TW202226268A - 預測冠狀動脈的阻塞的電子裝置和方法 - Google Patents
預測冠狀動脈的阻塞的電子裝置和方法 Download PDFInfo
- Publication number
- TW202226268A TW202226268A TW109146425A TW109146425A TW202226268A TW 202226268 A TW202226268 A TW 202226268A TW 109146425 A TW109146425 A TW 109146425A TW 109146425 A TW109146425 A TW 109146425A TW 202226268 A TW202226268 A TW 202226268A
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- subset
- probability
- stage model
- probability vector
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/339—Displays specially adapted therefor
- A61B5/341—Vectorcardiography [VCG]
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/35—Detecting specific parameters of the electrocardiograph cycle by template matching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/353—Detecting P-waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/355—Detecting T-waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Vascular Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
提供一種預測冠狀動脈的阻塞的電子裝置和方法。方法包含:取得對應於冠狀動脈集合的多個心電圖資料;根據多個心電圖資料以及第一階段模型產生分別對應於多個心電圖資料的多個第一機率,根據多個第一機率產生第一判斷結果,並且響應於多個第一機率的第一機率子集合中的每一者大於第一閾值而從多個心電圖資料中選出對應於第一機率子集合的第一資料子集合;根據第一資料子集合以及第二階段模型產生對應於第一資料子集合的多個第二機率,並且根據多個第二機率產生第二判斷結果。
Description
本發明是有關於一種預測冠狀動脈的阻塞的電子裝置和方法。
心血管疾病的死亡率逐年攀升,其中常見的心血管疾病包含冠狀動脈疾病(coronary artery disease,CAD)或心房顫動等。目前醫療領域存在諸多關於心血管疾病的檢測方式,例如抽血檢查、心電圖檢查或心導管檢查等。冠狀動脈疾病的成因為:環繞在心臟表面的冠狀動脈過於狹窄或發生阻塞,導致供應心臟氧氣和養分的動脈血流無法正常運作的現象。目前的檢測方法中,心導管檢查是最能夠精準地檢測出冠狀動脈疾病的方法。
然而,心導管檢查檢測是屬於侵入式的檢查手術,其存在風險,亦可能引發併發症。若能只針對必要的病人做檢查手術,不僅能避免醫療成本的消耗,也能避免病人處於風險之中。因此,若能預測冠狀動脈是否阻塞,便能夠幫助醫師更精準的判斷是否需要進行心導管手術。此外,若能預測出冠狀動脈發生阻塞的位置,也能讓醫師對於病人的病情有更進一步的了解。
本發明提供一種預測冠狀動脈的阻塞的電子裝置和方法,可預測冠狀動脈是否阻塞、發生阻塞的冠狀動脈種類或冠狀動脈發生阻塞的位置。
本發明的一種預測冠狀動脈的阻塞的電子裝置,包含處理器、儲存媒體以及收發器。收發器接收對應於冠狀動脈集合的多個心電圖資料。儲存媒體儲存多個模組。處理器耦接儲存媒體和收發器,並且存取和執行多個模組,其中多個模組包含第一預測模組、第二預測模組以及輸出模組。第一預測模組根據多個心電圖資料以及至少一第一階段模型產生對應於至少一第一階段模型的至少一第一機率向量,根據至少一第一機率向量產生第一判斷結果,並且響應於至少一第一機率向量的第一子集合中的每一者大於第一閾值而從多個心電圖資料中選出對應於第一子集合的第一資料子集合,其中第一判斷結果指示冠狀動脈集合發生阻塞的機率。第二預測模組根據第一資料子集合以及至少一第二階段模型產生對應於至少一第二階段模型的至少一第二機率向量,並且根據至少一第二機率向量產生第二判斷結果,其中第二判斷結果指示冠狀動脈集合中的第一冠狀動脈發生阻塞的機率。輸出模組通過收發器輸出第一判斷結果和第二判斷結果。
在本發明的一實施例中,上述的第二預測模組響應於至少一第二機率向量的第二子集合中的每一者大於第二閾值而從第一資料子集合中選出對應於第二子集合的第二資料子集合,其中多個模組更包含第三預測模組。第三預測模組根據第二資料子集合以及至少一第三階段模型產生對應於至少一第三階段模型的至少一第三機率向量,並且根據至少一第三機率向量產生第三判斷結果,其中第三判斷結果指示第一冠狀動脈的第一位置發生阻塞的機率,其中輸出模組通過收發器輸出第三判斷結果。
在本發明的一實施例中,上述的收發器接收對應於冠狀動脈集合的多個第二心電圖資料,其中多個心電圖資料對應於第一導程,其中多個第二心電圖資料對應於第二導程,其中第一預測模組根據多個第二心電圖資料以及至少一第一階段模型產生對應於至少一第一階段模型的至少一第四機率向量,並且根據至少一第一機率向量和至少一第四機率向量產生第一判斷結果。
在本發明的一實施例中,上述的第一預測模組響應於至少一第四機率向量的第四子集合中的每一者大於第一閾值而從多個第二心電圖資料中選出對應於第四子集合的第四資料子集合,其中第二預測模組根據第四資料子集合以及至少一第二階段模型產生對應於至少一第二階段模型的至少一第五機率向量,並且根據至少一第二機率向量和至少一第五機率向量產生第二判斷結果。
在本發明的一實施例中,上述的第二預測模組響應於至少一第五機率向量的第五子集合中的每一者大於第二閾值而從第四資料子集合中選出對應於第五子集合的第五資料子集合,其中第三預測模組根據第五資料子集合以及至少一第三階段模型產生對應於至少一第三階段模型的至少一第六機率向量,並且根據至少一第三機率向量和至少一第六機率向量產生第三判斷結果。
在本發明的一實施例中,上述的第一預測模組對多個訓練資料進行基線漂移移除、去雜訊以及小波轉換以產生多個第一經校正訓練資料,並且根據多個第一經校正訓練資料訓練至少一第一階段模型。
在本發明的一實施例中,上述的第一預測模組根據至少一特徵訓練至少一第一階段模型,其中至少一特徵關聯於下列的至少其中之一:P波、Q波、R波、S波以及T波。
在本發明的一實施例中,上述的至少一第一階段模型、至少一第二階段模型以及至少一第三階段模型對應於機器學習演算法。
在本發明的一實施例中,上述的第一冠狀動脈包含下列的其中之一:左主冠狀動脈、左冠狀動脈的前降支、左冠狀動脈的迴旋支以及右冠狀動脈。
本發明的一種預測冠狀動脈的阻塞的方法,包含:取得對應於冠狀動脈集合的多個心電圖資料;根據多個心電圖資料以及至少一第一階段模型產生分別對應於多個心電圖資料的多個第一機率,根據多個第一機率產生第一判斷結果,並且響應於多個第一機率的第一機率子集合中的每一者大於第一閾值而從多個心電圖資料中選出對應於第一機率子集合的第一資料子集合,其中第一判斷結果指示冠狀動脈集合發生阻塞的機率;根據第一資料子集合以及至少一第二階段模型產生對應於第一資料子集合的多個第二機率,並且根據多個第二機率產生第二判斷結果,其中第二判斷結果指示冠狀動脈集合中的第一冠狀動脈發生阻塞的機率;以及輸出第一判斷結果和第二判斷結果。
基於上述,本發明可利用機器學習模型預測發生阻塞的冠狀動脈種類或冠狀動脈發生阻塞的位置。醫療人員可根據本發明產生的判斷結果以更準確地評估受測者是否罹患冠狀動脈疾病。
為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1根據本發明的一實施例繪示一種電子裝置100的示意圖。電子裝置100適用於預測冠狀動脈的阻塞。電子裝置100可包含處理器110、儲存媒體120以及收發器130。
處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。
儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包含第一預測模組121、第二預測模組122、第三預測模組123以及輸出模組124等多個模組,其功能將於後續說明。
收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。
圖2根據本發明的一實施例繪示一種預測冠狀動脈的阻塞的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S201中,電子裝置100可通過收發器130接收對應於冠狀動脈集合的X筆心電圖(electrocardiogram,ECG)資料,其中X可為任意的正整數。冠狀動脈集合可包含左主冠狀動脈(left main artery,LM)、左冠狀動脈的前降支(left anterior descending,LAD)、左冠狀動脈的迴旋支(left circumflex artery,LCX)及/或右冠狀動脈(right coronary artery,RCA)等多個冠狀動脈。
在步驟S202和S203中,第一預測模組121可根據X筆心電圖資料以及至少一第一階段模型產生對應於至少一第一階段模型產生的至少一第一機率向量,其中至少一第一機率向量可包含分別對應於X筆心電圖資料的X個第一機率。
具體來說,在步驟S202中,第一預測模組121可將X筆心電圖資料分別輸入至N個第一階段模型,其中N可為任意的正整數。接著,在步驟S203中,N個第一階段模型可根據X筆心電圖資料以分別產生N個第一機率向量。N個機率向量中的每一者可包含分別對應於X筆心電圖資料的X個第一機率。
第一階段模型可用以根據心電圖資料判斷冠狀動脈集合中的任一者發生阻塞的機率。在一筆心電圖資料輸入至第一階段模型後,第一階段模型可輸出對應於該筆心電圖資料的第一機率,其中所述第一機率可代表冠狀動脈集合中的任一者發生了阻塞的機率。
第一階段模型例如是一種機器學習演算法,其中所述機器學習演算法例如對應於隨機森林演算法(random forest,RF)、支持向量機(support vector machine,SVM)演算法、極限梯度提升(extreme gradient boosting,XGBoost)演算法或深度學習演算法等,但本發明不限於此。深度學習演算法例如對應於卷積類神經網路(convolutional neural network,CNN)或長短記憶演算法(long short-term memory,LSTM)等,但本發明不限於此。
在一實施例中,第一預測模組121可根據多個訓練資料訓練第一階段模型。多個訓練資料中的每一筆訓練資料可包含心電圖資料以及指示受測者的冠狀動脈集合中的任一者是否阻塞的標籤。具體來說,第一預測模組121可對多個訓練資料進行基線漂移移除(baseline wandering removal)、去雜訊以及小波轉換(wavelet transform)以產生多個第一經校正訓練資料。接著,第一預測模組121可根據多個第一經校正訓練資料訓練第一階段模型。
在一實施例中,第一預測模組121可根據平滑三次樣條演算法(cubic spline smoothing algorithm)以對多個訓練資料進行基線漂移移除。
在一實施例中,第一預測模組121可根據巴特沃斯濾波器(Butterworth filter)以對多個訓練資料進行去雜訊。
在一實施例中,第一預測模組121可訓練資料中的一或多個特徵來訓練第一階段模型,其中一或多個特徵例如關聯於P波、Q波、R波、S波或T波。舉例來說,上述的特徵可包含根據R波計算的RR間隔的標準差或根據S波和T波計算的ST波的斜率等,但本發明不限於此。
在步驟S204中,第一預測模組121可根據N個第一機率向量產生第一判斷結果。輸出模組124可通過收發器130輸出第一判斷結果。第一判斷結果可包含受測者的冠狀動脈集合中的任一者發生了阻塞的機率S1。例如,第一判斷結果可為冠狀動脈集合發生阻塞的第一機率。在醫生通過終端裝置接收到來自電子裝置100的第一判斷結果後,醫生便可以根據第一判斷結果來決定是否對受測者的冠狀動脈進行更進一步的檢查。
在一實施例中,第一預測模組121可根據如下所示的公式(1)和公式(2)計算冠狀動脈集合中的任一者發生了阻塞的機率S1,其中p1(i,j)為N個第一機率向量中的第j個第一機率向量中的第i個第一機率,並且w1(j)為對應於N個第一階段模型中的第j個第一階段模型的權重。第一預測模組121可基於第一階段模型的效能指標來決定與第一階段模型相對應的權重。舉例來說,在N個第一階段模型中,若第一個第一階段模型的效能指標大於第N個第一階段模型的效能指標,則第一預測模組121可決定權重w1(1)大於權重w1(N)。效能指標可對應於混淆矩陣(confusion matrix)中的參數,諸如準確度(accuracy,ACC)、精密度(precision)、召回率(recall rate)、偽陽性(false positive,FP)或F1分數等。
…(1)
…(2)
在步驟S205中,第一預測模組121可響應於第一機率向量的第一子集合(由包含於第一機率向量的一或多個第一機率組成)中的每一者大於第一閾值而從X筆心電圖資料中選出對應於第一子集合的第一資料子集合。當存在多個第一機率向量時,第一預測模組121可根據多個第一機率向量計算平均第一機率向量,並可響應於平均第一機率向量的第一子集合(由包含於平均第一機率向量的一或多個平均第一機率組成)中的每一者大於第一閾值而從X筆心電圖資料中選出對應於第一子集合的第一資料子集合。
舉例來說,假設第一閾值為30%,並且第一機率向量的X個第一機率中有Y個第一機率大於30%,其中Y可為小於或等於X的正整數。據此,第一預測模組121可從X筆心電圖資料中選出與所述Y個第一機率相對應的Y筆心電圖資料以作為第一資料子集合。
在步驟S206中和S207中,第二預測模組122可根據第一資料子集合(即:Y筆心電圖資料)以及至少一第二階段模型產生對應於至少一第二階段模型的至少一第二機率向量,其中至少一第二機率向量可包含對應於第一資料子集合的Y個第二機率。
具體來說,在步驟S206中,第二預測模組122可將第一資料子集合(即:Y筆心電圖資料)輸入至M個第二階段模型,其中M可為任意的正整數。接著,在步驟S207中,M個第二階段模型可根據第一資料子集合以產生M個第二機率向量。M個第二機率向量的每一者可包含分別對應於Y筆心電圖資料的Y個第二機率。
第二階段模型可用以根據心電圖資料判斷冠狀動脈集合中的特定冠狀動脈發生阻塞的機率。例如,第二階段模型可根據心電圖資料判斷左主冠狀動脈、左冠狀動脈的前降支、左冠狀動脈的迴旋支及右冠狀動脈中的特定冠狀動脈發生阻塞的機率。在一筆心電圖資料輸入至第二階段模型後,第二階段模型可輸出對應於該筆心電圖資料的第二機率,其中所述第二機率可代表所述特定冠狀動脈發生了阻塞的機率。
第二階段模型例如是一種機器學習演算法,其中所述機器學習演算法例如對應於隨機森林演算法、支持向量機演算法、極限梯度提升演算法或深度學習演算法等,但本發明不限於此。深度學習演算法例如對應於卷積類神經網路或長短記憶演算法等,但本發明不限於此。
在一實施例中,第二預測模組122可根據多個訓練資料訓練第二階段模型。多個訓練資料中的每一筆訓練資料可包含心電圖資料以及指示受測者的冠狀動脈集合中的特定冠狀動脈是否阻塞的標籤。具體來說,第二預測模組122可對多個訓練資料進行基線漂移移除、去雜訊以及小波轉換以產生多個第二經校正訓練資料。接著,第二預測模組122可根據多個第二經校正訓練資料訓練第二階段模型。
在一實施例中,第二預測模組122可根據平滑三次樣條演算法以對多個訓練資料進行基線漂移移除。
在一實施例中,第二預測模組122可根據巴特沃斯濾波器以對多個訓練資料進行去雜訊。
在一實施例中,第二預測模組122可訓練資料中的一或多個特徵來訓練第二階段模型,其中一或多個特徵例如關聯於P波、Q波、R波、S波或T波。舉例來說,上述的特徵可包含根據R波計算的RR間隔的標準差或根據S波和T波計算的ST波的斜率等,但本發明不限於此。
在步驟S208中,第二預測模組122可根據M個第二機率向量產生第二判斷結果。輸出模組124可通過收發器130輸出第二判斷結果。第一判斷結果可包含受測者的冠狀動脈集合中的特定冠狀動脈發生了阻塞的機率S2。
在一實施例中,第二預測模組122可根據如下所示的公式(3)和公式(4)計算冠狀動脈集合中的特定冠狀動脈發生了阻塞的機率S2,其中p2(i,j)為M個第二機率向量中的第j個第二機率向量中的第i個第二機率,並且w2(j)為對應於M個第二階段模型中的第j個第二階段模型的權重。第二預測模組122可基於第二階段模型的效能指標來決定與第二階段模型相對應的權重。舉例來說,在M個第二階段模型中,若第一個第二階段模型的效能指標大於第M個第二階段模型的效能指標,則第二預測模組122可決定權重w2(1)大於權重w2(M)。效能指標可對應於混淆矩陣中的參數,諸如準確度、精密度、召回率、偽陽性或F1分數等。
…(3)
…(4)
在步驟S209中,第二預測模組122可響應於第二機率向量的第二子集合(由包含於第二機率向量的一或多個第二機率組成)中的每一者大於第二閾值而從Y筆心電圖資料中選出對應於第二子集合的第二資料子集合。當存在多個第二機率向量時,第二預測模組122可根據多個第二機率向量計算平均第二機率向量,並可響應於平均第二機率向量的第二子集合(由包含於平均第二機率向量的一或多個平均第二機率組成)中的每一者大於第二閾值而從Y筆心電圖資料中選出對應於第二子集合的第二資料子集合。
舉例來說,假設第二閾值為20%,並且第二機率向量的Y個第二機率中有Z個第二機率大於20%,其中Z可為小於或等於Y的正整數。據此,第二預測模組122可從Y筆心電圖資料中選出與所述Z個第二機率相對應的Z筆心電圖資料以作為第二資料子集合。
在步驟S210和S211中,第三預測模組123可根據第二資料子集合(即:Z筆心電圖資料)以及至少一第三階段模型產生對應於至少一第三階段模型的至少一第三機率向量,其中至少一第三機率向量可包含對應於第二資料子集合的Z個第三機率。
具體來說,在步驟S210中,第三預測模組123可將第二資料子集合(即:Z筆心電圖資料)輸入至K個第三階段模型,其中K可為任意的正整數。接著,在步驟S211中,K個第三階段模型可根據第二資料子集合以產生K個第三機率向量。K個第三機率向量的每一者可包含分別對應於Z筆心電圖資料的Z個第三機率。
第三階段模型可用以根據心電圖資料判斷特定冠狀動脈中的特定位置發生阻塞的機率。例如,第三階段模型可根據心電圖資料判斷左主冠狀動脈的前段、中段或後段部位發生阻塞的機率。值得注意的是,上述的特定位置並不限於左主冠狀動脈的前段、中段或後段部位。在一筆心電圖資料輸入至第三階段模型後,第三階段模型可輸出對應於該筆心電圖資料的第三機率,其中所述第三機率可代表特定冠狀動脈中的特定位置發生了阻塞的機率。
第三階段模型例如是一種機器學習演算法,其中所述機器學習演算法例如對應於隨機森林演算法、支持向量機演算法、極限梯度提升演算法或深度學習演算法等,但本發明不限於此。深度學習演算法例如對應於卷積類神經網路或長短記憶演算法等,但本發明不限於此。
在一實施例中,第三預測模組123可根據多個訓練資料訓練第三階段模型。多個訓練資料中的每一筆訓練資料可包含心電圖資料以及指示受測者的特定冠狀動脈中的特定位置是否阻塞的標籤。具體來說,第三預測模組123可對多個訓練資料進行基線漂移移除、去雜訊以及小波轉換以產生多個第三經校正訓練資料。接著,第三預測模組123可根據多個第三經校正訓練資料訓練第三階段模型。
在一實施例中,第三預測模組123可根據平滑三次樣條演算法以對多個訓練資料進行基線漂移移除。
在一實施例中,第三預測模組123可根據巴特沃斯濾波器以對多個訓練資料進行去雜訊。
在一實施例中,第三預測模組123可訓練資料中的一或多個特徵來訓練第三階段模型,其中一或多個特徵例如關聯於P波、Q波、R波、S波或T波。舉例來說,上述的特徵可包含根據R波計算的RR間隔的標準差或根據S波和T波計算的ST波的斜率等,但本發明不限於此。
在步驟S212中,第三預測模組123可根據K個第三機率向量產生第三判斷結果。輸出模組124可通過收發器130輸出第三判斷結果。第三判斷結果可包含受測者的特定冠狀動脈中的特定位置發生了阻塞的機率S3。
在一實施例中,第三預測模組123可根據如下所示的公式(5)和公式(6)計算特定冠狀動脈中的特定位置發生了阻塞的機率S3,其中p3(i,j)為K個第三機率向量中的第j個第三機率向量中的第i個第三機率,並且w3(j)為對應於K個第三階段模型中的第j個第三階段模型的權重。第三預測模組123可基於第三階段模型的效能指標來決定與第三階段模型相對應的權重。舉例來說,在K個第三階段模型中,若第一個第三階段模型的效能指標大於第K個第三階段模型的效能指標,則第三預測模組123可決定權重w3(1)大於權重w3(K)。效能指標可對應於混淆矩陣中的參數,諸如準確度、精密度、召回率、偽陽性或F1分數等。
…(5)
…(6)
心電圖可對應於多種不同的導程(lead)。例如,心電圖可對應於導程I、II、III、aVL、aVF、aVR、V1、V2、V3、V4、V5或V6。在一些實施例中,電子裝置100可根據多種不同導程的心電圖產生第一判斷結果、第二判斷結果或第三判斷結果。
圖3根據本發明的一實施例繪示根據多個導程的心電圖產生第一判斷結果的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S301中,電子裝置100可通過收發器130接收分別對應於L個導程的L個心電圖資料集合,其中L個心電圖資料集合中的每一者可包含X筆心電圖資料,其中L和X可為任意的正整數。例如,電子裝置100可通過收發器130接收對應於第一導程的心電圖資料集合,並可通過收發器130接收對應於第二導程的心電圖資料集合。
在步驟S302中,第一預測模組121可將L個心電圖資料集合分別輸入至少一第一階段模型中。例如,第一預測模組121可將對應於第一導程的心電圖資料集合輸入N個第一階段模型,並可將對應於第L導程的心電圖資料集合輸入N個第一階段模型,其中N可為任意的正整數。
在步驟S303中,N個第一階段模型的每一者可產生分別對應於L個導程的L個機率向量,其中L個機率向量中的每一者可包含分別對應於X筆心電圖資料的X個機率。例如,第一個第一階段模型可產生L個第一機率向量,並且L個第一機率向量中的每一者可包含分別對應於X筆心電圖資料的X個機率。第N個第一階段模型可產生L個第N機率向量,並且L個第N機率向量中的每一者可包含分別對應於X筆心電圖資料的X個機率。
在步驟S304中,第一預測模組121可根據N個機率向量集合產生第一判斷結果,其中N個機率向量集合的每一者可包含分別對應於L個導程的L個機率向量。N個機率向量集合可分別為步驟S303中的N個第一階段模型的輸出。
圖4根據本發明的一實施例繪示多個導程的心電圖產生第二判斷結果的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S401中,電子裝置100可通過收發器130接收分別對應於L個導程的L個心電圖資料集合,其中L個心電圖資料集合中的每一者可包含Y筆心電圖資料,其中L和Y可為任意的正整數。
在一實施例中,L個心電圖資料集合中的每一者可包含X筆心電圖資料,如步驟S301所述。第一預測模組121可根據如步驟S205所示的方法以從L個心電圖資料集合中的每一者所包含的X筆心電圖資料中選出Y筆心電圖資料,並刪除未被選中的心電圖資料,其中Y可為小於或等於X的正整數。
在步驟S402中,第二預測模組122可將L個心電圖資料集合分別輸入至少一第二階段模型中。例如,第二預測模組122可將對應於第一導程的心電圖資料集合輸入M個第二階段模型,並可將對應於第L導程的心電圖資料集合輸入M個第二階段模型,其中M可為任意的正整數。
在步驟S403中,M個第二階段模型的每一者可產生分別對應於L個導程的L個機率向量,其中L個機率向量中的每一者可包含分別對應於Y筆心電圖資料的Y個機率。例如,第一個第二階段模型可產生L個第一機率向量,並且L個第一機率向量中的每一者可包含分別對應於Y筆心電圖資料的Y個機率。第M個第二階段模型可產生L個第M機率向量,並且L個第M機率向量中的每一者可包含分別對應於Y筆心電圖資料的Y個機率。
在步驟S404中,第二預測模組122可根據M個機率向量集合產生第二判斷結果,其中M個機率向量集合的每一者可包含分別對應於L個導程的L個機率向量。M個機率向量集合可分別為步驟S403中的M個第二階段模型的輸出。
圖5根據本發明的一實施例繪示多個導程的心電圖產生第三判斷結果的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S501中,電子裝置100可通過收發器130接收分別對應於L個導程的L個心電圖資料集合,其中L個心電圖資料集合中的每一者可包含Z筆心電圖資料,其中L和Z可為任意的正整數。
在一實施例中,L個心電圖資料集合中的每一者可包含Y筆心電圖資料,如步驟S401所述。第三預測模組123可根據如步驟S207所示的方法以從L個心電圖資料集合中的每一者所包含的Y筆心電圖資料中選出Z筆心電圖資料,並刪除未被選中的心電圖資料,其中Z可為小於或等於Y的正整數。
在步驟S502中,第三預測模組123可將L個心電圖資料集合分別輸入至少一第三階段模型中。例如,第三預測模組123可將對應於第一導程的心電圖資料集合輸入K個第三階段模型,並可將對應於第L導程的心電圖資料集合輸入K個第三階段模型,其中K可為任意的正整數。
在步驟S503中,K個第三階段模型的每一者可產生分別對應於L個導程的L個機率向量,其中L個機率向量中的每一者可包含分別對應於Z筆心電圖資料的Z個機率。例如,第一個第三階段模型可產生L個第一機率向量,並且L個第一機率向量中的每一者可包含分別對應於Z筆心電圖資料的Z個機率。第K個第三階段模型可產生L個第K機率向量,並且L個第K機率向量中的每一者可包含分別對應於Z筆心電圖資料的Z個機率。
在步驟S504中,第三預測模組123可根據K個機率向量集合產生第三判斷結果,其中K個機率向量集合的每一者可包含分別對應於L個導程的L個機率向量。K個機率向量集合可分別為步驟S503中的K個第三階段模型的輸出。
圖6根據本發明的另一實施例繪示一種預測冠狀動脈的阻塞的方法的流程圖,其中所述方法可由如圖1所示的電子裝置100實施。
在步驟S601中,取得對應於冠狀動脈集合的多個心電圖資料。在步驟S602中,根據多個心電圖資料以及至少一第一階段模型產生分別對應於多個心電圖資料的多個第一機率,根據多個第一機率產生第一判斷結果,並且響應於多個第一機率的第一機率子集合中的每一者大於第一閾值而從多個心電圖資料中選出對應於第一機率子集合的第一資料子集合,其中第一判斷結果指示冠狀動脈集合發生阻塞的機率。在步驟S603中,根據第一資料子集合以及至少一第二階段模型產生對應於第一資料子集合的多個第二機率,並且根據多個第二機率產生第二判斷結果,其中第二判斷結果指示冠狀動脈集合中的第一冠狀動脈發生阻塞的機率。在步驟S604中,輸出第一判斷結果和第二判斷結果。
綜上所述,本發明可利用一或多個機器學習演算法判斷包含左主冠狀動脈、左冠狀動脈的前降支、左冠狀動脈的迴旋支以及右冠狀動脈的冠狀動脈集合是否存在發生阻塞的風險。若冠狀動脈集合存在發生阻塞的風險,則本發明可進一步利用一或多個機器學習演算法預測發生阻塞的冠狀動脈為冠狀動脈集合中的何者。在確認發生阻塞的冠狀動脈種類後,本發明可進一步利用一或多個機器學習演算法預測冠狀動脈中發生阻塞的確切位置。
100:電子裝置
110:處理器
120:儲存媒體
121:第一預測模組
122:第二預測模組
123:第三預測模組
124:輸出模組
130:收發器
S201、S202、S203、S204、S205、S206、S207、S208、S209、S210、S211、S212、S301、S302、S303、S304、S401、S402、S403、S404、S501、S502、S503、S504、S601、S602、S603、S604:步驟
圖1根據本發明的一實施例繪示一種電子裝置的示意圖。
圖2根據本發明的一實施例繪示一種預測冠狀動脈的阻塞的方法的流程圖。
圖3根據本發明的一實施例繪示根據多個導程的心電圖產生第一判斷結果的方法的流程圖。
圖4根據本發明的一實施例繪示多個導程的心電圖產生第二判斷結果的方法的流程圖。
圖5根據本發明的一實施例繪示多個導程的心電圖產生第三判斷結果的方法的流程圖。
圖6根據本發明的另一實施例繪示一種預測冠狀動脈的阻塞的方法的流程圖。
S601、S602、S603、S604:步驟
Claims (10)
- 一種預測冠狀動脈的阻塞的電子裝置,包括: 收發器,接收對應於冠狀動脈集合的多個心電圖資料; 儲存媒體,儲存多個模組;以及 處理器,耦接所述儲存媒體和所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括: 第一預測模組,根據所述多個心電圖資料以及至少一第一階段模型產生對應於所述至少一第一階段模型的至少一第一機率向量,根據所述至少一第一機率向量產生第一判斷結果,並且響應於所述至少一第一機率向量的第一子集合中的每一者大於第一閾值而從所述多個心電圖資料中選出對應於所述第一子集合的第一資料子集合,其中所述第一判斷結果指示所述冠狀動脈集合發生阻塞的機率; 第二預測模組,根據所述第一資料子集合以及至少一第二階段模型產生對應於所述至少一第二階段模型的至少一第二機率向量,並且根據所述至少一第二機率向量產生第二判斷結果,其中所述第二判斷結果指示所述冠狀動脈集合中的第一冠狀動脈發生阻塞的機率;以及 輸出模組,通過所述收發器輸出所述第一判斷結果和所述第二判斷結果。
- 如請求項1所述的電子裝置,其中所述第二預測模組響應於所述至少一第二機率向量的第二子集合中的每一者大於第二閾值而從所述第一資料子集合中選出對應於所述第二子集合的第二資料子集合,其中所述多個模組更包括: 第三預測模組,根據所述第二資料子集合以及至少一第三階段模型產生對應於所述至少一第三階段模型的至少一第三機率向量,並且根據所述至少一第三機率向量產生第三判斷結果,其中所述第三判斷結果指示所述第一冠狀動脈的第一位置發生阻塞的機率,其中 所述輸出模組通過所述收發器輸出所述第三判斷結果。
- 如請求項2所述的電子裝置,其中 所述收發器接收對應於所述冠狀動脈集合的多個第二心電圖資料,其中所述多個心電圖資料對應於第一導程,其中所述多個第二心電圖資料對應於第二導程,其中 所述第一預測模組根據所述多個第二心電圖資料以及所述至少一第一階段模型產生對應於所述至少一第一階段模型的至少一第四機率向量,並且根據所述至少一第一機率向量和所述至少一第四機率向量產生所述第一判斷結果。
- 如請求項3所述的電子裝置,其中 所述第一預測模組響應於所述至少一第四機率向量的第四子集合中的每一者大於所述第一閾值而從所述多個第二心電圖資料中選出對應於所述第四子集合的第四資料子集合,其中 所述第二預測模組根據所述第四資料子集合以及所述至少一第二階段模型產生對應於所述至少一第二階段模型的至少一第五機率向量,並且根據所述至少一第二機率向量和所述至少一第五機率向量產生所述第二判斷結果。
- 如請求項4所述的電子裝置,其中 所述第二預測模組響應於所述至少一第五機率向量的第五子集合中的每一者大於所述第二閾值而從所述第四資料子集合中選出對應於所述第五子集合的第五資料子集合,其中 所述第三預測模組根據所述第五資料子集合以及所述至少一第三階段模型產生對應於所述至少一第三階段模型的至少一第六機率向量,並且根據所述至少一第三機率向量和所述至少一第六機率向量產生所述第三判斷結果。
- 如請求項1所述的電子裝置,其中 所述第一預測模組對多個訓練資料進行基線漂移移除、去雜訊以及小波轉換以產生多個第一經校正訓練資料,並且根據所述多個第一經校正訓練資料訓練所述至少一第一階段模型。
- 如請求項6所述的電子裝置,其中所述第一預測模組根據至少一特徵訓練所述至少一第一階段模型,其中所述至少一特徵關聯於下列的至少其中之一: P波、Q波、R波、S波以及T波。
- 如請求項2所述的電子裝置,其中所述至少一第一階段模型、所述至少一第二階段模型以及所述至少一第三階段模型對應於機器學習演算法。
- 如請求項1所述的電子裝置,其中所述第一冠狀動脈包括下列的其中之一: 左主冠狀動脈、左冠狀動脈的前降支、左冠狀動脈的迴旋支以及右冠狀動脈。
- 一種預測冠狀動脈的阻塞的方法,包括: 取得對應於冠狀動脈集合的多個心電圖資料; 根據所述多個心電圖資料以及至少一第一階段模型產生分別對應於所述多個心電圖資料的多個第一機率,根據所述多個第一機率產生第一判斷結果,並且響應於所述多個第一機率的第一機率子集合中的每一者大於第一閾值而從所述多個心電圖資料中選出對應於所述第一機率子集合的第一資料子集合,其中所述第一判斷結果指示所述冠狀動脈集合發生阻塞的機率; 根據所述第一資料子集合以及至少一第二階段模型產生對應於所述第一資料子集合的多個第二機率,並且根據所述多個第二機率產生第二判斷結果,其中所述第二判斷結果指示所述冠狀動脈集合中的第一冠狀動脈發生阻塞的機率;以及 輸出所述第一判斷結果和所述第二判斷結果。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109146425A TWI768624B (zh) | 2020-12-28 | 2020-12-28 | 預測冠狀動脈的阻塞的電子裝置和方法 |
US17/233,569 US20220202339A1 (en) | 2020-12-28 | 2021-04-19 | Electronic device and method for predicting blockage of coronary artery |
EP21175614.3A EP4020494A1 (en) | 2020-12-28 | 2021-05-25 | Electronic device and method for predicting blockage of coronary artery |
CN202110695763.2A CN114680899A (zh) | 2020-12-28 | 2021-06-03 | 预测冠状动脉的阻塞的电子装置和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109146425A TWI768624B (zh) | 2020-12-28 | 2020-12-28 | 預測冠狀動脈的阻塞的電子裝置和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI768624B TWI768624B (zh) | 2022-06-21 |
TW202226268A true TW202226268A (zh) | 2022-07-01 |
Family
ID=76482966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109146425A TWI768624B (zh) | 2020-12-28 | 2020-12-28 | 預測冠狀動脈的阻塞的電子裝置和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220202339A1 (zh) |
EP (1) | EP4020494A1 (zh) |
CN (1) | CN114680899A (zh) |
TW (1) | TWI768624B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI832380B (zh) * | 2022-08-18 | 2024-02-11 | 宏碁股份有限公司 | 基於心電圖診斷心臟狀態的方法與電子裝置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742812B2 (en) * | 2006-03-29 | 2010-06-22 | Medtronic, Inc. | Method and apparatus for detecting arrhythmias in a medical device |
TW201023062A (en) * | 2008-12-10 | 2010-06-16 | Ind Tech Res Inst | Adaptive personalized cardiovascular telecare system and method |
US8489181B1 (en) * | 2009-01-02 | 2013-07-16 | The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) | Heart electrical actions as biometric indicia |
US8315812B2 (en) * | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
EP3076855A1 (en) * | 2013-12-06 | 2016-10-12 | Cardiac Pacemakers, Inc. | Heart failure event prediction using classifier fusion |
US9155512B2 (en) * | 2013-12-18 | 2015-10-13 | Heartflow, Inc. | Systems and methods for predicting coronary plaque vulnerability from patient-specific anatomic image data |
AU2016379418A1 (en) * | 2015-12-22 | 2018-06-14 | The Regents Of The University Of California | Computational localization of fibrillation sources |
US10115039B2 (en) * | 2016-03-10 | 2018-10-30 | Siemens Healthcare Gmbh | Method and system for machine learning based classification of vascular branches |
JP6864298B2 (ja) * | 2016-09-21 | 2021-04-28 | アナリティクス フォー ライフ インコーポレイテッド | リスクのある心臓組織の可視化のための方法およびシステム |
CN109377470A (zh) * | 2018-03-20 | 2019-02-22 | 任昊星 | 一种心脏病风险预测系统 |
WO2020136571A1 (en) * | 2018-12-26 | 2020-07-02 | Analytics For Life Inc. | Methods and systems to configure and use neural networks in characterizing physiological systems |
CN109497992A (zh) * | 2019-01-04 | 2019-03-22 | 济南汇医融工科技有限公司 | 基于机器学习方法的冠心病智能筛查装置 |
CN110251122A (zh) * | 2019-06-13 | 2019-09-20 | 南方医科大学顺德医院(佛山市顺德区第一人民医院) | 一种冠心病风险指数的无损检测系统及方法 |
-
2020
- 2020-12-28 TW TW109146425A patent/TWI768624B/zh active
-
2021
- 2021-04-19 US US17/233,569 patent/US20220202339A1/en active Pending
- 2021-05-25 EP EP21175614.3A patent/EP4020494A1/en active Pending
- 2021-06-03 CN CN202110695763.2A patent/CN114680899A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI768624B (zh) | 2022-06-21 |
US20220202339A1 (en) | 2022-06-30 |
EP4020494A1 (en) | 2022-06-29 |
CN114680899A (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10980429B2 (en) | Method and system for cuffless blood pressure estimation using photoplethysmogram features and pulse transit time | |
US20220093216A1 (en) | Discovering novel features to use in machine learning techniques, such as machine learning techniques for diagnosing medical conditions | |
KR102141617B1 (ko) | 인공 신경망을 이용하여 부정맥을 추정하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 | |
CN108665449B (zh) | 预测血流矢量路径上的血流特征的深度学习模型及装置 | |
US20240324937A1 (en) | Method and apparatus for analyzing high-frequency qrs-complex data | |
CN109009084B (zh) | 多导联心电信号的qrs波群校验方法、装置及设备、介质 | |
WO2020011033A1 (zh) | 心律失常起源点的判断装置及标测系统 | |
KR20150042854A (ko) | 혈관 기하학적 구조 및 생리학으로부터 혈류 특징들을 추정하기 위한 시스템들 및 방법들 | |
RU2657384C2 (ru) | Способ и система неинвазивной скрининговой оценки физиологических параметров и патологий | |
Lee et al. | Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation | |
JP2016524512A (ja) | タイプアヘッド編集のためのecg特徴及びレポート解釈のための自動更新 | |
CN109410267B (zh) | 一种冠脉分割评估方法及系统 | |
US10172569B2 (en) | System and method for assisting decisions associated with events relative to withdrawal of life-sustaining therapy using variability measurements | |
Techentin et al. | 1D Convolutional neural networks for estimation of compensatory reserve from blood pressure waveforms | |
Clark et al. | Lack of functional information explains the poor performance of ‘clot load scores’ at predicting outcome in acute pulmonary embolism | |
US20230260133A1 (en) | Methods for acquiring aorta based on deep learning and storage media | |
TWI768624B (zh) | 預測冠狀動脈的阻塞的電子裝置和方法 | |
Cirugeda-Roldán et al. | A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records | |
Paviglianiti et al. | Neural recurrent approches to noninvasive blood pressure estimation | |
Manna et al. | Decision tree predictive learner-based approach for false alarm detection in ICU | |
US20130110406A1 (en) | Method and apparatus for displaying analysis result of medical measured data | |
US20230105385A1 (en) | Method And Assembly For Predicting The Occurrence Of Heart Disease Within An Individual | |
TWI758039B (zh) | 選擇心電圖的特徵的電子裝置和方法 | |
CN112022140B (zh) | 一种心电图的诊断结论自动诊断方法及系统 | |
Ogrezeanu et al. | Deep learning based myocardial ischemia detection in ECG signals |