TW202224880A - Cooperative robotic arm system and homing method thereof - Google Patents

Cooperative robotic arm system and homing method thereof Download PDF

Info

Publication number
TW202224880A
TW202224880A TW109146447A TW109146447A TW202224880A TW 202224880 A TW202224880 A TW 202224880A TW 109146447 A TW109146447 A TW 109146447A TW 109146447 A TW109146447 A TW 109146447A TW 202224880 A TW202224880 A TW 202224880A
Authority
TW
Taiwan
Prior art keywords
robotic arm
vector
projection vector
reset
coordinate system
Prior art date
Application number
TW109146447A
Other languages
Chinese (zh)
Other versions
TWI845798B (en
Inventor
黎煥昇
吳建佑
薛涵君
黃甦
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109146447A priority Critical patent/TWI845798B/en
Publication of TW202224880A publication Critical patent/TW202224880A/en
Application granted granted Critical
Publication of TWI845798B publication Critical patent/TWI845798B/en

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

A cooperative robotic arm system includes a first robotic arm, a second robotic arm and a controller. The first robotic arm has a first work vector. The second robotic arm has a second work vector. The controller is configured to: (1) control the first robotic arm and the second robotic arm to stop moving; (2) determine whether a first projection vector of the first work vector projected on a first coordinate axis and a second work vector projected on the first coordinate axis overlaps; (3) when they overlap, determine whether a third projection vector of the first work vector projected on a second coordinate axis and a fourth projection vector of the second work vector projected on the second coordinate axis overlap; and , (4). when they do no overlap, control a controlled moving one of the first robotic arm and the second robotic arm to move along a reset path.

Description

協作機械手臂系統及其復位方法Collaborative robotic arm system and its reset method

本發明是有關於一種機械手臂系統及其復位方法,且特別是有關於一種協作機械手臂系統及其復位方法。The present invention relates to a robotic arm system and a resetting method thereof, and in particular, to a cooperative robotic arm system and a resetting method thereof.

現在產線多機械手臂協作的情形越來越多。當有一隻機械手臂發生急停或非預期的運動或降速(如,故障、異常等)的情況,此時協同的機械手臂在復位過程很有可能在未能及時反應的情況下與異常的手臂發生碰撞。因此,協同的(正常運作)機械手臂在復位過程如何防止碰撞,是一個值得進行研究的課題。There are more and more cases of multi-robot collaboration in production lines. When there is an emergency stop or unexpected movement or deceleration (such as failure, abnormality, etc.) of a robotic arm, at this time, the coordinated robotic arm is likely to fail to respond in time during the reset process. The arm collided. Therefore, how the coordinated (normally functioning) robotic arms prevent collisions during the reset process is a topic worthy of research.

因此,本發明提出一種協作機械手臂系統及其復位方法,可改善習知問題。Therefore, the present invention provides a cooperative robotic arm system and a reset method thereof, which can improve the conventional problems.

本發明一實施例提出一種協作機械手臂系統的復位方法。復位方法包括以下步驟。控制一第一機械手臂及一第二機械手臂停止運動,其中第一機械手臂具有一第一工作向量及第二機械手臂具有一第二工作向量;判斷第一工作向量投影於一第一座標軸的一第一投影向量與第二工作向量投影於第一座標軸的一第二投影向量是否重疊;當第一投影向量與第二投影向量重疊時,判斷第一工作向量投影於一第二座標軸的一第三投影向量與第二工作向量投影於第二座標軸的一第四投影向量是否重疊;以及,當第三投影向量與第四投影向量未重疊時,控制第一機械手臂與第二機械手臂之一第一受控移動者沿一第一復位路徑移動,其中第一復位路徑不通過第一機械手臂與第二機械手臂之一停止者的一工作點。An embodiment of the present invention provides a method for resetting a cooperative robotic arm system. The reset method includes the following steps. Controlling a first robotic arm and a second robotic arm to stop motion, wherein the first robotic arm has a first working vector and the second robotic arm has a second working vector; judging that the first working vector is projected on a first coordinate axis Whether a first projection vector and a second projection vector of the second work vector are projected on the first coordinate axis, whether a second projection vector overlaps; when the first projection vector and the second projection vector overlap, determine whether the first work vector is projected on a second coordinate axis Whether the third projection vector and the second work vector are projected to a fourth projection vector on the second coordinate axis to overlap; and, when the third projection vector and the fourth projection vector do not overlap, control the relationship between the first robotic arm and the second robotic arm A first controlled mover moves along a first reset path, wherein the first reset path does not pass through a work point of a stopper of one of the first robotic arm and the second robotic arm.

本發明另一實施例提出一種協作機械手臂系統。協作機械手臂系統一第一機械手臂、一第二機械手臂及一控制器。第一機械手臂具有一第一工作向量。第二機械手臂具有一第二工作向量。控制器用以:控制一第一機械手臂及一第二機械手臂停止運動;判斷第一工作向量投影於一第一座標軸的一第一投影向量與第二工作向量投影於第一座標軸的一第二投影向量是否重疊;當第一投影向量與第二投影向量重疊時,判斷第一工作向量投影於一第二座標軸的一第三投影向量與第二工作向量投影於第二座標軸的一第四投影向量是否重疊;以及,當第三投影向量與第四投影向量未重疊時,控制第一機械手臂與第二機械手臂之一第一受控移動者沿一第一復位路徑移動,其中第一復位路徑不通過第一機械手臂與第二機械手臂之一停止者的一工作點。Another embodiment of the present invention provides a collaborative robotic arm system. The collaborative robotic arm system includes a first robotic arm, a second robotic arm and a controller. The first robotic arm has a first work vector. The second robotic arm has a second work vector. The controller is used for: controlling a first robotic arm and a second robotic arm to stop moving; judging a first projection vector and a second projection vector of the first work vector projected on a first coordinate axis and a second work vector projected on the first coordinate axis Whether the projection vectors overlap; when the first projection vector and the second projection vector overlap, determine a third projection vector of the first work vector projected on a second coordinate axis and a fourth projection of the second work vector projected on the second coordinate axis whether the vectors overlap; and, when the third projection vector and the fourth projection vector do not overlap, controlling a first controlled mover of the first robotic arm and the second robotic arm to move along a first reset path, wherein the first reset The path does not pass through a work point of a stopper of one of the first robotic arm and the second robotic arm.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given and described in detail in conjunction with the accompanying drawings as follows:

請參照第1、2及3A~3D圖,第1圖繪示依照本發明一實施例之協作機械手臂系統100的示意圖,第2圖繪示第1圖之協作機械手臂系統100的共同座標系X-Y-Z的示意圖,第3A圖繪示協作機械手臂系統100之第一投影向量V1 Y與第二投影向量V2 Y重疊的示意圖,第3B圖繪示第3A圖之協作機械手臂系統100之第三投影向量V1 X與第四投影向量V2 X的示意圖,第3C圖繪示在另一實施例中協作機械手臂系統100之第一投影向量V1 Y與第二投影向量V2 Y不重疊的示意圖,而第3D圖繪示在另一實施例中第三投影向量V1 X與第四投影向量V2 X重疊的示意圖。 Please refer to Figures 1, 2 and 3A~3D. Figure 1 illustrates a schematic diagram of a collaborative robotic arm system 100 according to an embodiment of the present invention, and Figure 2 illustrates a common coordinate system of the collaborative robotic arm system 100 of Figure 1 A schematic diagram of XYZ, FIG. 3A is a schematic diagram of the overlapping of the first projection vector V1 Y and the second projection vector V2 Y of the collaborative robotic arm system 100 , and FIG. 3B is a third projection of the collaborative robotic arm system 100 of FIG. 3A A schematic diagram of the vector V1 X and the fourth projection vector V2 X , FIG. 3C is a schematic diagram illustrating that the first projection vector V1 Y and the second projection vector V2 Y of the collaborative robotic arm system 100 do not overlap in another embodiment, and the first projection vector V1 Y and the second projection vector V2 Y do not overlap. The 3D diagram shows a schematic diagram of the overlapping of the third projection vector V1 X and the fourth projection vector V2 X in another embodiment.

本揭露實施例提出一種協作機械手臂系統及其復位方法,協作機械手臂系統包括數個機械手臂及控制器,其中控制器用以:(1). 控制所有機械手臂停止運動,其中各機械手臂具有一工作向量;(2). 判斷此些工作向量投影於一座標軸的數個投影向量的任二者是否彼此重疊;(3). 當此些投影向量的任二者彼此重疊,控制此些機械手臂的至少一受控移動者沿一復位路徑移動,其中復位路徑不通過此些機械手臂的停止者,其中「停止者」係此些機械手臂的其中一者,如故障者或碰撞者,而「受控移動者」係此些機械手臂的其餘者。An embodiment of the present disclosure provides a cooperative robotic arm system and a reset method thereof. The collaborative robotic arm system includes a plurality of robotic arms and a controller, wherein the controller is used for: (1). Controlling all the robotic arms to stop motion, wherein each robotic arm has a work vector; (2). Determine whether any two of the several projection vectors projected by these work vectors on a coordinate axis overlap each other; (3). When any two of these projection vectors overlap each other, control the robotic arms At least one controlled mover of the robot moves along a reset path, wherein the reset path does not pass through the stoppers of the robotic arms, where the "stopper" is one of the robotic arms, such as a fault or a collider, and " "Controlled movers" are the rest of these robotic arms.

協作機械手臂系統100的多個機械手臂可共同處理(如,加工、搬運、夾持等)一物件。The multiple robotic arms of the collaborative robotic arm system 100 can jointly process (eg, process, handle, grip, etc.) an object.

協作機械手臂系統100包括第一機械手臂110、第二機械手臂120及控制器130。控制器130用以:(1). 控制第一機械手臂110及第二機械手臂120停止運動,其中第一機械手臂110具有第一工作向量V1及第二機械手臂120具有第二工作向量V2;(2). 判斷第一工作向量V1投影於第一座標軸(如,Y軸)的第一投影向量V1 Y與第二工作向量V2投影於第一座標軸的第二投影向量V2 Y是否重疊;(3). 當第一投影向量V1 Y與第二投影向量V2 Y重疊(如第3A圖所示),判斷第一工作向量V1投影於第二座標軸(如,X軸))的第三投影向量V1 X與第二工作向量V2投影於第二座標軸的第四投影向量V2 X是否重疊;(4). 當第三投影向量V1 X與第四投影向量V2 X未重疊(如,第3B圖所示) ,選擇第一機械手臂110與第二機械手臂120之一者做為受控移動者,控制受控移動者沿第一復位路徑P1移動受控移動者,其中第一復位路徑P1不通過第一機械手臂110與第二機械手臂120之一停止者的工作點。如此,透過前述復位方式,可讓協作機械手臂系統100快速復位且確保在復位過程中不發生互相碰撞。 The collaborative robotic arm system 100 includes a first robotic arm 110 , a second robotic arm 120 and a controller 130 . The controller 130 is used for: (1) controlling the first robotic arm 110 and the second robotic arm 120 to stop moving, wherein the first robotic arm 110 has a first working vector V1 and the second robotic arm 120 has a second working vector V2; (2). Determine whether the first projection vector V1 Y of the first work vector V1 projected on the first coordinate axis (eg, Y axis) overlaps with the second projection vector V2 Y of the second work vector V2 projected on the first coordinate axis; ( 3). When the first projection vector V1 Y overlaps with the second projection vector V2 Y (as shown in Figure 3A), determine the third projection vector of the first work vector V1 projected on the second coordinate axis (eg, X axis) Whether V1 X and the fourth projection vector V2 X of the second work vector V2 projected on the second coordinate axis overlap; (4). When the third projection vector V1 X and the fourth projection vector V2 X do not overlap (for example, as shown in Figure 3B shown), select one of the first robotic arm 110 and the second robotic arm 120 as the controlled mover, and control the controlled mover to move the controlled mover along the first reset path P1, wherein the first reset path P1 does not pass through The working point of the stopper of one of the first robotic arm 110 and the second robotic arm 120 . In this way, through the aforementioned reset method, the collaborative robotic arm system 100 can be reset quickly and ensure that no collision occurs during the reset process.

如第2圖所示,在取得第一投影向量V1 Y、第二投影向量V2 Y、第三投影向量V1 X及第四投影向量V2 X之前,控制器130讓第一工作向量V1及第二工作向量V2參考於同一個座標系,如共同座標系X-Y-Z,如此,此些投影向量都參考於相同的座標系,使控制器130更快速且更精確地計算復位路徑。本揭露實施例不限定控制器130計算或決定復位路徑的方式。前述共同座標系X-Y-Z包含彼此垂直的第一座標軸Y、第二座標軸X 及第三座標軸Z。 As shown in FIG. 2 , before obtaining the first projection vector V1 Y , the second projection vector V2 Y , the third projection vector V1 X and the fourth projection vector V2 X , the controller 130 makes the first work vector V1 and the second projection vector V1 and the second The working vector V2 refers to the same coordinate system, such as the common coordinate system XYZ, so that these projection vectors all refer to the same coordinate system, so that the controller 130 can calculate the reset path more quickly and accurately. The embodiments of the present disclosure do not limit the manner in which the controller 130 calculates or determines the reset path. The aforementioned common coordinate system XYZ includes a first coordinate axis Y, a second coordinate axis X and a third coordinate axis Z which are perpendicular to each other.

以下說明共同座標系X-Y-Z的決定方式。如第1及2圖所示,第一工作向量V1參考於(或相對於)第一機械手臂座標系x1-y1-z1,第二工作向量V2參考於(或相對於)第二機械手臂座標系x2-y2-z2,其中第一機械手臂座標系x1-y1-z1的第三座標軸z1與第二機械手臂座標系x2-y2-z2的第三座標軸z2大致上平行且朝向同一方向,例如平行朝上。第一工作向量V1為從第一機械手臂座標系x1-y1-z1的原點r1至工作點W1的向量,其中工作點W1例如是第一機械手臂110的端點、法蘭面的原點、工具頭的參考點等。第二工作向量V2為從第二機械手臂座標系x2-y2-z2的原點r2至工作點W2的向量,其中工作點W2例如是第二機械手臂120的端點、法蘭面的原點、工具頭的參考點等。The following describes how the common coordinate system X-Y-Z is determined. As shown in Figures 1 and 2, the first work vector V1 is referenced to (or relative to) the first robot arm coordinate system x1-y1-z1, and the second work vector V2 is referenced to (or relative to) the second robot arm coordinate system system x2-y2-z2, wherein the third coordinate axis z1 of the first robot arm coordinate system x1-y1-z1 and the third coordinate axis z2 of the second robot arm coordinate system x2-y2-z2 are substantially parallel and facing the same direction, for example parallel up. The first work vector V1 is a vector from the origin r1 of the first robot arm coordinate system x1-y1-z1 to the work point W1, wherein the work point W1 is, for example, the end point of the first robot arm 110 and the origin of the flange surface , the reference point of the tool head, etc. The second work vector V2 is a vector from the origin r2 of the second robot arm coordinate system x2-y2-z2 to the work point W2, wherein the work point W2 is, for example, the end point of the second robot arm 120 and the origin of the flange surface , the reference point of the tool head, etc.

控制器130更用以:定義共同座標系X-Y-Z,其中共同座標系X-Y-Z具有以下特性:(1). 共同座標系X-Y-Z之第一座標軸Y通過第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2;(2). 共同座標系X-Y-Z的第三座標軸Z、第一機械手臂座標系的第三座標軸z1與第二機械手臂座標系x2-y2-z2的第三座標軸z2大致上平行且朝向同一方向;及(3). 第一機械手臂座標系x1-y1-z1的原點r1與共同座標系X-Y-Z的原點R重合。The controller 130 is further used to: define a common coordinate system X-Y-Z, wherein the common coordinate system X-Y-Z has the following characteristics: (1). The first coordinate axis Y of the common coordinate system X-Y-Z passes through the origin of the first robot arm coordinate system x1-y1-z1 r1 and the origin r2 of the second manipulator coordinate system x2-y2-z2; (2). The third coordinate axis Z of the common coordinate system X-Y-Z, the third coordinate axis z1 of the first manipulator coordinate system and the second manipulator coordinate system The third coordinate axis z2 of x2-y2-z2 is substantially parallel and faces the same direction; and (3). The origin r1 of the first robot arm coordinate system x1-y1-z1 coincides with the origin R of the common coordinate system X-Y-Z.

本揭露實施例不限定共同座標系X-Y-Z之第一座標軸Y必須通過第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2。在另一實施例中,共同座標系X-Y-Z的原點R也可以與第一機械手臂座標系x1-y1-z1的原點r1及第二機械手臂座標系x2-y2-z2的原點r2錯開,即不重合。The embodiments of the present disclosure do not limit the first coordinate axis Y of the common coordinate system X-Y-Z to pass through the origin r1 of the first robot arm coordinate system x1-y1-z1 and the origin r2 of the second robot arm coordinate system x2-y2-z2. In another embodiment, the origin R of the common coordinate system X-Y-Z may also be offset from the origin r1 of the first robot arm coordinate system x1-y1-z1 and the origin r2 of the second robot arm coordinate system x2-y2-z2 , that is, do not coincide.

控制器130可採用任何已知的座標轉換數學方法,取得第一機械手臂座標系x1-y1-z1與共同座標系X-Y-Z的轉換關係以及第二機械手臂座標系x2-y2-z2與共同座標系X-Y-Z的轉換關係。透過該些轉換關係,控制器130可將第一工作向量V1從參考於第一機械手臂座標系x1-y1-z1座標轉換至參考共同座標系X-Y-Z,且將第二工作向量V2從參考於第二機械手臂座標系x2-y2-z2座標轉換至參考共同座標系X-Y-Z。控制器130例如是採用半導體製程所形成的實體電路,如半導體晶片、半導體封裝件等。控制器130可接收所有機械手臂的訊號,並據以此些訊號取得機械手臂的當前(或最新)位置、控制機械手臂的移動及取得復位路徑等。The controller 130 can use any known coordinate transformation mathematical method to obtain the transformation relationship between the first robot arm coordinate system x1-y1-z1 and the common coordinate system X-Y-Z and the second robot arm coordinate system x2-y2-z2 and the common coordinate system. X-Y-Z conversion relationship. Through these conversion relationships, the controller 130 can convert the first work vector V1 from the coordinates of the first robot arm coordinate system x1-y1-z1 to the reference common coordinate system X-Y-Z, and convert the second work vector V2 from the reference to the first robot arm coordinate system X-Y-Z. The coordinates of the coordinate system x2-y2-z2 of the two robotic arms are converted to the reference common coordinate system X-Y-Z. The controller 130 is, for example, a physical circuit formed by a semiconductor process, such as a semiconductor chip, a semiconductor package, and the like. The controller 130 can receive the signals of all the manipulators, and obtain the current (or latest) position of the manipulator, control the movement of the manipulator, obtain the reset path, and the like according to these signals.

前述「停止者」例如是第一機械手臂110與第二機械手臂120中的故障者。舉例來說,控制器130更用以:(1). 判斷第一機械手臂110或第二機械手臂120是否發生故障;(2). 當第一機械手臂110或第二機械手臂120發生故障,控制受控移動者沿第一復位路徑P1移動。受控移動者可選自故障者以外的機械手臂。The aforementioned “stopper” is, for example, a faulty person in the first robot arm 110 and the second robot arm 120 . For example, the controller 130 is further used to: (1). Determine whether the first robotic arm 110 or the second robotic arm 120 fails; (2). When the first robotic arm 110 or the second robotic arm 120 fails, The controlled mover is controlled to move along the first reset path P1. The controlled mover can be selected from a robotic arm other than the faulty one.

在另一實施例中,數個機械手臂例如是已發生碰撞或即將發生碰撞,控制器130更用以:(1). 判斷第一機械手臂110與第二機械手臂120是否已發生碰撞或即將發生碰撞;(2). 當第一機械手臂110與第二機械手臂120已發生碰撞或即將發生碰撞,選擇第一機械手臂110與第二機械手臂120之一者做為受控移動者;以及,(3). 控制受控移動者沿第一復位路徑P1移動。此外,當控制器130偵測到機械手臂之任一者發生故障、已發生碰撞或即將發生碰撞時,控制所有機械手臂停止運動,以避免機械手臂發生更嚴重的損傷,然後方控制受控移動者沿第一復位路徑P1移動。In another embodiment, for example, several robotic arms have collided or are about to collide, and the controller 130 is further used to: (1). Determine whether the first robotic arm 110 and the second robotic arm 120 have collided or are about to collide Collision occurs; (2). When the first robotic arm 110 and the second robotic arm 120 have collided or are about to collide, select one of the first robotic arm 110 and the second robotic arm 120 as the controlled mover; and , (3). The controlled mover is controlled to move along the first reset path P1. In addition, when the controller 130 detects that any one of the robotic arms is faulty, has collided or is about to collide, it controls all the robotic arms to stop moving to avoid more serious damage to the robotic arms, and then controls the controlled movement The operator moves along the first reset path P1.

如第3B圖所示,當第二機械手臂120(未繪示於第3B圖)為停止者時,控制器130控制第一機械手臂110(未繪示於第3B圖)沿第一復位路徑P1移動,其中第一復位路徑P1例如遠離或接近第二機械手臂120的方向。例如,第一復位路徑P1為平行於第二座標軸(如,X軸)且遠離第二機械手臂120的路徑,或為平行於第三座標軸(如,Z軸)且遠離第二機械手臂120的路徑。然只要第一機械手臂110的第一復位路徑P1不通過第二機械手臂120的工作點W2即可,第一復位路徑P1也可以是平行於第二座標軸(如,X軸)或第三座標軸(如,Z軸)且接近第二機械手臂120的路徑。第3B圖中的P1顯示出兩個不同方向的箭頭,其分別表達兩種不同方向的復位路徑,其它圖式的箭頭以相同型式繪示者具有相同意義,因此不再贅述。As shown in FIG. 3B , when the second robotic arm 120 (not shown in FIG. 3B ) is stopped, the controller 130 controls the first robotic arm 110 (not shown in FIG. 3B ) to follow the first reset path P1 moves, wherein the first reset path P1 is, for example, away from or close to the direction of the second robotic arm 120 . For example, the first reset path P1 is a path parallel to the second coordinate axis (eg, the X axis) and away from the second robotic arm 120 , or a path parallel to the third coordinate axis (eg, the Z axis) and away from the second robotic arm 120 path. However, as long as the first reset path P1 of the first robotic arm 110 does not pass through the working point W2 of the second robotic arm 120, the first reset path P1 may also be parallel to the second coordinate axis (eg, the X axis) or the third coordinate axis. (eg, the Z axis) and approach the path of the second robotic arm 120 . P1 in FIG. 3B shows two arrows in different directions, which respectively express the reset paths in two different directions. Arrows in other figures have the same meaning if they are drawn in the same pattern, so they will not be repeated.

在一實施例中,當「受控移動者」沿第一座標軸、第二座標軸或第三座標軸往遠離「停止者」的方向移動後,「受控移動者」與「停止者」之間的安全距離拉大,使「受控移動者」與「停止者」處於一更安全的環境,然後控制器130再控制「受控移動者」回到本身的初始位置(復位)。詳言之,在「受控移動者」回到本身初始位置前,控制器130讓「受控移動者」與「停止者」先處於一安全距離,因此在「受控移動者」回到本身初始位置的過程中確保不會與「停止者」發生碰撞,讓「受控移動者」安全地回到本身初始位置。In one embodiment, after the "controlled mover" moves away from the "stopper" along the first coordinate axis, the second coordinate axis or the third coordinate axis, the distance between the "controlled mover" and the "stopper" is The safety distance is increased, so that the "controlled mover" and the "stopper" are in a safer environment, and then the controller 130 controls the "controlled mover" to return to its original position (reset). In detail, before the "controlled mover" returns to its original position, the controller 130 keeps the "controlled mover" and the "stopper" at a safe distance, so that the "controlled mover" returns to its original position. During the initial position, ensure that there is no collision with the "stopper", so that the "controlled mover" can safely return to its original position.

以下介紹其它實施例之第一機械手臂110與第二機械手臂120的投影向量型態。The projection vector types of the first robotic arm 110 and the second robotic arm 120 in other embodiments are described below.

在另一實施例中,如第3C圖所示,第一投影向量V1 Y與第二投影向量V2 Y未重疊。控制器130用以:當第一投影向量V1 Y與第二投影向量V2 Y未重疊,控制第一機械手臂110(未繪示於第3B圖)為與第二機械手臂120(未繪示於第3B圖)為之受控移動者沿第一復位路徑P1移動。舉例來說,當第二機械手臂120為停止者時,控制器130控制第一機械手臂110沿第一復位路徑P1移動,例如,沿-Y軸向或+Z軸向移動,如同第3C圖中的P1所顯示的兩個不同的箭頭方向。然只要第一復位路徑P1不通過第二機械手臂120的工作點W2,第一復位路徑P1也可以是沿+Y軸向或-Z軸向移動。 In another embodiment, as shown in FIG. 3C , the first projection vector V1 Y and the second projection vector V2 Y do not overlap. The controller 130 is used for: when the first projection vector V1 Y and the second projection vector V2 Y do not overlap, to control the first robotic arm 110 (not shown in FIG. 3B ) to be aligned with the second robotic arm 120 (not shown in FIG. 3B) for which the controlled mover moves along the first reset path P1. For example, when the second robotic arm 120 is stopped, the controller 130 controls the first robotic arm 110 to move along the first reset path P1, for example, along the -Y axis or the +Z axis, as shown in FIG. 3C Two different arrow directions are shown in P1. However, as long as the first reset path P1 does not pass through the working point W2 of the second robotic arm 120, the first reset path P1 may also move along the +Y axis or the -Z axis.

在另一實施例中,如第3D圖所示,第三投影向量V1 X與第四投影向量V2 X重疊。控制器130用以:當第三投影向量V1 X與第四投影向量V2 X重疊時,控制第一機械手臂110(未繪示於第3D圖)與第二機械手臂120(未繪示於第3D圖)其中之一為受控移動者,並使受控移動者沿第一復位路徑P1移動。舉例來說,當第一機械手臂110為停止者時,控制器130控制第二機械手臂120沿第一復位路徑P1移動,例如,沿-X軸向或+Z軸向移動,如同第3D圖中的P1所顯示的兩個不同的箭頭方向。然只要第一復位路徑P1不通過第一機械手臂110的工作點W1,第一復位路徑P1也可以是沿+X軸向或-Z軸向移動。 In another embodiment, as shown in FIG. 3D, the third projection vector V1 X overlaps the fourth projection vector V2 X. The controller 130 is used for: when the third projection vector V1 X and the fourth projection vector V2 X overlap, control the first robot arm 110 (not shown in the 3D figure) and the second robot arm 120 (not shown in the first 3D image), one of which is a controlled mover, and makes the controlled mover move along the first reset path P1. For example, when the first robotic arm 110 is stopped, the controller 130 controls the second robotic arm 120 to move along the first reset path P1, for example, to move along the -X axis or +Z axis, as shown in the 3D figure Two different arrow directions are shown in P1. However, as long as the first reset path P1 does not pass through the working point W1 of the first robotic arm 110 , the first reset path P1 may also move along the +X axis or the −Z axis.

請參照第4、5及6A~6E圖,第4圖繪示依照本發明一實施例之協作機械手臂系統200的示意圖,第5圖繪示第4圖之協作機械手臂系統200的共同座標系X-Y-Z的示意圖,第6A圖繪示協作機械手臂系統200之第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y之任二者重疊的示意圖,第6B圖繪示第6A圖之協作機械手臂系統100之第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X的示意圖,第6C圖繪示在另一實施例中第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y不重疊的示意圖,第6D圖繪示協作機械手臂系統200之第四投影向量V2 X與第六投影向量V3 X重疊的示意圖,而第6E圖繪示協作機械手臂系統200之第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X重疊的示意圖。 Please refer to FIGS. 4, 5, and 6A-6E. FIG. 4 is a schematic diagram of a collaborative robotic arm system 200 according to an embodiment of the present invention, and FIG. 5 illustrates a common coordinate system of the collaborative robotic arm system 200 of FIG. 4. A schematic diagram of XYZ, FIG. 6A shows a schematic diagram of overlapping any two of the first projection vector V1 Y , the second projection vector V2 Y , and the fifth projection vector V3 Y of the collaborative robotic arm system 200, and FIG. 6B illustrates the 6A FIG. 6 is a schematic diagram of the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X of the collaborative robotic arm system 100 , and FIG. 6C shows the first projection vector V1 Y , the first projection vector V1 Y , the sixth projection vector V3 X in another embodiment. A schematic diagram of the two projection vectors V2 Y and the fifth projection vector V3 Y not overlapping, FIG. 6D is a schematic diagram of the overlapping of the fourth projection vector V2 X and the sixth projection vector V3 X of the collaborative robotic arm system 200 , and FIG. 6E is a schematic diagram of the overlapping A schematic diagram showing the overlapping of the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X of the collaborative robotic arm system 200 .

協作機械手臂系統200包括第一機械手臂110、第二機械手臂120、控制器130及第三機械手臂140。控制器130用以:(1). 控制第一機械手臂110、第二機械手臂120及第三機械手臂140停止運動,其中第一機械手臂110具有第一工作向量V1、第二機械手臂120具有第二工作向量V2,第三機械手臂140具有第三工作向量V3;(2). 判斷第一投影向量V1 Y、第二投影向量V2 Y與第三工作向量V3投影於第一座標軸的第五投影向量V3 Y之任二者是否重疊;(3). 當第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y之任二者重疊(如第6A圖所示,在此例中,第二投影向量V2 Y與第五投影向量V3 Y彼此重疊),判斷第三投影向量V1 X、第四投影向量V2 X與第三工作向量V3投影於第二座標軸的第六投影向量V3 X是否彼此重疊;(4). 當第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X未彼此重疊(如第6B圖所示,在此例中,第三投影向量V1 X與第四投影向量V2 X不重疊),選擇第一機械手臂110、第二機械手臂120與第三機械手臂140其中之一做為第一受控移動者,控制第一受控移動者沿第一復位路徑P1移動,其中第一復位路徑P1不通過第一機械手臂110、第二機械手臂120與第三機械手臂140其中之停止者的工作點,且,選擇第一機械手臂110、第二機械手臂120與第三機械手臂140其中之一做為第二受控移動者,控制第二受控移動者沿第二復位路徑P2移動,其中第二復位路徑P2不通過第一機械手臂110、第二機械手臂120與第三機械手臂140其中之停止者的工作點。如此,透過前述復位方式,可讓協作機械手臂系統200快速復位且確保在復位過程中不發生互相碰撞。 The collaborative robotic arm system 200 includes a first robotic arm 110 , a second robotic arm 120 , a controller 130 and a third robotic arm 140 . The controller 130 is used for: (1). Controlling the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 to stop moving, wherein the first robotic arm 110 has a first work vector V1 and the second robotic arm 120 has a The second work vector V2, the third manipulator 140 has a third work vector V3; (2). It is determined that the first projection vector V1 Y , the second projection vector V2 Y and the third work vector V3 are projected on the fifth position of the first coordinate axis Whether any two of the projection vectors V3 Y overlap; (3). When any two of the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y overlap (as shown in Figure 6A, in In this example, the second projection vector V2 Y and the fifth projection vector V3 Y overlap each other), determine the sixth projection of the third projection vector V1 X , the fourth projection vector V2 X and the third working vector V3 projected on the second coordinate axis Whether the vectors V3 X overlap each other; (4). When the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X do not overlap each other (as shown in Figure 6B, in this example, the third The projection vector V1 X and the fourth projection vector V2 X do not overlap), select one of the first robotic arm 110, the second robotic arm 120 and the third robotic arm 140 as the first controlled mover to control the first controlled mover The mover moves along the first reset path P1, wherein the first reset path P1 does not pass through the work point of the stopper among the first robotic arm 110, the second robotic arm 120 and the third robotic arm 140, and the first robotic arm is selected 110. One of the second robotic arm 120 and the third robotic arm 140 serves as the second controlled mover, and controls the second controlled mover to move along the second reset path P2, wherein the second reset path P2 does not pass through the first The working point of the stopper among the robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 . In this way, through the aforementioned reset method, the collaborative robotic arm system 200 can be reset quickly and ensure that no collision occurs during the reset process.

如第5圖所示,在取得第一投影向量V1 Y、第二投影向量V2 Y、第三投影向量V1 X、第四投影向量V2 X、第五投影向量V3 Y及第六投影向量V3 X之前,控制器130讓第一工作向量V1、第二工作向量V2及第三工作向量V3參考於同一個座標系,如共同座標系X-Y-Z,如此,此些投影向量都參考於相同的座標系,使控制器130更快速且更精確地計算復位路徑。本揭露實施例不限定控制器130計算或決定復位路徑的方式。前述共同座標系X-Y-Z包含彼此垂直的第一座標軸Y、第二座標軸X 及第三座標軸Z。 As shown in Fig. 5, after obtaining the first projection vector V1 Y , the second projection vector V2 Y , the third projection vector V1 X , the fourth projection vector V2 X , the fifth projection vector V3 Y and the sixth projection vector V3 X Before, the controller 130 makes the first work vector V1, the second work vector V2 and the third work vector V3 refer to the same coordinate system, such as the common coordinate system XYZ, so that these projection vectors all refer to the same coordinate system, The controller 130 is made to calculate the reset path faster and more accurately. The embodiments of the present disclosure do not limit the manner in which the controller 130 calculates or determines the reset path. The aforementioned common coordinate system XYZ includes a first coordinate axis Y, a second coordinate axis X and a third coordinate axis Z which are perpendicular to each other.

如第4及5圖所示,第一工作向量V1參考於(或相對於)第一機械手臂座標系x1-y1-z1,第二工作向量V2參考於(或相對於)第二機械手臂座標系x2-y2-z2,而第三工作向量V3參考於(或相對於)第三機械手臂座標系x3-y3-z3,其中第一機械手臂座標系x1-y1-z1的第三座標軸z1、第二機械手臂座標系x2-y2-z2的第三座標軸z2與第三機械手臂座標系x3-y3-z3的第三座標軸z3大致上平行且朝向同一方向,例如平行朝上。第三工作向量V3為從第三機械手臂座標系x3-y3-z3的原點r3至工作點W3的向量,其中工作點W3例如是第三機械手臂140的端點、法蘭面的原點、工具頭的參考點等。As shown in Figures 4 and 5, the first work vector V1 is referenced to (or relative to) the first robot arm coordinate system x1-y1-z1, and the second work vector V2 is referenced to (or relative to) the second robot arm coordinate system system x2-y2-z2, and the third work vector V3 is referenced to (or relative to) the third manipulator coordinate system x3-y3-z3, wherein the third coordinate axis z1 of the first manipulator coordinate system x1-y1-z1, The third coordinate axis z2 of the second robot arm coordinate system x2-y2-z2 and the third coordinate axis z3 of the third robot arm coordinate system x3-y3-z3 are substantially parallel and face the same direction, eg, parallel upward. The third work vector V3 is a vector from the origin r3 of the third robot arm coordinate system x3-y3-z3 to the work point W3, wherein the work point W3 is, for example, the end point of the third robot arm 140 and the origin of the flange surface , the reference point of the tool head, etc.

在本實施例中,如第5圖所示,共同座標系X-Y-Z之第一座標軸Y通過第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2。在另一實施例中,共同座標系X-Y-Z之第一座標軸Y可通過第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3。在其它實施例中,共同座標系X-Y-Z之第一座標軸Y可通過第一機械手臂座標系x1-y1-z1的原點r1與第三機械手臂座標系x3-y3-z3的原點r3。在另一實施例中,共同座標系X-Y-Z的原點R可位於第一機械手臂座標系x1-y1-z1的原點r1、第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3所構成的三角區域之間,即共同座標系X-Y-Z的原點R與原點r1、原點r2與原點r3之任一者錯開,即不重合。In this embodiment, as shown in FIG. 5, the first coordinate axis Y of the common coordinate system X-Y-Z passes through the origin r1 of the first robot arm coordinate system x1-y1-z1 and the second robot arm coordinate system x2-y2-z2 the origin r2. In another embodiment, the first coordinate axis Y of the common coordinate system X-Y-Z may pass through the origin r2 of the second robotic arm coordinate system x2-y2-z2 and the origin r3 of the third robotic arm coordinate system x3-y3-z3. In other embodiments, the first coordinate axis Y of the common coordinate system X-Y-Z may pass through the origin r1 of the first robotic arm coordinate system x1-y1-z1 and the origin r3 of the third robotic arm coordinate system x3-y3-z3. In another embodiment, the origin R of the common coordinate system X-Y-Z may be located at the origin r1 of the first manipulator coordinate system x1-y1-z1, the origin r2 of the second manipulator coordinate system x2-y2-z2, and the first manipulator coordinate system x1-y1-z1. Between the triangular regions formed by the origin r3 of the coordinate system x3-y3-z3 of the three robotic arms, that is, the origin R of the common coordinate system X-Y-Z is staggered from any of the origin r1, the origin r2 and the origin r3, that is not coincident.

如第6B圖所示,當第二機械手臂120為停止者時,控制器130控制第一機械手臂110(第一受控移動者,未繪示於第6B圖)沿第一復位路徑P1移動,例如,沿-X軸向或+Z軸向移動,且控制第三機械手臂140(第二受控移動者,未繪示於第6B圖)沿第二復位路徑P2移動,例如,沿+X軸向或+Z軸向移動,如同第6B圖中的P1所顯示的兩個不同的箭頭方向,以及P2所顯示的兩個不同的箭頭方向。然,只要第一復位路徑P1不通過第二工作向量V2的工作點W2,第一復位路徑P1也可以是沿+X軸向或-Z軸向的路徑,且第二復位路徑P2也可以是沿-X軸向或-Z軸向的路徑。在另一實施例中,第三機械手臂140可做為第一受控移動者,而第一機械手臂110可做為第二受控移動者。As shown in FIG. 6B , when the second robotic arm 120 is the stopper, the controller 130 controls the first robotic arm 110 (the first controlled mover, not shown in FIG. 6B ) to move along the first reset path P1 , for example, move along the -X axis or +Z axis, and control the third robotic arm 140 (the second controlled mover, not shown in FIG. 6B ) to move along the second reset path P2 , for example, along the + X-axis or +Z-axis movement, like the two different arrow directions shown by P1 in Figure 6B, and the two different arrow directions shown by P2. Of course, as long as the first reset path P1 does not pass through the working point W2 of the second work vector V2, the first reset path P1 can also be a path along the +X axis or the -Z axis, and the second reset path P2 can also be Path along the -X or -Z axis. In another embodiment, the third manipulator 140 can be used as the first controlled mover, and the first manipulator 110 can be used as the second controlled mover.

以下介紹其它實施例之第一機械手臂110、第二機械手臂120與第三機械手臂140的投影向量型態。The projection vector types of the first robotic arm 110 , the second robotic arm 120 , and the third robotic arm 140 in other embodiments are described below.

在另一實施例中,如第6C圖所示,第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y未重疊。控制器130用以:當第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y未重疊時,選擇第一機械手臂110、第二機械手臂120與第三機械手臂140其中之一做為第一受控移動者,控制第一受控移動者沿第一復位路徑P1移動,且,選擇第一機械手臂110、第二機械手臂120與第三機械手臂140其中之一做為第二受控移動者,控制第二受控移動者沿第二復位路徑P2移動。例如,如第6C圖所示,當第二機械手臂120為停止者時,控制器130控制第一機械手臂110沿第一復位路徑P1移動,例如沿-Y軸向或+Z軸向移動,且控制第三機械手臂140沿第二復位路徑P2移動,例如沿-Y軸向或+Z軸向移動,如同第6C圖中的P1所顯示的兩個不同的箭頭方向,以及P2所顯示的兩個不同的箭頭方向。然,只要第一復位路徑P1不通過第二工作向量V2的工作點W2,第一復位路徑P1也可以是沿+Y軸向或-Z軸向的路徑,且第二復位路徑P2也可以是沿+Y軸向或-Z軸向的路徑。在另一實施例中,第三機械手臂140可做為第一受控移動者,而第一機械手臂110可做為第二受控移動者。 In another embodiment, as shown in FIG. 6C , the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y do not overlap. The controller 130 is used for: when the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y do not overlap, select one of the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 One is used as the first controlled mover, controls the first controlled mover to move along the first reset path P1, and selects one of the first robotic arm 110, the second robotic arm 120 and the third robotic arm 140 to do so. For the second controlled mover, the second controlled mover is controlled to move along the second reset path P2. For example, as shown in FIG. 6C, when the second robotic arm 120 is the stopper, the controller 130 controls the first robotic arm 110 to move along the first reset path P1, for example, to move along the -Y axis or the +Z axis, And control the third robotic arm 140 to move along the second reset path P2, for example, move along the -Y axis or the +Z axis, as shown in the two different arrow directions shown by P1 in FIG. 6C, and as shown by P2. Two different arrow directions. Of course, as long as the first reset path P1 does not pass through the working point W2 of the second work vector V2, the first reset path P1 can also be a path along the +Y axis or the -Z axis, and the second reset path P2 can also be Path along the +Y or -Z axis. In another embodiment, the third manipulator 140 can be used as the first controlled mover, and the first manipulator 110 can be used as the second controlled mover.

在另一實施例中,如第6D圖所示,第四投影向量V2 X與第六投影向量V3x重疊。當第一機械手臂110(未繪示於第6D圖)為停止者時,控制器130控制第二機械手臂120(第一受控移動者,未繪示於第6D圖)沿第一復位路徑P1移動,例如沿+X軸向或+Z軸向移動,且控制第三機械手臂140(第二受控移動者,未繪示於第6D圖)沿第二復位路徑P2移動,例如,沿-X軸向或+Z軸向移動。然,只要第一復位路徑P1不通過第一工作向量V1的工作點W1,第一復位路徑P1也可以是沿-X軸向或-Z軸向的路徑,且第二復位路徑P2也可以是沿+X軸向或-Z軸向的路徑。在另一實施例中,第三機械手臂140可做為第一受控移動者,而第二機械手臂120可做為第二受控移動者。 In another embodiment, as shown in FIG. 6D, the fourth projection vector V2 X overlaps the sixth projection vector V3x. When the first manipulator 110 (not shown in FIG. 6D ) is stopped, the controller 130 controls the second manipulator 120 (the first controlled mover, not shown in FIG. 6D ) to follow the first reset path P1 moves, for example, along the +X axis or +Z axis, and controls the third robotic arm 140 (the second controlled mover, not shown in FIG. 6D ) to move along the second reset path P2, for example, along the -X-axis or +Z-axis movement. Of course, as long as the first reset path P1 does not pass through the working point W1 of the first work vector V1, the first reset path P1 can also be a path along the -X axis or -Z axis, and the second reset path P2 can also be Path along the +X or -Z axis. In another embodiment, the third robot arm 140 can be used as the first controlled mover, and the second robot arm 120 can be used as the second controlled mover.

在另一實施例中,如第6E圖所示,第三投影向量V1 X、第四投影向量V2 X、第六投影向量V3 X彼此重疊。當第一機械手臂110為停止者時,控制器130控制第二機械手臂120(第一受控移動者,未繪示於第6E圖)沿第一復位路徑P1移動,例如沿+X軸向或+Z軸向移動,且控制第三機械手臂140(第二受控移動者,未繪示於第6E圖)沿第二復位路徑P2移動,例如沿+X軸向或+Z軸向移動。然,只要第一復位路徑P1不通過第一工作向量V1的工作點W1,第一復位路徑P1也可以是沿-X軸向或-Z軸向的路徑,且第二復位路徑P2也可以是沿-X軸向或-Z軸向的路徑。在另一實施例中,第三機械手臂140可做為第一受控移動者,而第二機械手臂120可做為第二受控移動者。 In another embodiment, as shown in FIG. 6E , the third projection vector V1 X , the fourth projection vector V2 X , and the sixth projection vector V3 X overlap each other. When the first robotic arm 110 is the stopper, the controller 130 controls the second robotic arm 120 (the first controlled mover, not shown in FIG. 6E ) to move along the first reset path P1 , for example, along the +X axis or +Z axis movement, and control the third robotic arm 140 (the second controlled mover, not shown in FIG. 6E ) to move along the second reset path P2, for example, move along the +X axis or +Z axis . Of course, as long as the first reset path P1 does not pass through the working point W1 of the first work vector V1, the first reset path P1 can also be a path along the -X axis or -Z axis, and the second reset path P2 can also be Path along the -X or -Z axis. In another embodiment, the third robot arm 140 can be used as the first controlled mover, and the second robot arm 120 can be used as the second controlled mover.

請參照第7圖,其繪示第1圖之機械手臂系統100的復位方法流程圖。Please refer to FIG. 7 , which shows a flowchart of the reset method of the robotic arm system 100 of FIG. 1 .

在步驟S110中,控制器130控制第一機械手臂110及第二機械手臂120停止運動,其中第一機械手臂110具有第一工作向量V1及第二機械手臂120具有第二工作向量V2。In step S110, the controller 130 controls the first robotic arm 110 and the second robotic arm 120 to stop moving, wherein the first robotic arm 110 has a first work vector V1 and the second robotic arm 120 has a second work vector V2.

在步驟S120中,控制器130判斷第一工作向量V1 投影於第一座標軸的第一投影向量V1 Y與第二工作向量V2 投影於第一座標軸的第二投影向量V2 Y是否重疊,其中第一座標軸例如是共同座標系X-Y-Z的其中一軸向。當第一投影向量V1 Y與第二投影向量V2 Y未重疊(如第3C圖之態樣)時,流程進入步驟S140。當第一投影向量V1 Y與第二投影向量V2 Y重疊(如第3A圖之態樣)時,流程進入步驟S130。 In step S120, the controller 130 determines whether the first projection vector V1 Y of the first work vector V1 projected on the first coordinate axis and the second projection vector V2 Y of the second work vector V2 projected on the first coordinate axis overlap, wherein the first The coordinate axis is, for example, one of the axes of the common coordinate system XYZ. When the first projection vector V1 Y and the second projection vector V2 Y do not overlap (as shown in FIG. 3C ), the flow proceeds to step S140 . When the first projection vector V1 Y and the second projection vector V2 Y overlap (as shown in FIG. 3A ), the flow proceeds to step S130 .

然後,控制器130可判斷第一工作向量V1及第二工作向量V2在第二座標軸的重疊狀況,以決定復位路徑。以下進一步舉例說明。Then, the controller 130 can determine the overlapping state of the first work vector V1 and the second work vector V2 on the second coordinate axis to determine the reset path. Further examples are given below.

在步驟S130中,當第一投影向量V1 Y與第二投影向量V2 Y重疊時,控制器130判斷第一工作向量V1投影於第二座標軸的第三投影向量V1 X與第二工作向量V2投影於第二座標軸的第四投影向量V2 X是否重疊。當第三投影向量V1 X與第四投影向量V2 X未重疊(如第3B及3D圖之態樣)時,流程進入步驟S140。 In step S130, when the first projection vector V1 Y and the second projection vector V2 Y overlap, the controller 130 determines that the first work vector V1 is projected on the second coordinate axis and the third projection vector V1 X and the second work vector V2 are projected Whether the fourth projection vector V2 X on the second coordinate axis overlaps. When the third projection vector V1 X and the fourth projection vector V2 X do not overlap (as in the 3B and 3D images), the process proceeds to step S140.

在步驟S140中,當第三投影向量V1 X與第四投影向量V2 X未重疊時,控制器130控制第一機械手臂110與第二機械手臂120其中之受控移動者沿第一復位路徑P1移動,其中第一復位路徑P1不通過第一機械手臂110與第二機械手臂120其中之停止者的工作點。只要是第一復位路徑P1不通過第一機械手臂110與第二機械手臂120其中之停止者的工作點即可,第一復位路徑P1可遠離或接近該停止者。 In step S140, when the third projection vector V1 X and the fourth projection vector V2 X do not overlap, the controller 130 controls the controlled mover of the first robotic arm 110 and the second robotic arm 120 to follow the first reset path P1 moving, wherein the first reset path P1 does not pass through the working point of the stop of the first robot arm 110 and the second robot arm 120 . As long as the first reset path P1 does not pass through the working point of the stopper of the first robotic arm 110 and the second robotic arm 120 , the first reset path P1 can be far away from or close to the stopper.

請參照第8圖,其繪示第4圖之協作機械手臂系統200的復位方法流程圖。Please refer to FIG. 8 , which shows a flowchart of the reset method of the collaborative robotic arm system 200 of FIG. 4 .

在步驟S210中,控制器130控制第一機械手臂110、第二機械手臂120及第三機械手臂140停止運動,其中第一機械手臂110具有第一工作向量V1、第二機械手臂120具有第二工作向量V2,而第三機械手臂140具有第三工作向量V3。In step S210, the controller 130 controls the first robotic arm 110, the second robotic arm 120 and the third robotic arm 140 to stop moving, wherein the first robotic arm 110 has a first work vector V1, and the second robotic arm 120 has a second work vector V2, while the third robotic arm 140 has a third work vector V3.

在步驟S220中,控制器130判斷第一工作向量V1 投影於第一座標軸的第一投影向量V1 Y、第二工作向量V2 投影於第一座標軸的第二投影向量V2 Y與第三工作向量V3 投影於第一座標軸的第五投影向量V3 Y是否重疊,其中第一座標軸例如是共同座標系X-Y-Z的其中一軸向。當第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y未重疊(如第6C圖之態樣)時,流程進入步驟S240。當第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y重疊(如第6A圖之態樣)時,流程進入步驟S230。 In step S220, the controller 130 determines the first projection vector V1 Y of the first work vector V1 projected on the first coordinate axis, the second projection vector V2 of the second work vector V2 projected on the second projection vector V2 Y of the first coordinate axis, and the third work vector V3 Whether the fifth projection vector V3 Y projected on the first coordinate axis overlaps, wherein the first coordinate axis is, for example, one of the axes of the common coordinate system XYZ. When the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y do not overlap (as shown in FIG. 6C ), the process proceeds to step S240 . When the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y overlap (as shown in FIG. 6A ), the process proceeds to step S230 .

然後,控制器130可判斷第一工作向量V1、第二工作向量V2及第三工作向量V3在第二座標軸的重疊狀況,以決定第一及第二復位路徑。以下進一步舉例說明。Then, the controller 130 can determine the overlapping state of the first work vector V1, the second work vector V2 and the third work vector V3 on the second coordinate axis, so as to determine the first and second reset paths. Further examples are given below.

在步驟S230中,當第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y重疊時,控制器130判斷第一工作向量V1投影於第二座標軸的第三投影向量V1 X、第二工作向量V2投影於第二座標軸 的第四投影向量V2 X與第三工作向量V3投影於第二座標軸 的第六投影向量V3 X是否重疊。當第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X未重疊(如第6B、6D及6E圖之態樣)時,流程進入步驟S240。 In step S230, when the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y overlap, the controller 130 determines that the first work vector V1 is projected on the third projection vector V1 X of the second coordinate axis . Whether the fourth projection vector V2 X of the second work vector V2 projected on the second coordinate axis and the sixth projection vector V3 X of the third work vector V3 projected on the second coordinate axis overlap. When the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X do not overlap (as shown in Figs. 6B, 6D and 6E), the flow goes to step S240.

在步驟S240中,當第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X未重疊時,控制器130控制第一機械手臂110、第二機械手臂120與第三機械手臂140其中之第一受控移動者沿第一復位路徑P1移動,其中第一復位路徑P1不通過第一機械手臂110、第二機械手臂120與第三機械手臂140其中之停止者的工作點。只要是第一復位路徑P1不通過第一機械手臂110、第二機械手臂120與第三機械手臂140之停止者的工作點即可,第一復位路徑P1可遠離或接近該停止者。 In step S240 , when the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X do not overlap, the controller 130 controls the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 One of the first controlled movers moves along the first reset path P1 , wherein the first reset path P1 does not pass through the work point of the stopper among the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 . As long as the first reset path P1 does not pass through the work point of the stopper of the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 , the first reset path P1 can be far away from or close to the stopper.

在步驟S250中,控制器130控制第一機械手臂110、第二機械手臂120與第三機械手臂140之第二受控移動者沿第二復位路徑P2移動,其中第二復位路徑P2不通過第一機械手臂110、第二機械手臂120與第三機械手臂140之停止者的工作點。只要是第二復位路徑P2不通過第一機械手臂110、第二機械手臂120與第三機械手臂140之停止者的工作點即可,第二復位路徑P2可遠離或接近該停止者。In step S250, the controller 130 controls the second controlled mover of the first robotic arm 110, the second robotic arm 120, and the third robotic arm 140 to move along the second reset path P2, wherein the second reset path P2 does not pass through the second reset path P2. A working point of the stopper of the robot arm 110 , the second robot arm 120 and the third robot arm 140 . As long as the second reset path P2 does not pass through the work point of the stopper of the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 140 , the second reset path P2 can be far away from or close to the stopper.

以下說明本揭露另一實施例之機械手臂復位方法。The following describes a method for resetting a robotic arm according to another embodiment of the present disclosure.

在一實施例中,如第6A圖所示,以第二機械手臂120(未標示於第6A圖)為「停止者」為例,控制器130以第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2決定共同座標系X-Y-Z,由於第一機械手臂110之第一工作向量V1不重疊於第二機械手臂120之第二工作向量V2且不重疊於第三機械手臂130之第三工作向量V3,因此控制器130可以將第一機械手臂110做為「受控移動者」,採用前述方式決定「受控移動者」之復位路徑,並控制「受控移動者」先行復位。然後,控制器130重設共同座標系,以第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3決定共同座標系X-Y-Z,並採用前述方式,決定「受控移動者」的復位路徑,並控制「受控移動者」先行復位。In one embodiment, as shown in FIG. 6A , taking the second robot arm 120 (not marked in FIG. 6A ) as the “stopper” as an example, the controller 130 uses the first robot arm coordinate system x1-y1-z1 The origin r1 and the origin r2 of the coordinate system x2-y2-z2 of the second robot arm determine the common coordinate system X-Y-Z, because the first work vector V1 of the first robot arm 110 does not overlap with the second work of the second robot arm 120 The vector V2 does not overlap with the third work vector V3 of the third robotic arm 130, so the controller 130 can regard the first robotic arm 110 as the “controlled mover” and determine the reset of the “controlled mover” in the aforementioned manner path, and control the "controlled mover" to reset first. Then, the controller 130 resets the common coordinate system, and determines the common coordinate system X-Y-Z with the origin r2 of the second robot arm coordinate system x2-y2-z2 and the origin r3 of the third robot arm coordinate system x3-y3-z3, and Using the above method, determine the reset path of the "controlled mover", and control the "controlled mover" to reset first.

在另一實施例中,當第6A圖之第一機械手臂110之第一工作向量V1重疊於第二機械手臂120之第二工作向量V2及第三機械手臂130之第三工作向量V3時,控制器130可從另一平面判斷機械手臂的相對關係。詳言之,如第9圖所示,XZ平面來看,第一機械手臂110之第一工作向量V1就不重疊於第二機械手臂120之第二工作向量V2、且不重疊於第三機械手臂130之第三工作向量V3,因此控制器130可以將第一機械手臂110做為「受控移動者」,採用前述方式決定「受控移動者」之復位路徑,並控制「受控移動者」先行復位。然後,控制器130重設共同座標系,以第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3決定共同座標系X-Y-Z,採用前述方式決定「受控移動者」(第三機械手臂130)的復位路徑,並控制「受控移動者」先行復位。In another embodiment, when the first work vector V1 of the first manipulator 110 in FIG. 6A overlaps the second work vector V2 of the second manipulator 120 and the third work vector V3 of the third manipulator 130, The controller 130 may judge the relative relationship of the robotic arms from another plane. In detail, as shown in FIG. 9, from the XZ plane, the first work vector V1 of the first robot arm 110 does not overlap with the second work vector V2 of the second robot arm 120, and does not overlap the third robot arm. The third work vector V3 of the arm 130, so the controller 130 can regard the first robotic arm 110 as the "controlled mover", determine the reset path of the "controlled mover" in the aforementioned manner, and control the "controlled mover" ” to reset first. Then, the controller 130 resets the common coordinate system, and determines the common coordinate system X-Y-Z based on the origin r2 of the second robotic arm coordinate system x2-y2-z2 and the origin r3 of the third robotic arm coordinate system x3-y3-z3, using The foregoing method determines the reset path of the "controlled mover" (the third robotic arm 130 ), and controls the "controlled mover" to reset first.

請參照第10圖,其繪示依照本揭露另一實施例之第一機械手臂110、第二機械手臂120與第三機械手臂130的相對關係示意圖。以第二機械手臂120(未標示於第10圖)為「停止者」為例,控制器130以第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2決定共同座標系X-Y-Z,由於第三機械手臂130之第三工作向量V3不重疊於第一機械手臂110(未標示於第10圖)之第一工作向量V1、且不重疊於第二機械手臂120之第二工作向量V2,因此控制器130可以將第三機械手臂140(未標示於第10圖)做為「受控移動者」,採用前述方式決定「受控移動者」的復位路徑,並控制「受控移動者」先行復位。然後,控制器130可不重設共同座標系,以第一機械手臂110做為「受控移動者」,採用前述方式決定「受控移動者」的復位路徑,並控制「受控移動者」先行復位。Please refer to FIG. 10 , which is a schematic diagram illustrating the relative relationship between the first robotic arm 110 , the second robotic arm 120 and the third robotic arm 130 according to another embodiment of the present disclosure. Taking the second robot arm 120 (not shown in FIG. 10 ) as the “stopper” as an example, the controller 130 uses the origin r1 of the first robot arm coordinate system x1-y1-z1 and the second robot arm coordinate system x2- The origin r2 of y2-z2 determines the common coordinate system X-Y-Z, since the third work vector V3 of the third manipulator 130 does not overlap the first work vector V1 of the first manipulator 110 (not shown in FIG. 10), and does not overlap. The second work vector V2 of the second robotic arm 120 is overlapped, so the controller 130 can regard the third robotic arm 140 (not shown in FIG. 10 ) as the “controlled mover”, and use the aforementioned method to determine the “controlled movement” The reset path of the "mover", and control the "controlled mover" to reset first. Then, the controller 130 may not reset the common coordinate system, use the first robotic arm 110 as the "controlled mover", determine the reset path of the "controlled mover" in the aforementioned manner, and control the "controlled mover" to move first reset.

在另一實施例中,如第6E圖所示,以第二機械手臂120(未標示於第6E圖)為「停止者」為例,控制器130以第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2決定共同座標系X-Y-Z,在本實施例中,控制器130以第一機械手臂110做為「受控移動者」,採用前述方式,決定「受控移動者」之復位路徑,並控制「受控移動者」先行復位。然後,控制器130可重設共同座標系,以第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3決定共同座標系X-Y-Z,並採用前述方式,決定「受控移動者」(第三機械手臂130)的復位路徑,並控制「受控移動者」先行復位。In another embodiment, as shown in FIG. 6E , taking the second robot arm 120 (not shown in FIG. 6E ) as the “stopper” as an example, the controller 130 uses the first robot arm coordinate system x1-y1- The origin r1 of z1 and the origin r2 of the second robotic arm coordinate system x2-y2-z2 determine a common coordinate system X-Y-Z. In this embodiment, the controller 130 uses the first robotic arm 110 as the "controlled mover" , using the above method, determine the reset path of the "controlled mover", and control the "controlled mover" to reset first. Then, the controller 130 can reset the common coordinate system, and determine the common coordinate system X-Y-Z with the origin r2 of the second robotic arm coordinate system x2-y2-z2 and the origin r3 of the third robotic arm coordinate system x3-y3-z3, And adopt the aforementioned method to determine the reset path of the "controlled mover" (the third robotic arm 130 ), and control the "controlled mover" to reset first.

請參照第11圖,其繪示依照本揭露又一實施例之第一機械手臂、第二機械手臂與第三機械手臂的相對關係示意圖。以第二機械手臂120(未標示於第11圖)為「停止者」為例,控制器130以第一機械手臂座標系x1-y1-z1的原點r1與第二機械手臂座標系x2-y2-z2的原點r2決定共同座標系X-Y-Z,若控制器130在XZ平面無法決定進行復位的機械手臂時,控制器130可重設共同座標系,改以第二機械手臂座標系x2-y2-z2的原點r2與第三機械手臂座標系x3-y3-z3的原點r3決定共同座標系X-Y-Z,然後採用前述方式,決定可做為「受控移動者」的機械手臂,並控制「受控移動者」復位。Please refer to FIG. 11 , which is a schematic diagram illustrating the relative relationship between the first robotic arm, the second robotic arm, and the third robotic arm according to another embodiment of the present disclosure. Taking the second robot arm 120 (not shown in FIG. 11 ) as the “stopper” as an example, the controller 130 uses the origin r1 of the first robot arm coordinate system x1-y1-z1 and the second robot arm coordinate system x2- The origin r2 of y2-z2 determines the common coordinate system X-Y-Z. If the controller 130 cannot determine the robot arm to reset in the XZ plane, the controller 130 can reset the common coordinate system and use the second robot arm coordinate system x2-y2 instead. - The origin r2 of z2 and the origin r3 of the coordinate system x3-y3-z3 of the third robot arm determine the common coordinate system X-Y-Z, and then use the aforementioned method to determine the robot arm that can be used as a "controlled mover", and control the " Controlled Mover" resets.

綜上,本揭露實施例提出一種協作機械手臂系統及其復位方法,協作機械手臂系統包括數個機械手臂及控制器,其中控制器用以:(1). 控制所有機械手臂停止運動,其中各機械手臂具有一工作向量;(2). 判斷此些工作向量投影於一座標軸的數個投影向量的任二者是否彼此重疊;(3). 當此些投影向量的任二者彼此重疊,控制此些機械手臂的至少一受控移動者沿一復位路徑移動,其中復位路徑不通過此些機械手臂的停止者,其中「停止者」係此些機械手臂的其中一者,如故障者或碰撞者,而「受控移動者」係此些機械手臂的其餘者或另一者。在另一實施例中,控制器用以:當從共同座標系之一平面難以判斷可做為「受控移動者」的機械手臂時,控制器可在不重設共同座標系下,改從同一共同座標系之另一平面判斷可做為「受控移動者」的機械手臂。在另一實施例中,控制器用以:在「受控移動者」復位後,可重設共同座標系,在重設之共同座標系下決定「受控移動者」的復位路徑。透過前述方法,可防止「受控移動者」在復位過程發生碰撞。To sum up, an embodiment of the present disclosure provides a collaborative robotic arm system and a reset method thereof. The collaborative robotic arm system includes a plurality of robotic arms and a controller, wherein the controller is used for: (1). Controlling all robotic arms to stop motion, wherein each mechanical arm The arm has a work vector; (2). Determine whether any two of these work vectors are projected on a coordinate axis to overlap each other; (3). When any two of these projection vectors overlap each other, control this At least one controlled mover of the robotic arms moves along a reset path, wherein the reset path does not pass through the stoppers of the robotic arms, where the "stopper" is one of the robotic arms, such as a fault or a collider , and the "controlled mover" is the rest or the other of these robotic arms. In another embodiment, the controller is used to: when it is difficult to determine the robot arm that can be used as a "controlled mover" from a plane of the common coordinate system, the controller can change the common coordinate system to the same Another plane judgment of the common coordinate system can be used as the robot arm of the "controlled mover". In another embodiment, the controller is used to reset the common coordinate system after the "controlled mover" is reset, and determine the reset path of the "controlled mover" under the reset common coordinate system. Through the aforementioned method, the collision of the "controlled mover" during the reset process can be prevented.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.

100, 200:協作機械手臂系統 110:第一機械手臂 120:第二機械手臂 130:控制器 140:第三機械手臂 V1:第一工作向量 V2:第二工作向量 V3:第三工作向量 V1 Y:第一投影向量 V2 Y:第二投影向量 V3 Y:第五投影向量 V1 X:第三投影向量 V2 X:第四投影向量 V3 X:第六投影向量 P1:第一復位路徑 P2:第二復位路徑 r1, r2, r3, R:原點 x1-y1-z1:第一機械手臂座標系 x2-y2-z2:第二機械手臂座標系 x3-y3-z3:第三機械手臂座標系 X-Y-Z:共同座標系 Y:第一座標軸 X:第二座標軸 Z:第三座標軸 W1, W2, W3:工作點 100, 200: Collaborative robotic arm system 110: First robotic arm 120: Second robotic arm 130: Controller 140: Third robotic arm V1: First work vector V2: Second work vector V3: Third work vector V1 Y : first projection vector V2 Y : second projection vector V3 Y : fifth projection vector V1 X : third projection vector V2 X : fourth projection vector V3 X : sixth projection vector P1: first reset path P2: second Reset path r1, r2, r3, R: origin x1-y1-z1: coordinate system of the first robot arm x2-y2-z2: coordinate system of the second robot arm x3-y3-z3: coordinate system of the third robot arm XYZ: Common coordinate system Y: The first coordinate axis X: The second coordinate axis Z: The third coordinate axis W1, W2, W3: Working point

第1圖繪示依照本發明一實施例之協作機械手臂系統的示意圖。 第2圖繪示第1圖之協作機械手臂系統的共同座標系的示意圖。 第3A圖繪示協作機械手臂系統之第一投影向量V1 Y與第二投影向量V2 Y重疊的示意圖。 第3B圖繪示第3A圖之協作機械手臂系統之第三投影向量V1 X與第四投影V2 X向量的示意圖。 第3C圖繪示在另一實施例中協作機械手臂系統之第一投影向量V1 Y與第二投影向量V2 Y不重疊的示意圖。 第3D圖繪示在另一實施例中第三投影向量V1 X與第四投影向量重疊V2 X的示意圖。 第4圖繪示依照本發明一實施例之協作機械手臂系統的示意圖。 第5圖繪示第4圖之協作機械手臂系統的共同座標系的示意圖。 第6A圖繪示協作機械手臂系統之第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y之任二者重疊的示意圖。 第6B圖繪示第6A圖之協作機械手臂系統之第三投影向量V1 X、第四投影向量V2 X與第六投影向量V3 X的示意圖。 第6C圖繪示在另一實施例中第一投影向量V1 Y、第二投影向量V2 Y與第五投影向量V3 Y不重疊的示意圖。 第6D圖繪示協作機械手臂系統之第四投影向量V2 X與第六投影向量V3 X重疊的示意圖。 第6E圖繪示協作機械手臂系統之第三投影向量V2 X、第四投影向量V2 X與第六投影向量V3 X重疊的示意圖。 第7圖繪示第1圖之機械手臂系統的復位方法流程圖。 第8圖繪示第4圖之機械手臂系統的復位方法流程圖。 第9圖繪示依照本揭露另一實施例之機械手臂系統的示意圖。 第10圖繪示依照本揭露另一實施例之第一機械手臂、第二機械手臂與第三機械手臂的相對關係示意圖。 第11圖繪示依照本揭露又一實施例之第一機械手臂、第二機械手臂與第三機械手臂的相對關係示意圖。 FIG. 1 is a schematic diagram of a collaborative robotic arm system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a common coordinate system of the collaborative robotic arm system of FIG. 1 . FIG. 3A is a schematic diagram of the overlapping of the first projection vector V1 Y and the second projection vector V2 Y of the collaborative robotic arm system. FIG. 3B is a schematic diagram of the third projection vector V1 X and the fourth projection V2 X vector of the collaborative robotic arm system of FIG. 3A . FIG. 3C is a schematic diagram illustrating that the first projection vector V1 Y and the second projection vector V2 Y of the collaborative robotic arm system do not overlap in another embodiment. FIG. 3D is a schematic diagram illustrating that the third projection vector V1 X and the fourth projection vector overlap V2 X in another embodiment. FIG. 4 is a schematic diagram of a collaborative robotic arm system according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a common coordinate system of the collaborative robotic arm system of FIG. 4 . FIG. 6A is a schematic diagram illustrating the overlapping of any two of the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y of the collaborative robotic arm system. FIG. 6B is a schematic diagram of the third projection vector V1 X , the fourth projection vector V2 X and the sixth projection vector V3 X of the cooperative robotic arm system of FIG. 6A . FIG. 6C is a schematic diagram illustrating that the first projection vector V1 Y , the second projection vector V2 Y and the fifth projection vector V3 Y do not overlap in another embodiment. FIG. 6D is a schematic diagram of the overlapping of the fourth projection vector V2 X and the sixth projection vector V3 X of the collaborative robotic arm system. FIG. 6E is a schematic diagram of the overlapping of the third projection vector V2 X , the fourth projection vector V2 X and the sixth projection vector V3 X of the collaborative robotic arm system. FIG. 7 is a flow chart of the reset method of the robotic arm system of FIG. 1 . FIG. 8 is a flow chart of the reset method of the robotic arm system of FIG. 4 . FIG. 9 is a schematic diagram of a robotic arm system according to another embodiment of the present disclosure. FIG. 10 is a schematic diagram illustrating the relative relationship between the first robotic arm, the second robotic arm and the third robotic arm according to another embodiment of the present disclosure. FIG. 11 is a schematic diagram illustrating the relative relationship between the first robotic arm, the second robotic arm, and the third robotic arm according to yet another embodiment of the present disclosure.

100:協作機械手臂系統 100: Collaborative Robotic Arm System

110:第一機械手臂 110: The first robotic arm

120:第二機械手臂 120: The second robotic arm

130:控制器 130: Controller

V1:第一工作向量 V1: The first work vector

V2:第二工作向量 V2: Second work vector

r1,r2:原點 r1,r2: origin

x1-y1-z1:第一機械手臂座標系 x1-y1-z1: coordinate system of the first robot arm

x2-y2-z2:第二機械手臂座標系 x2-y2-z2: Coordinate system of the second robot arm

W1,W2:工作點 W1, W2: working point

Claims (18)

一種協作機械手臂系統的復位方法,包括: 控制一第一機械手臂及一第二機械手臂停止運動,其中該第一機械手臂具有一第一工作向量及該第二機械手臂具有一第二工作向量; 判斷該第一工作向量投影於一第一座標軸的一第一投影向量與該第二工作向量投影於該第一座標軸的一第二投影向量是否重疊; 當該第一投影向量與該第二投影向量重疊時,判斷該第一工作向量投影於一第二座標軸的一第三投影向量與該第二工作向量投影於該第二座標軸的一第四投影向量是否重疊;以及 當該第三投影向量與該第四投影向量未重疊時,控制該第一機械手臂與該第二機械手臂其中之一第一受控移動者沿一第一復位路徑移動,其中該第一復位路徑不通過該第一機械手臂與該第二機械手臂其中之一停止者的一工作點。 A reset method for a collaborative robotic arm system, comprising: controlling a first robotic arm and a second robotic arm to stop motion, wherein the first robotic arm has a first working vector and the second robotic arm has a second working vector; determining whether a first projection vector of the first work vector projected on a first coordinate axis and a second projection vector of the second work vector projected on the first coordinate axis overlap; When the first projection vector and the second projection vector overlap, determine a third projection vector of the first work vector projected on a second coordinate axis and a fourth projection of the second work vector projected on the second coordinate axis whether the vectors overlap; and When the third projection vector and the fourth projection vector do not overlap, control a first controlled mover of the first robotic arm and the second robotic arm to move along a first reset path, wherein the first reset The path does not pass through a work point where one of the first robotic arm and the second robotic arm stops. 如請求項1所之復位方法,其中該第一復位路徑平行於該第二座標軸或一第三座標軸,該第三座標軸垂直於該第一座標軸與該第二座標軸。The reset method of claim 1, wherein the first reset path is parallel to the second coordinate axis or a third coordinate axis, and the third coordinate axis is perpendicular to the first coordinate axis and the second coordinate axis. 如請求項1所之復位方法,其中該第一座標軸與該第二座標軸彼此垂直。The reset method of claim 1, wherein the first coordinate axis and the second coordinate axis are perpendicular to each other. 如請求項1所之復位方法,其中該第一座標軸與該第二座標軸為一共同座標系的二軸向。The reset method of claim 1, wherein the first coordinate axis and the second coordinate axis are two axes of a common coordinate system. 如請求項4所之復位方法,其中該第一工作向量參考於一第一機械手臂座標系,該第一機械手臂座標系的原點與該共同座標系的原點重合。The reset method of claim 4, wherein the first work vector is referenced to a first robot arm coordinate system, and the origin of the first robot arm coordinate system coincides with the origin of the common coordinate system. 如請求項1所之復位方法,其中該第一工作向量參考於一第一機械手臂座標系,而該第二工作向量參考於一第二機械手臂座標系;該復位方法更用以: 定義一共同座標系,該共同座標系之該第一座標軸通過該第一機械手臂座標系的原點與該第二機械手臂座標系的原點。 The reset method as claimed in claim 1, wherein the first work vector refers to a first robot arm coordinate system, and the second work vector refers to a second manipulator arm coordinate system; the reset method is further used for: A common coordinate system is defined, and the first coordinate axis of the common coordinate system passes through the origin of the first robotic arm coordinate system and the origin of the second robotic arm coordinate system. 如請求項1所之復位方法,其中該第一復位路徑為接近或遠離該停止者的路徑。The reset method of claim 1, wherein the first reset path is a path close to or away from the stopper. 如請求項1所之復位方法,更包括: 控制一第三機械手臂停止運動,其中該第三機械手臂具有一第三工作向量; 判斷該第一投影向量、該第二投影向量與該第三工作向量投影於該第一座標軸的一第五投影向量的任二者是否彼此重疊; 當該第一投影向量、該第二投影向量與該第五投影向量的任二者彼此重疊時,判斷該第三投影向量、第四投影向量與該第三工作向量投影於該第二座標軸的一第六投影向量是否彼此重疊;以及 當該第三投影向量、該第四投影向量與該第六投影向量未彼此重疊,控制該第一機械手臂、該第二機械手臂與該第三機械手臂其中之該第一受控移動者沿該第一復位路徑移動,其中該第一復位路徑不通過該第一機械手臂、該第二機械手臂與該第三機械手臂之該停止者的該工作點,且控制該第一機械手臂、該第二機械手臂與該第三機械手臂其中之一第二受控移動者沿一第二復位路徑移動,其中該第二復位路徑不通過該停止者的該工作點。 The reset method as claimed in claim 1 further includes: controlling a third robotic arm to stop moving, wherein the third robotic arm has a third work vector; Determine whether any two of the first projection vector, the second projection vector and the third working vector are projected on the first coordinate axis and a fifth projection vector overlap each other; When any two of the first projection vector, the second projection vector and the fifth projection vector overlap with each other, determine the projection of the third projection vector, the fourth projection vector and the third working vector on the second coordinate axis whether a sixth projection vector overlaps each other; and When the third projection vector, the fourth projection vector and the sixth projection vector do not overlap each other, control the first controlled mover of the first robotic arm, the second robotic arm and the third robotic arm to move along the The first reset path moves, wherein the first reset path does not pass through the working point of the stopper of the first robotic arm, the second robotic arm and the third robotic arm, and controls the first robotic arm, the One of the second controlled mover of the second robotic arm and the third robotic arm moves along a second reset path, wherein the second reset path does not pass through the work point of the stopper. 如請求項1所之復位方法,更包括: 以該第一機械手臂、該第二機械手臂與一第三機械手臂之其中二者決定一共同座標系; 在控制該第一受控移動者移動後,以該第一機械手臂、該第二機械手臂與該第三機械手臂之其中另外二者決定一重設之共同座標系,該另外二者與該其中二者不完全重複; 在該重設之共同座標系下,決定該另外二者之一第二受控移動者的一第二復位路徑;以及 控制該第二受控移動者沿該第二復位路徑移動。 The reset method as claimed in claim 1 further includes: Determining a common coordinate system with two of the first robotic arm, the second robotic arm and a third robotic arm; After controlling the movement of the first controlled mover, the other two of the first robot arm, the second robot arm and the third robot arm are used to determine a reset common coordinate system, and the other two and the other two are used to determine a reset common coordinate system. The two do not exactly repeat; determining a second reset path of the other two second controlled movers under the reset common coordinate system; and The second controlled mover is controlled to move along the second reset path. 一種協作機械手臂系統,更包括: 一第一機械手臂,具有一第一工作向量; 一第二機械手臂,具有一第二工作向量;以及 一控制器,用以: 控制一第一機械手臂及一第二機械手臂停止運動; 判斷該第一工作向量投影於一第一座標軸的一第一投影向量與該第二工作向量投影於該第一座標軸的一第二投影向量是否重疊; 當該第一投影向量與該第二投影向量重疊時,判斷該第一工作向量投影於一第二座標軸的一第三投影向量與該第二工作向量投影於該第二座標軸的一第四投影向量是否重疊;及 當該第三投影向量與該第四投影向量未重疊時,控制該第一機械手臂與該第二機械手臂其中之一第一受控移動者沿一第一復位路徑移動,其中該第一復位路徑不通過該第一機械手臂與該第二機械手臂其中之一停止者的一工作點。 A collaborative robotic arm system, further comprising: a first robotic arm, having a first work vector; a second robotic arm having a second work vector; and a controller to: controlling a first robotic arm and a second robotic arm to stop moving; determining whether a first projection vector of the first work vector projected on a first coordinate axis and a second projection vector of the second work vector projected on the first coordinate axis overlap; When the first projection vector and the second projection vector overlap, determine a third projection vector of the first work vector projected on a second coordinate axis and a fourth projection of the second work vector projected on the second coordinate axis whether the vectors overlap; and When the third projection vector and the fourth projection vector do not overlap, control a first controlled mover of the first robotic arm and the second robotic arm to move along a first reset path, wherein the first reset The path does not pass through a work point where one of the first robotic arm and the second robotic arm stops. 如請求項10所之協作機械手臂系統,其中該第一復位路徑平行於該第二座標軸或一第三座標軸,該第三座標軸垂直於該第一座標軸與該第二座標軸。The cooperative robotic arm system of claim 10, wherein the first reset path is parallel to the second coordinate axis or a third coordinate axis, and the third coordinate axis is perpendicular to the first coordinate axis and the second coordinate axis. 如請求項10所之協作機械手臂系統,其中該第一座標軸與該第二座標軸彼此垂直。The cooperative robotic arm system of claim 10, wherein the first coordinate axis and the second coordinate axis are perpendicular to each other. 如請求項10所之協作機械手臂系統,其中該第一座標軸與該第二座標軸為一共同座標系的二軸向。The cooperative robotic arm system of claim 10, wherein the first coordinate axis and the second coordinate axis are two axes of a common coordinate system. 如請求項13所之協作機械手臂系統,其中該第一工作向量參考於一第一機械手臂座標系,該第一機械手臂座標系的原點與該共同座標系的原點重合。The cooperative manipulator system of claim 13, wherein the first work vector is referenced to a first manipulator coordinate system, and the origin of the first manipulator coordinate system coincides with the origin of the common coordinate system. 如請求項10所之協作機械手臂系統,其中該第一工作向量參考於一第一機械手臂座標系,而該第二工作向量參考於一第二機械手臂座標系;該控制器更用以: 定義一共同座標系,該共同座標系之該第一座標軸通過該第一機械手臂座標系的原點與該第二機械手臂座標系的原點。 The cooperative robot arm system of claim 10, wherein the first work vector is referenced to a first robot arm coordinate system, and the second work vector is referenced to a second robot arm coordinate system; the controller is further configured to: A common coordinate system is defined, and the first coordinate axis of the common coordinate system passes through the origin of the first robotic arm coordinate system and the origin of the second robotic arm coordinate system. 如請求項10所之協作機械手臂系統,其中該第一復位路徑為接近或遠離該停止者的路徑。The cooperative robotic arm system of claim 10, wherein the first reset path is a path close to or away from the stopper. 如請求項10所之協作機械手臂系統,其中該控制器更用以: 控制一第三機械手臂停止運動,其中該第三機械手臂具有一第三工作向量; 判斷該第一投影向量、該第二投影向量與該第三工作向量投影於該第一座標軸的一第五投影向量的任二者是否彼此重疊; 當該第一投影向量、該第二投影向量與該第五投影向量的任二者彼此重疊時,判斷該第三投影向量、第四投影向量與該第三工作向量投影於該第二座標軸的一第六投影向量是否彼此重疊;以及 當該第三投影向量、該第四投影向量與該第六投影向量未彼此重疊,控制該第一機械手臂、該第二機械手臂與該第三機械手臂其中之該第一受控移動者沿該第一復位路徑移動,其中該第一復位路徑不通過該第一機械手臂、該第二機械手臂與該第三機械手臂之該停止者的該工作點,且控制該第一機械手臂、該第二機械手臂與該第三機械手臂其中之一第二受控移動者沿一第二復位路徑移動,其中該第二復位路徑不通過該停止者的該工作點。 The collaborative robotic arm system of claim 10, wherein the controller is further configured to: controlling a third robotic arm to stop moving, wherein the third robotic arm has a third work vector; Determine whether any two of the first projection vector, the second projection vector and the third working vector are projected on the first coordinate axis and a fifth projection vector overlap each other; When any two of the first projection vector, the second projection vector and the fifth projection vector overlap with each other, determine the projection of the third projection vector, the fourth projection vector and the third working vector on the second coordinate axis whether a sixth projection vector overlaps each other; and When the third projection vector, the fourth projection vector and the sixth projection vector do not overlap each other, control the first controlled mover of the first robotic arm, the second robotic arm and the third robotic arm to move along the The first reset path moves, wherein the first reset path does not pass through the working point of the stopper of the first robotic arm, the second robotic arm and the third robotic arm, and controls the first robotic arm, the One of the second controlled mover of the second robotic arm and the third robotic arm moves along a second reset path, wherein the second reset path does not pass through the work point of the stopper. 如請求項10所之協作機械手臂系統,其中該控制器更用以: 以該第一機械手臂、該第二機械手臂與一第三機械手臂之其中二者決定一共同座標系; 在控制該第一受控移動者移動後,以該第一機械手臂、該第二機械手臂與該第三機械手臂之其中另外二者決定一重設共同座標系,該另外二者與該其中二者不完全重複; 在該重設之共同座標系下,決定該另外二者之一第二受控移動者的一第二復位路徑;以及 控制該第二受控移動者沿該第二復位路徑移動。 The collaborative robotic arm system of claim 10, wherein the controller is further configured to: Determining a common coordinate system with two of the first robotic arm, the second robotic arm and a third robotic arm; After controlling the movement of the first controlled mover, the other two of the first robot arm, the second robot arm and the third robot arm are used to determine a reset common coordinate system, and the other two and the two are not completely repeated; determining a second reset path of the other two second controlled movers under the reset common coordinate system; and The second controlled mover is controlled to move along the second reset path.
TW109146447A 2020-12-28 2020-12-28 Cooperative robotic arm system and homing method thereof TWI845798B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109146447A TWI845798B (en) 2020-12-28 2020-12-28 Cooperative robotic arm system and homing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146447A TWI845798B (en) 2020-12-28 2020-12-28 Cooperative robotic arm system and homing method thereof

Publications (2)

Publication Number Publication Date
TW202224880A true TW202224880A (en) 2022-07-01
TWI845798B TWI845798B (en) 2024-06-21

Family

ID=83436701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146447A TWI845798B (en) 2020-12-28 2020-12-28 Cooperative robotic arm system and homing method thereof

Country Status (1)

Country Link
TW (1) TWI845798B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137155B2 (en) * 2014-12-09 2017-05-31 トヨタ自動車株式会社 Interference avoidance method, control device, and program
US10131053B1 (en) * 2016-09-14 2018-11-20 X Development Llc Real time robot collision avoidance
CN107336230B (en) * 2017-05-09 2020-05-05 浙江工业大学 Industrial robot collision prediction method based on projection and distance judgment

Also Published As

Publication number Publication date
TWI845798B (en) 2024-06-21

Similar Documents

Publication Publication Date Title
US8812159B2 (en) Robot system
US8315738B2 (en) Multi-arm robot system interference check via three dimensional automatic zones
US20210402613A1 (en) Method for the control of a processing machine or of an industrial robot
JP5025598B2 (en) Interference check control apparatus and interference check control method
JP5872894B2 (en) Robot motion teaching support apparatus and method
US9718189B2 (en) Robot teaching device for teaching robot offline
US20180126554A1 (en) Method for motion simulation of a manipulator
KR20120082881A (en) Robotic apparatus implementing collision avoidance scheme and associated methods
JP2017094438A (en) Robot system having function of simplifying teaching work by learning and function of improving operation performance
CN113799143B (en) Safe cooperation method and device of multiple robots in working area
CN104070522B (en) Can automatically identify and the method and device of collision free for industrial robot
US20200086488A1 (en) Method and apparatus for controlling robot
JPH07271415A (en) Cooperative robot control method
TW202224880A (en) Cooperative robotic arm system and homing method thereof
US11628568B2 (en) Cooperative robotic arm system and homing method thereof
CN114536342A (en) Multi-arm system and inter-arm collision avoidance control method thereof
JP2018051686A (en) Robot restoration support device and robot system comprising the same
KR20200109552A (en) Obstacle avoidance pathe generation simulation system
KR100863989B1 (en) Waiting time minimization of component assembly shop welding robot and collision prevention method
CN108972547A (en) A kind of eight degrees of freedom welding track generates system coordination motion control method online
JP2019084627A (en) Method for returning horizontal multi-joint robot to original position
KR100194216B1 (en) Position Correction Device and Method of Mobile Robot Using Vision System
KR102371544B1 (en) Methdo of teaching a transferring robot and teaching apparatus using the same
JP7489219B2 (en) Path generation device and machine tool
Sim et al. Development of an Autonomous Mobile Manipulator for Pick and Place Operation Using 3D Point Cloud