本公開內容的一個或多個實施方式的形成半導體結構300中閘極介電層306之上的金屬閘極結構500的方法400的製程流程圖。圖5A、圖5B和圖5C是對應於方法400的各種狀態的半導體結構300中金屬閘極結構500的一部分的截面圖。應當理解,圖5A、圖5B和圖5C僅示出了半導體結構300的局部示意圖,而半導體結構300可以包含任意數量的電晶體部分和具有如圖所示多個態樣的附加材料。還應該注意的是,雖然圖4中所示的方法步驟是按順序描述的,但包括一個或多個已被省略和/或添加的、和/或已按另一所需順序重新排列的一個或多個方法步驟的其他製程順序也落入本文提供的本公開內容的多個實施方式的範圍內。4 is a process flow diagram of a method 400 of forming a metal gate structure 500 over a gate dielectric layer 306 in a semiconductor structure 300 in accordance with one or more embodiments of the present disclosure. 5A , 5B, and 5C are cross-sectional views of a portion of a metal gate structure 500 in the semiconductor structure 300 corresponding to various states of the method 400 . It should be understood that FIGS. 5A, 5B, and 5C show only partial schematic views of semiconductor structure 300, and semiconductor structure 300 may include any number of transistor sections and additional materials having multiple aspects as shown. It should also be noted that although the method steps shown in FIG. 4 are described sequentially, one or more of the steps have been omitted and/or added, and/or have been rearranged in another desired order. Other processing sequences of method steps or steps are also within the scope of the various embodiments of the present disclosure provided herein.

方法400始於方框410中的沉積製程,以在半導體結構300的閘極介電層306上沉積高κ介電帽層502,如圖5A所示。高κ介電帽層502可以由包含摻雜有矽(Si)、鋁(Al)、鎵(Ga)、鍺(Ge)、銦(In)或鉿(Hf)的鈦(Ti)或者鉭(Ta)的金屬氮化材料形成,這樣的材料諸如是TiSiN、TaSiN、TiAlN、TaAlN、TiGaN、TaGaN、TiGeN、TaGeN、TiInN、TaInN、TiHfN或者TaHfN。由如此摻雜的金屬氮化材料形成的高κ介電帽層502可以防止在方框430中的後續矽沉積製程期間的矽(Si)遷移(migration)。方框410中的該沉積製程可以包括原子層沉積(ALD)製程,其中將包含鈦(Ti)或鉭(Ta)的含金屬前驅物、含氮前驅物和含摻雜物的前驅物遞送至閘極介電層306的表面。在方框420的描述中列出了包含鈦(Ti)或鉭(Ta)的含金屬前驅物的實例和含氮前驅物的實例。含摻雜物的前驅物包含鋁(Al)、鎵(Ga)、鍺(Ge)、鉿(Hf)、銦(In)或矽(Si)。包含鋁(Al)的含摻雜物的前驅物的實例包括鋁(Al)的無機化合物和鋁(Al)的有機金屬化合物(organometallic compounds),鋁(Al)的無機化合物諸如是氯化鋁(AlCl 3)和溴化鋁(AlBr 3),鋁(Al)的有機金屬化合物諸如是三甲基鋁(trimethylaluminum, TMA, (CH 3) 3Al)、二甲基氫化鋁(dimethylaluminum hydride, DMAH, (CH 3) 2AlH)、三(二乙氨基)鋁(tris(diethylamino)aluminum, TDEAA, Al(N(C 2H 5) 2) 3)、三甲胺鋁烷(trimethylamine alane, TMAA, AlH 3-N(CH 3) 3)、三乙胺鋁烷(triethylamine alane, TEAA, AlH 3-N(C 2H 5) 3)、二甲基乙胺鋁烷(dimethylethylamine alane, (AlH 3-C 2H 5N(CH 3) 2)、三異丁基鋁(triisobutylaluminum, TiBA, [Al(CH 3) 2CHCH 2] 3) )、三乙基鋁(triethylaluminum,  TEAl, Al(C 2H 5) 3)、二甲基氫化鋁 (dimethylaluminum hydride, DMAH, (CH 3) 2AlH)和二乙基氯化鋁 (diethylaluminum chloride, DEAC, (C 2H 5) 2AlCl)。包含鎵(Ga)的含摻雜物的前驅物的實例包括鎵(Ga)的無機化合物和鎵(Ga)的有機金屬化合物,鎵(Ga)的無機化合物諸如是三溴化鎵(GaBr 3)和三氯化鎵(GaCl 3),鎵(Ga)的有機金屬化合物諸如是三甲基鎵(trimethyl gallium, Ga(CH 3) 3)、三乙基鎵(triethylgallium, Ga(C 2H 5) 3)、三異丙基鎵(triisopropylgallium, Ga(CH(CH 3) 2) 3)、三(二甲基醯胺)鎵(tris(dimethylamido)gallium, Ga(N(CH 3) 2) 3)和三級丁基鎵(tri-tert-butylgallium, Ga(C(CH 3) 3) 3)。包含鍺(Ge)的含摻雜物的前驅物的實例包括鍺(Ge)的無機化合物和鍺(Ge)的有機金屬化合物,鍺(Ge)的無機化合物諸如是乙鍺烷(digermane, Ge 2H 6)和鍺烷(germane, GeH 4), 鍺(Ge)的有機金屬化合物諸如是四甲基鍺(tetramethylgermanium, (CH 3) 4Ge)。包含鉿(Hf)的含摻雜物的前驅物的實例包括鉿(Hf)的無機化合物和鉿(Hf)的有機金屬化合物,鉿(Hf)的無機化合物諸如是氯化鉿(四價)(hafnium(IV) chloride, HfCl 4),鉿(Hf)的有機金屬化合物諸如是三級丁醇鉿(四價) (hafnium(IV) tert-butoxide, Hf[OC(CH 3) 3] 4)、四(二乙基醯胺)鉿(四價) (tetrakis(diethylamido)hafnium(IV), [(CH 2CH 3) 2N] 4Hf)、四(二甲基醯胺)鉿(四價) (tetrakis(dimethylamido)hafnium(IV), [(CH 3) 2N] 4Hf)和四(乙基甲基醯胺基)鉿(四價) (tetrakis(ethylmethylamido)hafnium(IV),TEMAH, [(CH 3)(C 2H 5)N] 4Hf)。包含銦(In)的含摻雜物的前驅物的實例包括銦(In)的無機化合物和銦(In)的有機金屬化合物,銦(In)的無機化合物諸如是三氯化銦(indium trichloride, InCl 3)和碘化銦(一價)(indium(I) iodide, InI),銦(In)的有機金屬化合物諸如是三乙基銦(triethylindium, In(CH 2CH 3) 3)和乙醯丙酮銦(三價) (indium (III) acetylacetonate, In(OCCH 3CHOCCH 3) 3)。包含矽(Si)的含摻雜物的前驅物的實例包括矽(Si)的無機化合物和矽(Si)的有機金屬化合物,矽(Si)的無機化合物諸如是矽烷(silane, SiH 4)、乙矽烷(disilane, Si 2H 6),矽(Si)的有機金屬化合物諸如是三甲基矽烷(trimethylsilane, (CH 3) 3SiH)和新戊矽烷(neopentasilane, (SiH 3) 4Si)。 The method 400 begins with a deposition process in block 410 to deposit a high-κ dielectric capping layer 502 on the gate dielectric layer 306 of the semiconductor structure 300, as shown in FIG. 5A. The high-κ dielectric cap layer 502 may be composed of titanium (Ti) or tantalum ( Ta) metal nitride materials such as TiSiN, TaSiN, TiAlN, TaAlN, TiGaN, TaGaN, TiGeN, TaGeN, TiInN, TaInN, TiHfN or TaHfN. The high-κ dielectric capping layer 502 formed from the metal nitride material thus doped can prevent silicon (Si) migration during subsequent silicon deposition processes in block 430 . The deposition process in block 410 may include an atomic layer deposition (ALD) process in which a metal-containing precursor, a nitrogen-containing precursor, and a dopant-containing precursor including titanium (Ti) or tantalum (Ta) are delivered to The surface of the gate dielectric layer 306 . Examples of metal-containing precursors including titanium (Ti) or tantalum (Ta) and examples of nitrogen-containing precursors are listed in the description of block 420 . The dopant-containing precursor includes aluminum (Al), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), or silicon (Si). Examples of the dopant-containing precursor containing aluminum (Al) include inorganic compounds of aluminum (Al) and organometallic compounds of aluminum (Al) such as aluminum chloride ( AlCl 3 ) and aluminum bromide (AlBr 3 ), organometallic compounds of aluminum (Al) such as trimethylaluminum (TMA, (CH 3 ) 3 Al), dimethylaluminum hydride (DMAH, (CH 3 ) 2 AlH), tris(diethylamino)aluminum (TDEAA, Al(N(C 2 H 5 ) 2 ) 3 ), trimethylamine alane (TMAA, AlH 3 ) -N(CH 3 ) 3 ), triethylamine alane (TEAA, AlH 3 -N(C 2 H 5 ) 3 ), dimethylethylamine alane (AlH 3 -C 2 H 5 N(CH 3 ) 2 ), triisobutylaluminum (TiBA, [Al(CH 3 ) 2 CHCH 2 ] 3 ) ), triethylaluminum (TEAl, Al(C 2 H 5 ) 3 ), dimethylaluminum hydride (DMAH, (CH 3 ) 2 AlH) and diethylaluminum chloride (DEAC, (C 2 H 5 ) 2 AlCl). Examples of the dopant-containing precursor containing gallium (Ga) include inorganic compounds of gallium (Ga) such as gallium tribromide (GaBr 3 ) and organometallic compounds of gallium (Ga) and gallium trichloride (GaCl 3 ), organometallic compounds of gallium (Ga) such as trimethyl gallium (Ga(CH 3 ) 3 ), triethylgallium (Ga(C 2 H 5 ) 3 ), triisopropylgallium (triisopropylgallium, Ga(CH(CH 3 ) 2 ) 3 ), tris(dimethylamido) gallium (tris(dimethylamido) gallium, Ga(N(CH 3 ) 2 ) 3 ) and tert-butylgallium (tri-tert-butylgallium, Ga(C(CH 3 ) 3 ) 3 ). Examples of the dopant-containing precursor containing germanium (Ge) include inorganic compounds of germanium (Ge) such as digermane (Ge 2 ) and organometallic compounds of germanium (Ge) H 6 ) and germane (germane, GeH 4 ), organometallic compounds of germanium (Ge) such as tetramethylgermanium ((CH 3 ) 4 Ge). Examples of the dopant-containing precursor containing hafnium (Hf) include inorganic compounds of hafnium (Hf) such as hafnium (tetravalent) chloride ( hafnium(IV) chloride, HfCl 4 ), organometallic compounds of hafnium (Hf) such as hafnium(IV) tert-butoxide, Hf[OC(CH 3 ) 3 ] 4 ), Tetrakis(diethylamido)hafnium(IV), [(CH 2 CH 3 ) 2 N] 4 Hf), tetrakis(diethylamido) hafnium(IV), tetrakis(diethylamido) hafnium(IV) (tetrakis(dimethylamido)hafnium(IV), [(CH 3 ) 2 N] 4 Hf) and tetrakis(ethylmethylamido)hafnium(IV),TEMAH, [ (CH 3 )(C 2 H 5 )N] 4 Hf). Examples of the dopant-containing precursor containing indium (In) include inorganic compounds of indium (In) and organometallic compounds of indium (In) such as indium trichloride (indium trichloride, InCl 3 ) and indium iodide (monovalent) (indium(I) iodide, InI), organometallic compounds of indium (In) such as triethylindium (In(CH 2 CH 3 ) 3 ) and acetone Indium (III) acetylacetonate, In(OCCH 3 CHOCCH 3 ) 3 ). Examples of the dopant-containing precursor including silicon (Si) include inorganic compounds of silicon (Si) and organometallic compounds of silicon (Si) such as silane (SiH 4 ), Disilane (Si 2 H 6 ), organometallic compounds of silicon (Si) such as trimethylsilane (trimethyl, (CH 3 ) 3 SiH) and neopentasilane ((SiH 3 ) 4 Si).

可以改變遞送含金屬前驅物、含氮前驅物和含摻雜物的前驅物的順序。在一些實施方式中,交替遞送含金屬前驅物、含氮前驅物和含摻雜物的前驅物。在一些實施方式中,同時遞送含金屬前驅物和含摻雜物的前驅物,並且在淨化後,遞送含氮前驅物。下面的表1示出幾種非限制性的順序變化情形。The order in which the metal-containing precursor, nitrogen-containing precursor, and dopant-containing precursor are delivered can be varied. In some embodiments, metal-containing precursors, nitrogen-containing precursors, and dopant-containing precursors are alternately delivered. In some embodiments, the metal-containing precursor and the dopant-containing precursor are delivered simultaneously, and after purification, the nitrogen-containing precursor is delivered. Table 1 below shows several non-limiting sequence variations.

表1 示例性沉積順序 選項 順序 1 含金屬前驅物→淨化→含氮前驅物→淨化→含摻雜物的前驅物 →淨化→含氮前驅物→淨化→重複 2 含摻雜物的前驅物→淨化→含氮前驅物→淨化→含金屬前驅物→淨化→含氮前驅物→淨化→重複 3 含金屬前驅物→淨化→(含氮前驅物+含摻雜物的前驅物) →淨化→重複 4 (含金屬前驅物+含摻雜物的前驅物) →淨化→含氮前驅物→淨化→重複 5 含金屬前驅物→含摻雜物的前驅物→淨化→含氮前驅物→淨化→重複 6 含摻雜物的前驅物→含金屬前驅物→淨化→含氮前驅物→淨化→重複 Table 1 Exemplary deposition sequence Options order 1 metal-containing precursor → purification → nitrogen-containing precursor → purification → dopant-containing precursor → purification → nitrogen-containing precursor → purification → repeat 2 dopant-containing precursor → purification → nitrogen-containing precursor → purification → metal-containing precursor → purification → nitrogen-containing precursor → purification → repeat 3 Metal-containing precursor → purification → (nitrogen-containing precursor + dopant-containing precursor) → purification → repeat 4 (metal-containing precursor + dopant-containing precursor) → purification → nitrogen-containing precursor → purification → repeat 5 metal-containing precursor → dopant-containing precursor → purification → nitrogen-containing precursor → purification → repeat 6 dopant-containing precursor → metal-containing precursor → purification → nitrogen-containing precursor → purification → repeat

可以在介於約200°C與約700°C之間(例如,介於約300°C與約600°C之間)的溫度執行方框410中的ALD製程。如由方框410中的ALD製程所沉積的那樣,高κ介電帽層502可以是非晶的並且具有介於約2Å與約200Å之間(例如,介於約10Å與約15Å之間)的厚度。可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行該沉積製程。The ALD process in block 410 may be performed at a temperature between about 200°C and about 700°C (eg, between about 300°C and about 600°C). As deposited by the ALD process in block 410, the high-κ dielectric cap layer 502 may be amorphous and have between about 2 Å and about 200 Å (eg, between about 10 Å and about 15 Å) thickness. The deposition process may be performed in a processing chamber such as processing chambers 120, 122, 124, 126, 128, or 130 shown in FIG.

在方框420中,執行可選的金屬帽退火製程,以硬化和緻密化所沉積的高κ介電帽層502。可能發生所沉積的高κ介電帽層502的結晶化。方框420中的該可選的金屬帽退火製程可以包括在一種快速熱處理(RTP)腔室中執行的惰性環境中(諸如在氮(N 2)和氬(Ar)環境中)的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。 In block 420, an optional metal cap annealing process is performed to harden and densify the deposited high-κ dielectric cap layer 502 . Crystallization of the deposited high-κ dielectric cap layer 502 may occur. The optional metal cap annealing process in block 420 may include a thermal annealing process performed in a rapid thermal processing (RTP) chamber in an inert environment, such as in a nitrogen ( N2 ) and argon (Ar) environment , such a rapid thermal processing (RTP) chamber such as the RADOX™ chamber available from Applied Materials, Inc. located in Santa Clara, CA, USA. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 .

可以在介於約700°C與約850°C之間的溫度和介於約0.1Torr與100Torr之間的壓力執行方框420中的可選的金屬帽退火製程達約1秒與約10秒之間的時間。The optional metal cap annealing process in block 420 may be performed for about 1 second and about 10 seconds at a temperature between about 700°C and about 850°C and a pressure between about 0.1 Torr and 100 Torr time between.

在方框430中,執行沉積製程以在高κ介電帽層502上沉積犧牲矽帽層504,如圖5B所示。犧牲矽帽層504可以在方框440中後續的退火製程期間在物理和化學方面保護下面的高κ閘極介電層306和高κ介電帽層502。犧牲矽帽層504由非晶矽形成,非晶矽諸如是氫化非晶矽(a-Si:H)。與包含為擴散引路的晶界(grain boundaries leading path for diffusion)的多晶矽相比,非晶矽可以提供更少的原子擴散。方框430中的沉積製程可以是原子層沉積(ALD)製程或者化學氣相沉積(CVD)製程,其中將上面形成有高κ介電帽層502的半導體結構300暴露給矽前驅物。矽前驅物的實例是多矽烷(poly-silanes, Si xH y)。例如,多矽烷包括乙矽烷(disilane, Si 2H 6)、丙矽烷(trisilane, Si 3H 8)、四矽烷(tetrasilane, Si 4H 10)、異丁矽烷(isotetrasilane)、新戊矽烷(neopentasilane, Si 5H 12)、環戊矽烷(cyclopentasilane, Si 5H 10)、六矽烷(hexasilane, C 6H 14)、環己矽烷(cyclohexasilane, Si 6H 12)或者總的來說是Si xH y(其中x=2或更大),以及它們的組合。 In block 430, a deposition process is performed to deposit the sacrificial silicon capping layer 504 on the high-κ dielectric capping layer 502, as shown in FIG. 5B. The sacrificial silicon cap layer 504 may physically and chemically protect the underlying high-κ gate dielectric layer 306 and high-κ dielectric cap layer 502 during subsequent annealing processes in block 440 . The sacrificial silicon cap layer 504 is formed of amorphous silicon, such as hydrogenated amorphous silicon (a-Si:H). Amorphous silicon can provide less atomic diffusion than polysilicon containing grain boundaries leading path for diffusion. The deposition process in block 430 may be an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process in which the semiconductor structure 300 with the high-κ dielectric cap layer 502 formed thereon is exposed to a silicon precursor. Examples of silicon precursors are poly-silanes ( SixHy ). For example, polysilanes include disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), tetrasilane (Si 4 H 10 ), isobutylsilane (isotetrasilane), neopentasilane (neopentasilane) , Si 5 H 12 ), cyclopentasilane (Si 5 H 10 ), hexasilane (C 6 H 14 ), cyclohexasilane (Si 6 H 12 ) or in general Six H y (where x=2 or greater), and their combinations.

犧牲矽帽層504可以具有介於約30Å與約50Å之間的厚度。方框430中的沉積製程可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行。The sacrificial silicon cap layer 504 may have a thickness between about 30 Å and about 50 Å. The deposition process in block 430 may be performed in a processing chamber such as processing chamber 120, 122, 124, 126, 128, or 130 shown in FIG.

在方框440中,執行後帽退火(post cap anneal,PCA)製程,以硬化和緻密化所沉積的高κ介電帽層502。可能發生所沉積的高κ介電帽層502和所沉積的犧牲矽帽層504的結晶化。方框440中的PCA製程可以包括在一種快速熱處理(RTP)腔室中執行的惰性環境中(諸如在氮(N 2)和氬(Ar)環境中)的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX™腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。 In block 440, a post cap anneal (PCA) process is performed to harden and densify the deposited high-κ dielectric cap layer 502 . Crystallization of the deposited high-κ dielectric cap layer 502 and the deposited sacrificial silicon cap layer 504 may occur. The PCA process in block 440 may include a thermal annealing process in an inert environment, such as in a nitrogen ( N2 ) and argon (Ar) environment, performed in a rapid thermal processing (RTP) chamber. RTP) chambers such as RADOX™ chambers available from Applied Materials, Inc. located in Santa Clara, CA. Such an RTP chamber may be any of the processing chambers 120, 122, 124, 126, 128, and 130 shown in FIG. 1 .

可以在介於約900°C與約1000°C之間的溫度(例如約900°C)和介於約0.1Torr與100Torr之間的壓力執行方框440中的PCA製程達約1秒與約10秒之間的時間。The PCA process in block 440 may be performed at a temperature between about 900°C and about 1000°C (eg, about 900°C) and a pressure between about 0.1 Torr and 100 Torr for about 1 second and about time between 10 seconds.

在方框450中,執行去除製程以剝除犧牲矽帽層504。該去除製程可包括乾式電漿蝕刻製程。In block 450 , a removal process is performed to strip the sacrificial silicon cap layer 504 . The removal process may include a dry plasma etching process.

繼方框460中的去除製程之後,在方框460中,執行沉積製程以在硬化和緻密化的高κ介電帽層502上沉積金屬層506,如圖5C中所示。金屬層506可以由鎢(W)或者鈷(Co)形成。金屬層506可以p型摻雜的或者n型摻雜的。方框450中的沉積製程可以包括使用含鈷前驅物或者諸如WF 6之類的含鎢前驅物的化學氣相沉積製程(CVD)。 Following the removal process in block 460, in block 460, a deposition process is performed to deposit a metal layer 506 over the hardened and densified high-κ dielectric cap layer 502, as shown in Figure 5C. The metal layer 506 may be formed of tungsten (W) or cobalt (Co). Metal layer 506 may be p-doped or n-doped. The deposition process in block 450 may include a chemical vapor deposition (CVD) process using a cobalt-containing precursor or a tungsten-containing precursor such as WF6 .

本文描述的由摻雜的金屬氮化材料形成的高κ介電帽層502可以在方框460中的使用諸如WF 6之類的含氟前驅物的沉積製程中例如有效地作為氟阻擋物(fluorine barrier)。本文描述的由摻雜的金屬氮化物材料形成的高κ介電帽層502還可以防止鋁(Al)遷移,因而減弱了對鋁阻擋物的需求,而由諸如氮化鈦(TiN)之類的金屬氮化物材料形成的傳統的高κ介電帽層允許鋁遷移。本文描述的由摻雜的金屬氮化物材料形成的高κ介電帽層502還可以用作功函數層,以增大高κ介電帽層502與金屬層506之間介面處的有效功函數。 The high-κ dielectric capping layer 502 described herein formed from doped metal nitride materials may be effective, for example, as a fluorine barrier in the deposition process in block 460 using a fluorine-containing precursor such as WF6 ( fluorine barrier). The high-κ dielectric capping layer 502 described herein formed of doped metal nitride materials can also prevent aluminum (Al) migration, thereby alleviating the need for an aluminum barrier, while the A traditional high-κ dielectric cap layer formed of a metal nitride material allows aluminum to migrate. The high-κ dielectric capping layer 502 formed from the doped metal nitride materials described herein can also be used as a work function layer to increase the effective work function at the interface between the high-κ dielectric capping layer 502 and the metal layer 506 .

在一些實施方式中,在不破壞諸如處理系統100之類的處理系統中的低壓或者真空環境的情況下,執行方框410中用來沉積高κ介電帽層502的沉積製程和方框430中用來沉積犧牲矽帽層504的沉積製程。不破壞低壓或者真空環境的製程可以減小因大氣環境中引入的濕氣導致的污染。In some embodiments, the deposition process used to deposit the high-κ dielectric capping layer 502 in block 410 and block 430 are performed without disrupting the low pressure or vacuum environment in a processing system such as processing system 100 The deposition process used to deposit the sacrificial silicon cap layer 504 in FIG. Processes that do not disrupt the low pressure or vacuum environment can reduce contamination due to the introduction of moisture into the atmosphere.

在一些實施方式中,在不破壞諸如處理系統100之類的處理系統中的低壓或者真空環境的情況下,執行方框410中用來沉積高κ介電帽層502的沉積製程、方框430中用來沉積犧牲矽帽層504的沉積製程和方框440中的後帽退火(PCA)製程。不破壞低壓或者真空環境的製程可以減小因大氣環境中引入的濕氣導致的污染並且進一步防止增厚高κ閘極介電層306。In some embodiments, the deposition process used to deposit the high-κ dielectric capping layer 502 in block 410 , block 430 is performed without disrupting the low pressure or vacuum environment in the processing system, such as the processing system 100 . The deposition process used to deposit the sacrificial silicon cap layer 504 in block 440 and the cap back anneal (PCA) process in block 440 . A process that does not disrupt the low pressure or vacuum environment can reduce contamination due to moisture introduced in the atmospheric environment and further prevent thickening of the high-κ gate dielectric layer 306 .

在本文描述的多個實施方式中,提供了形成高品質薄的高κ介電材料層和金屬閘極結構的系統和方法。這樣的高κ介電材料層的特性可以得到很好的控制。例如,方框260和270中的氮化製程可以受到控制以提供介於約3原子%與約20原子%之間的高κ閘極介電層306中的氮結合,從而實現與更高氮結合的情況相比更高的κ值,和與更低氮結合的情況相比更好的結構穩定性。方框240、270、280和290中的退火製程也可以受到控制以在高κ閘極介電層306中提供具有大於約20Å的尺寸的晶粒,從而減少流過高κ閘極介電層306的漏電流。In various embodiments described herein, systems and methods are provided for forming high quality thin layers of high-κ dielectric material and metal gate structures. The properties of such a high-κ dielectric material layer can be well controlled. For example, the nitridation process in blocks 260 and 270 may be controlled to provide between about 3 atomic % and about 20 atomic % nitrogen in the high-κ gate dielectric layer 306 to combine with higher nitrogen Higher κ values for the bound case, and better structural stability compared to the lower nitrogen bound case. The annealing process in blocks 240, 270, 280, and 290 may also be controlled to provide grains having dimensions greater than about 20 Å in the high-κ gate dielectric layer 306, thereby reducing flow through the high-κ gate dielectric layer 306 leakage current.

本文描述的金屬閘極結構可以展現出減小的等效氧化物厚度 (EOT)、減小的穿過其中的漏電流和增大的有效功函數。本文描述的金屬閘極結構還可以展現出鋁(A)阻擋物特性,這使得能夠在金屬閘極結構上直接形成鋁層。這種金屬閘極結構能夠有利地用在快閃記憶體、動態隨機存取記憶體(DRAM)和MOSFET中任何阻擋物應用和/或任何金屬閘極應用中。The metal gate structures described herein can exhibit reduced equivalent oxide thickness (EOT), reduced leakage current therethrough, and increased effective work function. The metal gate structures described herein can also exhibit aluminum (A) barrier properties, which enable the direct formation of aluminum layers on the metal gate structures. This metal gate structure can be advantageously used in any barrier application and/or any metal gate application in flash memory, dynamic random access memory (DRAM) and MOSFETs.

儘管前述內容涉及本公開內容的多個實施方式,但在不脫離本公開內容的基本範圍的情況下可以設計本公開內容的其他和進一步的實施方式,並且本公開內容的範圍由隨附的申請專利範圍來決定。While the foregoing relates to various embodiments of the present disclosure, other and further embodiments of the present disclosure may be devised without departing from the essential scope of the present disclosure, and the scope of the present disclosure is determined by the accompanying application the scope of the patent.

100:多腔室處理系統 102:工廠介面 104:裝載閘腔室 106:裝載閘腔室 108:傳送腔室 110:傳送腔室 112:傳送機械手 114:傳送機械手 116:保持腔室 118:保持腔室 120:處理腔室 122:處理腔室 124:處理腔室 126:處理腔室 128:處理腔室 130:處理腔室 140:塢站 142:工廠介面機械手 144:前開式標準艙 148:葉片 150:埠 152:埠 154:埠 156:埠 158:埠 160:埠 162:埠 164:埠 166:埠 168:埠 170:埠 172:埠 174:埠 176:埠 190:系統控制器 192:中央處理單元 194:記憶體 196:支援電路 200:方法 210:方框 220:方框 230:方框 240:方框 250:方框 260:方框 270:方框 280:方框 290:方框 300:半導體結構 302:襯底 304:介面層 306:高κ閘極介電層 400:方法 410:方框 420:方框 430:方框 440:方框 450:方框 460:方框 480:方框 500:金屬閘極結構 502:高κ介電帽層 504:犧牲矽帽層 506:金屬層 100: Multi-chamber processing system 102: Factory interface 104: Load lock chamber 106: Load lock chamber 108: Transfer Chamber 110: Transfer Chamber 112: Teleport Manipulator 114: Teleport Manipulator 116: Keeping the chamber 118: Keeping the chamber 120: Processing Chamber 122: Processing Chamber 124: Processing Chamber 126: Processing Chamber 128: Processing Chamber 130: Processing Chamber 140: Dock 142: Factory Interface Robot 144: Front opening standard cabin 148: Blade 150: port 152: port 154: port 156: port 158: port 160: port 162: port 164: port 166: port 168: port 170: port 172: port 174: port 176: port 190: System Controller 192: Central Processing Unit 194: Memory 196: Support circuit 200: Method 210: Box 220: Box 230: Box 240: Box 250: Box 260: Box 270: Box 280: Box 290: Box 300: Semiconductor Structure 302: Substrate 304: interface layer 306: High-κ gate dielectric layer 400: Method 410: Box 420: Box 430: Box 440: Box 450: Box 460: Box 480: Box 500: Metal gate structure 502: High-κ dielectric capping layer 504: Sacrificial Silicon Cap Layer 506: Metal Layer

為了能夠詳細理解本公開內容的上述特徵的方式,可以藉由參考多個實施方式來對以上簡要概括的本公開內容進行更具體的描述,在附圖中圖示出這些實施方式中的一些實施方式。但是,應注意的是,附圖僅圖示出本公開內容的典型實施方式,因此不應視為對本公開內容的範圍的限制,因為本公開內容可以允許有其他等效的實施方式。In order that the manner in which the above-described features of the present disclosure can be understood in detail, the present disclosure, briefly summarized above, may be described in more detail by reference to a number of embodiments, some of which are illustrated in the accompanying drawings. Way. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.

圖1是根據一個實施方式的示例多腔室處理系統的示意性俯視圖。1 is a schematic top view of an example multi-chamber processing system according to one embodiment.

圖2是根據一個實施方式的形成半導體結構的方法的製程流程圖。2 is a process flow diagram of a method of forming a semiconductor structure according to one embodiment.

圖3A和圖3B是根據一個實施方式的半導體結構的示意圖。3A and 3B are schematic diagrams of a semiconductor structure according to one embodiment.

圖4是根據一個實施方式的形成半導體結構的方法的製程流程圖。4 is a process flow diagram of a method of forming a semiconductor structure according to one embodiment.

圖5A、圖5B和圖5C是根據一個實施方式的半導體結構的示意圖。5A, 5B, and 5C are schematic diagrams of semiconductor structures according to one embodiment.

為了便於理解,只要可能,就用相同的參考標記指代各圖共有的相同元件。考慮到的是,一個實施方式的元件和特徵可以有益地結合到其他實施方式中而無需進一步聲明。To facilitate understanding, wherever possible, the same reference numerals have been used to refer to the same elements common to the various figures. It is contemplated that elements and features of one embodiment may be beneficially combined in other embodiments without further recitation.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

400:方法 400: Method

410:方框 410: Box

420:方框 420: Box

430:方框 430: Box

440:方框 440: Box

450:方框 450: Box

460:方框 460: Box

480:方框 480: Box

Claims (25)

一種形成一半導體結構的方法,該方法包括以下步驟: 在形成在一襯底上的一半導體結構上形成一高κ介電帽層,包括: 在該半導體結構上沉積該高κ介電帽層; 在該高κ介電帽層上沉積一犧牲矽帽層; 執行一後帽退火製程,以硬化和緻密化所沉積的高κ介電帽層;和 去除該犧牲矽帽層。 A method of forming a semiconductor structure, the method comprising the steps of: A high-κ dielectric capping layer is formed on a semiconductor structure formed on a substrate, comprising: depositing the high-κ dielectric capping layer on the semiconductor structure; depositing a sacrificial silicon capping layer on the high-κ dielectric capping layer; performing a post-cap annealing process to harden and densify the deposited high-κ dielectric capping layer; and The sacrificial silicon capping layer is removed. 如請求項1所述的方法,其中該高κ介電帽層的該形成的步驟是在不破壞真空的情況下在一處理系統中執行的。The method of claim 1, wherein the step of forming the high-κ dielectric capping layer is performed in a processing system without breaking vacuum. 如請求項1所述的方法,進一步包括以下步驟: 在該襯底上形成該半導體結構,包括: 預清潔該襯底的一表面; 在該襯底的預清潔後的表面上形成一介面層; 在該介面層上沉積一高κ閘極介電層; 執行一電漿氮化製程,以在所沉積的高κ閘極介電層中插入氮原子;和 執行一氮化後退火製程,以鈍化電漿氮化後的高κ閘極介電層中的化學鍵。 The method according to claim 1, further comprising the following steps: Forming the semiconductor structure on the substrate includes: pre-cleaning a surface of the substrate; forming an interface layer on the pre-cleaned surface of the substrate; depositing a high-κ gate dielectric layer on the interface layer; performing a plasma nitridation process to insert nitrogen atoms into the deposited high-κ gate dielectric layer; and A post-nitridation annealing process is performed to passivate chemical bonds in the plasma-nitrided high-κ gate dielectric layer. 如請求項3所述的方法,其中 該介面層包含氧化矽(SiO 2),並且 該介面層的該形成的步驟包括以下步驟:利用一氧化二氮(N 2O)氣體對該襯底進行熱氧化。 The method of claim 3, wherein the interface layer comprises silicon oxide (SiO 2 ), and the step of forming the interface layer comprises the steps of: irradiating the substrate with nitrous oxide (N 2 O) gas Thermal oxidation. 如請求項3所述的方法,其中該高κ閘極介電層包含氧化鉿(HfO 2)。 The method of claim 3, wherein the high-κ gate dielectric layer comprises hafnium oxide (HfO 2 ). 如請求項3所述的方法,其中該電漿氮化製程包括:將該所沉積的高κ閘極介電層暴露給使用了氮氣(N 2)與氨氣(NH 3)的一混合物的氮電漿。 The method of claim 3, wherein the plasma nitridation process comprises: exposing the deposited high-κ gate dielectric layer to a process using a mixture of nitrogen (N 2 ) and ammonia (NH 3 ). Nitrogen plasma. 如請求項3所述的方法,其中該氮化後退火製程包括:在介於700°C與850°C之間的一溫度且在一氮(N 2)和氬(Ar)環境中,對該所沉積的高κ閘極介電層進行尖峰退火(spike annealing)。 The method of claim 3, wherein the post-nitridation annealing process comprises: at a temperature between 700°C and 850°C and in a nitrogen (N 2 ) and argon (Ar) environment, The deposited high-κ gate dielectric layer is subjected to spike annealing. 如請求項3所述的方法,進一步包括以下步驟: 在該電漿氮化製程之前,執行一沉積後退火製程,以硬化和緻密化該所沉積的高κ閘極介電層,其中該沉積後退火製程包括:在介於500°C與800°C之間的一溫度且在一氮(N 2)和氬(Ar)環境中,對該所沉積的高κ閘極介電層進行退火。 The method of claim 3, further comprising the step of: prior to the plasma nitridation process, performing a post-deposition annealing process to harden and densify the deposited high-κ gate dielectric layer, wherein the deposition The post-annealing process includes annealing the deposited high-κ gate dielectric layer at a temperature between 500°C and 800°C in a nitrogen ( N2 ) and argon (Ar) environment . 如請求項3所述的方法,進一步包括以下步驟: 在該氮化後退火製程之前,執行一熱氮化製程,以在該電漿氮化後的高κ閘極介電層中進一步插入氮原子,其中該熱氮化製程包括:在介於700°C與900°C之間的一溫度且在一氨(NH 3)環境中,對該電漿氮化後的高κ閘極介電層進行退火。 The method of claim 3, further comprising the steps of: before the post-nitridation annealing process, performing a thermal nitridation process to further insert nitrogen into the plasma-nitrided high-κ gate dielectric layer atom, wherein the thermal nitridation process includes: at a temperature between 700°C and 900°C and in an ammonia (NH 3 ) environment, the high-κ gate dielectric after nitridation of the plasma layer is annealed. 如請求項1所述的方法,其中該高κ介電帽層包含TiSiN。The method of claim 1, wherein the high-κ dielectric capping layer comprises TiSiN. 如請求項1所述的方法,進一步包括以下步驟: 在該犧牲矽帽層的該沉積的步驟之前,執行一金屬帽退火製程,以在介於700°C與850°C之間的一溫度且在一氮(N 2)環境中硬化和緻密化該所沉積的高κ介電帽層。 The method of claim 1, further comprising the step of: before the step of depositing the sacrificial silicon cap layer, performing a metal cap annealing process at a temperature between 700°C and 850°C And the deposited high-κ dielectric capping layer is hardened and densified in a nitrogen ( N2 ) environment. 如請求項1所述的方法,其中該後帽退火製程包括:在介於900°C與1000°C之間的一溫度且在一氮(N 2)環境中對該高κ介電帽層進行退火。 The method of claim 1, wherein the back cap annealing process comprises: the high-κ dielectric capping layer at a temperature between 900°C and 1000°C in a nitrogen (N 2 ) environment Annealed. 一種形成一半導體結構的方法,該方法包括以下步驟: 在形成在一襯底上的一半導體結構上形成一高κ介電帽層,包括: 在該半導體結構上沉積該高κ介電帽層; 在該高κ介電帽層上沉積一犧牲矽帽層; 執行一後帽退火製程,以硬化和緻密化所沉積的高κ介電帽層;和 去除該犧牲矽帽層。 A method of forming a semiconductor structure, the method comprising the steps of: A high-κ dielectric capping layer is formed on a semiconductor structure formed on a substrate, comprising: depositing the high-κ dielectric capping layer on the semiconductor structure; depositing a sacrificial silicon capping layer on the high-κ dielectric capping layer; performing a post-cap annealing process to harden and densify the deposited high-κ dielectric capping layer; and The sacrificial silicon capping layer is removed. 如請求項13所述的方法,其中該高κ介電帽層的該形成的步驟是在不破壞真空的情況下在一處理系統中執行的。The method of claim 13, wherein the step of forming the high-κ dielectric capping layer is performed in a processing system without breaking vacuum. 如請求項13所述的方法,進一步包括以下步驟: 在該襯底上形成該半導體結構,包括: 預清潔該襯底的一表面; 在該襯底上沉積一高κ閘極介電層;和 執行一電漿氮化製程,以在所沉積的高κ閘極介電層中插入氮原子。 The method of claim 13, further comprising the following steps: Forming the semiconductor structure on the substrate includes: pre-cleaning a surface of the substrate; depositing a high-κ gate dielectric layer on the substrate; and A plasma nitridation process is performed to insert nitrogen atoms into the deposited high-κ gate dielectric layer. 如請求項15所述的方法,進一步包括以下步驟: 在該襯底的預清潔後的表面上形成一介面層,包括:利用一氧化二氮(N 2O)氣體對該襯底進行熱氧化,其中該介面層包含氧化矽(SiO 2)。 The method of claim 15, further comprising the steps of: forming an interface layer on the pre-cleaned surface of the substrate, comprising: thermally oxidizing the substrate with nitrous oxide (N 2 O) gas , wherein the interface layer includes silicon oxide (SiO 2 ). 如請求項15所述的方法,其中該高κ閘極介電層包含氧化鉿(HfO 2)。 The method of claim 15, wherein the high-κ gate dielectric layer comprises hafnium oxide (HfO 2 ). 如請求項15所述的方法,其中該電漿氮化製程包括:將該所沉積的高κ閘極介電層暴露給使用了氮氣(N 2)與氨氣(NH 3)的一混合物的氮電漿。 The method of claim 15, wherein the plasma nitridation process includes exposing the deposited high-κ gate dielectric layer to a process using a mixture of nitrogen (N 2 ) and ammonia (NH 3 ). Nitrogen plasma. 如請求項15所述的方法,進一步包括以下步驟: 在該電漿氮化製程之前,執行一再氧化製程,以熱氧化該襯底;和 在該電漿氮化製程之後,執行一氮化後退火製程,以鈍化電漿氮化後的高κ閘極介電層中的化學鍵,其中 該再氧化製程包括:在介於400°C與900°C之間的一溫度且在一氧(O 2)、一氧化二氮(N 2O)和H 2的環境中,對該高κ閘極介電層進行退火;並且 該氮化後退火製程包括:在介於700°C與850°C之間的一溫度且在一氮(N 2)和氬(Ar)的環境中,對該電漿氮化後的高κ閘極介電層進行尖峰退火。 The method of claim 15, further comprising the steps of: before the plasma nitridation process, performing a re-oxidation process to thermally oxidize the substrate; and after the plasma nitridation process, performing a nitridation back-off Fire process to passivate chemical bonds in the high-κ gate dielectric layer after plasma nitridation, wherein the re-oxidation process comprises: at a temperature between 400°C and 900°C and in an oxygen (O 2 ), nitrous oxide (N 2 O) and H 2 , annealing the high-κ gate dielectric layer; and the post-nitridation annealing process includes: between 700 ° C and 850 ° C The plasma-nitrided high-κ gate dielectric layer is spike annealed in a nitrogen (N 2 ) and argon (Ar) atmosphere at a temperature in between. 如請求項15所述的方法,進一步包括以下步驟: 在該電漿氮化製程之後,執行一再氧化製程,以鈍化電漿氮化後的高介電常數閘極介電層中剩餘的化學鍵並且熱氧化該襯底,其中該再氧化製程包括:在介於400°C與900°C之間的一溫度且在一氧(O 2)、一氧化二氮(N 2O)和H 2的環境中,對該高κ閘極介電層進行退火。 The method of claim 15, further comprising the steps of: after the plasma nitridation process, performing a re-oxidation process to passivate the remaining chemical bonds in the high-k gate dielectric layer after the plasma nitridation and thermally oxidizing the substrate, wherein the re-oxidation process comprises: at a temperature between 400°C and 900°C and a mixture of oxygen (O 2 ), nitrous oxide (N 2 O) and H 2 ambient, the high-κ gate dielectric layer is annealed. 如請求項13所述的方法,其中該高κ介電帽層包含TiSiN。The method of claim 13, wherein the high-κ dielectric capping layer comprises TiSiN. 如請求項13所述的方法,進一步包括以下步驟: 在該犧牲矽帽層的該沉積的步驟之前,執行一金屬帽退火製程,以在介於700°C與850°C之間的一溫度且在一氮(N 2)環境中硬化和緻密化該所沉積的高κ介電帽層。 The method of claim 13, further comprising the step of: performing a metal cap annealing process at a temperature between 700°C and 850°C prior to the step of depositing the sacrificial silicon cap layer And the deposited high-κ dielectric capping layer is hardened and densified in a nitrogen ( N2 ) environment. 如請求項13所述的方法,其中該後帽退火製程包括:在介於900°C與1000°C之間的一溫度且在一氮(N 2)環境中對該高κ介電帽層進行退火。 The method of claim 13, wherein the back cap annealing process comprises: the high-κ dielectric capping layer at a temperature between 900°C and 1000°C in a nitrogen (N 2 ) environment Annealed. 一種處理系統,包括: 一第一處理腔室; 一第二處理腔室; 一第三處理腔室; 一第四處理腔室;和 一系統控制器,該系統控制器被構造成: 在該第一處理腔室中,在形成在一襯底上的一半導體結構上沉積一高κ介電帽層; 在該第二處理腔室中,在該高κ介電帽層上沉積一犧牲矽帽層; 在該第三處理腔室中,執行一後帽退火製程,以硬化和緻密化所沉積的高κ介電帽層;和 在該第四處理腔室中,去除該犧牲矽帽層, 其中,在該第一處理腔室、該第二處理腔室、該第三處理腔室和該第四處理腔室之間傳送該襯底而不破壞該處理系統中的真空環境。 A processing system comprising: a first processing chamber; a second processing chamber; a third processing chamber; a fourth processing chamber; and A system controller configured to: depositing a high-κ dielectric capping layer on a semiconductor structure formed on a substrate in the first processing chamber; depositing a sacrificial silicon capping layer on the high-κ dielectric capping layer in the second processing chamber; in the third processing chamber, performing a back cap annealing process to harden and densify the deposited high-κ dielectric capping layer; and In the fourth processing chamber, the sacrificial silicon capping layer is removed, Wherein, the substrate is transferred between the first processing chamber, the second processing chamber, the third processing chamber and the fourth processing chamber without breaking the vacuum environment in the processing system. 如請求項24所述的處理系統,進一步包括: 一第五處理腔室; 一第六處理腔室; 一第七處理腔室; 一第八處理腔室;和 一第九處理腔室,其中 該系統控制器被進一步構造成: 在該第五處理腔室中預清潔該襯底的一表面; 在該第六處理腔室中,在該襯底的預清潔後的表面上形成一介面層; 在該第七處理腔室中,在該介面層上沉積一高κ介電層; 在該第八處理腔室中,將所沉積的高κ閘極介電層暴露給氮電漿;和 在該第九處理腔室中,對電漿氮化後的高κ閘極介電層進行退火,並且 在該第五處理腔室、該第六處理腔室、該第七處理腔室、該第八處理腔室和該第九處理腔室之間傳送該襯底而不破壞該處理系統中的真空環境。 The processing system of claim 24, further comprising: a fifth processing chamber; a sixth processing chamber; a seventh processing chamber; an eighth processing chamber; and a ninth processing chamber, wherein The system controller is further structured to: pre-cleaning a surface of the substrate in the fifth processing chamber; in the sixth processing chamber, forming an interface layer on the pre-cleaned surface of the substrate; in the seventh processing chamber, depositing a high-κ dielectric layer on the interface layer; in the eighth processing chamber, exposing the deposited high-κ gate dielectric layer to a nitrogen plasma; and In the ninth processing chamber, the plasma nitrided high-κ gate dielectric layer is annealed, and Transfer the substrate between the fifth processing chamber, the sixth processing chamber, the seventh processing chamber, the eighth processing chamber and the ninth processing chamber without breaking the vacuum in the processing system surroundings.
TW110142701A 2020-11-18 2021-11-17 Treatments to enhance material structures TWI830087B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/951,858 US11417517B2 (en) 2019-05-03 2020-11-18 Treatments to enhance material structures
US16/951,858 2020-11-18

Publications (2)

Publication Number Publication Date
TW202226339A true TW202226339A (en) 2022-07-01
TWI830087B TWI830087B (en) 2024-01-21

Family

ID=81668783

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142701A TWI830087B (en) 2020-11-18 2021-11-17 Treatments to enhance material structures

Country Status (4)

Country Link
JP (1) JP7210682B2 (en)
KR (2) KR102634254B1 (en)
CN (1) CN114551230A (en)
TW (1) TWI830087B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395507B1 (en) * 2001-11-27 2003-08-25 주식회사 하이닉스반도체 Semiconductor device and the method of fabricating same
KR100444603B1 (en) * 2001-12-22 2004-08-16 주식회사 하이닉스반도체 Method of manufacturing a Ta2O5-Al2O3 dielectric film and semiconductor device utilizing thereof
EP1994550A4 (en) * 2006-02-10 2012-01-11 Intermolecular Inc Method and apparatus for combinatorially varying materials, unit process and process sequence
US7531399B2 (en) * 2006-09-15 2009-05-12 Taiwan Semiconductor Manufacturing Company Semiconductor devices and methods with bilayer dielectrics
JP5103056B2 (en) 2007-05-15 2012-12-19 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US20120329285A1 (en) * 2011-06-22 2012-12-27 United Microelectronics Corp. Gate dielectric layer forming method
US20140099785A1 (en) * 2012-10-04 2014-04-10 Intermolecular, Inc. Sacrificial Low Work Function Cap Layer
KR102551351B1 (en) 2018-03-16 2023-07-04 삼성전자 주식회사 Lanthanum compound and methods of forming thin film and integrated circuit device
CN106653589A (en) * 2016-12-16 2017-05-10 上海华力微电子有限公司 High-pressure and low-thermal budget high-K post-annealing process
US10522344B2 (en) * 2017-11-06 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuits with doped gate dielectrics
US11088029B2 (en) * 2018-09-26 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Gate stack treatment
US10629700B1 (en) * 2018-09-28 2020-04-21 Taiwan Semiconductor Manufacturing Co., Ltd. High-K metal gate process and device

Also Published As

Publication number Publication date
KR102634254B1 (en) 2024-02-05
KR20220068166A (en) 2022-05-25
CN114551230A (en) 2022-05-27
KR20240019200A (en) 2024-02-14
JP7210682B2 (en) 2023-01-23
JP2022080883A (en) 2022-05-30
TWI830087B (en) 2024-01-21

Similar Documents

Publication Publication Date Title
US20060153995A1 (en) Method for fabricating a dielectric stack
US20220254900A1 (en) Mosfet gate engineerinng with dipole films
US11955332B2 (en) Treatments to enhance material structures
KR20220125783A (en) Treatments to improve device performance
TWI830087B (en) Treatments to enhance material structures
TW202418358A (en) Treatments to enhance material structures
TWI837538B (en) Treatments to enhance material structures
JP7313414B2 (en) Treatment to improve material structure
US20210057215A1 (en) Treatments to enhance material structures
US20230377879A1 (en) Barrier layer for preventing aluminum diffusion
US20240234133A1 (en) Treatments to enhance material structures
US20210193468A1 (en) Treatments To Improve Device Performance
TW202416357A (en) Treatments to enhance material structures
US20220238680A1 (en) Threshold voltage modulation for gate-all-around fet architecture
JP2024520404A (en) Amorphous silicon base removal and sealing EOT